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Abbreviations 

2D 2-dimensional 

3D 3-dimensional 

3p 3 prime 

5-HT 5-hydroxytryptamine 

5-HTT 5-hydroxytryptamine transporter 

5p  5 prime 

7-AAD 7-Amino-Actinomycin D 

A-Co control Antagomir 

A-(17) Antagomir-(17) 

ACTA2 -actin 2  

ACVRL1 activin A receptor type II-like 1 

ADAR adenosine deaminase, RNA-specific 

Ago Argonaute 

Ang angiopoietin 

ANOVA analysis of variance 

APAH associated PAH  

APS ammonium persulfate 

aqua dest aqua destillata 

ATP adenosine triphosphate 

AVD apoptotic volume decrease 

BM basement membrane 

BMP bone morphogenetic protein  

BMPR2 bone morphogenetic protein receptor 2  

bp base pairs 

BrdU  bromodeoxyuridine 

BSA bovine serum albumine 

bw  body weight 

C. elegans  Caenorhabditis elegans 

C13orf25 chromosome 13 open reading frame 25  

Ca2+ calcium 

CaM calmodulin 

CDKN cyclin-dependent kinase 

cDNA copy DNA 

CHCl3 chloroform 

CNN1 calponin 1 

Co control 

CO cardiac output 

CO2 carbon dioxide 

COUP-TFII chicken ovalbumin upstream promoter-transcription factor II 

CT threshold cycle 

CTGF connective tissue growth factor  

DAG diacylglycerol 

DAPI 4',6-diamidino-2-phenylindole 

DGCR8 DiGeorge critical region 8 

DMEM Dulbecco's Modified Eagle Medium 

http://de.wikipedia.org/wiki/Dulbecco%E2%80%99s_Modified_Eagle_Medium
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DNA deoxyribonucleic acid 

Dnd1 dead end homolog 1 

dNTP deoxynucleotide Triphosphate 

dsRNA double-stranded RNA 

DTT dithiothreitol 

E7.5 embronic day 7.5 

EC endothelial cell 

ECCPS Excellence Cluster Cardio-Pulmonary System  

ECM extracellular matrix 

EEL external elastic lamina 

EFNB1 ephrin B1  

e.g  exempli gratia, for example 

EGF epidermal growth factor 

Egfl7  EGF-like domain 7 

EGM Endothelial Cell Growth Medium 

EHS Engelbreth-Holm-Swarm  

ELISA enzyme-linked immunosorbent assay 

Em membrane potential 

eNOS endothelial nitric oxide synthase 

EphB4 ephrin receptor B4 

et al.  et alia, and others 

ET-1 endothelin-1 

EtOH  ethanol 

FACS fluorescence-activated cell sorting 

FCS fetal calf serum 

FGF fibroblast growth factor 

FITC fluorescein isothiocyanate 

FNDC3A fibronectin type-III domain containing 3A  

FPAH familial PAH  

G-CSF  granulocyte colony-stimulating factor 

GF growth factor 

GM-CSF  granulocyte macrophage colony-stimulating factor 

GPCR G protein-coupled receptor  

GTP guanosine triphosphate 

h hour(s) 

H2O water 

H2O2 hydrogen peroxide  

hsa homo sapiens 

HC healthy control 

HEK human embryonic kidney 

HHV human herpes virus 

HIF hypoxia-inducible factor 

HIV human immunodeficiency virus 

HMVEC human microvascular endothelial cell 

hnRNPA1 heterogeneous nuclear ribonucleoprotein A1 

HPASMC Human pulmonary artery smooth muscle cell 

HRP horseradish peroxidase 

HuR human antigen R 

HUVEC human umbilical vein endothelial cell 
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i.e. id est, that is 

i.v. intravenous 

ICAM intramolecular cell adhesion molecules 

ID1 inhibitor of DNA binding 1  

IEL internal elastic lamina 

IFN interferone 

IGF1 insulin-like growth factor 1 

IGFBP2 insulin-like growth factor binding protein 2 

IL interleukin 

IP3 inositol 1,4,5-trisphosphate  

IPAH idiopathic PAH 

JAK Janus kinase  

kD kilodalton 

KSRP K-homology-type splicing regulatory protein 

Kv voltage-dependent potassium channels  

LB Luria-Bertani 

LLC Lewis Lung Carcinoma 

MAPC multipotent adult progenitor cells 

MCT monocrotaline 

MeOH methanol 

MEM Minimum Essential Medium 

MHz Megahertz 

min minute(s) 

miR, miRNA microRNA 

miRISC microRNA induced silencing complex  

MLC myosin light chain  

MLCK myosin light chain kinase 

MLCP myosin light chain phosphatase 

M-MLV  Moloney murine leukemia virus  

MMP matrix metalloproteinase  

MRE microRNA recognition element 

mRNAs messenger RNA 

MZ maternal-zygotic  

ncRNA non-coding RNA 

n.d. not determined 

NO nitric oxide 

NOX normoxia 

NRP neuropilin 

nt nucleotides 

O2 oxygen 

ORF open reading frame 

P bodies processing bodies 

PAAT pulmonary artery acceleration time 

PABP poly(A)-binding protein  

PACT protein activator of protein kinase R (PKR) 

PAF platelet activating factor  

PAH pulmonary arterial hypertension  

PAP pulmonary arterial pressure  

PASMC pulmonary artery smooth muscle cell  
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PBS phosphate buffered saline 

PC pericytes 

PCR polymerase chain reaction 

PDGF platelet-derived growth factor 

PEG polyethylene glycol  

PGI2 prostacyclin 

PIK3R2  phosphoinositol-3 kinase regulatory subunit 2 

PIP2 phosphatidylinositol biphosphate 

piRNA Piwi-interacting RNA 

Piwi P-element-induced wimpy testis 

PKC protein kinase C 

PKD polycystic kidney disease 

PLC phospholipase C 

POD peroxidase 

poly(A) polyadenosine 

Pre-Co control precursor 

Pre-(17) (miR-17) precursor 

pre-miR precursor microRNA 

pri-miR  primary microRNA 

PTGS posttranscriptional gene silencing  

qPCR quantitative PCR 

RER rough endoplasmic reticulum 

RIPA radio immunoprecipitation assay 

RISC RNA-induced silencing complex  

RLC RISC loading complex 

rlu relative light units 

RNA ribonucleic acid 

RNAi RNA interference  

ROC receptor-operated calcium channels 

ROK Rho-associated kinase 

ROS reactive oxygen species 

RPLP0 ribosomal protein, large, P0  

rpm rounds per minute 

rRNA ribosomal RNA 

R-Smad receptor-activated Smad 

RT room temperature 

RTK receptor tyrosine kinase 

RV/LV+S right ventricle/left ventricle+septum 

RVSP right ventricular systolic pressure 

60S 60 Svedberg 

s.c. subcutaneous(ly) 

S1P sphingosine-1-phosphate  

S1PR1 sphingosin-1-phosphate-receptor 1 

SAP systemic arterial pressure 

scaRNA small Cajal body-specific RNA  

SCF stem cell factor  

SEM standard error of the mean 

siRNA small interfering RNA 

SM22a smooth muscle protein 22- 
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SMA smooth muscle -actin 

SMC smooth muscle cell 

SM-MHC smooth muscle myosin heavy chain  

SMTN smoothelin 

snoRNA small nucleolar RNA  

snRNA small nuclear RNA 

SOC store-operated calcium channels 

SPRED1 sprouty-related protein  

SR sarcoplasmic reticulum 

STAT signal transducer and activator of transcription 

SVEC SV40 transformed lymphatic endothelial cells  

TBS Tris buffered saline 

TBS-T TBS with 0.1% Tween-20 

TEMED tetramethylethylenediamine 

TGF-  transforming growth factor beta 

TGFBR2 transforming growth factor, beta receptor II 

TNF tumour necrosis factor 

TNFAIP1 tumour necrosis factor alpha-induced protein 1  

TNRC trinucleotide repeat containing 

TP53 tumour protein p53 

t-PA tissue-type plasminogen activator 

TRBP Tar RNA binding protein 

tRNA transfer RNA 

TSP-1 thrombospondin-1 

TUT4 terminal uridylyltransferase 4 

TYK tyrosine kinase 

uPA urokinase-type plasminogen activator 

UTR untranslated region 

VCAM vascular cell adhesion molecule 

VDCC voltage-dependent calcium channels 

VE vascular endothelial 

VEGF vascular endothelial growth factor 

v/v volume per volume 

vol volume(s) 

vs versus 

VSMC vascular smooth muscle cells  

vWF von Willebrand factor  

w/v weight per volume 

XRN exoribonuclease 
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I. Introduction 

A. The circulatory system 

In mammals, the circulatory system is composed of two vascular networks: the first filled with 

blood and belonging to the cardiovascular system, the second containing lymph and associated 

with the lymphatic system. In contrast to the closed cardiovascular system, where the blood per-

manently circulates through the vasculature, the lymphatic system is an open system in which the 

lymph flows unidirectionally from peripheral body tissue towards the heart, where it connects to 

the cardiovascular system via the subclavian veins.  

Blood comprises of three types of blood cells: erythrocytes, leukocytes and platelets. These are 

distributed within the blood plasma, an aqueous solution containing dissolved proteins, electro-

lytes, nutrients, hormones and waste products. The distribution of blood and its cargo throughout 

the body is facilitated by blood vessels. Capillaries of the cardiovascular system extract compo-

nents of the blood plasma to form the interstitial fluid that encloses all cells of the body. The lym-

phatic system helps maintain fluid balance by draining excess fluid from the interstitial space into 

the blood and returns leaked plasma proteins to the cardiovascular system.  

 

Figure I.1: Schematic illustration of the blood and the lymphatic vasculature. The blind-ended lymphatic 
capillaries consist of a single layer of overlapping endothelial cells which do not possess a continuous 
basement membrane providing them with the ability to absorb interstitial fluid, immune cells, lipids and 
macromolecules from the tissue. These substances are returned to the circulating blood via larger col-
lecting lymphatic vessels. The latter are EC tubes with a basement membrane covered with smooth 
muscle cells. Lymph backflow is prevented by luminal valves. The organization and structure of the 
blood vasculature will be described in more detail in the following chapters. Y. Wang & G. Oliver 
Genes Dev. 2010 [2] 

Moreover, due to their association with lymphatic tissue, the lymphatic vessels are an important 

transport route for immune cells during immune response. Additionally, they are involved in the 
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uptake of dietary lipids and lipid-soluble vitamins from the gastrointestinal tract into the blood. 

Since the lymphatic vessels arise from embryonic veins during development, both networks con-

sist of interconnected tubes that are lined by endothelial cells and may be covered with smooth 

muscle cells (Fig. I.1) [3].  

1. Circulatory routes in the cardiovascular system 

The cardiovascular system can be subdivided into two main circulatory routes: the systemic circu-

lation and the pulmonary circulation.  

The heart is the central component of the cardiovascular system, acting as a double pump to 

drive blood through both the systemic and the pulmonary circulation. In order to fulfil this function, 

the human heart possesses four chambers. The two atria located at the upper part of the heart 

constitute the blood receiving units, whereas the two ventricles situated at the bottom of the heart 

are responsible for discharging the blood into the systemic and the pulmonary circulation. Both 

atria are separated by the interatrial septum, and the interventricular septum is located between 

both ventricles. To assure unidirectional flow, blood backflow is prevented by valves between 

each atrium and ventricle and at the exit of both ventricles. The right atrium accommodates oxy-

gen-poor blood arriving through the superior and inferior vena cava, the coronary sinus from pe-

ripheral body tissues above and below the heart as well as the heart itself. After passage to the 

right ventricle, the blood is pumped through the pulmonary trunk into the left and right pulmonary 

arteries, directing the deoxygenated blood to the corresponding lung.  

Within the lung, the pulmonary artery branches into arteries and arterioles, which finally form 

meshworks of pulmonary capillaries surrounding the alveolar sacs at the end of the bronchial 

tree, where gas exchange takes place. The oxygenated blood returns to the heart by travelling 

from the pulmonary capillaries via venules and veins through the two major pulmonary veins con-

necting each lung with the left atrium. After entering the left ventricle, the following heart contrac-

tion sends the oxygen-rich blood through the aorta and the systemic arteries to peripheral sites of 

the body.  

In systemic capillaries, the blood releases oxygen, absorbs carbon dioxide and returns to the 

right side of the heart. During systole the heart contracts, and during diastole it relaxes [3].  

Figure I.2 shows a schematic representation of the circulatory routes constituting the cardiovas-

cular system. 
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Figure I.2: Schematic illustration of the pulmonary and the systemic circulation. The heart represents the 
interface between the pulmonary and systemic circulation. The left ventricle receives oxygen-rich 
blood from the lung and supplies it to the systemic circulation which distributes oxygen and nutrients 
to peripheral tissues. Capillaries mediate the exchange of O2 and CO2 as well as nutrients within the 
periphery. The oxygen-depleted blood is accommodated by the right side of the heart to send it to the 
lung, where capillaries exchange CO2 against O2. [4] 

2. Structure of blood vessels 

Capillaries possess the simplest structure and are the smallest of all blood vessels. They consist 

of a layer of endothelial cells that is stabilized by vascular pericytes and enclosed by a basement 

membrane. Capillaries are responsible for the active and passive exchange of a variety of sub-

stances, such as oxygen, carbon dioxide, water, nutrients and waste between the blood and ad-

jacent tissue.  

Arteries are blood vessels that direct blood from the heart to peripheral tissue. Generally, they 

transport oxygenated blood with the exception of the pulmonary and the umbilical arteries. With 

regard to their diameters, they can be subdivided into large arteries (d = 1 - 2.5 cm, e.g. the aor-

ta), medium-sized arteries (d = 0.3 mm - 1 cm) and arterioles (d = 10 µm - 0.3 mm) [5].  

Veins mediate the transport of blood towards the heart. Apart from the pulmonary veins and the 

umbilical vein, all of them carry deoxygenated blood. Both arteries and veins consist of three 

different layers: intima, media and adventitia. The intima, that is located towards the lumen of the 

vessel, consists of basement membrane-anchored endothelium surrounded by connective tissue 

and the internal elastic lamina. The media contains smooth muscle cells as well as elastic tissue, 

which in arteries but not in veins, is separated from the adventitia by the external elastic lamina. 
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The adventitia is formed by fibroblasts, connective tissue and elastic fibres. Most arteries that are 

in close proximity to the heart, except for the coronary artery, are elastic arteries characterized by 

high elastin content within the media. Muscular arteries are connected to the elastic arteries and 

are responsible for further blood transport to organs and tissues. The structural feature of their 

media is 10-60 layers of helically arranged smooth muscle cells [6]. Since blood pressure is lower 

in veins than in arteries, the vascular wall of veins is much thinner than that of arteries. Addi-

tionally, veins are equipped with valves that prevent the backflow of blood [7]. Arterioles, capilla-

ries and venules form the microcirculation. Blood supply to the vessel walls of large arteries and 

veins is accomplished by a network of small blood vessels known as the vasa vasorum. Nerve 

endings from the autonomic nervous system innervate muscular arteries and arterioles to control 

the contraction of smooth muscle cells [8]. Figure I.3 schematically represents the structure of the 

different types of blood vessels.  

 

Figure I.3: Structure of blood vessels and lymphatics. (A) Initially, vessels consist of a simple endothelial cell 
(EC) tube which matures into capillaries, arteries or veins. (B) Capillaries are EC tubes that are re-
gionally covered with pericytes (PCs) and surrounded by a basement membrane (BM). (C) Arterioles 
and venules link arteries and veins to the capillaries and are therefore increasingly covered with mural 
cells, i.e. pericytes or smooth muscle cells (SMCs). Precapillary arterioles are characterized by cir-
cumferentially arranged and closely packed mural cells (i.e. pericytes or SMCs), whereas the different 
arrangement of mural cells on postcapillary venules allows extravasation of cells and macromole-
cules. The endothelial cells rest on the internal elastic lamina (IEL) which may be incomplete or very 
thin. The SMCs synthesize their own basement membrane. An incomplete or very thin external elastic 
lamina (EEL) forms the outer boundary of the vessels. (D) Three speciliazed layers constitute the wall 
of larger vessels: intima, media and adventitia. The intima consists of endothelial cells, the media of 
smooth muscle cells and the adventitia of fibroblasts. Each layer is embedded in extracellular matrix 
material and is surrounded by an elastic lamina. Modified from Jain, Nat Med 2003 [9] 

a) The endothelium 

In an adult, the endothelium is made up by 1-6x1013 individual cells that are spread over an area 

of 4000-7000 square meters [10], representing the largest organ of the human body.  
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The endothelial cells form a continuous monolayer linked to each other by tight junctions, ad-

herens junctions and/or gap junctions. Luminally, the endothelial cells are covered by a network 

of membrane-bound and plasma-derived glycoproteins and proteoglycans, the glycocalyx. Since 

the endothelium forms the direct border between the blood and tissue, it occupies multiple tasks 

to guarantee vascular homeostasis and proper functionality of the body. On the one hand, endo-

thelial cells interact with a variety of circulating cells within the blood; on the other hand, they are 

in contact with the smooth muscle cells of the vascular wall. Thus, the endothelium coordinates 

signals arriving through the circulation with those in the vessel wall. Not surprisingly, endothelial 

dysfunction causes a variety of cardiovascular diseases, such as atherosclerosis, sepsis, coro-

nary artery disease as well as systemic and pulmonary arterial hypertension [11]. 

The endothelium represents a semi-permeable barrier controlling the passage of small and large 

molecules from the blood into the surrounding tissue. Vascular endothelial growth factor (VEGF) 

was originally identified due its capability to promote vascular permeability [12]. A variety of sub-

stances from the blood are further converted or metabolized by endothelial enzymes into vasoac-

tive compounds illustrating the important metabolic role of the endothelium in regulating blood 

flow and organ perfusion. Nitric oxide (NO) and prostacyclin (PGl2) are examples of endothelial-

derived vasodilators, whereas endothelin-1 is a potent vasoconstrictor [10]. Vasoactive com-

pounds cause the de- or hyperpolarization of smooth muscle cells triggering their contraction or 

relaxation and thus determine vascular tone. The healthy endothelium prevents thrombus for-

mation by constitutively synthesizing molecules that counteract platelet aggregation and blood 

coagulation, such as PGI2, NO and thrombomodulin. Fibrinolysis is supported by secretion of 

tissue-type plasminogen activator (t-PA) under healthy conditions and additionally by urokinase 

upon endothelial cell activation. Both convert plasminogen into plasmin which degrades fibrin and 

therefore contributes to thrombus decay [13].  

Vascular injury, inflammation and cytokines, like thrombin or histamine, are able to induce endo-

thelial cell activation leading to an increased expression of cell adhesion molecules on the endo-

thelial cell surface. Platelet activating factor (PAF), members of the selectin family, intramolecular 

cell adhesion molecules 1 and 2 (ICAM-1, ICAM-2) as well as vascular cell adhesion molecule 

(VCAM) enable adhesion of platelets, neutrophils, lymphocytes and leukocytes to the endotheli-

um. Paracellular transmigration of leukocytes necessitates a transient dissolution of endothelial 

cell junctions and involves homophilic interactions of endothelial and leukocyte surface proteins 

that navigate the leukocyte through the endothelium [14].  
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b) Vascular smooth muscle cells (VSMCs) 

During development, smooth muscle cells and pericytes, which belong to the same cell lineage, 

prevent the regression of blood vessels and stabilize them by secreting increased amounts of 

ECM components like collagen, elastin and proteoglycans.  

In the adult, differentiated vascular smooth muscle cells are largely quiescent, non-migratory, 

synthesize few ECM components and are mainly committed to fulfilling their contractile function 

[15]. To accomplish this task, SMCs possess a repertoire of suitable receptors, ion channels, 

signal transducer molecules, calcium sensitive proteins and contractile proteins. The latter in-

clude smooth muscle -actin (SMA), smooth muscle myosin heavy chain (SM-MHC), smooth 

muscle protein 22-alpha (SM22a), calponin, desmin and smoothelin. The name smooth muscle 

was chosen since it is not striated like the cardiac and skeletal muscle. The coordinated contrac-

tion and relaxation of VSMCs adapts luminal diameter to ensure adequate blood pressure within 

the vessels. Contraction of VSMCs is elicited by SMC-intrinsic (myogenic), electrical or chemical 

stimuli. Each stimulus promotes a rise in intracellular calcium concentration leading to the Cal-

modulin-Ca2+-mediated activation of myosin light chain (MLC) kinase which phosphorylates the 

light chain of myosin and enables its interaction with actin. The cycling of the myosin-actin cross-

bridges consumes energy from ATP generated by the myosin ATPase activity and causes cellu-

lar contraction. During relaxation the intracellular Ca2+ concentration drops, MLC phosphatase 

becomes activated, dephosphorylates myosin light chain and thus prevents actin binding [8]. 

Arterial SMCs in vivo are present in a partially constricted state since average intracellular Ca2+ 

concentration is held at a lower level than in the extracellular fluid [15]. 

 

Figure I.4: Characteristics of smooth muscle cell phenotypes. The contractile and the synthetic phenotype of 
smooth muscle cells confine a continuum in which the cells assume different phenotypes in response 
to external stimuli. The properties of both phenotypes are given in the picture. ECM: extracellular ma-
trix, RER: rough endoplasmic reticulum. Adopted from Beamish et al., Tissue Eng Part B Rev 2010 
[16] 
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During vascular remodelling, e.g. after vascular injury, the contractile SMCs undergo a phenoty-

pic switch into a synthetic phenotype which synthesizes plenty of ECM components and is char-

acterized by the loss of contractility markers as well as increased proliferation and migration. The 

contractile and the synthetic phenotype define a spectrum of intermediate phenotypes clearly 

differing in cellular characteristics (Fig. I.4) [17]. In mature SMCs, platelet-derived growth factor 

(PDGF) isoforms assist the synthetic phenotype, whereas bone morphogenetic protein (BMP) 

and transforming growth factor- (TGF-signalling induce the contractile phenotype [16].  

3. Formation of blood vessels 

During embryonic development, the de novo formation of the vascular system is initiated by the 

process of vasculogenesis, in which mesoderm-derived angiogenic progenitor cells (angioblasts) 

assemble at sites of neovascularization, differentiate into primitive endothelial tubes that subse-

quently fuse to form a primitive vascular plexus. In vivo studies in mice provide strong evidence 

that the vessel lumen forms between adjacent cells involving electrostatic cell-surface repulsion 

[18, 19]. After establishment, the primary vascular network is subjected to rapid expansion and 

remodelling by the process of angiogenesis which refers to the establishment of new capillaries 

from existing blood vessels by sprouting, branching or splitting. Stabilization of the nascent vas-

culature is achieved by recruitment of pericytes and smooth muscle cells (Fig. I.5).  

 

Figure I.5: Mechanisms of vascular development. During vasculogenesis, angiogenic progenitors form a 
primitive vascular network. Expansion of the primitive vascular plexus, stabilization of the vessels by 
recruitment of pericytes (PC) and smooth muscle cells (SMC) and maturation into a fully functional 
vascular network occurs by angiogenesis. The lymphatic vessels emerge from veins by transdifferen-
tiation. Arteriogenesis is an adaptive remodelling process in response to physical forces (e.g. shear 
stress) involving the enlargement of the luminal diameter of pre-existing arterioles to form arteries. 
Carmeliet, Nature 2005 [20]. 

Although hemodynamics of blood flow play a role in the specification of arteries and veins [21], 

recent studies have shown that the arterial and venous identity is also genetically defined since 
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there are differences in expression of certain molecules before the initiation of blood flow [7]. 

Arteries are characterized by the expression of the receptor molecules ephrin B2 and neuropilin-

1, as well as active Notch signalling in zebrafish, chicks and mice [21]. In veins, the transcription 

factor COUP-TFII crucially determines venous cell fate by repressing Notch signalling [22]. More-

over, the receptor of ephrin B2, EphB4, is predominantly found in veins (Fig. I.6) [7].  

 

Figure I.6: Factors regulating vasculogenesis and angiogenesis. Specification of mesodermal cells into 
angionenic progenitors (angioblasts) and their migration to sites of neovascularization occurs in  
response to vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2). VEGF 
further promotes differentiation of angioblasts into endothelial cells and EC tube formation by binding 
to the VEGF receptor-2 (VEGFR-2). Signalling via the VEGFR-2 is modulated by neuropilin (NRP) co-
receptors, i.e. NRP-1 and NRP-2. Endoderm-derived Hedgehog promotes EC differentiation and tube 
formation. Vasculogenesis occurs in a fibronectin-rich extracellular matrix and interaction of the cells 
with the surrounding requires the expression of cell-matrix adhesion molecules (e.g. avb3 integrin). 
Tube formation depends on the presence of cell-cell adhesion molecules (e.g. vascular endothelial 

(VE) cadherin). TGF- induces differentiation of mural cells which proliferate, migrate and are recruit-
ed to nascent vessels in response to PDGF-B. Angiopoietin-1 and its receptor Tie-2 are also involved 
in recruitment of mural cells. N-cadherin and connexins are involved in EC-mural cell junction for-

mation. TGF-, Ephrin B2 and its receptor EphB4, the neuropilins and Notch signalling determine ar-
terial or venous specification. Modified from Ribatti et al., Angiogenesis 2009 [23] 

Although angiogenesis still supports organ growth after birth, the vasculature in the healthy adult 

is largely quiescent and angiogenesis only occurs in the female reproductive tract and in the pla-

centa during pregnancy. Nevertheless, endothelial cells remain responsive to angiogenic stimuli 

and can be reactivated to undergo angiogenesis during wound healing and tissue repair. In addi-

tion, multipotent adult progenitor cells (MAPCs) are mobilized from the bone marrow in response 

to injury and are recruited to the affected sites, where they differentiate into endothelial cells to 

contribute to neovascularization by vasculogenesis [24]. In contrast to embryonic vasculogenesis, 

postnatal vasculogenesis occurs in response to insufficient supply with oxygen (hypoxia) and 

involves recruitment of inflammatory cells which do not contribute to vessel formation.  
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Physiological angiogenesis, as it occurs during development and in healthy adults, is well regu-

lated: the angiogenic response is selectively initiated, sustained for a limited time and turned off 

upon established perfusion of the new vessel (Fig. I.7A). Hence, a tight control of endothelial cell 

proliferation is required. Aberrant activation of the vasculature to form new blood vessels due to 

an excess of growth promoting signals and the absence of cues necessary to coordinate vessel 

growth leads to pathological angiogenesis if resolution of the angiogenic cascade fails [25]. Un-

controlled vessel growth is associated with various diseases, including diabetic retinopathy, 

rheumatoid arthritis, atherosclerosis and cancer [26].  

 

Figure I.7: Comparison of physiological and pathological angiogenesis. (A) During physiological angiogene-
sis, endothelial cells respond to an angiogenic stimulus (i.e. hypoxia) by increased secretion of growth 
factors like VEGF and FGF. These factors lead to vessel destabilization and promote vessel sprouting 
and endothelial proliferation. Endothelial cell-derived matrix metalloproteinases enable remodelling of 
the extracellular matrix and liberate ECM sequestered growth factors. Established perfusion of the 
newly formed vessels causes a decline in VEGF levels. The resolution phase is characterized by an 
increased expression of platelet derived growth factor (PDGF), Angiopoietin (Ang) and transforming 

growth factor (TGF)  resulting in the recruitment of mural cells to stabilize the new vessel. (B) Patho-
logical angiogenesis during oncogenesis is initiated by tumour-derived VEGF. Other factors secreted 
by the tumour cause the activation of resident fibroblasts and the recruitment of immune cells which 
maintain an angiogenic environment by secretion of angiogenesis- and inflammation-promoting fac-
tors, thus preventing the resolution of the angiogenic response. GCSF: granulocyte stimulating factor, 

IL-1: Interleukin-1. Adopted from Chung et al., Nat Rev Cancer 2010 [25]  

Of these angiogenic diseases, cancer has been investigated most extensively. Tumourigenesis is 

initiated by an avascular agglomeration of cells which have lost growth control and therefore pro-

liferate in an atypical manner. Initially, the cell mass obtains nutrients and oxygen from the  



Introduction 

-22- 

existing vasculature of the host in the closer environment. Further growth of the tumour increases 

the distance to blood vessels beyond the effusion range (~200 µm) leading to insufficient oxygen 

supply of the tumour cells. To overcome the lack of oxygen and to enable tumour growth beyond 

2-3 mm3, tumour cells promote the formation of new blood vessels in a process referred to as 

tumour angiogenesis (Fig. I.7B). The angiogenic switch is activated by hypoxia within tumour 

cells leading to the stabilization of hypoxia-inducible factor 1 (HIF-1) which associates with the 

constitutively expressed HIF-1 to activate the transcription of target genes. VEGF is a prime 

example of hypoxia inducible genes and a potent regulator of vasculogenesis and angiogenesis 

by stimulating EC migration, proliferation and survival. Nevertheless, various other factors and 

events are required for tumour angiogenesis to proceed. Although tumour angiogenesis is me-

chanistically similar to physiological angiogenesis, tumours display an abnormal vasculature 

since vessels are often formed by endothelial and tumour cells and lack pericytes causing vessel 

dilation and leakiness [24].  

4. Pulmonary arterial hypertension 

Pulmonary arterial hypertension (PAH) is a disorder of the lung characterized by extensive re-

modelling of the pulmonary vasculature. This involves vasoconstriction, increased musculariza-

tion of pulmonary arteries and occasional in situ thrombus formation. Together, these events lead 

to the obliteration of small peripheral arteries resulting in sustained elevation of pulmonary vascu-

lar resistance and increased pulmonary arterial pressure (PAP). As a consequence of the altered 

pulmonary vascular resistance, the workload of the heart rises leading to right ventricular hyper-

trophy and finally death due to right heart failure. Clinically, pulmonary arterial hypertension is 

diagnosed on the basis of the mean PAP, which is elevated in diseased individuals above 

25 mmHg at rest or 30 mmHg during exercise [27]. 

The incidence of PAH is rather low, annually affecting two to three people in one million [28]. PAH 

is a disease of multifactorial nature involving all three cell layers of the vessel wall (i.e. endothelial 

cells, smooth muscle cells and fibroblasts) as well as circulating cells in the blood (e.g. platelets 

and inflammatory cells). The low incidence and the complexity of this disease might contribute to 

its largely unknown etiology. 

In PAH, endothelial cells are frequently dysfunctional producing and secreting increased amounts 

of substances which promote vasoconstriction, smooth muscle cell proliferation and migration as 

well as thrombus formation and inflammation [29]. Under these conditions, distal arteries, which 

are normally not muscularized, are populated by smooth muscle cells. The media of more proxi-



Introduction 

-23- 

mal muscular arteries is expanded due to the enhanced mitotic activity of SMCs and accumula-

tion of intercellular connective tissue. Adventitial fibroblasts become activated to transdifferentiate 

into myofibroblasts and contribute to neointima formation together with medial SMCs [30]. Endo-

thelial cell apoptosis might result either in the loss of pre-capillary arterioles or the selection of 

hyperproliferative, apoptosis-resistant ECs, which in advanced stages of the disease form ab-

normal channels within the obliterated lumen as part of plexiform lesions [27, 31]. Figure I.8 

summarizes the pathobiological changes observed in the lung during PAH. 

 

Based on its causes, pulmonary arterial hypertension can be classified in three forms: idiopathic 

PAH (IPAH), familial PAH (FPAH) and associated PAH (APAH). In IPAH, the cause is not appa-

rent, meaning that no familial predisposition or other risk factors exist. In FPAH the disease is 

based on an inherited genetic defect. Finally, the associated form can occur either as a conse-

quence of other diseases (e.g. HIV infection) or due to intake of drugs or toxins. Interestingly, 

~75% of familial and ~25% idiopathic cases can be attributed to germline mutations in a single 

gene, namely the bone morphogenetic protein receptor 2 (BMPR2) [32].  

The discovery that germline mutations of the BMPR2 frequently exist in individuals suffering from 

PAH, represents a milestone in the field. BMPR2 is, like TGFBR2, a type II transmembrane re-

ceptor for the TGF- superfamily of growth factors with intrinsic serine/threonine kinase activity.  

Figure I.8: Pathological changes of the lung vasculature in 
pulmonary arterial hypertension. Vasoconstriction 
and increased muscularization of pulmonary arteries 
due to endothelial dysfunction occur which lead to a 
rise in vascular resistance and impaired blood flow. 
Rabinovitch, JCI 2008 [27] 
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Signalling via BMPR2 and TGFBR2 necessitates the association with a representative of the 

type I transmembrane receptors in a heterotetrameric complex, leading to the phosphorylation of 

receptor-activated Smads. Upon phosphorylation, the receptor-activated Smads associate with 

the common Smad4 and translocate into the nucleus to modulate gene expression (Fig. I.9). 

BMPR2 is generally associated with BMPR1a or BMPR1b, promoting the phosphorylation of 

Smad1, Smad5 and Smad8. In contrast, TGFBR2 phosphorylates Smad2 and Smad3 when in a 

complex with TGFBR1, but is also capable of phosphorylating Smad1/5/8 upon association with 

activin A receptor type II-like 1 (ACVRL1).  

 

Figure I.9: BMP and TGF- signalling. Ligand binding to a heterotetrameric complex of a type I receptor and a 

type II receptor for BMP or TGF- in a 2:2 ratio induces the selective phosphorylation of receptor-
activated Smad transcription factors. The latter associate with the common Smad4 upon phosphoryla-
tion and translocate into the nucleus to modulate gene expression. BMPR2 forms a complex with 
BMP type I receptors, and signal transduction occurs via Smad1/5/8. Depending on the type I recep-
tor, TGFBR2 is capable of signalling via Smad1/5/8 or Smad2/3. Adopted from Eickelberg & Morty, 
Trends Cardiovasc Med. 2007 [32]  

Nevertheless, the mechanisms by which the loss-of-function mutations of BMPR2 cause PAH are 

not yet fully understood. Additionally, BMPR2 levels were also shown to be reduced in PAH pa-

tients without having any genetic predisposition regarding BMPR2 [33].  

Other signalling pathways contributing to PAH pathology are summarized in Figure I.10. 

javascript:AL_get(this,%20'jour',%20'Trends%20Cardiovasc%20Med.');
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Figure I.10: Signalling pathways involved in PAH development and pathology. A variety of signalling path-
ways have been implicated in PAH leading to chronic vasoconstriction and increased muscularization 
of pulmonary arteries by governing pulmonary artery smooth muscle cell (PASMC) contraction, proli-
feration and apoptosis. Endothelial dysfunction causes alterations in the mitogenic and vasoactive en-
vironment.  voltage-dependent potassium channels (Kv);  voltage-dependent (VDCC), store-
operated (SOC) and receptor-operated (ROC) calcium channels;  receptor-induced signalling via 
the inositol 1,4,5-trisphosphate (IP3)/diacylglycerol (DAG) pathway;  bone morphogenetic protein 
(BMP) signalling in endothelial and smooth muscle cells;  Angiopoietin-1 (Ang-1)/TIE2 signalling;  
nitric oxide (NO) and prostacyclin (PGl2) synthesis and secretion by endothelial cells;  Serotonin (5-
hydroxytryptamine, 5-HT) signalling  G protein-coupled receptor (GPCR)-induced signalling via 
small GTPases (i.e. RhoA) and Rho-associated protein kinase (ROK = ROCK: Rho-associated, 
coiled-coil containing protein kinase); AVD: apoptotic volume decrease; BMP-R: BMP receptor; CaM: 
calmodulin; Em: membrane potential; EGF: epidermal growth factor; ET-1: endothelin-1; GF: growth 
factor; HHV: human herpes virus; 5-HTT: 5-hydroxytryptamine (serotonin) transporter; MLC: myosin 
light chain; MLCK: myosin light chain kinase; MLCP: myosin light chain phosphatase; PDGF: platelet-
derived growth factor; PIP2: phosphatidylinositol biphosphate; PKC: protein kinase C; PLC: phospho-
lipase C; ROS: reactive oxygen species; R-Smad: receptor-activated Smad; RTK: receptor tyrosine 
kinase; SR: sarcoplasmic reticulum. Adopted from Morrell et al., J Am Coll Cardiol. 2009 [29] 

The therapeutic options currently available for PAH treatment mainly address the increased vas-

cular tone by operating as vasodilators, but merely provide symptomatic remedy rather than an 

improved chance of survival. Since pathological vascular remodelling is the cause of pulmonary 
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arterial hypertension, drugs interfering with endothelial dysfunction, proliferation and apoptosis-

resistance of smooth muscle cells may represent a promising therapeutic option. 

B. MicroRNAs 

1. The expanding universe of non-coding RNAs 

Originally, RNA was regarded as the intermediary between DNA and protein. Non-protein-coding 

RNA was frequently thought to be transcriptional noise and junk. This view partially changed with 

the discovery that protein complexes involved in the conversion of these protein-coding RNAs, 

known as messenger RNAs (mRNAs), into proteins contain non-coding RNA (ncRNA) compo-

nents to fulfil this task. Small nuclear RNAs (snRNAs) are part of the spliceosome and therefore 

essential for the removal of introns from the pre-mRNA. Transfer RNAs (tRNAs) match the indi-

vidual amino acids with the respective codon in the mRNA during translation, whereas ribosomal 

RNA (rRNA) assists and catalyses protein synthesis. These findings showed that non-coding 

RNAs master crucial infrastructural and housekeeping tasks [34]. Moreover, small nucleolar 

RNAs (snoRNAs) and the only recently discovered small Cajal body-specific RNAs (scaRNAs), 

which are both snRNA subtypes, were shown to be involved in the modification (e.g. methylation, 

pseudouridylation) of different RNA species, including rRNAs, tRNAs and snRNAs and thus add 

another regulatory mechanism to RNA biology involving ncRNAs.  

Although reports about the antisense phenomenon describing the observation that oligonucleo-

tides complementary to endogenous RNA species interfere with biological processes, can be 

traced back to the 1980s, a major discovery regarding new ncRNA species was made in 1993, 

when Wightman et al. reported that RNA products of the lin-4 gene regulate lin-14 translation by 

binding to complementary sequences within the 3´ untranslated region (UTR) of lin-14 and thus 

determine temporal pattern formation during C. elegans development [35]. Lin-4 was the founding 

member of a novel class of ncRNAs in C. elegans, later termed microRNAs [36, 37]. In the fol-

lowing decades it became obvious, mainly by large-scale genome and transcriptome projects, 

that most of the genome of the studied model organisms is indeed transcribed. Surprisingly, 

complex organisms like humans and mice do not differ much from C. elegans in the number of 

protein-coding genes, but produce a much larger amount of ncRNA species [38]. The research 

efforts of the last decades support that some of these these ncRNAs execute crucial regulatory 

tasks and are required to orchestrate gene expression patterns during the development of com-

plex organisms. They can be classified into long and small ncRNAs according to their size. Long 

ncRNAs are generally >200 nucleotides (nt) in size and have been shown to be capable of up- or 
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downregulating gene expression in processes such as dosage compensation, genomic im-

printing, stress response as well as developmental patterning and differentiation [39].  

Small ncRNAs arise from longer precursors by processing within the cell. Established classes of 

small ncRNAs in animals are Piwi-interacting RNAs (piRNAs), small interfering RNAs (siRNAs) 

and microRNAs (miRs). PiRNAs are ~25-30 nt long and seem to be exclusively expressed in 

germ cells and germ cell-associated somatic cells, where they serve as transcriptional gene si-

lencers of retrotransposons and repetitive elements [39]. Endogenous siRNAs, which are ~21 nt 

in size, are produced from dsRNAs derived from virus replication, convergent transcription of 

transgenes or transposons, inverted repeats, transcripts with internal stem loop structures or 

mRNAs paired to natural antisense transcripts, and they were shown to mediate posttranscrip-

tional silencing of mRNAs and transposons as well as transcriptional gene silencing [40]. Among 

the small ncRNAs, microRNAs are the most extensively studied and the subject of this work. 

2. Biological significance of mammalian microRNAs 

The research efforts of the last ten years have manifested the importance of microRNAs for cellu-

lar homeostasis since they were shown to modulate processes like apoptosis, cell fate decision, 

differentiation, migration and proliferation and are therefore crucial for the development of whole 

organisms. Not surprisingly, dysregulated microRNA expression has been observed in a variety 

of diseases and was proven to be associated with disease pathology. The reported disorders with 

microRNA contribution include cancer, autoimmune and neurodegenerative diseases, metabolic 

abnormalities, infection as well as diverse pulmonary and cardiovascular maladies [41]. Since 

microRNAs frequently target several components of a signalling pathway, the manipulation of 

microRNA expression promises immense therapeutic value. Moreover, microRNAs are detecta-

ble in different kinds of bodily fluids (e.g. blood) and are currently under investigation as new 

biomarkers for disease diagnosis and prognosis [42]. 

3. The discovery of RNA interference 

In 1998, Fire et al. provided the first clues regarding the molecular pathway responsible for the 

antisense phenomenon, which they named RNA interference (RNAi), by demonstrating that in 

C. elegans double-stranded RNA (dsRNA) was more potent in interfering with gene expression 

than either strand individually [43]. At that time, it was proposed that RNAi served the defence of 

the host genome against mobile genetic elements (e.g. transposons) and viruses producing 

dsRNA during their replication. With the beginning of this millennium, the groups of David Bartel 

und Thomas Tuschl provided evidence for the RNase III-like processing of long dsRNA into short 
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siRNAs which were ~22 nt RNA in length and mediated mRNA degradation in an ATP-dependent 

manner in Drosophila in vitro systems [44, 45]. At the same time, the Hannon lab reported the 

partial purification of a protein complex from Drosophila which contained nuclease activity and 

was responsible for mRNA degradation. They named it the RNA-induced silencing complex 

(RISC) [46]. Moreover, they identified the RNase III nuclease mediating the digestion of long 

dsRNA into siRNA and called it Dicer [47]. Soon after, RNAi was observed in human cells [48]. 

Hutvágner et al. demonstrated that microRNAs are processed by Dicer [49]. One year later, they 

reported that microRNAs enter the RNAi pathway in mammalian cells [50]. In 2003, the RNase III 

enzyme Drosha was shown to initiate microRNA processing in the nucleus of human cells [51]. 

Almost simultaneously to the discovery of RNAi in animals, similar pathways of small RNA-

induced posttranscriptional gene silencing (PTGS) were described in plants and shown to be 

involved in meristem function, organ polarity, vascular and leaf development, floral patterning as 

well as hormone and stress response [51]. The following section focuses on mammalian  

microRNA biogenesis. 

4. MicroRNA biogenesis in mammals 

MicroRNAs can be encoded in the introns of protein-coding genes as well as in the introns and 

exons of non-coding genes, but were also reported to arise from transposable elements or ge-

nome repeats [52]. Most microRNA genes are transcribed by RNA polymerase II and possess 

characteristic structural elements of ordinary mRNAs, namely a cap and a poly(A) tail. However, 

RNA polymerase III was demonstrated to be responsible for the transcription of certain microRNA 

genes [53]. Frequently, microRNAs appear in clusters within the genome and polymerase activity 

produces a polycistronic transcript. The initial transcript of individual microRNAs or microRNA 

clusters is termed pri-miR for primary microRNA. The primary transcript serves as a substrate for 

the Microprocessor multiprotein complex in the nucleus which consists at least of the RNase III 

enzyme Drosha and the essential cofactor DGCR8 (DiGeorge critical region 8) and processes the 

pri-miR into a ~60-70 nt long microRNA precursor (pre-miR) possessing a stem-loop structure 

with 5´-phosphate and a 2-nt hydroxylated 3′ overhang. Several additional components of the 

microprocessor were described (e.g. helicases p68 and p72 [54]), but their involvement seems to 

depend on the primary microRNA to be processed. The pre-miR is subsequently exported from 

the nucleus into the cytoplasm by Exportin-5 in a Ran-GTP dependent manner. The pre-miR is 

then incorporated into the RISC loading complex (RLC) which consists of the RNase III endonu-

clease Dicer, Argonaute-2 (Ago2) and the dsRNA binding proteins TRBP (Tar RNA binding pro-

tein) and/or PACT (protein activator of PKR). Within the RLC, Dicer removes the loop of the  
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pre-miR leaving a 5´-phosphate and a 2-nt hydroxylated 3′ overhang at the resulting ~22 nt  

microRNA duplex which is subsequently unwound by a helicase activity that seems not to be 

universal for all miRs. The mature microRNA (the guide strand) bound to an Ago protein forms 

the core of the microRNA-induced silencing complex (miRISC) and serves as a template to guide 

the miRISC to its targets which predominantly display partial complementary sequences within 

their 3´ UTR. The second strand of the miR duplex, the passenger strand or microRNA*, is ge-

nerally discarded and degraded. In the established model for strand selection, the strand with the 

lower thermodynamic stability at the 5´-end is loaded into the RISC. Diederich and Haber addi-

tionally demonstrated that miR precursors with high complementarity in the stem are subject to 

the cleavage of the 3´-arm of the hairpin by Ago2 in the RLC before Dicer-mediated removal of 

the loop. The intact strand is selected as the guide, whereas the nicked strand is destined to be 

degraded [55]. Figure I.11 shows a schematic representation of canonical miR biogenesis. 

 

Figure I.11: Canonical miR biogenesis and regulatory mechanisms. MiR genes are mainly transcribed by RNA 
polymerase II into the primary microRNA transcript (Pri-miRNA) out of which the Drosha (micropro-
cessor) complex in the nucleus excises one or several miR precursor molecules (Pre-miRNA). After 
export into the Cytoplasm, Dicer removes the loop to generate a miRNA duplex. The guide strand is 
incorporated into the RNA-induced silencing complex (RISC) to mediate mRNA silencing, whereas the 
passenger strand (miR*) is generally degraded. MicroRNA biogenesis is regulated by a variety of 
mechanisms affecting either the proteins involved in the biogenesis pathway or the microRNA itself. 
ADARs: adenosine deaminase, RNA-specific; TP53: tumour protein p53; KSRP: KH-type splicing re-
gulatory protein; hnRNPA1: heterogeneous nuclear ribonucleoprotein A1; TUT4: terminal uri-
dylyltransferase 4; GLD-2: regulatory cytoplasmic poly(A) polymerase; XRN1/2: 5'-3' exoribonuclease 
1/2. The regulatory mechanisms are reviewed in Krol, Loedige & Filipowicz in Nat. Rev. Genet. 2010 
[56] 



Introduction 

-30- 

Alternative ways of microRNA biogenesis by bypassing Drosha or Dicer have been described. 

Splicing of short introns with the potential to form hairpin structures, named mirtrons, can give 

rise to miR precursors without requiring Drosha [57]. In 2010, Cheloufi et al. reported Dicer-

independent processing of the erythropoietic miR-451 involving Ago2 catalytic activity [58].  

The research efforts of the last years have uncovered a variety of mechanisms which serve the 

regulation of microRNA biogenesis and impact microRNA action [56]. The fact that individual 

microRNAs of polycistronic transcripts are often observed to be differentially expressed in their 

mature form argue for posttranscriptional regulatory mechanisms. 

5. Mechanisms of gene regulation by microRNAs 

It is well established that miR target identification occurs via Watson-Crick base pairing and re-

quires a certain degree but no absolute complementarity in animals. Due to empirical aspects 

and evolutionary conservation a contiguous segment of bases at the 5´ end covering the nucleo-

tides 2-7 has been identified to be important for target recognition. This sequence was thought to 

represent the nucleation site where base pairing is initiated and is known as the ´seed´ sequence. 

However, functional ´non-seed´ target sites have been described, too [59]. Likewise, experi-

mental evidence and evolutionary conservation are also the reason for the assumption that ani-

mal miRs target the 3´ UTR of transcripts. Nevertheless, there is no mechanistic aspect arguing 

against target sites in the 5´ UTR [60] and the existence of functional target sites in the open 

reading frame (ORF) has already been proven [61].  

Members of the Argonaute protein family are responsible for the miRISC effector function. In 

mammals, there are 4 Ago proteins (Ago1, Ago2, Ago3 and Ago4), of which only Ago2 has an 

enzymatically active RNase H-like P-element-induced wimpy testis (Piwi) domain and is therefore 

capable of RNA cleavage. However, the direct endonucleolytic cleavage of the mRNA by Ago2 

within the microRNA-mRNA base-paired region is rather uncommon since it requires full or at 

least high complementarity of the miR and the transcript [62], a condition that is frequently met in 

plants but only rarely applies to animal cells. Instead, microRNAs promote mRNA decay by trig-

gering the removal of the 3´ poly(A) tail of partially complementary messages in the presence of 

the poly(A)-binding protein (PABP) by the CCR4-NOT deadenylase complex which leads to 

5´ decapping and finally exonucleolytic degradation of the mRNA [63]. Figure I.12 shows a sche-

matic representation of the mechanisms and proteins involved in the miR-mediated mRNA decay. 
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Figure I.12: Schematic representation of miR-initiated mRNA decay.  Deadenylation of the mRNA poly(A) 
tail (A(n)) requires recruitment of the CCR4-NOT1 deadenylase complex by the miRISC and direct in-
teraction of the GW182 with the poly(A)-binding protein (PABP).  After removal of the poly(A) tail, 
the cap (m7G) at the 5´ end is eliminated by the DCP1/DCP2 decapping complex. AGO: Argonaute, 
CAF1: CCR4-associated factor, CCR4: carbon catabolite repression 4 protein, NOT1: negative on 
TATA-less. Adopted from Fabien et al., Annu Rev Biochem 2010 [64] 

However, microRNAs often affect protein expression of their targets without changing mRNA 

abundance indicating that microRNAs cause inhibition of translation. Hitherto, existing reports 

indicate that microRNA-mediated translational repression is capable of affecting both the initiation 

and elongation phase (Fig. I.13).  

 

Figure I.13: Schematic representation of miR-initiated translational repression. (A) MiRISC blocks initiation 
of mRNA translation by preventing eIF4F-cap recognition and recruitment of the 40S ribosome subunit 
or by interfering with 60S ribosome subunit joining and 80S ribosome assembly. (B) Inhibition of 
mRNA translation in postinitiation phases potentially includes blunted ribosomal elongation, ribosome 
drop-off or enhanced proteolysis of nascent proteins. AGO: Argonaute, A(n): poly(A) tail, m7G: the 5′-
terminal cap. Adopted from Fabien et al., Annu Rev Biochem 2010 [64] 
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Inhibition of translational initiation occurs either due to impaired cap recognition or failing recruit-

ment of the 60S ribosomal subunit. The mechanism for blocked protein elongation remains large-

ly elusive, but possibly involves premature termination of translation followed by ribosome drop-

off or degradation of the nascent polypeptides by recruited proteolytic enzymes. However, seve-

ral studies provide evidence that miRNAs are capable of inhibiting protein synthesis in a poly(A) 

tail-dependent and -independent manner [64].  

Both miRNA-mediated decay and translational repression require interaction of Ago with GW182 

proteins. In mammals, three GW182 proteins are known, namely trinucleotide repeat containing 

6A (TNRC6A), 6B (TNRC6B) and 6C (TNRC6C). An enrichment of translational repressed 

mRNAs has been observed in discrete and dynamic foci within the cytoplasm, namely GW or 

processing (P) bodies, which are probably also the location for the final stages of mRNA decay. 

P bodies do not accommodate ribosomes or most of the translation initiation factors, but contain 

Ago and GW182 proteins as well as enzymes involved in mRNA deadenylation, decapping and 

degradation [64].   

RISC binding to the microRNA target sequence within the mRNA is influenced by several para-

meters. Alternative splicing and polyadenylation gives rise to different mRNA isoforms which 

might considerably differ in the length of their 3´ UTR and the number of microRNA target sites. 

Genes involved in basic cellular processes (housekeeping genes) tend to have shortened 

3´ UTRs and are therefore less frequently regulated by microRNAs [65]. The association of trans-

cripts with RNA binding proteins, such as human antigen R (HuR) or dead end homolog 1 

(DND1), was shown to interfere with microRNA action by blocking the microRNA binding site or 

changing RNA secondary structure [66]. Moreover, importin 8 was reported to affect the associa-

tion of Ago proteins with a diverse set of mRNA targets and is therefore necessary for microRNA-

target interaction [67]. 

Although the majority of reports describe miR-mediated repression of gene expression on the 

posttranscriptional level, there are also a few reports documenting that microRNAs are able to 

promote translation of mRNAs under certain circumstances (e.g upon growth arrest or virus infec-

tion) [68, 69]. Additionally, microRNAs in the nucleus were shown to be capable of regulating 

transcription by targeting promoter sequences to either silence [70] or induce gene expression 

[71], perhaps depending on the degree of complementarity. 
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6. Role of microRNAs in the vasculature 

In the first attempt to study the biological function of mammalian Dicer in vivo, the Hannon lab 

targeted the second of both RNase III domains of murine Dicer in transgenic mice to abrogate 

catalytic activity of the enzyme and prevent production of mature microRNAs. The loss of Dicer´s 

functional capability resulted in early embryonic lethality (before embryonic day E7.5) of homozy-

gous animals probably due to defective maintenance of the stem cell population demonstrating 

Dicer´s necessity for proper mammalian development [72]. Since the first endothelial and hema-

topoietic cells emerge in the yolk sac blood islands in the developing mouse embryo at E7.0 [73], 

it might be possible that Dicer deletion also impaired differentiation of the endothelial and hema-

topoietic cell lineage in these mice.  

First evidence for the involvement of Dicer in blood vessel formation during mammalian embryo-

nic development was provided by Yang et al. who generated transgenic mice carrying hypo-

morphic Dicer alleles (Dicerex1/2) by deleting the first two exons of the murine dicer gene which 

code for a part of the helicase domain. The homozygous Dicerex1/2 embryos displayed retardation 

in growth and development compared to their wildtype littermates and died between embryonic 

day 12.5 and 14.5 possessing few blood vessels which were thin, small and less organized within 

the embryo and the yolk sac [74]. Consistently, maternal-zygotic dicer (MZdicer) zebrafish mu-

tants in which the RNase III and dsRNA-binding domains were disrupted exhibited several ab-

normalities in morphogenesis including disturbed blood circulation [75]. Another viable, apparent-

ly healthy and normally developed hypomorphic Dicer mouse line (Dicerd/d) did not produce off-

spring due to infertility of female homozygous mutant mice. Detailed analysis of the female mice 

revealed impaired blood vessel growth in the ovaries, a defect that could be partially restored by 

combined injection of miR-17-5p and let-7b which were shown to target both the anti-angiogenic 

factor tissue inhibitor of metalloproteinase 1 (TIMP1) [76]. In order to investigate the involvement 

of Dicer in postnatal angiogenesis, Suárez et al. generated two different endothelial specific Dicer 

deficient mouse lines, one inducible knockout and one hypomorphic mouse line. In both mouse 

lines, the endothelium specific Dicer deletion impaired angiogenesis in response to a variety of 

stimuli, including VEGF treatment, tumourigenesis, limb ischemia and wound healing [77].  

In line with the in vivo observations, siRNA-mediated knockdown of Dicer in endothelial cells in 

vitro profoundly decreased proliferation and migration as well as tube forming and sprouting ca-

pacity [78, 79] indicating that Dicer plays an important role in endothelial cell function. In one 

study, the impaired capacity of Dicer deficient ECs to form tubes on Matrigel was rescued upon 

combined overexpression of miR-17-5p, -18a and -20a which are members of the miR-17-92 

cluster [77]. Although siRNA elicited downregulation of Drosha also impaired capillary sprouting 
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and tube forming capacity of ECs, the effect of Dicer knockdown on in vitro angiogenesis was 

much more dramatic [78].  

To identify microRNAs involved in endothelial cell biology, different research groups addressed 

microRNA expression in ECs of various origins by performing miR profilings. In total, 200  

microRNAs were reported to be expressed in human endothelial cells [80]. Table I.1 shows a 

compilation of the microRNAs frequently detected or functionally analysed in ECs. 

MiR name Function in ECs MiR name Function in ECs 

let-7a n.d. miR-101 anti-angiogenic [81] 

let-7b pro-angiogenic [76] miR-103 n.d. 

let-7c n.d. miR-106a n.d. 

let-7d n.d. miR-125a/b control of vasomotor homeostasis [82] 

let-7f pro-angiogenic [78] miR-126 pro-angiogenic [83-85], 

anti-inflammatory [86], 

anti-atherosclerotic [87], 

regulation of vascular integrity [83, 85, 88] 

miR-10a anti-inflammatory [89] miR-130a pro-angiogenic [90] 

miR-15a/b pro-apoptotic [91] miR-132 pro-angiogenic, pro-proliferative [92] 

miR-16 n.d. miR-135a regulation of leukotriene formation [93] 

miR-17-3p 

(miR-17*) 

anti-inflammatory [94] miR-155 preeclamsia pathology [95] 

miR-17-5p 
(miR-17) 

pro-angiogenic [76],  
pro-proliferative [77] 

miR-181a endothelial cell fate decision [96] 

miR-18a pro-angiogenic [77] miR-191 n.d. 

miR-19a anti-proliferative [97] miR-199 maintainance of microcirculatory tone [98] 

regulation of leukotriene formation [93] 

miR-20a pro-angiogenic, pro-proliferative [77] miR-200b anti-angiogenic, vascular permeability [99] 

miR-21 anti-apoptotic [100],  

anti-angiogenic [101] 

miR-210 pro-angiogenic, pro-migratory [102] 

repression of mitochondrial respiration [103] 

miR-23a n.d. miR-214 Anti-angiogenic [104] 

miR-23b anti-proliferative [105] miR-217 promotes senescence, anti-angiogenic [106] 

miR-24 anti-angiogenic, pro-apoptotic, anti-
migratory, anti-proliferative [107] 

miR-218 pro-proliferative, vascular patterning [108] 

miR-27a n.d. miR-221 anti-angiogenic [109, 110] 

anti-proliferative [110] 

miR-27b pro-angiogenic [78] miR-222 anti-angiogenic [110, 111] 

anti-proliferative [110] 

miR-29a n.d. miR-296 pro-angiogenic [112] 

miR-30a n.d. miR-301a anti-thrombotic [113] 

miR-30c anti-thrombotic [113] miR-320 anti-angiogenic, anti-migratory, anti-
proliferative [114] 

miR-31 anti-inflammatory [94] miR-424 pro-angiogenic [115] 

anti-proliferative [116] 

miR-34a promotes senescence, anti-proliferative 
[117] 

miR-503 anti-angiogenic, anti-proliferative, anti-
migratory [118] 

miR-92a anti-angiogenic [119] miR-519c anti-angiogenic [120] 

miR-100 anti-angiogenic, anti-proliferative [121] miR-663 pro-inflammatory [122] 

Table I.1:  Endothelial microRNAs and their biological functions. The table shows microRNAs that are fre-
quently detected in endothelial cells according to Heusschen et al. [80] as well as microRNAs that 
have been functionally studied in ECs so far. n.d.: not determined. 
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The function of a variety of miRs has already been studied in detail in the endothelium, thus con-

tributing to their classification into pro- and anti-angiogenic miRs according to their effect on an-

giogenesis. MiR-126, the most prominent miR in the endothelial compartment, is encoded in an 

intron and is co-expressed with its host gene Egfl7 (EGF-like domain 7), a secreted peptide. 

Combined knockdown of miR-126 and miR-126* in zebrafish by morpholino-mediated targeting of 

pri-miR-126 did not affect overt morphology or vascular patterning of the animals but impaired 

vascular integrity promoting hemorrhage formation [83]. Correspondingly, genetic deletion of 

miR-126 in mice was frequently associated with embryonic or perinatal death due to systemic 

edema and leaky blood vessels resulting in multifocal hemorrhages [85]. Regarding the molecular 

mechanism, two negative regulators of VEGF signalling were identified to be directly regulated by 

miR-126, namely PIK3R2 (phosphoinositol-3 kinase regulatory subunit 2) and the sprouty-related 

protein SPRED1.  

MiR-126 was also shown to control tumour necrosis factor-TNF--induced vascular cell ad-

hesion molecule 1 (VCAM1) expression and leukocyte adhesion to human umbilical vein endo-

thelial cells (HUVECs) potentially implicating an involvement of miR-126 in the inflammatory res-

ponse of the endothelium [86]. Finally, van Solingen et al. provided evidence for the requirement 

of miR-126 in ischemia-induced angiogenesis in vivo by combining a hindlimb ischemia model 

with the Antagomir-mediated inhibition of miR-126 [84]. 

MiR-221 and miR-222, which are transcribed in a single primary transcript and belong to the 

same miR family, were shown to downregulate protein expression of the stem cell factor (SCF) 

receptor v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) and displayed 

impaired tube forming and migratory capacity of endothelial cells [110].  

Moreover, miR-221/222 partially normalized the increase in eNOS protein expression upon Dicer 

knockdown in the endothelial cell line EA.hy.926 [79]. Finally, Dentelli et al. provided evidence for 

the downregulation of miR-222 in ECs in response to the inflammatory cytokine interleukin-3  

(IL-3) as well as decreased miR-222 levels in human atherosclerotic lesions. Additionally, signal 

transducer and activator of transcription (STAT) 5A was identified to be a direct miR-222 target 

and partially responsible for its inhibitory effect on neovascularization in vivo [111]. Other miRs 

whose functions have been studied in ECs are shown in Fig. I.14. 
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Figure I.14: Endothelial microRNAs and their validated direct targets. BTRC: beta-transducin repeat contain-
ing, MAP3K7: mitogen-activated protein kinase kinase kinase 7 [89]; BCL2: B-cell CLL/lymphoma 2 
[91]; ICAM1: intercellular adhesion molecule 1, SELE: selectin E [94]; TSP1: thrombospondin-1 [77]; 
CCND1: Cyclin D1 [97]; PTEN: phosphatase and tensin homolog; RHOB: ras homolog gene family, 
member B [101]; GATA4: GATA binding protein 4, PAK4: p21 protein (Cdc42/Rac)-activated kinase 4, 
RASA1: RAS p21 protein activator 1 [92, 107]; PAI1: plasminogen activator inhibitor type 1 [113]; 

SIRT1: sirtuin 1 [106, 117]; ITGA5: integrin 5 [119]; MTOR: mechanistic target of rapamycin [121]; 
EZH2: enhancer of zeste homolog 2 [81]; ET1: endothelin 1 [82]; PAK1: p21 protein (Cdc42/Rac)-
activated kinase 1, PI3KR2: phosphatidylinositol 3-Kinase regulatory subunit 2, SPRED1: sprouty-
related, EVH1 domain containing 1 [83, 85, 88]; VCAM1: vascular cell adhesion molecule 1 [86];  
MEOX: mesenchyme homeobox 2 (GAX), HOXA5: homeobox A5 [90]; FLAP: [93]; HIF1A: hypoxia in-
ducible factor 1, alpha subunit [98, 120]; AGTR1: angiotensin II receptor, type 1 [95]; PROX1: pros-
pero homeobox 1 [96]; VEGF: vascular endothelial growth factor [99]; EFNA3: Ephrin A3 [102];  
ISCU1/2: iron-sulfur cluster scaffold homolog 1/2 [103]; NOS3: nitric oxide synthase 3, endothelial cell 
[104]; GLCE: glucuronic acid epimerase, ROBO1/2: roundabout 1/2 [108]; KIT: v-kit Hardy-Zuckerman 
4 feline sarcoma viral oncogene homolog [110]; ZEB2: zinc finger E-box binding homeobox 2 [109]; 
STAT5A: signal transducer and activator of transcription 5A [111]; HGS: hepatocyte growth factor-
regulated tyrosine kinase substrate [112]; CUL2: cullin 2 [115]; CCNE1: cyclin E1, MAP2K1: mitogen-
activated protein kinase kinase 1 (MEK1), CDC25A: cell division cycle 25 homolog A [116, 118]  

Only recently, Albinsson et al. reported the establishment of vascular smooth muscle cell specific 

Dicer knockout mice. The SM22 promoter driven inactivation of Dicer was embryonically lethal 

around day E16/17 as a result of vascular fragility associated with extensive hemorrhage forma-

tion. Thinning of the vascular wall due to reduced proliferation of smooth muscle cells and im-

paired contractility of umbilical vessels caused by downregulated expression of components of 

the contractile machinery and decreased stress fiber formation were documented. The expres-

sion of SMC-specific genes could be partially rescued by introducing miR-145 into Dicer knockout 

SMCs leading to restoration of actin polymerization [123], revealing the significance of miR-145 

for smooth muscle cell differentiation. These findings are in line with the results of Cordes et al. 

who demonstrated that miR-145 was sufficient to differentiate multipotent neural crest stem cells 
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into vascular smooth muscle cells. Moreover, miR-145 was essential for the myocardin-induced 

conversion of fibroblasts into VSMCs. Although miR-145 biased VSMC differentiation, the geneti-

cally clustered and co-transcribed miR-143 was necessary to confine SMC proliferation and to 

promote SMC differentiation [124]. In vivo evidence for the essential role of the miR-143/145 

cluster in smooth muscle phenotype determination was provided by Boettger et al. who genera-

ted miR-143/145 knockout mice. General deletion of the miR-143/145 cluster did not affect viabi-

lity and fertility of the mutant mice, but they displayed a significant reduction in systolic blood 

pressure owing to reduced contractility of vascular smooth muscle cells which were largely locked 

in the synthetic phenotype [125]. So far, miR-143 and -145 are the most extensively studied  

microRNAs in vascular smooth muscle cells, but other miRs have also been shown to affect SMC 

phenotype. MiR-24 and miR-221 were both reported to be upregulated in response to PDGF 

which promotes the synthetic SMC phenotype, and both miRs interfered with the expression of 

contractile genes and cell cycle regulators to enhace cell proliferation [126, 127], just as the miR-

221 family member miR-222 did [128]. Vice versa, BMP4 increased the level of mature miR-21 

which caused an increase in the expression of contractile genes by downregulating programmed 

cell death 4 (PDCD4) [129]. Other microRNAs reported to affect cellular behavior of VSMCs are 

miR-1 [130], let-7d [131], miR-26a [132], miR-29b [133], and miR-146a [134].  

7. The miR-17-92 cluster 

The primary transcript of the miR-17-92 cluster, named Chromosome 13 open reading frame 25 

(C13orf25), originally became famous for its upregulated expression in B-cell lymphoma as a 

consequence of chromosomal amplification [135], although the organization of the individual  

microRNAs in a cluster had already been described two years earlier [136].  

 

Figure I.15: The miR-17-92 cluster. The miR-17-92 cluster is highly conserved among species and encodes six 
microRNA precursors which give rise to the seven mature microRNAs miR-17-5p (miR-17), miR-17-3p 
(miR-17*), miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a-1. Since miR-17-3p is often not de-
tectable, its relevance as functional mature microRNA is questionable. In humans, the miR-17-92 
cluster is located on chromosome 13. C13orf25: chromosome 13 open reading frame 25, 5p: 5 prime, 
3p: 3 prime 
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C13orf25 harbors the 7 mature microRNAs miR-17-5p, miR-17-3p, miR-18a, miR-19a, miR-20a, 

miR-19b and miR-92a-1 which arise from 6 microRNA precursors (Fig. I.15). However, the bio-

logical significance of miR-17-3p is debatable since it is often not or only lowly expressed. There-

fore, miR-17-3p is designated miR-17*, whereas miR-17-5p is also known as miR-17.  

The miR-17-92 cluster is highly conserved among species and ancient gene duplications, dele-

tions and mutations have given rise to two cluster paralogs in the mammalian genome, namely 

the miR-106a-363 and the miR-106b-25 cluster which are encoded on human chromosomes X 

and 7, respectively (Fig. I.16) [137]. The members of the miR-17-92 cluster and its paralogs can 

be categorized into four families based on the sequence of their seed region: the miR-17 family 

(miR-17, miR-20a/b, miR-106a/b, and miR-93), the miR-18 family (miR-18a/b), the miR-19 family 

(miR-19a/b) and the miR-25 family (miR-25, miR-92a, and miR-363) [138]. It is believed that 

members of the same seed family regulate a related set of genes and therefore execute similar 

biological functions.  

 

Figure I.16: The miR-17-92 cluster paralogs. (A) Genomic localization and organization of the human miR-17-
92, miR-106a-363 and miR-106b-25 cluster paralogs. The structure of the primary transcript of the 
human miR-106a-363 cluster which is encoded on the X chromosome has not been defined yet, but 
contains the 6 mature microRNAs miR-106a, miR-18b, miR-20b, miR-19b-2, miR-92a-2 and miR-363. 
The miR-106b-25 cluster is localized in an intron of the mcm7 gene on chromosome 7 and encodes 
miR-106b, miR-93 and miR-25. (B) Categorization of the microRNAs encoded by the three cluster pa-
ralogs into families according to their seed sequences (highlighted in blue). Adopted from Mendell, 
Cell 2008 [138] 

He et al. proved in a B-cell lymphoma mouse model that overexpression of a transcript containing 

the precursors of the first five members of the miR-17-92 cluster (miR-17-19b) accelerated  

c-MYC-induced tumourigenesis. Due to the observed oncogenic potential of the miR-17-92 clus-

ter, they suggested to name the primary transcript oncomiR-1 [139]. For this reason, the research 

efforts of subsequent years mainly focused on the role of the cluster in tumour biology as well as 
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its dissection with respect to the contribution of the individual members and resulted in a multi-

tude of publications. The members of the miR-17-92 cluster were shown to control proliferation, 

senescence, survival, migration and invasion of cancer cells by targeting the cell cycle regulators 

cyclin-dependent kinase inhibitor (CDKN) 1A [140] and Cyclin D1 [141], the nuclear receptor 

coactivator amplified in breast cancer (AIB) 1 [142], Hif1 [143], the suppressor of cytokine sig-

nalling (SOCS) 1 [144], phosphatase and tensin homolog (PTEN) [145, 146], members of the 

E2F family of transcription factors [147] and the pro-apoptotic protein BIM (Bcl2L11) [140] as well 

as the suppressor of Wnt/-catenin signalling HMG box-containing protein (HBP) 1 [148].  

Moreover, BMPR2 [149] and TGFBR2 [150-153], have been proven to be regulated by  

miR-17 and miR-20a, and it was suggested that these microRNAs might be responsible for the 

observed downregulation of BMPR2 in non-genetic cases of pulmonary arterial hypertension 

[149]. Table I.2 summarizes the direct targets of the miR-17-92 cluster members that have been 

identified so far. 

Gene symbol Function MicroRNA References 

BCL2 apoptosis miR-17/20a Beveridge et al. (2009) [154] 

BCL2L11/BIM apoptosis miR-17/20a Fontana et al. (2008) [140] 
Cloonan et al. (2008) [155] 

 apoptosis miR-19 Mavrakis et al. (2010) [156] 

 apoptosis miR-92a Xiao et al. (2008) [157] 

BMPR2 BMP signalling miR-17/20a Brock et al. (2009) [149] 

CCND1 proliferation miR-17/20a Deshpande et al. (2009) [158] 
Yu et al. (2008) [141] 

 proliferation miR-19a Qin et al. (2010) [97] 

CDH1 metastasis miR-92a Chen et al. (2010) [159] 

CDKN1A/p21 proliferation miR-17/20a Fontana et al. (2008) [140] 

Cloonan et al. (2008) [155] 

CTGF anti-angiogenic miR-18a, miR-19 Dews et al. (2006) [150] 
Ernst et al. (2010) [160]  

E2F1 proliferation miR-17/20a Scherr et al. (2007) [161] 
O´Donnell et al. (2005) [147] 

ERBB4 neuronal development miR-19a Tsai et al (2010) [162] 

ESR1 neuronal differentiation 
proliferation 

miR-18a, miR-19a 
miR-18a 

Loven et al. (2010) [163] 
Liu (2009) [164] 

F3/TF homeostasis miR-19 Zhang et al. (2011) [165] 

FN1 adhesion miR-17 Shan et al. (2009) [166] 

FNDC3A adhesion miR-17 Shan et al. (2009) [166] 

GAB1 proliferation miR-17 Cloonan et al. (2008) [155] 

HBP1 metastasis miR-17 Li et al. (2011) [148] 

HIF1A proliferation miR-20a Taguchi (2008) [143] 

IL8 tumour metastasis miR-17/20a Yu et al (2010) [167] 

IRF1 proliferation miR-17 Cloonan et al. (2008) [155] 

ITGA5 adhesion miR-92a Bonauer et al. (2008) [119] 

KAT2B/PCAF proliferation miR-17 Cloonan et al. (2008) [155] 

MAP3K12 neuronal differentiation miR-17/20a Beveridge et al. (2009) [154] 

MAPK9 proliferation miR-17 Cloonan et al. (2008) [155] 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mavrakis%20KJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Scherr%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Taguchi%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Yu%20Z%22%5BAuthor%5D
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Gene symbol Function MicroRNA References 

MAPK14 lung branching morphogenesis miR-17/20a Carraro et al. (2009) [168] 

MEF2D neuronal differentiation miR-17/20a Beveridge et al. (2009) [154] 

NCOA3 proliferation miR-17 Hossain et al. (2006) [142] 
Cloonan et al. (2008) [155] 

NR3C1/GR stress habituation miR-18a Uchida et al (2008) [169] 

NR4A2 neuronal differentiation miR-19 Tsai et al (2010) [162] 

NR4A3 proliferation miR-17 Cloonan et al. (2008) [155] 

PKD1 proliferation miR-17 Cloonan et al. (2008) [155] 

PKD2 proliferation miR-17 Cloonan et al. (2008) [155] 
Sun et al (2010) [170] 

PPP2R5E proliferation miR-19 Mavrakis et al. (2010) [156] 

PPARA proliferation miR-17 Cloonan et al. (2008) [155] 

PRKAA1 energy homeostasis miR-19 Mavrakis et al. (2010) [156] 

PTEN apoptosis miR-19 Lewis et al. (2003) [171] 
Olive et al. (2009) [145] 
Cloonan et al. (2008) [155] 
Mavrakis et al. (2010) [156] 

PTPRO proliferation miR-17 Xu et al. (2008) [172] 

RBL2/p130 proliferation miR-17 Wang et al. (2008) [173] 

RUNX1 proliferation miR-17/20a Fontana et al. (2007) [174] 

SLC12A5/KCC2 neuronal homeostasis miR-92a Barbato et al. 2010 [175] 

SMAD2 TGF- signalling miR-18a Mestdagh et al. (2010) [151] 

SMAD4 BMP/TGF- signalling miR-18a Mestdagh et al. (2010) [151] 
Dews et al. (2010) [176] 

SOCS1 STAT signalling inhibitor miR-19 Pichiorri et al. (2008) [144] 

STAT3 lung branching morphogenesis miR-17/20a Carraro et al. (2009) [168] 

TGFBR2 TGF- signalling miR-17/20a Volinia et al. (2006) [153] 
Tagawa et al. (2007) [152] 
Mestdagh et al. (2010) [151] 

Dews et al. (2010) [176] 

TNF/TNFA inflammation miR-19a Liu et al. (2011) [177] 

TSG101 proliferation miR-17 Cloonan et al. (2008) [155] 

TP63/p63 proliferation miR-92a Manni et al. (2009) [178] 

THBS1 anti-angiogenic miR-18a Dews et al. (2006) [150] 
Suarez et al. (2008) [77] 

Dogar et al (2011) [179] 

VEGFA angiogenic cytokine miR-17 Ye et al (2008) [180] 

ZNF512B/GAM apoptosis 

proliferation 

miR-17/20a, miR-92a Tili et al (2010) [181] 

Table I.2:  Validated targets of the miR-17-92 cluster and their cellular function. 

Moreover, Dews et al. reported in 2006 that Ras transformed colonocytes which additionally 

overexpress the miR-17-92 cluster form larger and better perfused tumours than the Ras trans-

formed control cells. The tumour angiogenesis promoting activity of the miR-17-92 cluster was 

attributed to the downregulation of the anti-angiogenic proteins connective tissue growth factor 

(CTGF) and thrombospondin-1 (TSP-1) by miR-18 and miR-19 [150]. Two research groups  

addressed the contribution of the individual members to the overall tumourigenicity of the miR-17-

92 cluster in two different B-cell lymphoma mouse models by genetic dissection. Both groups 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mavrakis%20KJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mavrakis%20KJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mavrakis%20KJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dogar%20AM%22%5BAuthor%5D
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identified miR-19 to be the miR in charge of the oncogenic potential of the miR-17-92 cluster and 

provided evidence that miR-19 promoted tumour cell survival by targeting regulators of apoptosis. 

However, the other members were thought to have auxiliary activities in tumour development 

[145, 146]. 

Lu et al. reported high expression of members of the miR-17-92 cluster in lung tissue of mouse 

embryos at E11.5 and observed perinatal lethality and an abnormal lung phenotype characterized 

by hyperproliferative and undifferentiated epithelial cells after specific overexpression of the miR-

17-92 cluster in the distal lung epithelium [182]. Referring to this, miR-17 and its homologous 

family members miR-20a and miR-106b were shown to control lung branching morphogenesis by 

directly regulating the FGF10-FGFR2b downstream mediators mitogen-activated protein kinase 

14 (MAPK14) and STAT3 in order to determine E-Cadherin (CDH1) levels in the epithelial cell 

membrane [168].  

In 2008, the Tyler Jacks lab addressed the function of the individual paralogs of the miR-17-92 

cluster in development by targeted deletion in mice. Expression analysis of members of the dif-

ferent paralogs in a variety of murine organs as well as embryonic stem (ES) cells revealed simi-

lar expression patterns for the miR-17-92 and the miR-106b-25 cluster, whereas members of the 

miR-106a-363 cluster could not be detected. Deletion of the miR-106b-25 and miR-106a-363 

cluster neither impaired viability and fertility of the animals nor did they display any obvious ab-

normalities. In contrast, miR-17-92 knockout mice died immediately after birth exhibiting hypo-

plastic lungs, ventricular septal defects, signs of general growth retardation and impaired survival 

of B cell progenitors. To investigate redundancy of the paralogs, the lab generated double knock-

outs by simultaneously deleting miR-17-92 and miR-106b-25 as well as triple knockouts by dele-

tion of all three paralogs. As a result, mutant animals died before embryonic day 15 (E15) suf-

fering from severe heart defects as well as edema formation and vascular congestion. Thus, Ven-

tura et al. presented evidence for essential and redundant functions of the miR-17-92 cluster and 

its paralogs during mammalian development [183]. 

Last year, Hackl et al. published miRNA expression profiles gained from different replicative cell 

and organismal aging sample sets including endothelial cells, replicated cytotoxic T cells, renal 

epithelial cells and skin fibroblasts as well as foreskin, mesenchymal stem cells and cytotoxic 

T cells from old and young donors. They observed a general downregulation of miR-17, miR-19b 

and miR-20a levels in all seven models, although the decrease of miR-19b in foreskin and cyto-

toxic T cells of old donors was not statistically significant, thus providing strong evidence for the 

involvement of members of the miR-17-92 cluster in aging [184].  
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Figure I.17 summarizes the regulatory involvement and effects of the miR-17-92 cluster in diffe-

rent biological systems.  

 

Figure I.17: Summary of the versatile role of the miR-17-92 cluster in different biological systems. Adapted 
from Bonauer & Dimmeler, Cell Cycle 2009 [185] 

Concerning the transcriptional regulation, the proto-oncogene c-MYC [147], STAT3 and E2F1-3 

[186] have been demonstrated to activate expression of the miR-17-92 cluster, whereas the tu-

mour supressor p53 was shown to block it [187]. Additionally, there is substantial evidence that 

the individual members of the miR-17-92 cluster are differentially expressed and regulated [182]. 

Since they are transcribed together in a polycistronic mRNA, posttranscriptional processing or 

unequal stabilities of the mature miRNAs are probably responsible for this phenomenon. In line 

with this, Drosha processing of the miR-18a precursor in the primary transcript was discovered to 

be favoured in HeLa cells by binding of the heterogeneous nuclear ribonucleoprotein A1 

(hnRNP A1) to a conserved sequence in the loop of pre-miR-18a in a context-dependent manner 

[188, 189]. It is very likely, that the processing of the other cluster members is also regulated, 

although the involved factors and mechanisms are not known yet, but will certainly be the matter 

of future investigations.  
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II. Objective 

In recent years, microRNAs have gained considerable attention, since they were found to control 

almost every cellular process by regulating gene expression on the posttranscriptional level. 

Moreover, dysregulated microRNA expression has been observed in a variety of diseases and 

increasing evidence suggests that changes in microRNA levels substantially contribute to disease 

pathology. Therefore, microRNAs might represent a novel valuable target class for therapeutic 

intervention. However, in order to exploit a specific microRNA as a drug target, it is necessary to 

know its biological function.  

The microRNA-17-92 cluster has become famous for its involvement in tumourigenesis and over-

expression of the cluster in a mouse tumour model was shown to enhance vascularization of the 

tumours. Interestingly, our lab identified miR-92a as a negative regulator of angiogenesis in endo-

thelial cells and a critical regulator of recovery in response to ischemic diseases. 

So far, the function of the remaining members of the microRNA-17-92 cluster in vascular biology 

has not been specified in detail. Thus, the doctoral thesis at hand addresses the following two 

issues: 

(1) The miR-17-92 cluster was dissected into the distinct members to analyse miR-17, -18a,  

-19a and -20a individually with respect to their function in endothelial cells and angiogene-

sis in vitro and in vivo. Moreover, we evaluated the effect of Antagomir-mediated inhibition 

of miR-17 on tumour angiogenesis in vivo.  

(2) Pulmonary arterial hypertension (PAH) is a devastating disorder of the pulmonary vascula-

ture frequently culminating in death due to right heart failure. Since some members of the 

miR-17-92 cluster were recently shown to be upregulated in animal models of pulmonary 

arterial hypertension, we studied the therapeutic applicability of Antagomir-mediated  

microRNA inhibition in experimental PAH. Since miR-17 inhibition turned out to be of the-

rapeutic value, we further investigated the function of this miR in cells of the pulmonary 

vasculature. 
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III. Material and Methods 

A. Material 

1. Consumables 

Item name Manufacturer 

Amicon Ultra centrifugal filter devices 3K Millipore, Billerica, MA (USA) 

Cell culture dishes (6 cm, 10 cm) Greiner Bio-One GmbH, Frickenhausen (Germany) 

Cell culture Flasks, 75T Greiner Bio-One GmbH, Frickenhausen (Germany) 

Combitips Eppendorf AG, Hamburg (Germany) 

Costar serological pipettes Corning, Lowell, MA (USA) 

Costar Stripette serological pipettes Corning, Lowell, MA (USA) 

Costar Transwell permeable support, 24 well plate,  
polycarbonate membrane 8.0 µm pores 

Corning, Lowell, MA (USA) 

Falkons (15 ml, 50 ml) Greiner Bio-One GmbH, Frickenhausen (Germany) 

Filter Tips TipOne RPT (10 µl, 100 µl, 1000 µl) Starlab, Ahrensburg (Germany) 

Hyperfilm ECL Amersham, Buckinghamshire (GB) 

Microcentrifuge Tubes TipOne (1.5 ml) Starlab, Ahrensburg (Germany) 

MicroWell™ Plates Nunc F96 Thermo Fisher Scientific Inc., Waltham, MA (USA) 

Multiwell cell culture plates (6-, 12-,24-well) Greiner Bio-One GmbH, Frickenhausen (Germany) 

PCR tubes (0.5 ml) Eppendorf AG, Hamburg (Germany) 

Plastic cuvettes Sarstedt, Nümbrecht (Germany) 

PVDF membrane Millipore, Billerica, MA (USA) 

Safe-Lock Tubes (1.5 ml) Eppendorf AG, Hamburg (Germany) 

Safe-Lock Tubes (2 ml) Eppendorf AG, Hamburg (Germany) 

Whatman paper Macherey-Nagel, Düren (Germany) 

2. Electronic equipment 

Item name Type/Model Manufacturer 

Centrifuge MIKRO 22R Hettich, Tuttlingen (Germany) 

 MIKRO 200R Hettich, Tuttlingen (Germany) 

 Biofuge 15 Heraeus Sepatech, Osterode (Germany) 

 Multifuge 3S Heraeus Instruments, Osterode (Germany) 

 Megafuge 3.0R Heraeus Sepatech, Osterode (Germany) 

CO2 incubator  Heraeus Instruments, Osterode (Germany) 

FACS Canto II BD, Franklin Lakes, NJ (USA) 

GeneAmp PCR System 9700 Applied Biosystems, Foster City, CA (USA) 

Gel documentation device  Vilber Lourmat, Marne-la-Vallée (France) 

Homogenizer FastPrep-24 MP Biomedicals, Solon, OH (USA) 

 Tissue Tearor Biospec products inc., Bartlesville, OK (USA) 

Incubator Function line Heraeus Instruments, Osterode (Germany) 

Laser Scanning Microscope LSM510 META Zeiss, Jena (Germany) 
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Item name Type/Model Manufacturer 

Magnetic stirer RCT basic IKA, Staufen (Germany) 

 MR 3001 Heidolph, Schwabach (Germany) 

Microscope Axiovert 100 Zeiss, Jena (Germany) 

 Axiovert 100M Zeiss, Jena (Germany) 

Plate reader Synergy HT Biotek, Winooski, VT (USA) 

Power supply PowerPac HC Bio-Rad, Munich (Germany) 

 E865 Consort, Turnhout (Belgium) 

Real-Time PCR System StepOne Plus Applied Biosystems, Foster City, CA (USA) 

Refrigerated/Heating Circulator F12 Julabo, Seelbach (Germany) 

Safety Cabinet HERAsafe Heraeus, Hanau (Germany) 

Shaking incubator 3033 GFL, Burgwedel (Germany) 

Spectrophotometer SmartSpec 3000 Bio-Rad, Munich (Germany) 

 NanoDrop 1000 NanoDrop, Wilmington, DE (USA) 

Table-top processor CURIX 60 AGFA, Cologne (Germany) 

Thermocycler TPersonal Biometra, Goettingen (Germany) 

 TProfessional basic Biometra, Goettingen (Germany) 

Thermomixer compact Eppendorf, Hamburg (Germany) 

Thermostat  Liebisch, Bielefeld (Germany) 

Transilluminator T2201 Sigma-Aldrich, St. Louis, MO (USA) 

Tube luminometer Lumat LB9507 Berthold technologies, Bad Wildbad (Germany) 

3. Other equipment 

Item name Type/Model Manufacturer 

Adjustable-volume Pipettes Reference Eppendorf, Hamburg (Germany) 

Adjustable-volume Pipettes Pipetman Gilson, Middleton, WI (USA) 

Hemocytometer Neubauer Improved LO-Laboroptik GmbH, Bad Homburg (Germany) 

Mini Gel Electrophoresis System Owl EasyCast B2 Thermo Fisher Scientific Inc., Waltham, MA (USA) 

Mini Gel Electrophoresis System Protean 2 Bio-Rad, Munich (Germany) 

Mini Gel Electrophoresis System Protean 3 Bio-Rad, Munich (Germany) 

Multipette  Plus Eppendorf, Hamburg (Germany) 

Multipette  Xstream Eppendorf, Hamburg (Germany) 

Quartz cuvette  Bio-Rad, Hercules, CA (USA) 

4. Chemicals 

Item name Manufacturer 

Acetic acid J T Baker, Phillipsburg, NJ (USA) 

Acrylamid solution (30% ) Applichem, Darmstadt (Germany) 

Agarose Roth, Karlsruhe (Germany) 

Agarose high resolution Roth, Karlsruhe (Germany) 

Ampicillin Roth, Karlsruhe (Germany) 

APS Roth, Karlsruhe (Germany) 

Aqua ad iniectabilia  B. Braun AG, Melsungen (Germany) 
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Item name Manufacturer 

-glycerolphosphate ICN Biochemicals inc., Aurora, OH (USA) 

-Mercaptoethanol Roth, Karlsruhe (Germany) 

Brij 35 Sigma-Aldrich, St. Louis, MO (USA) 

Bromophenol blue Merck, Darmstadt (Germany) 

Calcium chloride dihydrate Merck, Darmstadt (Germany) 

Chloroform J T Baker, Phillipsburg, NJ (USA) 

Complete Protease Inhibitor Cocktail Tablets Roche, Indianapolis, IN (USA) 

Disodium pyrophosphate Sigma-Aldrich, St. Louis, MO (USA) 

Distilled water RNA/DNA free Invitrogen, San Diego, CA (USA) 

Dithiothreitol (DTT) Applichem, Darmstadt (Germany) 

ECL Western Blotting Detection Reagents Amersham, Buckinghamshire (GB) 

Ethylenediamine tetraacetic acid (EDTA) Sigma-Aldrich, St. Louis, MO (USA) 

Ethylene glycol tetraacetic acid (EGTA) Applichem, Darmstadt (Germany) 

Ethanol absolute (EtOH abs.) Sigma-Aldrich, St. Louis, MO (USA) 

Ethidiumbromide Roth, Karlsruhe (Germany) 

Formaldehyde Riedel-de Haën, Morristown, NJ (USA) 

Glycerin Applichem, Darmstadt (Germany) 

Glycin Applichem, Darmstadt (Germany) 

HEPES Roth, Karlsruhe (Germany) 

Hydrochloric acid (HCl) Sigma-Aldrich, St. Louis, MO (USA) 

Isopropanol Sigma-Aldrich, St. Louis, MO (USA) 

Leupeptin Sigma-Aldrich, St. Louis, MO (USA) 

Magnesium acetate Sigma-Aldrich, St. Louis, MO (USA) 

Methanol Sigma-Aldrich, St. Louis, MO (USA) 

Methyl cellulose Sigma-Aldrich, St. Louis, MO (USA) 

Phast Gel Blue R350 GE Healthcare, Little Chalfont, Buckinghamshire (UK) 

Phenylmethanesulfonylfluoride (PMSF) Sigma-Aldrich, St. Louis, MO (USA) 

PhosSTOP Phosphatase Inhibitor Cocktail Tablets Roche, Indianapolis, IN (USA) 

Potassium acetate Merck, Darmstadt (Germany) 

Potassium chloride (KCl) Applichem, Darmstadt (Germany) 

SDS MP Biomedicals, Irvine, CA (USA) 

Sodium acetate Sigma-Aldrich, St. Louis, MO (USA) 

Sodium chloride (NaCl) J T Baker, Phillipsburg, NJ (USA) 

Sodium ortho-vanadate (Na3VO4) Sigma-Aldrich, St. Louis, MO (USA) 

TEMED Applichem, Darmstadt (Germany) 

TRI Reagent Sigma-Aldrich, St. Louis, MO (USA) 

TRI Reagent BD Sigma-Aldrich, St. Louis, MO (USA) 

TRIS Applichem, Darmstadt (Germany) 

Triton X-100 Sigma-Aldrich, St. Louis, MO (USA) 

Tween-20 Sigma-Aldrich, St. Louis, MO (USA) 

Xylene cyanol Merck, Darmstadt (Germany) 

Xylol Applichem, Darmstadt (Germany) 
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5. Other reagents 

Name Manufacturer 

Bovine Serum Albumine (BSA) Fraction V PAA laboratories, Pasching (Austria) 

FITC-lectin Sigma-Aldrich, St. Louis, MO (USA) 

dNTP, 10 mM each Promega, Madison, WI (USA) 

Gelatine Merck, Darmstadt (Germany) 

Oligo(dT) primer Invitrogen, San Diego, CA (USA) 

Oligo(dT) primer Roth, Karlsruhe (Germany) 

Precision Plus Protein Standards Bio-Rad, Munich (Germany) 

Protein Assay Bio-Rad, Munich (Germany) 

RIPA Sigma-Aldrich, St. Louis, MO (USA) 

Sucofin skimmed milk powder TSI GmbH & Co. KG, Zevem (Germany) 

SYBR Green Fast Master Mix Applied Biosystems, Foster City, CA (USA) 

TaqMan Fast Master Mix Applied Biosystems, Foster City, CA (USA) 

4′,6-Diamidin-2-phenylindol (DAPI) Roche, Indianapolis, IN (USA) 

6. Kits 

Name Manufacturer 

Annexin V apoptosis detection kit BD, Franklin Lakes, NJ (USA) 

Cell Proliferation ELISA, BrdU (chemiluminescent) Roche, Indianapolis, IN (USA) 

Dual-Luciferase(R) Reporter 1000 Assay System Promega, Madison, WI (USA) 

FITC-BrdU Flow Kit BD, Franklin Lakes, NJ (USA) 

QIAquick gel extraction kit Qiagen, Hilden (Germany) 

QIAquick PCR Purification Kit Qiagen, Hilden (Germany) 

QIAprep spin mini kit Qiagen, Hilden (Germany) 

TaqMan MicroRNA Reverse Transcription kit Applied Biosystems, Foster City, CA (USA) 

Turbo DNA-free kit Applied Biosystems, Foster City, CA (USA) 

7. Enzymes 

Name Enzyme class Manufacturer 

HindIII restriction enzyme Roche, Indianapolis, IN (USA) 

M-MLV  reverse transcriptase Invitrogen, San Diego, CA (USA) 

Proteinase K endopeptidase Sigma-Aldrich, St. Louis, MO (USA) 

SpeI restriction enzyme Roche, Indianapolis, IN (USA) 

T4 ligase DNA-ligase New England Biolabs, Frankfurt am Main (Germany) 

8. Bacteria 

Name/Strain Genotype Manufacturer 

OmniMAX 2-T1R 

 

F′{proAB+ lacIq lacZΔM15 Tn10(TetR) Δ(ccdAB)} mcrA 

Δ(mrr-hsdRMS-mcrBC) φ80(lacZ)ΔM15 Δ(lacZYA-

argF) U169 endA1 recA1 supE44 thi-1 gyrA96 relA1 
tonA panD 

Invitrogen, San Diego, CA 
(USA) 
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9. Bacterial Growth Media and Agar Plates 

Name Media formulation pH Manufacturer 

LB Agar Capsules 1% Tryptone, 0.5% Yeast Extract-B, 1% NaCl, 1.5% Agar-B  MP Biomedicals, 
Irvine, CA (USA) 

LB Medium Capsules 1% Tryptone, 0.5% Yeast Extract, 1% NaCl 6.7 MP Biomedicals, 
Irvine, CA (USA) 

 

S.O.C. Medium 2% Tryptone, 0.5% Yeast Extract, 10 mM NaCl, 2.5 mM KCl, 
10 mM MgCl2, 10 mM MgSO4, 20 mM glucose 

 Invitrogen, Carls-
bad, CA (USA) 

10. Plasmids 

Name Description Reference/Manufacturer 

pGl4 Renilla luciferase expression vector Promega, Madison, WI (USA) 

pMIR-REPORT Firefly luciferase reporter vector Ambion, Austin, TX (USA) 

pMIR-REPORT-4xJak1/miR-17-MRE-wt 4x wt miR-17 MRE of Jak1 3´ UTR 
cloned into pMIR-REPORT via the 
HindIII and SpeI restriction sites 

generated in the context of this 
study 

pMIR-REPORT-4xJak1-miR-17-MRE-mut 4x mutated miR-17 MRE of Jak1 3´ 
UTR cloned into pMIR-REPORT via 
the HindIII and SpeI restriction sites 

generated in the context of this 
study 

11. Cell culture solutions and supplements 

Name Manufacturer 

Collagen I Chemicon, Billerica, MA (USA) 

Collagen I, rat tail BD, Franklin Lakes, NJ (USA) 

DMEM Glutamax Invitrogen, San Diego, CA (USA) 

DMEM PAA laboratories, Pasching (Austria) 

EGM BulletKit (EBM medium + EGM SingleQuots) Lonza, Verviers (Belgium) 

EGM-2 MV BulletKit (EBM-2 + EGM-2 MV SingleQuots) Lonza, Verviers (Belgium) 

FCS Invitrogen, San Diego, CA (USA) 

FGF-2 Peprotech, Hamburg (Germany) 

L-Glutamine Invitrogen, San Diego, CA (USA) 

GM-CSF Peprotech, Hamburg (Germany) 

HAT supplement Biochrom AG, Berlin (Germany) 

HEPES 1M Invitrogen, San Diego, CA (USA) 

IFN- Peprotech, Hamburg (Germany) 

IL-6 Peprotech, Hamburg (Germany) 

Lipofectamine 2000 Invitrogen, San Diego, CA (USA) 

Lipofectamine RNAiMax Invitrogen, San Diego, CA (USA) 

MEM Invitrogen, San Diego, CA (USA) 

Matrigel BD, Franklin Lakes, NJ (USA) 

Medium M199 Sigma-Aldrich, St. Louis, MO (USA) 

Non-essential amino acids Invitrogen, San Diego, CA (USA) 

OptiMEM Invitrogen, San Diego, CA (USA) 
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Name Manufacturer 

PDGF-BB Peprotech, Hamburg (Germany) 

Penicillin-Streptomycin Roche, Indianapolis, IN (USA) 

Phosphate-buffered saline (PBS) PAA laboratories, Pasching (Austria) 

Phosphate-buffered saline (PBS) Sigma-Aldrich, St. Louis, MO (USA) 

Sodium hydroxide solution (NaOH) 5M Applichem, Darmstadt (Germany) 

Sodium pyruvate PAA laboratories, Pasching (Austria) 

Sphingosine-1-phosphate (S1P) Sigma-Aldrich, St. Louis, MO (USA) 

Trypsin-EDTA Invitrogen, San Diego, CA (USA) 

12. Primary cells and cell lines 

Name Species Origin Manufacturer 

EA.Hy.926 Homo sapiens HUVEC/A549 cell hybrid Kindly provided by Prof. Ingrid Fleming, Cardiovas-
cular Physiology, Goethe University Frankfurt  

HEK293 Homo sapiens kidney Clontech, Mountain View, CA (USA) 

HMVEC-L Homo sapiens lung Lonza, Verviers (Belgium) 

HUVEC Homo sapiens umbilical veins Lonza, Verviers (Belgium) 

LLC1 Mus musculus lung carcinoma ATCC, Manassas, VA (USA) 

13. Animals 

a) Mice 

Name Age Experiment Company 

C57Bl/6 8 weeks Tumour model Charles River Laboratories, Sulzfeld (Germany) 

C57Bl/6 8 weeks Matrigel plug Charles River Laboratories, Sulzfeld (Germany) 

C57Bl/6J 8 weeks Chronic hypoxia Charles River Laboratories, Sulzfeld (Germany) 

b) Rats 

Name Age Sex Experiment Company 

Sprague-Dawley rats adult  male MCT injury model Charles River Laboratories, Sulzfeld (Germany) 

B. Methods 

1. Cell culture 

a) Cell cultivation 

Pooled human umbilical vein endothelial cells (HUVECs) were purchased from Lonza and cul-

tured in endothelial basal medium (EBM; Lonza) supplemented with EGM SingleQuots (hydrocor-

tisone, bovine brain extract, epidermal growth factor, gentamycin sulphate, amphotericin-B; Lon-

za) and 10% fetal calf serum (FCS; Invitrogen) until the third passage.  
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Ea.hy.926 cells were cultured in MEM (Invitrogen) containing 10% FCS (Invitrogen), 2 mM L-

Glutamine (Invitrogen), 1 mM Sodium pyruvate (PAA laboratories), HAT supplement (100 µM 

Hypoxanthin, 16 µM Thymidin, 0.4 µM Aminopterin; Biochrom AG), 0.1 M non-essential amino 

acids (Invitrogen) and penicillin/streptomycin (Roche).  

Human lung microvascular endothelial cells (HMVEC-L) were purchased from Lonza and cultured 

in EBM-2 medium supplemented with 10% FCS and the EGM-2 MV SingleQuots (ascorbic acid, 

hydrocortisone, epidermal growth factor, long R insulin-like growth factor-1, vascular endothelial 

growth factor, fibroblast growth factor-B, gentamycin sulphate, amphotericin-B; Lonza). 

Lewis Lung Carcinoma Cells (LLC1, ATCC CRL-1642) were cultured in DMEM containing Gluta-

max™ and sodium pyruvate (Invitrogen) supplemented with 10% heat inactivated (56°C, 30 min) 

FCS and Penicillin/Streptomycin (P/S, Roche).  

Human embryonic kidney (HEK) 293 cells (Clontech) were cultured in DMEM containing L-

Glutamine (Invitrogen) supplemented with 10% FCS (Invitrogen) and 0.1 mM nonessential amino 

acids (Invitrogen). 

b) Cell seeding 

Cells were washed once with sterile PBS and trypsinized with Trypsin-EDTA at 37°C for  

2-3 min. Trypsinization was stopped by addition of serum containing cell culture medium. Cells 

were transferred into Falkons and counted using a Neubauer glass chamber. The used seeding 

densities for the different cell types are shown in the table below. 

Cell Type Seeding density 

HUVEC 3.5 or 4x105/6 cm dish, 1.2x105/10 cm dish 

HEK293 1.2x105/12-well plate 

LLC1 5 and 6x105/6 cm dish 

HPASMC 2.5x103/96-well plate 1.75x105/6-well plate, 3.5x105/6 cm well 

Table III.1:  Cell seeding desities 

c) Transfection of cells with RNA molecules 

Lyophilized miR precursors and siRNAs were dissolved in RNase-free water to a concentration of 

20 µM, whereas PBS was used for the 20 µM stocks of the hairpin inhibitors. For overexpression 

of the individual miRs, 1 nM or 10 nM of specific precursor molecules for the members of the 

miR-17-92 cluster, miR-21, miR-27b and miR-126 as non-related controls or control pre-miR 

(Ambion) were used. Additionally, miR-17 was overexpressed by transfection of miR mimics. 

Inhibition of the different miRs in vitro was achieved by transfection of 50 nM miRIDIAN Hairpin 

Inhibitors (Dharmacon). For siRNA-mediated gene knockdown, HUVECs were transfected with 

10 nM p21 or 40 nM JAK1 siRNA, AllStars Negative Control siRNA or a control siRNA directed 
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against firefly luciferase. Information on the miR precursors and inhibitors used as well as se-

quences of non-proprietary siRNAs are given in the tables below. 

HUVECs and Lewis Lung Carcinoma Cells were transfected at 50-75% confluence with  

microRNA precursor molecules, hairpin inhibitors and/or siRNA using Lipofectamine RNAiMax 

(Invitrogen) according to the manufacturer´s protocol. For a 6 cm dish, the respective RNA mole-

cules were mixed with 250 µl OptiMEM and incubated with 250 µl OptiMEM supplemented with 

5 µl Lipofectamine RNAiMax for 15 min at RT. Cells were washed once with OptiMEM and 

500 µl of the transfection mixture were added to 2.5 ml OptiMEM. Trifold volumes were used for 

cells in 10 cm dishes. For precursor transfection into SMCs in 96-well plates, 0.05 µl precursor 

molecule were added to 10 µl OptiMEM and mixed with 10 µl OptiMEM with 0.15 µl Lipo-

fectamine RNAiMax. After washing, 20 µl transfection mixture were added to 80 µl OptiMEM. 

Medium changes were done 4 h after addition of the transfection reagents. 

Pre-miR miRNA precursor name Mature miR sequence Manufacturer  

Negative Control #1  Ambion, Austin, TX (USA)  
Cat# AM17110 

hsa-miR-17 CAAAGUGCUUACAGUGCAGGUAG Ambion, Austin, TX (USA)  
Cat# PM12412 

hsa-miR-18a UAAGGUGCAUCUAGUGCAGAUAG Ambion, Austin, TX (USA)  
Cat# PM12973 

hsa-miR-19a UGUGCAAAUCUAUGCAAAACUGA Ambion, Austin, TX (USA)  
Cat# PM10649 

hsa-miR-20a UAAAGUGCUUAUAGUGCAGGUAG Ambion, Austin, TX (USA)  
Cat# PM10057 

hsa-miR-27b UUCACAGUGGCUAAGUUCUGC Ambion, Austin, TX (USA)  
Cat# PM10750 

hsa-miR-126 UCGUACCGUGAGUAAUAAUGCG Ambion, Austin, TX (USA)  
Cat# PM12841 

Table III.2:  MicroRNA precursors 

MiRIDIAN mimic name Mature miR sequence Manufacturer  

Negative Control #1  Dharmacon, Lafayette, CO, USA 
Cat# CN-001000-01-05 

hsa-miR-17-5p CAAAGUGCUUACAGUGCAGGUAG Dharmacon, Lafayette, CO, USA  
Cat# C-300485-05-0005 

Table III.3:  MicroRNA mimics 

MiRIDIAN Hairpin inhibitor name Mature miR sequence Manufacturer  

Negative Control #1  Dharmacon, Lafayette, CO, USA  
Cat# IN-001005-01 

Negative Control #2  Dharmacon, Lafayette, CO, USA  
Cat# IN-002005-01 

hsa-miR-17 CAAAGUGCUUACAGUGCAGGUAG Dharmacon, Lafayette, CO, USA  
Cat# IH-300485-06-0005 

hsa-miR-18a UAAGGUGCAUCUAGUGCAGAUAG Dharmacon, Lafayette, CO, USA  
Cat# IH-300487-06-0005 
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MiRIDIAN Hairpin inhibitor name Mature miR sequence Manufacturer  

hsa-miR-19a UGUGCAAAUCUAUGCAAAACUGA Dharmacon, Lafayette, CO, USA  
Cat# IH-300488-05-0005 

hsa-miR-20a UAAAGUGCUUAUAGUGCAGGUAG Dharmacon, Lafayette, CO, USA  
Cat# IH-300491-05-0005 

hsa-miR-27b UUCACAGUGGCUAAGUUCUGC Dharmacon, Lafayette, CO, USA  
Cat# IH-300589-07-0005 Cat# 

Table III.4:  MicroRNA hairpin inhibitors 

siRNA name Sequence (sense/antisense) Reference/Manufacturer 

AllStars Negative Control siRNA proprietary Qiagen, Hilden (Germany); 
Cat# 1027280 

Firefly luciferase siRNA 5´-CGUACGCGGAAUACUUCGAdTdT-3´ 
5´-UCGAAGUAUUCCGCGUACGdTdT-3´ 

Sigma-Aldrich, St. Louis, MO 
(USA) according to Elbashir et 
al. Nature 2001 (411) 

JAK1 HP validated siRNA 5´-CGGAUGAGGUUCUAUUUCAdTdT-3´ 
5´-UGAAAUAGAACCUCAUCCGdGdT-3´ 

Qiagen, Hilden (Germany); 
Cat# SI00605514  

p21 FlexiTube siRNA 5´-GGCAUUAGAAUUAUUUAAAdTdT-3´ 
5´-UUUAAAUAAUUCUAAUGCCdAdG-3´ 

Qiagen, Hilden (Germany); 
Cat# SI00604905  

Table III.5:  siRNAs 

d) 3D spheroid assay 

24 hours after transfection cells were washed once with PBS, trypsinized with 0.5 ml Trypsin-

EDTA for 2 min at 37°C and transferred into Falkons by addition of cell culture medium. Cells 

were pelleted by centrifugation at 1500 rpm (404 x g) for 5 min, resuspended in 1 ml cell culture 

medium and counted using a Neubauer glass chamber. 4.8 x 104 HUVECs were added to 12 ml 

EBM-methocel (80% EBM with 10% FCS and supplements + 20% Methocel) and 100 µl of the 

cell suspension per well were seeded in a 96-well U-bottom dish using an Eppendorf Multipette. 

Cells were incubated in the cell culture incubator overnight to accumulate in spheroids. The day 

after, spheroids were collected in a 50 ml Falkon, pelleted by centrifugation at 1000 rpm (179 x g) 

for 3 min and after suction of the medium supplied with 500 µl methocel-FCS (80% methocel, 

20% FCS). Thereafter, 500 µl collagen gel was added, thoroughly mixed with the spheroid 

methocel-FCS suspension and 1 ml of the mixture was transferred into a well of a 24-well plate 

after incubation at RT for 2 min. The plate was incubated for 5 min in the cell culture incubator to 

allow the gel to solidify before the next spheroid gel was prepared. After completion of the last 

gel, the plate was incubated for 30 min in the incubator before 100 µl of cell culture medium were 

added per well. Spheroids were incubated for 24 h to allow capillary sprouting, before fixation 

with 500 µl 10% formaldehyde in PBS. In vitro angiogenesis was quantified by taking micro-

graphs (Axiovert 100 M equipped with AxioCam camera, Carl Zeiss, Jena; 10x/0.3 objective) and 

measuring the cumulative length of all sprouts grown out of each spheroid using a digital imaging 
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software (Axiovision 4.6, Carl Zeiss Imaging Solutions GmbH, Munich) analyzing 10 spheroids 

per group and experiment. 

collagen gel (1 ml)  

  

10x M199 [µl] 100 

Rat tail collagen I [µl] 800 

1M Hepes [µl] 18 

NaOH (0.2 M) [µl] 80-160 (until gel turns red) 

e) Preparation of Methocel 

A 1l bottle containing 6 g methylcellulose (Sigma-Aldrich) and a magnetic stir bar were auto-

claved before 250 ml of prewarmed (60°C) EBM basal medium were aseptically added and 

stirred on a magnetic stirrer at 60°C for approximately 40 min. Subsequently, the remaining 250 

ml EBM basal medium were added and the mixture was stirred at 4°C overnight. The next day, 

the lucent viscous solution was filled into 50 ml Falkons and centrifuged at 3500 rpm (2200 x g) 

or 4500 rpm (3636 x g) and RT for 2 h to pellet insoluble debris. The methocel without debris was 

transferred into new Falkons and stored in the fridge.  

f) Test of paracrine pro-angiogenic activity using cell supernatants 

HUVECs or Lewis Lung Carcinoma cells were transfected with 10 nM pre-miR as described 

above. After one day, cells were washed twice with serum-free medium and serum-free medium 

supplemented with 0.05% BSA was added to the cells. After further incubation of the cells for 

24 h, the supernatants were transfered into 15 ml falcons and cell debris was removed by centri-

fugation at 1500 rpm (404 x g) and 4°C for 10 min. The cell-free supernatants were pipetted into 

the membrane equipped inserts of Amicon Ultra centrifugal filter devices (Millipore) and concen-

trated by centrifugation at 3500 rpm (2200 x g) and 4°C until the volume of the supernatants was 

tenfold reduced. 100 µl of the 10x concentrates were used for the spheroid sprouting assay in-

stead of cell culture medium. 

g) 2D endothelial tube network formation 

48 h after transfection, HUVECs (1x105) were cultured in a 12-well plate (Greiner) coated with 

200 l Matrigel Basement Membrane Matrix (BD Biosciences). Tube length was quantified after 

24 hours by measuring the cumulative tube length in five random microscopic fields (10x/0.3 

objective) with a computer-assisted microscope (Axiovert 100 M equipped with AxioCam camera, 

Carl Zeiss, Jena) using Axiovision 4.6 (Carl Zeiss, Imaging Solutions GmbH, Munich). 

h) Migration assay 

To assess migratory capacity of endothelial cells, HUVECs were detached with trypsin 48 h after 

transfection, harvested and washed with serum-free medium by centrifugation at 1500 rpm 
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(404 x g) and RT for 5 min, resuspended in EBM with 0.1% BSA, counted and placed in the up-

per chamber of a modified Boyden chamber (5 x 104 cells per chamber, pore size 8 m, BD Bio-

sciences) coated with 1 µg/ml human Collagen I (Millipore). The chamber was placed in a 24-well 

culture dish containing EBM with 0.1% BSA in presence or absence of human vascular endothe-

lial growth factor (VEGF, 50 ng/ml, Peprotech) or sphingosine-1-phosphate (S1P, Sigma-Aldrich). 

Lyophilized VEGF was dissolved in PBS + 0.1% BSA to a final stock concentration of 10 µg/ml. 

The S1P stock solution (1 mM) was generated by heating the lyophilized S1P in methanol to 

50°C in a water bath for 2 h with occasional vortexing the mixture. Further dilutions were done in 

serum-free cell culture medium. After incubation for 4 h at 37C, the cells on the lower side were 

fixed with 4% formaldehyde and the remaining non-migrating cells on the upper side of the 

chamber were mechanically removed with multiple moist cotton swabs and the inserts were 

washed three times with PBS. For quantification, cell nuclei were stained with 4’,6-diamidino-

phenylidole (DAPI). Migrating cells on the bottom side of the chamber were counted manually in 

five random microscopic fields using a computer-assisted fluorescence microscope (Axiovert 

100 M equipped with AxioCam camera, Carl Zeiss, Jena, 20x/0.4 objective) 

i) Cytokine stimulation of HUVECs 

40 h after siRNA transfection HUVECs were washed and serum starved in EBM containing 

0.05% BSA for 9 h. Subsequently, the cells were left untreated or treated with IL-6 (100 ng/ml), 

FGF-2 (30 ng/ml), IFN-α (100 ng/ml) or GM-CSF (100 ng/ml) for 15 min. Proteins were isolated 

as described below. All cytokines were purchased from PeproTech and dissolved in PBS  

supplemented with 0.1% BSA. 

j) BrdU FACS staining 

48 h after transfection, BrdU was added to the culture medium for 45 min to a final concentration 

of 10 µM. Cells were harvested by trypsinization and once washed with PBS by centrifugation at 

2000 rpm (380 x g) for 5 min at RT. A FITC-BrdU Flow Kit (BD Pharmingen) was used to stain 

the cells as follows. Fixation and permeabilization of the cells was achieved by incubating them 

for 30 min at RT in 100 µl Cytofix/Cytoperm buffer, followed by incubation on ice for 10 min in 

100 µl CytopermPlus and 5 min in 100 µl Cytofix/Cytoperm buffer. Buffers were removed by 

washing the cells with 1 ml PermWash buffer combined with subsequent centrifugation at 

4000 rpm (1520 x g) and RT for 3 min. After removing the final washing solution, cells were incu-

bated with 100 µl DNase in PBS (300 µg/ml) for 1 h at 37°C. The DNase was removed by wash-

ing with PermWash buffer as described before. The cell pellets were resuspended in 50 µl 

PermWash buffer and incubated with 20 µl FITC-conjugated anti-BrdU antibody for 20 min at RT 

in the dark. After washing with PermWash buffer, the pellet was resuspended in 20 µl 7-AAD and 
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allowed to stand for 10 min. Finally, 300 µl PBS were added and FACS analysis was performed 

using a FACS Canto II device (BD). Unstained cells were used to perform the settings of the 

FACS.  

k) BrdU ELISA 

Cell proliferation of pulmonary smooth muscle cells was quantified using a chemiluminescent cell 

proliferation ELISA (Roche) according to the manufacturer´s protocol. In brief, 48 h after precur-

sor transfection, medium was changed (growth medium w/o and with 30 ng/ml PDGF-BB or 10% 

FCS) and BrdU was added to the culture medium for 20 h to a final concentration of 10 µM. Cells 

were fixed with 200 µl FixDenat for 30 min at RT and removed by suction before the addition of 

100 µl peroxidase conjugated anti-BrdU (anti-BrdU-POD) antibody for 90 min at RT. Non-bound 

antibody was removed by incubating the fixed cells three times with 200 µl 1x washing solution. 

100 µl/well substrate solution were added and chemiluminescence was detected in triplicates 

with the Biotek Synergy HT plate reader. For data analysis the blank values were substracted 

from all other values to correct for unspecific binding of BrdU and anti-BrdU-POD antibody to the 

microplate. 

l) Annexin V FACS staining 

Apoptotic cell death of HUVECs was quantified using a FITC-Annexin V Apoptosis Detection Kit 

(BD Pharmingen) according to the manufacturer´s protocol. Shortly, 30 h after transfection 

500 µM, 1 mM or no H2O2 was added to the cell culture medium for 14 h. Cells were trypsinized 

and collected with the initial cell culture medium by centrifugation at 1500 rpm (404 x g) and 4°C 

for 5 min. Cells were washed once with PBS and once with Annexin binding buffer before they 

were resuspended in 50 µl Annexin binding buffer and mixed with 2.5 µl Annexin V-FITC and 

2.5 µl 7-AAD. Controls without Annexin V-FITC and/or 7-AAD were prepared to do the FACS 

settings. After incubation for 15 min in the dark, 200 µl binding buffer were added and subse-

quent FACS analysis was done using FACS Canto II (BD). 

2. Molecular Biology 

a) RNA isolation 

For RNA isolation from cultured cells, the cell layer or pellet was washed once with PBS and 

lysed in 800 µl or 1 ml TRI Reagent (Sigma-Aldrich) for 5 min at room temperature (RT) to gua-

rantee entire dissociation of ribonucleoprotein complexes. RNA isolation was either continued 

immediately after cell lysis or the samples were stored at -80°C. After addition of 1/5 of the initial 

volume of chloroform (CHCl3), the samples were shaken vigorously for approximately 15 se-
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conds, incubated for 3 min at RT and centrifuged for 15 min at 12000 x g and 4°C. The upper 

uncolored RNA containing aqueous phase was transferred into a new tube, mixed with an equal 

volume of isopropanol and incubated for 10 min at RT followed by centrifugation at 12000 x g and 

4°C for 10 min. The resulting RNA pellet was washed with 75% ethanol (EtOH), vortexed and 

centrifuged for 5 min at 7500 x g and 4°C. After removal of the ethanol, the RNA pellet was air 

dried and solved in 30 µl or 50 µl of RNase-free water (H2O). To facilitate dissolution, the RNA 

was incubated at 55°C for 10 min in an Eppendorf thermomixer. 

In some RNA isolations, the aqueous phase was once more chloroform (CHCl3) extracted after 

the initial phase separation and washed twice with 75% EtOH at the end of RNA isolation to get 

rid of residual phenol.  

RNA isolation from mouse and rat organs was accomplished by homogenization of the organ or 

part of it in TRI Reagent using the Tissue Tearor (Biospec products inc) or the FastPrep-24 in-

strument (MP Biomedicals) and ceramic spheres. The volume of TRI Reagent was adapted to 

tissue size. 

b) RNA isolation from paraffin sections 

RNA isolation from paraffin embedded tumours was done according to a published protocol [190]. 

Shortly, 4-5 tissue sections, each 30 µm thick, were cut with a microtome and transferred into 

1.5 ml tubes. Deparaffinization was achieved by rinsing the slices twice with 500 µl xylene for 

5 min at 57°C followed by centrifugation at 10000 x g and RT for 2 min. Afterwards, the tissue 

was washed twice with 100% ethanol and centrifuged for 10 min at 10000 x g, RT. After removal 

of the ethanol, 500 µl digestion buffer B (500 mM Tris-HCl pH 7.6, 10 mM NaCl, 20 mM EDTA, 

1% SDS) and 5 µl of a proteinase K solution (50 µg/µl) were added followed by incubation of the 

mixture at 55°C for 3 h. Proteinase K was inactivated by heating the reaction for 7 min to 100°C. 

Subsequently, the RNA was isolated from the supernatant with TRI Reagent BD (Sigma-Aldrich) 

as follows. One volume of supernatant was vigorously mixed with 3 volumes TRI Reagent BD 

(Sigma-Aldrich) followed by incubation at RT for 5 min. After addition of 1/5 of the volume of chlo-

roform, the mixture was again vigorously mixed, allowed to stand for 3 min at RT and centrifuged 

at 12000 x g and 4°C for 15 min. The aqueous phase was transferred into a new tube, mixed with 

an equal volume of isopropanol and incubated at RT for 10 min followed by centrifugation 

(12000 x g, 8 min, 4°C). After washing once with 75% EtOH at 7500 x g and 4°C for 5 min and 

vaporization of residual ethanol, 20 µl RNase-free water was added and dissolving of RNA was 

forced by incubating at 55°C for 10 min.  
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c) Determination of RNA/DNA concentration 

In the beginning, 1 µl of RNA were mixed with 99 µl RNase-free H2O and filled into a quartz cu-

vette to measure the absorbance at 260 nm with the SmartSpec PlusSpectrophotometer (Bio-

Rad Laboratories) which automatically calculated the RNA concentration.  

Later on, RNA and DNA concentrations were determined with the NanoDrop 1000 spectropho-

tometer by pipetting 2 µl of the nucleic acid solution onto the optical pedestal.  

Both spectrophotometers were blanked with pure water before performing the measurements. 

d) MicroRNA detection by real-time PCR 

In the course of the initial project, microRNAs were quantified according to a stem loop reverse 

transcription qPCR method published by Wu et al. [1]. The principle of the detection method is 

shown in Figure III.1. First, the microRNA is reverse transcribed using a stem loop primer which 

contains the binding sites for the universal reverse primer and the Taqman universal probe need-

ed for qPCR detection as well as six nucleotides at its 3´ end that are complementary to the 3´-

terminal nucleotides of the microRNA. In the second step, the reverse transcription product is 

quantified by real-time PCR using a miR specific forward primer covering the remaining nucleo-

tides of the miR, the Taqman probe and a universal reverse primer.  

 

Figure III.1: Real-time PCR quantification of microRNAs using a universal probe. The binding site of the 
universal probe #21 is shown in yellow. Adopted from Wu et al. [1] 

The primers were designed according to the miR sequences listed in the Sanger miR base 

(http://www.mirbase.org/). The microRNA and primer sequences are given in Table III.6. 
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hsa-miR-17 miR sequence CAAAGUGCUUACAGUGCAGGUAG 

 stem loop primer GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACCTACCT 

 forward primer GCGCCAAAGTGCTTACAGTGC 

hsa-miR-18a miR sequence UAAGGUGCAUCUAGUGCAGAUAG 

 stem loop primer GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACCTATCT 

 forward primer CGCCTAAGGTGCATCTAGTGC 

hsa-miR-19a miR sequence UGUGCAAAUCUAUGCAAAACUGA 

 stem loop primer GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACTCAGTT 

 forward primer CGCGTGTGCAAATCTATGCAA 

hsa-miR-20a miR sequence UAAAGUGCUUAUAGUGCAGGUAG 

 stem loop primer GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACCTACCT 

 forward primer GCGCCTAAAGTGCTTATAGTGC 

RNU48 RNU sequence AGUGAUGAUGACCCCAGGUAACUCUGAGUGUGUCGCUGAUGCCAUCACC 
GCAGCGCUCUGACC 

 stem loop primer GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACGGTCAG 

 forward primer GAGTGATGATGACCCCAGGTAA 

Universal reverse primer GTGCAGGGTCCGAGGT 

Table III.6:  Primer sequences for miR quantification via stem loop RT and qPCR 

The composition of the reactions and the amplification programs were as follows: 

Stem loop reverse transcription      

 1x     

Stem loop Primer (0.5 µM) [µl] 1  30 min 16°C  

dNTPs (10 µM each) [µl] 0.25  30 sec 30°C  

M-MLV Reverse Transcriptase (200 U/µl) [µl] 0.25  30 sec 42°C 60 cycles 

DTT[µl] 1  1 sec 50°C  

5x first strand buffer[µl] 2  15 min 70°C  

H2O [µl] 1.5  ∞ 4°C  

RNA (25 ng/µl) [µl] 4     

Total volume [µl] 10     

In the stem loop RT 100 ng total RNA were reverse transcribed. RNU48 served as endogenous 

control for human RNA, whereas snoRNA202 was used for murine samples. Every miR and the 

endogenous control were reverse transcribed in separate reactions. The resulting cDNA was 

diluted 1:5 with water before usage in the real-time quantification. 

Taqman real-time PCR      

 1x     

2x Fast Universal Taqman Master [µl] 10  20 sec 95°C  

Universal probe #21 [µl] 2  1 sec 95°C 
40-50 cycles 

Forward primer (10 µM) [µl] 1  20 sec 60°C 

Universal reverse primer (10 µM) [µl] 1     

H2O [µl] 1     

cDNA (1:5 diluted) [µl] 5     

Total volume [µl] 20     

For the second project, miRs were exclusively quantified using the more specific TaqMan  

MicroRNA Assays offered by Applied Biosystems. The assay principle is shown in Figure III.2. 
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Figure III.2: Real-time PCR quantification of microRNAs using TaqMan MicroRNA Assays. The commercially 

available TaqMan MicroRNA Assays have a high specificity as they use a microRNA specific TaqMan 
probe. Adopted from the Applied Biosystems web site [191] 

The assays we used are listed in table III.7. MicroRNA expression levels were generally nor-

malized to an endogenous control. For mouse samples we used snoRNA202, for rat samples U6 

snRNA and for human samples U6 snRNA or RNU48 as endogenous control. 

Stem loop reverse transcription microRNA assays      

 1x     

H2O [µl] 3.10  30 min 16°C  

100 mM dNTPs [µl] 0.10  30 min 42°C  

10x RT Buffer [µl] 1.00  30 sec 85°C  

RNase Inhibitor [µl] 0.13  ∞ 4°C  

MultiScribe Reverse Transcriptase [µl] 0.67     

Total Master [µl] 5.00     

5x Primer [µl] 2.00     

RNA (2.5 ng/µl) [µl] 3.00     

Total volume [µl] 10.00     

If the primers for different miRs and the loading control were compatible with each other ac-

cording to the Applied Biosystems multiplex primer pool list, up to four distinct primers were used 

in one RT reaction in which the volume of each primer was lowered to 1 µl and the water quantity 

was adapted to the final volume of 10 µl.  

Taqman real-time PCR microRNA assays      

 1x     

2x Fast Universal Taqman Master [µl] 10  20 sec 95°C  

20x primer [µl] 1  1 sec 95°C 
40-50 cycles 

H2O [µl] 4  20 sec 60°C 

cDNA (1:5 diluted) [µl] 5     

Total volume [µl] 20     
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All quantitative real-time PCRs were done on a StepOne Plus device (Applied Biosystems).  

The relative miR expression levels were calculated according to the formula 2-CT with  

CT = CT
miR-CT

endogenous control 

Assay name Assay ID Target sequence 

hsa-miR-17 002308 CAAAGUGCUUACAGUGCAGGUAG 

hsa-miR-20a 000580 UAAAGUGCUUAUAGUGCAGGUAG 

hsa-miR-21 000397 UAGCUUAUCAGACUGAUGUUGA 

hsa-miR-92a 000431 UAUUGCACUUGUCCCGGCCUGU 

snoRNA202 001232 GCUGUACUGACUUGAUGAAAGUACUUUUGAACCCUUUUCCAUCUGAUG 

U6 snRNA 001973 GUGCUCGCUUCGGCAGCACAUAUACUAAAAUUGGAACGAUACAGAGAAGAUUAG 
CAUGGCCCCUGCGCAAGGAUGACACGCAAAUUCGUGAAGCGUUCCAUAUUUUUA 
CUGCCCUCCAUGCCCUGCCCCACAAACGCUCUGAUAACAGUCUGUCCCUGUCUC 
UCUCCUGCUGCUCCUAUGGAAGCGAAGUUUUCCGCUCCUGCAGAAAGCAAAGUU 
ACGACUCAGAGACGGCUGAGGAUGACAUCAGCGAUGUGCAGGGAACCCAGCGCC 
UGGAGCUUCGGGAUGACGGGGCCUUCAGCACCCCCACGGGGGGUUCUGACACC 
CUGGUGGGCACCUCCCUGGACACACCCCCGACCUCCGUGACAGGCACCUCAGAG 
GAGCAAGUGAGCUGGUGGGGCAGCGGGCAGACGGUCCUGGAGCAGGAAGCGGG 
CAGUGGGGGUGGCACCCGCCGCCUCCCGGGCAGCCCAAGGCAAGCACAGGCAA 
CCGGGGCCGGGCCACGGCACCUGGGGGUGGAGCCGCUGGUGCGGGCAUCUCG 
AGCUAAUCUGGUGGG 

RNU48 001006 GAUGACCCCAGGUAACUCUGAGUGUGUCGCUGAUGCCAUCACCGCAGCGCUCUG 
ACC 

Table III.7:  TaqMan MicroRNA Assays for microRNA quantification by real-time PCR. Assays were pur-
chased from Applied Biosystems, Foster City, CA (USA). 

e) DNase digestion 

Before reverse transcription of RNA into cDNA for analysis of gene expression via real-time PCR, 

residual DNA was removed by DNase digestion using the Ambion Turbo DNA-free kit (Applied 

Biosystems). After mixing the RNA in aqueous solution with 0.1 volume of 10x Turbo DNase 

buffer and 2 units Turbo DNase in a 0.5 ml PCR tube, the reaction was incubated at 37°C for 

30 min. Enzyme inactivation was achieved by addition of 0.1 volume of DNase inactivation rea-

gent and subsequent incubation for 5 min at room temperature with occasional mixing. Finally, 

the reaction was centrifuged at 10000 x g for 1.5 min to pellet the inactivation reagent and the 

RNA containing supernatant was transferred into a new tube. 

f) Reverse transcription 

250 ng RNA were reverse transcribed in a 20 µl reaction using 0.5 mM of each dNTP (Promega), 

0.5 µg Oligo(dT)12-18 primer (Invitrogen or Roth) and 200 units M-MLV reverse transcriptase in 

the corresponding first-strand buffer supplemented with 10 mM DTT (Invitrogen) for 50 min at 

37°C followed by heat inactivation at 70°C for 15 min. The resulting cDNA was diluted 1:5 with 

water before employment in the SYBR Green real-time reaction. 
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g) SYBR Green real-time PCR 

SYBR Green real-time PCR      

 1x     

2x Fast SYBR Green Master [µl] 10  20 sec 95°C  

Forward primer (10 µM) [µl] 1  3 sec 95°C 
40 cycles 

Reverse primer (10 µM) [µl] 1  30 sec 60°C 

H2O [µl] 3  15 sec 95°C melt curve 

cDNA (1:5 diluted) [µl] 5  1 min 60°C  

Total volume [µl] 20  15 sec 95°C  

All quantitative real-time PCRs were done on a StepOne Plus device (Applied Biosystems). Pri-

mer sequences were determined with NCBI Primer-Blast or adopted from the literature as indi-

cated. Primers were ordered from Sigma-Aldrich.  

Gene Spezies NCBI mRNA accession number/ 

Reference  

Forward and reverse primer sequences 

CDKN1A  Homo sapiens  NM_000389.4 

NM_134440.1 

5´-GACTCTCAGGGTCGAAAACG-3´ 

5´-GGATTAGGGCTTCCTCTTGG-3´ 

BMPR2 Homo sapiens Brock et al. 5´-AGCCCAACAGTCAATCCAATG-3´ 

5´-GGTTGCGTTCATTCTGCATAG-3´ 

SMAD5 Homo sapiens NM_001001419.1 5´-ACTGGGATTACAGGACTTGACCCAA-3´ 

5´-AGTCAGTGGCTACCGAAAGAACAGA-3´ 

EFNB1 Homo sapiens NM_004429.4 5´-CGGTGCCGGTTGCGTCATCT-3´ 

5´-CGCTGCTGTGTGTGCTTGCG-3´ 

TGFBR2 Homo sapiens NM_003242.5 

NM_001024847.2 

5´-CTGTGGATGACCTGGCTAA-3´ 

5´-CATTTCCCAGAGCACCAGAG-3´ 

ACTA2 Homo sapiens NM_001613.2 

NM_001141945.1 

5´-CCCTGGCATTGCCGACCGAA-3´ 

5´-GGCCAGGATGGAGCCACCGA-3´ 

CNN1 Homo sapiens NM_001299.4 5´-GCGGAAATTCGAGCCGGGGA-3´ 

5´-CTGTGCCCAGCTTGGGGTCG-3´ 

SMTN Homo sapiens NM_134270.1 

NM_134269.1 

NM_006932.3 

5´-GGGCGTCCCAACAGTGGCTC-3´ 

5´-TGGCTGGTGCCTTCAGGGGT-3´ 

RPLP0 Homo sapiens NM_001002.3 

NM_053275.3 

5´-AGCCTGGAAAAAGGAGGTCTTC-3´ 

5´-ACTGTGCCAGCCCAGAACA-3´ 

TGFBR2 Rattus norvegicus NM_031132.3 5´-AGTTTTGCGACGTGACACTG-3´ 

5´-TCTCACAGATGGAGGTGACG-3´ 

BMPR2 Rattus norvegicus NM_080407.1 5´-GGCGAAAAGATCAAGAGACG-3´ 

5´-CACTGCCATTGTTGTTGACC-3´ 

CDKN1A Rattus norvegicus NM_080782.3 5´-TAGGACTTCGGGGTCTCCTT-3´ 

5´-GCTCTGGACGGTACGCTTAG-3´ 

SMAD5 Rattus norvegicus NM_021692.1 5´-CCAGGCGGCACATCGGGAAA-3´ 

5´-ACAGACGGTGGTGGGGTGGA-3´ 

ID1 Rattus norvegicus NM_012797.2 5´-AGACTCCTCCGCGCCTCTCC-3´ 

5´-ACCAAGCACCACTTCGCCCG-3´ 

EFNB1 Rattus norvegicus NM_017089.2 5´-AGGCCTCTGGGCTCTGTGGG-3´ 

5´-GCAGGGCCAGGGGGCTATCT-3´ 

BACT Rattus norvegicus NM_031144.2 5´-AGCCATGTACGTAGCCATCC-3´ 

5´-ACCCTCATAGATGGGCACAG-3´ 

Table III.8:  Primer sequences for SYBR Green real-time PCR. 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=310832422
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=19924155
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=47778928
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=183603932
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=133908633
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=133908632
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=213688378
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=213688374
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=56676373
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=19913397
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=19913395
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=19913393
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=49087144
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=49087137
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=94400785
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=281371325
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=73663897
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=11067422
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=82617571
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=40254778
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=42475962
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The formula 2-CT with CT = CT
gene-CT

endogenous control) was used to calculate the relative gene 

expression. The large ribosomal protein P0 (RPLP0) was chosen as endogenous control for hu-

man samples and -actin (BACT) for rat tissue. Primer sequences are listed in the table below. 

h) Gene expression profiling by microarrays 

3.5 x 105 HUVECs were seeded into a 6 cm cell culture dish and transfected with 10 nM Pre-17 

or control pre-miRNA (Pre-Co) the next day. Total RNA was isolated 24 h after transfection using 

TRI Reagent (Sigma-Aldrich) as described above. RNA samples were sent to Prof. Dr. med. 

Wolf-Karsten Hofmann in Berlin who organized the microarray analysis. Gene expression profile 

using 10 µg of total RNA was assessed with the GeneChip® Human Genome U133 Plus 2.0 

Array (Affymetrix, Santa Clara, CA) using standard hybridization protocols. GeneChip image 

analysis was performed using GCOS Version 1.3 (Affymetrix, Santa Clara, CA). Data analysis 

was done with GeneSpringVersion 4.2 (Agilent Technologies, Santa Clara, CA) as described 

previously [192]. 

i) Cloning of the luciferase reporter construct 

Synthetic oligonucleotides bearing 4x the miR-17 recognition element of the JAK1 mRNA 3´ UTR 

or a mutated version of the sequence and the respective antisense strands all containing HindIII 

and SpeI restriction sites (Table III.9) were designed on the basis of the sequence predicted to be 

the miR-17 target site by the TargetScan algorithm (Fig. III.3) 

 

Figure III.3: Predicted miR-17 binding site in the 3´ UTR of JAK1. Adopted from the TargetScan web site [193] 

Oligonucleotides were ordered from Sigma-Aldrich and dissolved in water at a concentration of 

1 µg/µl. Annealing of the complementary strands was achieved by heating 2 µg of each oligo-

nucleotide in a 50 µl reaction containing 1x annealing buffer (30 mM HEPES pH 7.4, 100 mM 

potassium acetate, 2 mM magnesium acetate) to 90°C for 3 min followed by incubation at 37°C 

for one hour.  

The oligonucleotide inserts were purified with the QIAquick PCR Purification Kit (Qiagen, Hilden) 

according to the manufacturer´s protocol. Briefly, 5 volumes buffer PB (250 µl) were mixed with 

the annealing reactions followed by addition of 10 µl of 3 M sodium acetate (pH 5.0). The re-

sulting mixtures were applied to QIAquick columns in 2 ml collection tubes and centrifuged for 

1 min at 17900 x g and RT. The flow-through was discarded and columns were washed with 

0.75 ml buffer PE by centrifugation (1 min, 17900 x g, RT). After removal of the flow-through, the 

columns were again centrifuged to get rid of residual EtOH contained in buffer PE. The 2 ml col-
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lection tubes were discarded and replaced by 1.5 ml tubes. To elute the oligonucleotides 30 µl 

water were added to the QIAquick membrane and allowed to stand for 1 min. After centrifugation 

(1 min, 17900 x g, RT), the eluate was once more added to the column and centrifuged. Samples 

of the purified oligonucleotides (5 µl + 1 µl 6x loading dye) were analysed and compared with the 

single stranded oligonucleotides (1 µg oligonucleotide + 4 µl H2O + 1 µl 6x loading dye) on a 3% 

high resolution agarose-TAE (40 mM Tris-Acetate, 1 mM EDTA) gel. Oligonucleotides were 

stored at -20°C. 

6x loading dye 

0.1% (w/v) bromophenol blue 

0.1% (w/v) xylene cyanol 

10 mM EDTA 

40% (v/v) glycerol  
 

Oligonucleotide name Oligonucleotide sequence (sense/antisense) 

4x wt JAK1 MRE for miR-
17 

5´-
CTAGTCTGTGGCCACTCTATATGCACTTTGTTCTGTGGCCACTCTATATGCACTTT-
GTTCTGTGGCCACTCTATATGCACTTTGTTCTGTGGCCACTCTATATGCACTTTGT-
TA-3´ 

5´- 

AGCTTAACAAAGTGCATATAGAGTGGCCACAGAACAAAGTGCATATA-
GAGTGGCCACAGAACAAAGTGCATATAGAGTGGCCACAGAACAAAGTGCATATA-
GAGTGGCCACAGA-3´ 

4x mutated JAK1 MRE for 
miR-17 

5´-
CTAGTCTGTGGCTAATCTATATGTAATTTGTTCTGTGGCTAATCTATATGTAATTT-
GTTCTGTGGCTAATCTATATGTAATTTGTTCTGTGGCTAATCTATATGTAATTTGTTA-
3´ 

5´-
AGCTTAACAAATTACATATAGATTAGCCACAGAACAAATTACATATAGATTAGCCA-
CAGAACAAATTACATATAGATTAGCCACAGAACAAATTACATATAGATTAGCCACA-
GA-3´ 

Table III.9:  Sequences of the inserts used for the luciferase assay. The Nukleotides corresponding to the 
SpeI and HindIII restriction sites are shown in orange and the seed sequence in red. Mutated nucleo-
tides are highlighted in yellow. MRE: microRNA recognition element 

5 µg of the pMIR-REPORT firefly luciferase vector were linearized in a double digest with HindIII 

and SpeI to guarantee unidirectional ligation of the insert.  

pMIR-REPORT restriction digest      

      

pMIR-REPORT (0.807 µg/µl) [µl] 6.2  1.5 h 37°C  

Buffer M [µl] 2  15 min 65°C 
 

H2O [µl]  10.8    

Spe I [µl] 0.5     

Hind III [µl] 0.5     

Total volume [µl] 20     

Double digested vector was mixed with 4 µl 6x loading dye and separated from partially or non-

digested vector by agarose gel (1% agarose-TAE) electrophoresis. Subsequent purification of the 

vector was done with the QIAquick Gel Extraction Kit according to the manufacturer´s protocol. In 
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brief, the DNA fragment corresponding to the linearized vector was excised from the agarose gel 

on an UV table with a scalpel, transferred into a 1.5 ml tube and weighed (384.5 mg). Three vo-

lumes of buffer QC (1154 µl) were added and incubated in an Eppendorf Thermomixer Compact 

at 50°C with agitation until the gel slice had completely dissolved. Thereafter, 10 µl 3 M sodium 

acetate were added and the solution was transferred into a 2 ml tube followed by the addition of 

one gel volume (384.5 µl) isopropanol. The mixture was transferred into a QIAquick column in a 

2 ml collection tube, which was centrifuged at 17900 x g and RT for 1 min. After discarding the 

flow through, the column was treated with another 500 µl of buffer QC and centrifuged to remove 

traces of the agarose gel. Then, the column was washed with 750 µl buffer PE and and addition-

ally centrifuged at 17900 x g and RT for 1 min. To elute the vector from the column, 30 µl H2O 

were added and incubated for 1 min at RT before final centrifugation (17900 x g, RT, 1 min).  

For ligation of the oligonucleotide inserts into the vector, the following reactions were prepared 

and incubated at 4°C overnight: 

Ligation      

Linearized pMIR-REPORT [µl] 4     

Annealed insert wt or mutated [µl] 1    
 

10x ligase reaction buffer [µl]  2    

T4 ligase [µl] 2     

H2O [µl] 11     

Total volume [µl] 20     

A no-insert ligation was done in parallel as negative control. 

The ligation reactions were transformed into One Shot OmniMAX 2-T1R chemically competent 

E. coli according to the manufacturer´s protocol. Briefly, E. coli were thawed on ice, gently mixed 

with 5 µl of the ligation reaction and incubated on ice for 30 min. Thereafter, bacterial cells were 

subjected to a heat-shock for 30 sec at 42°C in a water bath. After 2 min incubation on ice, 

250 µl of pre-warmed SOC medium were added and the cells were horizontally shaken at 37°C 

and 225 rpm for 1 hour in a bacterial incubator. Before plating, the cells were pelleted by centrifu-

gation at 5000 rpm (2370 x g) for 1 min, 150 µl medium were removed and the cells were resus-

pended in the remaining medium. Cells were spread on pre-warmed agar plates supplemented 

with 50 µg/ml ampicillin and incubated at 37°C overnight. Per construct material from 12 colonies 

were picked and used to inoculate 3 ml LB medium supplemented with 50 µg/ml ampicillin. Pro-

pagation of cells was achieved by incubation at 37°C and 225 rpm in a bacterial incubator. 

Small scale DNA purification was done with the QIAprep Spin Miniprep Kit according to the ma-

nufacturer´s protocol. Shortly, 2.5 ml E. coli culture were pelleted by centrifugation at 6800 x g for 

3 min. The pellets were resuspended in buffer P1 containing RNase A and mixed with 250 µl 

buffer P2 by inverting the tube several times. Thereafter, 350 µl buffer N3 were added and  
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distributed by inverting followed by centrifugation of the mixtures (17900 x g, 10 min, RT). The 

supernatants were applied to QIAprep spin columns by decanting and centrifuged at 17900 x g 

and RT for 1 min. Then, columns were washed with 0.5 ml buffer PB and centrifuged twice while 

removing the flow-through after the first round. DNA was eluted with 30 µl H2O. 

For sequencing 6 µl DNA were mixed with 1 µl M13 (-20) sequencing primer and sent to Seqlab 

in Göttingen for HotShot sequencing of around 300 bases. Constructs with successful se-

quencing results were used for the luciferase reporter assay. 

Oligonucleotide name sequence 

M13 (-20) primer 5´-GTAAAACGACGGCCAG-3´ 

Table III.10:  Sequencing primer sequence 

j) Luciferase reporter assay 

Two days after seeding, HEK293 cells were transfected with 0.02 ng Luciferase plasmid, 0.2 ng 

pGL4 Renilla plasmid (Promega) as control for the transfection efficiency and 10 pmol Pre-17 or 

control pre-miR (Pre-Co) using Lipofectamine 2000 (Invitrogen) according to the manufacturer´s 

protocol.  

HEK transfection      

Mix 1:   Mix 2:   

OptiMEM [µl] 100  OptiMEM [µl] 100  

pGl4 (0.1 ng/µl) [µl] 2  Lipofectamine 2000 3 
 

pMIR-REPORT-4x MRE (0.01 ng/µl) [µl]  2   5 min at RT  

Precursor (20 µM) [µl] 1     

      

Mixing of both 1:1  5 min at RT  20 min at RT 

800 µl HEK medium + 200 µl transfection mixture 

48 h after transfection cells were washed once with PBS and lysed with 250 µl 1x PLB buffer for 

15 min at room temperature on an orbital shaker. After transfer into 1.5 ml tubes, cell debris was 

removed by centrifugation at 13000 rpm (16060 x g) and 4°C for 2 min. 20 µl of the supernatant 

were used to measure firefly and renilla luciferase activity with the Dual-Luciferase® Reporter 

1000 Assay System (Promega) and the Lumat LB 9507 (Berthold Technologies). 

3. Protein biochemistry 

a) Protein extraction from mammalian cells 

HUVECs were lysed in RIPA lysis buffer (Sigma-Aldrich) containing protease and/or phosphatase 

inhibitors (Roche) for 15 min on ice. After centrifugation for 15 min at 14000 rpm (18620 x g) and 

4 C, the supernatant was transferred into a new tube. 

http://www.promega.com/tbs/tm046/tm046.pdf
http://www.promega.com/tbs/tm046/tm046.pdf
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b) Protein extraction from animal organs 

Tissue slices of animal organs were transferred into tubes with screw caps containing a ceramic 

sphere (MP Biomedicals) and homogenized in RIPA buffer (Sigma-Aldrich) supplemented with 

protease and phosphatase inhibitors (Roche) using a FastPrep automated homogenizer (MP 

Biomedicals). After incubation on ice for 15 min, the lysates were centrifuged for 15 min at 14000 

rpm (18620 x g) and 4 C. 

c) Determination of protein concentration 

The Bradford method was used to determine protein concentrations colorimetrically. A bovine 

serum albumin (BSA) standard curve was prepared using a BSA stock solution (10 mg/ml) which 

was diluted to yield solutions with 0.1, 0.2, 0.4, 0.6, 0.8 and 1 mg/ml BSA. 10 µl of each solution 

was mixed with 990 µl 1x Bradford reagent (diluted with aqua dest) in triplicate in plastic cuvettes 

and incubated for at least 5 min at RT. The standard curve was automatically created by the 

SmartSpec 3000 spectrophotometer (Bio-Rad) after measurement of the absorption of the stand-

ard samples at 595 nm. 

To determine protein concentrations 1-2 µl of protein were mixed with 1ml 1x Bradford reagent in 

triplicate, allowed to stand for at least 5 min at RT and absorption was measured with the spec-

trophotometer. 

d) Immunoblot (Western blot) 

Equal amounts of protein (30-50 µg) were mixed with 4x protein loading dye and boiled at 95°C 

for 5 min to denature the proteins. After cooling and short spin down of the samples, proteins 

were separated on discontinuous SDS-polyacrylamide gels using the Mini Protean II Tetra elec-

trophoresis system (Bio-Rad) at 80 V at the beginning and at 130 V as soon as the samples en-

tered the resolving gel.  

SDS-PAGE gel composition: Stacking gel Resolving gel (15 ml) 

 5% 8% 10% 14% 

Components     

H2O [ml] 5.45 7.1 6.1 4.1 

30% acrylamid [ml] 1.7 4 5 7 

Stacking/Resolving buffer [ml] 2.5 3.75 3.75 3.75 

10% APS [µl] 125 150 150 150 

TEMED [µl] 12.5 6 6 6 

4x protein loading dye stacking buffer resolving buffer running buffer 

250 mM Tris-HCl pH 8.0 0.5 M Tris-HCl pH 6.8 1.5 M Tris-HCl pH 8.8 25 mM Tris 

8% SDS 0.4% SDS 0.4% SDS 96 mM Glycin 

40% Glycerin   1% SDS 

0.04% bromphenol blue    

200 mM DTT    
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Proteins were blotted for 1.5 h at 20 W by wet transfer in a Mini Trans-Blot Cell (Bio-Rad) onto 

polyvinylidene fluoride (PVDF) membranes (Millipore), which were activated in methanol for 1 min 

and rinsed with H2O before use. Unspecific binding of antibodies to the membrane was blocked 

by incubation in 5% nonfat dry milk or BSA in TBS with 0.1% Tween-20 (TBS-T) for 1 h at RT. 

After washing the membranes three times for 10 min with TBS-T, they were incubated overnight 

at 4°C with the primary antibody as indicated in the table. The next day, membranes were again 

washed three times with TBS-T and incubated with the horseradish peroxidase-conjugated se-

condary antibody at RT for 1.5 h. After washing the membranes three times with TBS-T, the blots 

were incubated with enhanced chemiluminescence (ECL) reagent according to the manufactu-

rer´s instructions (Amersham). After transferring the blots into a plastic envelope in a film cas-

sette, films were added to the cassette and exposed to the membrane in the dark room for vari-

ous time points. Films were developed in a CURIX 60 processor (AGFA). Developed films were 

scanned with an EPSON Perfection 2480 PHOTO scanner and bands were densiometrically 

quantified using Scion Image for Windows – Release Alpha 4.0.3.2 (Scion Image Corporation, 

Frederick, MD, USA).  

Primary antibody name Blocking Dilution Manufacturer 

rabbit polyclonal anti-BIM 5% milk 1:100 in 3% milk BD, Franklin Lakes, 
NJ (USA) 

rabbit monoclonal anti-JAK1 6G4 5% milk 1:1000 in 5% BSA Cell Signaling, 
Danvers, MA (USA) 

goat polyclonal anti-CTGF 5% BSA 1:250 in 5% BSA Santa Cruz Bio-
technology, Santa 
Cruz, CA (USA) 

mouse monoclonal anti-Thrombospondin AB-3 5% BSA 1:250 in 5% BSA Calbiochem, Darm-
stadt (Germany) 

mouse monoclonal anti-pSTAT3 (Tyr 705) 
(3E2) 

5% milk 1:1000 in 5% milk Cell Signaling, 
Danvers, MA (USA) 

mouse monoclonal anti-STAT3 (124H6) 5% milk 1:1000 in 5% milk Cell Signaling, 
Danvers, MA (USA) 

rabbit monoclonal anti-STAT3 (79D7) 5% milk 1:1000 in 5% BSA Cell Signaling, 
Danvers, MA (USA) 

mouse monoclonal anti-Tubulin alpha Ab-2 5% BSA or milk 1:1500 in 3% BSA or milk NeoMarkers, 
Fremont, CA (USA) 

mouse anti-p21 5% BSA 1:1000 in 3% BSA BD, Franklin Lakes, 
NJ (USA) 

Table III.11:  Primary antibodies 

Secondary antibody name Dilution Manufacturer 

peroxidase-conjugated rabbit anti-mouse IgG 1:8000 Jackson ImmunoResearch, Newmarket (England) 

peroxidase-conjugated goat anti-rabbit IgG 1:8000 Jackson ImmunoResearch, Newmarket (England) 

donkey anti-goat IgG-HRP 1:10000 Santa Cruz Biotechnology, Santa Cruz, CA (USA) 

Table III.12:  Secondary antibodies 
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e) Stripping of membranes 

To remove antibodies from PVDF membranes, blots were transferred into a 50 ml Falkon filled 

with 10 ml stripping buffer and incubated for 30 min at 50°C in a hybridization oven. After strip-

ping, blots were washed 3x in TBS-T and blocked for the reprobe with another antibody.  

stripping buffer 

62.5 mM Tris-HCl 

2% SDS 

0.1 M -mercaptoethanol 

f) Zymography 

48 h after transfection or Antagomir addition, HUVECs were washed once and incubated in se-

rum-free EBM medium. After 24 h supernatants were collected, dead cells were pelleted by cen-

trifugation at 2000 rpm (719 x g) and 4°C for 5 min and 10x concentrates were generated using 

Amicon Ultra centrifugal filter devices (Millipore) at 3300 rpm (1960 x g). Additionally, cells were 

washed twice with cold PBS and lysed in 1x JNK buffer supplemented with 1 mM PMSF (200 mM 

stock in EtOH absolut) for 15 min on ice. After removal of cell debris by centrifugation at 

14000 rpm (18620 x g) and 4°C for 15 min, protein concentration was determined according to 

the Bradford method. 25 µl 10x supernatants and 50 µg cell lysate were mixed with equal  

volumes 2x zymography loading dye. Proteins were separated on SDS-polyacrylamide gels con-

taining 1 mg/ml gelatin at 160 V using the Mini Protean II Tetra electrophoresis system (Bio-Rad). 

Gels were incubated twice for 20 min at RT in renaturation buffer followed by overnight incubation 

in activation buffer at 37°C. After washing the gels once briefly with aqua dest, proteins were 

visualized by incubation in staining solution. Active matrix metalloproteinases resulted in clear 

bands on the blue stained gel.  

10x JNK buffer 2x loading dye 1x running buffer 

20 mM Tris-HCl pH 7.4 125 mM Tris-HCl pH 6.8 24 mM Tris base pH 8.3 

150 mM NaCl 20% glycerol 192 mM Glycin 

1 mM EDTA pH 8.0 4% SDS 0.1% SDS 

1 mM EGTA pH 8.0 0.005% bromphenol blue  

1% Triton X-100   

2.5 mM disodium pyrophosphate   

1 mM -glycerolphosphate   

1 mM Na3VO4   

1 µg/ml Leupeptin   

 

renaturation buffer 1x activation buffer staining solution 

2.5% Triton X-100 in H2O 10 mM Tris-HCl pH 7.5 1 vol acetic acid 

 1.25% Triton X-100 3 vol methanol 

 5 mM CaCl2 6 vol H2O 

 200 mM NaCl 1 vol 0.2% Phast Gel Blue R350 

 0.05% Brij 35  
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Gels were scanned with an EPSON Perfection 2480 PHOTO scanner and bands were den-

siometrically quantified using Scion Image for Windows – Release Alpha 4.0.3.2 (Scion Image 

Corporation, Frederick, MD, USA).  

4. Bioinformatics 

a) In silico microRNA target prediction 

To find predicted targets of miR-17 and the other members of the miR-17-92 cluster as well as 

the location of the predicted binding site in the 3´ UTR, the TargetScanHuman web interface 

(http://www.targetscan.org/) with releases 4.2 (April 2008) and 5.1 (April 2009) was used.  

5. In vivo experiments 

Animal experiments in our department were done by the technical assistants Ariane Fischer, 

Susanne Heydt and Tino Röxe. The local ethic committees approved all animal experiments. 

a) Antagomir administration 

Antagomirs were synthesized by VBC Biotech, Vienna according to the information given by 

Krutzfeldt et al. [194]. In brief, all Antagomirs were single-stranded 2′-O-methyl-modified RNA 

oligonucleotides containing two phosphorothioate linkages at the 5´-end and four phosphorothio-

ate linkages at the 3´ end as well as a cholesterol moiety at the 3´ end. A schematic representa-

tion of an Antagomir is shown in Figure III.4.  

 
Figure III.4: Composition of an Antagomir. The sequence of an Antagomir is generally reverse complementary 

to the microRNA to be targeted. The 2´-O-methyl modification of the bases and the phosphotioate 
bonds at both ends protect the Antagomirs from degradation by nucleases. The cholesterol moiety at 
the 3´ end facilitates cellular uptake.  

The sequences of the Antagomirs are given in table III.13. To analyse the specificity and efficien-

cy of the Antagomirs, tissue was snap-frozen and stored at -80°C for RNA analysis. RNA isola-

tion and real-time PCR was performed as described above. 
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Antagomir name Mature miR sequence Antagomir sequence  

Antagomir-Co  5`-AAGGCAAGCUGACCCUGAAGUU-3` 

Antagomir-17 5´-CAAAGUGCUUACAGUGCAGGUAG-3´ 5`-CUACCUGCACUGUAAGCACUUUG-3` 

Antagomir-18a 5´-UAAGGUGCAUCUAGUGCAGAUAG-3´ 5`-CUAUCUGCACUAGAUGCACCUUA-3` 

Antagomir-19a 5´-UGUGCAAAUCUAUGCAAAACUGA-3´ 5`-UCAGUUUUGCAUAGAUUUGCACA-3` 

Antagomir-20a 5´-UAAAGUGCUUAUAGUGCAGGUAG-3´ 5`-CUACCUGCACUAUAAGCACUUUA-3` 

Antagomir-21 5´-UAGCUUAUCAGACUGAUGUUGA-3´ 5´-UCAACAUCAGUCUGAUAAGCUA-3´ 

Antagomir-92a 5´-UAUUGCACUUGUCCCGGCCUG-3´ 5´-CAGGCCGGGACAAGUGCAAUA-3´ 

Table III.13:  Antagomirs 

b) Matrigel plug assay 

Eight-week-old mice were injected subcutaneously with two Matrigel basement matrix (BD) plugs 

(200 µl each) at day 0. Antagomir-Co, Antagomir-17, Antagomir-18a, Antagomir-19a or Antago-

mir-20a were injected i.v. at day 0 (after Matrigel implantation) and at day 2 and day 4. All An-

tagomirs were administered at doses of 8 mg per kg body weight (bw) with 0.2 ml per injection. 

Matrigel plugs were harvested at day 7. In order to analyse perfused capillaries, 200 µl FITC-

conjugated lectin (1 mg/ml) was injected i.v. 30 min before harvest. Lectin positive structures 

were counted manually in five microscopic fields (5x/0.25 objective) using a computer-assisted 

fluorescence microscope (Axiovert 100 M equipped with AxioCam camera, Carl Zeiss, Jena). 

Images were taken with a laser scanning microscope (LSM510 META with Software Release 4.0 

SP2, Carl Zeiss, Jena) using the Plan-Neofluar 40x/1.3 Oil objective. 

c) Tumour model 

Lewis lung carcinoma (LLC) cells were cultured as described above and 1 million cells were in-

jected subcutaneously in C57Bl/6 mice by Alexander Scholz at the Edinger Institute in Frankfurt. 

Tumour volume was measured daily with a Thorpe caliper (Horex, Germany) and was calculated 

as d1 x d2. 30 min before harvest, FITC-conjugated lectin was i.v. injected. After explantation, 

tumours were weighted and 3D tumour volume was calculated using the formula d1 x d2 x d3, 

where dn represent the three orthogonal diameter measurements. Tumour specimens were fixed 

in 4% formalin and were histologically examined. Sections were stained with an anti-endomucin 

antibody (eBioscience; 1:100) followed by an anti-rat Alexa Fluor 555 antibody (Invitrogen). Pic-

tures were taken with a laser scanning microscope (LSM510 META with Software Release 4.0 

SP2, Carl Zeiss, Jena) using the Plan-Neofluar 40x/1.3 Oil objective (Endomucin staining) or 

Plan-Neofluar 20x/0.5 objective (FITC-Lectin). Lectin positive structures were counted manually 

in three images per tumour slice and for the Endomucin staining five images were evaluated au-

tomatically using Axiovision 4.6 (Zeiss Imaging Solutions GmbH, Munich). Immunostainings and 

data acquisition were done by Marion Muhly-Reinholz. 
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d) PAH animal models 

All work regarding the PAH models were done by our collaboration partners of the Gießen Uni-

versity Lung Centre. The following description of the methods was provided by Dr. Soni Pul-

lamsetti. 

Animals and experimental design: chronic hypoxia mouse model 

Adult C57Bl/6J mice were obtained from Charles River Laboratories. Animals were housed under 

controlled temperature (~22°C) and lighting (12/12-hour light/dark cycle), with free access to food 

and water. The animals were exposed to chronic hypoxia (10% O2) in a ventilated chamber, as 

described previously. The level of hypoxia was held constant by an auto regulatory control unit 

(model 4010, O2 controller, Labotect; Göttingen, Germany) supplying either nitrogen or oxygen. 

Excess humidity in the recirculating system was prevented by condensation in a cooling system. 

CO2 was continuously removed by soda lime. Cages were opened once a day for cleaning as 

well as for food and water supply. The chamber temperature was maintained at 22-24°C. 

Normoxic mice were kept under identical conditions. Mice were exposed to hypoxia for 28 days 

and were treated with Antagomirs directed against miR-17, miR-21, miR-92a, a control Antagomir 

or the solvent PBS (10 animals each) intravenously (tail vein) at day 14, day 17, day 20, day 23 

and day 26. 

Animals and experimental design: monocrotaline lung injury model 

Adult male Sprague-Dawley rats (300-350 g in body weight; Charles River Laboratories, Sulzfeld, 

Germany) were randomized for treatment 21 days after a subcutaneous injection of 60 mg/kg 

monocrotaline (MCT, Sigma-Aldrich) to induce pulmonary arterial hypertension as described 

previously [195]. Healthy control rats received a saline injection instead of monocrotaline. For 

Antagomir treatment, 21 days MCT injected rats were divided into 5 groups (10 animals each) 

and were treated with Antagomirs against miR-17, a control Antagomir or solvent (PBS) intrave-

nously (tail vein) at day 22 and day 29.  

Hemodynamic and right ventricular hypertrophy (RVH) measurements 

Hemodynamic measurements were performed as previously described [195]. Briefly, rats and 

mice were anesthetized, tracheotomized and artificially ventilated using a positive end expiratory 

pressure (PEEP) of 1 cm of H2O column. The left carotid artery was isolated and cannulated with 

a polyethylene cannula connected to a fluid-filled force transducer and the systemic arterial pres-

sure (SAP) was measured. A catheter was inserted through the right jugular vein into the right 

ventricle for measurement of right ventricular systolic pressure (RVSP). The animals were  
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exsanguinated and the lungs were flushed with sterile saline. The left lung was fixed for histology 

in 3.5% neutral buffered formalin and the right lung was snap frozen in liquid nitrogen. The heart 

was isolated and dissected under microscope. The right ventricular wall was separated from the 

left ventricular wall and ventricular septum. Dry weight of the right ventricle, free left ventricular 

wall and ventricular septum was determined. Right ventricular hypertrophy was expressed as the 

ratio of weight of the right ventricular (RV) wall and that of the free left ventricular wall and ven-

tricular septum (LV+S). 

High-resolution echocardiography 

Anesthesia was induced with 3% isoflurane gas and maintained with 1.0-1.5% isoflurane in room 

air supplemented with 100% O2. Animals were laid supine on a heating platform with all legs 

taped to ECG electrodes for heart rate (HR) monitoring. Body temperature was monitored via a 

rectal thermometer (Indus Instruments, Houston, TX) and maintained at 36.5-37.5°C using a 

heating pad. The chest of the rats and mice was shaved and treated with a chemical hair remover 

to reduce ultrasound attenuation. To provide a coupling medium for the transducer, a pre-warmed 

ultrasound gel was spread over the chest wall. 

Transthoracic echocardiography was performed and analysed with a Vevo770 high-resolution 

imaging system equipped with a 30-MHz transducer (VisualSonics, Toronto, Canada) to deter-

mine the pulmonary artery acceleration time (PAAT). An experienced sonographer who was 

blinded to results of invasive and morphometric studies performed all studies. 

Histology and pulmonary vascular morphometry 

The formalin-fixed lungs were subjected to paraffin embedding. The paraffin-embedded tissues 

were cut into 3 µm thick slices. Elastica staining was performed according to common  

histopathological procedures. The degree of muscularization of small peripheral pulmonary arte-

ries was assessed by double-staining the 3 μm sections with an anti-α-smooth muscle actin anti-

body (dilution 1:900, clone 1A4, Sigma-Aldrich, Saint Louis, Missouri) and anti-human von Wil-

lebrand factor antibody (vWF, dilution 1:900, Dako, Hamburg, Germany) followed by analysis of 

the vessels using a computerized morphometric analysis system (QWin; Leica, Wetzlar, Germa-

ny) to determine the degree of pulmonary artery muscularization. In each rat, 80 to 100 intra-

acinar arteries (25 to 50 µm diameter) were categorized as muscular, partially muscular or non-

muscular. Arteries of the same size were additionally analysed for the medial wall thickness as 

previously described [195]. In mouse sections, 80-100 intra-acinar vessels at a size between 20 

and 70 µm accompanying either alveolar ducts or alveoli were analysed. All analyses were done 

in a blinded fashion. 
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6. Data analysis 

Data are expressed as mean ± standard error of the mean (SEM). Calculations were made with 

Microsoft Excel 2007 and 2010. The Kolmogorov-Smirnov test was used to analyse the datasets 

for normality. Two treatment groups were statistically compared by Mann-Whitney U test (if da-

tasets did not exhibit a normal distribution) or student´s t-test (if datasets exhibited a normal dis-

tribution). Multiple group comparisons were done by ANOVA and Dunn´s (if datasets did not ex-

hibit a normal distribution), Dunnett´s or Newman-Keuls (if datasets exhibited a normal distribu-

tion) posthoc analysis. For statistical analysis GraphPad Prism version 5.00 for Windows 

(GraphPad Software, San Diego, CA, USA) or SPSS Statistics 17.0 (SPSS Inc., Chicago, IL, 

USA) were used. Results were considered statistically significant when P < 0.05.  
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IV. Results 

Since previous research in our lab demonstrated that the individual members of the miR-17-92 

cluster are expressed in human umbilical vein endothelial cells (HUVECs) and that miR-92a dis-

plays anti-angiogenic capacity in ECs and controls recovery in response to ischemic diseases 

[119], we decided to characterize the biological function of the other members of the miR-17-92 

cluster, namely miR-17, miR-18a, miR-19a and miR-20a, in endothelial cells and EC-dependent 

physiological and pathophysiological processes. MiR-19b was neglected in this study since it just 

differs by one nucleotide from miR-19a, so that both microRNAs are bioinformatically predicted to 

target the same gene expression pattern and might therefore be functionally redundant. Further-

more, we evaluated the applicability of miR-17, -21 and -92a inhibition by systemic administration 

of the respective Antagomirs as therapeutic approach in pulmonary arterial hypertension in a 

collaborational project within the Excellence Cluster Cardio-Pulmonary System (ECCPS) with the 

group of Dr. Ralph Schermuly in Gießen.  

A. Functional role of members of the miR-17-92 cluster in endothelial cells 

and angiogenesis 

1. Individual members of the miR-17-92 cluster affect angiogenesis in vitro 

To gain first insights into the cell-intrinsic function of the members of the miR-17-92 cluster in 

endothelial cells, miR-17, -18a, -19a and -20a were overexpressed in HUVECs by transfection of 

commercially available miR precursor (pre-miR) molecules, and the cells were analysed in an in 

vitro angiogenesis assay regarding their sprout formation capacity. In Pre-18a, -19a and -20a 

transfected HUVECs a specific increase in the respective mature miR was detected by a univer-

sal probe based qPCR detection method, whereas in Pre-17 treated cells not only a profound rise 

of mature miR-17 but also of miR-20a was measured (Fig. IV.1A). Potentially, the determined 

augmentation of mature miR-20a is a detection artefact due to the limited specificity of the real-

time method we initially used to quantify mature microRNAs. Owing to the high sequence similari-

ty of miR-17 and miR-20a, reverse transcription of both miRs was achieved with the identical 

stem loop primer, followed by the real-time quantification in which the specificity of the reaction 

was solely dictated by the miR specific forward primer as the reverse primer and the TaqMan 

probe were universal for all miRs. Individual overexpression of all the cluster members signifi-

cantly reduced endothelial cell sprouting of spheroids in the three-dimensional (3D) angiogenesis 
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assay, although miR-17 exhibited the strongest effect (Fig. IV.1B/C). In order to determine, 

whether the inhibitory effect of miR-17 on in vitro angiogenesis is concentration dependent, we 

transfected HUVECs with 10 nM, 1 nM and 0.1 nM miR-17 or control precursor molecules and 

assessed the sprouting capacity in the spheroid model. Indeed, miR-17 inhibited spheroid  

sprouting in a concentration dependent manner (Fig. IV.1D). To confirm the effect of miR-17 on 

spheroid sprouting, we repeated the assay with a miR-17 mimic from another company. As for 

the miR-17 precursor, sprouting of spheroids was dramatically impaired after transfection of the 

miR-17 mimic (Fig. IV.1E).  

 

Figure IV.1: Overexpression of individual members of the miR-17-92 
cluster in human umbilical vein endothelial cells (HUVECs) 
inhibits capillary sprouting in the 3D spheroid assay. (A) 
HUVECs were transfected with 10 nM miR precursors for miR-
17 (Pre-17), miR-18a (Pre-18a), miR-19a (Pre-19a), miR-20a 
(Pre-20a) or a control precursor (Pre-Co), and expression of 
mature miRs was detected after 24 h by a real-time PCR 
method described by Wu et al. [1]. Data were normalized to 
RNU48; n = 3. (B/C) Inhibition of sprout formation in the sphe-
roid assay. 24 h after transfection, precursor transfected cells 
were used to generate spheroids overnight which were em-
bedded into collagen gels. The cumulative sprout length was 
measured 24 h later. n = 10 spheroids/experiment; n = 5-11 
experiments. **P < 0.01, **P < 0.001 versus Pre-Co. (C) Rep-
resentative images. Scale bar represents 100 µm. (D) HU-
VECs were transfected with different concentrations of miR-17 
precursor or a control precursor (Pre-Co) as indicated. Sprout-
ing capacity of the cells was analysed in the spheroid assay as 
described before. n = 10 spheroids/condition, n = 1 experi-
ment. (E) Effect of 10 nM miR-17 mimic on spheroid sprouting. 
n = 10 spheroids/experiment; n = 3 experiments. 
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We further analysed the effect of the individual miR-17-92 cluster members in a second angio-

genesis assay, namely the two-dimensional (2D) tube network formation on Matrigel in which the 

endothelial cells assemble in capillary-like structures. Surprisingly, a comparatively slight and 

nonsignificant reduction of the length of the tube networks was observed after overexpression of 

miR-17, -18a, -19a and miR-20a compared to the control precursor treated cells (Fig. IV.2A). 

Since endothelial cell migration is an essential process in angiogenesis, we addressed the migra-

tory capacity of precursor transfected endothelial cells in collagen I coated Boyden chambers. 

Consistent with the results gained from the tube network formation assay, overexpression of miR-

17, -18a, and -19a slightly, but nonsignificantly, impaired the migratory capacity of ECs under 

basal conditions and in response to VEGF, whereas miR-20a reduced EC migration by trend only 

upon VEGF stimulation but not under basal conditions (Fig. IV.2B).  

 

Figure IV.2: Overexpression of individual members of the miR-17-92 cluster slightly impairs tube formation 
and migratory capacity of human umbilical vein endothelial cells (HUVECs). HUVECs were 
transfected with 10 nM miR precursor for miR-17 (Pre-17), miR-18a (Pre-18a), miR-19a (Pre-19a), 
miR-20a (Pre-20a) or a control precursor (Pre-Co) and seeded onto Matrigel coated dishes to quantify 
tube formation capacity or collagen I coated boyden chambers to address migration 48 h after trans-
fection. (A) Effect of cluster members on tube network formation on Matrigel. Tube networks were 
quantified 24 h after cell seeding. n = 5. (B) Effect of cluster members on basal and VEGF-induced 
migration in modified Boyden chambers. Migrated cells were counted 4 h after cell seeding. n = 4. 

Furthermore, inhibition of endothelial cell apoptosis occurs during angiogenesis to ensure cell 

survival. In hematopoetic and tumour cells, anti-apoptotic activity has been attributed to the miR-

17-92 cluster [145, 157]. To analyse the impact of miR-17, -18a, -19a and -20a on apoptosis in 

endothelial cells, we again overexpressed the miRs in HUVECs by precursor transfection and 

measured the percentage of apoptotic cell death by staining the cells with fluorescently labelled 

annexin V for FACS (fluorescence activated cell sorting) analysis of cell surface exposed phos-

phatidylserine (Fig. IV.3). Oxidative stress was excerted by addition of low (200 µM) and high 

concentrations (1 mM) of hydrogen peroxide (H2O2) to promote endothelial cell apoptosis. 

Whereas overexpression of miR-17, -19a and -20a did not affect EC apoptosis under standard 

culture conditions or upon treatment with a low dose of H2O2, Pre-18a transfected ECs displayed 

a significantly increased apoptotic rate under standard culture conditions and showed a trend 
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towards enhanced apoptotic cell death in response to 200 µM H2O2. Under high oxidative stress, 

miR-17 showed a trend, but no statistically significant effect, towards reduction of apoptotic cell 

death. In contrast, miR-18a, -19a and -20a displayed no definite effect on EC apoptosis under 

this condition. 

 

Finally, proliferation of endothelial cells is a critical event during blood vessel formation. To ad-

dress the effect of the individual miRs on EC proliferation, we determined the cell cycle profile of 

HUVECs overexpressing the different miRs by FACS analysis of BrdU incorporation 48 h after 

precursor transfection. As shown in Fig. IV.4A, the number of cells in the S phase of the cell cycle 

was significantly increased after overexpression of miR-17 and miR-20a indicating that these two 

miRs stimulate proliferation of ECs. In contrast, miR-18a and miR-19a had no effect on the num-

ber of proliferating cells. Transfection of HUVECs with four different concentrations of miR-17 and 

control precursor revealed that the pro-proliferative effect of miR-17 was concentration dependent 

(Fig. IV.4B). 

 

Figure IV.4: MiR-17 and miR-20a enhance proliferation of endothelial cells. (A) 48 h after transfection of HU-
VECs with 10 nM miR-17, -18a, -19a and -20a precursor, BrdU was added to the cell culture medium 
for 45 min and cells were stained with an anti-BrdU antibody and 7-AAD before measurement of the 
cell cycle profile via fluorescence activated cell sorting (FACS). n = 4-8. *P < 0.05 (B) HUVECs were 
transfected with different concentrations of miR-17 and control precursor as indicated. 48 h after 
transfection BrdU incorporation was measured by FACS staining. n = 1. 

Figure IV.3: Effect of miR-17, -18a, -19a and -20a on EC 
apoptosis. Overexpression of the individual miRs 
in HUVECs was accomplished by transfection of 
miR precursor molecules. 48 h after transfection, 
cells were stained with FITC-conjugated annexin 
and 7-AAD to determine the number of apoptotic 
cells by FACS analysis. Cells were exposed to oxi-
dative stress by addition of H2O2 to the cell culture 
medium 14 h before analysis of apoptotic cell 

death. n = 3 - 11 experiments. *P < 0.05. 
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To verify that the members of the miR-17-92 cluster indeed play a role in angiogenesis in vitro, 

we addressed the effect of blocking the endogenous miRs individually by transfection of commer-

cially available hairpin inhibitors in the 3D spheroid assay. Although ECs were transfected with 

the same amount of each miR specific inhibitor, considerable differences in the knockdown effi-

ciency of the individual miRs by the respective inhibitor were observed. Whereas the levels of 

miR-18a and miR-19a were profoundly decreased 24 h after inhibitor transfection, the reduction 

of mature miR-17 and miR-20a was rather moderate. The hairpin inhibitor targeting miR-27b, 

which was applied as an additional non-related control in the spheroid assay, also displayed an 

efficient knockdown capability (Fig. IV.5A). Inhibition of miR-17, -18a and -20a significantly en-

hanced spheroid sprouting about 1.5 fold, whereas the hairpin inhibitor against miR-19a in-

creased the in vitro angiogenic response only slightly. Conversely, the miR-27b hairpin inhibitor 

significantly impaired angiogenic sprouting (Fig. IV.5B) as previously reported [78].  

 

Figure IV.5: Inhibition of individual members of the miR-17-92 cluster in human umbilical vein endothelial 
cells (HUVECs) promotes capillary sprouting in the 3D spheroid assay. HUVECs were trans-
fected with 50 nM miR inhibitors targeting individual members of the miR-17-92 cluster and miR-27b 
as indicated. 24 h after transfection spheroids were generated overnight and embedded into collagen 
gels. Another 24 h later, capillary sprout length was quantified. (A) Confirmation of microRNA knock-
down 24 h after inhibitor transfection. MiR expression in control inhibitor treated cells (MiR-Inhib-Co) 
represents the mean of both control inhibitors (MiR-Inhib-Co-1, miR-Inhib-Co-2) used. MiR levels were 
normalized to RNU48. n = 1. (B) Effect of miR inhibition on spheroid sprouting. n = 10 sphe-
roids/experiment; n = 6 experiments. *P < 0.05, **P < 0.01, ***P < 0.001 versus MiR-Inhib-Co-2. 

2. Combined inhibition of miR-17 and miR-20a by Antagomir-17 augments neovascu-

larization in vivo 

Having shown that the individual members of the miR-17-92 cluster affect the angiogenic activity 

of endothelial cells in vitro, we next addressed their relevance for blood vessel formation in vivo. 

Since there has been up to now no non-transgenic approach to upregulate microRNAs in vivo 

and as for therapeutic angiogenesis it would be preferable to downregulate anti-angiogenic miRs, 

we decided to use previously established microRNA inhibitors, referred to as Antagomirs, to  
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inhibit the individual members of the miR-17-92 cluster in vivo. Antagomirs which were first  

described by Krutzfeldt et al. in 2005 are RNA oligonucleotides that are fully complementary to 

the respective microRNA carrying phosphorothioate linkages to improve stability and a cholester-

ol moiety to facilitate cellular uptake [194]. Antagomirs targeting the members of the miR-17-92 

cluster were designed on the basis of the sequences of hsa-miR-17, hsa-miR-18a, hsa-miR-19a 

and hsa-miR-20a given in the Sanger miRBase database. Since the miR-17-92 cluster is highly 

conserved across species, the individual members do not differ between human and mouse.  

To study the impact of the individual cluster members on blood vessel formation in vivo, we com-

bined the Matrigel plug angiogenesis mouse model with the systemic administration of Antago-

mirs by i.v. injection into the tail vein. The detailed experimental setup is shown in Fig. IV.6D.  

 

Figure IV.6: Antagomir-mediated inhibition of miR-17 enhances angiogenesis in mice. (A-B) Effect of syste-
mic infusion of three intravenous (i.v.) injections of Antagomirs (8 mg/kg body weight per injection) 
targeting miR-17 (A-17), miR-18a (A-18a), miR-19a (A-19a), and miR-20a (A-20a) or a control An-
tagomir (A-Co) on miR expression in hearts harvested 7 days after the first injection. n = 3-6 mice per 
group. MiR expression was detected by a real-time PCR method using a universal TaqMan probe in 
combination with a miR-specific forward primer (A) and a TaqMan miRNA assay with higher specificity 
(B). SnoRNA202 was used as endogenous control. (C-D) Effect of Antagomir intravenous infusion at 
days 0, 2, and 4 on the number of lectin-perfused vessels in Matrigel plugs in vivo after 7 days. Analy-
sis of Matrigel plugs was done by Tino Röxe. n = 4-10 mice per group, n = 2 plugs per mouse. 
*P < 0.05, **P < 0.01 versus A-Co. (D) Schematic drawing of the experimental design and representa-
tive images of Matrigel plug sections of Antagomir-Co and Antagomir-17 treated mice. Scale bars re-
present 20 µm. 

Shortly before harvest, Lectin-FITC was i.v. infused into the mice to enable visualization of per-

fused vessels in the Matrigel plugs. Three injections of 8mg/kg body weight Antagomir at the day 

of Matrigel plug implantation as well as two and four days afterwards resulted in an efficient and 
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specific knockdown of miR-18a, -19a and -20a after one week in the hearts of the animals treated 

with the respective Antagomirs (Fig. IV.6A). Only Antagomir-17 revealed an off-target effect by 

significantly blocking the closely related miR-20a besides its intended target miR-17.  

Since mature miR expression was measured by a qPCR method in which the specificity is only 

determined by the forward primer, whereas the reverse primer and the TaqMan probe are univer-

sal, we additionally measured the expression of miR-17 and miR-20a with a second method that 

uses a miR specific TaqMan probe for improved specificity. This method verified the finding that 

Antagomir-17 blocked both miRs, miR-17 and miR-20a (Fig. IV.6B). MiR-17 and miR-20a only 

differ in two nucleotides and off-target effects of different miR-17 inhibitors on members of the 

miR-17 seed family are reported in the literature [168, 196]. Three injections of Antagomir-17 

significantly increased the number of perfused vessels invading the Matrigel plug in vivo, whereas 

specific inhibition of miR-18a, -19a and -20a showed a trend towards enhanced neovasculariza-

tion but no statistical significance (Fig. IV.6C/D). 

To see whether one dose of each Antagomir sufficiently blocks the respective microRNA to pro-

mote neovascularization, we repeated the Matrigel plug assay with one Antagomir injection at 

day one after Matrigel plug implantation (Fig. IV.7).  

 

Figure IV.7: Effect of one injection of Antagomir on neovascularization of Matrigel plugs in vivo. (A) After 
implantation of Matrigel plugs by subcutaneous injection of Matrigel supplemented with 0.5 µg/ml 
FGF-2, mice were treated with one i.v. injection of Antagomir-17 (8 mg/kg bw). After three days Mat-
rigel plugs and the hearts of the mice were harvested and total RNA was isolated using TRI Reagent. 
MiR-17 expression was measured using the respective MicroRNA Assay kit (Applied Biosystems). 
SnoRNA202 was used as endogenous control. n = 8. ***P < 0.001 versus A-Co. (B) Effect of one sin-
gle Antagomir infusion (8 mg/kg bw) at day 1 on the number of lectin-perfused vessels in Matrigel 
plugs in vivo. Analysis of Matrigel plugs was done by Tino Röxe. n = 4-8 per group, n = 2 plugs per 
mouse. 

Analysis of miR-17 expression in the Matrigel plugs and the hearts of Antagomir-17 treated mice 

three days after Antagomir administration revealed a miR-17 knockdown by nearly 90% in the 

Matrigel plugs and 80% in the hearts of the animals (Fig. IV.7A). Regarding neovascularization of 
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Matrigel plugs, the effects were akin to that observed in animals treated with three Antagomir 

injections, although the profound increase of perfused vessels in animals receiving one dose of 

Antagomir-17 did not reach statistical significance (Fig. IV.7B). In summary, these data demon-

strate that the combined inhibition of miR-17 and miR-20a by Antagomir-17 enhances blood ves-

sel formation in vivo. 

3. Impact of the miR-17-92 cluster members on tumour angiogenesis 

Dews et al. previously reported that tumour cells overexpressing the miR-17-92 cluster form  

larger and better perfused tumours in mice. The tumour angiogenesis promoting effect of the 

miR-17-92 cluster in this model was attributed to the suppression of anti-angiogenic factors pro-

duced by tumour cells, namely connective tissue growth factor (CTGF) and thrombospondin-1 

(TSP-1), which might act in a paracrine manner on endothelial cells to control blood vessel for-

mation [150]. Since in our hands the individual members of the miR-17-92 cluster inhibited angio-

genesis in vitro upon overexpression in ECs, we next addressed the effect of these miRs on the 

paracrine angiogenic activity of endothelial cells in comparison to tumour cells. We used the mu-

rine Lewis Lung Carcinoma 1 (LLC1) cell line which displayed compared to HUVECs a similar 

level of mature miR-17 which we measured as a representative member of the miR-17-92 cluster 

by real-time PCR in both cell types (Fig. IV.8).  

 

To analyse the impact of the individual miRs on paracrine angiogenic activity, we overexpressed 

miR-17, miR-18a, miR-19a and miR-20a in HUVECs and LLC1 cells by transfection of the  

respective precursor molecules. Serum-free conditioned medium was generated one day after 

transfection, tenfold concentrated by centrifugation the following day and applied to untreated 

collagen-embedded EC spheroids (Fig.IV.9A). The mean cumulative sprout length of individual 

spheroids in each condition was quantified as a measure for the angiogenic activity of the condi-

tioned media. As a result, conditioned medium of LLC1 tumour cells overexpressing miR-17, 

miR-19a and miR-20a (Fig. IV.9B) slightly enhanced angiogenic sprouting of endothelial cells 

compared to the medium of control precursor transfected LLC1 cells. In contrast, conditioned 

medium derived from endothelial cells transfected with the precursors for miR-17, miR-18a or 

Figure IV.8: MiR-17 is equally expressed in LLC1 and endothelial 
cells. RNA was isolated using TRI Reagent and miR-17 le-
vels in LLC1 cells and HUVEC in the 2nd passage (P2) were 
determined by real-time PCR with the respective MicroRNA 
Assay kit (Applied Biosystems). n = 1 
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miR-19a showed a trend towards reduced angiogenic activity of endothelial cells (Fig. IV.9C) in 

comparison with the Pre-Co treated HUVECs. Nevertheless, the observed differences were sta-

tistically not significant. Overall, the angiogenic activity of the supernatants differed the most  

between LLC1 and endothelial cells after overexpression of miR-17, -18a and -19a.  

 

Figure IV.9: Effect of members of the miR-17-92 cluster on paracrine activity of tumour cells in vitro. (A) 
Schematic drawing of experimental design. HUVECs or LLC1 tumour cells were transfected with the 
respective precursors. Medium was changed to Dulbecco modified Eagle medium with 0.05% bovine 
serum albumin after 1 day. Conditioned medium was collected at day 2, and 10x concentrates were 
transferred to collagen-embedded spheroids with non-transfected HUVECs. Quantification of spheroid 
sprout length was performed after incubation of the spheroids with the conditioned medium for 24 h. 
(B) Confirmation of miR overexpression in LLC1 cells 48 h after precursor transfection. MiR levels 
were normalized to snoRNA202. n = 1. (C) Effect of 10x supernatants of precursor transfected HU-
VECs and LLC1 cells on sprouting capacity of non-transfected HUVECs. n = 3 for HUVECs, n = 4 for 
LLC1.  

To see whether the members of the miR-17-92 cluster affect CTGF and TSP-1 expression in 

endothelial cells, we analysed cell lysates of precursor transfected HUVECs by Western blotting. 

The precursor for miR-126 was used as an additional non-related control. Overexpression of 

miR-18a and miR-19a slightly lowered CTGF levels, whereas miR-17, miR-20a, miR-92a and the 

non-related miR-126 had no effect (Fig. IV.10A). A visible decrease of TSP-1 occurred only upon 

miR-19a overexpression, but not in ECs transfected with precursors of the other miRs 

(Fig. IV.10B). Overall, our results suggest that the members of the miR-17-92 cluster act in a cell-

context dependent manner to regulate angiogenesis in vitro. 
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Figure IV.10: Effect of miR overexpression on CTGF (A) and TSP-1 (B) protein expression. HUVECs were 
transfected with the indicated miR precursors, and after 48 h cells were lysed with radio immunopre-
cipitation assay (RIPA) buffer supplemented with protease inhibitors to extract proteins. Connective 
tissue growth factor (CTGF) and thrombospondin-1 (TSP-1) expression was determined by Western 
blot analysis. Pre-126 served as a non-related control. Representative results out of 4 independent 
experiments are shown. Tubulin served as loading control.  

Since Antagomir-17 had the strongest effect on neovascularization of Matrigel plugs in vivo, we 

analysed the effect of this Antagomir on tumour growth and vascularization in a Lewis lung carci-

noma tumour model. Two series of experiments with different injection protocols were performed.  

In the first series, mice received one dose of Antagomir i.v. at day 5 after subcutaneous (s.c.) 

inoculation of LLC1 cells into both flanks of the mice (Fig. IV.11A). Analysis of the miR-17 level in 

the explanted tumours at the end of the experiment (day 13) still showed a decrease of miR-17 

by 28.1 ± 7.9% in the Antagomir-17 treated animals (Fig. IV.11B). Tumour size, volume and 

weight were increased, although the observed differences were statistically not significant 

(Fig. IV.11A/C/D). Nevertheless, tumour vascularization was not elevated as addressed by quan-

tifying lectin-FITC positive and endomucin-stained vessels (Fig. IV.11E/F). 

In the second series, mice were treated with two doses of Antagomir-17 at day 5 and 10 after 

LLC1 inoculation (Fig. IV.12A) resulting in half the expression of miR-17 in the tumours of An-

tagomir-17 compared to control Antagomir injected animals at the end of the experiment 

(Fig. IV.12B). Using this treatment protocol, we could not detect differences in tumour size,  

volume and weight (Fig. IV.12A/C/D). Moreover, quantification of endomucin-positive capillaries 

within the tumours did not reveal any effect of Antagomir-17 on tumour vascularization 

(Fig. IV.12E).  
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Figure IV.11: Effect of one injection of Antagomir-17 on tumour growth and angiogenesis. (A) Schematic 
drawing of experiment design. LLC1 cells were subcutaneously injected at day 0 and mice were  
treated once with Antagomir-17 (8 mg/kg bw i.v.) at day 5. Tumours were harvested at day 13. n = 7 
for Antagomir-Co and n = 6 for Antagomir-17. Analysis of tumour size, volume and weight was done 
by Ariane Fischer. Immunostainings were performed and evaluated by Marion Muhly-Reinholz. (B) 
Expression of miR-17 in LLC1-derived tumours after 1 i.v. injection of Antagomir at day 5. Total RNA 
was isolated using TRI Reagent from slices of paraffin embedded tumours as described in the method 
section. MiR-17 expression was detected by a real-time PCR method previously described by Wu et 
al. [1]. (C) Volume of explanted tumours. 3D tumour volume was calculated by multiplying the three 
orthogonal diameter measurements (d1 x d2 x d3). (D) Weight of explanted tumours. (E) Tumour angi-
ogenesis was detected in sections stained with the endothelial marker endomucin. A secondary anti-
body conjugated to Alexa Fluor 555 was used. The number of vessels was counted manually. (F) Per-
fused vessels were detected by intravenous infusion of fluorescein isothiocyanate (FITC)-conjugated 
lectin and were quantified by automatic measurement of the pixel region in each section. Scale bars 
represent 20 µm. 
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Figure IV.12: Effect of two injections of Antagomir-17 on tumour growth and angiogenesis. (A) Schematic 
drawing of experiment design. LLC1 cells were subcutaneously injected at day 0 and mice were  
treated with Antagomir-17 (8 mg/kg bw i.v.) at days 5 and 10. Tumours were harvested at day 14. 
Analysis of tumour size, volume and weight was mainly done by Ariane Fischer. Immunostainings 
were performed and evaluated by Marion Muhly-Reinholz. n = 6 for Antagomir-Co, n = 5 for Antago-
mir-17. (B) Expression of miR-17 in LLC1-derived tumours after two i.v. injections of Antagomir-17 at 
day 5 and 10. Total RNA was isolated using TRI Reagent from a piece of tumour that was removed 
during the tumour harvest. MiR-17 expression was detected by a real-time PCR method published by 
Wu et al. [1]. (C) Volume of explanted tumours. 3D tumour volume was calculated by multiplying the 
three orthogonal diameter measurements (d1 x d2 x d3). (D) Weight of explanted tumours. (E) Tumour 
angiogenesis was detected in sections stained with the endothelial marker endomucin. A secondary 
antibody conjugated to Alexa Fluor 555 was used. The number of vessels was quantified by automatic 
measurement of the pixel region in each section. 

Consistently, blocking miR-17 by treatment of LLC1 cells in vitro with different concentrations of 

Antagomir-17 did not affect proliferation of these cells as determined by FACS measurement of 

BrdU incorporation, although miR-17 expression was efficiently decreased in the cells treated 

with 2.5 µM A-17 (Fig. IV.13A/B).  
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Figure IV.13: Effect of Antagomir-17 on LLC1 proliferation and miR-17 expression in vitro. LLC1 cells were 
treated with different concentrations of Antagomir-17 as indicated. (A) 48 h after Antagomir addition, 
cell cycle activity was quantified by FACS analysis of anti-BrdU-FITC/7-AAD stained cells. (B) Quanti-
fication of miR-17 knockdown. Total RNA was isolated with TRI Reagent 48 h after Antagomir addi-
tion. MiR-17 expression was detected by a real-time PCR method using a universal TaqMan probe in 
combination with a miR specific forward primer as previously described by Wu et al. [1]. SnoRNA202 
was used as endogenous control. n = 3. 

4. Targets of the members of the microRNA-17-92 cluster in endothelial cells 

a) The pro-apoptotic protein BIM is no relevant target of the miR-17-92 cluster in ECs 

Several reports identified known regulators of cell cycle progression and apoptosis to be targets 

of the members of the miR-17-92 cluster in tumour and hematopoetic cells. Among others, the 

pro-apoptotic protein BIM (BCL2L11) is a described target of the miR-17-92 cluster, which con-

trols apoptosis of lymphocytes and tumour cells [140, 157]. To test whether the members of the 

miR-17-92 cluster regulate BIM expression in endothelial cells, we overexpressed the individual 

members by precursor transfection and analysed protein cell lysates for BIM expression by 

Western blotting. Only miR-20a significantly downregulated BIM protein level, whereas miR-17,  

-18a and -19a only marginally decreased its expression (Fig. IV.14). Since the members of the 

miR-17-92 cluster only slightly affected BIM expression and did not promote cell survival as 

shown in Fig. IV.3, BIM seems not to be a functionally relevant target of the miR-17-92 cluster in 

endothelial cells. 
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Figure IV.14: Effect of members of the miR-17-92 cluster on BIM expression. (A) Expression of the pro-
apoptotic protein BIM in HUVECs 48 h after transfection with precursors for the indicated miRs. A re-
presentative Western blot is shown. (B) Summarized quantification of BIM protein expression of n = 3 
experiments. Tubulin was used to normalize BIM expression.  

b) Identification of targets of miR-17 in endothelial cells 

Among the members of the miR-17-92 cluster investigated in this study, miR-17 was most effec-

tive in regulating angiogenesis in vitro and in vivo. Analysis of the miR-17 expression pattern in 

different cell types of the cardiovascular system revealed ubiquitous expression of miR-17 in 

mouse cardiomyocytes, the non-cardiomyocyte fraction of murine hearts and murine lung endo-

thelial cells (Fig. IV.15A) as well as the endothelial cell line EA.hy.926, human microvascular 

endothelial cells (HMVEC) and HUVECs of different passages (Fig. IV.15B).  

 

Figure IV.15: MiR-17 is expressed in endothelial cells of different origin. (A) MiR-17 expression in murine 
cardiomyocytes, the non-cardiomyocyte fraction of the heart and lung endothelial cells (ECs). RNA of 
freshly isolated cardiomyocytes (n = 4) and the non-cardiomyocyte fraction of mouse hearts was pro-
vided by Dr. A. Bonauer. The non-cardiomyocyte fraction (n = 3) comprised the cells that were adhe-
rent after 1.5 h of pre-plating (of the cardiomyocyte supernatant) and predominantly consisted of  
fibroblasts but also cardiac endothelial cells. RNA of cultured murine lung ECs (n = 5) was provided 
by Dr. C. Urbich. MiR-17 expression was measured using the respective MicroRNA Assay kit (Applied 
Biosystems). SnoRNA202 was used as endogenous control. (B) MiR-17 expression in the human en-
dothelial Ea.hy.926 cell line, human microvascular endothelial cells (HMVEC) and human umbilical 
vein endothelial cells (HUVEC) of different passages (P1-P3).The different endothelial cell types were 
cultured as described in the method section. Total RNA was isolated using TRI Reagent and miR ex-
pression was detected by a real-time PCR method using a universal TaqMan probe in combination 
with a miR specific forward primer as previously described by Wu et al. [1]. RNU48 was used as en-
dogenous control. n = 1 for EA.hy.926, HMVEC, HUVEC P1, HUVEC P2; n = 3 for HUVEC P3. 

Moreover, we were interested in identifying targets of miR-17 relevant for the profound anti-

angiogenic activity observed in endothelial cells in vitro. For this purpose, we overexpressed  



Results 

-88- 

miR-17 in HUVECs by precursor transfection for 24 h, isolated total RNA from these and the con-

trol precursor transfected cells. RNA of three independent experiments was analyzed using oli-

gonucleotide based microarrays. With this method, we were able to analyse the relative expres-

sion levels of approximately 47,000 transcripts corresponding to more than 38,500 human genes.  

To find primarily direct targets of miR-17, we matched the downregulated genes with miR-17 

targets that were predicted by the targetscan algorithm. Among these, several validated miR-17 

targets appeared like the transforming growth factor receptor beta II (TGFBR2), the cell cycle 

regulator cyclin-dependent kinase inhibitor 1A (CDKN1A, p21), polycystic kidney disease 2 

(PKD2), the E2F transcription factor 1 (E2F1), the nuclear receptor coactivator 3 (NCOA3), Cyclin 

D1 (CCND1) and the hypoxia inducible factor 1 (HIF1A). Predicted but not yet validated miR-17 

targets downregulated in our microarray and potentially involved in angiogenesis were the sphin-

gosine-1-phosphate receptor 1 (S1PR1, EDG1), platelet derived growth factor D (PDGFD), tu-

mour necrosis factor alpha-induced protein 1 (TNFAIP1), and the protein Janus kinase 1 (JAK1), 

of which the latter was more than two fold downregulated (Table IV.1). 

Symbol Product Genbank Affymetrix 
fold change 

(pre-17/pre-Co) 
p-value 

FYCO1 FYVE and coiled-coil domain containing 1 NM_024513 218204_s_at 0.284 0.0426 

JAK1 Janus kinase 1 AL039831 201648_at 0.382 0.0040 

PLEKHA3 pleckstrin homology domain containing,  BE550332 227659_at 0.458 0.0002 

  family A (phosphoinositide binding specific) member 3 AF286162 223370_at 
  

    BE550332 227658_s_at 
  

TGFBR2 transforming growth factor, beta receptor II (70/80kDa) D50683 208944_at 0.477 0.0460 

    NM_003242 207334_s_at 
  

EIF2C1 eukaryotic translation initiation factor 2C, 1 AW071829 222576_s_at 0.493 0.0010 

    NM_012199 218287_s_at 
  

TNFAIP1 tumour necrosis factor, alpha-induced protein 1 (endothelial) BC001643 201208_s_at 0.509 0.0013 

    NM_021137 201207_at 
  

PDGFD platelet derived growth factor D NM_025208 219304_s_at 0.533 0.0384 

PKD2 polycystic kidney disease 2 (autosomal dominant) NM_000297 203688_at 0.555 0.0434 

S1PR1 sphingosine-1-phosphate receptor 1 NM_001400 204642_at 0.556 0.0513 

CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) NM_000389 202284_s_at 0.565 0.0238 

ZFYVE26 zinc finger, FYVE domain containing 26 AB002319 37943_at 0.631 0.0196 

    AB002319 213073_at 
  

RBL2 retinoblastoma-like 2 (p130) NM_005611 212332_at 0.638 0.0182 

      212331_at 
  

E2F1 E2F transcription factor 1 NM_005225 204947_at 0.659 0.0294 

    M96577 2028_s_at 
  

DYNC1LI2 dynein, cytoplasmic 1, light intermediate chain 2 NM_006141 203590_at 0.674 0.0718 

FAM129A family with sequence similarity 129, member A AF288391 217967_s_at 0.688 0.0003 

    NM_022083 217966_s_at 
  

NCOA3 nuclear receptor coactivator 3 AL034418 233555_s_at 0.690 0.0002 

    AF012108 209060_x_at 
  

    NM_006534 207700_s_at 
  

    AF012108 209061_at 
  

    U80737 211352_s_at 
  

CYBRD1 cytochrome b reductase 1 AL136693 222453_at 0.692 0.1230 

    NM_024843 217889_s_at 
  

CCND1 cyclin D1 M73554 208712_at 0.696 0.0094 

    BC000076 208711_s_at 
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Symbol Product Genbank Affymetrix 
fold change 

(pre-17/pre-Co) 
p-value 

FNDC3A fibronectin type III domain containing 3A NM_014923 202304_at 0.708 0.0830 

HIF1A hypoxia inducible factor 1, alpha subunit NM_001530 200989_at 0.756 0.0188 

VASP vasodilator-stimulated phosphoprotein NM_003370 202205_at 0.761 0.1107 

ZNF264 zinc finger protein 264 NM_003417 205917_at 0.808 0.0031 

BCL2L11 BCL2-like 11 (apoptosis facilitator) AA629050 222343_at 0.812 0.4465 

RUFY2 RUN and FYVE domain containing 2 NM_017987 219957_at 0.822 0.0290 

    AB040970 233192_s_at 
  

    AB040970 233191_at 
  

EPHA4 EPH receptor A4 NM_004438 206114_at 0.828 0.0210 

EIF5A2 eukaryotic translation initiation factor 5A2 NM_020390 220198_s_at 0.938 0.5513 

    AF262027 223598_at 
  

FN1 fibronectin 1 BC005858 211719_x_at 0.961 0.1770 

    X02761 212464_s_at 
  

    AJ276395 214702_at 
  

    AK026737 216442_x_at 
  

    AF130095 210495_x_at 
  

    AJ276395 214701_s_at 
  

BMPR2 
bone morphogenetic protein receptor, type II  

(serine/threonine kinase) 
BF247383 238516_at 1.012 0.5036 

ITGB8 integrin, beta 8 BC002630 211488_s_at 1.020 0.7805 

    BF513121 226189_at 
  

RUNX1 runt-related transcription factor 1 NM_001754 208129_x_at 1.020 0.9333 

    D43968 209360_s_at 
  

    D43967 210365_at 
  

PTEN phosphatase and tensin homolog U96180 204053_x_at 1.082 0.5734 

    NM_000314 204054_at 
  

MAPK9 mitogen-activated protein kinase 9 AI808345 225781_at 1.090 0.4463 

    U35002 210570_x_at 
  

    W37431 203218_at 
  

KAT2B K (lysine) acetyltransferase 2B, PCAF AV727449 203845_at 1.116 0.8439 

STAT3 signal transducer and activator of transcription 3 BC000627 208992_s_at 1.209 0.0082 

    AA634272 208991_at 
  

MAPK14 mitogen-activated protein kinase 14 NM_001315 202530_at 1.474 0.0007 

    L35253 211561_x_at 
  

    AF100544 210449_x_at 
  

Table IV.1: Affymetrix microarray gene expression analysis after miR-17 overexpression – effect on se-
lected predicted targets. HUVECs were transfected with 10 nM Pre-17 or a control precursor (Pre-
Co) and after 24 h total RNA was isolated. Gene expression was analysed with Affymetrix 3' Gene 
Expression Analysis Arrays. Predicted targets that have been validated in previous publications are 
shaded in grey. In case of 2 or more probes for one gene the mean fold change was calculated. n = 3.  

c) MiR-17 does not affect matrix metalloproteinase activity in endothelial cells 

Angiogenesis is an invasive process involving proteolysis of the extracellular matrix. The enzyme 

family of matrix metalloproteinases (MMPs) comprises extracellular endopeptidases that degrade 

specific ECM components and participate in the angiogenic response. MMP-1, MMP-2, MMP-9, 

and the membrane inserted MT-1-MMP are reported to be expressed in endothelial cells of which 

MMP-2 and MT-1-MMP are primarily investigated for their involvement in angiogenesis [197]. 

Consistently, all these MMPs were found to be expressed on the mRNA level in our microarray. 

Two members of the MMP family are predicted to be miR-17 targets by the Targetscan algorithm, 

namely the membrane inserted MMP24 (MT5-MMP) and MMP2.  
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Consistent with the literature stating that MMP24 is brain specific [198], MMP24 mRNA was not 

expressed in HUVECs according to the microarray. In contrast, MMP2 mRNA was expressed in 

HUVECs and slightly but nonsignificantly downregulated after miR-17 overexpression 

(Fig. IV.16). 

 

To investigate whether microRNA-17 affects MMP expression, we decided to perform gelatin 

zymography after overexpression and Antagomir-mediated inhibition of miR-17 in HUVECs to 

test for MMP enzyme activity.  

 
Figure IV.17: MiR-17 does not affect proteolytic activity of MMP2. HUVECs were transfected with 10 nM control 

and miR-17 precursor molecules (A) or treated with 2.5 µM control and miR-17 Antagomir (B). Medi-
um was changed to serum-free medium after 48 h for 24 h. 10x concentrates of cell supernatants 
were generated by centrifugation using centrifugal filter units and equal volumes were loaded onto the 
gel. Cells were lysed in JNK buffer and equal amounts of protein (50 µg) were analysed on the gel. 
CL: cell lysate, SN: supernatant. Representative zymographies and the quantification of MMP2 activity 
of three independent experiments are shown.  

Figure IV.16: Effect of miR-17 on transcript levels of endothe-
lial matrix metalloproteinases. HUVECs were 
transfected with 10 nM Pre-17 or Pre-Co and after 
24 h total RNA was isolated. Gene expression was 
analyzed with Affymetrix 3' Gene Expression Analy-
sis Arrays. In case of 2 or more probes for one gene 
the mean fold change was calculated. n = 3. 
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Since MMP2 is secreted by endothelial cells, we analysed 10x concentrates of the cell superna-

tant as well as cell lysates. Three bands appeared around the 63 kD marker band that probably 

result from a latent (pro-form, ~ 68 kD), an intermediate (~ 64 kD) and an active (~ 62 kD) form of 

MMP2 (Fig. IV.17). Nevertheless, we could not detect any major differences in MMP2 activity 

using gelatin, neither upon miR-17 overexpression nor after miR-17 inhibition. 

d) MiR-17-mediated repression of p21 expression influences endothelial cell function in 

angiogenesis in vitro 

As mentioned before, endothelial cell proliferation plays an important role in angiogenesis. 

Hence, we addressed the function of the described miR-17 target and cell cycle regulator p21 in 

endothelial cells (Fig. IV.18).  

 

Figure IV.18: MiR-17 regulates the cell cycle regulator p21 and proliferation of endothelial cells. (A) MiR-17 
decreases p21 mRNA expression. MiR-17 was overexpressed in HUVECs by transfection of 10 nM 
miR-17 precursor molecules (Pre-17). RNA was isolated with TRI Reagent 24 h and 48 h after trans-
fection, DNase digested and reverse transcribed. cDNA was analysed for p21 mRNA expression  
using real-time PCR. The large ribosomal protein P0 (RPLP0) was used as endogenous control. n = 3 
(B) MiR-17 downregulates p21 protein. Pre-17 and Pre-20a as well as control precursor (10 nM each) 
transfected HUVECs were lysed in RIPA buffer supplemented with protease inhibitors and protein ly-
sates were used for p21 Western blot analysis. A representative Western blot out of 5 independent 
experiments is shown. Tubulin was used as endogenous control. (C) MiR-17 inhibition rescues the 
impaired angiogenic sprouting of p21 depleted HUVECs. HUVECs were transfected with p21 siRNA 
(10 nM), miR-17 inhibitor (50 nM), and the respective controls as indicated. Spheroids were generated 
and sprouting was quantified. n = 3. *P < 0.05. (D) Confirmation of p21 mRNA knockdown in siRNA 
transfected HUVEC. 24 h after transfection RNA was isolated, DNase digested, reverse transcribed 
and assayed for p21 mRNA expression via real-time PCR. p21 mRNA levels were normalized to 
RPLP0. n = 1. 
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To confirm the inhibitory effect of miR-17 on p21 expression, real time PCR was used to deter-

mine p21 mRNA levels 24 h and 48 h after precursor transfection. Indeed, p21 mRNA was almost 

twofold decreased at the first time point measured (Fig. IV.18A). Furthermore, a reduction of p21 

protein could be observed in miR-17 overexpressing HUVECs (Fig. IV.18B). To ascertain that 

p21 represents a miR-17 target in angiogenesis in vitro, we co-transfected HUVECs with an in-

hibitor against miR-17 and p21 siRNA as well as the corresponding oligonucleotide controls and 

used the cells in the 3D spheroid sprouting assay. As observed previously, blocking miR-17 in-

creased the angiogenic response of ECs, whereas a modest knockdown of p21 slightly de-

creased sprouting of spheroids, an effect that could be partially rescued by concomitant miR-17 

inhibition (Fig. IV.18C/D). In context with the altered cell cycle profile observed after miR-17 over-

expression in HUVECs, these results suggest that miR-17 impairs in vitro angiogenesis at least to 

some extent by affecting p21-mediated regulation of EC proliferation.  

e) MiR-17 does not affect chemotaxis of endothelial cells in response to sphingosine-1-

phosphate 

The sphingosine-1-phosphate receptor 1 (S1PR1) is a member of the endothelial differentiation 

gene (Edg) family of G protein-coupled receptors and was originally found to be highly induced in 

endothelial cells undergoing differentiation [199]. Furthermore, Edg-1 knockout mice die before 

birth due to severe vascular defects [200]. In general, Edg receptors initiate diverse cellular 

events upon sphingolipid metabolite stimulation like migration, morphogenesis, proliferation, and 

survival [201]. To check if the miR-17-mediated downregulation of Edg-1 observed in the microar-

ray affects the response of HUVECs towards its ligand sphingosine-1-phosphate (S1P), we ana-

lysed the S1P stimulated migration of precursor transfected ECs in a Boyden chamber assay 

(Fig. IV.19).  

 

Figure IV.19: Effect on sphingosin-1-phosphate (S1P)-induced endothelial cell migration. (A) Dose dependent 
effect of S1P on endothelial cell migration. Methanol (MeOH) served as solvent control. The graph 
shows for each condition the mean value of 5 visual fields. n = 1. (B) Effect of overexpression of miR-
17 and miR-19a on S1P (1 µM) induced migration in a collagen I coated boyden chamber. Experi-
ments were done 48 h after transfection and cells were allowed to migrate for 4 h. n = 5. 
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In a dose-response experiment with 10 µM, 1 µM and 0.1 µM S1P, we observed a dose de-

pendent regulation of EC migration towards the sphingolipid stimulus with a maximal effect at a 

concentration of 1 µM S1P (Fig. IV.19A). Nevertheless, overexpression of miR-17 and miR-19a, 

which also was predicted to target Edg-1, did not alter the chemotaxis and migratory capacity of 

ECs towards S1P (Fig. IV.19B). These results implicate that the miR-17-mediated decrease of 

Edg-1 may not be sufficient to disturb S1P signalling in endothelial cells. 

f) Janus kinase 1 (JAK1) is a novel direct target of miR-17 in endothelial cells 

The Janus kinase family of intracellular, non-receptor associated tyrosine kinases transduce sig-

nals from a plethora of cytokines to the nucleus mainly via phosphorylation and activation of the 

signal transducers and activators of transcription (STATs). In general, the JAK/STAT pathway is 

composed of the four Janus kinases JAK1, JAK2, JAK3 and TYK2 and the seven STAT transcrip-

tion factors STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6. According to the 

microarray, the transcripts of JAK1, JAK2 and TYK2 as well as STAT1, STAT3, STAT5b and 

STAT6 were expressed in HUVECs. JAK1 and TYK2 mRNA were both significantly reduced  

upon miR-17 overexpression in the microarray, but compared to the profound effect on the JAK1 

transcript, expression of TYK2 was only marginally affected (Fig. IV.20). 

 

JAK1 knockout mice suffered from severely impaired lymphocytic development, died shortly after 

birth and analysis of different cell types isolated from JAK1-/- mice revealed impaired biological 

responses of three major cytokine receptor subfamilies, namely the class II cytokine receptors, c 

subunit utilizing cytokine receptors and gp130 associated receptors [202]. So far, little is known 

about the specific function of JAK1 in the angiogenic response of endothelial cells. 

Overexpression of the individual members of the miR-17-92 cluster and the non-related miR-126 

resulted in specific downregulation of JAK1 protein in endothelial cells overexpressing miR-17 

and the related cluster member miR-20a (Fig. IV.21A/B). Moreover, inhibition of miR-17 in-

creased JAK1 protein level (Fig. IV.21C). In order to verify a direct regulatory effect of miR-17 on 

JAK1 expression, the miR-17 binding site in the JAK1 3´ UTR was cloned in four replicates in the 

Figure IV.20: Effect of miR-17 on transcript level of compo-
nents of the JAK/STAT pathway. HUVECs were 
transfected with 10 nM Pre-17 or a control pre-miR 
and after 24 h total RNA was isolated. Gene ex-
pression was analyzed with Affymetrix 3' Gene 
Expression Analysis Arrays. In case of 2 or more 
probes for one gene the mean fold change was 
calculated. n = 3. *P < 0.05, **P < 0.01. 
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3´ UTR of a luciferase reporter gene and luciferase activity was measured after miR precursor 

transfection. A construct in which four nucleotides of the miR-17 binding site were mutated was 

used as a control. Overexpression of miR-17 decreased luciferase activity of the construct with 

the wild type binding sequence but not of the plasmid with the mutated binding sites indicating 

that the JAK1 3´ UTR indeed contains a functional miR-17 binding site (Fig. IV.21D).  

 

Figure IV.21: JAK1 is a novel target of miR-17 in endothelial cells. (A/B) MiR-17 and miR-20a downregulate 
JAK1 protein expression in endothelial cells. Precursor transfected HUVECs were lysed with RIPA 
buffer supplemented with protease inhibitors 48 h after transfection and proteins were probed for 
JAK1 using Western blot analysis. Tubulin served as endogenous control. A representative Western 
blot is shown in (A) and the quantification of n = 4 experiments in (B). (C) HUVECs were transfected 
with a combination of control siRNA (40 nM) and control miR inhibitor (50 nM) or control siRNA 
(40 nM) and miR-17 inhibitor (50 nM). 72 h after transfection cells were lysed in RIPA buffer and the 
extracted proteins were probed for Jak1 by Western blotting. Tubulin was used as loading control. The 
blots were densiometrically analysed using Scion Image. JAK1 protein levels were normalized to Tu-
bulin expression. The graph shows the results of 3 independent experiments. A representative blot is 
shown. (D) JAK1 is a direct target of miR-17. Four copies of the miR-17 binding sequence found in the 
3´ UTR of JAK1 were cloned downstream of a Firefly luciferase reporter gene and co-transfected with 
control or miR-17 precursor molecules into HEK cells. 48 h after transfection Firefly luciferase nor-
malized to Renilla luciferase activity was measured in HEK cell homogenates. A mutated luciferase 
construct (mutations were applied to nucleotides written in blue) was used as negative control. 
wt: wildtype, mut: mutated. n = 4. 

To address the function of JAK1 in endothelial cells, we used a specific siRNA to silence its ex-

pression and analysed the cells regarding their sprouting capacity in the 3D spheroid assay as 
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well as the downstream signalling in response to different cytokines and growth factors based on 

STAT3 phosphorylation. Indeed, silencing of JAK1 impaired angiogenic sprouting of spheroids 

(Fig. IV.22A) and suppressed phosphorylation of STAT3 in untreated as well as cytokine stimu-

lated HUVECs (Fig. IV.22B).  

 

Figure IV.22: JAK1 depletion impairs spheroid sprouting and phosphorylation of STAT3 in response to 
different cytokines. (A) Effect of JAK1 silencing using 40 nM siRNA on spheroid sprouting. A siRNA 
directed against firefly luciferase or cells treated with the transfection reagent was used as control. 
n = 5-6. Downregulation of JAK1 protein 48 h after siRNA transfection is shown in the Western blot. 
Tubulin served as loading control. n = 1. (B) HUVECs were transfected with 40 nM JAK1 siRNA or 
control siRNA. After incubation of 9 h in serum-free medium supplemented with 0.05% BSA, cells 
were stimulated with IL-6 (100 ng/ml), FGF-2 (30 ng/ml), IFN-α (100 ng/ml), or GM-CSF (100 ng/ml) 
for 15 min. STAT3 phosphorylation (pSTAT3) was detected by Western blot analysis. Tubulin was 
used as loading control. Representative blots are shown. 

To validate that JAK1 actually represents a downstream target of miR-17 in these cellular pro-

cesses we transfected HUVECs with combinations of a miR-17 inhibitor and JAK1 siRNA or the 

respective control oligonucleotides. In fact, silencing of JAK1 prevented the pro-angiogenic effect 

(Fig. IV.23A) mediated by the miR-17 inhibitor and suppressed enhanced STAT3 phosphorylation 

(Fig. IV.23B/C). In summary, we identified JAK1 as a novel target of miR-17 in endothelial cells 

which is involved in angiogenesis in vitro as well as signal transduction in response to some cyto-

kines and growth factors. 
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Figure IV.23: JAK1 siRNA reduces the pro-angiogenic effect of miR-17 inhibition. HUVECs were transfected 
with JAK1 siRNA (40 nM), miR-17 inhibitor (50 nM), and the respective controls as indicated. 
(A) Spheroids were generated and sprouting was quantified; n = 3. *P < 0.05. (B/C) 40 h or 64 h after 
transfection cells were kept in serum-free medium for further 8 h. Thereafter, cells were left untreated 
or stimulated with 100 ng/ml IFN-α for 15 min. Cell lysates were probed for STAT3 phosphorylation by 
Western blot analysis. Tubulin was used as loading control. The blots were densitometrically analysed 
using Scion Image. Phospho-STAT3 (pSTAT3) levels were normalized to tubulin expression. The re-
presentative blot of three independent experiments in (A) shows the phosphorylation of STAT3 in un-
treated cells 48 h after transfection. The graph in (C) summarizes the results of three independent ex-
periments with IFN-α stimulated cells 72 h after transfection. 

B. Applicability of microRNA inhibition as therapeutic approach for  

pulmonary arterial hypertension 

Pulmonary arterial hypertension (PAH) is a disorder of the lung vasculature associated with pul-

monary vasoconstriction and extensive vascular remodelling leading to hypertrophy of the right 

ventricle and ultimately right heart failure. In 2010, Caruso et al. demonstrated that among others 

members of the miR-17-92 cluster and miR-21 are dysregulated in two classical rat models of 

pulmonary arterial hypertension in a time-dependent manner [203]. Since miR-17 and miR-92a 

exerted the most impressive effects on the vascular system in this and a previously published 

study [119], and both were shown to be upregulated in the lungs of diseased animals, we evalu-

ated the impact of systemic miR-17 and miR-92a inhibition by the corresponding Antagomirs in 
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experimental pulmonary arterial hypertension. The project was done in collaboration with the 

group of Dr. Ralph Schermuly from the University of Gießen Lung Centre who provided the ex-

pertise in two animal models of pulmonary arterial hypertension, namely hypoxia-induced PAH in 

mice and the monocrotaline injury model in rats. Since right-sided heart failure is part of the di-

sease pattern in pulmonary arterial hypertension and Thum et al. provided evidence that specific 

inhibition by Antagomir-21 improved cardiac function in animal models of heart failure [204], we 

additionally tested the effect of Antagomir-21 on functional parameters in experimental PAH. 

1. Effect of miR-17, -21 and -92a inhibition on chronic hypoxia-induced pulmonary 

arterial hypertension in mice 

To determine the efficiency of the individual Antagomirs in murine lungs, mice received one i.v. 

injection of 8 mg/kg body weight Antagomir-17, -21 or -92a and lungs were harvested 3 days 

after the injection to determine the microRNA expression level. Antagomir-17 reduced the ex-

pression of miR-17 by 41.6 ± 6.7%, Antagomir-21 the level of miR-21 by 50.1 ± 3.4%, and An-

tagomir-92a abolished miR-92a expression almost completely (98.6 ± 0.1%) in lung tissue of 

mice treated with the respective Antagomirs compared to control Antagomir treated mice 

(Fig. IV.24). Neither Antagomir affected the expression of the other two microRNAs. From this 

experiment we concluded that injecting the Antagomirs every third day is sufficient to achieve an 

adequate knockdown in the lung. 

 

Mice for the chronic hypoxia-induced PAH model were exposed to hypoxia for 14 days before 

they were i.v. injected with a total of 5 doses (8 mg/kg bw) of Antagomir-17, -21 or -92a at inter-

Figure IV.24: Effect of one injection of Antagomir-17, -21 and 
-92a on miR expression in murine lung. Mice 
kept under normoxia received one injection 
(8 mg/kg bw) of Antagomir-17 (A), Antagomir-21 
(B) or Antagomir-92a (C) and lungs were harvest-
ed 3 days after the treatment. RNA was isolated 
with TRI Reagent and miR expression was meas-
ured via real-time PCR using Taqman microRNA 
assays. MiR expression was normalized to sno202 
level. n = 3 for Antagomir-17, n = 4 for Antagomir-
21 and -92a. ##P < 0.01, ###P < 0.001 vs A-Co. 
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vals of three days. Control animals were treated with PBS or a control Antagomir. After 27 days 

of hypoxia, hemodynamic and functional parameters were determined, and organs were har-

vested to confirm the miR knockdown. A scheme of the experimental setup is shown in 

Fig. IV.25A.  

 

Figure IV.25: Effects of Antagomir-17, -21 and -92a on hemodynamics and heart function in chronic hypoxic 
mice. (A) Schematic drawing of experimental design. Mice were exposed to hypoxia for 2 weeks be-
fore they were treated with one injection (8 mg/kg bw) of Antagomir-17, Antagomir-21 or Antagomir-
92a every third day until day 26. PBS and control Antagomir were used as controls. Hemodynamics 
and cardiac function were analysed at day 27. Organs were harvested to analyse miR knockdown and 
vascular histomorphometry in the lungs. (B) Knockdown efficiency of A-17, A-21 and A-92a in the liver 
of Antagomir-treated animals exposed to chronic hypoxia. RNA was isolated from murine liver tissue 
with the Qiagen miRNeasy Mini kit and miR expression was analysed using the respective TaqMan 
MicroRNA assays. Work was done by Ariane Fischer. n = 4-5. (C) Right ventricular systolic pressure 
(RVSP). n = 8-9. (D) Pulmonary artery acceleration time (PAAT). n = 4-5. (E) Right-heart hypertrophy 
estimated by calculating the weight ratio of right ventricle to left ventricle plus septum (RV/LV+S). 
n = 8-10 (F) Cardiac output (CO) measured by high-resolution echocardiography. n = 4-5. Results ex-
pressed as mean ± SEM. Experiments were done by our collaboration partners at the University of 
Gießen Lung Centre. n.d.: not determined. §§P < 0.01, §§§P < 0.001 vs HC, *P < 0.05 vs PBS, 
#P< 0.05, ## P< 0.01, ###P < 0.001 vs A-Co. 
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Analysis of miR-17, -21 and -92a levels by real-time PCR showed an efficient knockdown in the 

animals treated with the respective Antagomir (Fig. IV.25B). Analysis of hemodynamics revealed 

a dramatic rise in right ventricular systolic pressure (RVSP) in chronic hypoxic mice indicating 

that they suffered from PAH (Fig. IV.25C). Only Antagomir-17 and Antagomir-21 medicated mice 

showed a significant decrease in RVSP compared to the PBS controls (Fig. IV.25C) without any 

change in systemic arterial pressure (SAP, data not shown). Antagomir-17 was the sole Antago-

mir analysed that significantly improved pulmonary artery acceleration time (PAAT) as deter-

mined by high-resolution echocardiography (Fig. IV.25D). Consistently, the hypoxia-induced in-

crease in right-sided heart hypertrophy as a consequence of impaired pulmonary hemodynamics 

in PAH was significantly lower in Antagomir-17 compared to control Antagomir treated mice re-

sulting in a normalization of cardiac output (Fig. IV.25E/F). Antagomir-92a did not reveal a signifi-

cant effect on any of the measured parameters. Taken together, Antagomir-17 displayed the 

most beneficial effect of the three tested Antagomirs on hemodynamic parameters as well as 

cardiopulmonary function.  

2. Antagomir-17, -21 and -92a influence muscularization of the lung vasculature in 

chronic hypoxic mice 

One hallmark of the molecular pathobiology of pulmonary arterial hypertension is an increase in 

muscularization of pulmonary arteries [27]. To see whether inhibition of miR-17, -21 and -92a by 

the corresponding Antagomirs affects the morphology of the lung vasculature, sections of murine 

lungs were stained for smooth muscle actin (SMA) and von Willebrand factor (vWF) to visualize 

the intima and media of pulmonary vessels (Fig. IV.26). In both control groups (PBS and An-

tagomir-Co treated) chronic hypoxia caused a dramatic rise in the fraction of non-muscularized 

intra-acinar arteries accompanied by a strong decline of the number of partially and fully muscu-

larized vessels. All tested Antagomirs partially reversed the hypoxia-induced structural changes 

of the pulmonary vasculature. In detail, Antagomir-17 and -21 significantly decreased the number 

of fully muscularized and increased the fraction of non-muscularized vessels, whereas Antago-

mir-92a only reduced the percentage of fully muscularized arteries in a statistically significant 

manner. In summary, all three Antagomirs influenced vascular muscularization, although An-

tagomir-17, -21 and -92a significantly differed in their effects on hemodynamic and functional 

parameters as demonstrated before. 
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Figure IV.26: Antagomir-17, -21 and -92a affect muscularization of pulmonary arteries. Lung sections were 

immunostained for von Willebrand factor (vWF in brown indicate ECs) and -smooth muscle actin 
(SMA in purple; SMCs) for morphometric analysis of pulmonary vessels. The graph shows the propor-
tion of non-, partially or fully muscularized pulmonary arteries (sized 20-70 µm). Each bar represents 
mean ± SEM. n = 5. #P < 0.05 versus A-Co. Representative images of immunostained pulmonary ar-
teries from normoxia (NOX) and hypoxic mice treated with PBS, Antagomir control (A-Co), Antagomir-
17 (A-17), -21 (A-21) and -92a (A-92a) are shown. Scale bar: 20 µm. Analysis of pulmonary vascula-
ture was performed by our collaboration partners at the University of Gießen Lung Centre.  

3. Antagomir-17 benefits cardiopulmonary function in monocrotaline-induced PAH in 

rats 

Since Antagomir-17 had the most favorable effect on hypoxia-induced PAH in mice, we ad-

dressed its therapeutic benefit in a second animal model, namely the monocrotaline-induced PAH 

in rats. To initiate the disease, rats were subcutaneously injected with 60 mg/kg bw monocro-

taline. Antagomir treatment was started at day 22 by i.v. injection of 5 mg/kg bw followed by a 

second Antagomir administration at day 29. Hemodynamics and functional parameters were 

measured at day 34/35. Animals were sacrificed afterwards to harvest the organs. A scheme of 

the experimental setup is shown in Fig. IV.27A.  

Although we had reduced the dose and frequency of Antagomir injections compared to the 

mouse model for financial reasons, we could detect an almost complete knockdown of miR-17 in 

lung tissue of Antagomir-17 treated rats indicating that the dosage was adequate (Fig. IV.27B). 

The animals of the two MCT injected control groups had a dramatically increased right ventricular 

systolic pressure (RVSP) compared to the healthy controls demonstrating the presence of pul-

monary arterial hypertension (Fig. IV.27C). In accordance with the results gained from the mouse 

model, Antagomir-17 significantly lowered RVSP (Fig. IV.27C) without impairing systemic arterial 

pressure (SAP, data not shown) in MCT treated rats. Consistently, the MCT-induced rise of the 

total pulmonary vascular resistance index (TPVRi) was almost abolished in Antagomir-17 injected 

rats compared to the diseased controls (data not shown). Likewise, animals that had received 

Antagomir-17 displayed a significantly improved pulmonary artery acceleration time (PAAT) as to 
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the MCT control groups (Fig. IV.27D). Although the estimation of right-heart hypertrophy by cal-

culating the ratio of the right ventricle to the left ventricle with septum did not indicate a statistical-

ly significant decline of hypertrophy in A-17 medicated rats (Fig. IV.27E), cardiac output was re-

covered to the level of the healthy controls (Fig. IV.27F). In summary, we confirmed the beneficial 

effect of Antagomir-17 observed in the chronic hypoxia mouse model on hemodynamics and 

cardiopulmonary function in the rat model of MCT-induced PH. 

 

Figure IV.27: Antagomir-17 ameliorates disease pattern in a rat model of MCT-induced PAH. (A) Scheme of 
experimental setup. Development of pulmonary arterial hypertension (PAH) was initiated by subcuta-
neous injection of 60 mg/kg monocrotaline (MCT). Subsequently, Rats received two injections 
(5mg/kg bw) of Antagomir-17, control Antagomir or PBS at day 22 and 29. Hemodynamics and heart 
function were measured by high-resolution echocardiography at day 34/35. Lungs and hearts were 
harvested for analysis of miR-17 knockdown, muscularization of pulmonary arteries and hypertrophy 
of the right ventricle. (B) Expression of miR-17 in the lungs of the MCT and Antagomir treated rats, 
n = 5-10, (C) Right ventricular systolic pressure (RVSP). n = 7-9. (D) Pulmonary artery acceleration 
time (PAAT). n = 8-9. (E) Right-heart hypertrophy expressed as the weight ratio of right ventricle to left 
ventricle plus septum (RV/LV+S). n = 8-9. (F) Cardiac output (CO). n = 7-9. Each bar represents 
mean ± SEM. Experiments were done by our collaboration partners at the University of Gießen Lung 
Centre. §§P < 0.01, §§§P < 0.001 vs HC, **P < 0.01, ***P < 0.001 vs PBS, ##P < 0.01, ###P < 0.001 
vs A-Co. 
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4. Antagomir-17 improves muscularization pattern of the lung vasculature in the MCT-

induced PAH rat model 

Again, lung sections were analysed by histology to investigate the effect of Antagomir-17 on pul-

monary vascular remodelling this time by quantifying both the degree of muscularization and the 

medial wall thickness of peripheral pulmonary arteries. The lungs of the diseased control animals 

exhibited a significant higher percentage of fully muscularized and a dramatically decreased 

amount of non-muscularized intra-acinar arteries compared to the healthy controls. Antagomir-17 

treatment resulted in a reduction of fully muscularized and a significant rise in partially muscula-

rized vessels but did not increase the number of non-muscularized arteries with respect to the 

MCT injected control groups (Fig. IV.28).   

 

Figure IV.28: Antagomir-17 affects muscularization of pulmonary arteries in MCT treated rats. Lung sections 

were stained for von Willebrand factor (vWF in brown; ECs) and -smooth muscle actin (SMA in pur-
ple; SMCs) and 80-100 intraacinar vessels were analysed in each animal. Proportion of fully (black 
bars), partially (grey bars), or non-muscularized (white bars) pulmonary arteries, as percentage of to-
tal pulmonary artery cross section (sized 20–50 μm). Representative pictures of the immunostaining. 
Bar graph: 20 µm. Histomorphometric analysis of pulmonary vasculature was done by our collabora-
tion partners at the University of Gießen Lung Centre. §§§P < 0.001 vs HC, *P < 0.05 vs PBS, 
#P < 0.05 vs A-Co. 

Consistently, medial wall thickness of small (<50 µm), medium (50-100 µm) and large (>100 µm) 

peripheral arteries was drastically elevated in sick control rats as to healthy controls. In A-17 in-

jected rats, the medial wall thickness of small and medium-sized vessels was significantly re-

duced compared to the MCT treated control groups (data not shown) suggesting that inhibition of 

miR-17 affects vascular smooth muscle cells within the lung.  

5. Identification of miR-17 targets involved in the beneficial effect of Antagomir-17 in 

vivo 

To gain first insights into the molecular mechanism by which A-17 excerts its beneficial effect on 

cardiopulmonary function in experimental PAH, we analysed the rat lungs for the mRNA levels of 
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various validated and predicted targets of miR-17 that have previously been associated with the 

pathogenesis of the disease (Fig. IV.29).  

 

Several reports demonstrate dysregulated TGF-/BMP signalling in patients suffering from PAH 

and in PAH animal models [33, 205]. Both, the bone morphogenetic protein receptor II (BMPR2) 

and the transforming growth factor receptor II (TGFBR2), transmembrane type II receptors for the 

TGF- superfamily of growth factors, were shown to be regulated by miR-17 in transformed cell 

lines [149, 151-153, 176]. Whereas TGFBR2 mRNA level in the lungs of the Antagomir-17  

treated rats was comparable to that of the PBS and A-Co treated controls (Fig. IV.29A), the ex-

pression of BMPR2 mRNA was marginally increased compared to control Antagomir injected 

animals (Fig. IV.29B). However, the observed differences were not statistically significant. 

Smad5, a downstream mediator of BMPR2 signalling, was also predicted to be a target of miR-17 

by the Targetscan prediction algorithm, but real-time PCR analysis of Smad5 mRNA expression 

did not reveal any profound differences between Antagomir-17 treated and control animals 

(Fig. IV.29C). The inhibitor of DNA binding 1 (ID1), which was shown to be a BMP/Smad target in 

ECs [206], was also slightly upregulated on mRNA level (Fig. IV.29D) but again the differences 

Figure IV.29: Effect of Antagomir-17 treatment on mRNA 
expression of predicted targets in lungs of 
MCT treated rats. RNA was isolated with TRI Re-
agent from a piece of lung tissue, DNase digested, 
reverse transcribed and analysed for TGFBR2 (A), 
BMPR2 (B), Smad5 (C), ID1 (D) and EFNB1 (E) 

transcript level via real-time PCR. Rat -actin 
served as endogenous control. n = 10 for healthy 
controls (HC) and Antagomir-17 (A-17), n = 5 for 
Antagomir-Co (A-Co), n = 9 for PBS. §§§P < 0.001 
vs HC. 
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revealed no statistical significance. The mRNA level of another predicted miR-17 target, 

Ephrin B1 (EFNB1), which was demonstrated to be enriched in freshly isolated lung ECs [207], 

was also insignificantly increased in the A-17 treated rats as compared to the control animals 

(Fig. IV.29E).  

Overall, we could not observe any statistically significant alterations of TGFBR2, BMPR2, Smad5, 

ID1 and EFNB1 on the mRNA level by Antagomir-17 treatment. Unfortunately, all efforts to detect 

BMPR2 protein by Western blotting failed. 

Finally, the transcript of the cyclin-dependent kinase inhibitor p21, a validated miR-17 target, was 

most profoundly increased in the lungs of the A-17 injected rats compared to the controls 

(Fig. IV.30A). The increase of p21 was confirmed on the protein level by Western blot analysis, 

which showed a strong increase of this miR-17 target in the lungs of A-17 treated rats 

(Fig. IV.30B). 

 

Figure IV.30: Antagomir-17 treatment increases p21 expression in lungs of MCT treated rats. (A) Effect on 
p21 mRNA. RNA was isolated with TRI Reagent from a piece of lung tissue, DNase digested, reverse 

transcribed and analysed for p21 transcript level. Rat -actin served as endogenous control. n = 10 
for healthy controls (HC) and Antagomir-17 (A-17), n = 5 for Antagomir-Co (A-Co), n = 9 for PBS. 
(B) Protein lysates from pieces of lung tissue were prepared in RIPA buffer supplemented with prote-
ase and phosphatase inhibitors. Equal amounts of protein (50 µg) were probed for p21 expression by 
Western blotting. Samples of n = 3 animals were analysed per group in the Western blot shown. 
Sample preparation and Western blot analysis were done by Natalja Reinfeld. 

6. MiR-17 regulates p21 expression and proliferation of pulmonary smooth muscle 

cells 

PAH is a multifactorial disease that affects various cell types including ECs and SMCs. Real-time 

PCR analysis of miR-17 level in cultured human and rat PASMC and HUVEC revealed higher 

expression of miR-17 in ECs compared to SMCs (Fig. IV.31).  

 

Figure IV.31: MiR-17 expression in smooth muscle cells and endo-
thelial cells. Human pulmonary artery smooth muscle 
cells (HPASMCs), rat pulmonary artery smooth muscle 
cells (PASMCs) and HUVECs were cultured as described 
in the methods section. RNA was isolated with TRI Rea-
gent and miR-17 expression was measured using the re-
spective TaqMan microRNA assay. RNU6 was used as 
endogenous control. n = 3 for rat PASMC, n = 6 for 

HPASMC and HUVEC. 
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In the first part, we demonstrated that inhibition of miR-17 improves the angiogenic capacity of 

ECs. However, the influence on SMCs has not been studied so far. The decreased musculariza-

tion of the pulmonary vasculature in the A-17 treated animals in the in vivo experiments and the 

upregulated p21 expression in the rat lungs suggested that miR-17 might influence the prolifera-

tion of PASMCs. Therefore, we used Antagomirs to inhibit miR-17 (Fig. IV.32A) and transfected 

precursor molecules to overexpress miR-17 (Fig. IV.32D) in HPASMCs in vitro and determined 

the impact on p21 expression and proliferation of these cells. Indeed, miR-17 inhibition resulted in 

an increase of p21 mRNA and protein expression (Fig. IV.32B/C). Vice versa, p21 mRNA was 

significantly lowered in cells transfected with 10 nM Pre-17 (Fig. IV.32E).  

 

Figure IV.32: MiR-17 regulates p21 expression in human pulmonary artery smooth muscle cells (HPASMCs). 
(A/B) HPASMCs were treated with 0.5 µM and 2.5 µM control or miR-17 Antagomir and RNA was 
isolated after 24 h and DNase digested. (A) MiR-17 level was quantified using the TaqMan microRNA 
assay and normalized to RNU48. n = 6 (B) p21 mRNA was quantified by real-time PCR using gene 
specific primers. The large ribosomal protein P0 (RPLP0) was used as endogenous control. n = 6 
(C) HPASMCs subjected to 2.5 µM Antagomir were lysed in RIPA buffer supplemented with protease 
inhibitors and equal amounts of protein lysates were probed for p21 by Western blotting. Tubulin was 
used as endogenous control. A representative Western blot and the summarized quantification of five 
independent experiments are shown. (D) HPASMCs were transfected with 1 nM and 10 nM control or 
miR-17 precursor molecule and RNA was isolated after 24 h. After DNase digestion of the RNA, miR-
17 expression and p21 mRNA level were measured as described above. n = 5 for 1 nM and n = 6 for 
10 nM precursor. *P < 0.05, ***P < 0.001 
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To address the impact of miR-17 on SMC proliferation, BrdU incorporation during DNA replication 

of precursor transfected SMCs was measured using a cell proliferation ELISA. In accordance with 

the lowered p21 abundance, the cells overexpressing miR-17 had an enhanced proliferation rate 

under standard culture conditions and upon stimulation with platelet derived growth factor-BB 

(PDGF-BB) as shown in Fig. IV.33.  

 

Figure IV.33: MiR-17 increases proliferation of HPASMCs. HPASMCs were transfected with 10 nM control (Pre-
Co) and miR-17 precursor molecule (Pre-17), and after 48 h medium was changed to growth medium 
(GM) and GM supplemented with 30 ng/ml PDGF-BB. Cells were incubated for 20 h with BrdU, and 
the degree of BrdU labeling was determined with a chemilumincent cell proliferation ELISA. Different 
conditions were done in triplicates in every experiment. Results are given in relative light units per se-
cond (rlu/s). n = 3 experiments. *P < 0.05, **P < 0.01.  

7. MiR-17 controls TGFBR2 expression in pulmonary smooth muscle cells 

Having demonstrated that miR-17 influences p21 expression and proliferation of HPASMCs in 

vitro, we additionally addressed the impact of miR-17 on the expression of other miR-17 targets 

in these cells. Previous studies showed that miR-17 represses the BMPR2 in HEK cells [149]. 

However, in our hands BMPR2 mRNA was not reduced upon miR-17 overexpression in 

HPASMCs (Fig. IV.34A) despite a tremendous increase of mature miR-17 (Fig. IV.32D). Unfortu-

nately, we did not succeed in detecting BMPR2 protein in HPASMCs via Western blotting.  

Likewise, Pre-17 transfected HUVECs did not display impaired BMPR2 mRNA or protein levels 

(Fig. IV.34B/C), although mature miR-17 expression was significantly raised (Fig. IV.34D).   
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Figure IV.34: MiR-17 does not regulate BMPR2 expression in HPASMCs and HUVECs. (A) Effect of miR-17 on 
BMPR2 mRNA in SMCs. HPASMCs were transfected with 1 nM and 10 nM control (Pre-Co) or miR-
17 precursor molecule (Pre-17) and RNA was isolated after 24 h. After DNase digestion of the RNA, 
BMPR2 mRNA level was measured by real-time PCR. n = 5 for 1 nM and n = 6 for 10 nM precursor. 
(B-D)Effect of miR-17 on BMPR2 expression in ECs. HUVECs were transfected with 10 nM control or 
miR-17 precursor. (B) RNA was isolated with TRI Reagent after 24 h and 48 h, DNase digested and 
analysed for BMPR2 mRNA. n = 3. (C) Proteins were extracted after 48 h using RIPA buffer supple-
mented with protease inhibitors and equal amounts of protein lysates were probed for BMPR2 by 
Western blotting. Tubulin was used as endogenous control. A representative Western blot and the 
summarized quantification of three independent experiments are shown. (D) Confirmation of miR-17 
overexpression 24 h after precursor transfection in RNA of HUVECs used to measure BMPR2 mRNA 
level in (B). n = 3. **P < 0.01 

Similarly Smad5 and EFNB1 mRNA levels were not decreased in miR-17 overexpressing 

HPASMCs (Fig. IV.35A/B).  

 

Figure IV.35: MiR-17 does not affect Smad5 and EFNB1 transcript levels in HPASMCs. HPASMCs were trans-
fected with 1 nM and 10 nM control (Pre-Co) or miR-17 precursor molecule (Pre-17) and RNA was 
isolated after 24 h. DNase digested RNA was reverse transcribed and BMPR2 mRNA level was 
measured by real-time PCR. Effect of miR-17 on Smad5 (A) and EFNB1 (B) mRNA expression. The 
large ribosomal protein P0 (RPLP0) was used as endogenous control. n = 5 for 1 nM and n = 6 for 
10 nM precursor. 

The most drastic effect of miR-17 in vitro was observed for TGF-ß receptor 2 (TGFBR2), which 

was profoundly downregulated in miR-17 overexpressing HPASMCs on mRNA (Fig. IV.36A) and 
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protein level (Fig. IV.36B). Consistently, inhibiting miR-17 expression induced TGFBR2 expres-

sion (Figure IV.36C/D). 

 

Figure IV.36: MiR-17 regulates TGFBR2 in HPASMCs. HPASMCs were transfected with 1 nM and 10 nM control 
(Pre-Co) or miR-17 precursor molecule (Pre-17) or treated with 0.5 µM and 2.5 µM control or miR-17 
Antagomir and RNA was isolated after 24 h. For analysis of TGFBR2 protein level, 10 nM of each 
precursor or 2.5 µM of each Antagomir were used. Proteins were isolated with RIPA buffer 48 h after 
transfection and analysed by Western blotting. (A) Effect of miR-17 overexpression on TGFBR2 
mRNA. n = 5-6. (B) Effect of miR-17 overexpression on TGFBR2 protein. n = 3. (C) Effect of miR-17 
inhibition on TGFBR2 mRNA. n = 6. (D) Effect of miR-17 inhibition on TGFBR2 protein. n = 3. 
*P < 0.05, ***P < 0.001. 

In recent years, various reports provided evidence for the involvement of TGF- superfamily (in-

cluding BMPs and TGFs) signalling in vascular smooth muscle cell differentiation into the con-

tractile phenotype. Last year, Inamoto et al. demonstrated that aortic SMCs from patients har-

bouring mutations in the TGFBR2 display impaired expression of a variety of marker proteins for 

the contractile phenotype [208]. Since TGFBR2 was profoundly affected by miR-17 overexpres-

sion or inhibition in HPASMCs in our hands, we analysed these cells for the transcript levels of 

the three contractile proteins -actin 2 (ACTA2), calponin 1 (CNN1) and smoothelin (SMTN). 

ACTA2 mRNA was higher expressed in HPASMCs than transcript levels of CNN1 and SMTN and 

remained constant in contrast to both others (Fig. IV.37A-C). However, the differences observed 

in CNN1 and SMTN levels were not statistically significant.  
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Figure IV.37: MiR-17 does not change transcript levels of contractile proteins in HPASMCs. RNA of 
HPASMCs transfected with 10 nM precursor molecules or treated with 2.5 µM Antagomirs was ana-

lysed for the expression of contractile proteins (A) -actin 2 (ACTA2), (B) calponin 1 (CNN1) and (C) 
smoothelin (SMTN) via real-time PCR. n = 3.  
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V. Discussion 

MicroRNAs are known to regulate gene expression on the posttranscriptional level by inducing 

mRNA degradation or blocking translation and therefore represent important regulators of cell 

behaviour in higher organisms. Due to their crucial role in controlling processes like cell migra-

tion, proliferation and survival, microRNAs participate in orchestrating the development of whole 

organisms and govern tissue homeostasis in the adult. A variety of microRNAs have been shown 

to be expressed in diverse cell types of the cardiovascular system regulating heart, vessel and 

blood development as well as the response to stress conditions. Not surprisingly, dysregulated 

microRNA expression has been described in various diseases and is associated with disease 

pathology.  

The microRNA-17-92 cluster has originally become famous for its involvement in tumourigenesis 

since the primary transcript is frequently amplified in different types of solid tumours and leukemia 

[135, 153]. In 2006, Dews et al. showed that overexpression of the miR-17-92 cluster in trans-

formed colonocytes promoted tumour growth and vascularization in a mouse tumour model [150]. 

Our lab previously demonstrated the expression of the individual members of the miR-17-92 clus-

ter in human umbilical vein endothelial cells (HUVECs) and provided evidence that the last mem-

ber of the cluster, miR-92a, has anti-angiogenic activity in ECs and represents a crucial regulator 

of recovery after ischemia [119]. At that time, little was known about the function of the remaining 

members of the miR-17-92 cluster in the endothelium. In this thesis, the miR-17-92 cluster was 

dissected to analyse the members individually regarding their biological role in endothelial cells in 

vitro and angiogenesis in vitro and in vivo.  

A. Functional role of members of the miR-17-92 cluster in endothelial cells 

and angiogenesis 

To study the biological role of the individual cluster members in vitro, we used commercially 

available miR precursor molecules to overexpress miR-17, -18a, -19a and -20a in endothelial 

cells in vitro and analysed the effects of the miRs in functional assays addressing the angiogenic 

and migratory capacity as well as proliferation and apoptosis of ECs. Vice versa, we blocked 

miR-17, -18a, -19a and -20a with specific inhibitors to investigate the impact of depletion of the 

individual miRs on angiogenesis in vitro. To address the relevance of the different members of 

the miR-17-92 cluster for blood vessel formation in vivo, we inhibited the different miRs by An-

tagomirs in the Matrigel plug mouse model of neovascularization. Since miR-17 was most effec-

tive in regulating angiogenesis, we identified miR-17 targets in ECs and evaluated the impact of 
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Antagomir-mediated inhibition of miR-17 on tumour angiogenesis in a mouse tumour model. We 

neglected to investigate miR-19b in this project since it just differs by one nucleotide from miR-

19a and is probably functionally redundant.  

1. Cell-intrinsic anti-angiogenic activity of individual members of the miR-17-92 cluster 

in vitro 

In contrast to the reported tumour angiogenesis promoting activity of the miR-17-92 cluster when 

overexpressed in tumour cells [150], we demonstrate in this study that overexpression of the 

individual miR-17-92 cluster members miR-17, -18a, -19a and -20a significantly blocks angioge-

nic sprouting of endothelial cells in the 3D spheroid model in vitro. However, the ability of the 

endothelial cells to form capillary networks on Matrigel is only marginally and nonsignificantly 

reduced after overexpression of each individual miR. The formation of capillary-like structures in 

the spheroid sprouting and the tube formation assay is a multistep process involving endothelial 

cell migration, proliferation and survival. Enhanced expression of miR-17, -18a, -19a and -20a 

results in a statistically nonsignificant reduction of EC migratory capacity on collagen I. With res-

pect to EC survival, overexpression of miR-17, -19a and -20a does not affect the percentage of 

apoptotic cells under standard cell culture conditions and after exposure of the cells to low oxida-

tive stress. However, miR-18a significantly enhances apoptotic cell death of ECs under standard 

cell culture conditions, and also under low oxidative stress, apoptosis of miR-18a overexpressing 

ECs is by trend still increased. Nevertheless, under conditions of high oxidative stress, overex-

pression of miR-18a has no effect on EC apoptosis and neither has overexpression of miR-19a 

and -20a. Only miR-17 overexpressing ECs tend to undergo less apoptotic cell death under this 

condition. EC proliferation is significantly enhanced after overexpression of miR-17 and miR-20a, 

whereas miR-18a and miR-19a do not affect the proliferation rate of ECs. Although overexpres-

sion of each individual miR significantly impaired EC spheroid sprouting, only inhibition of miR-17, 

-18a and -20a significantly enhanced capillary sprouting of spheroids in vitro. Blocking of miR-19a 

showed just a minor trend towards an increased angiogenic response. In vivo, combined down-

regulation of miR-17 and miR-20a with three injections of Antagomir-17 significantly promotes 

vascularization of Matrigel plugs, whereas individual inhibition of miR-18a, -19a and -20a in-

creases the number of perfused vessels within the Matrigel plug just by trend. 

Up to now, there is no in vitro assay to model the complex morphogenetic event of angiogenesis 

as it occurs in vivo. Most assays mimic certain steps of the angiogenic process. In contrast to the 

tube formation assay which illustrates events occurring at later stages of angiogenesis, namely 

the assembly of an interconnected capillary-like network, the spheroid model mimics vascular 
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sprouting, an initial event in the formation of a new vessel from a pre-existing one. The two as-

says also differ in the importance of the cellular events involved. The tube formation assay mainly 

focuses on adhesion, migration and integration of individual cells into a network. Endothelial cell 

proliferation seems to be of minor importance and invasion of cells into the substratum does not 

occur since the cells are seeded on top of a very thin layer of Matrigel restricting them to two-

dimensional movement. The spheroid assay depicts a 3D model of branching morphogenesis, 

which was postulated on the basis of airway branching in Drosophila, involving a tip cell which 

guides the nascent sprout at the front and stalk cells that serve sprout elongation. Whereas the 

task of the tip cell is to invade the surrounding by matrix degradation and migration, the stalk cells 

are specialized on proliferation [209]. In vivo, quiescent blood vessels are enclosed by a continu-

ous basement membrane which separates them from the surrounding interstitial matrix. During 

sprouting angiogenesis, the activated endothelial cell secretes proteolytic enzymes to degrade 

the vascular basement membrane matrix of the interstitium. The basement membrane next to 

nonangiogenic cells consists of collagen IV, laminin, nidogen/entactin and perlecan whereas the 

ECM of the vascular interstitium mainly contains collagen I and fibronectin [210].  

Since endothelial cell behavior is largely determined by the matrix environment, the different ma-

trices used in the two angiogenesis assays must also be taken into account. In the spheroid as-

say collagen I was employed, whereas in the tube network formation assay Matrigel was applied 

to coat the cell culture dish. Matrigel is a complex basement membrane extract derived from the 

mouse Engelbreth-Holm-Swarm (EHS) sarcoma mainly consisting of laminin (56%), collagen IV 

(31%) and nidogen/entactin (8%) [211]. Thus, the spheroid model mimics angiogenic sprouting 

within the interstitium and the tube network formation assay is based on the interactions of the 

endothelium with the underlying vascular basement membrane. Although we observed a pro-

found impairment of sprouting in the spheroid assay, migration on collagen I was only slightly 

reduced indicating that the endothelial cells did not fail to interact with the matrix.  

There are two reports contradicting our results at first sight since they demonstrate that miR-17 

together with let-7b [76] or miR-18a and -20a [77] rescues impaired angiogenesis caused by 

Dicer deficiency and therefore exerts pro-angiogenic activity. Deletion of Dicer leads to abolished 

maturation of most microRNAs leading probably to profound alterations of a variety of cellular 

processes. Therefore, one may speculate that the re-introduction of single microRNAs has other 

consequences than in non-modified cells. Moreover, Suarez et al. demonstrated that VEGF up-

regulates miR-17, -18a and -20a in HUVECs isolated from umbilical cords and that combined 

inhibition of miR-17, -18a and -20a in these HUVECs impaired tube forming capacity on Matrigel 

[77]. In the commercially available HUVECs that we used for this study, VEGF treatment did not 
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change mature levels of the members of the miR-17-92 cluster (data not shown). Although we did 

not address the effects of combinatorial overexpression or inhibition of members of the miR-17-

92 cluster, it is unlikely that their joint action results in opposite effects with respect to angiogene-

sis. Therefore, the different origin of the cells as well as the distinct culture and assay conditions 

are probably the reason for the discrepant results. Combined overexpression of miR-17 and let-

7b also promoted tube forming capacity of SV40 transformed lymphatic endothelial cells (SVEC) 

of murine origin. Since SVEC do not express miR-126 [85], which is generally regarded to be EC 

enriched, the comparability of SVEC with ECs derived from blood vessels might be problematic. 

Additionally, it is well established that the miR-17-92 cluster is capable of executing pleiotropic 

effects due to the different target specificities of the individual cluster members and the possibility 

of regulating targets with opposing effects. 

2. The miR-17-92 cluster in tumour angiogenesis 

We were surprised by our findings that enhanced expression of each member of the miR-17-92 

cluster individually suppressed the angiogenic capacity of endothelial cells since Dews et al. ob-

served increased tumour vascularization in mice after transplanting transformed colonocytes that 

overexpressed the whole miR-17-92 cluster. In detail, Dews et al. demonstrated that miR-18 and 

miR-19 downregulate the anti-angiogenic proteins connective tissue growth factor (CTGF) and 

thrombospondin-1 (TSP-1) which are both members of the thrombospondin type 1 repeat (TSR) 

superfamily [150]. Moreover, a subsequent report provided evidence that the cluster indirectly 

decreases expression of a third TSR protein, clusterin, by miR-17/20-mediated repression of 

TGFBR2 and Smad4 downregulation via miR-18a, thus blunting TGF- signalling [176]. As the 

three TSR proteins are all secreted factors, we speculated that the pro-angiogenic effect of the 

miR-17-92 cluster observed in tumours might be due to alterations in the secretome of tumour 

cells. Indeed, supernatants of tumour cells overexpressing miR-17, -18a, -19a or -20a individually 

displayed a trend towards enhancing EC spheroid sprouting activity in vitro compared with super-

natants of similar treated HUVECs. Indeed, we observed only a minor decrease of CTGF and 

TSP-1 in HUVECs after miR-18a or -19a expression. In contrast, Suaréz et al demonstrate in the 

endothelial cell line Ea.hy.926 a decrease of TSP-1 protein to 17% of the control cells after miR-

18a overexpression and a doubling in TSP-1 protein level upon miR-18a inhibition [77]. 

Ea.hy.926 cells are hybrid cells originally generated by polyethylene glycol (PEG)-induced fusion 

of primary human umbilical vein endothelial cells (HUVECs) and the human lung carcinoma cell 

line A549 [212]. Various publications verify endothelial cell characteristics of Ea.hy.926 cells 

(e.g. presence of Weibel-Palade bodies [213]), but nevertheless Ea.hy.926 cells possess more 
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chromosomes (around eighty) than the cells from which they were derived (A549: 61 chromo-

somes, HUVEC: 46 chromosomes) including a marker chromosome from the A549 cell line [212]. 

Actually, it is questionable if this cell line can really be regarded as endothelial cells. But the fact 

that Ea.hy.926 cells contain genetic material of tumour cells seems to be a plausible explanation 

for the different effects of miR-18a on TSP-1 expression observed in Ea.hy.926 by Suaréz et al. 

and primary HUVECs in our hands. These results imply that the simultaneous presence of the 

microRNA and the target mRNA does not predispose the target to be affected by the microRNA 

and that other factors co-decide the fate of the target, e.g. tissue specific RNA binding proteins 

that mask the binding site of the microRNA in the target mRNA. Likewise, miR-19a was shown to 

exert an anti-proliferative effect in EA.Hy926 cells, whereas in our study miR-19a did not affect 

proliferation of HUVECs [97] indicating that the effect of a given microRNA depends on the cellu-

lar context and might even differ in related cell types.  

Since Antagomir-17 mediated inhibition of miR-17/20 profoundly enhanced vascularization of 

Matrigel plugs, we investigated the effect of Antagomir-17 on tumour growth and angiogenesis in 

vivo. Although one injection of Antagomir-17 slightly, but nonsignificantly, increased tumour 

weight and volume, no increase in tumour vascularization was observed. These results were 

quite surprising since the same dose of Antagomir-17 in the Matrigel plug model resulted in a 

doubling of perfused vessels within the plug suggesting that Antagomir-17 differentially affects 

neovascularization of Matrigel plugs and tumour angiogenesis. In the tumour, Antagomir-17 

probably alters the composition of the secretome of the tumour cells, e.g. by increasing TGF-

induced expression of TSR protein clusterin via the TGFBR2, and thus balances the pro-

angiogenic effect that Antagomir-17 probably exerts in the endothelial cells. The slight rise in 

tumour weight and volume might be due to effects on Cyclin D1, which was shown to be targeted 

by miR-17/20 in breast cancer cells and generally promotes cell cycle progression [141]. Applica-

tion of an additional dose of Antagomir-17 to increase the knockdown of miR-17 within the tumour 

did not reveal any effect, neither on tumour size and volume nor on tumour angiogenesis. Ac-

cordingly, Antagomir mediated inhibition of miR-17 in LLC1 cells in vitro did not affect their proli-

feration rate. In contrast, Fontana et al. reported that application of Antagomir-17 to neuroblasto-

ma cells in vitro or direct injection into the tumour in vivo abolished tumour cell growth and in-

duced apoptosis of tumour cells [140]. Inhibition of tumour cell proliferation by miR-17/20 inhibi-

tors was demonstrated to be dependent on the expression level of the miRs in tumour cells, tu-

mour cells overexpressing the miR-17-92 cluster responded to inhibitor treatment with decreased 

cell growth whereas proliferation of tumour cells with lower miR-17-92 levels remained un-

changed [214]. We did not compare the miR-17 expression level in LLC1 cells to that of other 
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tumour cells but the fact that the level of miR-17 in LLC1 was comparable to that of HUVECs 

suggests that LLC1 cells do not overexpress the miR-17-92 cluster and their proliferation is there-

fore less affected by Antagomir-17. Eventually, the net effect of Antagomir-17 on tumour growth 

and tumour angiogenesis depends on the impact of the Antagomir on the endothelial cells, the 

tumour cells and paracrine, cell-nonautonomous mechanisms (Fig. V.1) 

 

Figure V.1: Effects of Antagomir-17 on tumour cells and endothelium. The net effect of Antagomir-17 on 
tumour growth and tumour angiogenesis is determined by its effects on the tumour cells, the endothe-
lium and paracrine signalling. 

The members of the miR-17-92 cluster seem not to be the only microRNAs regulating angiogen-

esis in a context-dependent manner by differential intrinsic (cell-autonomous) and paracrine (cell-

nonautonomous) mechanisms (Fig. V.2). Sohail Tavazoie from the Rockefeller University in New 

York presented data at a recent Keystone Symposium that showed that miR-126 in cancer cells 

suppresses tumour angiogenesis associated endothelial cell recruitment by downregulating insu-

lin-like growth factor binding protein 2 (IGFBP2), thus impairing the tumour cells´ insulin-like 

growth factor 1 (IGF1) secretion which is a chemoattractant for endothelial cells [215]. In contrast, 

miR-126 was demonstrated to have angiogenesis promoting activity in endothelial cells by en-

hancing VEGF signalling [83, 85]. At present, much research effort is invested in identifying pro-

teins (e.g. RNA binding proteins) or cellular mechanisms (e.g. alternative mRNA 3´ UTRs, miR 

binding site polymorphisms) responsible for the tissue and cell type specific effects of  

microRNAs. Although our understanding of the mechanisms that regulate microRNA action are 

still limited at the moment, the forthcoming years will certainly bring our understanding forward 

concerning this matter.  
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Figure V.2: Involvement of the miR-17-92 cluster in the regulation of angiogenesis. In tumour cells, miR-18 
and miR-19 downregulate the anti-angiogenic, secreted proteins thrombospondin-1 (TSP-1) and con-
nective tissue growth factor (CTGF), thereby creating a pro-angiogenic environment which promotes 
angiogenesis in the close-by tumour endothelium in a cell-nonautonomous manner. In endothelial 
cells, miR-17/20 and miR-92a block angiogenesis cell-autonomously by repressing Janus kinase 1 

(JAK1) and Integrin 5 (ITG5). The members of the miR-17-92 cluster also enhance proliferation 
and survival of tumour cells by targeting phosphatase and tensin homolog (PTEN), p21 and Bim. 
Adopted from Kuhnert & Kuo, Blood 2010 [216] 

3. Targets of the members of the miR-17-92 cluster in endothelial cells 

a) The pro-apoptotic protein BIM 

Up to now, more than 40 targets of the miR-17-92 cluster have been described in tumour cells 

and other cell types (see Table I.2 in the introduction). Among them are well known regulators of 

apoptosis and cell proliferation. We first addressed the effect of the individual cluster members on 

the pro-apoptotic protein BIM since all of them, except for miR-18a, were predicted to target BIM 

according to the targetscan algorithm. In several tumour studies, expression of the miR-17-92 

cluster was inversely correlated with expression of the pro-apoptotic protein BIM. In detail, miR-

17/20 [140], miR-19 [156] and miR-92a [157] have already been validated to target BIM in tumour 

cells. In our hands, only miR-20a had a statistically significant effect on BIM protein expression, 

but a trend towards reduction could be observed for all members of the cluster including miR-18a. 

But since miR-18a reduced BIM expression the least, one may speculate that this might be the 

reason for the increase in apoptosis observed in Pre-18a transfected cells under normal culture 

conditions. Under high oxidative stress, miR-17 overexpressing HUVECs showed a trend towards 

reduction of cellular apoptosis which might be due to its regulatory activity regarding BIM. But the 

fact that the anti-apoptotic effect of miR-20a was less pronounced under these conditions, al-

though it had the stronger effect on BIM protein expression, argues for the involvement of other 

proteins. Further research activities are needed to elucidate the mechanism determining target 
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specificity of highly similar microRNAs, especially those belonging to the same seed family like 

miR-17 and miR-20a. 

b) Identification of targets of miR-17 in endothelial cells  

MicroRNA target identification is a major issue in microRNA biology since the regulated targets 

dictate the biological function of a given microRNA. Due to the initial observation that microRNAs 

in animal cells frequently reduce protein expression without affecting mRNA level of their targets, 

it was thought for a long time that animal miRs rather act by translational repression than by ini-

tiation of mRNA degradation. However, studies employing microarray analysis demonstrated that 

some miRs downregulate their targets to a large extent on the transcript level [217]. Indeed, vari-

ous research groups compared microarray mRNA data with results from proteomic approaches 

and observed both mRNA destabilization and block of translation [218-220]. It was proposed that 

the contribution of each mechanism to target downregulation depends on the respective miR-

mRNA pair [219]. Nevertheless, it is still not known how the relative contributions of translational 

inhibition and mRNA degradation to target regulation by microRNAs are determined.  

In order to identify direct targets of miR-17 in ECs, we performed microarray analysis of HUVECs 

after miR-17 overexpression and matched the downregulated transcripts with the miR-17 targets 

predicted by the targetscan algorithm. Indeed, we found several predicted targets to be downre-

gulated on the mRNA level, some of which have already been validated in other cell types like the 

cell cycle regulator CDKN1A/p21 [140] or the TGF- receptor 2 [151-153, 176].  

c) Effect of miR-17 on the cyclin dependent kinase inhibitor 1A 

In contrast to the reported effects of miR-17 in the rat endothelial cell line [166], miR-17 and miR-

20a significantly increased proliferation of HUVECs in our hands. For miR-17, we demonstrated 

that the stimulatory effect on proliferation is concentration dependent by transfecting different 

amounts of precursor molecules. Several reports ascribe a pro-proliferative effect to miR-17 in a 

variety of cell types which was attributed to some extent to the downregulation of the cell cycle 

regulator CDKN1A/p21 [140, 155]. However, Yu et al. described a negative feedback loop in 

which Cyclin D1 induces miR-17 and -20a expression, which in turn regulate Cyclin D1 expres-

sion to limit proliferation of breast cancer cells [141]. Surprisingly, according to our microarray 

analysis miR-17 overexpression significantly decreased transcript expression of both, 

CDKN1A/p21 and Cyclin D1, although they have opposing effects on cell cycle progression. 

Nevertheless, we observed enhanced cell proliferation after miR-17 overexpression indicating 

that miR-17 alters the balance between pro- and anti-proliferative factors within the cell. Polycys-

tic kidney disease 2 (PKD2) is a predicted miR-17 target proposed to regulate proliferation of 

human embryonic kidney (HEK) cells in culture [170] and known to act together with PKD1 as 
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sensory transducer in primary cilia of renal epithelial cells [221]. Interestingly, humans and mice 

with mutated polycystin alleles display vascular defects [222, 223]. Consistently, both polycystin 

genes were demonstrated to be expressed in endothelial cells and PKD2 was proposed to regu-

late NO biosynthesis in response to shear stress [224] suggesting a crucial role of PKD2 in the 

vascular system. Indeed, our microarray analysis revealed a downregulation of PKD2 by almost 

50% upon miR-17 overexpression. Since the function of PKD2 in cultured endothelial cells has 

not been investigated so far, further experiments are needed to clarify the impact of PKD2 on EC 

proliferation in the absence of laminar shear stress.  

It is likely that other proteins, either direct miR-17 targets or proteins indirectly affected by the 

change in miR-17 level, are involved in this pro-proliferative shift. Consistently, Cloonan et al. 

observed an increased proliferation of HEK293T cells upon miR-17 overexpression and proved 

that a rise of pro-proliferative transcripts due to secondary and tertiary effects was the cause 

[155].  

Moreover, cell cycle regulators like p21 as a member of the family of CDK inhibitors or cyclin D1 

have been shown to function in cellular events beyond cell cycle control such as cell migration 

[225, 226]. Impaired expression of these proteins as observed upon Pre-17 transfection may 

disorganize vessel growth by causing an imbalance between proliferation and migration. This 

aspect might explain the stronger effects of miR-17 and miR-20a in the spheroid model mimicking 

tip and stalk cell guided angiogenic sprouting compared to those in the tube formation assay. 

Since the effect of p21 on endothelial cell proliferation and apoptosis was shown to critically de-

pend on p21 expression level [227] and this also might be true for Cyclin D1, determining the 

exact contributions of both genes to coordinated vessel growth represents a challenge. The fact 

that microRNAs often target genes with opposing function, but nevertheless push the cell in a 

specific direction, illustrates the complexity of the processes determining cell fate and emphasi-

zes once more one of the basic principles in cell biology that the ratio of oponent activities deter-

mines the outcome.  

d) Effect of miR-17 on extracellular matrix and endothelial matrix metalloproteinases 

In transgenic mice overexpressing miR-17, Shan et al. documented a profound reduction of high 

molecular weight fibronectin and fibronectin type-III domain containing 3A (FNDC3A) in different 

organs of the animals. Fibronectin protein was also downregulated after miR-17 overexpression 

in a rat endothelial cell line implying that miR-17 can affect ECM composition [166]. Functionally, 

overexpression of miR-17 resulted in impaired cell adhesion, migration and proliferation in these 

cells. Indeed, our microarray analysis revealed a 1.4 fold downregulation of FNDC3A and a 

1.25 fold decrease of FNDC3B upon miR-17 overexpression, which are both predicted miR-17 
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targets according to the targetscan algorithm, although these changes were statistically not signi-

ficant. Fibronectin 1 is not predicted to be a miR-17 target and FN1 mRNA was not changed in 

the microarray after Pre-17 transfection into HUVECs. As microRNAs are capable of controlling 

translation of target mRNAs without changing the mRNA level, western blot analysis is necessary 

to shed light on the regulation of fibronectin and both fibronectin type-III domain containing pro-

teins by miR-17 in HUVECs.  

Since MMP2, a secreted matrix metalloproteinase, which is involved in angiogenesis and de-

grades collagen I, is a predicted miR-17 target and was slightly downregulated on the mRNA 

level after miR-17 overexpression, we performed gelatin zymography to test whether miR-17 

inhibition or overexpression affects MMP2 activity. The three most prominent clear bands were 

attributed to the latent pro-MMP2 (68 kD), the intermediate MMP2 (64 kD) and the active MMP2 

(62 kD). However, we could not detect any differences in MMP2 activity in gelatin zymography 

implicating that miR-17 does not affect collagen degradation at least not under normal culture 

conditions and when collagen is used in its hydrolysed state as gelatin.  

e) JAK1 as a novel target of miR-17 in endothelial cells and angiogenesis 

Microarray analysis after miR-17 overexpression revealed a profound downregulation of the Ja-

nus Kinase (JAK) 1 mRNA and this downregulation could reproducibly be detected on the protein 

level. Cloning of four copies of the miR-17 binding site found in the 3´ UTR of JAK1 mRNA into a 

luciferase reporter vector verified a direct regulatory effect of miR-17. JAK1 is one of four mem-

bers (JAK1, JAK2, JAK3 and TYK2) of the Janus kinase family of non-receptor tyrosine kinases 

which transduce cytokine signals from membrane receptors via phosphorylation of Signal Trans-

ducers and Activators of Transcription (STATs) into the nucleus to alter gene expression. JAK1 

knockout in mice resulted in growth retardation during embryonic development, perinatal lethality 

and severe adverse effects on lymphocyte development. Moreover, macrophages, embryonic 

fibroblasts and cardiomyocytes isolated from JAK1 knockout offspring revealed hindered  

responses to cytokines that bind to class II cytokine receptors, cytokine receptors that utilize the 

c subunit for signalling, and the gp130 subunit dependent family of cytokine receptors mani-

festing non-redundant roles of JAK1 in the signalling that arises in this subset of receptors [202]. 

JAK1 was reported to be essential for the IL-6-induced phosphorylation of STAT1 and STAT3 in 

fibrosarcoma cells [228]. Moreover, Shimoda et al. demonstrated a critical role for JAK1 in  

G-CSF-mediated STAT3 and STAT5 phosphorylation in myeloid cells [229]. STAT3 affects a 

variety of biological processes including apoptosis, proliferation and inflammation. Cardiomyocyte 

restricted knockout of STAT3 resulted in reduced myocardial capillary density in the postnatal 

mouse heart due to paracrine inhibition of endothelial cell proliferation [230]. We analysed JAK1 
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function in endothelial cells by siRNA-mediated inhibition and observed decreased sprouting of 

spheroids in vitro and blunted phosphorylation of STAT3 in nonstimulated HUVECs and in res-

ponse to the cytokines IL-6, FGF-2, GM-CSF and IFN-. We did not look at the phosphorylation 

status of the other STAT transcription factors expressed in HUVECs, although JAK1 probably 

also accomplishes phosphorylation of STAT1, STAT5b and STAT6. STAT3 itself was reported to 

be targeted by miR-17 in lung epithelial cells [168], but overexpression of miR-17 did neither re-

duce STAT3 mRNA nor protein in ECs in our hands (data not shown). Since after depletion of 

JAK1 a considerable signal for phosphorylated STAT3 remained in the IL-6 stimulated ECs, other 

kinases must be involved in IL-6-induced STAT3 phosphorylation in endothelial cells. Besides 

JAK1, JAK2 and TYK2 are also expressed in endothelial cells and are probably responsible for 

phosphorylation of STAT3 in response to IL-6 in the absence of JAK1. JAK3 expression is rather 

restricted to hematopoetic cells [231]. In endothelial cells, JAK1 and TYK2 were shown to medi-

ate the hypoxia independent upregulation of Hif-1 in response to IFN- [232] and are involved 

in urokinase-type plasminogen activator (uPA)-induced phosphorylation of STAT1 [233], a signal-

ling pathway that might control EC proliferation and/or migration during angiogenesis caused by 

vascular injury. By using a siRNA and microRNA inhibitor double transfection approach, we could 

demonstrate that JAK1 depletion reduced the pro-angiogenic activity of miR-17 inhibition and 

validated therewith the causal relationship of miR-17 and JAK1 in angiogenesis. To our 

knowledge, this is the first study that addressed the function of JAK1 in angiogenesis in vitro.  

 

Figure V.3: Cell-intrinsic effect of members of the miR-17-92 cluster on angiogenic capacity of endothelial 
cells. Overexpression of miR-17, -18a, -19a and -20a impairs angiogenic sprouting in vitro. At least in 
part, the anti-angiogenic activity of miR-17 is based on the direct regulation of the cell cycle depen-
dent kinase inhibitor p21 and the Janus kinase 1 (JAK1) which results in decreased signaling via 
STAT proteins. Vice versa, inhibition of miR-17, -18a and -20a promotes angiogenic sprouting in vitro. 
Only combined inhibition of miR-17 and miR-20a by Antagomir-17 enhances vascularization in vivo. 

Generally, we observed stronger effects for miR-17 than for miR-20a overexpressing ECs in as-

says addressing miR function and on common miR-17/20 downstream targets (e.g. JAK1, p21); 

BIM represented an exception to this rule. Although we used similar concentrations of Pre-17 and 
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Pre-20a to overexpress both miRs in HUVECs in vitro, less mature miR-20a could be detected 

compared with mature miR-17. Differences in overexpression efficiency of both miRs may ac-

count for the distinct effects of miR-17 and -20a on downstream targets. But it is essential to 

mention, that at the beginning of the study we used a miR detection method employing a univer-

sal TaqMan probe and self-designed primers. Since amplification of miR-17 and miR-20a in the 

reverse transcription reaction was achieved with the identical stem-loop primer, and the qPCR 

detection was based on a universal TaqMan probe and a universal reverse primer, the detection 

specifity was determined by the forward primer. Due to differences in sequence, the forward pri-

mers for miR-17 and miR-20a might have had different amplification efficiencies accounting for 

the differences in mature miR levels detected. Therefore, we used the commercially available 

TaqMan MicroRNA Assays which promised higher specificity by applying miR specific forward 

primer and TaqMan probes in the qPCR quantification step. Using this method, we confirmed that 

Antagomir-17 not only blocked microRNA-17 but also miR-20a in vivo. This is consisted with 

reports of several other groups which observed knockdown of other members of the miR-17 seed 

family when using inhibitors targeting miR-17 [168, 196]. However, we did not measure the side 

effects of Antagomir-17 towards other members of the miR-17 seed family except for miR-20a. At 

least the miRs of the paralogous miR-106a-363 cluster seem frequently not to be expressed [168, 

183], of which miR-106a and miR-20b belong to the miR-17 seed family. 

B. Applicability of microRNA inhibition as therapeutic approach for  

pulmonary arterial hypertension 

1. Evaluation of different Antagomirs in animal models of PAH 

The research efforts of recent years manifested dysregulated microRNA expression in a variety 

of diseases and provided evidence that disease pathology can partially be attributed to the 

dysregulation of specific miRs. In 2010, Caruso et al. published their microRNA expression pro-

files gained by screening lung tissue of chronic hypoxic and monocrotaline (MCT) treated rats 

[203]. Among others, they observed time dependent alterations of members of the miR-17-92 

cluster and miR-21 during the course of disease progression. Whereas miR-21 levels were not 

significantly changed in the lungs of chronic hypoxic rats but profoundly lowered in MCT treated 

rats, levels of the miR-17-92 cluster members miR-17, -19b, -20a and -92a were elevated at spe-

cific time points in both rat models. Since microRNAs affect whole signalling pathways and cellu-

lar processes by regulating the expression of several genes at the same time, they represent an 
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attractive therapeutic target. The current medical treatment of PAH patients is largely restricted to 

vasodilators such as endothelin-receptor antagonists, phosphodiesterase-5 inhibitors and pros-

tanoids (prostacyclin and analogues) which provide only symptomatic relief. Drugs that intervene 

with pathological remodelling of the pulmonary vasculature by targeting endothelial dysfunction, 

apoptosis-resistance and proliferation of pulmonary smooth muscle cells may render beneficial 

effects and provide a valuable therapeutic option. Hence, we aimed to elucidate the applicability 

of microRNA inhibition by Antagomirs in animal models of pulmonary arterial hypertension in a 

collaborational project within the Excellence Cluster Cardiopulmonary Systems (ECCPS) with the 

group of Dr. Ralph Schermuly from the University of Gießen Lung Centre. Antagomirs, which are 

chemically modified and cholesterol conjugated antisense molecules of microRNAs, were shown 

to be effective in downregulating miR expression in vivo in a variety of organs [194]. Due to the 

fact that miR-17 and miR-92a were both shown to be upregulated in lung tissue of pulmonary 

hypertensive rats, we employed Antagomir-17 and Antagomir-92a in the study. MiR-21 is upregu-

lated in fibroblasts of the failing heart and Antagomir-21 was shown to reduce cardiac fibrosis, 

thereby preventing dilatation of the left ventricle and normalizing fractional shortening in a mouse 

model of left-heart hypertrophy [204]. Since the increased pulmonary vascular resistance in PAH 

leads to right-heart hypertrophy, we also analysed the effects of Antagomir-21 in the PAH animal 

models. 

First, we tested all three Antagomirs in chronic hypoxia-induced pulmonary arterial hypertension 

in mice. Low oxygen tension causes constriction of pulmonary vessels to reduce blood flow to 

less ventilated regions of the lung, thereby ensuring the ventilation-perfusion match. If the entire 

lung experiences hypoxia, pulmonary vasoconstriction leads to a rise in pulmonary vascular re-

sistance. Chronic hypoxia results in increased muscularization of pulmonary arteries by stimu-

lating proliferation of smooth muscle cells. Due to increased pulmonary vascular resistance, mice 

suffer from right heart hypertrophy. However, the pathological changes are largely reversible 

upon return of the animals to normoxic conditions [234]. Therefore, chronic hypoxia elicits a ra-

ther mild form of PAH. 

Although the knockdown efficiency after one injection of the individual Antagomirs varied consi-

derably in the lungs of normoxic mice, miR-17, -21 and -92a were all efficiently and significantly 

decreased in tissue of chronic hypoxic mice treated with 5 injections of the individual Antagomirs.  

Regarding hemodynamics, Antagomir-17 revealed the most beneficial effects by significantly 

decreasing right ventricular systolic pressure (RVSP) and increasing pulmonary artery accelera-

tion time (PAAT). Antagomir-21 also decreased RVSP, whereas Antagomir-92a did not affect any 

hemodynamic parameter. Right heart hypertrophy was significantly reduced in A-17 but not in  
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A-21 and A-92a treated mice. Interestingly, all three Antagomirs improved the muscularization 

pattern of the pulmonary arteries. MiR-17 is well-known to enhance proliferation of different cell 

types [140, 155, 170]. MiR-21 was shown to be upregulated in response to hypoxia in PASMCs 

and promoted their proliferation which could be confined by miR-21 inhibition [235], thus ex-

plaining the beneficial effect of Antagomir-21 on arterial muscularization. So far, the biological 

function of miR-92a has not been studied in vascular smooth muscle cell, but it was reported that 

miR-92a promotes proliferation of myeloid cells [178] but had no effect on endothelial cell growth 

[119].  

Since Antagomir-17 achieved the most beneficial effect in chronic hypoxia-induced PAH, we ad-

ditionally addressed the therapeutic value of this Antagomir in a second PAH animal model, i.e. 

the monocrotaline injury model. Monocrotaline is a phytotoxin found in seeds of the plant  

Crotalaria spectabilis. Monocrotaline is metabolized by liver resident mixed function oxidases 

producing the reactive bifunctional cross-linking compound MCT pyrrole. Since the lungs are the 

first eminent vascular bed distal to the liver, MCT mainly harms the pulmonary vasculature. The 

detailed mechanism of PAH induction by MCT is not known, but pathology involves direct da-

mage of the endothelium, strong inflammatory response and structural remodelling that includes 

enhanced muscularization of pulmonary arteries [236]. Although we reduced Antagomir dose to 

5 mg/kg bw and the number of injections to 2 in the rats, miR-17 was still almost completely de-

pleted in lung tissue of the examined animals. Similar to the chronic hypoxia mouse model, we 

observed a significant improvement of RVSP and PAAT upon Antagomir-17 treatment. Although 

the effect of Antagomir-17 on right heart ventricular hypertrophy was not statistically significant, 

cardiac output was completely recovered. Antagomir-17 treatment also partially reversed the 

MCT-induced changes in the muscularization pattern of the pulmonary arteries supporting an 

involvement of miR-17 in the regulation of SMC proliferation and/or survival.  

2. Mechanism of action of Antagomir-17 in PAH 

To gain first hints towards the mechanism responsible for the beneficial effects of Antagomir-17 in 

experimental PAH, we analysed the rat lungs for miR-17 targets. Since BMPR2 expression and 

BMP signalling were shown to be frequently decreased in patients suffering from PAH and in 

PAH animal models [33, 205], we focused on analyzing the expression of BMPR2, Smad5 and 

the BMP downstream target ID1. Additionally, we measured the transcript level of TGFBR2 which 

is known to be involved in the activation of contractile protein expression in SMCs in response to 

TGF-[208]. De-differentiation of SMCs into the proliferative phenotype is frequently associated 

with vascular diseases. EFNB1 mRNA expression was determined since it was demonstrated to 
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be highly expressed in freshly isolated lung ECs [207] and was profoundly downregulated in lung 

tissue of monocrotaline treated rats according to a microarray analysis of our collaboration part-

ners (data not shown). Compared to the transcripts of BMPR2, Smad5, ID1 and EFNB1 which 

were decreased by more than 50% in MCT treated rats, the decline of TGFBR2 mRNA was ra-

ther moderate. Whereas the mRNAs for BMPR2, Smad5, ID1 and EFNB1 were slightly increased 

in Antagomir-17 treated rats, TGFBR2 transcript remained unchanged compared to the control 

animals. Unfortunately, we did not succeed in detecting BMPR2 protein via Western blot analysis 

of total lung lysate. This might be due to the fact that BMPR2 expression seemed to be restricted 

to cells of the pulmonary vasculature, mainly endothelial cells [33] which constitute around 1/3 of 

an entire rat lung [237]. Perhaps the fraction of BMPR2 of the total protein amount is too low to 

detect it via Western blot analysis. Immunohistochemistry could be used as an alternative me-

thod. Although Brock et al. demonstrated that BMPR2 is targeted by miR-17 and miR-20a in HEK 

cells [149], BMPR2 mRNA was neither altered on the mRNA level after overexpression of miR-17 

in HPASMCs nor on mRNA and protein level in miR-17 overexpressing HUVECs. These results 

suggest that BMPR2 might be no target of miR-17 in HPASMCs and endothelial cells. BMPR2 

protein could not be detected in HPASMCs which is consistent with the literature reporting low 

expression of BMPR2 in arterial smooth muscle in healthy human lung tissue [33].  

In contrast to the BMPR2, the TGFBR2 was indeed targeted by miR-17 in HPASMCs. TGF-1 is 

known to promote lung fibrosis by inducing the differentiation of fibroblasts into myofibroblast 

which secrete large amounts of collagen [238]. In vascular smooth muscle cells TGF- signalling 

is crucial for the differentiation of SMCs into the contractile phenotype. Aortic SMCs from indivi-

duals carrying heterozygous mutations of the TGFBR2 gene, display reduced expression of a va-

riety of contractile proteins [208]. However, alterations of TGFBR2 levels in HPASMCs had no 

profound effects on the expression of the contractile proteins -actin 2, calponin 1 and 

smoothelin under standard culture conditions. To finally clarify the impact of miR-17-mediated 

regulation of TGFBR2 on expression of contractile proteins, further experiments are needed in-

volving TGF-1 stimulation of HPASMCs.  

However, Antagomir-17 treatment of pulmonary hypertensive rats profoundly upregulated mRNA 

and protein expression of the cell cycle inhibitor p21. Since Antagomir-17 ameliorated musculari-

zation of pulmonary arteries in both animal models, we further addressed the biological function 

of miR-17 in pulmonary artery smooth muscle cells. Upon miR-17 overexpression, the prolifera-

tion of HPASMCs was dramatically increased and impaired p21 expression was observed. Vice 

versa, p21 was slightly upregulated in Antagomir-17 treated SMCs. According to the literature, 

p21 is a well established regulator of SMC proliferation [239, 240]. Therefore, we suggest that 
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Antagomir-17 improves pulmonary hemodynamics by increasing the expression of the cell cycle 

inhibitor p21 in smooth muscle cells, thus interfering with pathological muscularization of 

pulmonary arteries.  

 

Figure V.4: Antagomir-17 represses proliferation of smooth muscle cells by increasing the cyclin depen-
dent kinase inhibitor p21.  
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VI. Conclusion 

Almost two decades ago, microRNAs were discovered as novel posttranscriptional regulators of 

gene expression. Since then, research efforts have uncovered their involvement in the control of 

various cellular processes including migration, proliferation and cell survival. Even more complex 

events, such as the formation of new blood vessels or organ development, have been shown to 

be tightly regulated and orchestrated by microRNAs. Due to their crucial regulatory role in tissue 

homeostasis in vertebrates, it does not come as a big surprise that dysregulated microRNA ex-

pression is associated with pathology of diverse diseases. In this regard, the miR-17-92 cluster is 

a prime example since it has become famous for its amplified expression in tumours and its on-

cogenic potential. Our lab demonstrated the expression of the members of the miR-17-92 cluster, 

namely miR-17, -18a, -19a, -20a, -19b and -92a, in endothelial cells and provided evidence for 

the anti-angiogenic activity of miR-92a in ECs as well as its important regulatory role in tissue 

recovery after ischemia.  

In this work we addressed the function of the remaining members of the miR-17-92 cluster, i.e. 

miR-17, miR-18a, miR-19a and miR-20a, in endothelial cells and angiogenesis. Surprisingly, the 

individual members all displayed anti-angiogenic properties in endothelial cells in vitro, although 

overexpression of the whole cluster in transformed colonocytes was shown to promote tumour 

angiogenesis in a mouse model. In this context, we provide evidence that the individual miRs 

differentially affect the paracrine angiogenic activity of endothelial and tumour cells. Moreover, 

Antagomir-mediated inhibition of miR-17/20 in a mouse tumour model did not affect tumour angi-

ogenesis, although miR-17/20 inhibition profoundly increased vascularization of Matrigel plugs. 

Thus, our research efforts suggest a differential involvement of the members of the miR-17-92 

cluster in physiological and tumour angiogenesis. Additionally, we identified Janus kinase (JAK) 1 

as a novel miR-17 target in endothelial cells and demonstrated the involvement of JAK1 in angio-

genesis and in the phosphorylation of STAT3 in response to different cytokines in vitro. Overall, 

inhibition of specific members of the miR-17-92 cluster might represent an attractive therapeutic 

strategy to enhance angiogenesis in ischemic diseases. 

In the second part of the present work we investigated the therapeutic value of Antagomir-

mediated microRNA inhibition in animal models of pulmonary arterial hypertension. Collectively, 

inhibition of miR-17 by the respective Antagomir revealed a significant improvement of pulmonary 

hemodynamics and cardiac function in both the chronic hypoxia mouse model and the mono-

crotaline-induced lung injury rat model. Histomorphometric analysis of the lungs of the pulmonary 

hypertensive mice and rats uncovered a significant reduction of disease associated musculariza-
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tion of pulmonary arteries in Antagomir-17 treated animals compared to the control animals  

indicating interference with smooth muscle cell proliferation or survival. Probing of lung tissue of 

the pulmonary hypertensive rats for selected miR-17 targets uncovered a profound increase in 

the expression of the cyclin dependent kinase inhibitor p21 in the Antagomir-17 treated rats sug-

gesting that inhibition of miR-17 impairs proliferation by impeding cell cycle progression. Analysis 

of miR-17 function in human smooth muscle cells in vitro corroborated the results from the animal 

experiments by demonstrating pro-proliferative activity of miR-17 and decreased levels of p21 in 

these cells. Collectively, our results indicate that Antagomir-17 improves pulmonary hemodyna-

mics and cardiac function by interfering with vascular remodelling within the lung. Hence, inhibi-

tion of miR-17 might be of therapeutic value to ameliorate the disease pattern in pulmonary arte-

rial hypertension. 

In summary, the present work provides insights into the regulatory functions of members of the 

miR-17-92 cluster, especially miR-17, in blood vessels and suggests that specific inhibition of 

members of the miR-17-92 cluster might be a novel option to treat vascular diseases. 
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VII. Zusammenfassung 

MicroRNAs (miRs) sind eine Klasse von nicht codierenden RNA-Molekülen, die in Vertebraten 

endogen exprimiert werden und in ihrer maturen Form die Genexpression auf posttranskriptionel-

ler Ebene regulieren, indem sie die mRNA-Translation inhibieren oder den Abbau der mRNA 

induzieren. Die Forschung der letzten zwei Jahrzehnte hat gezeigt, dass miRs in die Regulation 

zellulärer Prozesse, wie Apoptose, Proliferation und Differenzierung, involviert sind und eine dys-

regulierte miR-Expression mit diversen Krankheiten assoziiert sein kann. Der miR-17-92-Cluster 

beinhaltet die sieben maturen MicroRNAs miR-17-5p (miR-17), miR-17-3p (miR-17*), miR-18a, 

miR-19a, miR-20a, miR-19b und miR-92a, die durch Prozessierung durch den kernständigen 

Drosha- und den cytosolischen Dicer-Multienzymkomplex aus demselben polycistronischen Pri-

märtranskript hervorgehen. Der miR-17-92-Cluster wurde ursprünglich aufgrund seines oncoge-

nen Potentials identifiziert, das zum Teil auf die Tumorangiogenese-fördernde Wirkung von miR-

18 und miR-19 sowie den pro-proliferativen Effekt von miR-17 and miR-20a zurückgeführt wurde. 

Die konstitutive Deletion des miR-17-92-Clusters in Mäusen führt zu postnataler Letalität auf-

grund von Herz- und Lungendefekten, was auf eine funktionelle Bedeutung des Clusters in der 

Entwicklung beider Organe hindeutet. Unsere Arbeitsgruppe hat bereits nachgewiesen, dass das 

miR-17-92-Clustermitglied miR-92a in Endothelzellen anti-angiogene Eigenschaften besitzt und 

eine Inhibition dieser MicroRNA mittels Antagomirs die Bildung von Blutgefäßen fördert und somit 

die Geweberegeneration nach ischämischen Erkrankungen im Mausmodell unterstützt. Hingegen 

ist die Funktion der übrigen Clustermitglieder im vaskulären System größtenteils ungeklärt.  

Das Ziel der vorliegenden Arbeit war die funktionelle Charakterisierung der einzelnen Clustermit-

glieder miR-17, miR-18a, miR-19a und miR-20a in Endothelzellen und endothelzellabhängigen 

Prozessen.  

Funktion der miR-17-92-Clustermitglieder in physiologischer Angiogenese 

Um die Wirkung der einzelnen miRs auf Angiogenese in vitro zu untersuchen, wurden miR-17, 

miR-18a, miR-19a und miR-20a durch Transfektion von kommerziell erhältlichen Vorläufermole-

külen (Precursor) in Endothelzellen aus humanen Nabelschnüren (HUVEC) überexprimiert und 

ihr Einfluss auf die kapillare Aussprossung im 3D-Sphäroidmodell untersucht. Die Überexpres-

sion jeder einzelnen miR führte zu einer signifikanten Reduktion der kapillaren Aussprossungen, 

wobei miR-17 den stärksten Effekt aufwies. Umgekehrt hatte die Inhibition von miR-17, miR-18a 

and miR-20a durch Transfektion von kommerziell erhältlichen Hairpin-Inhibitoren eine verstärkte 

kapillare Aussprossung im Sphäroid-Modell zur Folge.  
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Um die Funktion der einzelnen Clustermitglieder in der Angiogenese in vivo zu untersuchen, 

wurde das Matrigelplug-Mausmodell mit der systemischen Gabe von spezifischen Cholesterin-

konjugierten microRNA-Inhibitoren, so genannten Antagomirs, kombiniert. Drei Injektionen Anta-

gomir-17, Antagomir-18a, Antagomir-19a und Antagomir-20a in einer Dosis von jeweils 8 mg/kg 

Körpergewicht führten in den Herzen der behandelten Tiere zu einer spezifischen Reduktion der 

entsprechenden maturen miRs. Lediglich Antagomir-17 hemmte nicht nur miR-17-5p, sondern 

auch miR-20a, die sich in ihrer Sequenz lediglich in zwei Nukleotiden voneinander unterscheiden. 

Vermutlich aufgrund der kombinierten Inhibition von miR-17 und miR-20a erzielte Antagomir-17 

bei Verwendung von drei Injektionen einen signifikanten Anstieg der Vaskularisierung der Matri-

gelplugs, wohingegen Antagomir-18a, -19a und -20a bei gleicher Dosierung keine signifikanten 

Effekte aufwiesen. Auch bei Verwendung von nur einer Injektion Antagomir-17, konnte eine er-

höhte Vaskularisierung der Matrigelplugs verzeichnet werden, obgleich die Daten keine statisti-

sche Signifikanz erreichten. 

Funktion der miR-17-92-Clustermitglieder in der Tumorangiogenese 

Die in dieser Studie beobachtete zellintrinsische anti-angiogene Wirkung der einzelnen Mitglieder 

des miR-17-92-Clusters in Endothelzellen steht im Widerspruch zu der bereits in der Literatur 

dokumentierten Erhöhung der Tumorangiogenese nach Implantation von Tumorzellen, die den 

gesamten Cluster verstärkt exprimieren. Um zu untersuchen, ob diese unterschiedlichen Be-

obachtungen auf einer differentiellen Regulation der parakrinen Aktivität von Tumor- und En-

dothelzellen durch die miR-17-92-Clustermitglieder beruhen, transfizierten wir Lewis Lung Carci-

noma 1 (LLC1)-Zellen und HUVEC mit den einzelnen miR-Precursorn und testeten die Wirkung 

des konditionierten Mediums auf die kapillare Ausprossung von HUVEC im in vitro-Sphäroid-

modell. Tatsächlich zeigte das konditionierte Medium der Tumorzellen im Vergleich zu dem der 

Endothelzellen nach Überexpression von miR-17, miR-18a oder miR-19a eine leicht verstärkte 

angiogene Aktivität im Späroidmodell. Diese Daten deuten auf zelltypspezifische Unterschiede 

der Clustermitglieder in Tumor- und Endothelzellen hin. 

Da Überexpression und Inhibition von miR-17 im Sphäroidmodell in vitro und die Antagomir-17 

vermittelte Hemmung von miR-17/20 in vivo ingesamt die stärksten Effekte auf Angiogenese 

erzielt hatten, untersuchten wir die Wirkung von Antagomir-17 auf Tumorwachstum und  

-angiogenese durch Kombination des LLC1-Maustumormodells mit der systemischen Antagomir-

Gabe. Eine Injektion Antagomir-17 führte zu einer moderaten Reduktion der miR-17-Expression 

im Tumorgewebe und hatte einen leichten Anstieg des Tumorwachstums zur Folge, jedoch ohne 

die Vaskularisierung der Tumore zu fördern, obwohl mit der gleichen Dosis an Antagomir-17 im 
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Matrigelplug-Modell eine verstärkte Plug-Vaskularisierung erzielt wurde. Auch eine stärkere  

Reduktion der miR-17-Expression im Tumorgewebe durch zwei Injektionen Antagomir-17 zeigte 

keinen pro-angiogenen Effekt auf die Tumorvaskulatur und führte zu keinem veränderten Tu-

morwachstum. Ebenso zeigte die Behandlung von LLC1-Zellen in vitro mit Antagomir-17 keine 

Veränderung der Proliferationsrate. Zusammenfassend deuten unsere Daten darauf hin, dass 

eine Inhibition von miR-17 unter physiologischen Bedingungen die Bildung neuer Blutgefäße 

fördert, jedoch Tumorangiogenese vermutlich aufgrund von kompensatorischen Effekten in den 

Tumorzellen nicht beeinflusst. 

Zielgene von miR-17 in Endothelzellen 

Aufgrund des signifikanten Effekts von miR-17-Überexpression und -Inhibition auf Angiogenese 

in vitro und in vivo galt unser Interesse der Identifikation von Angiogenese relevanten Zielgenen 

dieser MicroRNA. Aus diesem Grund führten wir eine Microarray-Genexpressionsanalyse nach 

Überexpression von miR-17 in HUVECs durch und verglichen die herunterregulierten Transkripte 

mit den Zielgenen, die durch den Targetscan-Algorithmus für miR-17 vorhergesagt wurden, um 

möglichst direkte Zielgene zu identifizieren. Unter den signifikant herunterregulierten Transkripten 

befanden sich miR-17-Zielgene, die bereits in anderen Zelltypen validiert wurden, wie die Se-

rin/Threonin-Rezeptorkinase TGFBR2 (TGF--Rezeptor Typ 2), der Transkriptionsfaktor E2F1 

und der Zellzyklusinhibitor p21.  

Die Proliferation von Endothelzellen stellt eine wichtige Komponente im Angiogenese-Prozess 

dar. Die Überexpression von miR-17 und miR-20a führte zu einer verringerten Expression des 

Zellzyklusinhibitors p21 auf mRNA- und Proteinebene und verursachte einen signifikanten An-

stieg des Anteils an Endothelzellen in der S-Phase des Zellzyklus. Doppeltransfektionsexperi-

mente mit MicroRNA-Hairpin-Inhibitoren und siRNA ergaben, dass die siRNA vermittelte Reduk-

tion von p21 dem pro-angiogenen Effekt der miR-17-Inhibition entgegenwirkte und demonstrier-

ten somit die Beteiligung von p21 in Angiogenese in vitro.  

Zu den am stärksten herunterregulierten Transkripten zählte die Janus Kinase 1 (JAK1). JAK1 ist 

ein Mitglied der rezeptorassoziierten Janus-Tyrosinkinasen. Diese dienen im Cytoplasma als 

Antwort auf diverse Cytokine der Phosphorylierung verschiedener Mitglieder der signal trans-

ducer and activator of transcription (STAT)-Transkriptionsfaktoren, die im Anschluss als Dimere 

im Zellkern die Genexpression regulieren. STAT3 ist für seinen regulatorischen Einfluss auf 

Apoptose, Proliferation und Inflammation bekannt. miR-17 und miR-20a waren die einzigen Mit-

glieder des miR-17-92 Cluster, die nach ihrer Überexpression eine deutliche Reduktion von JAK1 

auf Proteinebene bewirkten. Umgekehrt führte die Inhibition von miR-17 in Endothelzellen zu 
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einem Anstieg des JAK1-Proteinlevels. Durch Einführung von vier Kopien der miR-17-Bindestelle 

aus der 3´ untranslatierten Region (UTR) der JAK1-mRNA und einer mutierten Variante im An-

schluss an ein Luciferase-Reportergen bestätigte sich, dass es dabei tatsächlich um eine funktio-

nale miR-17-Bindestelle handelt. Somit konnten wir JAK1 als neues Zielgen von miR-17 in En-

dothelzellen validieren.  

Funktionell führte die siRNA vermittelte Reduktion von JAK1 zu vermindertem Sprouting im 

Sphäroid-Modell in vitro und beeinträchtigte die Phosphorylierung von STAT3 unter basalen Be-

dingungen und besonders nach Stimulation mit den inflammatorischen Cytokinen Interleukin-6 

(IL-6) und Interferon- (IFN-Doppeltransfektionsexperimente mit MicroRNA-Hairpin-

Inhibitoren und siRNA bestätigten, dass eine Reduktion der JAK1-Expression den pro-

angiogenen Effekt der miR-17-Inhibition im in vitro Sphäroid-Modell und die verstärkte STAT3-

Phosphorylierung verhinderte. Folglich ist JAK1 in Endothelzellen auch funktionell relevant.  

Zusammenfassend weisen unsere Daten darauf hin, dass der anti-angiogene Effekt von miR-17 

durch die Dysregulation einer Vielzahl von Proteinen zustande kommt und zumindest für den 

Zellzyklusregulator p21 und die Januskinase 1 konnten wir eine Beteiligung an Angiogenese in 

vitro nachweisen. 

MicroRNA-Inhibition als therapeutische Strategie in arteriellem Lungenbluthochdruck 

Der zweite Teil der Arbeit zeigt Daten aus einem Kollaborationsprojekt mit dem Lungenzentrum 

der Universität Gießen, in dem das therapeutische Potential der Antagomir-vermittelten Inhibition 

von miR-17, miR-21 und miR-92a in Tiermodellen des arteriellen Lungenbluthochdrucks (pulmo-

nal-arterielle Hypertonie: PAH) untersucht wurde. Die PAH ist eine Erkrankung des pulmonalen 

Gefäßsystems, die durch eine Erhöhung des Lungengefäßwiderstandes und dem damit verbun-

denen Anstieg des Bluthochdrucks im Lungenkreislauf charakterisiert ist. Als Folge der erhöhten 

Belastung des Herzens kommt es zur Rechts-Herzinsuffizienz, die letztendlich zum Tod durch 

Herzversagen führt. Auf zellulärer Ebene lässt sich die Erkrankung auf eine extensive Umstruktu-

rierung der Lungengefäße zurückführen, die vor allem durch verengte Lungenarterien und erhöh-

te Gefäßmuskularisierung sowie gelegentlicher Thrombus-Bildung gekennzeichnet ist. Im letzten 

Jahr wurde in zwei Rattenmodellen der pulmonalen Hypertonie gezeigt, dass die Expression von 

Mitgliedern des miR-17-92-Clusters sowie miR-21 in Lungengewebe der erkrankten Ratten einer 

zeitabhängigen Dysregulation unterliegt. Daher untersuchten wir zuerst das therapeutische Po-

tential von Antagomir-17, Antagomir-21 und Antagomir-92a in der Hypoxie-induzierten pulmona-

len Hypertonie in Mäusen. Obwohl alle drei Antagomirs bei Verwendung von fünf Injektionen den 

Hypoxie induzierten Anstieg der Arterien-Muskularisierung signifikant reduzierten, zeigte lediglich 
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Antagomir-17 eine generelle Verbesserung der Hämodynamik innerhalb der Lunge und eine 

reduzierte Hypertrophie des rechten Ventrikels. Die positiven Effekte von Antagomir-17 auf Lun-

gen- und Herzfunktion wurden in einem zweiten Tiermodell, der Monocrotalin-induzierten PAH in 

Ratten, bestätigt.  

Die Untersuchung des Lungengewebes der Ratten belegte einen starken Anstieg des Zellzyklus-

inhibitors p21 sowohl auf mRNA- als auch Proteinebene. In in vitro-Experimenten mit humanen 

Gefäßmuskelzellen aus der Lunge konnten wir zeigen, dass die Überexpression von miR-17 zu 

einer deutlichen Reduktion von p21-mRNA führt und eine Erhöhung der Zellproliferation zur Fol-

ge hatte. Umgekehrt führte die Antagomir-vermittelte Inhibition von miR-17 zu einem Anstieg von 

p21-mRNA und -Protein in den Gefäßmuskelzellen. Basierend auf diesen Daten schlussfolgerten 

wir, dass Antagomir-17 vermutlich durch Steigerung der p21-Expression die Proliferation der 

Gefäßmuskelzellen in der Lunge bremst und somit die Muskularisierung der Lungenarterien re-

duziert, was zu einer Verbesserung der Hämodynamik in der Lunge beiträgt. In den Gefäßmus-

kelzellen in vitro beobachteten wir zusätzlich einen starken regulatorischen Effekt von miR-17 auf 

die Expression der Serin/Threonin-Rezeptorkinase TGFBR2, für die in der Literatur eine Funktion 

bei der Regulation des kontraktilen Phänotyps von Gefäßen beschrieben ist. Allerdings konnten 

wir unter normalen Zellkulturbedingungen keine signifikanten Veränderungen in den mRNA-

Leveln der kontraktilen Proteine -Aktin 2, Calponin 1 and Smoothelin durch miR-17-Über-

expression und -Inhibition in den Gefäßmuskelzellen detektieren. 

Ingesamt zeigen die Daten dieser Arbeit, dass miR-17 regulatorische Funktionen in Blutgefäßen 

erfüllt und eine Inhibition dieser MicroRNA bei Herz-Kreislauferkrankungen von therapeutischem 

Nutzen sein könnte. 
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