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Nuclear equation of state from the nonlinear relativistic mean field theory 
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The properties of symmetric nuclear matter are investigated in the nonlinear relativistic mean 
field theory of nuclear matter. We consider the constraints imposed by four nuclear ground state 
properties on the coupling constants and on the equation of state at Zero and at finite temperature. 
We find that the compression constant K(po) as well as the temperature is irrelevant for the stiffness 
of the equation of state for m 5 0.7. The main point is that the relativistic mean field theory 
exhibits acausal and unphysical behavior for compressibilities below K(po)=200 MeV. Every set of 
coupling constants with a negative quartic coupling constant C is unstable against small quantum 
fluctuations. 

I. INTRODUCTION 

One of the central aims of high-energy heavy-ion phys- 
ics is to determine the equation of state of nuclear matter 
at  all physically interesting densities. ' Thus far the equa- 
tion of state is known at only one density value. This can 
be inferred from the structure of finite nuclei. It reveals 
that nuclear matter saturates at a density of about 
po=0.15/fm3 with a binding energy per particle 
E / A (P,)= - 16 M ~ V .  In the following we adopt these 
values. Analysis of the nuclear monopole vibrations 
seemed to infer the compression constant to be 
K (p, = 210f  30 M ~ V ,  but recent calculations yield 
compressibilities K (P,) P 100 MeV unreasonably low 
(Ref. 4) or  higher values, K(po)=344  MeV, K(p, )  
=290+20 MeV (Ref. 5). Therefore, it seems that the 
question of determining the compression constant is still 
completely Open. A similar problem occurs for the 
effective nucleon mass m * / m  at  p,: Values from 0.6 to 
0.9 m are being deduced from the energy dependence of 
the proton-nucleus optical potential. 

Any reasonable theory of nuclear matter must either 
predict these four properties of nuclear matter from first 
principles or else incorporate them into a self-consistent 
phenomenological approach. These four quantities deter- 
mine the essential properties of nuclear matter and nu- 
clear structure in the one-particle sector. An efficient 
parametrization of these quantities in a relativistic field 
theoretic framework is therefore desirable, because then 
one can study the properties of nuclear matter as a func- 
tion of any of the above quantities. This parametrization 
can be done in a theory that is renormalizable, though re- 
normalizability and other field theoretic constraints will 
not be explicitly considered in this work. (A review on 

the importance of the three-body interaction is receiving 
new attention. These calculations make it difficult to see 
possible simple interrelations between physically interest- 
ing quantities. 

For example, in self-consistent relativistic mean-field 
models the influence of the compression constant K (pol 
depends strongly on the effective nucleon mass in the 
ground state m *(P,) as we will show below. For decreas- 
ing effective ground-state mass m *(P,) the vector cou- 
pling constant C, is increasing and therefore the 
compression constant K (pol becomes less and less impor- 
tant for the high-density behavior of the equation of 
state, while m *(P,) becomes more influencial. 

The aim of the present work is to explore explicitly 
these interconnections in a self-consistent relativistic field 
t h e ~ r ~ . ~ , ~  This topic has been touched upon b e f ~ r e . ~  
The theory allows for nuclear interactions that are not 
strictly of two-body Yukawa type but has therefore the 
disadvantage of a mostly unbounded scalar potential,6 as 
in particular if one fits the coupling constants of the 
mean-field theory to finite nuclei. l0  This unbounded sca- 
lar potential leads to a very strong restriction for the pos- 
sible sets of coupling constants. 

11. THE RELATIVSTIC MEAN-FIELD THEORY 

The nucleon field is assumed to  interact with a scalar 
field q, and a vector field V, through the following well- 
known ~ a ~ r a n ~ i a n ~ - ~  

field theory of hadrons can be found in Ref. 7.) 
A large number of theoretical attempts have been The potential functiOn U ( ~ )  is taken to be quartic poly- 

made to calculate the eauation of state at  low and high nomial in the field q,.6.9 The theory is perturbatively re- 

densities by using nonreiativistic two-body potentials aYd. n0rma1izab1e9 
justed to fit the experimental nucleon-nucleon scattering ~ ( q , ) = + m ~ q , ~ + f b q , ~ + $ c q , ~  . (2) 
data. These calculations involve a large uncertainty as to 
the type of origin of interaction to be used. For example, In the above expression the coefficient C, strictly speak- 
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TABLE I .  Twelve different sets of coupling constants are showed for fixed binding energy 
E / A  (po)= - 16 MeV at the ground-state density po=0.15/fm3, while the ground-state compressibility 
K(p0)=210,  300, and 400 MeV and the corresponding effective nucleon mass m *(po)=0.55, 0.65,0.75, 
and 0.85 are varied. 

C? CD B C m * ( p o )  

K (po)=400 MeV 367.152 264.687 -0.967 13-3 -0.133 25-2 0.55 
289.845 199.373 -0.548 49 - 3 + 0.11485-2 0.65 
209.830 132.497 + 0.245 01 -2 + 0.192 94- 1 0.75 
102.444 64.545 + 0.685 59- 1 + 0.423 44 0.85 

K(po)=300 MeV 380.792 264.687 -0.161 75-2 -0.22961-2 0.55 
306.701 199.373 -0.21738-2 -0.19474-2 0.65 
233.239 132.497 -0.328 98-2 + 0.398 78-2 0.75 
138.976 64.545 + 0.172 39- 1 + 0.195 35 0.85 

K(po)=210 MeV 393.169 264.687 -0.21687-2 -0.311 26-2 0.55 
322.254 199.373 -0.352 27- 2 -0.451 66-2 0.65 
255.909 132.497 -0.784 75 - 2 -0.81661-2 0.75 
183.683 64.545 -0.177 88- 1 + 0.396 74-  1 0.85 

ing, should be positive, to assure the existence of a lower 
bound for the energy. We will allow C to be a free param- 
eter and determine its value from a phenomenological fit. 
As will be shown most of the fits are obtained for C < 0. 
We will comment extensively on this point below. 

For rotationally and translationally invariant sym- 
metric nuclear matter, the field equations for the mesons 
in the mean-field approximation are 

The energy density, the pressure, and the compressibility 
are given by 

while m * is defined as m * =m +gspo.  In the following 
m * will be meant always in units of the nucleon mass m 
(= 939 MeV). The degeneracy factor y = 4 corresponds 
to spin-isospin-+ particles, while the effective chemical 
potential is defined as v=p - g ,  V o .  

For cold nuclear matter the Fermi-Dirac distributions 
n ( T )  and F(T)  vanish and the integrals above can be 
solved analytically. The relevant Parameters of the mod- 
el are the dimensionless coupling constants 

111. DETERMINING THE COUPLING CONSTANTS 

These four coupling constants can be adjusted by 
+ L ~ o ~ d 3 k ( k 2 + m  * 2 ) l ' 2 [ n ( ~ ) + n ( ~ ) ]  , 

( 2 ~ 1 3  
fitting the four ground-state properties. The first step in 

(4) doing this is to calculate the vector coupling constant C, a E P=&-- , K = 9 - P ,  a for every value of m * ( p o ) .  The point is mainly that due 
 PB PB   PB to the Hugenholtz-van Hove theorem" the Fermi energy 

TABLE 11. Twelve different sets of coupling constants are showed for fixed binding energy 
E / A  (po)= - 16 MeV at the ground-state density po=0.15/fm3, while the ground-state compressibility 
K ( P O ) =  100, 150, and 180 MeV and the corresponding effective nucleon mass m (cf. Table I )  are 
varied. 

Cs C,' B C m *(pol 

K(p0)=180  MeV 397.316 264.687 -0.234 57-2 -0.33748-2 0.55 
327.521 199.373 -0.39504-2 -0.533 14-2 0.65 
263.833 132.497 -0.925 59-2 -0.11922- 1 0.75 
202.181 64.545 - 0.277 50- 1 -0.46026-2 0.85 

K ( p o ) = 1 5 0 M e V  401.474 264.687 -0.251 94-2 -0.363 22-2 0.55 
332.830 199.373 - 0.436 78 - 2 -0.612 65-2 0.65 
27 1.952 132.497 -0.106 14- 1 -0.15543-1 0.75 
223.045 64.545 -0.37003- 1 -0.457 28- 1 0.85 

K ( p o ) =  100 MeV 408.427 264.687 -0.28021 -2 -0.405 10-2 0.55 
341.772 199.373 -0.504 17-2 -0.74099-2 0.65 
285.934 132.497 -0.127 72-  1 -0.21297- 1 0.75 
264.473 64.545 -0.51049-1 -0.108 16 0.85 
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must be equal to  the energy per baryon a t  saturation. 
That means 

with the Fermi energy EF =g, V. + ( k j  + m  *2)1/2 

Thus we See that m  *(po)  is a well-defined function of 
C, for fixed binding energy E /A (pol at  a given ground- 
state density po and does not depend on the scalar cou- 
pling constants C„b,c (Ref. 6). This means, in addition, 
that C, does not depend on the ground-state compressi- 
bility K (pol. This can be seen clearly in Tables I and 11. 
From Eq. (6) it follows that for decreasing effective mass 
m  *(P,) the vector coupling constant C, increases (cf. 
Tables I and 11). Therefore, the vector field becomes even 
more important at  higher compression. Hence the larg- 
est influence of the vector field and therefore the stiffest 
equation of state is obtained for the lowest effective 
ground-state mass m  *(po). 

The three other constants are now adjusted to get satu- 
ration at  ground state: po=0.15/fm3 with a depth of 
- 16 MeV, so that compression constants between 100 
and 400 MeV are obtained. From m*(po)<0.55 or 
K (po) 2 180 MeV the quartic scalar coupling constant c 
is found to be negative. 

K(Q,) = 210 MeV, rn'(q,) = 0.55-0.85 

FIG. 1. The EOS for cold nuclear matter, that rneans binding 
energy per nucleon vs the baryon density, is shown for fixed 
ground-state binding energy ( E  / A  = - 16 MeV), baryon densi- 
ty (po=O. 1 5/frn3), and ground-state cornpressibility K (po) =210 
MeV, but for different effective rnasses m *(po)=0.55, 0.65,0.75, 
and 0.85. 

IV. HIGH-DENSITY BEHAVIOR 
OF THE EQUATION OF STATE 

At first we study again the dependence of the EOS, 
especially its high-density behavior, on the ground-state 
properties.6 The strong dependence of the EOS on 
m  *(pol is shown in Fig. 1. This effect is also observed for 
K(po)=300  and 400 MeV. This point is easily under- 
stood: For higher densities the vector field is the dom- 
inant contribution to the energy density [Eq. (4)]. But the 
vector field is proportional to the vector coupling con- 
stant C: which is determined by the ground-state 
effective nucleon mass [Eq. (6) and Table I ] . ~  TO what 
extent does the equation of state then depend on the 
ground-state compression constant? The answer is 
shown in Fig. 2 for stiff equations of state, i.e., 
m  *(pol =0.55 at T= 100 MeV (for T=O MeV the equa- 
tions of state have the same slope, i.e., the Same negligible 
difference). A stiffer equation of state is favored from 
analysis of heavy-ion collision data. ' . I 2 - l 6  The nonlinear 
mean-field theory shows that there is negligible depen- 
dence of the equation of state on the compression con- 
~ t a n t . ~  

These results show the difficulty if one were to extract 
the EOS and in particular the ground-state compression 
constant from measured pion yields. l 5  This conclusion is 
also reached by other work" which emphasizes that the 

m'(qo) = 0.55, K(qo) = 210-400 MeV 
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FIG. 2. The hot equation of state (T= 100 MeV) for a fixed 
value of the ground-state effective mass m *(po)=0.55 and vari- 
ous values of the ground-state cornpressibility K (po)=210, 300, 
and 400 MeV. 



ambiguities in the A-coupling constants also yields large 
uncertainties in possible attempts to determine E, ( p  ) 
from the pion data.'5J6 The influence of the stiffness of 
the equation of state on the phase transition to quark- 
gluon plasma is studied elsewhere. '' 

V. UNPHYSICAL BEHAVIOR 
OF THE MEAN-FIELD THEORY 

Let us consider now the equations of state with 
compression constants below K (po)=200 MeV. The first 
remarkable point is that for all sets of coupling constants 
the quartic scalar coupling constant C is always negative 
(see Table I1 and Fig. 3). The calculated equations of 
state for such compressibilities exhibit an unphysical be- 
havior, cf. Figs. 4 and 5 [K (pol= 100 and 150 MeV]. 
First of all observe the kinks in the EOS for 
m *(po)=0.75 and 0.85. There are two solutions (for 
0 < m * 5 1) up to a finite density. At higher density no 
solution of the self-consistent mean-field equation (3a) ex- 
ists. The behavior results from the large, negative non- 
linear terms. These bifurcations in the equation of state 
are obviously unphysical. This can also be observed by 
inspection of the velocity of first sound C, given by 

where ae/ap is, for vanishing temperature, equal to the 
chemical potential p and the Fermi energy E, [cf. Eq. 
( 6 ) ] .  The result is shown in Fig. 6: The cusps in the equa- 
tions of state correspond to poles in the sound velocity. 
This acausal behavior of the relativistic mean-field theory 
is also reflected in the effective mass (Fig. 7). For these 
sets of coupling constants the effective mass versus the 
baryon density turns backwards at p, =2po. Hence two 
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C" 
FIG. 3. The dependence of the scalar coupling constant C, 

on the vector coupling constant C, is plotted for various 
compression constants [K (pol = 180, 210, 300, and 400 MeV]. 
Also the border line between positive and negative value for the 
quartic scalar coupling constant C is presented: c=O. The four 
Open circles indicating the different effective ground-state 
masses m *(po)=0.85, 0.75,0.65, and 0.55 (from left to right). 

Kiqo) = 100 MeV, mg(q0) = 0.55-0.85 

FIG. 4. The cold equation of state for a fixed value of the 
ground-state compressibility K (P,) = 100 MeV and various 
values for the effective mass: m *(p0)=0.55, 0.65, 0.75, and 
0.85. 

K(Q,) = 150 MeV, rno(q,) = 0.55-0.85 

FIG. 5. The Same equation of state as Fig. 5, but for 
K(po)= 150 MeV. 





derivative of the scalar potential does not change because 
it is independent of PB. Therefore, only the unstable 
solution with m * > 1 is found. The strongly negative 
quartic coupling constant C causes the unbounded scalar 
potential U ( p o )  (dotted line) with a shallow dip in the 
derivative U1(po). A stable solution of the self- 
consistency relation (8) requires a minimum in U(po) .  
Otherwise this state is unstable (quantum fluctuations are 
neglected in the mean field approximation). In  our case 
[K (P,)= 100 MeV and m *(po)=0.75] the minimum is 
very shallow (the depth is below 1 MeV). But also for 
higher ground-state compression constants K (po)  2 2 7 0  
MeV [e.g., K (po)=210 MeV, Fig. 91 a shallow minimum 
is obtained, although it is causal and does not show any 
irregularities (compare Fig. 1). This behavior does not 
depend on the ground-state density. We checked it for 
po=0.16 and 0.17 fm-3. Therefore, the best fit Set of 
coupling constants from Reinhard et al. (Ref. 10) is not 
stable, as well as all other sets of coupling constants with 
a negative C, such as that predicted by the first of Refs. 6. 
We also found that for compression constants below 
K (po)= 150 MeV abnormal, density isomeric states [e.g., 
in Fig. 4 for K (pol= 100 MeV and m *(po)=0.65] can 
occur at p = 2po and E / A - - 20 MeV, i.e., below the 
normal ground state of nuclear matter. This second 
minimum is observed while the values of the binding en- 
ergy per nucleon, the ground-state density, compressibili- 
ty, and the effective mass of the nucleon in the normal 
state are correctly reproduced. Boguta and ~ o d m e r ~  did 
not obtain any density isomer in spite of explicitly search- 
ing for it. The too high ground-state density (po=0.194) 
they use could be a reason for it. 

At this point we Want t o  emphasize that the abnormali- 
ties discussed above have no connection to the phase 
transitions that have been discussed in the literature, e.g., 
the liquid vapor phase transition, '9'20 the possible phase 
transition to delta matter20,2' and the transition to a 
baryonic plasma. 20'22323 

VI. SUMMARY 

We have observed that the relativistic nonlinear mean- 
field theory for symmetric nuclear matter is rather re- 
strictive when applied to ground-state compressibilities 
below K (po) = 200 MeV. Cusps, acausal behavior 
(C, > 11, and secondary minima appear for m *(P,) = 0.8 
and m *(po) =0.65, respectively. The problernatic 
compression constants are dangerously close to the some- 
times used values: K ( p o ) = 2 1 0 i 3 0  MeV. 

K(Q,) = 210 MeV, rn*(q,) = 0.75 

FIG. 9. For the equation of state of Fig. 1 with m *(po)=0.75 
the negative of the scalar density -P„ the scalar potential 
U ( q , )  (dotted line) and the first derivative (dashed-dotted line) 
are plotted vs the effective nucleon mass m * /m for the ground- 
state density =0.1 5/fm3 (full line). 

For higher compressibilities, K (po)  > 200 MeV, the rel- 
ativistic mean-field theory seems to provide a convenient 
framework for discussing the equation of state. In partic- 
ular, we have seen that m *(po) and not K (po) is the de- 
cisive quantity which yields the high-density behavior of 
the nuclear equation of state. However, also here several 
of the selected sets of coupling constants possess an  un- 
bound scalar potential U(qo) ,  i.e., C <O (Table I). So it is 
not possible to fit finite nuclei as best as you canI0 and 
simultaneously get a stable EOS with a bounded scalar 
potential. All parameter sets with c < 0 must be rejected. 
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