
Concentration of

Multivariate Random Recursive Sequences

arising in the Analysis of Algorithms

Dissertation

zur Erlangung des Doktorgrades der

Naturwissenschaften

vorgelegt beim Fachbereich Informatik und Mathematik

der Johann Wolfgang Goethe-Universität

Frankfurt am Main

von

Tämur Ali Khan

aus Frankfurt am Main

Frankfurt am Main 2006

(D30)

vom Fachbereich Informatik und Mathematik

der Johann Wolfgang Goethe-Universität als Dissertation angenommen.

Dekan: Prof. Dr.-Ing. Detlef Krömker

Gutachter: Prof. Dr. Ralph Neininger

Prof. Dr. Gábor Lugosi

Datum der Disputation: 19.03.2007

Contents

Introduction v

1 Probabilistic Analysis for Minimax Trees and Minimax Tree Eval-

uation 1

1.1 Survey of Game Trees . 1

1.2 Probabilistic Analysis for Randomized Boolean Decision Tree Evalu-

ation . 10

1.2.1 Worst case input . 10

1.2.2 Results . 12

1.2.3 Karp and Zhang’s 2-type branching process 14

1.2.4 The recursive point of view 15

1.2.5 Proofs . 15

1.2.6 d-ary Boolean decision trees 20

1.3 A Limit Law for the Root Value of Minimax Trees 22

1.3.1 Technical preliminaries . 25

1.3.2 Proof of Theorem 1.3.1 . 27

1.3.3 Further result on the limit W 30

2 Tail Bounds for the Wiener index of Random Binary Search Trees 31

2.1 Introduction and Main Results . 31

2.2 Analysis via Chernoff’s bounding technique 35

2.3 Analysis via method of bounded differences 41

2.4 Lower Bound . 48

3 Tail Bounds for the Generation Size of Supercritical Multitype

Galton-Watson Processes 55

3.1 Introduction . 55

iii

3.2 A Tail Bound for the Generation Size of Supercritical Multitype Gal-

ton Watson Processes . 59

3.3 Recursive Descriptions . 63

3.4 Lower bound on κ∗ . 65

3.5 Relation to other works and a note on Karp and Zhang’s process . . 66

3.6 Galton-Watson processes with Immigration 68

3.7 Proofs . 70

Bibliography 81

iv

Introduction

Analysis of algorithms concerns with the evaluation of the efficiency of algorithms.

Therefore the complexity of an algorithm is defined as a parameter which reflects the

quantities most important for the efficiency of the algorithm. Mostly the running

time is such a quantity, but also demand of ressources can be one. The complexity

does not only depend on the algorithm but it also depends on the input, since

quantities like running time and demand of ressources do so. Hence, if one wants

to compare the complexities of two or more algorithms, solving the same problems,

it does not suffice to compare their complexities for only one or few inputs. On the

other hand it is often impossible to compare them for all inputs, because there are

too many. E.g. sorting algorithms are theoretically able to sort lists of arbitrary

length. Roughly speaking, the complexity of most algorithms increases with the

length of the inputs. Thus, the complexity of an algorithm is analyzed, depending

on the input length. Often asymptotic results for increasing input length are given.

One method to do this is the average case analysis of algorithms, a field of sci-

ence founded by D.E. Knuth in 1963 and constantly developed, ever since. “The

Art of Computer Programming” by Knuth (1997a, 1997b, 1998) is a three volume

encyclopedical edition on that field. For average case analysis one defines on the set

of all inputs of the same length a probability distribution and studies the expected

complexity (average case complexity), determined by this distribution. Often this

is the uniform distribution, but also other distributions might be of interest, pos-

sibly motivated by applications. Since the 1980’s the law of the complexity under

such a probabilistic model is also studied more detailed, than only its expectation.

Furthermore the random output under such a probabilistic model is sometimes an-

alyzed.

Another important method which is used a lot in Computer Science is the worst

case analysis of algorithms. Here, the maximal complexity is studied, where the

v

maximum is taken over all inputs of the same length. The maximal complexity is

also called worst case complexity and every input yielding worst case complexity is

called worst case input. The advantage of worst case analysis is that if the worst

case complexity of an algorithm is identified to be small, then the complexity is

small for every input.

Now, there are algorithms which have a small average case complexity and a

large worst case complexity. E.g. for sorting a list of length n, quicksort has a small

average case complexity of order Θ(n ln(n)) and a large worst case complexity of

order Θ(n2). An important principle of both, Computer Science and computer en-

gineering, which is commonly used in such a situation is randomization, in order to

avoid large complexities with high probability. The calculation progress of random-

ized algorithms is at some points randomized. In particular there are randomized

algorithms where the random calculation progress yields that the complexity is ran-

dom for every input, but which always return a correct result. Like randomized

quicksort, where randomization is achieved by chosing the pivots at random. Such

randomized algorithms are called Las Vegas algorithms. Furthermore there are ran-

dom algorithms which only yield with high probability the correct result or a nearly

correct result. These are called Monte Carlo algorithms. We will not discuss them

any further and only mean Las Vegas algorithms by randomized algorithms as from

now.

Randomized algorithms became more recognized about 30 years ago. For fur-

ther information on that field one may confer Motwani and Raghavan (1995). So,

randomization is another aspect in Computer Science where stochastics are used.

For randomized algorithms the (maximal) expected complexity is studied. Fur-

thermore other quantities of the complexity are analyzed, as variance, convergence

in distribution after appropriate rescaling, rates of convergence and tail bounds.

Beside the expected complexity, upper bounds on the right tail are of special in-

terest for Computer Science, since small upper bounds guarantee that complexities

much larger than the expected complexity only occur with small probability. If so,

then it is reasonable to use a certain randomized algorithm with good average case

complexity, even if its worst case complexity is bad.

A good example is randomized quicksort which has for every list of length n

expected complexity of order Θ(n ln(n)) and Rösler (1991) showed for every n that

large deviations only occur with very small probability.

Stochastic concentration inequalities are an important tool to study tail bounds

vi

for such algorithmic problems. As a survey one may confer McDiarmid (1998) or

the lecture notes of Lugosi (2006). There are several approaches to concentration

inequalities.

One is Chernoff’s bounding technique. The idea is to estimate for a centered

random variable X its moment generating function E exp(sX) from above in or-

der to get an upper bound on P(|X| > t) by Markov’s inequality. For sums of

bounded, independent random variables Chernoff’s bounding technique yields Ho-

effding’s inequality immediately from Hoeffding’s Lemma (see Lemma 2.3.4 and

Hoeffding (1963)).

Azuma’s inequality (see Azuma (1976)) is a tail bound result on martingales

with bounded differences, which is also proved via Chernoff’s bounding technique.

Azuma’s inequality can be used to estimate P(|X| > t) by defining a Doob mar-

tingale on X by an appropriate filtration and estimating its martingale differences.

This strategy is called martingale method or method of bounded differences. If

X = f(X1, . . . ,Xn), where X1, . . . ,Xn are independent and f is a measurable func-

tion with bounded differences, then P(|X| > t) can be estimated by the so called

independent bounded differences inequality of McDiarmid (1989), which is built

upon Azuma’s inequality.

Further approaches to concentration inequalities are Talagrand’s induction

method introduced by Talagrand (1995), and entropy method developed by Ledoux

(1995/97,1996).

In this thesis various sequences of multivariate random variables are studied

with respect to tail bounds. Each sequence has a recursive structure. In chapters 1

and 2 these sequences arise from problems given by Computer Science. In chapter

3 supercritical multitype Galton-Watson processes are studied.

The upper tail bounds for these random structures and the method used to

achieve them are thread of the contents of the chapters. In each chapter nor-

malized versions of the multivariate random variables, denoted Yn, n ≥ 1, are

estimated according to Chernoff’s bounding technique. Here, the multivariate mo-

ment generating function E exp〈s,Yn〉 is estimated inductively on n, by exploiting

the recursive structure. In the context of algorithms this approach was first used

by Rösler (1991) for a univariate recursive structure. It turns out that the most

difficult task is to prove the inductive step for s close to (0, . . . , 0). Essentially,

vii

this is done by a manipulation on bn, which is an additive term appearing in the

recursive equation for Yn (see (1.4), (2.3) and (3.18)).: Since Ebn = (0, . . . , 0) it

is E exp〈s,bn〉 = 1 + O(‖s‖2), as ‖s‖ → 0. We get an explicit constant by writing

E exp〈s,bn〉 as Taylor series. This manipulation was similarly used in the proof of

Bennett’s inequality (see Bennett (1962)).

In chapter 1 we study minimax trees. We do worst case analysis for Snir’s

randomized algorithm for evaluating Boolean decision trees. We show that there is

always an input for which the random complexity stochastically dominates the com-

plexities of all other inputs of same length. For these random worst case complexities

we give exact expectations, asymptotic of the variance, a limit law with uniquely

characterized limit, and tail bounds. The results on expectation and variance and

the limit law are based on the theory Galton-Watson processes (see Athreya and Ney

(1972) and on contraction method (see Rösler (1991, 1992), Rachev and Rüschendorf

(1995), Rösler and Rüschendorf (2001), and Neininger and Rüschendorf (2004)).

Furthermore we derive a limit law for the value of a minimax tree under Pearl’s

model and show that the limit distribution has a continuous distribution function

and that it fulfills some fixed point equation.

In chapter 2 we analyze tail bounds for the Wiener index of random binary

search trees. Binary search trees are a fundamental data structure of Computer

Science for preprocessing lists. In particular there is a well known equivalence

between binary search trees and quicksort. Beside the above mentioned analysis

via Chernoff’s bounding technique we study upper tail bounds by the method of

bounded differences. Furthermore we give a lower bound on the tails.

The worst case complexity in chapter 1 can be identified as the generation size

of a supercritical 2-type Galton-Watson process, an approach by Karp and Zhang

(1995). In chapter 3 we generalize the method used for analyzing the tails in

chapter 1, in order to get a tail bound result on the generation size of supercritical

multitype Galton-Watson processes with finite maximum family size. Furthermore

we yield an upper bound on that tail bound result, which has the advantage

that it is explicitly given in terms of the offspring distribution and we yield a tail

bound result for supercritical multitype Galton-Watson processes with immigration.

Acknowledgements

I would like to thank my advisor Ralph Neininger for all his support. He

viii

proved to have a good sense in the choice of open problems, which he recommended

me to focus my investigations on. He always helped me immediately when I asked

him for help and he always encouraged me with a positive outlook, when I was

sceptical with the success of my studies.

Thanks are also due to Luc Devroye for his commitment in the analysis presented

in section 1.3. Without his support we probably were not able to find the limit law.

Finally, I would like to thank my father Shakir Ali Khan for proofreading the

text carefully, even though he is not concerned with mathematical issues at all.

The results of chapter 1 are published in Ali Khan and Neininger (2004)

and Ali Khan, Devroye and Neininger (2005).

ix

Chapter 1

Probabilistic Analysis for

Minimax Trees and Minimax

Tree Evaluation

1.1 Survey of Game Trees

In this chapter we study game trees, which are trees being related to the analysis

of game-searching methods for two-person perfect information games like Chess or

Go. In this section we give a survey on various models of and results on game trees

and point out how our results relate to already given ones.

In two-person perfect information games two players A and B start with an

initial position and take alternate turns, choosing each time among d ≥ 2 possible

moves. A terminal position is reached after 2k, k ≥ 0, moves. It does not necessarily

terminate the game it terminates the horizon of a player or machine searching for

best possible moves. One would like to assign a value to each position that indicates

the chances of each player winning the game when starting from that position.

Although, assuming best possible moves of both players, it is deterministic how the

game terminates, the horizon 2k of players or machines may be limited so that they

cannot plan their moves up to the very end of the game. To overcome this problem

one assigns values V to terminal positions, where large values of V indicate that the

position favors player A, small values favor player B. Given the values of all n = d2k

terminal nodes one can search for best possible moves for the initial position and

calculate its value.

1

The possible moves and its terminal positions can be represented in a rooted,

complete, d-ary tree with height 2k, k ≥ 0. The root represents the initial position

and given a node represents a certain position, each of its d children represents one

of the d possible moves from that position. The leaves are assigned with the same

values V1, . . . , Vn, n = d2k, as the terminal positions they are representing. All other

nodes are labeled with ∨ on even levels and with ∧ on odd levels, cf. Figure 1.1 for

the case d = 2 and k = 2.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

D
D
DD

D
D
DD

D
D
DD

D
D
DD

D
D
DD

D
D
DD

D
D
DD

D
D
DD

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
�
�
��

�
�
��

�
�
��

�
�
��

L
L

LL

L
L

LL

L
L

LL

L
L

LL
�

��

�

��

�

��

�

��

∨ ∨ ∨ ∨W
(1,1)
4 W

(1,2)
4 W

(2,1)
4 W

(2,2)
4

%
%

%%

%
%

%%

e
e

ee

e
e

ee

level 2

�

��

�

��

∧ ∧"
"

"
"

"
""

b
b

b
b

b
bb

level 1

�

��
∨ W16level 0

Figure 1.1: A minimax tree with branching degree 2 and height 4.

The value of a node is given as the value of the operator labeled at that node

applied to the values of its children. This corresponds to player A always choosing

the move with maximal value, player B always choosing a minimal value move. Thus

from V1, . . . , Vn one could first calculate the values of all nodes on level 2k − 1 and

successively determine the values on higher levels leading finally the root’s value.

These trees are called (d-ary) minimax trees. Sometimes in literature minimax

trees are defined to have ∧-labeled nodes on even levels and ∨-labeled nodes on odd

levels. In this model a small value V indicates that the position favors player A and

a large that it favors player B. Obviously both tree models are equivalent and can

be transferred into each other, easily.

There are two important problems, concerning minimax trees. The first one is

2

to calculate the root’s value of a given minimax tree. This indicates for the start

of the game the chances of each player to win. The root’s value is also called value

of the minimax tree. The second problem is to study the complexity of algorithms

calculating the root’s value. The complexity is defined as the number of leaves, an

algorithm has to read, in order to calculate the root’s value. Input of a minimax tree

algorithm is the vector of leave values, (V1, . . . , Vn), and output is the root’s value.

These two problems have been studied for various models of minimax trees. Next,

we introduce some models and state given results concerning these two problems

and finally relate our results to this context.

The first one are minimax trees where V1, . . . , Vn only take values 0 and 1. These

trees are also known as AND/OR trees or Boolean decision trees, since one may

alternatively think of labels ∧ and ∨ as boolean operators in this case. This is an

important special case of minimax trees. The values of the leaves can be interpreted

to indicate which player wins the game. Hence Boolean decision trees are minimax

trees, where the terminal positions represent final positions of the game.

Snir (1985) implicitly proposed and analyzed the following randomized algorithm

to evaluate a Boolean decision tree with branching degree d = 2: At each node one

chooses randomly (with probability 1/2) one of its children and calculates its value

recursively. If the result allows to identify the value of the node (that is a 0 for a

∧-labeled node and a 1 for a ∨-labeled node) one is done, otherwise also the other

child’s value has to be calculated recursively in order to obtain the value of the

node. Applying this to the root of the tree yields the value of the Boolean decision

tree. For input v ∈ {0, 1}n denote C(v) the complexity of Snir’s algorithm. Snir’s

Algorithm is a Las Vegas algorithm, i.e. that it always yields a correct output but

complexity C(v) is random. As pointed out in section 2.1 of Motwani and Raghavan

(1995), Snir’s analysis yields in particular

Theorem 1.1.1 (Snir (1985)) We have

max
v∈{0,1}n

E C(v) ≤ nlog3 4,

whereas for any deterministic version of Snir’s algorithm there is an input, for which

the algorithm has complexity n.

This documents that it is useful to randomize the algorithm, since linear worst

case complexity is improved to sublinear worst case expected complexity. Snir’s

algorithm is naturally generalized to an algorithm for d-ary Boolean decision trees,

3

d ≥ 2: For each node one chooses a random order of its children (with probability

1/d!). The children are calculated recursively, one after another according to the

chosen order, until the value of the node can be identified, the remaining children

are discarded afterwards. This generalization is also called Snir’s algorithm and

C(v) its complexity for a given input v ∈ {0, 1}n, n = d2k.

Saks and Widgerson (1986) gave the exact order of the maximum expected

complexity of Snir’s algorithm and showed that it is optimal among all Las Vegas

algorithms evaluating boolean decision trees:

Theorem 1.1.2 (Saks and Widgerson (1986)) For fixed d ≥ 2 denote LAB the

set of all Las Vegas algorithms evaluating d-ary Boolean decision trees and com(A, v)

the complexity of an algorithm A ∈ LAB, given input v ∈ {0, 1}n, n = d2k. Then

min
A∈LAB

max
v∈{0,1}n

E com(A, v) = max
v∈{0,1}n

E C(v) = Θ(nαd),

for αd = 1/2 logd((d
2 + 6d + 1 + (d − 1)

√
d2 + 14d + 1)/8).

This result is essentially given in Theorem 5.4, Saks and Widgerson (1986).

Karp and Zhang (1995) showed for certain inputs, which may be denoted as reg-

ular inputs, that in particular every input v′ ∈ {0, 1}n with E C(v′) = maxv E C(v)

is a regular input and

Theorem 1.1.3 (Karp and Zhang (1995)) For every d ≥ 2, k ≥ 0 and every

regular input v ∈ {0, 1}n, n = d2k, we have

P

(
C(v) − E C(v)

E C(v)
> t

)
≤ exp

(
−ℓ0t

2
)
,

for t ≥ 0,

P

(
C(v) <

E C(v)

t

)
≤ ℓ1 exp (−ℓ2t) ,

for u1 ≤ t ≤ u2(γ/
√

d)2k, where γ >
√

d and

ℓ3 E C(v) ≤
√

VarC(v) ≤ ℓ4 E C(v),

for ℓ4 > ℓ3. ℓ1, ℓ2, ℓ3, ℓ4, u1, u2 explicitly known estimates depending on d are given.

Most important is that the first inequality yields that inputs with maximal expected

complexity have a subgaussian right tail. In subsection 1.2.3 we will explain what

are regular inputs.

4

The most frequently used algorithm for evaluating minimax trees with arbitrary

nonnegative leaf values is α−β pruning (see Knuth and Moore (1975)). α−β pruning

is a deterministic algorithm, which is just a deterministic version of Snir’s algorithm,

when applied on Boolean decision trees. Another algorithm for evaluating minimax

trees with arbitrary nonnegative leaf values is called α − β pruning without deep

cutoffs. α − β pruning without deep cutoffs is a simplification of α − β pruning.

On the one hand it is easier to analyze than α − β pruning, on the other hand

for every given input its complexity is at least as large as the complexity of α − β

pruning. Thus α − β pruning without deep cutoffs has often been studied in order

to get upper bound results for α − β pruning. α − β pruning without deep cutoffs

works as follows for d = 2: Assume that the value W of a ∨-labeled node has to

be calculated. Let Wℓ and Wr be the values of its left and right child, respectively,

and let Wrℓ and Wrr be the values of the left and right child, respectively, of the

node’s right child, cf. Figure 1.2.

�

��

�

��

∨ ∨
�
�

�
�
�

�
�
�

��

�
�

�
�

�
�
�

�
��

B
B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
B
BB

Wrℓ Wrr

%
%

%%

e
e

ee
�

��

�

��

∧ ∧"
"

"
"

"
""

b
b

b
b

b
bb

�
�

�
�

�
�

�
�

�
�

�
�

�
��

A
A
A
A
A
A
A
A
A
A
A
A
A
AA

Wℓ Wr

�

��
∨ W

Figure 1.2: Subtree rooted at a ∨-node with value W .

In order to determine W , evaluate Wℓ and Wrℓ recursively. If Wℓ ≥ Wrℓ, then

W = Wℓ, since Wℓ ≥ Wrℓ ≥ Wr and W = Wℓ ∨ Wr, and one is done. Otherwise

evaluate furthermore Wrr recursively and determine W by W = Wℓ ∨ (Wrℓ ∧Wrr).

If W is the value of a ∧-labeled node the procedure works equivalently. In that

5

case one does not have to calculate Wrr, if Wℓ ≤ Wrℓ. Applying this procedure

to the root yields the value of the minimax tree. That some nodes do not have to

be evaluated by the algorithm is visually phrased by saying, the minimax tree is

“cutoff” at such a node. The phrase “without deep cutoffs” refers to the fact that

a cutoff can only happen two levels below the node, currently evaluated. When

evaluating a node by α− β pruning (with deep cutoffs), beside the above described

cutoffs two levels below, furthermore cutoffs on deeper level might be done, by

similar observations.

Another algorithm for minimax tree evaluation is SCOUT (see Pearl (1980)).

SCOUT calculates the value of a ∨-valued (∧-valued) node by evaluating its left

child recursively and next checking for each of its other d − 1 children if it has

a larger (smaller) value than the left child. This is done by assigning each leaf

in the corresponding subtree a 1 if it has a larger value, a 0 else, and applying

(deterministic) Snir’s algorithm on the yielded subtree. Only the children which

have larger (smaller) value than the left child are also evaluated recursively. In Pearl

(1984) it is shown by an example that there is no dominating relation between the

complexity of α − β pruning and SCOUT.

A traditional stochastic model for analyzing minimax tree algorithms is the

i.i.d. model, in which the leaves’ values V1, . . . , Vn are independent and identically

distributed random variables with a distribution L(V) having a distribution function

FV (x) = P(V ≤ x) that is continuous. We denote by C1(d, k), C2(d, k) and C3(d, k)

the complexity of α − β pruning, α − β pruning without deep cutoffs and SCOUT

of a game tree with branching degree d and height 2k in the i.i.d. model. C1(d, k),

C2(d, k) and C3(d, k) do not dependent uponL(V), since all three procedures depend

only on the relative order of V1, . . . , Vn. On p. 314, Knuth and Moore (1975), it is

given

Theorem 1.1.4 (Knuth and Moore (1975)) For n = d2k,

pij =

(
i − 1 + (j − 1)/d

i − 1

)−1

,

rd the largest Eigenvalue of matrix [pij]1≤i,j≤d, ad = logd(rd) and cd some positive

constant, which can be specified, we have for fixed d ≥ 2

E C2(d, k) ∼ cdn
am , k → ∞.

With this result they obtained furthermore

6

Theorem 1.1.5 (Knuth and Moore (1975)) For n = d2k, pij as above, r∗d the

largest Eigenvalue of matrix [
√

pij]1≤i,j≤d, a∗d = logd(r
∗
d) and c∗d some positive con-

stant, which can be specified, we have for fixed d ≥ 2

E C2(d, k) < c∗dn
a∗

m .

Zhang (1984) analyzed complexities of the three mentioned minimax tree algo-

rithms in the i.i.d. model and got results on variance and deviations and for SCOUT

furthermore on expectation:

Theorem 1.1.6 (Zhang (1984)) We have for t > 0 and all k ≥ 0

P

(
C2(d, k) − E C2(d, k)

E C2(d, k)
≥ t

)
≤ exp(−βdt

2),

where βd > 0 is a constant depending on d and

VarC2(d, k) = Θ
(

E C2(d, k)2
)
,

where the constant factors depend on d.

Theorem 1.1.7 (Zhang (1984)) We have for t > 0 and all k ≥ 0

P

(
C1(d, k) − E C1(d, k)

E C1(d, k)
≥ k2t

)
≤ exp(−β′

dt
2),

where β′
d > 0 is a constant depending on d and

VarC1(d, k) = O
(
k2 E C1(d, k)2

)
,

with the unspecified constant depending on d.

Theorem 1.1.8 (Zhang (1984)) For ̺ = (1−q)/q, where q is the unique positive

solution of x = (1 − x)d, we have

E C3(d, k) = Θ
(
̺k
)

,

for t > 0 and for all k ≥ 0

P

(
C3(d, k) − E C3(d, k)

E C3(d, k)
≥ t

)
≤ exp(−β′′

d t2),

β′′
d > 0 is a constant depending on d and

VarC3(d, k) = O
(

E C3(d, k)2
)
,

with the unspecified constant depending on d.

7

Pearl (1980) analyzed the value of a minimax tree of height 2k in the i.i.d. mod-

ell, where the distribution of the leaves’ values has a furthermore strictly increasing

distribution function FV on the range, where 0 < FV < 1. This special case of the

i.i.d. model may be called Pearl’s model. He showed:

Theorem 1.1.9 (Pearl (1980)) Denote Wn, n = d2k, the value of minimax tree

with branching degree d in Pearl’s model. Then

Wn → qV , k → ∞,

in probability, with qV = F−1
V (q) and q being the unique positive solution of x =

(1 − x)d.

In games like chess, different moves which can be made from the same position

are usually positively correlated. If a position favors a player, it is more likely that

the following position favors the same player. But in the i.i.d. model values of

siblings are independent. There are other models of random minimax trees, where

random leaves’ values are constructed in a way that siblings’ values are positively

correlated. See Knuth and Moore (1975) and Newborn (1977) for two such models.

Another model with positively correlated sibling values is the incremental model:

Every edge of the minimax tree is assigned with a random value. The edge values

are independent and identically distributed as edge X. The value of a leaf is the

sum of the values of all edges along the path from this leaf to the root. Nao (1982)

developed this model for distribution L(X) determined by P(X = 1) = 1 − P(X =

−1) = p ∈ (0, 1). Denote W̃n = W̃n(X), n = dk, the value of a d-ary minimax

tree height k ≥ 0 in the incremental model and note that height k can also be odd,

now. Devroye and Kamoun (1996) gave limiting results of W̃n(X), for bounded X,

bounded and nonegative X and Bernoulli distributed X:

Theorem 1.1.10 (Devroye and Kamoun (1996)) In the incremental model

with bounded edge variable X, we have for n = dk

lim
k→∞

E W̃n

k
= c < ∞,

where c is a positive constant, depending on L(X).

Theorem 1.1.11 (Devroye and Kamoun (1996)) For the incremental model

let edge variable X be Bernoulli(p) distributed. Then there is a 0 < pd < 1, such

8

that for 0 ≤ p ≤ pd we have

lim
k→∞

P
(
W̃d2k = 0

)
> 0,

lim
k→∞

P
(
W̃d2k+1 = 0

)
> 0

and for p > pd

lim
k→∞

P
(
W̃d2k = 0

)
= lim

k→∞
P
(
W̃d2k+1 = 0

)
= 0.

Furthermore

pd ≤ 1 − d−1/(d+1) → 0, d → ∞.

They even obtained a law of large numbers:

Theorem 1.1.12 (Devroye and Kamoun (1996)) For the incremental model

let edge variable X be bounded and nonnegative with P(X > 0) > pd, where pd

is defined in Theorem 1.1.11. Then we have for c given in Theorem 1.1.10, n = dk,

lim
k→∞

E W̃n

k
= c

and

lim
k→∞

W̃n

E W̃n

= lim
k→∞

W̃n

kc
= 1

almost surely as k → ∞.

In the second section of this chapter we analyze Snir’s algorithm. We show that

for every height 2k their is a worst case input not only having maximal expected

complexity but even more having maximal complexity in stochastic order among

all inputs of Boolean decision trees of height 2k. For this worst case complexity we

derive exact expectation, asymptotic growth of the variance including the evaluation

of the leading constant and a limit law with uniquely described limiting distribution,

as k → ∞. Our main finding is an improvement of Karp and Zhang’s tail bound

exp(−const t2) for t > 0, which is stated in Theorem 1.1.3, to exp(−const tκ),

with 2 ≤ κ < 1/(1 − αd) ≥ 1/(1 − α2)
.
= 4.06 and αd given in Theorem 1.1.2 (see

Theorems 1.2.6 and 1.2.7). For ease of notation the analysis is done for Boolean

decision trees with branching degree d = 2. It can be transferred to Boolean decision

trees with arbitrary branching degrees, easily, and the results for that case are stated

in subsection 1.2.6.

9

In the third section we derive a limit law for the value Wn of a minimax tree

with branching degree d and height 2k in Pearl’s model after appropriate rescaling.

We show that the limiting distribution has a continuous distribution function and

it fulfills some fixed point equation.

1.2 Probabilistic Analysis for Randomized Boolean De-

cision Tree Evaluation

We study Snir’s algorithm on Boolean decision trees where all nodes on even level

are labeled ∧ and all nodes on odd level are labeled ∨, since in literature it is

more common to define decision trees in this way (not so minimax trees in general).

Furthermore, for ease of description the analysis in this section is done for binary

decision trees. It can be transferred to d-ary decision trees, d ≥ 2, easily, and the

results therefore are stated in subsection 1.2.6.

In subsection 1.2.1 we will explain how to obtain input v⋆ ∈ {0, 1}n that C(v⋆)

is maximal in stochastic order, C(v) � C(v⋆) for all v ∈ {0, 1}n. Here, X � Y for

random variables X,Y denotes that the corresponding distribution functions FX , FY

satisfy FX(x) ≥ FY (x) for all x ∈ R, or, equivalently, that there are realizations

X ′, Y ′ of the distributions L(X),L(Y) of X,Y on a joint probability space such

that we pointwise have X ′ ≤ Y ′.

From this perspective it is reasonable to consider C(v⋆) as the worst case com-

plexity of the randomized algorithm and to analyze its asymptotic probabilistic

behavior. Since v⋆ is a regular input in the sense of Karp and Zhang, also their

2-type Galton-Watson process approach applies.

The tail bound exp(−const tκ), with 2 ≤ κ < 1/(1 − αd) > 4.06 is based

on a direct, inductive estimate of the moment generating function. In particular

therefore we need the recursive description of subsection 1.2.4. Our approach is also

applicable to any regular input as well as to other related problems.

1.2.1 Worst case input

In this subsection we explain how a worst case input v⋆ is constructed. We first

have a look at the case k = 1 and v ∈ {0, 1}4 such that the decision tree is evaluated

to 1 at the root. Clearly both children of the root have to lead to an evaluation of 1.

Now each pair of external nodes attached to the children needs to have at least one

value 1. Note that the algorithm reads in both pairs of external nodes until it finds

10

the first one. Hence there will in total be read two 1’s no matter how v ∈ {0, 1}4

is drawn among the choices that lead to an evaluation of 1 for the decision tree.

Clearly, to maximize the number of 0’s being read we choose in each pair of external

nodes one 0 and one 1. Then both 0’s are being read independently with probability

1/2. Hence, v1 = (0, 1, 0, 1) stochastically maximizes C(v) for all v ∈ {0, 1}4 such

that the decision tree evaluates 1, see Figure 1.3.

Analogously look at the case k = 1 and v ∈ {0, 1}4 such that the decision tree is

evaluated to 0. Clearly, one child of the root has to have the value 0, whose external

nodes attached need to have both values 0. If we choose also value 0 for the other

child of the root, we are lead to v = (0, 0, 0, 0), and the algorithm reads exactly

2 external nodes with values both 0. Therefore, to stochastically maximize C(v)

we choose the second child of the root with value 1 and again its external nodes

attached with values 0 and 1. Then, v0 = (0, 0, 0, 1) stochastically maximizes C(v)

for all v ∈ {0, 1}4 for which the decision tree evaluates to 0, see Figure 1.3.

Since we have C(v0) � C(v1), it follows that v⋆ = (0, 1, 0, 1) is a choice with

C(v) � C(v⋆) for all v ∈ {0, 1}4. For general k ≥ 2 a corresponding v⋆ = v⋆(k) can

recursively be constructed from v⋆(k−1) as follows: Each component 0 in v⋆(k−1)

is replaced by the block 0, 0, 0, 1, whereas each 1 is replaced by the block 0, 1, 0, 1.

For example, for k = 3, this yields

v⋆ = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,

0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,

0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1).

In Proposition 1.2.1 we show that this construction yields a v⋆ with C(v) � C(v⋆)

for all v ∈ {0, 1}n and k ≥ 1.

If we would only want to stochastically maximize the cost over all v ∈ R0(n) ⊂
{0, 1}n that evaluate to a 0 at the root, the same recursive construction of replacing

digits by corresponding blocks, starting with v0 = (0, 0, 0, 1), yields a v⋆ ∈ R0(n)

such that C(v) � C(v⋆) for all v ∈ R0(n).

v⋆(k) and v⋆(k) ∈ {0, 1}n, k ≥ 1, are the regular inputs yielded by the pat-

terns (a0, b0, c0, d0) = (0, 0, 0, 1) and (a1, b1, c1, d1) = (0, 1, 0, 1). Every input

v(k) ∈ {0, 1}, k ≥ 1, which is constructed recursively by two patterns (a0, b0, c0, d0),

(a1, b1, c1, d1) ∈ {0, 1}4 in the way described above, is a regular input, studied by

Karp and Zhang (1995).

11

��
��

��
��

��
���

�
@
@

�
�

L
L

�
�

L
L

∧

∨ ∨
1

1 1

01 10

��
��

��
��

��
���

�
@
@

�
�

L
L

�
�

L
L

∧

∨ ∨
0

0 1

00 10

Figure 1.3: Shown are decision trees for k = 1 evaluating at the root to 1 and 0, re-

spectively, together with a choice for the external nodes that stochastically maximizes

the number of external nodes read by the algorithm.

1.2.2 Results

We assume that we have n = 22k with k ≥ 1 and denote by v⋆ ∈ {0, 1}n an input

as constructed in section 2.

Proposition 1.2.1 For v⋆ ∈ {0, 1}n as defined in section 2 we have C(v) � C(v⋆)

for all v ∈ {0, 1}n.

The stochastic worst case behavior C(v⋆) of Snir’s algorithm has the following

asymptotic properties: The subsequent theorems describe the behavior of mean,

variance, limit distribution, and large deviations of C(v⋆). For the mean we have:

Theorem 1.2.2 The expectation of C(v⋆) is given by E C(v⋆) = c1n
α − c2n

β, with

α = log2
1 +

√
33

4
, β = log2

1 −
√

33

4
, c1 =

1

2
+

7

2
√

33
, c2 = c1 − 1.

We denote for sequences (ak), (bk) by ak ∼ bk asymptotic equivalence, i.e., ak/bk → 1

as k → ∞. Then we have for the variance of C(v⋆):

Theorem 1.2.3 The variance of C(v⋆) satisfies asymptotically Var C(v⋆) ∼ r n2α

as k → ∞, where r
.
= 0.0938. The constant r can also be given in closed form.

For random variables X,Y we denote by X
d
= Y equality in distribution, i.e.,

L(X) = L(Y). Then we have the following limit law for C(v⋆):

Theorem 1.2.4 For C(v⋆) we have after normalization convergence in distribu-

tion,

C(v⋆)

nα
−→ C, k → ∞,

12

where the distribution of C is given as L(C) = L(G[1]) and L(G) = L(G[0], G[1]) is

characterized by E ‖G‖2 < ∞, EG = (c0, c1), with c0 = 1/2 + 5/(2
√

33), and

G
d
=

1

4α

{
G(1) + G(2) +

[
B1B2 0

1 − B2 0

]
G(3) +

[
0 B1

B1 0

]
G(4)

}
,

with G(1), . . . ,G(4), B1, B2 independent with L(G(r)) = L(G), for r = 1, . . . , 4, and

L(B1) = L(B2) = B(1/2). Here, B(1/2) denotes the Bernoulli(1/2) distribution.

For the estimate of the tails we rely on Chernoff’s bounding technique. We need to

follow a bivariate setting for the vector (C(v⋆), C(v⋆)) as introduced in subsection

1.2.4. The following bound on the moment generating function is obtained:

Proposition 1.2.5 It exists a sequence (Yk)k≥0 = (Y
[0]
k , Y

[1]
k)k≥0 of bivariate ran-

dom variables with marginal distributions L((C(v⋆) − E C(v⋆))/nα), L((C(v⋆) −
E C(v⋆))/n

α) such that for all 2 ≥ q > 1/α
.
= 1.33 there is a K > 0 with

E exp〈s,Yk〉 ≤ exp(K‖s‖q) (1.1)

for all s ∈ R2 and k ≥ 0. An explicit value for K = Kq is given in (1.5).

The bound on the moment generating function in the previous proposition implies

upper tail bounds via Chernoff bounds:

Theorem 1.2.6 For all 2 ≤ κ < 1/(1 − α)
.
= 4.06 there exists an L > 0 such that

for any t > 0 and n = 22k

P

(
C(v⋆) − E C(v⋆)

nα
> t

)
≤ exp(−Ltκ). (1.2)

An explicit value for L is given in (1.6). The same bound applies to the left tail.

Karp and Zhang (1995) used Azuma’s inequality to get the first inequality in The-

orem 1.1.3 Since E C(v⋆) = c1n
α + o(nα), this inequality can be restated to

P

(
C(v⋆) − E C(v⋆)

nα
> t

)
≤ exp(−L′t2)

for an explicitly known L′. For κ = 2 the prefactor L = L2 in Theorem 1.2.6 can

also be evaluated and satisfies L2 > 2L′. It is yielded by Jones (2004) that one

cannot improve the upper bound 1/(1 − α) upon exponent κ. This is pointed out

in section 3.5.

13

1.2.3 Karp and Zhang’s 2-type branching process

For the analysis of C(v⋆) note that whenever the algorithm has to evaluate the

value of a node at a certain depth that yields a 1, according to the discussion of

subsection 1.2.1, the algorithm has to evaluate the values of two nodes of depths

two levels below that each yield a 1, and B3 + B4 nodes of depths two levels below

that each yield a 0, cf. Figure 1.3. Here, B3, B4 are independent Bernoulli B(1/2)

distributed random variables. Analogously, when the algorithm has to evaluate the

value of a node at a certain depth that yields 0, two levels below it has to evaluate

B1 nodes yielding a 1 and 2+B1B2 nodes yielding a 0, where B1, B2 are independent

B(1/2) distributed random variables. Here, the event {B1 = 1} corresponds to the

algorithm first checking the right child of the node to be evaluated and {B2 = 1}
to first checking the left child of that child, cf. Figure 1.3. Since at each node the

child being evaluated first is independently drawn from all other choices, this gives

rise to the following 2-type Galton-Watson branching process.

We have individuals of type 0 and 1 where the population of the k-th generation

corresponds to the number of nodes at depth 2k that are read by the algorithm.

We consider processes starting either with an individual of type 1 or type 0 and

assume that the algorithm is applied to the worst case inputs v⋆ and v⋆, respectively.

Then we have the following offspring distributions: An individual of type 1 has an

offspring of 2 individuals of type 1 and B3 +B4 individuals of type 0. An individual

of type 0 has an offspring of B1 individuals of type 1 and 2 + B1B2 individuals of

type 0. We denote the number of individuals of type 0 and 1 in generation k by

(V
[i]
n ,W

[i]
n), when starting with an individual of type i = 0, 1, where n = 22k. Note

that for v⋆, v⋆ ∈ {0, 1}n we have the representations

C(v⋆)
d
= V [1]

n + W [1]
n , C(v⋆)

d
= V [0]

n + W [0]
n .

This is the approach of Karp and Zhang (1995) for regular inputs like v⋆, v⋆. Hence,

part of the analysis of C(v⋆) can be reduced to the application of the theory of

multitype branching processes; see for general reference Harris (1963) and Athreya

and Ney (1972), and for a survey on the application of branching processes to tree

structures and tree algorithms see Devroye (1998). Obviously for every regular input

v complexity C(v) can be represented ba some 2-type Galton-Watson process.

However, we will also use a recursive description of the problem. This will be

given in the next subsection and enables to use as well results from the probabilistic

analysis of recursive algorithms by the contraction method.

14

1.2.4 The recursive point of view

It is convenient to work as well with a recursive description of the distributions

L(C(v⋆)) and L(C(v⋆)). For this, we define the distributions of a bivariate random

sequence (Gn) = (G
[0]
n , G

[1]
n) for all n = 22k, k ≥ 0 by G1 = (1, 1) and, for k ≥ 1,

Gn
d
= G

(1)
n/4 + G

(2)
n/4 +

[
B1B2 0

1 − B2 0

]
G

(3)
n/4 +

[
0 B1

B1 0

]
G

(4)
n/4,

where G
(1)
n/4, . . . ,G

(4)
n/4, B1, B2 are independent, B1, B2 are Bernoulli B(1/2) dis-

tributed and L(G
(1)
n/4) = · · · = L(G

(4)
n/4) = L(Gn/4). It can directly be checked

by induction that the marginals of Gn satisfy L(G
[0]
n) = L(C(v⋆)) and L(G

[1]
n) =

L(C(v⋆)). Note that G
[0]
n and G

[1]
n become dependent, firstly, since we have coupled

the offspring distributions using for the second component again B1 and 1 − B2

instead of B3 and B4, cf. subsection 1.2.3, and, secondly, since the first component

of G
(3)
n/4 contributes to both components of Gn. Sequences satisfying recursive equa-

tions as (Gn) are being dealt with in a probabilistic framework, the so called con-

traction method; see Rösler (1991, 1992), Rachev and Rüschendorf (1995), Rösler

and Rüschendorf (2001), and Neininger and Rüschendorf (2004).

1.2.5 Proofs

In this section we sketch the proofs of the results stated in subsection 1.2.2

Proof of Proposition 1.2.1: We denote by R0(n), R1(n) ⊂ {0, 1}n the sets of

vectors at the external nodes at depth 2k that yield an evaluation at the root of the

decision tree of value 0 and 1, respectively. From the discussion in subsection 1.2.1

we have

C(v) � C(v⋆), v ∈ R0(n), and C(v) � C(v⋆), v ∈ R1(n).

Hence, it remains to show that C(v⋆) � C(v⋆). This is shown by induction on k ≥ 1.

For k = 1 this can directly be checked. For the step k − 1 → k assume that we

have C(v⋆(k − 1)) � C(v⋆(k − 1)). It suffices to find realizations of the quantities

(V
[1]
n ,W

[1]
n) and (V

[0]
n ,W

[0]
n) on a joint probability space with V

[0]
n +W

[0]
n ≤ V

[1]
n +W

[1]
n

almost surely, n = 22k.

For this we use B,B′, (V
[i],(j)
n/4 ,W

[i],(j)
n/4) for i = 1, 2, j = 1, . . . , 4 being indepen-

dent for each i = 0, 1 and with B,B′ Bernoulli B(1/2) distributed, L(V
[i],(j)
n/4) =

15

L(V
[i]
n/4), L(W

[i],(j)
n/4) = L(W

[i]
n/4) for i = 1, 2 and j = 1, . . . , 4. By the induction

hypothesis we may assume that we have versions of these random variates with

V
[0],(j)
n/4 + W

[0],(j)
n/4 ≤ V

[1],(j)
n/4 + W

[1],(j)
n/4 for j = 1, . . . , 4. With this coupling we define

(V
[1]
n ,W

[1]
n) and (V

[0]
n ,W

[0]
n) according to the values of B,B′: On {B = 1, B′ = 0}

we set
(

V
[0]
n

W
[0]
n

)
:=

(
V

[0],(2)
n/4

W
[0],(2)
n/4

)
+

(
V

[0],(3)
n/4

W
[0],(3)
n/4

)
+ BB′

(
V

[0]),(4)
n/4

W
[0],(4)
n/4

)
+ B

(
V

[1],(1)
n/4

W
[1],(1)
n/4

)
,

(
V

[1]
n

W
[1]
n

)
:= B

(
V

[0],(3)
n/4

W
[0],(3)
n/4

)
+

(
V

[1],(1)
n/4

W
[1],(1)
n/4

)
+ B′

(
V

[0],(4)
n/4

W
[0],(4)
n/4

)
+

(
V

[1],(2)
n/4

W
[1],(2)
n/4

)

and obtain V
[0])
n + W

[0]
n ≤ V

[1]
n + W

[1]
n . On the remaining sets {B = 0, B′ = 0},

{B = 0, B′ = 1}, and {B = 1, B′ = 1} similar couplings of (V
[0]
n ,W

[0]
n), (V

[1]
n ,W

[1]
n)

can be defined with V
[0]
n + W

[0]
n ≤ V

[1]
n + W

[1]
n .

Proof of Theorem 1.2.2: Assume that a generation has (w0, w1) individuals of

type 0 and 1. Then, by the definition on the offspring distribution in section 4, the

expected number of individuals in the subsequent generation is given by

M

(
w0

w1

)
, M :=

[
9/4 1

1/2 2

]
.

Since C(v⋆) = C(v⋆(k)) is the sum of the individuals at generation k for the process

started with an individual of type 1 we obtain

E C(v⋆) = (1, 1)Mk

(
0

1

)
.

The matrix M has the eigenvalues λ1 = (17 +
√

33)/8 and λ2 = (17 −
√

33)/8 and

its k-th power can be evaluated to

Mk =
1

2
√

33

[
(
√

33 + 1)λk
1 + (

√
33 − 1)λk

2 8(λk
1 − λk

2)

4(λk
1 − λk

2) (
√

33 − 1)λk
1 + (

√
33 + 1)λk

2

]
.

From this, E C(v⋆) and various constants needed subsequently can be read off. Note,

that λk
1 = nα with α given in Theorem 1.2.2 and n = 22k.

Before proving Theorem 1.2.3 it is convenient to first prove Theorem 1.2.4.

16

Proof of Theorem 1.2.4: The 2-type branching process defined in section 4 is

supercritical, nonsingular, and positive regular. Hence, a theorem of Harris (1963)

implies that

1

nα

(
V

[1]
n

W
[1]
n

)
−→ Y

(
ν1

ν2

)

almost surely, as k → ∞, where Y is a nonnegative random variable and (ν1, ν2) a

deterministic vector that could also be further specified. Thus we obtain

C(v⋆)

nα
−→ C

in distribution, as k → ∞, with L(C) = L((ν1 + ν2)Y).

On the other hand the recursive formulation of subsection 1.2.4 leads after the

normalization (X
[0]
n ,X

[1]
n) = Xn := Gn/nα to

Xn
d
=

4∑

r=1

A(r)X
(r)
n/4,

for k ≥ 1, where A(r) = A(2) = (1/4α)I2, with the 2 × 2 identity matrix I2, and

A(3) =
1

4α

[
B1B2 0

1 − B2 0

]
, A(4) =

1

4α

[
0 B1

B1 0

]
, (1.3)

where X
(1)
n/4, . . . ,X

(4)
n/4, B1, B2 are independent with L(X

(r)
n/4) = L(Xn/4) for r =

1, . . . , 4 and L(B1) = L(B2) = B(1/2). It follows from the contraction method

that Xn converges weakly and with all mixed second moments to some G, that can

be characterized as in Theorem 1.2.4. For details, how to apply the contraction

method, see Theorem 4.1 in Neininger (2001). Thus, we have C(v⋆)/nα → G[1] in

distribution.

Proof of Theorem 1.2.3: As shown in the proof of Theorem 1.2.4 we have

the convergence Xn = Gn/nα → G for all mixed second moments. This, in

particular, implies Var X
[1]
n → Var G[1]. The variances of G[1] can be obtained

from the distributional identity for G stated in Theorem 1.2.4. Then we obtain

Var C(v⋆) = Var(nαX
[1]
n) ∼ rn2α with r = Var G[1].

Proof of Proposition 1.2.5: For (Y
[0]
n , Y

[1]
n) = Yn = (1/nα)(Gn − EGn) we

have marginals L(Y
[1]
n) = L((C(v⋆) − E C(v⋆))/nα) and L(Y

[0]
n) = L((C(v⋆) −

17

E C(v⋆))/n
α). The distributional recurrence for Gn from subsection 1.2.4 implies

the relation

Yn
d
=

4∑

r=1

A(r)Y
(r)
n/4 + bn, k ≥ 1, (1.4)

with Y
(1)
n/4, . . . ,Y

(4)
n/4, B1, B2 independent, L(Y

(r)
n/4) = L(Yn/4), for r = 1, . . . , 4,

L(B1) = L(B2) = B(1/2) and

bn =
4α

nα
EGn/4

4∑

r=1

A(r) − 4α

nα
EGn.

The matrices A(r) are given in (1.3).

We prove the assertion by induction on k. For k = 0 we have Y1 = 0, thus

the assertion is true. Assume the assertion is true for some n/4 = 22(k−1). Then,

conditioning on (A(1), . . . , A(4),bn), denoting the distribution of this vector by σn,

and using the induction hypothesis, we obtain

E exp〈s,Yn〉 =

∫
exp〈s, βn〉

4∏

r=1

E exp〈s, a(r)Yn/4〉dσn(a(1), . . . , a(4), βn)

≤
∫

exp〈s, βn〉
4∏

r=1

exp(K‖a(r)T s‖q)dσn(a(1), . . . , a(4), βn)

≤
∫

exp

(
〈s, βn〉 + K‖s‖q

4∑

r=1

‖a(r)‖q
op

)
dσn(a(1), . . . , a(4), βn)

= E exp(〈s,bn〉 + K‖s‖qU) exp(K‖s‖q),

with U :=
∑4

r=1

(
‖A(r)‖q

op

)
− 1 = 4−αq(2 + B1B2 + (1−B2) + B1)− 1 and ‖A‖op =

sup‖x‖=1 ‖Ax‖ for matrices A. Hence, the proof is completed by showing

sup
k≥1

E exp(〈s,bn〉 + K‖s‖qU) ≤ 1,

for some appropriate K > 0. We denote ξ := − esssup U = 1− 41−αq , thus q > 1/α

implies ξ > 0.

Small ‖s‖: First we consider small ‖s‖ with ‖s‖ ≤ c/ supk≥1 ‖bn‖2,∞ for some

c > 0, where ‖bn‖2,∞ := ‖ ‖bn‖ ‖∞, the inner norm being the Euclidean norm.

Note that throughout we have n = n(k) = 22k. For these small ‖s‖ we have

E exp((〈s,bn〉 + K‖s‖qU) ≤ exp(−K‖s‖qξ)E exp〈s,bn〉

18

and, with E 〈s,bn〉 = 0,

E exp〈s,bn〉 = E

[
1 + 〈s,bn〉 +

∞∑

k=2

〈s,bn〉k
k!

]

= 1 + E 〈s,bn〉2
∞∑

k=2

〈s,bn〉k−2

k!

≤ 1 + ‖s‖2E ‖bn‖2
∞∑

k=2

ck−2

k!

= 1 + ‖s‖2E ‖bn‖2 ec − 1 − c

c2
.

Using exp(−K‖s‖qξ) ≤ 1/(1 + K‖s‖qξ) and with Ψ(c) = (ec − 1 − c)/c2 we obtain

E exp(〈s,bn〉 + K‖s‖qU) ≤ 1 + ‖s‖2E‖bn‖2Ψ(c)

1 + K‖s‖qξ
.

Hence, we have to choose K with

K ≥ ‖s‖2−qΨ(c)

ξ
sup
k≥1

E ‖bn‖2.

With ‖s‖ ≤ c/ supk≥1 ‖bn‖2,∞ and q ≥ 2 a possible choice is

K =
supk≥1 E ‖bn‖2

supk≥1 ‖bn‖2−q
2,∞

Ψq(c)

ξ
,

with Ψq(c) = (ec − 1 − c)/cq .

Large ‖s‖: For general s ∈ R2 we have

〈s,bn〉 + K‖s‖qU ≤ ‖s‖‖bn‖ − ‖s‖qKξ ≤ ‖s‖‖bn‖2,∞ − ‖s‖qKξ,

and this is less than zero if

‖s‖q−1 ≥ supk≥1 ‖bn‖2,∞

Kξ
=

supk≥1 ‖bn‖3−q
2,∞

supk≥1 E ‖bn‖2Ψq(c)
.

If ‖s‖ satisfies the latter inequality we call it large. Thus, for large ‖s‖ we have

supk≥1 E exp(〈s,bn〉 + K‖s‖qU) ≤ 1.

In order to overlap the regions for small and large ‖s‖ we need

Ψ1(c) ≥
supk≥1 ‖bn‖2

2,∞

supk≥1 E ‖bn‖2
.

19

The right hand side of the latter display can be evaluated explicitly for our problem

and equals 104/77. Thus, this inequality is true for, e.g., c = 1.53. Hence, with the

explicit value

K := Kq =
supk≥1 E ‖bn‖2

supk≥1 ‖bn‖2−q
2,∞

e1.53 − 2.53

1.53q(1 − 41−qα)
(1.5)

the proof is completed.

Proof of Theorem 1.2.6: By Chernoff’s bounding technique we have, for u > 0

and with Proposition 1.2.5,

P

(
C(v⋆) − E C(v⋆)

nα
> t

)
= P(exp(uY [1]

n) > exp(ut)))

≤ E exp(uY [1]
n − ut)

= E exp(〈(0, u),Yn〉 − ut)

≤ exp(Kqu
q − ut),

for all q, Kq as in Proposition 3.5 and (1.5). Minimizing over u > 0 we obtain the

bound

P

(
C(v⋆) − E C(v⋆)

nα
> t

)
≤ exp(−Ltκ),

for 1 < κ < 1/(1 − α), with

L = Lκ = K1−κ
κ/(κ−1)

(κ − 1)κ−1

κκ
(1.6)

and Kκ/(κ−1) given in (1.5). This completes the tail bound.

1.2.6 d-ary Boolean decision trees

The analysis can be carried over to Snir’s algorithm for d-ary Boolean decision trees.

A worst case input v⋆ ∈ {0, 1}n with n = d2k can be constructed similarly. Then

we have similar results for C(v⋆):

Theorem 1.2.7 For the worst case complexity C(v⋆) of evaluating an d-ary

20

Boolean decision tree we have the following asymptotics:

E C(v⋆) = c
(d)
1 nαd + c

(d)
2 nβd,

Var C(v⋆) ∼ rdn
2αd ,

C(v⋆)

nαd
→ Cd,

P

(
C(v⋆) − E C(v⋆)

nαd
> t

)
≤ exp(−L(d)tκ), t > 0,

with constants c
(d)
1 , αd, βd, rd, L(d) > 0, c

(d)
2 ∈ R, and 2 ≤ κ < κd = 1/(1−αd), αd

given in Theorem 1.1.2.

Numerical values for αd, rd and κd are listed in Table 1. The distribution of Cd is

given as L(Cd) = L(G[1]) and L(G) = L(G[0], G[1]) is characterized by E ‖G‖2 < ∞,

EG = (c
(d)
0 , c

(d)
1) and

G
d
=

1

d2αd

{
d∑

r=1

G(r) +

d−1∑

r=1

[
0 1r(U0)

1r(U0) 0

]
Ḡ(r)

+

d−1∑

r,ℓ=1

[
1r(U0)1ℓ(Ur) 0

1 − 1ℓ(Ur) 0

]
G(r,ℓ)

}
,

with L(G(r)) = L(Ḡ(r)) = L(G(r,ℓ)) = L(G) and G(r), Ḡ(r), G(r,ℓ), Ur independent

with L(Ur) = unif{0, . . . , d − 1} for all r, ℓ. Here, we denote 1i(Y) := 1{i≤Y } for

integer i and a random variable Y , and we have

c
(d)
0 =

1

2
+

d + 3

2
√

16d + (d − 1)2
, c

(d)
1 =

1

2
+

3d + 1

2
√

16d + (d − 1)2
.

21

d 2 3 4 5 6 7 8

αd 0.754 0.759 0.765 0.769 0.774 0.778 0.781

rd 0.0938 0.0847 0.0782 0.0731 0.0689 0.0652 0.0619

κd 4.060 4.154 4.247 4.336 4.419 4.497 4.571

d 9 10 11 12 13 14 15

αd 0.785 0.788 0.790 0.793 0.795 0.798 0.800

rd 0.0590 0.0564 0.0541 0.0519 0.0499 0.0481 0.0464

κd 4.641 4.707 4.769 4.829 4.886 4.940 4.993

d 16 17 20 30 40 50 100

αd 0.802 0.804 0.809 0.821 0.830 0.837 0.856

rd 0.0448 0.0433 0.0394 0.0304 0.0247 0.0209 0.0117

κd 5.043 5.091 5.226 5.596 5.885 6.123 6.928

Table 1: Numerical values of the quantities αd, rd and κd appearing in Theorem

1.2.7 for various values of d.

1.3 A Limit Law for the Root Value of Minimax Trees

In this section we study minimax trees with real valued leaves, where all nodes on

even levels are labeled ∨ and all nodes on odd levels are labeled ∧. We are not

concerned with the complexity of algorithms to determine the root’s value of such a

tree, but with the root’s value itself. We derive a limit law for Wn, the root’s value

under Pearl’s model.

Recall that in Pearl’s model the leaves’ values V1, . . . , Vn are independent and

identically distributed random variables with a distribution L(V) having a distri-

bution function FV (x) = P(V ≤ x) that is continuous and strictly increasing on the

range, where 0 < FV < 1.

We denote the distribution function of Wn by Fn. Note that this is defined for

all n = d2k with k ∈ N0 and that we have F1 = FV . Moreover, for k ≥ 1, we have

Fn = f ◦ Fn/d2 with

f(x) =
(
1 − (1 − x)d

)d
, x ∈ [0, 1]. (1.7)

This is implied by the recursive structure of the tree: The values of the d2 nodes on

level 2 are independent and identically distributed with distribution L(Wn/d2). We

22

denote these values by W
(i,j)
n/d2 with i, j = 1, . . . , d, see Figure 1.1 for the case d = 2.

Hence, by independence we have

Fn(x) = P

(
d∨

i=1

d∧

j=1

W
(i,j)
n/d2 ≤ x

)
=

(
1 −

(
1 − P

(
W

(i,j)
n/d2 ≤ x

))d
)d

= f(Fn/d2(x)).

Function f has the fixed points 0 and 1 and q defined in Theorem 1.1.9 as the

unique positive solution of x = (1 − x)d as the only fixed point in the open unit

interval (0, 1). Recall that Pearl (1980) showed Wn → qV in probability, as k → ∞
for qV = F−1

V (q), see Theorem 1.1.9. We denote the slope of f in q by ξ = f ′(q).

Then the following limit law holds.

Theorem 1.3.1 With FV , q and ξ as above and d ≥ 2 we have the following

convergence in distribution for the value Wn of the minimax tree in Pearl’s model.

With α = log(ξ)/ log(d2) ∈ (0, 1),

nα(FV (Wn) − q)
L−→ W, k → ∞. (1.8)

The random variable W does not depend upon L(V), has a continuous distribution

function FW with 0 < FW < 1, FW (0) = q and

FW (x) = f (FW (x/ξ)) , x ∈ R, (1.9)

where f is the function defined in (1.7).

An approximation of the limit distribution function FW is plotted in Figure 1.4

for the cases d = 2, . . . , 10.

Further analysis of FW is done in the Diploma thesis of Meiners (2006). He

showed in Theorem 3.2.1, Meiners (2006) that FW ∈ C∞ and that its power series

in 0 converges on C.

Note that the transformation FV (Wn) of Wn in (1.8) allows to rewrite FV (Wn)

as follows: The random variable FV (Wn) is distributed as the root’s value W ′
n of

a minimax tree with same branching degree and height where the independent,

identically distributed leaves now have distribution L(V ′) = L(FV (V)) = unif[0, 1],

the uniform distribution on [0, 1]. Hence without loss of generality one may assume

that L(V) = unif[0, 1].

In subsection 1.3.1 we collect some properties of f in section 1.3.1, since later

on the recurrence relation Fn = f ◦Fn/d2 is exploited. Subsection 1.3.2 contains the

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2-0.1-0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9-1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 1.4: Approximations of the limit distribution function FW for d = 2, . . . , 10.

They can be distinguished by FW (0) = qd being decreasing in d. As approximations

the functions g6 defined in (1.13) are plotted.

24

proof of Theorem 1.3.1 and subsection 1.3.3 states a further result on the limit W ,

given by the Diploma thesis of Meiners (2006).

1.3.1 Technical preliminaries

We collect some properties of the function f defined in (1.7).

Lemma 1.3.2 There is a unique q ∈ (0, 1) with f(q) = q. We have ξ = f ′(q) =

d2q2/(1 − q)2 ∈ (1, d2). Furthermore, for z := 1 − 1/(d + 1)1/d, we have

f ′′(x)





> 0 for 0 < x < z,

= 0 for x = z,

< 0 for z < x < 1.

(1.10)

We have q < z, thus f ′′(q) > 0.

Proof: For 0 < x < 1 we have

f ′(x) = d2(1 − x)d−1(1 − (1 − x)d)d−1, (1.11)

f ′′(x) = d2(d − 1)(1 − x)d−2(1 − (1 − x)d)d−2((d + 1)(1 − x)d − 1). (1.12)

So, the (in-)equalities in (1.10) follow with z = zd = 1− 1/(d + 1)1/d. For existence

and uniqueness of the fixed point q of f in (0,1) we first show:

Claim: f(zd) − zd > 0 for all d ≥ 2.

The claim follows for d = 2, 3 by explicit calculation. Furthermore we have f(zd) =

(1 − 1/(d + 1))d ↓ 1/e as d → ∞, hence f(zd) ≥ 1/e for all d ≥ 4. It is easily seen

that zd is decreasing in d, thus zd ≤ z4 for all d ≥ 4. Consequently, for all d ≥ 4

f(zd) − zd ≥ 1

e
− z4 =

1

e
+ 1 − 1

51/4
> 0,

which implies the claim.

Since f(0) = f ′(0) = 0, there exists 0 < ε < zd with f(x) − x < 0 for all

0 < x ≤ ε. Together with the previous claim, continuity and the intermediate value

theorem we obtain a fixed point of f in (ε, zd). We denote by q = qd the smallest

fixed point of f in (0, zd), which exists by continuity and satisfies q > ε > 0. Then

we have f(x) < x for all x ∈ (0, q). For x ∈ (q, z) we have f(x) > x by convexity of f

on [0, z]: Otherwise there was an x ∈ (q, z) with f(x) ≤ x. For arbitrary y ∈ (0, q),

and λ ∈ (0, 1) with q = λy + (1 − λ)x this implied f(q) ≤ λf(y) + (1 − λ)f(x) <

λy+(1−λ)x = q, a contradiction. Similarly, concavity of f on [z, 1] implies f(x) > x

25

for all x ∈ (z, 1): For all such x there is a λ ∈ (0, 1) with x = λz + (1 − λ)1 thus

f(x) ≥ λf(z) + (1 − λ)f(1) > λz + (1 − λ)1 = x. Altogether, q is the unique fixed

point of f in (0, 1).

It remains to prove that ξ = ξd = f ′(q) = d2q2/(1 − q)2 ∈ (1, d2). For this

note that the function ud : [0, 1] → [0, 1], x 7→ (1 − x)d, has a unique fixed point

in (0, 1). Since f = ud ◦ ud this fixed point must be q = qd, hence we obtain the

relation q = (1− q)d. Using this relation in (1.11) implies ξ = f ′(q) = d2q2/(1− q)2.

Moreover, since ud′ ≤ ud for all 2 ≤ d ≤ d′ the sequence (qd)d≥2 is decreasing. Thus

qd ≤ q2 = (3 −
√

5)/2 < 1/2 for all d ≥ 2, hence ξd < d2. Finally, q = (1 − q)d,

f ′′(q) > 0 and the representation (1.12) imply q > 1/(d + 1), hence q/(1− q) > 1/d

and ξ > d2/d2 = 1.

In the following, it is convenient to extend function f defined in (1.7) to the real

line by setting f(x) = 0 for x < 0 and f(x) = 1 for x > 1. We denote the iterations

of f by fk = f ◦ fk−1 for k ≥ 1 and f0(x) = x for all x ∈ R. In particular, we have

f1 = f . Using Fn = f ◦ Fn/d2 we obtain for n = d2k that Fn = fk ◦ F1 = fk ◦ FV .

For the quantities nα(FV (Wn)− q) of Theorem 1.3.1 we obtain with the relation

nα = ξk

P(nα(FV (Wn) − q) ≤ x) = P

(
Wn ≤ F−1

V

(
q +

x

ξk

))

= Fn ◦ F−1
V

(
q +

x

ξk

)

= fk

(
q +

x

ξk

)
.

Thus, the functions gk : R → R defined by

gk(x) = fk

(
q +

x

ξk

)
, x ∈ R, (1.13)

are the distribution functions of nα(FV (Wn) − q) for n = d2k, k ≥ 0.

Subsequently we will need bounds for gk valid locally around x = 0 and uniformly

in k ≥ 0.

Lemma 1.3.3 Denote h1(x) := q + x and h2(x) := q + x + cx2 for x ∈ R with

c := 1 + f ′′(q)/(2ξ(ξ − 1)) > 1. Then it exists an ε > 0 such that for all k ≥ 0 and

|x| < ε

h1(x) ≤ gk(x) ≤ h2(x).

26

Proof: We prove the assertion by induction on k. For k = 0 we have, for all x ∈ R,

h1(x) = q + x = g0(x) ≤ h2(x).

Assume that the assertion is true for some k−1 ≥ 0 and ε > 0. Since f is increasing

and |x|/ξ < ε for all |x| < ε we obtain

gk(x) = fk

(
q +

x

ξk

)
= f

(
fk−1

(
q +

x/ξ

ξk−1

))
= f

(
gk−1

(
x

ξ

))
≥ f

(
h1

(
x

ξ

))
,

and analogously

gk(x) ≤ f

(
h2

(
x

ξ

))
.

Thus, the induction proof is completed by showing that for some ε > 0 we have

f

(
h1

(
x

ξ

))
≥ h1(x), f

(
h2

(
x

ξ

))
≤ h2(x), (1.14)

for all |x| < ε.

Taylor expansion of x 7→ f(hi(x/ξ)) around x = 0 yields for each i = 1, 2

f(hi(x/ξ)) = q + x +
1

2

(
h′′

i (0)

ξ
+

f ′′(q)

ξ2

)
x2 + O(x3),

for all x in a bounded neighborhood of 0. We have

1

2

(
h′′

1(0)

ξ
+

f ′′(q)

ξ2

)
=

1

2

f ′′(q)

ξ2
> 0

by Lemma 1.3.2. From h′′
2(0) = 2c and the definition of c it follows

1

2

(
h′′

2(0)

ξ
+

f ′′(q)

ξ2

)
=

f ′′(q)

2 ξ (ξ − 1)
+

1

ξ
<

f ′′(q)

2 ξ (ξ − 1)
+ 1 = c.

Thus, there exists an ε > 0 with (1.14) for all |x| < ε.

1.3.2 Proof of Theorem 1.3.1

Convergence in distribution: We show that nα(FV (Wn)−q) converges in distri-

bution by showing that its distribution functions gk, n = d2k, convergence pointwise

to a distribution function g.

Fix x ∈ R. Since q < z and f ′(q) = ξ > 1 there is k0(x) such that 0 < q+x/ξk <

z, for all k ≥ k0(x). By Lemma 1.3.2 the function f is convex on [0, z] and satisfies

f(q) = q. Hence, for all k ≥ k0(x)

f

(
q +

x

ξk

)
≥ f(q) + f ′(q)

x

ξk
= q +

x

ξk−1

27

and, since fk−1 is monotone increasing,

gk(x) = fk

(
q +

x

ξk

)
= fk−1

(
f

(
q +

x

ξk

))
≥ fk−1

(
q +

x

ξk−1

)
= gk−1(x).

(1.15)

Thus, the sequence (gk(x))k≥k0(x) is monotone increasing and upper bounded, hence

convergent. We denote its limit by

g(x) := lim
k→∞

gk(x), x ∈ R.

Since gk is nondecreasing for all k ≥ 1 its limit g is a nondecreasing function.

Since gk(0) = fk(q) = q for every k ≥ 0, we have g(0) = q. Continuity of f and

gk(x) = f(gk−1(x/ξ)) yields, with k → ∞, the functional equation g(x) = f(g(x/ξ)).

Monotonicity of g and 0 ≤ g ≤ 1 imply that limx→∞ g(x) and limx→−∞ g(x)

exist. Continuity of f and ξ > 0 yield with the functional equation for g that

lim
x→−∞

g(x) = f
(

lim
x→−∞

g(x)
)
, lim

x→∞
g(x) = f

(
lim

x→∞
g(x)

)
.

Hence, both limits are fixed points of f . Lemma 1.3.3 and convergence of gk yield,

with ε as in Lemma 1.3.3,

h1(x) < g(x) < h2(x), −ε < x < ε. (1.16)

In a left neighborhood of 0 we have h2 < q. Thus, for some x < 0 we have g(x) < q,

and for appropriate x > 0 we have g(x) > h1(x) > q. Since f has only the fixed

points 0, q and 1 we obtain limx→−∞ g(x) = 0 and limx→∞ g(x) = 1.

Hence, ḡ(x) = limy↓x g(y) for x ∈ R is a distribution function with gk(x) →
ḡ(x) for all continuity points x of ḡ. This implies that nα(FV (Wn) − q) → W in

distribution with a random variable W with distribution function FW = ḡ.

Note that up to now we only know g(x) = ḡ(x) for continuity points x of ḡ. (We

will see below that g is continuous, hence g(x) = ḡ(x) = FW (x) for all x ∈ R.)

Continuity of g: We show that g is continuous in all x ∈ R by distinguishing

the three cases x < 0, x = 0 and x > 0. Note that for all x ∈ R it is sufficient to

show that there exists a δ > 0 with

sup
{
g′k(y)

∣∣∣|x − y| < δ, k ≥ 0
}

=: C < ∞. (1.17)

From this we obtain |gk(x) − gk(y)| ≤ C|x − y| for all k ∈ N and |x − y| < δ, hence

|g(x) − g(y)| ≤ C|x − y|, in particular g is continuous in x.

28

Case x < 0: The chain rule and induction imply

g′k(x) =
1

ξk

k−1∏

i=0

f ′

(
fi

(
q +

x

ξk

))
. (1.18)

For x ≤ 0 we have fi(q + x/ξk) ≤ q. Since f ′ is monotone increasing on (−∞, q] we

obtain g′k(x) ≤ (f ′(q)/ξ)k = 1 for all x ≤ 0 and k ≥ 0. Hence, for all x < 0 we have

(1.17) with C = 1.

Case x = 0: By Lemma 1.3.3 and ḡ(x) = g(x) for all x < 0 we obtain

P(W < 0) = lim
ℓ→∞

P

(
W ≤ −1

ℓ

)
= lim

ℓ→∞
ḡ

(
−1

ℓ

)
= lim

ℓ→∞
g

(
−1

ℓ

)

≥ lim
ℓ→∞

h1

(
−1

ℓ

)
= q. (1.19)

Since g is a monotone function it has at most countably many discontinuity points.

Hence there exists a sequence (xℓ)ℓ≥1 of continuity points of g with xℓ ↓ 0. Then,

with Lemma 1.3.3 we obtain

P(W > 0) = 1 − lim
ℓ→∞

P (W ≤ xℓ) = 1 − lim
ℓ→∞

ḡ (xℓ) = 1 − lim
ℓ→∞

g (xℓ)

≥ 1 − lim
ℓ→∞

h2 (xℓ) = 1 − q. (1.20)

Inequalities (1.19) and (1.20) together imply P(W = 0) = 0, hence g is continuous

in x = 0. Since we have g(0) = q this implies FW (0) = g(0) = q.

Case x > 0: We first show the following assertion:

Claim: There exists a 0 < ε ≤ z − q such that g′k is a monotone increasing

function on [0, ε] for all k ≥ 0.

The claim is shown as follows: Since g is continuous in 0 and g(0) = q < z there

exists a 0 < ε < z − q with g(y) ≤ z for all 0 ≤ y ≤ ε. By monotonicity of the fi,

we have for all k ≥ 0, 0 ≤ i ≤ k and 0 < y′ < y ≤ ε

fi(q + y′/ξk) ≤ fi(q + y/ξk) ≤ fi(q + y/ξi) = gi(y) ≤ g(y) ≤ z. (1.21)

For the second last inequality in the latter display note that (gi)i≥0 is increasing on

(−∞, z − q), cf. (1.15). Since f ′ is monotone increasing on (−∞, z] this yields

f ′(fi(q + y′/ξk)) ≤ f ′(fi(q + y/ξk)), (1.22)

thus by (1.18) we obtain g′k(y
′) ≤ g′k(y) which implies the claim.

29

Now, assume g is discontinuous in some x′ > 0. Let ε be as in the previous

claim. Note that all the points x′/ξk, k ≥ 0, are discontinuities of g by the functional

equation g(x) = f(g(x/ξ)) and continuity of f . Hence there exists a discontinuity

0 < x < ε/2 of g. By (1.17), we have for all 0 < δ < (ε/2 − x) ∧ x,

sup
{

g′k(y)
∣∣∣ y : |y − x| < δ, k ≥ 0

}
= ∞. (1.23)

Fix such a δ. By (1.23) and the claim we have g′m(x + δ) ≥ 4/ε for a sufficiently

large m. Now, the claim implies g′m(y) ≥ 4/ε for all y ∈ [ε/2, ε]. Then,

gm(ε) − gm(ε/2) =

∫ ε

ε/2
g′m(y) dy ≥

∫ ε

ε/2

4

ε
dy = 2. (1.24)

This is a contradiction, since gm is a distribution function.

0 < FW < 1: Assume that FW (x) = g(x) ∈ {0, 1} for some x ∈ R. Then

g(x/ξk) = g(x) for all k ≥ 0. Hence by continuity of g, we obtain g(0) ∈ {0, 1}.
Since g(0) = q ∈ (0, 1) this is a contradiction.

1.3.3 Further result on the limit W

In the Diploma thesis of Meiners (2006) further analysis of FW is done. He shows

for fd, q and ξ as above:

Theorem 1.3.4 (Meiners (2006)) Distribution function FW can be extended to

a function which is holomorph on C. Hence it has a power series around the center

0,

FW (x) =
∑

n≥0

anxn,

and FW converges on C. The coefficients an are given by

a0 = q, a1 = 1

and

an =
1

ξn − ξ

d2∑

k=2

c̃k

∑

j1+···+jk=n,j1,...,jk≥1

aj1 · · · ajk
, n ≥ 2,

where c̃0, . . . , c̃k are the coefficients of polynom fd, centered at q. In particular

FW ∈ C∞.

30

Chapter 2

Tail Bounds for the Wiener

index of Random Binary Search

Trees

2.1 Introduction and Main Results

The Wiener index of a connected graph is the sum of all distances between all

unordered pairs of vertices of the graph. The distance between two vertices is defined

as the minimum number of edges connecting them. This index was introduced by

chemist Wiener (1947), in order to study relations between organic compounds

and the index of their molecular graphs. In particular for trees it is much studied

by mathematicians and chemists (cf. Dobrynin, Entringer and Gutman (2001) for

survey) but comparably little work has been done for random trees.

Entriger, Meir, Moon and Székely (1994) studied the Wiener index of simply

generated families of trees. Given such a family, a simply generated random tree of

order n is uniformly distributed on all trees of that family having n nodes. Entriger,

Meir, Moon and Székely (1994) proved that the expected Wiener index of the simply

generated random tree of order n is asymptotically Kn5/2, where K is a constant

depending on the simply generated family. Several important tree families are

simply generated. For some of them, like ordinary rooted trees, rooted labeled

trees and rooted binary trees, they gave even more exact formulæ for the expected

Wiener index.

Neininger (2002) analyzed the Wiener index of random binary search trees and

31

random recursive trees. A random binary search tree of order n is generated by

a random permutation of numbers 1, . . . , n, whereas a random recursive tree of

order n is uniformly distributed on all recursive trees with n nodes (see Knuth

(1998)). The internal path length of a rooted tree is defined as the sum of the

distances between the root and all nodes. Neininger (2002) showed that the recursive

structure of binary search trees leads to a bivariate distributional recurrence of

Wiener index and internal path length for the random binary search tree: Denote

(Wn, Pn) Wiener index and internal path length of the random binary search tree

of order n, wn = E Wn, pn = E Pn and In and Jn = n − 1 − In the cardinalities

of the left and right subtree of the root. In and Jn are uniformly distributed on

{0, . . . , n − 1}. He showed

(
Wn

Pn

)
d
=

[
1 n − In

0 1

](
WIn

PIn

)
+

[
1 n − Jn

0 1

](
W ′

Jn

P ′
Jn

)
+

(
2InJn + n − 1

n − 1

)
, (2.1)

where (Wi, Pi), (W ′
j , P

′
j), 0 ≤ i, j ≤ n − 1, In are independent and L((W ′

j , P
′
j)) =

L((Wj , Pj)). This distributional recursion enabled Neininger (2002) to study the

Wiener index via contraction method. For Wn he obtained exact expectation,

asymptotic of the variance and L2-convergence of

Yn =

(
Wn − wn

n2
,
Pn − pn

n

)
,

where the bivariate limit distributions are characterized uniquely, such that all its

mixed moments can be calculated. Note that it was already stated in Hwang and

Neininger (2002) that

wn = 2n2Hn − 6n2 + 8nHn − 10n + 6Hn, (2.2)

where Hn denotes the n-th harmonic number Hn =
∑n

i=1 1/i. Furthermore he

showed that decomposing the random recursive tree of order n (see Mahmoud and

Smythe (1994)) into the subtree rooted at the node labeled 2 and the rest of the tree

leads to a distributional recursion, similar to (2.1) and he obtained analog results

for random recursive trees.

Janson (2003) proved a limit law for the Wiener index of Galton-Watson trees,

conditioned on total population size n, as n → ∞, where offspring distribution

L(X) satisfies E X = 1 and VarX < ∞. He showed convergence in distribution

and with all moments, characterized the limit via a normalized Brownian excursion

and obtained a formula for all moments. Aldous (1991) showed that, beside some

32

extreme cases usually not considered, simply generated random trees are distributed

as conditioned Galton-Watson trees. Thus, the limit law of Janson (2003) can also

be interpreted as a result on simply generated random trees.

Wagner (2006) studied the Wiener index of rooted and unrooted degree-

restricted trees. Given a set D ⊆ N, 1 ∈ D, the family of rooted (unrooted)

degree-restricted trees, consists of all rooted (unrooted) trees, for which the degree

(number of connected nodes) of every node is in D. This model might be of

particular interest for chemists, since molecular graphs are degree-restricted. Given

a family of rooted or a family of unrooted degree-restricted trees, a random degree

restricted tree of order n is uniformly distributed on all trees of that family, having

n nodes. If set {d − 1|d ∈ D, d 6= 1} has greatest common divisor 1, then the

expected Wiener index of a the random degree-restricted tree is asymptotically

Kn5/2, where K is a constant depending on D. Constant K is the same for the

family of rooted and the family of unrooted degree-restricted trees, determined by

D. Wagner (2006) used the method of Entriger, Meir, Moon and Székely (1994) in

order to obtain these results.

In this chapter we are analyzing deviations from the expectation of Wn, the

Wiener index of random binary search trees. As an upper bound we obtain the

following result:

Theorem 2.1.1 Let L0
.
= 5.0177 be the largest root of eL = 6L2 and c = (L0 −

1)/(24L2
0)

.
= 0.0066. Then we have for every t > 0 and every n ≥ 0

P

(
Wn − wn

n2
> t

)
≤





exp(−1/36t2), for 0 ≤ t ≤ 8.82

exp(−1/96t2), for 8.82 < t ≤ 48L0
.
= 240.848

exp(−ct2), for 48L0 < t ≤ 24L2
0

.
= 604.256

exp(−t(ln(t) − ln(4e)), for 24L2
0 < t.

The same bound applies for the left tail.

We use the notation ln(k)(n), where ln(1)(n) = ln(n) and ln(k+1)(n) = ln(ln(k)(n)).

Replacing t by twn/n2 and availing wn/n2 = 2 ln n + O(1), Theorem 2.1.1 yields in

particular this corollary:

Corollary 2.1.2 For every t > 0 we have for every n ≥ 0

P (|Wn − wn| > twn) ≤ n−2t(ln(2)(n)+ln(t)−ln(2e)+o(1)).

33

Furthermore we have a lower bound on the tails of Wn:

Theorem 2.1.3 For fixed 0 < t ≤ 1 we have

P (|Wn − wn| > twn) ≥ P (Wn − wn > twn) ≥ n−8t(ln(2)(n)+O(ln(3)(n))),

as n → ∞.

We are going to analyze upper tail bounds by two different methods.

In section 2.2 we introduce our analysis via Chernoff’s bounding technique. For

this method it is crucial to estimate the moment generating function E exp〈s,Yn〉,
as done by Proposition 2.2.1, in order to get an upper tail bound for Wn via Markov’s

inequality. Upper tail bounds via Chernoff’s bounding technique for Pn, the inter-

nal path length of the random binary search tree, are given essentially by Rösler

(1992) and explicitly by Fill and Janson (2002). They obtained their estimate of

the moment generating function inductively, by using the univariate distributional

recurrence

Pn
d
= PIn + P ′

Jn
+ n − 1,

for Pi, P ′
j , In and Jn as in (2.1). Proposition 2.2.1 is also proved by induction

on n, now using the bivariate recurrence (2.1) and also different arguments for the

inductive step. This proposition is leading to Theorem 2.1.1 and thus corollary

2.1.2.

In section 2.3 we introduce our analysis via the method of bounded differences.

The idea is to define by an appropriate filtration a Doob Martingale on Wn and to

estimate the martingale differences. Recursion (2.1) is used again for this estimate.

Tails of Pn have been analyzed with the method of bounded differences by Hayward

and McDiarmid (1996). We are transferring this method on the analysis of Wn and

obtain Theorem 2.3.1, which is a slightly weaker estimate than Corollary 2.1.2. The

upper tail bounds for Pn, given by Fill and Janson (2002) and by Hayward and

McDiarmid (1996) are in the same relationship with each other.

In section 2.4 we prove lower bound result Theorem 2.1.3. We will show that

there is a class of binary search trees, having untypically large Wiener indices and

that the random binary search tree is in that class with probability at least as large

as the right hand side of the inequality in the theorem. This proof is geared to

McDiarmid and Hayward’s (1996) analysis on the lower tail bounds for Pn.

34

2.2 Analysis via Chernoff’s bounding technique

As already pointed out, it is crucial to prove the following proposition, to obtain

Theorem 2.1.1:

Proposition 2.2.1 Let L0 be as in Theorem 2.1.1 and s ∈ R2. Then for every

n ≥ 1

E exp〈s,Yn〉 ≤





exp
(
9‖s‖2

)
, for 0 ≤ ‖s‖ ≤ 1/2

exp(24‖s‖2), for 1/2 < ‖s‖ ≤ L0

exp(4e‖s‖), for L0 < ‖s‖

For 1 ≤ i ≤ n − 1 and j = j(i) = n − i − 1 we denote

a(1)
n (i) =

[
(i/n)2 i(n − i)/n2

0 i/n

]
,

a(2)
n (i) = a(1)

n (j),

C(1)
n (i) =

1

n2
(wi + (n − i)pi + wj + (n − j)pj − wn + 2ij + n − 1) ,

C(2)
n (i) =

1

n
(pi + pj − pn + n − 1)

and Cn(i) = (C
(1)
n (i), C

(2)
n (i)). With this notation (2.1) is equivalent to distribu-

tional recurrence

Yn
d
= A(1)

n YIn + A(2)
n Y′

Jn
+ bn, (2.3)

for (
A(1)

n , A(2)
n ,bn

)
=
(
a(1)

n (In), a(2)
n (In),Cn(In)

)
,

where Yi, Y′
j, 0 ≤ i, j ≤ n − 1, In are independent and L(Y′

j) = L(Yj). This will

be used in the proof of Proposition 2.2.1 and therefore the following two estimates

are needed:

Lemma 2.2.2 Let U be uniformly distributed on [0, 1] and couple In, n ≥ 1, by

choosing In = ⌊Un⌋ a.s. Then we have
∥∥∥A(1)T

n A(1)
n

∥∥∥
op

+
∥∥∥A(2)T

n A(2)
n

∥∥∥
op

− 1 < −U(1 − U) a.s.,

for every n ≥ 1.

Lemma 2.2.3 We have

sup
n≥0

max
1≤i≤n−1

‖Cn(i)‖ = 1.

35

Proof of Lemma 2.2.2: For x ∈ [0, 1] we set

M(x) =

[
x2 x(1 − x)

0 x

]
,

and get
∥∥∥M(x)T M(x)

∥∥∥
op

= x2
(
1 − x + x2 +

√
(1 + x2)(1 − x)2

)

≤ x2
(
1 − x + x2 +

√
(1 + x)2(1 − x)2

)

= x2(2 − x).

Furthermore we define ξ = ξ(U, n) ∈ [0, 1/n) by

ξ = U − ⌊Un⌋
n

.

Hence it is In/n = U − ξ, Jn/n = 1 − 1/n − U + ξ and

A(1)
n = M(U − ξ), A(2)

n = M(1 − 1/n − U + ξ).

Thus
∥∥∥A(1)T

n A(1)
n

∥∥∥
op

+
∥∥∥A(2)T

n A(2)
n

∥∥∥
op

− 1

≤ (U − ξ)2 (2 − U + ξ) +

(
1 − 1

n
− U + ξ

)2(
1 +

1

n
+ U − ξ

)
− 1

= −U(1 − U) + U2 3

n
+ U

3 − 2n − 6ξn − 2ξn2

n2

+
ξn3 − 3ξn + 3ξ2n2 + ξ2n3 + 2ξn2 + 1 − n − n2

n3
,

and the proof is completed by showing

U2 3

n
+ U

3 − 2n − 6ξn − 2ξn2

n2

+
ξn3 − 3ξn + 3ξ2n2 + ξ2n3 + 2ξn2 + 1 − n − n2

n3
< 0 a.s. (2.4)

For proving this, we define for every deterministic ξ ∈ [0, 1/n), n ∈ N, a function

rξ,n : [ξ, 1 − 1/n + ξ] → R by

rξ,n(u) = u2 3

n
+ u

3 − 2n − 6ξn − 2ξn2

n2

+
ξn3 − 3ξn + 3ξ2n2 + ξ2n3 + 2ξn2 + 1 − n − n2

n3

36

Convexity of rξ,n is given by r′′ξ,n(u) = 6/n, so we have for every u ∈ [ξ, 1− 1/n + ξ]

rξ,n(u) ≤ rξ,n(ξ) ∨ rξ,n(1 − 1/n + ξ) < 0, ∀n ≥ 2.

Since for ξ = ξ(U, n) we have U ∈ [ξ, 1− 1/n + ξ] a.s. This yields in particular that

(2.4) is a.s. true. Furthermore the assertion is trivial for n = 1, which completes

the proof.

Proof of Lemma 2.2.3: Since supn≥0 max1≤i≤n−1 ‖Cn(i)‖ ≥ supn≥0 C
(2)
n (0) = 1

it suffices to prove

sup
n≥0

max
1≤i≤n−1

‖Cn(i)‖ ≤ 1. (2.5)

For fixed n ≥ 1 and every 0 ≤ i ≤ n − 1 we define f(i) = C
(1)
n (i) + C

(2)
n (i),

g(i) = C
(2)
n (i) − C

(1)
n (i) and will prove that −1 ≤ f(i), g(i) ≤ 1. This yields

|C(1)
n (i)| + |C(2)

n (i)| ≤ 1 and thus (2.5).

−1 ≤ f(i) ≤ 1: At first we show that f has increasing increments, thus it is

convex. Using formula (2.2) and

pn = 2(n + 1)Hn − 4n,

one gets by straightforward calculation

f(i) = 1 +
6i(n − i − 1) + (4n + 6)((i + 1)Hi + (n − i)Hn−i−1 − (n + 1)Hn)

n2

+
12n + 7

n2

Hence with

(i + 2)Hi+1 − (i + 1)Hi = Hi+1 + 1

and

(i + 1)(n − i − 2) − i(n − i − 1) = n − 2i − 2

we get

f(i + 1) − f(i) =
6(n − 2i − 2) + (4n + 6)(Hi+1 − Hn−i−1)

n2
.

37

Thus

f(i + 1) − f(i) ≤ f(i + 2) − f(i + 1)

⇔ 6(n − 2i − 2) + (4n + 6)(Hi+1 − Hn−i−1)

≤ 6(n − 2(i + 1) − 2) + (4n + 6)(Hi+2 − Hn−i−2)

⇔ 12 ≤ (4n + 6)(Hi+2 − Hi+1 + Hn−i−1 − Hn−i−2)

⇔ 12 ≤ (4n + 6)

(
1

i + 2
+

1

n − i − 1

)
.

The last inequality is true, because minimizing the right hand side over i yields

(4n + 6)

(
1

i + 2
+

1

n − i − 1

)
≥ 16 +

8

n + 1
,

thus f is convex. Furthermore f is symmetric at (n − 1)/2, since C
(1)
n and C

(2)
n

obviously are, hence, for 0 ≤ i ≤ n − 1,

f(⌊(n − 1)/2⌋) ≤ f(i) ≤ f(0).

So f(⌊(n − 1)/2⌋) ≥ −1 and f(0) ≤ 1 provide −1 ≤ f(i) ≤ 1.

−1 ≤ g(i) ≤ 1: Again, via straightforward calculation we get

g(i) = 1 − 6
i(n − i − 1) + (i + 1)Hi + (n − i)Hn−i−1 − (n + 1)Hn

n2
− 6n + 7

n2
.

Analogue calculations and same arguments yield

−1 ≤ g(⌊(n − 1)/2⌋) ≤ g(i) ≤ g(0) ≤ 1,

which completes the proof.

Proof of Propostion 2.2.1: The assertion follows from the next result by choosing

L = ‖s‖: For every L > 0, denote

KL =





9 for L ≤ 0.49

24 for 0.49 < L ≤ L0

4eL/L2 for L0 < L.

Then

E exp〈s,Yn〉 ≤ exp
(
KL‖s‖2

)
, (2.6)

for every ‖s‖ ≤ L, n ≥ 0. This will be proved by induction on n. For n = 0 we have

Y0 = (0, 0) and the assertion is true. Assume the assertion is true for some L > 0,

38

‖s‖ ≤ L and every 0 ≤ i ≤ n − 1. Then, conditoning on In = ⌊Un⌋ = i and using

distributional recurrence (2.3) we obtain for j = n − i − 1 and ‖s‖ ≤ L

E exp 〈s,Yn〉 =
1

n

n−1∑

i=0

exp 〈s,Cn(i)〉E exp
〈
s, a(1)

n (i)Yi

〉
E exp

〈
s, a(2)

n (i)Yj

〉

≤ 1

n

n−1∑

i=0

exp 〈s,Cn(i)〉 exp

(
KL

∥∥∥a(1)
n (i)T s

∥∥∥
2
+ KL

∥∥∥a(2)
n (i)T s

∥∥∥
2
)

≤ 1

n

n−1∑

i=0

exp

(
〈s,Cn(i)〉 + KL‖s‖2

2∑

r=1

∥∥∥a(r)
n (i)T a(r)

n (i)
∥∥∥

op

)

= E exp

(
〈s,bn〉 + KL‖s‖2

2∑

r=1

∥∥∥A(r)T
n A(r)

n

∥∥∥
op

)

≤ E exp
(
〈s,bn〉 + KL‖s‖2(1 − U(1 − U))

)

= E exp
(
〈s,bn〉 − KL‖s‖2U(1 − U)

)
exp

(
KL‖s‖2

)
.

We applied induction hypothesis in the second line, using

‖a(r)
n (i)T s‖ ≤ ‖a(r)

n (i)T a(r)
n (i)‖1/2

op ‖s‖ ≤ ‖s‖ ≤ L,

since ‖a(r)
n (i)T a

(r)
n (i)‖op ≤ 1 for r = 1, 2, 0 ≤ i ≤ n − 1, and Lemma 2.2.2 in the

fifth line. Hence the proof is completed by showing

sup
n≥0

E exp
(
〈s,bn〉 − KL‖s‖2U(1 − U)

)
≤ 1.

Next we are studying the two cases L ≤ 0.49 and L > 0.49.

L ≤ 0.49: Cauchy-Schwarz inequality yields

E exp
(
〈s,bn〉 − KL‖s‖2U(1 − U)

)

≤ E exp (2 〈s,bn〉)1/2 E exp
(
−2KL‖s‖2U(1 − U)

)1/2
,

thus it suffices to prove

E exp (2 〈s,bn〉) E exp
(
−2KL‖s‖2U(1 − U)

)
≤ 1.

39

With ‖bn‖ ≤ 1 a.s. by Lemma 2.2.3 and E 〈s,bn〉 = 0 we obtain

E exp (2 〈s,bn〉) = E

(
1 + 2 〈s,bn〉 +

∞∑

k=2

(2 〈s,bn〉)k
k!

)

= 1 + E 〈s,bn〉2
∞∑

k=2

2k 〈s,bn〉k−2

k!

≤ 1 + ‖s‖2
∞∑

k=2

2k(1/2)k−2

k!

= 1 + ‖s‖24(e − 2) (2.7)

and with KL = 9

E exp
(
−2U(1 − U)KL‖s‖2

)
≤ 1 − 3‖s‖2 +

27

5
‖s‖4, (2.8)

using

exp(−x) ≤ 1 − x +
x2

2
,

for x ≥ 0. Furthermore

(
1 + ‖s‖24(e − 2)

)(
1 − 3‖s‖2 +

27

5
‖s‖4

)
≤ 1

⇔ ‖s‖2

(
108(e − 2)

5
‖s‖4 +

(
147

5
− 12e

)
‖s‖2 + 4e − 11

)
≤ 0

⇔ ‖s‖ ≤
(

60e − 147 + 3
(
2600e − 560e2 − 2879

)1/2

216e − 432

)1/2

.
= 0.491.

Thus (2.7) and (2.8) yield that (2.6) is true for KL = 9, ‖s‖ ≤ L ≤ 0.49.

L > 0.49: Again, with ‖bn‖ ≤ 1 we get

E exp
(
〈s,bn〉 − KL‖s‖2U(1 − U)

)
≤ exp(‖s‖)E exp

(
−KL‖s‖2U(1 − U)

)
.

It is proved in Section 4 of Fill and Janson (2001) that the right hand side of the

latter inequality is smaller than 1 if 0.42 ≤ ‖s‖ ≤ 2 and KL = 24, respectively

if 2 ≤ ‖s‖ ≤ L and KL = 4eL/L2. Thus for KL = 24L2 ∨ 4eL/L2 we have

E exp〈s,Yn〉 ≤ exp(KL‖s‖2), for every ‖s‖ ≤ L, n ≥ 0. Since 24L2 ≥ 4eL/L2, for

L ≤ L0 and 24L2 ≤ 4eL/L2, for L > L0, this completes the proof.

40

Proof of Theorem 2.1.1: With Chernoff’s bounding technique we have for u > 0

P

(
Wn − wn

n2
> t

)
= P

(
exp

(
u

Wn − wn

n2

)
> exp(ut)

)

≤ E exp

(
u

Wn − wn

n2
− ut

)

= E exp (〈(u, 0),Yn〉 − ut)

≤ exp
(
Kuu2 − ut

)
,

for all n ≥ 0 and Ku as in the proof of Proposition 2.2.1. Minimizing over u > 0 we

obtain the bounds

P

(
Wn − wn

n2
> t

)
≤





exp(−1/36t2), for 0 ≤ t ≤ 8.82

exp(−1/96t2), for 8.82 < t ≤ 48L0

exp(−t(ln(t) − ln(4e)), for 24L2
0 < t.

and choosing u = t/(24L0) for 2 < u ≤ L0 we obtain the bound

P

(
Wn − wn

n2
> t

)
≤ exp

(
−L0 − 1

24L2
0

t2
)

,

for 48L0 < t ≤ 24L2
0. This completes the proof.

Proof of Corollary 2.1.2: Choosing tn = twn/n2 = 2t ln(n) + O(1) we get from

Theorem 2.1.1

P (|Wn − wn| > twn) ≤ exp(−(2t ln(n) + O(1))(ln(2t ln(n) + O(1)) − ln(4e))

= exp
(
−2t ln(n)

(
ln(2)(n) + ln(t) − ln(2e) + o(1)

)
+ O

(
ln(2)(n)

))

= exp
(
−2t ln(n)

(
ln(2)(n) + ln(t) − ln(2e) + o(1)

))
,

where we used ln(x + O(1)) = ln(x) + o(1), as x → ∞, in the second line and

O(1)O(ln(2)(n)) = −2t ln(n)o(1) in the third line. This completes the proof.

2.3 Analysis via method of bounded differences

Applying the method of bounded differences we obtain the following result:

Theorem 2.3.1 Let t = tn satisfy 0 < t ≤ 1. Then as n → ∞

P (|Wn − wn| > twn) ≤ n−2t(ln(2)(n)+ln(t)+O(ln(3)(n))).

41

For ease of description we embed the random binary search tree underlying

(Wn, Pn) in the complete infinite binary tree. The nodes of the complete infinite

binary tree may be numbered 1, 2, 3, . . ., level by level and left to right. So, for

instance the left most node in level k is node number 2k, for every k ≥ 0. If node

m belongs to the binary search tree, let Sm be the size of the subtree of the binary

search tree, rooted at node m. If node m does not belong to the random binary

search tree, set Sm = 0. Sm is called size of node m. Denote Hk the vector of sizes

of all nodes up to level k,

Hk = (S1, . . . , S2k+1−1).

Hk determines up to level k, which nodes belong to the random binary search tree

and furthermore the sizes of the nodes in level k. Hk is called k-history. Given a

deterministic k-history h with P(Hk = h) > 0 we define for random variables X

and Y , defined on the same finite probability space and events E of this space

Ph(X) = P(X|Hk = h),

E h (X) = E (X|Hk = h)

E h (X|E) = E (X|{Hk = h} ∩ E)

and conditional expectation E h (X|Y) by

P(E h (X|Y) = E h (X|Y = y)) = P(Y = y),

for every y in the codomain of Y .

In order to prove Theorem 2.3.1 we are going to estimate for fix n the differences

of martingale

Mk = E h (Wn|Hk1+k) , 0 ≤ k ≤ k2 − k1, (2.9)

where k1 < k2 are positive integers and h is a deterministic k1-history. Therefore

the following estimates are done:

Equation (2.1) yields that given In = i (thus Jn = n − i − 1 = j) Wiener index

Wn is

Wi + (n − i)Pi + Wj + (n − j)Pj + 2ij + n − 1

and internal path length Pn is

Pi + Pj + n − 1.

42

For 1-history h = (n, i, n − i − 1) it is {In = i} = {h = H1}. Hence the previous

two expressions and Lemma 2.2.3 yield

| E h (Wn) − wn|
= |wi + (n − i)pi + wj + (n − j)pj + 2ij + n − 1 − wn|

=
∣∣∣C(1)

n (i)
∣∣∣n2

≤ n2 (2.10)

and

| E h (Pn) − pn| = |pi + pj + n − 1 − pn|

=
∣∣∣C(2)

n (i)
∣∣∣n

≤ n. (2.11)

These two inequalities lead to the following crucial estimate:

Lemma 2.3.2 For a random binary search tree of size n, k < n, let h be an

arbitrary deterministic k-history. Then

| E h (Wn) − wn| ≤ kn2.

Proof: For k = 1 the result is given by the inequality (2.10). For k ≥ 2 and a

fix (k + 1)-history h′ let h be the corresponding k-history and s(1), . . . , s(2k) be

the sizes of nodes at level k. Then we get for suitable 1-histories h(1), . . . ,h(2k) of

random binary search trees of orders s(1), . . . , s(2k)

|E h′ (Wn) − E h (Wn)|

=

∣∣∣∣∣∣

2k∑

m=1

{
E h(m)

(
Ws(m)

)
− ws(m) + (n − s(m))

[
E h(m)

(
Ps(m)

)
− ps(m)

]}
∣∣∣∣∣∣

≤
2k∑

m=1

{
s(m)2 + (n − s(m)) s(m)

}

= n

2k∑

m=1

s(m)

≤ n2.

43

In the third line we used (2.10) and (2.11). The prove is completed by induction on

k with triangle-inequality.

This enables us to prove the upcoming lemma. Therefore denote Lnk the maxi-

mal size of nodes at level k, that is

Lnk = max
{
S2k+m| 0 ≤ m ≤ 2k − 1

}
.

Lemma 2.3.3 Let k1 < k2 be positive integers, α > 0 and h be a k1-history, for

which Lnk1 ≤ αn. Then for any t > 0

Ph(| E h (Wn|Hk2) − E h (Wn)| ≥ t) ≤ 2 exp

(−t2

2α(k2 − k1)n4

)
.

Note that M0 = E h (Wn) and Mk2−k1 = E h (Wn|Hk2−k1) (see (2.9)) and that

Lemma 2.3.3 is essentially the estimate for martingale (M0, . . . ,Mk2−k1) mentioned

in section 2.1. For proving this lemma we use Hoeffding’s inequality and a version

of Azuma’s inequality:

Lemma 2.3.4 (Hoeffding (1963)) Let X be a random variable with E X = 0,

a ≤ X ≤ b. Then for u > 0,

E exp(uX) ≤ exp(u2(b − a)2/8).

Lemma 2.3.5 (Hayward and McDiarmid (1996)) Let F0 be the trivial σ-

algebra, F0 ⊆ · · · ⊆ Fn a filtration, X an integrable random variable and

(X0, . . . ,Xn) the corresonding Doob martingale, i.e. Xk = E (X|Fk). Suppose

that for each 1 ≤ k ≤ n there is a constant ck such that

E (exp(u(Xk − Xk−1)|Fk−1) ≤ exp(c2
ku

2),

for every u. Then we have for every t > 0

P(|Xn − X0| ≥ t) ≤ 2 exp

(−t2

4
∑n

k=1 c2
k

)
.

Proof of Lemma 2.3.3: If we can show

E h (exp(u(Mk − Mk−1)|Hk1+k−1) ≤ exp
(α

2
n4u2

)
, (2.12)

44

for every 1 ≤ k ≤ k2 − k1, then the result follows from Lemma 2.3.5. For fix k ≥ 0

set m = k1 + k and let h′ a possible m-history extending of h. Define the random

variable T by

T = E h′(Wn|Hm+1) − E h′(Wn).

Then inequality (2.12) is equivalent to showing for any possible extension h′ and

any u that

E h′(exp(uT)) ≤ exp
(α

2
n4u2

)
.

Given Hm = h′ the nodes at level m have deterministic sizes, say s(1), . . . , s(2m),

and the subtrees rooted at these nodes are independent. Thus

T
d
=

2m∑

i=1

{
E
(
Ws(i)

∣∣∣H(i)
)
− ws(i) + (n − s(i))

[
E
(
Qs(i)

∣∣∣H(i)
)
− qs(i)

]}
,

where H(1), . . . ,H(2m) are random 1-histories, induced by L(Hm+1|h′) and the 2m

summands on the right hand side are independent. Furthermore

E
{

E
(
Ws(i)

∣∣∣H(i)
)
− ws(i) + (n − s(i))

[
E
(
Qs(i)

∣∣∣H(i)
)
− qs(i)

]}
= 0

and

∣∣∣E
(
Ws(i)

∣∣∣H(i)
)
− ws(i) + (n − s(i))

[
E
(
Qs(i)

∣∣∣H(i)
)
− qs(i)

]∣∣∣ ≤ nsi,

for 1 ≤ i ≤ 2m, as is implicitly given by the calculation in the proof of Lemma 2.3.2.

Each s(i) ≤ αn, by assumption Lnk1 ≤ αn, and thus
∑

i s(i)
2 ≤ αn

∑
i s(i) ≤ α n2.

Together with Hoeffding’s inequality this yields

E h′ exp(uT)

=

2j∏

i=1

E exp
(

E
(
Ws(i)

∣∣∣H(i)
)
− ws(i) + (n − s(i))

[
E
(
Qs(i)

∣∣∣H(i)
)
− qs(i)

])

≤
2j∏

i=1

exp

(
u2 n2s(i)2

2

)

≤ exp

(
u2 α n4

2

)
.

This completes the proof.

The lemma stated next is essentially given by Devroye (1986):

45

Lemma 2.3.6 (Hayward and McDiarmid (1996)) For any 0 < α < 1 and

any integer k ≥ ln(1/α) it is

P(Lnk ≥ αn) ≤ α

(
2e ln(1/α)

k

)

In particular the probability that we have a k1-history for which Lemma 2.3.3 is

not applicable is estimated by this lemma, if k1 ≥ ln(1/α). Hence, together with

Lemma 2.3.2 we are able to prove the next one:

Lemma 2.3.7 Let n, k1, and u be positive integers. Then for any 0 < α ≤ 1 and

integer k2 > k1 such that ln(1/α) ≤ k1, k2 ≥ ln(n/2) we have

P
(
|Wn − wn| ≥ k1n

2 + u
)

≤ 2

n

(
2e ln(n/2)

k2

)k2

+ α

(
2e ln(1/α)

k1

)k1

+ 2exp

(−u2

2(k2 − k1)α n4

)

Proof: Denote Rn = E (Wn|Hk2) and H the set of k1-histories h with Lnk1 ≤ αn.

Then

P(|Wn − wn| ≥ k1n
2 + u)

≤ P(|Rn − wn| ≥ k1n
2 + u and Hk1 ∈ H)

+ P(Rn 6= Wn) + P(Hk1 /∈ H)

=
∑

h∈H

Ph(|Rn − wn| ≥ k1n
2 + u) P(Hk1 = h)

+ P(Rn 6= Wn) + P(Hk1 /∈ H)

≤
∑

h∈H

Ph(|Rn − E h (Wn)| ≥ u) P(Hk1 = h)

+ P(Lnk2 ≥ 2) + P(Lnk1 > αn).

For the last inequality, we used

|Rn − wn| ≤ |Rn − E h (Wn)| + | E h (Wn) − wn| ≤ |Rn − E h (Wn)| + k1n
2

by Lemma 2.3.2 and {Wn = Rn} ⊇ {Lnk2 ≤ 1}. The result now follows from

Lemmas 2.3.3 and 2.3.6.

Choosing the parameters in Lemma 2.3.7 appropriately finally leads to Theorem

2.3.1:

46

Proof of Theorem 2.3.1: Without loss of generality we can assume that

tn ≥ 5 ln(2)(n)/ ln(n), since otherwise the estimate in Theorem 2.3.1 might be 1.

We choose

u =

⌈
tn2 ln(n)

ln(2)(n)

⌉
,

k1 =
⌊
2t ln(n) − 2

u

n2

⌋
= 2t ln(n)

(
1 + O

(
1/ ln(2)(n)

))
,

k2 =
⌈
ln(n) ln(2)(n)

⌉
,

α =
t2

ln(2)(n)5
.

Observe that

k1n
2 + u ≤ 2tn2 ln(n) − u

≤ 2tn2 ln(n) − 7tn2

≤ twn,

for sufficiently large n. It is proved by Hayward and McDiarmid (1996), for

k1 = 2t ln(n)
(
1 + O

(
1/ ln(2)(n)

))
and α and k2 as above that k1 ≥ ln(1/α), for

sufficiently large n,

2

n

(
2e ln(n/2)

k2

)k2

≤ exp
(
−k2 ln(3)(n)

)
(2.13)

and

α

(
2e ln(1/α)

k1

)k1

≤ exp
(
−2t ln(n)

(
ln(2)(n) + ln(t) + O

(
ln(3)(n)

)))
. (2.14)

k1 ≥ ln(1/α) yields that Lemma 2.3.7 is applicable, whereas (2.13) proves that the

first summand on the right hand side of the inequality in this lemma is smaller than

required and (2.14) proves that the second summand is exactly as required. With

2 exp

(−u2

2(k2 − k1)α n4

)
≤ 2 exp

(
−1 + o(1)

2

t2n4 ln(n)2/ ln(2)(n)2

ln(n) ln(2)(n) t2/ ln(2)(n)5n4

)

= 2exp

(
−1 + o(1)

2
ln(n) ln(2)(n)2

)
(2.15)

we have that the third summand is also smaller than required, which completes the

proof.

47

2.4 Lower Bound

In this section we prove Theorem 2.1.3, which is a lower bound on P(Wn > (1+t)wn).

Roughly speaking, the Wiener index of a binary search tree of order n is rather

large, if it has two nodes which have a large distance and both nodes have large

sizes. Based on this observation we define for every fix t > 0 a class of binary

search trees of order n. Every tree in that class has two nodes, with sufficiently

large distance and large sizes, such that conditioned on the event that the random

binary search tree is in that class, event {Wn > (1 + t)wn} has probability tending

to 1, as n → ∞. Moreover the probability that the random binary search tree is

in that class is at least as large as the right hand side of the inequality stated in

Theorem 2.1.3. We have to define this class carefully in order to assure these two

conflicting properties.

Proof of Theorem 2.1.3: Since we just study the event that the random

binary search tree is in the above mentioned class, we will define this class only

implicitly by defining event A below. Therefore we denote for fixed t > 0

λ =
ln(3)(n)

ln(2)(n)
,

κ = 8 + 24λ,

k = ⌊κt ln(n)⌋,

s =

⌊
λn

t ln(n)

⌋
.

Recall that Si is the size of the subtree rooted at node i, respectively 0 if no such

node exists, and that node 2m + 1 is the second leftmost node in level m. Let A be

the event that S2 = ⌊(n + 1)/2⌋ and that S2m+1 ≤ s − 1, for 2 ≤ m ≤ k, see figure

2.1.

Thus under event A we have S3 = ⌈(n−3)/2⌉ and S2k ≥ n/2− (k−1)s. Having

two large subtrees this far away from each other will yield that Wn is sufficiently

48

level k 2kd

�
�
�
�
�
�
�
�
�
�

A
A

A
A

A
A

A
A

A
A

S2k

2k + 1d
�� AA

S2k+1

17d
�� AA
S17

9level 3 d
�� AA
S9

5level 2 d
�� AA
S5

2k−1
level k − 1 d

8d
4d

2level 1 d
d1level 0

d3

r r r

�
��

@
@@

@
@@

��

��

�
��

@
@@

�
��

@
@@
!!!!!!

S3

aaaaaa

�
�
�
�
�
�
�
�
�
�

A
A

A
A

A
A

A
A

A
A

Figure 2.1: Under event A we have subtree sizes S3 = ⌈(n − 3)/2⌉ and S2m+1 ≤ s − 1, for

2 ≤ m ≤ k, thus S2k ≥ n/2 − (k − 1)s.

large. But first note that

P(A) ≥ 1

n

(
s

(n + 1)/2

)k−1

≥ 1

n

(s

n

)k−1

= exp(−(k − 1)(ln(n/s)) − ln(n))

≥ exp
(
−8t ln(n)

(
ln(2)(n) + O

(
ln(3)(n)

)))
. (2.16)

As from now we will assume w.l.o.g. that n is even, since all further calculations

are almost the same if n is odd.

The distance between two nodes in a tree can be visualized as the minimal

number of edges one has to pass in order to get from one node to the other. From

that point of view the Wiener index of a tree can be calculated by counting how

often each edge is passed when summing up all node distances. In our modell the

49

edge above node i is passed Si(n − Si) times. Thus

Wn =
∑

i∈N

Si(n − Si),

where exactly n − 1 summands on the right hand side are nonzero. We set

W ′
n =

k∑

m=1

S2m(n − S2m).

and W ′′
n = Wn − W ′

n and will estimate W ′
n and W ′′

n seperately under event A.

Descriptively W ′
n is the number of passings of the edges above the nodes 2m, 1 ≤

m ≤ k. For (s2, . . . , sk) ∈ M = {1, . . . , s}k−1 let A(s2, . . . , sk) be the event that

S3 = ⌈(n + 1)/2⌉ and that S2m+1 = sm − 1, for 2 ≤ m ≤ k. Thus

A =
⋃

(s2,...,sk)∈M

A(s2, . . . , sk).

Denote σ1 = 0 and σm = σm−1 + sm for 2 ≤ m ≤ k. Then (m−1) ≤ σm ≤ (m−1)s

and under event A(s2, . . . , sk) we have

W ′
n =

k∑

m=1

(n

2
+ σm

)(n

2
− σm

)

=
k∑

m=1

(
n2

4
− σ2

m

)

≥ kn2

4
− s2

k∑

m=1

(m − 1)2

≥ kn2

4

(
1 − 4

3

k2s2

n2

)

≥
(

(1 + 3λ)2 ln(n)t − 1

4

)
n2

(
1 − 4

3
κ2λ2

)

= t 2n2 ln(n)

(
1 + 3λ − 1

t8 ln(n)

)(
1 − 4

3
κ2λ2

)

≥ t 2n2 ln(n) (1 + λ) , (2.17)

for sufficiently large n. In the last step we used
(

1 + 3λ − 1

t8 ln(n)

)(
1 − 4

3
κ2λ2

)
≥ (1 + 2λ)

(
1 − 4

3
κ2λ2

)

≥ 1 + λ,

50

for sufficiently large n.

In order to estimate W ′′
n under event A(s2, . . . , sk) via Chebychev’s inequality,

we will use

E (W ′′
n |A(s2, . . . , sk)) ≥ wn/2−1 +

(n

2
+ 1
)

pn/2−1

+ wn/2−σk
+
(n

2
+ σk

)
pn/2−σk

+
k∑

m=2

(wsm−1 + (n − sm + 1)psm−1) . (2.18)

This inequality is valid, since the right hand side is the number of passings of all

edges belonging to subtrees rooted at either node 3 (first row) or node 2k (second

row) or node 2m + 1, 2 ≤ m ≤ k, (third row). With Hx ≥ ln(x) we get for x ≤ n

wx + (n − x)px ≥ 2x2 ln(x) − 6x2 + o(x2) + (n − x) (2x ln(x) − 4x)

≥ n(2x ln(x) − 6x + o(x)).

Thus

E (W ′′
n |A(s2, . . . , sk)) ≥ 2n

(n

2
− 1
)

ln
(n

2
− 1
)

+ 2n
(n

2
− σk

)
ln
(n

2
− σk

)

+
k∑

m=2

2n(sm − 1) ln(sm − 1) − 6n2 + o(n2)

≥ 2n(n − σk − 1) ln
(n

2
− σk

)

+ 2n(k − 1)(ŝ − 1) ln(ŝ − 1) − 6n2 + o(n2),

where ŝ = 1/(k − 1)
∑k

m=2 sm. And with σk = (k − 1)ŝ ≤ (k − 1)s

(n − σk − 1) ln
(n

2
− σk

)
≥ (n − (k − 1)ŝ)

(
ln(n) + ln

(
1 − 2(k − 1)s

n

)
− ln(2)

)

= n ln(n) − log(2)n − (k − 1)ŝ ln(n) + o(n).

51

Together this yields

E (W ′′
n |A(s2, . . . , sk)) ≥ 2n2 ln(n) − 2n(k − 1)(ŝ − 1) ln

(
n

ŝ − 1

)

− (6 + 2 ln(2))n2 − 2n(k − 1) ln(n) + o(n2)

≥ 2n2 ln(n) − 2n(k − 1)(s − 1) ln

(
n

s − 1

)

− (6 + 2 ln(2))n2 + o(n2)

= 2n2 ln(n) − 2κλn2 ln

(
t ln(n)

λ

)
− (6 + 2 ln(2))n2 + o(n2)

≥ 2n2 ln(n) − (16 + o(1))n2 ln(3)(n),

for sufficiently large n. In the second line we used that x 7→ x ln x is increasing for

x ≤ 1/e and that ŝ − 1 < s < 1/e for large n. Similarly to (2.18) we have

Var(W ′′
n |A(s2, . . . , sk)) = Var

(
Wn/2−1 +

(n

2
+ 1
)

Pn/2−1

)

+ Var
(
Wn/2−σk

+
(n

2
+ σk

)
Pn/2−σk

)

+
k∑

m=2

Var (Wsm−1 + (n − sm + 1)Psm−1)

and for x ≤ n

Var (Wx + (n − x)Px) = Var(Wx) + (n − x)2Var(Px) + 2(n − x)Cov(Wx, Px)

= O(x4) + n2O(x2) + 2nO(x3),

since Var(Wn) = O(n4), Cov(Wn, Pn) = O(n3) (see Hwang and Neininger (2002))

and Var(Pn) = O(n2). Thus

Var(W ′′
n |A(s2, . . . , sk)) = O

(
n4
)

and hence by Chebychev’s inequality

P
(
W ′′

n ≥ 2n2 ln(n) − 17n2 ln(3)(n)|A(s2 . . . , sk)
)
→ 1 as n → ∞. (2.19)

This convergence is uniform over all (s2, . . . , sk) ∈ M . For sufficiently large n,

t 2n2 ln(n) (1 + λ) + 2n2 ln(n) − 17n2 ln(3)(n) > (1 + t)wn. (2.20)

52

Using estimates (2.16), (2.17), (2.19) and (2.20) we get

P(Wn > (1 + t)wn)

≥ P(Wn > (1 + t)wn|A)P(A)

=
∑

(s2,...,sk)∈M

P(Wn > (1 + t)wn|A(s2, . . . , sk))P(A(s2, . . . , sk))

≥
∑

(s2,...,sk)∈M

P(W ′′
n > 2n2 ln(n) − 17n2 ln(3)(n)|A(s2 . . . , sk))P(A(s2, . . . , sk))

= (1 + o(1))P(A)

= exp
(
−8t ln(n)

(
ln(2)(n) + O

(
ln(3)(n)

)))
.

This completes the proof.

53

54

Chapter 3

Tail Bounds for the Generation

Size of Supercritical Multitype

Galton-Watson Processes

3.1 Introduction

A singletype Galton-Watson process is a Markov chain (Zn)n≥0 on nonnegative

integers, with Z0 = 1 and

Zn = X(n,1) + · · · + X(n,Zn−1),

where Zn−1,X
(n,1),X(n,2), . . . are independent and X(n,1),X(n,2), . . . furthermore

identically distributed according to some probability distribution µ on N0. Zn can

be thought as the number of individuals of a population at time n. So, during a time

step all individuals propagate independent of each other and of the past according

to distribution µ and die immediately after propagating. Hence µ is called offspring

distribution of the process.

A d-type Galton-Watson process, d ≥ 1, is a Markov chain (Z
[i]
n)n ≥ 0 on Nd

0,

Z
[i]
n = (Z

[i]
n (1), . . . , Z

[i]
n (d)), for 1 ≤ i ≤ d. Here Z

[i]
0 = ei, where ei denotes the i-th

unit vector and

Z[i]
n =

Z
[i]
n−1(1)∑

j=1

X[1],(n,j) + · · · +
Z

[i]
n−1(d)∑

j=1

X[d],(n,j),

55

where Z
[i]
n−1, X[k],(n,j), j ≥ 1, 1 ≤ k ≤ d, are independent and for every k vec-

tor X[k],(n,j) is distributed according to some probability distribution µ[k] on Nd
0.

Z
[i]
n = (Z

[i]
n (1), . . . , Z

[i]
n (d)) can be thought as the vector of numbers of individuals

of type 1, . . . , d at time n, when starting with an individual of type i. So, at time 0

there is only a single type i individual and during a time step, all individuals prop-

agate independent of each other and of the past, according to some distribution

µ[k], depending on their type k. Although µ = (µ[1], . . . , µ[d]) is not a probability

distribution, but a vector of probability distributions, it is called offspring distribu-

tion, since it describes the propagation mechanism, like the offspring distribution

does for the singletype Galton-Watson process. Offspring distribution µ is called

bounded, if there is an ℓ ∈ N, such that µ[i]({1, . . . , ℓ}) = 1, for 1 ≤ i ≤ d. If a

Galton-Watson process has a bounded offspring distribution, it has a finite maxi-

mum family size at time n, n ≥ 0. A d-type Galton-Watson process is called singu-

lar, if each particle has a.s. exactly one offspring, otherwise it is called nonsingular.

Denote (X [i](1), . . . ,X [i](d)) = X[i] = Z
[i]
1 and mean matrix M = [E X [i](j)]1≤i,j≤d.

If it exists some n ≥ 1 such that matrix Mn has only positive entries, then M

is called strictly positive and the d-type Galton-Watson process is called positive

regular. Frobenius theorem yields that if M is strictly positive, it has a largest

eigenvalue ̺ > 0 and associated right and left eigenvectors u = (u1, . . . , ud) and

v = (v1, . . . , vd), respectively exist, which are positive in each component and may

be normalized, so that
∑

i ui = 1 and
∑

i uivi = 1. If ̺ > 1, the process is called

supercritical. A nonsingular, positive regular d-type Galton-Watson process does

not a.s. extinct, if and only if it is supercritical. See Harris (1963) for these results.

Furthermore

Theorem 3.1.1 (Keesten, H. and Stigum, B. (1966)) Let (Z
[i]
n) be a nonsin-

gular, positive regular, supercritical d-type Galton-Watson process. Then

lim
n→∞

Z
[i]
n

̺n
= vW [i] a.s.,

where W [i] is a nonnegative random variable, such that

P(W [i] > 0) > 0 ⇐⇒ E X [k](j) ln X [k](j) < ∞ ∀1 ≤ k, j ≤ d.

If P(W [i] > 0) > 0, then it is furthermore E W [i] = ui.

Note that for singletype Galton-Watson processes this theorem yields: If ̺ = E Z1 >

56

1, then

lim
n→∞

Zn

̺n
= W a.s.,

where W is a nonnegative random variable, such that

P(W > 0) > 0 ⇐⇒ E Z1 ln Z1 < ∞.

If P(W > 0) > 0, then it is furthermore E W = 1.

Tails of both Zn, n ≥ 0, and of limit W have been analyzed for singletype

Galton-Watson processes with ̺ > 1 and finite maximum family sizes.

Theorem 3.1.2 (Biggins, J.D. and Bingham, N.H.) Let (Zn)n be a single-

type Galton-Watson process with finite maximum family size m = ess supZ1 and

m > ̺ > 1. Then there is a real analytic, multiplicatively periodic function

F : (0,∞) → (0,∞) with period m/̺, such that for

κ̃ = 1 +
1

ln(m)/ ln(̺) − 1
> 1

we have

P (W − E W > t) = exp
(
−tκ̃(F (t + 1) + o(1))

)
, t → ∞.

F is bounded, since it is real analytic and multiplicatively periodic. Hence this

theorem yields in particular that there are positive constants α̃0 and α̃1 with

exp(−α̃1t
κ̃) ≤ P (W − E W > t) ≤ exp(−α̃0t

κ̃), ∀ t > 0.

Karp and Zhang gave a comparable result for Zn:

Theorem 3.1.3 (Karp, R. and Zhang, Y. (1995)) Let Zn, ̺, m, κ̃ be as in

Theorem 3.1.2. Then

P

(
Zn − E Zn

̺n
> t

)
≤ exp

(
−α0(t + 1)κ̃ + c0

)
, t ≥ 1,

where α0 > 0 and c0 are positve constants depending on ̺ and m and

P

(
Zn − E Zn

̺n
> t

)
≥ exp

(
−α1(t + 1)κ̃ + c1

)
, 0 ≤ t ≤

(
m

2̺

)n

− 1,

where α1 = −m ln P(Z1 = m) > 0 and c1 approaches 1 as t increases.

57

Karp and Zhang (1995) gave furthermore a right tail bound for the generation size

G[i]
n =

d∑

j=1

Z [i]
n (j)

of some supercritical multitype Galton-Watson processes:

Theorem 3.1.4 (Karp and Zhang (1995)) Let Z
[i]
n be a positive regular su-

percritical d-type Galton-Watson process with finite maximum family size m =

sup{k | ∃ 1 ≤ j ≤ d : P(G
[j]
1 = k) > 0}. If ̺ >

√
m then for any t > 0

P

(
G

[i]
n − E G

[i]
n

̺n
> t

)
≤ exp

(
−αt2

)
,

where α > 0 is a constant depending on m and ̺.

A generalization of Theorem 3.1.2 on supercritical multitype Galton-Watson pro-

cesses is given by Jones (2004). He studied the tails of random variable W [i], given

in Theorem 3.1.1. This theorem yields that

lim
n→∞

G
[i]
n

̺n
= G[i] a.s.,

for some nonnegative random variable G[i] and furthermore that G[i] and W [i] can

be easily transferred into each other by

W [i]
d∑

j=1

vj = G[i].

We will state Jones’ result in terms of G[i]. Therefore we have to introduce some

more notations. Denote Nd×d
0 the set of all (d × d)-matrices, having N0-valued

entries, the i-th row of a matrix B ∈ Nd×d
0 by Bi,·. For Z

[i]
n , ̺, u, v as in Theorem

3.1.1, furthermore Z
[i]
n having a finite maximum family size, and x = (x1, . . . , xd),

x′ = (x′
1, . . . , x

′
d) we define

J [i] =
{
x ∈ Nd

0

∣∣∣P
[
X[i] = x

]
> 0
}

,

U [i] =
{
x ∈ J [i]

∣∣∣ ∀x′ 6= x∃j : xj > x′
j

}
,

U =
{
B ∈ Nd×d

0

∣∣∣Bi,· ∈ U [i]
}

,

U1(x) = max
B∈U

Bx,

Un(x) = U1(Un−1(x)), n > 1,

λ = sup
xi≥0:‖x‖=1

lim
n→∞

‖Un(x)‖1/n

58

Theorem 3.1.5 (Jones (2004)) Let G
[i]
n be the generation size of a positive reg-

ular, supercritical d-type Galton-Watson process with finite maximum family size

and G[i] = limn(G
[i]
n)/̺n a.s. Assume that ̺ < λ, that it exists an up to a scale

factor unique w = (w1, . . . , wd), with wi > 0, 1 ≤ i ≤ d, and U(w) = λw,

besides an unique C ∈ U with U(w) = Cw and that limn→∞ λ−nCn exists.

Then there is a continuous, multiplicatively periodic function F : (0,∞) → Rd
+,

F (t) = (F [1](t), . . . , F [d](t)), with period λ/̺, such that for κ̃ = 1+1/(log λ/ log ̺−1)

and every 1 ≤ i ≤ d

P
(
G[i] − E G[i] > t

)
= exp

(
−tκ̃

(
F [i](t + ui) + o(1)

))
, t → ∞.

In this chapter, we will give upper tail bounds on the generation size of super-

critical multitype Galton-Watson processes with finite maximum family sizes. We

will prove under other conditions than in Theorem 3.1.4 tail bounds exp(−const tκ),

for 2 ≤ κ < κ∗, where κ∗ > 2 is a constant, depending on offspring distribution µ.

In the next section, necessary notations and main result of this chapter are stated.

Since it might be difficult to calculate κ∗ for a given process, in section 3.4 we give

a lower bound on exponent κ∗, which is easily expressed in terms of µ. We do not

claim positive regularity of the process in our main result, thus this result is leading

to upper tail bounds for the the generation size of Galton-Watson processes with

immigration, as is explained in section 3.6. In section 3.5 we will explain that the

exponent in Theorem 1.2.6 cannot be improved, as claimed in the first chapter.

3.2 A Tail Bound for the Generation Size of Supercrit-

ical Multitype Galton Watson Processes

Approach for our analysis are recursive descriptions of G
[1]
n , . . . , G

[d]
n . To exemplify

these recursive descriptions, let G
[1]
n , G

[2]
n be the generation sizes of the 2-type

Galton-Watson process, Karp and Zhang constructed, in order to analyze Snir’s

algorithm applied on a binary Boolean decision tree of height 2n (cf. section 1.2).

In subsection 1.2.4 it is explained that the random bivariate sequence (Gn)n≥0,

given by G0 = (1, 1) and

Gn
d
= G

(1)
n−1 + G

(2)
n−1 +

[
B1B2 0

1 − B2 0

]
G

(3)
n−1 +

[
0 B1

B1 0

]
G

(4)
n−1, n ≥ 1 (3.1)

where G
(1)
n−1, . . . ,G

(4)
n−1, B1, B2 are independent, B1, B2 are Bernoulli-(1/2) dis-

tributed and L(G
(1)
n−1) = · · · = L(G

(4)
n−1) = L(Gn−1), has marginals distributed

59

as G
[1]
n and G

[2]
n , respectively. So, one can say that (3.1) is a recursive description of

G
[1]
n and G

[2]
n . But there are also other recursive descriptions of G

[1]
n and G

[2]
n . E.g.

G̃n given by G̃0 = (1, 1) and

G̃n
d
= G̃

(1)
n/4 + G̃

(2)
n/4 +

[
B1B2 0

0 0

]
G̃

(3)
n/4 +

[
0 B1

B3 0

]
G̃

(4)
n/4,+

[
0 0

B4 0

]
G̃

(5)
n/4,

for n ≥ 1, where G̃
(1)
n−1, . . . , G̃

(5)
n−1, B1, . . . , B4 are independent, B1, . . . , B4 are

Bernoulli-(1/2) distributed and L(G̃
(1)
n−1) = · · · = L(G̃

(5)
n−1) = L(G̃n−1) has

marginals distributed as G
[1]
n and G

[2]
n , respectively. Here, the marginals are fur-

thermore independent. It can easily be verified that our approach would only yield

a weaker version of Theorem 1.2.6 if we would use G̃n instead of Gn for our analysis.

Namely, tail bound exp(−const tκ) with 2 ≤ κ < ln(5)/ ln(5/4α)
.
= 2.85 instead of

2 ≤ κ < 1/(1−α)
.
= 4.06. So, for how large exponents κ we can prove a tail bound

exp(−const tκ), depends on which recursive description we use.

Theorem 3.2.1 yields for the tails of generation sizes G
[i]
n of multitype Galton-

Watson processes with ̺ > 1 bounds exp(−const tκ), for 2 ≤ κ < κ∗, where κ∗ > 2

has to be specified. Due to our observation above, we specify how various recursive

descriptions of G
[1]
n , . . . , G

[d]
n can look like and which upper bounds they yield on

exponents κ, in order to get a possibly large κ∗.

Each recursive description of G
[1]
n , . . . , G

[d]
n is determined by a vector of random

matrices. E.g. the two above discussed sequences are determined by

([
1 0

0 1

]
,

[
1 0

0 1

]
,

[
B1B2 0

1 − B2 0

]
,

[
0 B1

B1 0

])
(3.2)

and ([
1 0

0 1

]
,

[
1 0

0 1

]
,

[
B1B2 0

0 0

]
,

[
0 B1

B3 0

]
,

[
0 0

B4 0

])
,

respectively.

Next, we will state Theorem 3.2.1, where κ∗ is expressed in terms of such se-

quences of random matrices. Therefore we have to introduce some more notations.

In section 3.3 we will show that these sequences determine recursive descriptions of

the generation sizes.

In cases, where we want to emphasize that the process has offspring distribution

µ = (µ[1], . . . , µ[d]), we write Z
[i]
n [µ], G

[i]
n [µ] and X[i][µ] instead of Z

[i]
n , G

[i]
n and X[i]

60

respectively. Denote

̺[µ] = inf

{
̺ > 0

∣∣∣∣∣ sup
n≥0

E G
[i]
n [µ]

̺n
< ∞ ∀ 1 ≤ i ≤ d

}
.

It is ̺[µ] < ∞ for every bounded µ and we assume throughout this chapter that

supn≥0 E G
[i]
n [µ]/̺[µ]n < ∞ and ̺[µ] > 1. Karlin (1966) proved for positve regular

Galton-Watson processes Z
[i]
n , with the largest eigenvalue ̺ of mean matrix M ,

that EZ
[i]
n /̺n → c′ > 0, as n → ∞. Hence, if the process is positive regular,

̺[µ] > 1 is the largest eigenvalue of the mean matrix and the process is supercritical.

Recall that Nd×d
0 is the set of all (d × d)-matrices with N0-valued entries. For an

Nd×d
0 -valued random variable A, respectively A ∈ Nd×d

0 , denote by Ai,j the (i, j)-

th component and as before by Ai,· the i-th row of A. For a random vector A

with m Nd×d
0 -valued components denote by A(r) its r-th component, 1 ≤ r ≤ m,

and Ai,· = (A
(r)
i,·)1≤r≤m. Assume that the underlying probability space (Ω, F, P) is

sufficiently large and denote

A1 =

{
A ∈ Nd×d

0

∣∣∣∣∣Ai,j = 1[Ei,j], Ei,j ∈ F, max
1≤i≤d

d∑

j=1

Ai,j ≤ 1 a.s.

}
,

Ak
1 =

{
A =

(
A(1), . . . , A(k)

) ∣∣∣A(r) ∈ A1, 1 ≤ r ≤ k
}

,

A2 =

{
A ∈ Nd×d

0

∣∣∣∣∣Ai,j = 1[Ei,j], Ei,j ∈ F, max
1≤j≤d

d∑

i=1

Ai,j ≤ 1 a.s.

}
,

Ak
2 =

{
A =

(
A(1), . . . , A(k)

) ∣∣∣A(r) ∈ A2, 1 ≤ r ≤ k, A1,·, . . . ,Ad,· independent
}

,

A∗
ℓ =

⋃

k≥1

Ak
ℓ for ℓ = 1, 2,

A∗ = A∗
1 ∪A∗

2.

Furthermore, let O be the set of all offspring distributions of d-type Galton-Watson

processes, i.e.

O =
{(

µ[1], . . . , µ[d]
) ∣∣∣µ[i] is a probability measure on Nd

0, 1 ≤ i ≤ d
}

and for µ ∈ O let µk = (µ
[1]
k , . . . , µ

[d]
k) ∈ O be given by

µ
[i]
k = L

(
Z

[i]
k [µ]

)
, 1 ≤ i ≤ d.

Let T : A∗ → O be defined by

T (A) =


L


∑

r≥1

A
(r)
1,·


 , . . . ,L


∑

r≥1

A
(r)
d,·




 .

61

T is well defined, since vector A ∈ A∗ has finitely many components, thus the

sums on the right hand side are finite. Even more, offspring distribution T (A) is

bounded for every A ∈ A∗ and also T−1(µ) is nonempty for every bounded µ, as

will be explained in section 3.4. We define q : A∗ → R+ ∪ {∞} by

q(A) = inf



q ∈ R+

∣∣∣∣∣ ess sup
∑

r≥1

∥∥A(r)T A(r)
∥∥q/2

op
< ̺[T (A)]q



 ∨ 1 ,

respectively q(A) = ∞, if the infimum does not exist and q∗ : O → R+ ∪ {∞} by

q∗(µ) = inf
{

q(A)
∣∣∣∃ k ∈ N : A ∈ T−1 (µk)

}
. (3.3)

Note that if A ∈ A∗
1 then matrix A(r)T A(r) has diagonal entries

∑
i A

(r)
i,1 , . . . ,

∑
i A

(r)
i,d

and all other entries 0. Hence

∥∥A(r)T A(r)
∥∥

op
= max

1≤i≤d

d∑

j=1

A
(r)
i,j (3.4)

and for A ∈ A∗
2 it is

∥∥A(r)T A(r)
∥∥

op
=
∥∥A(r)A(r)T

∥∥
op

= max
1≤j≤d

d∑

i=1

A
(r)
i,j .

So, one can calculate q(A), easily. Setting 1/0 = ∞ we get the following tail bound

result:

Theorem 3.2.1 Let G
[i]
n = G

[i]
n [µ] be the generation size of a d-type Galton-Watson

process with finite maximum family size and ̺ = ̺[µ] > 1. If q∗ = q∗(µ) < 2, then

for every 2 ≤ κ < κ∗ = 1 + 1/(q∗ − 1) there exists an Lκ > 0 such that for every

n ≥ 0 and 1 ≤ i ≤ d

P

(
G

[i]
n − E G

[i]
n

̺n
> t

)
≤ exp(−Lκtκ) t > 0,

P

(
G

[i]
n − E G

[i]
n

̺n
< −t

)
≤ exp(−Lκtκ) 0 < t ≤ E G

[i]
n

̺n
.

This theorem will be proved in section 3.7 by applying Chernoff’s bounding tech-

nique on Proposition 3.3.3, which is the crucial result for this tail bound and which

is stated in the next section.

62

3.3 Recursive Descriptions

Next, we discuss how recursive descriptions of G
[1]
n , . . . , G

[d]
n can look like. This

might be useful to get an idea why every A ∈ A∗ with T (A) = µ determines a

recursive description of G
[1]
n , . . . , G

[d]
n as stated in Propostion 3.3.1. Corollary 3.3.2

is a generalization which is easily derived from Proposition 3.3.1. Corollary 3.3.2

enables us to prove Theorem 3.2.1 via Proposition 3.3.3. The proofs of these results

are given in section 3.7.

The individuals of a Galton-Watson process at time 1 propagate indepen-

dent of each other. Hence, L(G
[i]
n), 1 ≤ i ≤ d, can be described recursively

by

G[i]
n

d
=

X[i](1)∑

r=1

G
[1],(r)
n−1 + · · · +

X[i](d)∑

r=1

G
[d],(r)
n−1 , (3.5)

where X[i], G
[j],(r)
n−1 , 1 ≤ j ≤ d, r ≥ 1, are independent and L(G

[j],(r)
n−1) = L(G

[j]
n−1)

and G
[i]
0 = 1 a.s. This equation can be rephrased to

G[i]
n

d
=
∑

r≥1

1[X [i](1) ≥ r]G
[1],(r)
n−1 + · · · +

∑

r≥1

1[X [i](d) ≥ r]G
[d],(r)
n−1

and since we observe equality in distribution we have for all Bernoulli-distributed

random variables B
(r)
i,j , with {B(r)

i,j |1 ≤ j ≤ d, r ≥ 1} independent of G
[j],(r)
n−1 , 1 ≤

j ≤ d, r ≥ 1, which satisfy

(
X [i](1), . . . ,X [i](d)

)
d
=


∑

r≥1

B
(r)
i,1 , . . . ,

∑

r≥1

B
(r)
i,d


 (3.6)

likewise

G[i]
n

d
=
∑

r≥1

B
(r)
i,1 G

[1],(r)
n−1 + · · · +

∑

r≥1

B
(r)
i,d G

[d],(r)
n−1 .

In particular, if µ = T (A) for some A ∈ A∗, this observation can be restated to

G[i]
n [µ]

d
=
∑

r≥1

A
(r)
i,1 G

[1],(r)
n−1 [µ] + · · · +

∑

r≥1

A
(r)
i,d G

[d],(r)
n−1 [µ], (3.7)

for A, G
[j],(r)
n−1 [µ], 1 ≤ j ≤ d, r ≥ 1, independent, L(G

[j],(r)
n−1 [µ]) = L(G

[j]
n−1[µ]). The

right hand side of (3.7) is the i-th component of

∑

r≥1

A(r)
(
G

[1],(r)
n−1 [µ], . . . , G

[d],(r)
n−1 [µ]

)T
.

63

Even more, the following proposition yields that G
[1]
n [µ], . . . , G

[d]
n [µ] can be described

recursively via A:

Proposition 3.3.1 Let A ∈ A∗, T (A) = µ and Gn, n ≥ 0, be a d-dimensional

random vector, with distribution L(Gn) given by G0 = (1, . . . , 1) and

Gn
d
=
∑

r≥1

A(r) G
(r)
n−1 , (3.8)

for A, G
(r)
n−1, r ≥ 1, independent and L(G

(r)
n−1) = L(Gn−1). Then Gn has marginals

distributed as G
[1]
n [µ], . . . , G

[d]
n [µ] respectively. If A ∈ A∗

2, then the marginals of Gn

are furthermore independent.

Instead of recursive descriptions of G
[1]
n [µ], . . . , G

[d]
n [µ], recursive descriptions of

G
[1]
nk+ℓ, . . . , G

[d]
nk+ℓ, for fixed k ∈ N and 0 ≤ ℓ < k can be used for the analysis.

In this more general case we have analogously to (3.5)

G
[i]
nk+ℓ

d
=

Z
[i]
k

(1)∑

r=1

G
[1],(r)
(n−1)k+ℓ + · · · +

Z
[i]
k

(d)∑

r=1

G
[d],(r)
(n−1)k+ℓ , (3.9)

for Z
[i]
k , G

[j],(r)
(n−1)k+ℓ, 1 ≤ j ≤ d, r ≥ 1, independent and L(G

[j],(r)
(n−1)k+ℓ) = L(G

[j]
(n−1)k+ℓ).

Here, we used that the individuals at time k propagate independent of each other.

Accordingly, we get the following result derived from this distributional equation:

Corollary 3.3.2 Given µ ∈ O bounded, k ∈ N, ℓ ∈ N0, let A ∈ A∗, T (A) = µk

and Gn, n ≥ 0, be a d-dimensional random vector, where G0 has independent

components, distributed as G
[i]
1 [µℓ], 1 ≤ i ≤ d, and

Gn
d
=
∑

r≥1

A(r) G
(r)
n−1 , (3.10)

for A, G
(r)
n−1, r ≥ 1, independent and L(G

(r)
n−1) = L(Gn−1). Then Gn has marginals

distributed as G
[1]
nk+ℓ[µ], . . . , G

[d]
nk+ℓ[µ] respectively. If A ∈ A∗

2, then the marginals of

Gn are furthermore independent.

For a normalized version of Gn a bound on the moment generating function is

obtained:

Proposition 3.3.3 Given µ ∈ O bounded, k ∈ N, ℓ ∈ N0, let Gn, A be as in

Corollary 3.3.2, ̺ = ̺[µ] > 1 and denote Yn := (Gn − EGn)/̺nk+ℓ. Then for

64

every 1 < q ≤ 2 satisfying ess sup ̺−kq
∑

r≥1 ‖A(r)T A(r)‖q/2
op < 1, there is a constant

Kq > 0 with

E exp〈s,Yn〉 ≤ exp(Kq‖s‖q) (3.11)

for all s ∈ Rd and n ≥ 0.

For fixed 1 < q ≤ 2 this proposition yields the tail bound inequalities stated in

Theorem 3.2.1 for κ = 1 + 1/(q − 1), as long as it exists k ∈ N, A ∈ A∗ with

T (A) = µk and ess sup ̺−kq
∑

r≥1 ‖A(r)T A(r)‖q/2
op < 1. This is verified in the proof

Theorem 3.2.1 (see p. 74), where also constant Lκ is specified. This explains the

construction of q∗(µ) (see (3.3)) and hence upper bound κ∗ (see Theorem 3.2.1).

3.4 Lower bound on κ
∗

Corollary 3.4.2 stated below is a weaker tail bound result than Theorem 3.2.1,

i.e. 1+1/(ln(∆)/ ln(̺)−1) < κ∗. The use of this result is that this upper bound on

the exponents is much easier yielded by the offspring distribution (see (3.12)) than

κ∗.

If offspring distribution µ ∈ O is bounded, then

{
B

(r)
i,j = 1[X [i](j) ≥ 1]

∣∣∣ 1 ≤ r ≤ ess supX [i](j) < ∞, 1 ≤ i, j ≤ d
}

,

with X[1], . . . ,X[d] independent, is a finite set of Bernoulli-distributed random

variables, satisfying (3.6). Given this set, it obviously exists a finite sequence

A = (A(s))s≥1 of random matrices where for every s ≥ 1 there are 1 ≤ i, j ≤ d,

r ≥ 1, with A
(s)
i,j = B

(r)
i,j and A

(s)
i′,j′ = 0 for (i′, j′) 6= (i, j). Hence it is A ∈ A∗ and

T (A) = µ. Thus T−1(µ) 6= ∅ for every bounded µ. Even more, there is a vector

A ∈ T−1(µ) of which we know the length precisely and which yields an upper bound

on q∗(µ):

Proposition 3.4.1 Given a d-type Galton-Watson process with finite maximum

family size, X[i] = X[i][µ], denote

∆ = ∆(µ) = max
1≤i≤d

d∑

j=1

ess sup X [i](j) ∨ max
1≤j≤d

d∑

i=1

ess supX [i](j). (3.12)

Then it exists A = (A(1), . . . , A(∆)) ∈ A∗
1 ∩A∗

2 ⊆ A∗ with T (A) = µ.

65

If A = (A(1), . . . , A(∆)) ∈ A∗
1 ∩A∗

2, then (3.4) and the definition of A∗
1 and A∗

2 yield

‖A(r)T A(r)‖op ∈ {0, 1} a.s. for 1 ≤ r ≤ ∆ (which is equivalent to A(r) having in

every row and in every column at most on nonzero entry a.s.). Thus

∆∑

r=1

∥∥∥A(r)T A(r)
∥∥∥

op
≤ ∆ a.s.

So, this proposition leads to:

Corollary 3.4.2 Let µ, G
[i]
n , ̺ be as in Theorem 3.2.1 and ∆ as in Proposition

3.4.1. If log ∆/ log ̺ < 2, then for every 2 ≤ κ < 1 + 1/(log ∆/ log ̺ − 1) there

exists an Lκ > 0 such that for every n ≥ 0 and 1 ≤ i ≤ d

P

(
G

[i]
n − E G

[i]
n

̺n
> t

)
≤ exp(−Lκtκ) t > 0,

P

(
G

[i]
n − E G

[i]
n

̺n
< −t

)
≤ exp(−Lκtκ) 0 < t ≤ E G

[i]
n

̺n
.

This corollary is proved analogously to Theorem 3.2.1 with Proposition 3.3.3 using

Chernoff’s bounding technique. The difference is that in the proof of Corollary

3.4.2 Proposition 3.3.3 is applied on A ∈ A∗
1 ∩A∗

2 with T (A) = µ and not arbitrary

A ∈ A∗ with T (A) = µk, k ∈ N. The existence of such an A is guarantueed by

Proposition 3.4.1.

3.5 Relation to other works and a note on Karp and

Zhang’s process

For singletype Galton-Watson processes with finite maximum family size we have

G
[1]
n = Zn and only one recursive description: Z0 = 1 and

Zn
d
= Z

(1)
n−1 + · · · + Z

(Z1)
n−1 ,

with Z1, Z
(1)
n−1, Z

(2)
n−1, ... independent and L(Z

(1)
n−1) = L(Z

(2)
n−1) = · · · = L(Zn−1).

And for G
[1]
nk+ℓ = Znk+ℓ, k ≥ 1 and ℓ ≥ 0 fix, we have only recursive description

Znk+ℓ
d
= Z

(1)
(n−1)k+ℓ + · · · + Z

(Zk)
(n−1)k+ℓ,

with Zk, Z
(1)
(n−1)k+ℓ, Z

(2)
(n−1)k+ℓ, ... independent and L(Z

(1)
(n−1)k+ℓ) = L(Z

(2)
(n−1)k+ℓ) =

· · · = L(Z(n−1)k+ℓ). For ̺ = E Z1, m = ess supZ1 it is E Zk = ̺k and ess supZk =

66

mk. Hence we get

q∗(µ) = inf {q ∈ R+|m < ̺q} = ln(m)/ ln(̺)

and

P

(
Zn − E Zn

̺n
> t

)
≤ exp(−Lκtκ) t > 0,

P

(
Zn − E Zn

̺n
< −t

)
≤ exp(−Lκtκ) 0 < t ≤ 1.

for constant Lκ > 0 and 2 ≤ κ < κ∗ = 1 + 1/(ln(m)/ ln(̺) − 1). Note that

1 + 1/(ln(m)/ ln(̺) − 1) is the exponent, arising in Theorems 3.1.2 and 3.1.3.

Since in particular (G
[i]
n − E G

[i]
n)/̺n → (G[i]− E G[i]) in distribution, as n → ∞,

we have for all fix t, where function t 7→ P((G[i] − E G[i]) > t) is continuous that

lim
n→∞

P

(
G

[i]
n − E G

[i]
n

̺n
> t

)
= P

(
G[i] − E G[i] > t

)
.

Hence Theorem 3.1.5 implies for such t, for κ̃ and F [i] as in that theorem and some

positive constants L̃0, L̃1

exp
(
−L̃0t

κ̃
)
≤ lim

n→∞
P

(
G

[i]
n − E G

[i]
n

̺n
> t

)
≤ exp

(
−L̃1t

κ̃
)

. (3.13)

This is true, because the functions F [i] are continuous and multiplicatively periodic

by assumption, hence bounded. The first inequality is even more true for all fix t,

as can be shown by a.s. convergence of (G
[i]
n − E G

[i]
n)/̺n and Fatou’s Lemma. Thus,

whenever a multitype Galton-Watson process fulfills the conditions of Theorem 3.2.1

and Theorem 3.1.5, we have

κ∗ ≤ κ̃. (3.14)

Then, an advantage of Theorem 3.1.5 over Theorem 3.2.1 is that it yields the exact

exponent κ̃ and not an upper bound κ∗. On the other hand an advantage of Theorem

3.2.1 over Theorem 3.1.5 is that it yields upper tail bounds for all n ≥ 0, not only for

the limit. In particular, Theorem 3.2.1 yields an estimate for P((G
[i]
n − E G

[i]
n)/̺n >

t), where t depends on n.

Karp and Zhang’s process is a positive regular, supercritical 2-type Galton-

Watson process with finite maximum family size, which fulfills the conditions of

67

both theorems: Let µ be its offspring distribution (defined in subsection 1.2.3) and

A be the sequence of random matrices given by (3.2). In section 1.2 we derived

elaborately, what can be summed up in this chapter’s notation as follows: It is

̺ = ̺(µ) = (17 +
√

33)/8
.
= 2.84, T (A) = µ and q(A) = ln(4)/ ln(̺)

.
= 1.33. Hence

q∗(µ) ≤ q(A) < 2 and Theorem 3.2.1 is applicable. On the other hand one can

calculate easily

J [1] = {(2, 0), (2, 1), (3, 1)}, U [1] = {(3, 1)},
J [2] = {(0, 2), (1, 2), (2, 2)}, U [2] = {(2, 2)},

U =

{[
3 1

2 2

]}
.

Cf. p. 58 for definition of these quantities. Since U = {C}, λ is the largest eigenvalue

of C, hence λ = 4, the corresponding eigenspace is {t(1, 1)|t ∈ R}, ̺ < λ and

limn→∞ λ−nCn exists. Thus Jones’ tail bound result is applicable and yields

P
(
Y [i] > t

)
= exp

(
−tκ̃

(
F [i](t + ui) + o(1)

))
, t → ∞,

where F (t) = (F [1](t), . . . , F [d](t)) has period λ/̺ = 32/(17 +
√

33) and exponent

κ̃ = 1 +
1

log 4/ log ̺ − 1
= 1 +

1

q(A) − 1
.

Hence with (3.14) and q∗(µ) ≤ q(A) we have

κ∗ ≤ κ̃ = 1 +
1

q(A) − 1
≤ κ∗

and thus q(A) = q∗(µ). This yields that we used a best possible recursive description

of G
[1]
n and G

[2]
n for our analysis and even more κ∗ = κ̃. Hence the first inequality

of (3.13) implies

∀κ > κ∗, L > 0∃ t′, n′ : P

(
G

[i]
n − E G

[i]
n

̺n
> t

)
> exp(−Ltκ) ∀ t > t′, n > n′.

So, we cannot improve upon upper bound κ∗, as already stated in subsection 1.2.2.

3.6 Galton-Watson processes with Immigration

Let µ[1], . . . , µ[d], ν be probability distributions on Nd
0, µ = (µ[1], . . . , µ[d]). A d-type

Galton-Watson process with immigration Z
[i]
n [µ, ν] = (Z

[i]
n [µ, ν](1), . . . , Z

[i]
n [µ, ν](d)),

68

n ≥ 0, is a Markov chain on Nd
0 with Z

[i]
0 [µ, ν] = ei and

Z[i]
n [µ, ν] =

Z
[i]
n−1(1)∑

r=1

X[1],(r,n) + · · · +
Z

[i]
n−1(d)∑

r=1

X[d],(r,n) + V(n), n ≥ 1,

where (Z
[i]
n−1(1), . . . , Z

[i]
n−1(d)) = Z

[i]
n−1[µ, ν], X[j],(r,n), V(n), 1 ≤ j ≤ d, r ≥ 1,

n ≥ 1, are independent L(X[j],(r,n)) = µ[j] and L(V(n)) = ν. So, Z
[i]
n [µ, ν] =

(Z
[i]
n [µ, ν](1), . . . , Z

[i]
n [µ, ν](d)) can be interpreted as the vector of numbers of indi-

viduals of type 1, . . . , d at time n. At time 0 there is only a single type-i individual

and during a time step every type-k individual, 1 ≤ k ≤ d, splits idenpendently of

the other individuals, into a random number of individuals of any type, according to

distribution µ[k] and additionally, independently a random number of individuals of

any type immigrate according to immigration distribution ν. As before, µ is called

offspring distribution and furthermore ν is called immigration distribution.

A d-type Galton-Watson process with immigration can be characterized by a

(d + 1)-type Galton-Watson process (without immigration) as follows: Individuals

of type 1, . . . , d split as before and additionally there is a type-(d + 1) individual,

which splits in every time unit into a single type-(d + 1) individual and individuals

of type 1, . . . , d according to the immigration-distribution. I.e. the immigration

in every generation is generated by a type-(d + 1) individual. Formally, for µ̃ =

(µ̃[1], . . . , µ̃[d+1]) defined by the product measures

µ̃[i] = µ[i] ⊗ δ0, for 1 ≤ i ≤ d

µ̃[d+1] = ν ⊗ δ1. (3.15)

we have

(
Z [i]

n [µ, ν](1), . . . , Z [i]
n [µ, ν](d), 0

)
d
= Z[i]

n [µ̃] + Z[d+1]
n [µ̃] − ed+1, (3.16)

for Z
[i]
n [µ̃], Z

[d+1]
n [µ̃] independent. Based on this relationship for

q̃(µ̃) = inf
{

q(A)
∣∣∣∃ k ∈ N : A ∈ T−1 (µ̃k) ∩A∗

2

}
.

we get from Proposition 3.3.3 the following tail bound result for generation size

G[i]
n [µ, ν] =

d∑

j=1

Z [i]
n (j)[µ, ν].

69

Theorem 3.6.1 Let G
[i]
n [µ, ν] be the generation size of a d-type Galton-Watson

process with immigration, where µ and ν are bounded, ̺[µ] > 1 and µ̃ =

(µ̃[1], . . . , µ̃[d+1]) defined by (3.15). If q̃(µ̃) < 2, then for every 2 ≤ κ < κ̃(µ̃) =

1 + 1/(q̃(µ̃) − 1) there exists an Lκ > 0 such that for every n ≥ 0 and 1 ≤ i ≤ d

P

(
G

[i]
n [µ, ν] − E G

[i]
n [µ, ν]

̺[µ]n
> t

)
≤ exp(−Lκtκ) t > 0,

P

(
G

[i]
n [µ, ν] − E G

[i]
n [µ, ν]

̺[µ]n
< −t

)
≤ exp(−Lκtκ) 0 < t ≤ E G

[i]
n

̺n
.

Z
[i]
n [µ̃] is not a positive regular process, as will be shown in the proof of this corollary

(cf. p. 78). Hence we can use the idea of charactarizing a Z
[i]
n [µ, ν] by Z

[i]
n [µ̃] just,

because we do not claim positive regularity in Proposition 3.3.3.

3.7 Proofs

Proof of Proposition 3.3.1: The assertion is proved by induction on n ≥ 0: For

n = 0 the assertion is true by definition of G0. Now, if the i-th component of Gn−1

is distributed as G
[i]
n−1[µ], for every 1 ≤ i ≤ d, then distributional equation (3.8)

yields that the i-th component of Gn is distributed as

∑

r≥1

A
(r)
i,1 Ĝ

[1],(r)
n−1 + · · · +

∑

r≥1

A
(r)
i,d Ĝ

[d],(r)
n−1 , (3.17)

with L(Ĝ
[j],(r)
n−1) = L(G

[j]
n−1[µ]) and A, {Ĝ[j],(r)

n−1 | 1 ≤ j ≤ d}, r ≥ 1, indepen-

dent. According to (3.7) term (3.17) would be distributed as G
[i]
n [µ], if fur-

thermore Ĝ
[j],(r)
n−1 ,1 ≤ j ≤ d were independent. Indeed it suffices to show that

{G[j],(r)
n−1 |A(r)

i,j = 1, 1 ≤ j ≤ d} consists of independent random variables for a.e.

realization of A, because this yields that in (3.17) almost all Ĝ
[j],(r)
n−1 , which are not

multiplied by 0, are independent. If A ∈ A∗
1 then #{A(r)

i,j = 1 | 1 ≤ j ≤ d} ≤ 1 a.s.

and hence the assertion is true.

For A ∈ A∗
2, we have to prove in addition inductively that Gn has independent

components: For n = 0 this is obvious. Assume now that Gn−1 has compo-

nents, which are independent and distributed as G
[1]
n−1[µ], . . . , G

[d]
n−1[µ], respectively.

Then, equation (3.8) yields that the i-th component of Gn is distributed as (3.17),

where now moreover, because of independent components, A, Ĝ
[j],(r)
n−1 , 1 ≤ j ≤ d,

r ≥ 1 are independent. As explained above, this proves that the i-th component

70

of Gn is distributed as G
[i]
n [µ]. A1,·, . . . ,Ad,· are independent for A ∈ A∗

2 and

A
(r)
i,j Ĝ

[j],(r)
n−1 = Ĝ

[j],(r)
n−1 implies A

(r)
i′,jĜ

[j],(r)
n−1 = 0 a.s., for i 6= i′, 1 ≤ i, j ≤ d, r ≥ 1,

since
∑

i Ai,j ≤ 1 a.s. for 1 ≤ j ≤ d. Hence (3.17) for 1 ≤ i ≤ d yields that Gn has

independent components. This completes the proof.

Proof of Corollary 3.3.2: Corollary 3.3.2 is proved with distributional recursion

(3.9) by using the same argumentation, as given in section 3.3 and the previous

proof, in order to derive Proposition 3.3.1 from equation (3.5).

Proof of Proposition 3.3.3: The distributional recurrence (3.10) for Gn implies

the relation

Yn
d
=
∑

r≥1

(A(r)/̺k)Y
(r)
n−1 + bn, n ≥ 1, (3.18)

with Y
(r)
n−1 = (G

(r)
n−1 − EG

(r)
n−1)/̺

(n−1)k+ℓ, and

bn =
1

̺nk+ℓ
EGn−1

∑

r≥1

A(r) − 1

̺nk+ℓ
EGn.

We prove the assertion by induction on n. For n = 0 it suffices to prove the

assertion for q = 1 and q = 2, since 1 < q ≤ 2 by assumption. By Corollary

3.3.2 the i-th component of Y0, denoted by Y (i), is distributed as (G
[i]
ℓ − E G

[i]
ℓ)/̺ℓ

and hence ess sup ‖Y0‖ =: c1 < ∞ and ess supmaxi |Y (i)| =: c2 < ∞, since µ is

bounded. Thus we have for every s = (s1, . . . , sd) ∈ Rd

E exp〈s,Y0〉 ≤ E exp(‖s‖‖Y0‖) ≤ exp
(
c1‖s‖1

)
.

By induction on d we get E |W1 . . . Wd| ≤
∏d

i=1

(
E |Wi|d

)1/d
for random variables

W1 . . . Wd with finite d-th moment:

E

∣∣∣∣∣

d∏

i=1

Wi

∣∣∣∣∣ ≤
(

E

d−1∏

i=1

|Wi|d/(d−1)

)(d−1)/d (
E |Wd|d

)1/d

≤
(

d−1∏

i=1

(
E
(
|Wi|d/(d−1)

)d−1
)1/(d−1)

)(d−1)/d (
E |Wd|d

)1/d

=

d∏

i=1

(
E |Wi|d

)1/d
,

71

using Hölder’s inequality for the first and induction hypothesis for

|W1|d/(d−1), . . . , |Wd−1|d/(d−1) for the second inequality. This yields

E exp〈s,Y0〉 = E

d∏

i=1

exp(siY (i)) ≤
d∏

i=1

(E exp(sidY (i)))1/d

≤
d∏

i=1

(
exp

(
s2
i

d2c2
2

2

))1/d

= exp

(
d c2

2

2
‖s‖2

)
,

where the second inequality is given by Hoeffding’s inequality (see Lemma 2.3.4).

This proves the induction hypothesis for Kq = K = c1 ∨ d c2
2/2, for every 1 < q ≤ 2.

Assume the assertion is true for n− 1. Then, conditioning on (bn,A), denoting the

distribution of this vector by σn, and using the induction hypothesis, we obtain

E exp〈s,Yn〉

=

∫
exp〈s,bn〉

∏

r≥1

E exp〈s, (a(r)/̺k)Yn−1〉dσn(bn, a(1), a(2), . . .)

≤
∫

exp〈s,bn〉
∏

r≥1

exp(Kq(‖(a(r))T s‖/̺k)q)dσn(bn, a(1), a(2), . . .)

≤
∫

exp


〈s,bn〉 + Kq‖s‖q

∑

r≥1

(‖a(r)T a(r)‖1/2
op /̺k)q


 dσn(bn, a(1), a(2), . . .)

= E exp(〈s,bn〉 + Kq‖s‖qU) exp(Kq‖s‖q),

with U :=
∑

r≥1

(
‖A(r)T A(r)‖1/2

op /̺k
)q

−1. Hence, the proof is completed by showing

sup
k≥1

E exp(〈s,bn〉 + Kq‖s‖qU) ≤ 1,

for some appropriate Kq. We denote ξ = − ess supU and have ξ > 0 by assump-

tion.

Small ‖s‖: First we consider small ‖s‖ with ‖s‖ ≤ c/ supn≥0 ‖bn‖2,∞ for some

c > 0, where ‖bn‖2,∞ = ‖ ‖bn‖ ‖∞, Note that supn≥0 ‖bn‖2,∞ < ∞, since

supn E G
[i]
nk+ℓ/̺

nk+ℓ < ∞. For these small ‖s‖ we have

E exp((〈s,bn〉 + Kq‖s‖qU) ≤ exp(−Kq‖s‖qξ)E exp〈s,bn〉

72

and, with E 〈s,bn〉 = 0,

E exp〈s,bn〉 = E

[
1 + 〈s,bn〉 +

∞∑

m=2

〈s,bn〉m
m!

]

= 1 + E 〈s,bn〉2
∞∑

m=2

〈s,bn〉m−2

m!

≤ 1 + ‖s‖2E ‖bn‖2
∞∑

m=2

cm−2

m!

= 1 + ‖s‖2E ‖bn‖2 ec − 1 − c

c2
.

Using exp(−Kq‖s‖qξ) ≤ 1/(1+Kq‖s‖qξ) and with Ψ(c) = (ec − 1− c)/c2 we obtain

E exp(〈s,bn〉 + Kq‖s‖qU) ≤ 1 + ‖s‖2E‖bn‖2Ψ(c)

1 + Kq‖s‖qξ
.

Hence, we have to choose Kq with

Kq ≥ ‖s‖2−qΨ(c)

ξ
sup
n≥0

E ‖bn‖2.

The right hand side is increasing in ‖s‖ for q ≤ 2, so with ‖s‖ ≤ c/ supn≥0 ‖bn‖2,∞

a possible choice is

Kq =
supn≥0 E ‖bn‖2

supn≥0 ‖bn‖2−q
2,∞

Ψq(c)

ξ
∨ K, (3.19)

with Ψq(c) = (ec − 1 − c)/cq .

Large ‖s‖: For general s ∈ Rd we have

〈s,bn〉 + Kq‖s‖qU ≤ ‖s‖‖bn‖ − ‖s‖qKqξ ≤ ‖s‖‖bn‖2,∞ − ‖s‖qKqξ,

and this is less than zero if

‖s‖q−1 ≥ supn≥0 ‖bn‖2,∞

Kqξ
=

supn≥0 ‖bn‖3−q
2,∞

supn≥0 E ‖bn‖2Ψq(c)
.

If ‖s‖ satisfies the latter inequality we call it large. Thus, for large ‖s‖ we have

supn≥0 E exp(〈s,bn〉 + Kq‖s‖qU) ≤ 1.

In order to overlap the regions for small and large ‖s‖ we need

Ψ1(c) ≥
supn≥0 ‖bn‖2

2,∞

supn≥0 E ‖bn‖2
.

73

Assume w.l.o.g. that (Gn)n∈N0 is not a.s. deterministic. This yields P(bn =

(0, . . . , 0)) < 1, n ≥ 1, because bn = (0, . . . , 0) a.s. implies EGn =

(1/̺n)
∑

r≥1 A(r) EGn−1. Hence, it is supn≥1 E ‖bn‖2 > 0 and so the right hand

side of the latter display is finite. Because limc→∞ Ψ1(c) = ∞ there exists a c for

which the inequality is true and the proof is completed.

Proof of Theorem 3.2.1: For every bounded µ it can be verified easily that

̺[µk] = ̺[µ]k. Thus by definition for every q > q∗(µ) there is a k ∈ N, A ∈ A∗ with

T (A) = µk and

ess sup ̺−kq
∑

r≥1

‖A(r)T A(r)‖q/2
op < 1.

For fixed 0 ≤ ℓ ≤ k − 1 let Yn be as in Proposition 3.3.3, Y
[i]
n = (G

[i]
n − E G

[i]
n)/̺n

and ei ∈ Rd the i-th unit vector. Then Corollary 3.3.2 and Proposition 3.3.3 yield

for Kq(ℓ) = Kq

P

(
G

[i]
nk+ℓ − E G

[i]
nk+ℓ

̺nk+ℓ
> t

)
= P(exp(uY

[i]
nk+ℓ) > exp(ut)))

≤ E exp(uY
[i]
nk+ℓ − ut)

= E exp(〈uei,Yn〉 − ut)

≤ exp(Kq(ℓ)uq − ut).

Minimizing over u > 0 we obtain the bound

P

(
G

[i]
nk+ℓ − E G

[i]
nk+ℓ

̺nk+ℓ
> t

)
≤ exp(−Lκ(ℓ)tκ), n ≥ 0

for κ = 1 + 1/(q − 1) and Lκ(ℓ) = K1−κ
κ/(κ−1)(ℓ) (κ − 1)κ−1/κκ. Hence it is

P

(
G

[i]
n − E G

[i]
n

̺n
> t

)
≤ exp(−Lκtκ), n ≥ 0

for Lκ = min0≤ℓ<k Lκ(ℓ). The same bound applies to the left tail. This completes

the proof.

Proof of Proposition 3.4.1: For better legibility, we denote for any (d×d)-matrix

its (i, j)-th component by M(i, j). For deterministic matrix M ∈ Nd×d
0 we define

74

furthermore

r(M, i) =
d∑

j=1

M(i, j), for 1 ≤ i ≤ d,

c(M, j) =
d∑

i=1

M(i, j), for 1 ≤ j ≤ d

s(M) = max
1≤i≤d

r(M, i) ∨ max
1≤j≤d

c(M, j).

So, by definition it is

s

([
ess sup X [i](j)

]
1≤i,j≤d

)
= ∆.

We are going to prove the following assertion:

Lemma 3.7.1 Every deterministic matrix 0 6= M ∈ Nd×d
0 can be partitioned into

two matrices M ′, B ∈ Nd×d
0 , i.e.

M ′ + S = M,

with

s(M ′) = s(M) − 1

and in every row and in every column of S there is at most one entry 1 and the

other d − 1 entries are 0.

Hence, in particular [ess sup X [i](j)]1≤i,j≤d can be sucessively partitioned into ma-

trices S(1), . . . , S(∆) ∈ Nd×d
0 , i.e.

S(1) + · · · + S(∆) =
[
ess sup X [i](j)

]
1≤i,j≤d

,

where in every row and in every column of S(r), 1 ≤ r ≤ ∆, there is at most one

entry 1 and the other d− 1 entries are 0. Given S(1), . . . , S(∆), we define the vector

of random matrices A = (A(1), . . . , A(∆)) by

A(r)(i, j) =

{
1[(X [i](j)) ≥∑r

ℓ=1 S(ℓ)(i, j)] if S(r)(i, j) = 1,

0 if S(r)(i, j) = 0,

for 1 ≤ i, j ≤ d, 1 ≤ r ≤ ∆. It is easy to check that A ∈ A∗
1 ∩ A∗

2 and T (A) = µ.

Thus, the proof Proposition 3.4.1 is completed by proving Lemma 3.7.1.

75

Proof of Lemma 3.7.1: Let M ∈ Nd×d
0 be fix and cut short r(M, i) = r(i),

c(M, j) = c(j) and s(M) = s. If it exists a permutation π on {1, . . . d} with

M(i, π(i)) > 0, for every row i with r(i) = s and M(π−1(j), j) > 0 for every column

j with c(j) = s, then S given by

S(i, j) =

{
1 if j = π(i) and M(i, j) > 0,

0 otherwise,

has the properties claimed in Lemma 3.7.1 and furthermore M ′ = M − B ∈ Nd×d
0

fulfills

s(M ′) = s − 1,

as required. In order to prove the existence of such a permutation π, let π̃ be an

arbitrary permutation on {1, . . . , d}. We will show that if π̃ is not a possible choice

of π, then one can construct π successively from π̃: Note that definition of s yields

for every set B ⊆ {1, . . . , d}, with ℓ = #B, we have

∑

j∈B

c(j) ≤ ℓs (3.20)

and ∑

i∈B

r(i) = ℓs ⇔ r(i) = s ∀ i ∈ B. (3.21)

If it exists i0 with r(i0) = s and M(i0, π̃(i0)) = 0, then we define recursively

B1 = {i1|M(i0, π̃(i1)) > 0} ,

Bm = {im| ∃ im−1 ∈ Bm−1 : M(im−1, π̃(im)) > 0} , for m > 1.

If for all 1 ≤ k ≤ m − 1, ik ∈ Bk, it is

r(ik) = s, (3.22)

M(ik, π̃(i0)) = 0, (3.23)

M(ik, π̃(ik)) > 0, (3.24)

then we have Bm−1 (Bm: Because of (3.24) it is Bk ⊆ Bk+1, for all 1 ≤ k ≤ m−1.

Assuming Bm−1 = Bm yields

M(im−1, j) > 0 ⇒ π̃−1(j) ∈ Bm−1 ∀ im−1 ∈ Bm−1 (3.25)

and B1 ⊆ Bm−1 yields

M(i0, j) > 0 ⇒ π̃−1(j) ∈ Bm−1. (3.26)

76

By (3.23) it is i0 /∈ Bm−1 and hence #(Bm−1 ∪ {i0}) = ℓ + 1, for ℓ = #Bm−1. Thus

we have

(ℓ + 1)s
(3.21),(3.22)

=
∑

i∈Bm−1∪{i0}

r(i)

(3.25),(3.26)
=

∑

i∈Bm−1∪{i0}

∑

j:π̃−1(j)∈Bm−1

M(i, j)

≤
∑

j:π̃−1(j)∈Bm−1

d∑

i=1

M(i, j)

(3.20)

≤ ℓs,

which proves Bm−1 (Bm by contradiction. Since Bm ⊆ {1, . . . , d}, for every m ≥ 1,

there must be an m ≥ 1 with Bk (Bk+1, for 1 ≤ k ≤ m − 1 and Bm = Bm+1 or

Bm 6⊆ Bm+1. Hence it exists im ∈ Bm for which condition (3.22), (3.23) or (3.24)

is not valid. B1 is not empty, since r(i0) = s > 0, thus by definition of B1, . . . , Bm

there is a sequence (i0, . . . , im), ik ∈ Bk, with M(ik−1, π̃(ik)) > 0, for 1 ≤ k ≤ m.

Given (i0, . . . , im) we define a permutation π̂ by

π̂(i) =





π̃(ik+1) if i = ik, for 0 ≤ k ≤ m − 1,

π̃(i0) if i = im,

π̃(i) otherwise.

Because M(ik, π̂(ik)) > 0, for 0 ≤ k ≤ m − 1, M(i, π̂(i)) = M(i, π̃(i)) for i 6∈
{i0, . . . , im} and M(im, π̂(im)) > 0, if r(im) = s and M(im, π̃(im)) > 0, since (3.22),

(3.23) or (3.24) is not valid for im, we have

M(i, π̃(i)) > 0 ⇒ M(i, π̂(i)) > 0 ∀ i : r(i) = s. (3.27)

Having in addition M(i0, π̃(i0)) = 0 yields

M(π̃−1(j), j) > 0 ⇒ M(π̂−1(j), j) > 0 ∀ 1 ≤ j ≤ d (3.28)

and furthermore with (3.27) that

#{i|M(i, π̂(i)) = 0, r(i) = s} < #{i|M(i, π̃(i)) = 0, r(i) = s},

whereas (3.28) yields

#{j|M(π̂−1(j), j) = 0, c(j) = s} ≤ #{j|M(π̃−1(j), j) = 0, c(j) = s}.

77

Hence, successively we get a permutation π′ on {1, . . . , d} with

#{i|M(i, π′(i)) = 0, r(i) = s} = 0

and

#{j|M(π′−1
(j), j) = 0, c(j) = s} ≤ #{j|M(π̃−1(j), j) = 0, c(j) = s}.

Applying above argumentation on π′−1 and M t, instead of π̃ and M , yields

that there is a permutation π with M(i, π(i)) > 0, for all i with r(i) = s and

M(π−1(j), j) > 0) for all j with c(j) = s. This completes the proof.

Proof of Corollary 3.4.2: Proposition 3.4.1 yields that it exists A =

(A(1), . . . , A(∆)) ∈ A∗
1 ∩ A∗

2 with T (A) = µ and hence

∆∑

r=1

∥∥∥A(r)T A(r)
∥∥∥

op
≤ ∆ a.s.

by (3.4). So the proof is completed by applying the arguments of the proof of

Theorem 3.2.1 on this particular A.

Proof of Corollary 3.6.1: Since we want to apply Proposition 3.3.3 on G
[i]
n [µ̃], we

first show ̺[µ] = ̺[µ̃]: Let M ∈ Nd×d
0 and M̃ ∈ N

(d+1)×(d+1)
0 be the mean matrices

corresponding to µ and µ̃ respectively and L((V1, . . . , Vd)) = ν. Then it is

M̃i,j = Mi,j, 1 ≤ i, j ≤ d,

M̃i,d+1 = 0, 1 ≤ i ≤ d,

M̃d+1,j = E Vj , 1 ≤ j ≤ d,

M̃d+1,d+1 = 1.

Denote M
(n)
i,j , M̃

(n)
i,j the (i, j)-th component of Mn, M̃n, respectively. Then we get

by induction on n ≥ 1

M̃
(n)
i,j = M

(n)
i,j , 1 ≤ i, j ≤ d,

M̃
(n)
i,d+1 = 0, 1 ≤ i ≤ d,

M̃
(n)
d+1,j = M̃

(n−1)
d+1,j +

∑d
i=1 M

(n−1)
i,j E Vi, 1 ≤ j ≤ d,

M̃
(n)
d+1,d+1 = 1.

Thus E G
[i]
n [µ] = E G

[i]
n [µ̃], for 1 ≤ i ≤ d, and hence ̺[µ] ≤ ̺[µ̃]. Furthermore, if

c3 := maxi supn E G
[i]
n [µ]/ ˜̺n < ∞ for some ˜̺ > 0 then for

c4 =
c3
∑d

i=1 E Vi

˜̺− 1
∨ c3 ∨ 1 < ∞,

78

it is E G
[d+1]
n [µ̃]/ ˜̺n ≤ c4 for every n ≥ 0, as can be proved inductively: For n = 0

this is trivial and assuming E G
[d+1]
n−1 [µ̃]/ ˜̺n−1 ≤ c4, we get

E G[d+1]
n [µ̃] =

d∑

j=1

M̃
(n−1)
i,j +

d∑

j=1

d∑

i=1

M
(n−1)
i,j E Vi + 1

= E G
[d+1]
n−1 [µ̃] +

d∑

i=1

E G
[i]
n−1 E Vi

≤ c4 ˜̺n−1 +

d∑

i=1

c3 ˜̺n−1 E Vi

=

(
c4 + c3

d∑

i=1

E Vi

)
˜̺n−1

≤ c4 ˜̺n,

which proves ̺[µ] = ̺[µ̃].

By definition of q̃(µ̃), for every q̃(µ̃) < q ≤ 2 it exist k ∈ N, A ∈ A∗
2 with T (A) =

µ̃k and ess sup ̺−kq
∑

r≥1 ‖A(r)T A(r)‖q/2
op < 1. Hence Corollary 3.3.2 and Proposition

3.3.3 yield that vector Yn = (Gn− EGn)/̺n, where Gn has independent marginals

distributed as G
[1]
nk+ℓ[µ̃], . . . , G

[d]
nk+ℓ[µ̃], respectively satisfies

E exp〈s,Yn〉 ≤ exp(Kq(ℓ)‖s‖q)

for some constant Kq(ℓ) > 0. Furthermore (3.16) yields

G
[i]
n [µ, ν] − E G

[i]
n [µ, ν]

̺[µ]n
d
=

G
[i]
n [µ̃] − E G

[i]
n [µ̃] + G

[d+1]
n [µ̃] − E G

[d+1]
n [µ̃]

̺[µ̃]n
,

for G
[i]
n [µ̃], G

[d+1]
n [µ̃] independent. Thus we have

P

(
G

[i]
n [µ, ν] − E G

[i]
n [µ, ν]

̺[µ]n
> t

)
≤ E exp(〈u(ei + ed+1),Yn〉 − ut)

and get by analog calculations as in proof of Theorem 3.2.1 the assertion for

Lκ = min
0≤ℓ<k

K(ℓ)1−κ
κ/(κ−1) 2−κ/2 (κ − 1)κ−1

κκ
,

which completes the proof.

79

80

Bibliography

[1] Aldous, D. (1991) The continuum random tree II: an overview. Stochastic

Analysis, Cambridge University Press, 23–70.

[2] Ali Khan, T. and Neininger, R. (2004) Probabilistic analysis for random-

ized game tree evaluation. Mathmatics and Computer Science III. Birkhäuser,

Basel , 163–174.

[3] Ali Khan, T., Devroye, L. and Neininger, R. (2005) A limit law for the root

value of minimax trees. Electronic Communications in Probability 10, 273–281.

[4] Athreya, K. B. and Ney, P. (1972) Branching processes. Die Grundlehren

der mathematischen Wissenschaften, Bd. 196, Springer-Verlag, New York-

Heidelberg.

[5] Bennett, G. (1962) Probability inequalities for the sum of independent random

variables. Journal of the American Statistical Association 57, 33–45

[6] Biggins J.D. (2004) The growth of iterates of multivariate generating functions.

Preprint, University of Sheffield.

[7] Devroye, L. (1986) A note on the height of binary search trees. Journal of

Association for Computing Machinery 33, 498–498.

[8] Devroye, L. (1998) Branching processes and their applications in the analysis

of tree structures and tree algorithms. Probabilistic methods for algorithmic

discrete mathematics, Algorithms Combin., 16, Springer, Berlin, 249–314.

[9] Devroye, L. and Kamoun, O. (1996) Random minimax game trees. Random

Discrete Structures, John Wiley, New York, 55–80.

81

[10] Entringer, R.C., Meir, A., Moon, J.W., and Székely (1994) The Wiener index

of trees from certain families. Australasian Journal of Combinatorics 10, 211–

224.

[11] Fill, J.A. and Janson, S. (2001) Approximating the limiting quicksort distri-

bution. Random Structures Algorithms 19, 376–406.

[12] Fill, J.A. and Janson, S. (2002) Quicksort asymptotics. J. Algorithms 44, 4–28.

[13] Fill, J.A. and Janson, S. (2002) Appendix to quicksort asymp-

totics. Unpublished, available from http://www.math.uu.se/~svante/ or

http://www.mts.jhu.edu/~fill/

[14] Harris, T. E. (1963) The theory of branching processes. Die Grundlehren der

Mathematischen Wissenschaften, Bd. 119, Springer-Verlag, Berlin; Prentice-

Hall, Inc., Englewood Cliffs, N.J.

[15] Hayward, R.B. and McDiarmid, C.J.H. (1996) Large deviations for quicksort.

Journal of Algorithms 21, 476–507.

[16] Hwang, H.-K. and Neininger, R. (2002) Phase change of limit laws in the

quicksort recurrence under varying toll functions. SIAM Journal of Computing

31, 1687–1722.

[17] Hoeffding, W. (1963) Probability inequalities for sums of bounded random

variables. Journal of American Statistical Association 58, 13–30.

[18] Janson, S. (2003) The Wiener index of simply generated random trees. Random

Structures Algorithms 22, 337–358.

[19] Jones, O.D. (2004) Large deviations for supercritical multitype branching pro-

cesses Journal of Applied Probability 41, 703–720.

[20] Karlin, S. (1966) A first course in stochastic processes. Academic Press, New

York.

[21] Karp, R. and Zhang, Y. (1995) Bounded branching process and AND/OR tree

evaluation. Random Structures Algorithms 7, 97–116.

[22] Kesten, H. and Stigum, B.P. (1966a) A limit theorem for multidimensional

Galton-Watson processes. Annals of Mathematical Statistics 37, 1211–1223.

82

[23] Kesten, H. and Stigum, B.P. (1966b) Additional limit theorems for indecom-

posable multidimensional Galton-Watson processes. Annals of Mathematical

Statistics 37, 1463–1481.

[24] Knuth, D.E. (1997a) The art of computer programming. Volume 1: fundamen-

tal algorithms. 3rd ed. Addison-Wesley.

[25] Knuth, D.E. (1997b) The art of computer programming. Volume 2: seminu-

merical algorithms. 3rd ed. Addison-Wesley.

[26] Knuth, D.E. (1998) The art of computer programming. Volume 3: sorting and

searching. 2nd ed. Addison-Wesley.

[27] Knuth, D.E. and Moore, R.W. (1975) An analysis of alpha-beta pruning.

Artificial Intelligence 6, 293–326.

[28] Ledoux, M. (1995/97) On Talagrand’s deviation inequalities for product mea-

sures. ESIAM Probab. Statist 1, 63–87 (electronic).

[29] Ledoux, M. (1996) Isoperimetrie and Gaussian analysis. Lectures on probability

and statistics (Saint-Flour, 1994). Lecture Notes in Mathematics 1648, 165–

294.

[30] Lugosi, G. (2006) Concentration-of-measure inequalities. Lecture notes, avail-

able from http://www.econ.upf.es/~lugosi/

[31] Mahmoud, H.M. and Smythe, R.T. (1994) A survey of recursive trees. Theory

of Probability and Mathematical Statistics 51, 1–29.

[32] Meiners, M. (2006) Über stochastische Minimax-Fixpunktgleichungen.

Diploma thesis. Westfälische Wilhelms-Universität Münster.

[33] Motwani, R. and Raghavan, P. (1995) Randomized algorithms. Cambridge

University Press, Cambridge.

[34] Nau, D.S. (1982) An investigation of the causes of pathology in games. Artificial

Intelligence 19, 257–278.

[35] Neininger, R. (2001) On a multivariate contraction method for random re-

cursive structures with applications to Quicksort. Random Structures Algo-

rithms 19, 498–524.

83

[36] Neininger, R. (2002) The Wiener index of random trees. Combinatorics, Prob-

ability & Computing 11, 587–597.

[37] Neininger, R. and Rüschendorf, L. (2004) A general limit theorem for recursive

algorithms and combinatorial structures. Ann. Appl. Probab. 14, 378–418.

[38] Newborn, M. (1977) The effiency of the alpha-beta search of trees with branch-

depend terminal node scores. Artificial Intelligence 8, 137–153.

[39] Pearl, J. (1980) Asymptotic properties of minimax trees in game-searching

procedures. Aritificial Intelligence 14, 113–126.

[40] Pearl, J. (1984) Heuristics: Intelligent search strategies. Addison-Wesley

[41] Rabin, M.O. (1976) Probabilistic Algorithms. Algorithms and Complexity:

New Directions and Recent Results, Traub, J. editor, Academic Press, 21–39

[42] Rachev, S. T. and Rüschendorf, L. (1995). Probability metrics and recursive

algorithms. Adv. in Appl. Probab. 27, 770–799.

[43] Rösler, U. (1991). A limit theorem for “Quicksort”. RAIRO Inform. Théor.

Appl. 25, 85–100.

[44] Rösler, U. (1992). A fixed point theorem for distributions. Stochastic Process.

Appl. 42, 195–214.

[45] Rösler, U. and Rüschendorf, L. (2001). The contraction method for recursive

algorithms. Algorithmica 29, 3–33.

[46] Saks, M. and Wigderson, A. (1986) Probabilistic boolean decision trees and

the complexity of evaluating game trees. Proceedings of the 27th Annual IEEE

Symposium on Foundations of Computer Science,Toronto , Ontario, 29–38.

[47] Snir, M. (1985) Lower bounds on probabilistic linear decision trees. Theoret.

Comput. Sci. 38, 69–82.

[48] Talagrand, M. (1995) Concentration of measure and isoperimetric inequalities

in product spaces. Inst. Hautes Etudes Sci. Publ. Math. 81, 73–205.

[49] Wagner, S. (2006) On the average Wiener index of degree-restricted tree.

Australasian Journal of Combinatorics, to appear

84

[50] Wiener, H. (1947) Structural determination of paraffin boiling points. Journal

of the American Chemical Society 69, 17–20.

[51] Zhang, Y. (1987) The Variance of Two Game Tree Algorithms. Proceedings of

the of the eighth annual ACM-SIAM symposium on Discrete algorithms, New

Orleans , Lousianna, U.S., 268–277.

85

86

Zusammenfassung

Ausgangspunkt dieser Dissertation ist die stochastische Analyse rekursiver Algo-

rithmen und Datenstrukturen. Die Analyse von Algorithmen befasst sich mit der

Bewertung der Effizienz von Algorithmen. Dabei wird die Komplexität eines Al-

gorithmus als ein Parameter definiert, der die Größen, die am wichtigsten für die

Effizienz des Algorithmus sind, widerspiegelt. Meistens ist die Laufzeit eine solche

Größe aber auch Speicherplatzbedarf kann eine solche sein. Größen wie Laufzeit

und Speicherplatzbedarf eines Algorithmus hängen nicht nur von dem Algorithmus

ab, sondern auch von der Eingabe. Somit hängt auch die Komplexität eines Al-

gorithmus von dem Algorithmus und von der Eingabe ab. Folglich reicht es nicht

aus, wenn man die Komplexität von zwei oder mehreren Algorithmen, die dasselbe

Problem lösen, miteinander vergleichen will, deren Komplexität für nur eine oder

wenige Eingaben miteinander zu vergleichen. Andererseits ist es häufig unmöglich

die Komplexität von Algorithmen für alle Eingaben miteinander zu vergleichen, da

es zu viele Eingaben gibt. Um dieses Dilemma der Analyse von Algorithmen zu

überwinden, macht man sich folgende Beobachtung zu Nutze: Die Komplexität der

meisten Algorithmen wächst im Großen und Ganzen mit der Länge der Eingabe.

Deshalb wird die Komplexität von Algorithmen in Abhängigkeit von ihrer Einga-

belänge untersucht. Dabei werden häufig asymptotische Resultate für wachsende

Eingabelänge geliefert.

Eine Methode, um die Komplexität von Algorithmen in Abhängigkeit von ihrer

Eingabe zu untersuchen, ist die Average-Case-Analyse, die 1963 von D.E. Knuth

begründet wurde. Dabei wird eine Verteilung auf der Menge aller Eingaben gleicher

Länge definiert und die dadurch determinierte erwartete Komplexität (Average-

Case-Komplexität) studiert. Häufig ist dies die uniforme Verteilung, doch, motiviert

durch Anwendungen, können auch andere Verteilungen von Interesse sein. Seit den

1980er Jahren wird für solche stochastischen Modelle die Verteilung der Komplexität

87

detaillierter studiert, als nur ihr Erwartungswert. Außerdem wird bisweilen die

zufällige Ausgabe des Algorithmus analysiert.

Eine andere wichtige Methode, die in der Informatik häufig verwendet wird,

ist die Worst-Case-Analyse. Bei der Worst-Case-Analyse wird die maximale Kom-

plexität untersucht, wobei das Maximum über alle Eingaben gleicher Länge genom-

men wird. Die maximale Komplexität wird auch Worst-Case-Komplexität genannt

und jede Eingabe, die eine Worst-Case-Komplexität liefert, wird Worst-Case-

Eingabe genannt. Der Vorteil der Worst-Case-Analyse besteht darin, dass, falls

die Worst-Case-Laufzeit eines Algorithmus als klein nachzuweisen ist, folglich die

Komplexität des Algorithmus für jede Eingabe klein ist.

Nun gibt es Algorithmen deren Average-Case-Komplexität klein, aber deren

Worst-Case-Komlexität groß ist. Ein wichtiges Prinzip der Informatik, das in

solchen Situationen oft verwendet wird, ist das Randomisieren von Algorithmen.

Dabei wird die Auswertungsreihenfolge des Algorithmus an manchen Stellen ran-

domisiert. Dadurch wird die Komplexität zu jeder fest gegebenen Eingabe zufällig.

Neben der erwähnten Modellannahme von zufälligen Eingaben ist dies ein weit-

erer Aspekt der Informatik, der eine stochastische Analyse motivieren kann. Wir

interessieren uns in dieser Arbeit nur für solche randomisierten Algorithmen, die

immer ein richtiges Ergebnis liefern. Bei randomisierten Algorithmen wird die

(maximale) erwartete Komplexität analysiert. Aber auch andere Charakteristika

wie Varianz, Grenzwertsatz, Konvergenzraten und Tailschranken werden studiert.

Neben dem Erwartungswert sind obere Schranken für den rechten Tail für die

Informatik besonders interessant, da man schlechtes Verhalten des Algorithmus

— d.h. Komplexitäten, die wesentlich größer sind als erwartet — mit möglichst

großer Wahrscheinlichkeit ausschließen möchte. Ist dies für einen Algorithmus

gewährleistet und hat der Algorithmus für jede Eingabe eine gute erwartete Kom-

plexität, so ist es sinnvoll, ihn zu verwenden, selbst wenn seine Worst-Case-

Komplexität schlecht ist.

Ein wichtiges Werkzeug für die Analyse von Tailschranken sind stochastische

Konzentrationsungleichungen, für die es verschieden Herangehensweisen gibt.

Eine Herangehensweise ist Chernoff’s bounding technique. Die Idee davon

besteht darin, die erzeugende Funktion E exp(sX) einer zentrierten Zufallsvariable

X von oben abzuschätzen, um mittels der Markov-Ungleichung eine obere Schranke

für P(|X| > t) zu erhalten.

Die Azuma-Ungleichung (s. Azuma (1976)) ist eine Tailschranke für Martingale

88

mit beschränkten Differenzen, die mit Hilfe von Chernoff’s bounding technique be-

wiesen wird. Die Azuma-Ungleichung kann selbst wiederum verwendet werden, um

P(|X| > t) abzuschätzen, indem man sich durch X und eine geeignete Filtration ein

Doob’sches Martingal definiert und dessen Martingaldifferenzen abschätzt. Diese

Herangehensweise wird Martingaldifferenzmethode oder Methode beschränkter Dif-

ferenzen genannt.

Vgl. McDiarmid (1998) und Lugosi (2006) zur detaillierten Beschreibung dieser

und anderer Zugänge zu stochastischen Konzentrationsungleichungen.

In dieser Arbeit werden verschiedene Folgen von multivariaten Zufallsvari-

ablen, die eine rekursive Struktur haben, studiert. Dabei steht die Analyse ihrer

Tailschranken im Mittelpunkt. Im ersten und zweiten Kapitel sind die Folgen aus

Problemen der stochastischen Analyse von Algorithmen entstanden. Im dritten

Kapitel werden superkritische Multityp-Galton-Watson-Prozesse studiert.

Roter Faden dieser Arbeit sind die oberen Tailschranken, die für diese zufälligen

Strukturen bewiesen werden und die Methode, mit der wir sie erhalten. In jedem

Kapitel werden normalisierte Versionen der multivariaten Zufallsvariablen, bezeich-

net als Yn, n ≥ 1, mittels Chernoff’s bounding technique abgeschätzt. Dazu wer-

den die multivariaten erzeugenden Funktionen E exp〈s,Yn〉 mit Induktion nach

n abgeschätzt. Dabei wird ihre rekursive Struktur ausgenutzt. Im Zusammen-

hang mit Algorithmen wurde dieser Ansatz erstmals von Rösler (1991) für eine

univariate rekursive Struktur verwendet. Es stellt sich heraus, dass die schwierigste

Aufgabe darin besteht, den Induktionsschritt für s nah bei (0, . . . , 0) zu beweisen.

Im wesentlichen geschieht dies durch eine Rechnung bezüglich bn, einem additiven

Term, der in der Rekursionsgleichung von Yn auftaucht (s. (1.4), (2.3) and (3.18)):

Da Ebn = (0, . . . , 0) ist, gilt E exp〈s,bn〉 = 1 + O(‖s‖2), für ‖s‖ → 0. Eine

explizite Schranke erhalten wir dadurch, dass wir E exp〈s,bn〉 als Taylorreihe en-

twickeln. Eine ähnliche Rechnung wurde im Beweis von Bennett’s Ungleichung

verwendet (s. Bennett(1962)).

Im ersten Kapitel untersuchen wir Minimaxbäume. Im zweiten Abschnitt

betreiben wir Worst-Case-Analyse für Snirs randomisierten Algorithmus zum

Auswerten Boolscher Entscheidungsbäume. Dazu zeigen wir, dass es immer eine

Eingabe v⋆ gibt, deren zufällige Komplexität C(v⋆) die Komplexität von jeder

anderen Eingabe mit gleicher Länge stochastisch dominiert. Dies rechtferitgt es,

89

C(v⋆) als Worst-Case-Komplexität zu interpretieren. Für diese zufällige Worst-

Case-Komplexität beweisen wir den exakten Erwartungswert, eine Asymptotik für

die Varianz, einen Grenzwertsatz mit eindeutig charakterisiertem Grenzwert sowie

die folgende Tailschranken:

Theorem 1.2.6 Für alle 2 ≤ κ < 1/(1 − α)
.
= 4.06 existiert ein L > 0,

sodass für jedes t > 0 und n = 22k

P

(
C(v⋆) − E C(v⋆)

nα
> t

)
≤ exp(−Ltκ)

gilt. Ein expliziter Wert von L ist in (1.6) gegeben. Dieselbe Schranke gilt für den

linken Tail.

In Abschnitt 3.5 wird gezeigt, dass die obere Schranke 1/(1 − α) in Theorem 1.2.6

nicht verbesserbar ist. Diese Tailschranken gelten für binäre Entscheidungsbäume.

Die Verallgemeinerung von diesem und allen anderen Resultaten für d-näre

Entscheidungsbäume steht in Theorem 1.2.7.

In Pearls Modell für d-näre Minimaxbäume der Höhe 2k haben alle n = d2k

Blätter des Minimaxbaumes unabhängig identisch verteilte Werte, wobei ihre

Verteilungsfunktion FV stetig und streng mononton steigend auf dem Bildbereich

von 0 < FV < 1 ist. Für den Wert des Minimaxbaumes unter Pearls Modell wird

im dritten Abschnitt des ersten Kapitels der folgende Grenzwertsatz bewiesen:

Theorem 1.3.1 Für d ≥ 2 sei Wn der Wert des d-nären Minimaxbaumes der Höhe

2k, n = d2k, unter Pearls Modell, q der einzige Fixpunkt von f(x) = (1− (1−x)d)d

auf (0, 1), ξ = f ′(q) und α = log(ξ)/ log(d2) ∈ (0, 1). Dann gilt

nα(FV (Wn) − q)
L−→ W, k → ∞.

Die Zufallsvariablte W hängt nicht von L(V) ab, hat eine stetige Verteilungsfunktion

FW mit 0 < FW < 1, FW (0) = q und

FW (x) = f (FW (x/ξ)) , x ∈ R.

Im zweiten Kapitel untersuchen wir die Tailschranken des Wiener-Index von

90

zufälligen Binärsuchbäumen. Binärsuchbäume sind eine fundamentale Daten-

struktur der Informatik zum Verwalten von Listen. Insbesondere besteht eine

wohlbekannte Äquivalenz zwischen Binärsuchbäumen und Quicksort. In Abschnitt

2.2 analysieren wir den Wiener-Index mit Chernoff’s bounding technique, wodurch

wir folgende obere Tailschranke beweisen:

Theorem 2.1.1 Es sei Wn der Wiener-Index des zufälligen Binärsuchbaumes

der Ordnung n, L0
.
= 5.0177 die größte Wurzel von eL = 6L und

c = (L0 − 1)/(24L2
0)

.
= 0.0066. Dann gilt für jedes t > 0 und jedes n ≥ 0

P

(
Wn − wn

n2
> t

)
≤





exp(−1/36t2), für 0 ≤ t ≤ 9

exp(−1/96t2), für 9 < t ≤ 48L0
.
= 240.848

exp(−ct2), für 44L0 < t ≤ 24L2
0

.
= 604.256

exp(−t(ln(t) − ln(4e)), für 24L2
0 < t.

Dieselbe Schranke gilt für den linken Tail.

Da E Wn = 2n2 ln(n) + O(n2) ist (s. Hwang und Neininger (2002)), folgt

daraus insbesondere die folgende Schranke für große Abweichungen:

P (|Wn − E Wn| > t E Wn) ≤ n−2t(ln(ln(n))+ln(t)−ln(2e)+o(1)) ∀ t > 0, ∀n ≥ 0.

Als alternative Herangehensweise analysieren wir die Tails des Wiener-Index in

Abschnitt 2.3 mit der Methode beschränkter Differenzen. Dadurch erhalten wir

Theorem 2.3.1, dass eine etwas schlechtere Abschätzung der Tails als die zuletzt

aufgestellte Ungleichung liefert. Darüber hinaus beweisen wir in Abschnitt 2.4 die

folgende untere Schranke für die Tails on Wn:

Theorem 2.1.3 Für jedes feste 0 < t ≤ 1 gilt

P (|Wn − E Wn| > t E Wn) ≥ P (Wn − E Wn > t E Wn) ≥ n−8t(ln(ln(n))+O(ln(3)(n))),

für n → ∞.

Die Worst-Case-Komplexität aus dem ersten Kapitel kann als die Generatio-

nengröße eines superkritischen 2-Typ-Galton-Watsonprozesses dargestellt werden,

der von Karp und Zhang (1995) vorgestellt wurde. Im dritten Kapitel wird

91

die Methode, mit der im ersten Kapitel die Tailschranken analysiert wurden,

verallgemeinert. Dadurch werden folgende Tailschranken für die Generationengröße

von superkritischen Multityp-Galton-Watson-Prozessen bewiesen:

Theorem 3.2.1 Es sei G
[i]
n die Generationengröße eines d-Typ-Galton-Watson-

Prozesses mit endlicher maximaler Familiengröße zur Zeit n, der mit einem

Typ-i-Individuum startet, und es sei ̺ > 1. Falls q∗ < 2, dann existiert für jedes

2 ≤ κ < κ∗ = 1 + 1/(q∗ − 1) eine Konstante Lκ > 0, sodass für jedes n ≥ 0 und

1 ≤ i ≤ d gilt:

P

(
G

[i]
n − E G

[i]
n

̺n
> t

)
≤ exp(−Lκtκ) t > 0,

P

(
G

[i]
n − E G

[i]
n

̺n
< −t

)
≤ exp(−Lκtκ) 0 < t ≤ E G

[i]
n

̺n
.

q∗ und ̺ sind Größen, die durch die Nachkommensverteilung festgelegt und

in Abschnitt 3.2 definiert sind. Bei positiv regulären Galton-Watson-Prozessen ist

̺ > 1 der größte Eigenwert der Mittelwertmatrix. q∗ — und somit auch κ∗ —

ergibt sich auf kompliziertere Weise aus der Nachkommensverteilung. Aus diesem

Grund geben wir implizit mit Proposition 3.4.1 eine untere Schranke für κ∗ an,

die sich unmittelbar aus der Nachkommensverteilung ergibt. Die daraus folgenden

Tailschranken sind in Korollar 3.4.2 angeführt.

Da wir für die Analyse nicht voraussetzen müssen, dass der Galton-Watson-

Prozess positiv regulär ist, gelingt es uns, darüber hinaus Theorem 3.6.1 zu be-

weisen, das Tailschranken für superkritische Multityp-Galton-Watson-Prozesse mit

Migration liefert (vgl. Abschnitt 3.6).

92

Lebenslauf

Tämur Ali Khan

Pestalozziplatz 4

60385 Frankfurt am Main

Geburtsdatum: 12. Januar 1976

Geburtsort: Frankfurt am Main

Staatsangehörigkeit: deutsch

1982 - 1992 Grundschule Süd-West in Eschborn,

Heinrich-von-Kleist-Gesamtschule in Eschborn

1992 - 1995 Gymnasiale Oberstufe in Schwalbach am Taunus,

Allgemeine Hochschulreife

1995 - 1996 Zivildienst im Kinderhort Süd-West in Eschborn

Okt. 1996 - Aug. 2003 Johann Wolfgang Goethe-Universität Frankfurt am Main

Okt. 96 - Sep. 97 Studium Lehramt an Grundschulen,

Fächer Mathematik (Hauptfach), Deutsch und Sport

Okt. 97 - Aug. 03 Studium Mathematik auf Diplom,

Nebenfach Informatik:

März 99 Vordiplom ’sehr gut’, Professoren G. Burde,

M. Reichert-Hahn, M. Schmidt-Schauß, A. Wakolbinger

Diplomarbeit bei Prof. A. Wakolbinger, Titel ,,Ulams

Problem und Hammersleys Prozess. Eine Ideengeschichte”

Gutachter: Professoren G. Kersting, A. Wakolbinger

Aug. 03 Diplom ’mit Auszeichnung’, Professoren

M. Reichert-Hahn, C.-P. Schnorr, A. Wakolbinger

seit Sep. 2003 Doktorand und wissenschaftlicher Angestellter bei

Prof. R. Neininger, Nachwuchsgruppe

,,Probabilistische Analyse rekursiver Algorithmen”

im Emmy Noether-Programm der DFG

Fachbereich Informatik und Mathematik

Institut für Stochastik und Mathematische Informatik

