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Gespräche.
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Zusammenfassung 3

Zusammenfassung

Björn Bick

1 Thematische Einordnung

Die vorliegende Arbeit beschäftigt sich mit der zeitstetigen Portfoliooptimierung sowie mit The-

men aus dem Bereich des Kreditrisikos. Das Ziel der Portfoliooptimierung ist es, zu einem

gegebenen Anfangskapital die bestmöglichen Konsum- und Investmentstrategien zu finden. Dies

bedeutet, dass ein Investor zu jedem Zeitpunkt festlegen muss, wie viel Vermögen er konsu-

miert und wie viele Anteile er von welchem Wertpapier hält. In dieser Arbeit wird dabei vor

allem der Einfluss von Einkommen auf diese Entscheidungen untersucht. Da einerseits jedoch der

zukünftige Einkommensstrom vom Zufall bestimmt ist und es andererseits keine Finanzprodukte

gibt, die diesen replizieren können, stellt die Einbindung von Einkommen in die Portfolioopti-

mierung ein großes Problem dar. Es führt dazu, dass die Annahmen eines vollständigen Marktes

nicht weiter gelten, so dass die Standardmethoden zur Lösung nicht angewendet werden können.

Diese Arbeit analysiert mehrere Ausprägungen dieses Problems und geht auf verschiedene Ver-

fahren zur Lösung ein. Weiterhin untersucht diese Studie den Einfluss des Kreditrisikos einer

Firma auf die jeweilige Firmenrendite. Dabei wird vor allem auf eine Anomalie, die bereits um-

fassend in der Literatur diskutiert wurde, Bezug genommen. Diese Anomalie besagt, dass Firmen

mit hohen Ausfallwahrscheinlichkeiten geringere Renditen erwirtschaften als Firmen mit kleine-

ren Ausfallwahrscheinlichkeiten. Eine weitere Frage, die in den Bereich des Kreditrisikos fällt,

ist die Frage, inwieweit Modelle dazu in der Lage sind, strukturierte Produkte zu bewerten und

abzusichern. Diese Arbeit versucht Antworten darauf zu geben.

Mehrere Literaturstränge bilden die Grundlage für diese Arbeit. Im Bereich der zeitstetigen

Portfoliooptimierung unterscheidet man im Wesentlichen zwei mögliche Methoden zur Lösung

des Problems. Ein Lösungsansatz geht auf die bahnbrechende Arbeit von Merton (1969) zurück,

in der Methoden der stochastischen Steuerung verwendet werden. Einen anderen Ansatz liefert

die sogenannte Martingalmethode, die von Pliska (1986) und Cox und Huang (1989) eingeführt

wurde. Viele weitere Aufsätze wie Samuelson (1969), Kim und Omberg (1996), Sørensen (1999),

Campbell und Viceira (2001), Brennan und Xia (2002) und Liu (2007) betrachten ebenfalls

Portfolioprobleme. Im Gegenstaz zu den bereits erwähnten Arbeiten berücksichtigen Hakansson
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(1970) und Bodie, Merton und Samuelson (1992) Arbeitseinkommen, wobei sie entweder anneh-

men, dass das Einkommen deterministisch ist oder durch die im Markt gehandelten Wertpapiere

repliziert werden kann. Einige kürzlich erschienenen Arbeiten, darunter die Studien von Coc-

co, Gomes und Maenhout (2005), Van Hemert (2010) und Koijen, Nijman und Werker (2010),

modellieren nicht-replizierbares Einkommen und erhalten dadurch einen unvollständigen Markt.

Die beiden bereits erwähnten Verfahren der stochastischen Steuerung und der Martingalme-

thode liefern in diesem Fall keine Lösung, so dass sich diese Arbeiten numerischer Methoden

bedienen, um das Problem zu lösen. Diese numerische Verfahren sind dabei meistens Anwen-

dungen von Finite-Differenzen-Methoden, die auch in Brennan, Schwartz und Lagnado (1997),

Munk (2000), Yao und Zhang (2005) und Munk und Soerensen (2010) verwendet werden. Neben

den Finite-Differenzen-Methoden werden in den Arbeiten von Kogan und Uppal (2000), Viceira

(2001) und Das und Sundaram (2002) noch weitere Verfahren vorgestellt, um Portfolioprobleme

in einem unvollständigen Markt zu lösen. Ein weiterer wichtiger Beitrag zur Portfolioliteratur

sind die beiden Artikel von Karatzas, Lehoczky, Shreve und Xu (1991) und Cvitanić und Ka-

ratzas (1992), die ein theoretisches Konzept vorschlagen, mit dem Probleme aus unvollständigen

Märkten in Probleme in künstlich vervollständigten Märkten transformiert und gelöst werden.

Die Arbeit von Liu (2007) betrachtet ein Portfolioproblem ohne Einkommen, nimmt aber im

Gegenzug stochastische Marktvariablen an. Kraft (2005) analysiert eine Optimierungsaufgabe

mit stochastischer Volatilität, wobei er für den Fall, dass der Investor ausschließlich sein End-

vermögen maximieren will, geschlossene Lösungen berechnen kann. Neben dem Aktienmarkt und

dem Geldmarktkonto beziehen Liu und Pan (2003) Derivate in ihre Überlegungen mit ein. Sie

zeigen, dass der Investor durch diese zusätzliche Investmentmöglichkeit einen höheren Nutzen

hat.

Weitere für diese Dissertation relevante Literatur befasst sich mit der Frage, welche Faktoren

einen Einfluss auf die Renditen von Firmen haben. Im Capital-Asset-Pricing-Model (CAPM),

das von Sharpe (1964), Lintner (1965) und Mossin (1966) unabhängig voneinander entwickelt

wurde, wird unter anderem gezeigt, dass allein das systematische Risiko gepreist ist und dass

das unsystematische Risiko keinen Einfluss auf die Renditen haben sollte, da angenommen wird,

dass die Investoren sehr gut diversifiziert sind. In der Realität sind jedoch viele Anleger nicht

genügend diversifiziert, so dass unsystematisches Risiko durchaus in deren Investmententschei-

dungen einfließt. Merton (1987) und Malkiel und Xu (2004) zeigen dabei wie unsystematisches

Risiko gepreist werden kann. Die empirischen Erkenntnisse, inwieweit sich unsystematisches Ri-

siko auf die Renditen auswirkt, sind dabei jedoch unterschiedlich. Während die Mehrheit der

Studien (u.a. Spiegel und Wang (2005) und Fu (2009)) einen positive Abhängigkeit feststel-

len, belegen Ang, Hodrick, Xing und Zhang (2006) und Ang und Zhang (2009) eine negative

Abhängigkeit. Wie bereits in der Studie von Fama und French (1993) gezeigt, kann das sys-

tematische Risiko alleine nicht die Renditen einer Firma erklären. So zeigen Chan und Chen
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(1991), dass das Ausfallrisiko einer Firma nicht diversifizierbar ist, so dass Investoren eine Ri-

sikoprämie für Ausfallrisiko verlangen. Einige Forschungsarbeiten (Dichev (1998), Griffin und

Lemmon (2002) und Campbell, Hilscher und Szilagyi (2008)) finden dabei einen negativen Zu-

sammenhang zwischen Firmenrenditen und den relevanten Ausfallrisiken, wohingegen Vassalou

und Xing (2004) und Da und Gao (2008) einen positiven Zusammenhang dokumentieren.

Auch existieren mehrere Arbeiten, die sich mit der Bewertung und Absicherung von struk-

turierten Produkten befassen und somit die vorliegende Studie beeinflusst haben. Zur Model-

lierung der zur Bewertung relevanten Portfolioausfallwahrscheinlichkeiten verwendet Li (2000)

eine Copula. Dieses Modell gehört zur Klasse der sogenannten Bottom-up Modelle und wird in

abgewandelter Form auch in den Beiträgen von Andersen, Sidenius und Basu (2003), Hull und

White (2004) und Schloegl und O’Kane (2005) genutzt. Die umfassende Studie von Burtschell,

Gregory und Laurent (2009) vergleicht mehrere Copula-Modelle und führt die jeweiligen Eigen-

schaften auf. Neben diesen Verfahren, können auch Top-down Modelle angewendet werden, um

die Verlustverteilung des Portfolios zu erzeugen. Diese Methode konzentriert sich dabei auf die

Portfolioebene und schenkt den zugrundeliegenden Einzelkrediten keine Beachtung. Vertreter

dieses Verfahrens sind Brigo, Pallavicini und Torresetti (2006), Longstaff und Rajan (2008) und

Errais, Giesecke und Goldberg (2010). Die Studien von Cont und Kan (2011) und Cousin, Crépey

und Kan (2011) untersuchen, inwieweit Vertreter dieser beiden Modellklassen in der Lage sind,

Strategien zu liefern, welche zur Risikoabsicherung dienen.
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2 Struktur und Inhalt der Arbeit

Die vorliegende kumulative Dissertation besteht aus insgesamt vier Forschungspapieren:

∙ Solving Constrained Consumption-Investment Problems by Simulation of Artificial Market

Strategies von Björn Bick, Holger Kraft und Claus Munk,

∙ Consumption-Portfolio Choice with Unspanned Labor Income and Stochastic Volatility von

Björn Bick,

∙ Default and Idiosyncratic Risk Anomalies Revisited von Björn Bick, Holger Kraft, Christian

Hirsch und Yildiray Yildirim,

∙ Hedging Structured Credit Products During the Credit Crunch von Björn Bick und Holger

Kraft.

In dem Forschungspapier Solving Constrained Consumption-Investment Problems by Simulation

of Artificial Market Strategies wird ein zeitstetiges Konsum-Investment Problem eines Investors

untersucht, der seinen Nutzen über den gesamten Lebenszyklus maximieren will. Es scheint, dass

die entsprechenden optimalen Konsum- und Investmentstrategien nicht in geschlossener Form

berechnet werden können, sobald man ein realistisches Problem mit Investmentbeschränkungen

und unvollständigen Märkten betrachtet. Gewöhnliche numerische Verfahren, die oft zur Lösung

solcher Probleme verwendet werden, sind in diesem Fall sehr schwer oder unmöglich zu imple-

mentieren. In unserer Studie wird eine relativ einfache numerische Methode vorgeschlagen, die

die abstrakte Idee eines künstlich vervollständigten und unbeschränkten Marktes mit Monte-

Carlo Simulationen und einer Optimierungsroutine kombiniert. Diese Methode liefert eine Ober-

grenze für den Vermögensverlust im Vergleich zu der unbekannten optimalen Strategie.

Der Ausgangspunkt für diese Analyse bildet ein Investor, der die Möglichkeit hat sein

Vermögen in einen Aktienindex oder in ein Geldmarktkonto zu investieren. Der Investor muss

dann festlegen, wie viele Anteile er von dem jeweiligen Wertpapier wann halten will. Weiter-

hin muss er darüber entscheiden, welchen Anteil seines Vermögens er wann konsumieren will.

Des Weiteren erhält die Person einen exogen vorgegebenen stochastischen Einkommensstrom

während seiner Arbeitskarriere. Da dieses Arbeitseinkommen, wie der Aktienmarkt, zufälligen

Schwankungen unterworfen ist und nicht perfekt mit dem Aktienmarkt korreliert ist, entsteht

ein unvollständiges Optimierungsproblem. Weiterhin wird angenommen, dass der Investor kei-

ne Leerverkäufe tätigen und keine Kredite aufnehmen darf, so dass der prozentuale Anteil des

Vermögens, das in die Aktie investiert wird, immer zwischen 0 und 100% liegen muss. Die-

se Annahme sowie die Annahme eines nicht replizierbaren Einkommensstroms sorgen dafür,

dass das Problem im Allgemeinen nicht geschlossen gelöst werden kann. Unsere Herangehens-

weise an das Problem basiert auf der Idee von künstlichen Finanzmärkten. Dabei kann ein
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Konsum-Investment Problem mit Investmentbeschränkungen im unvollständigen Markt in ei-

ne Familie von künstlich vervollständigten Konsum-Investment Problemen ohne Investmentbe-

schränkungen eingebunden werden. In unserem speziellen Fall bestimmen das Sharpe-Ratio eines

künstlichen Wertpapiers sowie eine kontrollierte Störung des risikofreien Zinses und der erwar-

teten Aktienrendite den künstlichen Markt. Dabei wird das künstliche Wertpapier so konzipiert,

dass der Einkommensstrom mit einer geeigneten Handelsstrategie repliziert werden kann. Im

Allgemeinen können sowohl das Sharpe-Ratio als auch die kontrollierte Störung stochastische

Prozesse sein. Für eine solche Wahl zeigen Karatzas, Lehoczky, Shreve und Xu (1991) und Cvi-

tanić und Karatzas (1992) sogar, dass die optimalen Konsum- und Investmententscheidungen

im wahren unvollständigen Markt identisch mit den Strategien sind, die man im schlechtes-

ten aller künstlich vervollständigten Märkten erhält. Dabei handelt es sich allerdings nur um

ein theoretisches Ergebnis und es wird nicht gezeigt wie man die entsprechenden Strategien im

schlechtesten dieser künstlichen Märkten erhält. In unserer Analyse konzentrieren wir uns hin-

gegen auf eine Unterfamilie aus “einfachen“ künstlichen Märkten. In dieser Unterfamilie sind

sowohl das Sharpe-Ratio als auch die kontrollierte Störung deterministische Funktionen, die von

wenigen Parametern abhängen. Nach Liu (2007) können nun geschlossene Lösungen in dieser

Unterfamilie berechnet werden. Indem man die Wertfunktion über die Parameter minimiert,

sind wir in der Lage, den schlechtesten aller einfachen künstlichen Märkte zu finden. Dadurch

erhalten wir auch eine Obergrenze des Nutzens, der in dieser Unterfamilie erreicht werden kann.

Die aus diesen künstlichen Märkten resultierenden Strategien dürfen jedoch im Allgemeinen

nicht im wahren unvollständigen Markt verwendet werden. Dies liegt zum einen daran, dass ein

Teil des Vermögens in das künstliche Wertpapier investiert wird und zum anderen daran, dass

die Strategien die Investmentbeschränkungen verletzen könnten. Aus diesem Grund passen wir

die Strategien an, indem wir die Investition in das künstliche Wertpapier vernachlässigen und

die Strategien entsprechend ändern, wenn Schranken verletzt werden. Auf diesem Weg erhält

man nun zulässige Strategien, die jeweils durch eine geringe Anzahl von Konstanten parametri-

siert werden. Mit Hilfe von Monte-Carlo Simulationen können wir den erwarteten Nutzen jeder

Strategie berechnen. Durch die Anwendung einer Optimierungsroutine können wir dann eine

zulässige Strategie im wahren, unvollständigen Markt finden. Diese Strategie ist dann die beste

aller Strategien, die aus der angesprochenen Unterfamilie abgeleitet wurden. In einem letzten

Schritt werden der erwartete Nutzen dieser Strategie und die Obergrenze des Nutzens verglichen,

so dass wir eine Obergrenze für den Wohlfahrtsverlust erhalten.

Wir zeigen, dass die Obergrenzen der Wohlfahrtsverluste sowohl von der Korrelation

zwischen Einkommen und Aktienrendite sowie vom Verhältnis aus anfänglichen finanziellem

Vermögen und anfänglichem Einkommen abhängen. Für unsere Referenzparameter und einen

Zeithorizont von 50 Jahren finden wir Obergrenzen, die in den meisten Fällen unter 0.5% des

Gesamtvermögens liegen und im schlimmsten Fall 1.1% beträgt. Das Gesamtvermögen ist dabei
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die Summe aus finanziellem Vermögen und dem erwarteten diskontierten Wert aller zukünftigen

Einkommenszahlungen. Wir zeigen, dass die Strategien aus unserer Methode genauso gut sind

wie ein standardisiertes Finite-Differenzen Verfahren, das auf einem sehr feinen Gitter imple-

mentiert wurde. Weiterhin übertrifft unsere Methode das Finite-Differenzen Verfahren, sobald

dies auf einem gröberen Gitter implementiert wird, was für alle höher-dimensionalen Probleme

nötig wäre. Dies liegt vor allem daran, dass alle numerischen Methoden am sogenannten “Fluch

der Dimensionen“ leiden. Im Gegensatz zu numerischen Finite-Differenzen Methoden liefert un-

sere Herangehensweise weiterhin geschlossene Lösungen, die leicht zu interpretieren sind. Zum

Schluss belegen wir die Effizienz des vorgeschlagenen Verfahrens, indem wir es bezüglich der Ro-

bustheit unterschiedlicher Parameter sowie einer Erweiterung auf stochastische Zinsen testen.

In dem Forschungspapier Consumption-Portfolio Choice with Unspanned Labor Income and

Stochastic Volatility betrachten wir ebenfalls ein Konsum-Investment Problem mit exogenem

Arbeitseinkommen. Während die vorige Arbeit von einer konstanten Volatilität im Aktienmarkt

ausging, wird hier nun die realistischere Annahme der stochastischen Volatilität gemacht. Wir

untersuchen, inwieweit und in welchem Ausmaß sich Arbeitseinkommen und stochastische Vo-

latilität auf die Konsum- und Investmententscheidungen des Investors über die komplette Le-

bensdauer auswirken. Im Falle eines vollständigen Marktes, ein Markt, in dem das Einkommen

durch die vorliegenden Wertpapiere repliziert werden kann, stellen wir geschlossene Lösungen zur

Verfügung. Weiterhin diskutieren und vergleichen wir Lösungsmöglichkeiten in unvollständigen

Märkten.

In unserer Studie untersuchen wir wiederrum eine Person, die ihre Entscheidungen in steti-

ger Zeit macht und den erwarteten Nutzen aus Konsum und Endvermögen maximiert. Der sto-

chastische Volatilitätsprozess und der Aktienmarkt werden nach der Arbeit von Heston (1993)

modelliert. Im Gegensatz zur vorherigen Studie, kann der Investor nicht nur in den Aktienmarkt

und das Geldmarktkonto investieren, sondern darf zusätzlich sein Vermögen in ein Derivat auf

den Aktienmarkt anlegen. Dieses Derivat ermöglicht es dem Investor, sich gegen das vorlie-

gende Volatilitätsrisiko abzusichern (siehe auch Liu und Pan (2003)). Dennoch resultiert die

Einbindung des Derivats nicht automatisch in einem vollständigen Markt, da das risikobehafte-

te Einkommen im Allgemeinen nicht repliziert werden kann. Deshalb werden in unserer Analyse

zwei Szenarien untersucht. Im ersten Szenario gehen wir davon aus, dass der Einkommensstrom

vollständig durch eine entsprechende Handelsstrategie repliziert werden kann und dass keine In-

vestmentbeschränkungen vorliegen. Nach Merton (1969) können wir dann geschlossene Lösungen

für den optimalen Konsum und die optimale Derivate- und Aktienmarktinvestition berechnen.

Die gefundenen Strategien können jeweils in einen spekulativen Anteil und in Anteile, die zur

Absicherung des Volatilitäts- und Einkommensrisikos dienen, aufgeteilt werden. Wir zeigen den

großen Einfluss des menschlichen Vermögens auf die entsprechenden Investment- und Konsum-

strategien. Die expliziten Lösungen zeigen weiterhin, dass die Position im Derivat vor allem von
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der Sensitivität des Derivats bezüglich der Volatilität abhängt. Dies macht vor dem Hintergrund

Sinn, dass das Derivat vor allem deshalb eingeführt wurde, um die gewünschte Position bezüglich

Volatilitätsrisiko einnehmen zu können. Unter der Annahme realistischer Parameter werden die

gewonnenen Ergebnisse anhand einer Lebenszeitstudie illustriert. Dabei sehen wir, dass unser

Model in der Lage ist, verschiedene Muster zu replizieren, die auch in anderen Lebenszyklusstu-

dien gefunden wurden. Im zweiten Szenario nehmen wir nicht-replizierbares Einkommen an, was

einen unvollständigen Markt nach sich zieht. Des Weiteren ist es dem Investor nicht mehr erlaubt,

zukünftiges Arbeitseinkommen als Sicherheit für eine mögliche Kreditaufnahme einzusetzen. Um

dieses Problem zu lösen, wenden wir sowohl die Methode, die im ersten Forschungspapier entwi-

ckelt wurde, als auch ein Finite-Differenzen Verfahren an. Die aus der Methodik des künstlichen

Vervollständigen stammenden Obergrenzen der Wohlfahrtsverluste sind über einen Zeitraum

von 40 Jahren im schlimmsten Fall 6.7%. Man beachte, dass es sich hierbei allerdings nur um

Obergrenzen handelt. Unsere Resultate deuten darauf hin, dass die tatsächlichen Verluste, die

durch diese Strategie erzielt werden, geringer sind. Diese Vermutung wird dadurch bestärkt,

dass die Strategien aus der Finite-Differenzen Methode für sämtliche Tests weitaus schlechter

abschneiden. Waren in unserer ersten Forschungsarbeit, die Resultate beider Methoden noch

annähernd gleich, wird in dem zweiten Forschungspapier der bereits angesprochene “Fluch der

Dimension“ deutlich, da wir nun durch die stochastische Volatilität eine zusätzliche Dimension

erhalten. Die Ergebnisse scheinen darauf hinzuweisen, dass für dieses Problem die Grenze der

numerischen Verfahren, die auf der Diskretisierung des Problems beruhen, bereits erreicht ist,

wohingegen das Verfahren der künstlich vervollständigten Märkte auch auf höhere Dimensionen

angewendet werden kann.

Im Gegensatz zu den beiden ersten Arbeiten befassen wir uns in den restlichen Studien mit

Themen aus dem Bereich des Kreditrisikos. Im Forschungspapier Default and Idiosyncratic Risk

Anomalies Revisited greifen wir zwei Anomalien auf, die bereits ausführlich in der Finanzlitera-

tur dokumentiert und diskutiert wurden. Die erste Anomalie, die wir untersuchen, bezieht sich

auf folgendes Phänomen: Firmen mit hohen Ausfallwahrscheinlichkeiten erwirtschaften gerin-

gere Renditen als Firmen mit entsprechenden kleineren Wahrscheinlichkeiten. Diese Erkenntnis

widerspricht der Intuition, dass höheres Risiko durch eine höhere Rendite honoriert wird. Im

weiteren Verlauf werden wir diese Anomalie als Ausfallanomalie bezeichnen. Als Beispiel dient

eine Studie von Campbell, Hilscher und Szilagyi (2008), die diese Anomalie empirisch belegen.

Neben der bereits erwähnten Studie gibt es noch ein Vielzahl anderer Untersuchungen, die diese

Anomalie bestätigen können. Zusätzlich betrachten wir eine weitere Anomalie bezüglich des un-

systematischen Risikos. Unter den Voraussetzungen des Capital-Asset-Pricing-Model (CAPM)

sollte nur systematisches Risiko gepreist werden, was hauptsächlich darauf zurückzuführen ist,

dass alle Investoren laut Annahmen des CAPM diversifizierte Portfolios halten. Mehrere Studien
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wie Merton (1987) und Malkiel und Xu (2004) zeigen jedoch, dass unsystematisches Risiko sehr

wohl gepreist werden kann.

In unserem Forschungspapier benutzen wir drei verschiedene Maße für Ausfallrisiko, um die

oben aufgeführten Anomalien im Zeitraum von 2001 bis 2010 zu untersuchen. Unsere Analyse

bezieht sich dabei auf mehr als 700 Firmen. Zum einen berechnen wir reale Ausfallwahrscheinlich-

keiten mit der Methode von Campbell, Hilscher und Szilagyi (2008) und analysieren, inwieweit

dieser Faktor im betrachteten Zeitraum gepreist wurde. Als weiteren Faktor berücksichtigen

wir risikoneutrale Ausfallwahrscheinlichkeiten, die wir aus Credit Default Swap Preisen ablei-

ten. Diese Faktoren könnten auch aus den Risikozuschlägen von Bondpreisen extrahiert werden.

Nach Longstaff, Mithal und Neis (2005) führen jedoch CDS Preise zu einer besseren Abschätzung

von risikoneutralen Ausfallwahrscheinlichkeiten. Als dritten Faktor schlagen wir die Ausfallrisi-

koprämie vor, die als Quotient aus risikoneutraler Ausfallwahrscheinlichkeit und realer Ausfall-

wahrscheinlichkeit berechnet werden kann. Auf der Basis eines dieser Ausfallrisikomaße sortieren

wir unsere Beobachtungen in Portfolios. Um genauer zu sein, bilden wir in jedem Quartal fünf

Portfolios, die auf den Median des jeweiligen Faktors des vorherigen Quartals sortiert wurden.

Das erste Portfolio setzt sich dann aus den Firmen mit den kleinsten Ausfallmaßen, das fünfte

aus den Firmen mit den größten Ausfallmaßen zusammen. Danach berechnen wir die nach

Marktwerten gewichteten Renditen der Portfolios und führen Fama-French Regressionen auf die

entsprechenden täglichen Renditen durch. Um statistische Aussagen zu treffen, dokumentieren

wir die Durchschnitte der Zeitreihen sowie die t-Statistiken aller Koeffizienten.

Wie in Campbell, Hilscher und Szilagyi (2008) beobachten wir ebenfalls die Ausfallanomalie,

sobald wir die realen Ausfallwahrscheinlichkeiten als zusätzlichen Faktor verwenden. Der Effekt

dieser Anomalie wird etwas kleiner, verschwindet jedoch nicht komplett, wenn wir bezüglich der

risikoneutralen Ausfallwahrscheinlichkeiten sortieren. Wird jedoch die Ausfallrisikoprämie als

Approximation des Ausfallrisikos verwendet, verschwindet die Anomalie. In einem letzten Schritt

setzen wir diese Erkenntnisse mit der weiteren Anomalie bezüglich des unsystematischen Risikos

in Verbindung. Dabei dokumentieren wir zuerst, dass diese Anomalie in unserem Datensatz

präsent ist, solange wir keinen der oben genannten Faktoren berücksichtigen. Des Weiteren zeigen

wir, dass die Anomalie nicht mehr signifikant ist, wenn die Ausfallrisikoprämien mit einbezogen

werden. Sortiert man hingegen auf die realen und risikoneutralen Ausfallwahrscheinlichkeiten,

ist die Anomalie weiterhin signifikant.

Das vierte Forschungspapier Hedging Structured Credit Products During the Credit Crunch

analysiert nun nicht mehr die Ausfallrisikoprämien von einzelnen Firmen, sondern befasst sich

mit der Bewertung und der Absicherung (engl. Hedging) von strukturierten Kreditprodukten, die

auf einem Portfolio mehrerer Firmen beruhen und somit verschiedene Ausfallrisiken gleichzeitig

verbriefen. In unserer Analyse konzentrieren wir uns dabei auf Collateralized Debt Obligations

(CDO).
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Die andauernde Finanzkrise hat den Bedarf eines guten Risikomanagement von strukturier-

ten Kreditprodukten deutlich gemacht. Daher nehmen wir in dieser Studie die Position eines

Risikomanagers ein und stellen uns eine entscheidende Frage: War es in der Finanzkrise 2008

möglich, Positionen in unterschiedlichen CDO Tranchen mit den existierenden Modellen abzusi-

chern? Wir analysieren mehrere Bottom-up und Top-down Kreditportfoliomodelle und berech-

nen die entsprechenden Delta-Hedging-Strategien, indem wir entweder einen Indexkontrakt oder

ein Portfolio aus einzelnen Credit Default Swaps (CDS) als Hedging-Instrument verwenden. Wir

berechnen die resultierenden Gewinn- und Verlustprofile und beurteilen dadurch die Effizienz

der Strategien.

In der Summe untersuchen wir insgesamt 10 Modelle, die entweder zur Klasse der Bottom-

up oder Top-down Modelle gehören. Die Gemeinsamkeit aller Bottom-up Modelle besteht darin,

dass die Verlustverteilung des Kreditportfolios durch die Kombination der einzelnen Ausfallver-

teilungen mit einer bestimmten Korrelationsstruktur erzeugt wird. Wir konzentrieren uns dabei

auf Ein-Faktor-Copula-Modelle, die vor allem in der Praxis oft verwendet werden. Wie der Na-

me bereits vermuten lässt, wird die komplette Korrelationsstruktur durch einen gemeinsamen

Faktor bestimmt. Die auf diesen gemeinsamen Faktor bedingten marginalen Ausfallwahrschein-

lichkeiten sind dabei der Hauptinput des Verfahrens. Das prominenteste Beispiel einer Copula

ist die Gauß-Copula, die auf Li (2000) zurückgeht. Da diese Copula allerdings mehrere Nach-

teile hat, berücksichtigen wir auch die Double-t Copula, Student-t Copula und Clayton Copula.

Auch wenn diese Modelle einige Defizite der Gauß-Copula beseitigen, sind sie immer noch sta-

tische Verfahren. Dies bedeutet, dass sich die Korrelationsstruktur während der Laufzeit nicht

ändert. Infolgedessen sind diese Modelle nicht fähig, eine von der Vergangenheit abhängige und

dynamische Korrelation zu generieren. Diese als Ansteckungseffekt bezeichnete Eigenschaft wur-

de in empirischen Studien (siehe z.B. Longstaff und Rajan (2008)) belegt. Um die genannten

Copula-Modelle an Marktdaten zu kalibrieren, folgen wir der Marktpraxis, so dass jede Tranche

durch einen eigenen Korrelationsparameter repräsentiert wird. Da wir ein heterogenes Portfolio

von Firmen annehmen, können wir die Sensitivitäten der Tranchen bezüglich der einzelnen CDS

Kontrakte berechnen. Im Gegensatz zu den Bottom-up Verfahren, betrachten Top-down Modelle

zuerst die Verlustverteilung des Gesamtportfolios ohne diese mit den einzelnen Firmen in Ver-

bindung zu setzen. Die Top-down Modelle liefern also keinerlei Informationen, welche Firma nun

eigentlich einen Verlust im Portfolio ausgelöst hat. Solange wir lediglich strukturierte Produkte

wie CDO’s bewerten wollen, stellt dies einen Vorteil dar, da die fehlenden Informationen über

die Einzelwahrscheinlichkeiten nicht benötigt werden. Die fehlende Verbindung zwischen dem

Verlustprozess auf der Portfolioebene und den einzelnen Ausfallwahrscheinlichkeiten wird aller-

dings zum großen Problem, sobald CDO Tranchen durch Produkte abgesichert werden sollen,

die nur das Ausfallrisiko einer bestimmten Firma verbriefen (wie z.B. CDS Papiere). Um dieses

Problem zu bewältigen, wenden wir das von Giesecke, Goldberg und Ding (2011) eingeführte
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“Random Thinning“ an. Durch dieses Verfahren sind wir in der Lage, die Ausfallwahrschein-

lichkeiten auf Portfolioebene den jeweiligen Firmen zuzuordnen. In unserer Studie fokussieren

wir uns auf drei solcher Modelle, die bereits vorher von Brigo, Pallavicini und Torresetti (2006),

Longstaff und Rajan (2008) und Errais, Giesecke und Goldberg (2010) untersucht wurden.

Wir finden heraus, dass die Student-t Copula die besten Ergebnisse liefert. Die betrachteten

Top-down Modelle sind ebenfalls in der Lage, effektive Hedgingstrategien zu liefern, haben jedoch

erhebliche Probleme, die Equity Tranche abzusichern. Indem wir die absoluten Hedgefehler der

einzelnen Modelle in der Finanzkrise betrachten, können wir jedoch folgern, dass die einzelnen

Strategien bei weitem keine zufriedenstellenden Ergebnisse liefern. Weiterhin vergleichen wir die

Leistung der Copula-Modelle, die entweder mit dem Konzept der impliziten Korrelationen oder

dem Konzept der Basiskorrelationen kalibriert wurden. Wir schlussfolgern, dass die mit Basis-

korrelationen kalibrierten Copulas stabilere und bessere Resultate liefern. Zu dieser Erkenntnis

gelangen auch Ammann und Brommundt (2009) und Cousin, Crépey und Kan (2011), die sich

allerdings nur auf die Gauß-Copula konzentrieren. Unsere Haupterkenntnis besteht darin, dass

sowohl Index- als auch CDS Kontrakte keine geeigneten Instrument zum Absichern von CDO

Tranchen sind. Wir zeigen, dass dies vor allem daran liegt, dass das Verhalten von CDO Tranchen

und den zugrundeliegenden Indexprodukten in unserem Datensatz sehr unterschiedlich war.
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Summary. Utility-maximizing consumption and investment strategies seem impossible to find in closed

form in realistic settings involving portfolio constraints, incomplete markets, and potentially a high

number of state variables. Standard numerical methods are hard or impossible to implement for such

cases. We propose a relatively simple numerical procedure that combines the abstract idea of artificial

unconstrained complete markets, well-known closed-form solutions in affine or quadratic return models,

straightforward Monte Carlo simulation, and a standard iterative optimization routine. Our method

provides an upper bound on the wealth-equivalent loss compared to the unknown optimal strategy, and

it facilitates our understanding of the economic forces at play by building on closed-form expressions for

the strategies considered. We illustrate and test our method on the life-cycle problem of an individual

who receives an unspanned labor income rate and faces a no borrowing and a no short-selling constraint.

The upper loss bound is small and our method has a precision comparable to a standard finite difference

type solution of the problem, but the latter solution method does not generalize to higher dimensions as

our method does.

1 Introduction

Utility-maximizing consumption and investment strategies are notoriously difficult to compute

when markets are incomplete and strategies are constrained. Closed-form solutions are only

known in unrealistic special cases. Grid-based numerical dynamic programming is frequently

used but suffers from the curse of dimensionality. The existing alternative numerical methods

are complex. Little is known about the precision of any of these numerical methods. This paper

introduces a simple numerical approach combining (i) the idea of artificially unconstrained and
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complete markets, (ii) well-known closed-form solutions for unconstrained consumption/portfolio

problems in affine or quadratic settings, (iii) straightforward Monte Carlo simulation to evaluate

various simple consumption and investment strategies, and (iv) a standard iterative optimization

routine. We will henceforth refer to our approach as SAMS, short for Simulation of Artificial

Markets Strategies.

In addition to its relative simplicity, SAMS has a number of attractive features. First,

SAMS applies to high-dimensional models as long as the relevant state variables have affine or

quadratic dynamics which is assumed in most existing models. Second, the consumption and

investment strategy produced by SAMS is given in closed form (involving some parameters that

we optimize over as a part of the approach) and is thus easy to interpret. Third, in contrast

to the mainstream numerical methods, SAMS also delivers an upper bound on the welfare loss

the individual incurs by using the strategy suggested by our procedure instead of the unknown

optimal strategy.

We document the performance of SAMS for the classical life-cycle problem where a power-

utility individual receives an unspanned labor income stream, has access to trade in a risk-free

asset and a stock, but faces a strict borrowing constraint so that he always has to invest between

0 and 100% of current financial wealth in each asset. This is a prime example of a problem

with no closed-form solution, but with incomplete markets and a portfolio constraint that for

realistic parameter values is binding in a substantial part of the (time,state)-space.1 SAMS

produces a relatively simple closed-form near-optimal consumption and investment strategy.

The upper bound on the welfare loss from following this strategy depends on the assumed

income-stock correlation and the ratio of initial financial wealth to initial annual income. In

our benchmark parametrization of the model with a 50-year time horizon, the upper bound is

below 0.5% of total wealth for most of the combinations of the correlation and the wealth-income

ratio and the highest upper bound is 1.1%. A standard solution method for life-cycle utility

maximization problems is grid-based numerical dynamic programming; in fact, several papers

formulate such problems directly in discrete time and then discretize the relevant state variables

when implementing the dynamic programming solution. For our specific problem, we show that

the consumption and investment strategy derived by our method is as good as the strategy found

by a standard dynamic programming approach implemented on a very fine grid. Moreover, our

method outperforms the dynamic programming algorithm implemented on a coarser grid which

would be necessary to use for a problem with one or two additional state variables.

1 Optimal unconstrained strategies have been derived in closed form for some settings with negative exponential

utility and normally distributed income (Svensson and Werner (1993), Henderson (2005), Christensen, Larsen

and Munk (2011)) and for settings with deterministic or spanned labor income (Hakansson (1970), Bodie,

Merton and Samuelson (1992)).
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Concerning the economic properties of the solution, we demonstrate that the optimal frac-

tion of financial wealth invested in the stock during retirement, where income is assumed risk-

free, depends on the correlation between labor income and stock returns before retirement. This

observation appears to be new. If this correlation is high, the individual invests less in the stock

market before retirement, so at retirement financial wealth will often be small compared to the

present value of the risk-free retirement income. To obtain the desired risk-return balance, the

individual will therefore invest a relatively large fraction of financial wealth in the stock after

retirement. Furthermore, before retirement the human wealth depends on financial wealth be-

cause of the unspanned income risk and the portfolio constraints. We show that the human

wealth is increasing in the ratio of financial wealth to initial income and is decreasing in the

stock-income correlation.

Finally, we document that the excellent performance of SAMS is robust to variations in key

parameter values and to an extension of the model to stochastic interest rates.

Our method applies the idea of artificial financial markets. A constrained, incomplete-

markets consumption-investment problem can be embedded in a family of consumption-investment

problems in artificially unconstrained, complete-markets problems. For our specific problem each

artificial market corresponds to a given choice of (i) the Sharpe ratio of an artificial asset allow-

ing perfect hedging of income risk and (ii) a certain perturbation of the risk-free rate and stock

drift. Both the Sharpe ratio and the perturbation are generally stochastic processes. Karatzas,

Lehoczky, Shreve and Xu (1991) and Cvitanić and Karatzas (1992) have shown that the opti-

mal consumption and investment strategy under incomplete markets and portfolio constraints is

identical to the strategy which is optimal in the worst of all the artificial markets, but their anal-

ysis provides no practical procedure for finding the worst artificial market and thus the optimal

strategy. We focus on the subfamily of “simple” artificial markets where both the Sharpe ratio

and the perturbation are simple functions of time characterized by a low number of constant

parameters, since the optimal strategies in those markets are then known in closed form due

to Liu (2007) and others. By minimizing the value function over these parameters we find the

worst of the simple artificial markets, which gives an upper bound on the utility that can be

obtained in the true market.

The optimal strategy in any of the simple artificial markets is generally not a feasible strategy

in the true market as it involves the artificial asset and may violate the portfolio constraints, but

we can transform it into a feasible strategy by ignoring the investment in the artificial asset and

by “pruning” the remaining part of the strategy to make sure constraints are respected. In this

way we obtain a family of feasible strategies parameterized by a low number of constants. We

can compute the expected utility associated with each strategy by straightforward Monte Carlo

simulation and we embed this in a standard optimization routine, leading to a feasible and near-

optimal consumption and investment strategy in the true constrained and incomplete market.
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Comparing the expected utility of this strategy with the upper utility bound, we obtain an upper

bound on the welfare loss—the utility loss stated in terms of total wealth—associated with our

strategy. As explained above, we find small upper bounds in our quantitative examples, and

the comparison with a well-established alternative numerical method indicates that the actual

welfare loss is significantly smaller than the upper bound suggests.

Let us compare our method to the existing alternative methods. Grid-based dynamic pro-

gramming, finite difference solution of the HJB equation, and Markov chain approximations

are closely related and frequently applied methods for numerically solving low-dimensional

consumption-investment problems related to the one we study; see Brennan, Schwartz and

Lagnado (1997), Munk (2000), Cocco, Gomes and Maenhout (2005), Yao and Zhang (2005),

Van Hemert (2010), and Munk and Sørensen (2010) for examples. However, these methods

seem impossible to implement with more than three state variables and are computationally

intensive even in lower dimensions. Hence, coarse grids have to be used despite the implied re-

duced precision. Moreover, relevant state variables such as wealth, income, or the wealth-income

ratio tend to fluctuate considerably over the life-cycle so that an age-dependent scaling must be

implemented to keep the state variables within the grid with high probability. The appropriate

scaling has to be determined experimentally and depends on the specific setting and parameter

values. Our SAMS approach is computationally less intensive, needs no scaling, can handle

higher dimensions, and provides an upper bound on the error.

Various Monte Carlo simulation based approaches that can potentially handle higher-

dimensional problems have been proposed. The approach of Detemple, Garcia and Rindisbacher

(2003) is based on Malliavin calculus and requires complete markets and unconstrained portfo-

lios. Cvitanić, Goukasian and Zapatero (2003) suggest another (simpler and slower) method for

complete markets and unconstrained portfolios. Brandt, Goyal, Santa-Clara and Stroud (2005)

adapt the least-squares Monte Carlo technique developed by Longstaff and Schwartz (2001) for

American option pricing to discrete-time consumption and investment choice problems. Their

method involves a grid with imposed boundaries that have to be determined experimentally (as

for the finite difference type approaches). To handle portfolio constraints, the method must rely

on high-dimensional constrained optimization algorithms whereas simpler unconstrained opti-

mization techniques are sufficient for our approach. Detemple, Garcia and Rindisbacher (2005)

provide experimental evidence that the least-squares approach of Brandt et al. is outperformed

by the Malliavin-based approach. The least-squares approach has been further studied by van

Binsbergen and Brandt (2007) and extended by Koijen, Nijman and Werker (2007) and Koijen,

Nijman and Werker (2010). Garlappi and Skoulakis (2010) introduce a method for discrete-time

problems based on Monte Carlo simulation, a Taylor expansion of the value function, and a

certain decomposition of the state variables.
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A variety of other methods have been proposed. Extending the log-linearization technique

of Campbell and Viceira (1999), Viceira (2001) obtains a closed-form approximate solution for

an infinite-horizon problem with unspanned income, constant investment opportunities, and no

constraints on portfolios, but adapting the approximation to a finite time horizon, time-varying

investment opportunities, and relevant portfolio constraints seems impossible. Kogan and Uppal

(2000) and Das and Sundaram (2002) consider perturbation techniques.

By applying the idea of artificially unconstrained and complete markets, as we do, and

the associated duality technique, Haugh, Kogan and Wang (2006) explain how to compute

an upper bound on the expected utility from any given feasible consumption and investment

strategy. A comparison of the expected utility delivered by the given strategy and the upper

bound—both computed by Monte Carlo simulation—provides a measure of the performance

of the strategy, an idea that we also apply. In contrast to their work, we search for the best

possible strategy among a parameterized family of promising candidates motivated by simple

artificial markets, and we also search over a parameterized family of upper utility bounds to find

the tightest possible bound. We exploit the fact that the optimal strategies in many artificial

markets are known in closed form.

Section 2 formulates the consumption and investment choice problem we focus on. The

associated artificial markets are described in Section 3, which also presents the closed-form

solutions for a parameterized family of artificial markets. Section 4 explains how we transform

the solutions from the artificial markets into feasible strategies in the true market and how we

determine the best of these feasible strategies. The performance of our method on the given

problem is extensively studied in Section 5. We illustrate some economic properties of the

solution in Section 6. Section 7 studies the sensitivity of our method to key parameters. The

extension to stock/bond/cash-allocation with stochastic interest rates is discussed in Section 8.

Finally, Section 9 concludes. The appendices contains proofs and some supplementary results.

2 The Problem

The computational approach we suggest applies to many highly relevant life-cycle consumption

and portfolio problems and could be explained at a very general level. Instead, we choose to

implement the approach for a specific problem which has been frequently studied in the literature

and allows us to illustrate the power of our approach in a transparent way. Furthermore, this

problem can also be solved by a standard numerical dynamic programming technique offering a

yardstick for the performance of our approach.

The individual we consider has access throughout his life-time to trade in two financial assets,

an instantaneously risk-free asset (a bank account) and a risky asset (a stock or stock index).
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We assume a constant annualized risk-free rate given by r using continuous compounding; see

Section 8 for an extension to stochastic interest rates. St denotes the price of the stock at time t

and the price dynamics is assumed to be

dSt = St [(r + �S�S) dt+ �S dWt] ,

where W = (Wt) is a standard Brownian motion. Hence, �S is the volatility of the stock and

�S is the Sharpe ratio of the stock, both assumed constant and positive.

The individual earns an exogenously given stochastic labor income until a predetermined

retirement date T̃ after which the individual lives on until time T > T̃ . The labor income rate

at time t is denoted by Yt and we assume that

dYt = Yt

[
�dt+ �

(
� dWt +

√
1− �2 dWY t

)]
, 0 ≤ t ≤ T̃ , (1)

where WY = (WY t) is another standard Brownian motion, independent of W . The parameter �

is the expected growth rate of labor income, � is the income volatility, and � is the instantaneous

correlation between stock returns and income growth. We assume that �, �, and � are all

constants, but our analysis goes through with the deterministic age-related variations in � and

� documented by Cocco, Gomes and Maenhout (2005). Note that, unless � = 0 or ∣�∣ = 1,

the investor faces an incomplete market, since he is not able to fully hedge against unfavorable

income shocks. In retirement, income is risk-free and given by a fraction of income just prior to

retirement,

Yt = �YT̃ , t ∈ (T̃ , T ], (2)

for some constant non-negative constant � , the socalled replacement ratio.

The individual chooses a consumption strategy represented by a non-negative stochastic

process c = (ct) and an investment strategy represented by a stochastic process �S = (�St),

where �St is the fraction of financial wealth invested in the stock at time t so that the fraction

1 − �St of financial wealth is invested in the bank account. Let Xt denote the financial wealth

at time t. For a given consumption and portfolio strategy (c, �S), the wealth dynamics is

dXt = Xt [(r + �St�S�S) dt+ �St�S dWt] + (Yt − ct) dt. (3)

We impose the standard portfolio constraint �St ∈ [0, 1] for all t ∈ [0, T ] ruling out short-selling

of the stock as well as borrowing. We will say that a strategy (c, �) is admissible, if it is adapted,

satisfies the portfolio constraint, and implies that financial wealth stays non-negative at all times,

i.e., Xt ≥ 0 (almost surely) for all t ∈ [0, T ].2 We denote the set of admissible strategies from

time t and onwards by At.

2 At any time before retirement, assuming � > 0, future income is only bounded from below by zero. Therefore, if

financial wealth was negative at any time t, the individual cannot make sure that he ends up with non-negative

terminal wealth, i.e., that he can pay back debts. In a more realistic setting with mortality risk, human wealth

would also be risky in retirement, justifying the constraint on financial wealth throughout life.
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The individual has time-additive expected utility of consumption and terminal wealth. An

admissible consumption and investment strategy (c, �S) generates the expected utility

Jc,�S (t, x, y) = Et

[∫ T

t
e−�(s−t)U(cs) ds+ "e−�(T−t)U(XT )

]
,

where the expectation is conditional on Xt = x and Yt = y. Here � ≥ 0 is the subjective

time preference rate, and " ≥ 0 models the relative weight of bequests and consumption. In

retirement, we do not need y as a state variable. The indirect utility function is

J(t, x, y) = max
(c,�S)∈At

Jc,�S (t, x, y). (4)

We assume constant relative risk aversion  > 1, i.e., U(c) = c1−/(1− ).

If (a) portfolios are unconstrained and (b) income is risk-free (� = 0) or spanned (∣�∣ = 1),

the problem has the following known closed-form solution. The indirect utility function is

Jcom(t, x, y) =
1

1− 
(gcom(t))(x+ yF com(t))1− , (5)

and the optimal consumption and investment strategy is given by

ct =
Xt + YtF

com(t)

gcom(t)
, �St =

�S
�S

+
YtF

com(t)

Xt

[
�S
�S

− 1{t≤T̃}
��

�S

]
, (6)

where it is understood that y is replaced by YT̃ in retirement and3

gcom(t) =
1

rg

(
1− e−rg(T−t)

)
+ "1/e−rg(T−t), (7)

F com(t) =

⎧⎨⎩
�
r

(
1− e−r(T−t)

)
, for t ≥ T̃ ,

1
rF

(
1− e−rF (T̃−t)

)
+ F com(T̃ )e−rF (T̃−t), for t < T̃ ,

rg =
�


+
 − 1


r +

1

2

 − 1

2
�2
S ,

rF = r − �+ ���S .

As income is assumed risk-free in retirement, this solution will apply in retirement provided that

it does not violate the short-selling constraint.

For young individuals, human wealth YtF
com(t) can easily be much higher than financial

wealth Xt. If � = +1 and � > �S/, Eq. (6) shows that the unconstrained stock investment

can then be negative. The labor income is equivalent to a large positive investment in the stock

so, to obtain the desired overall risk exposure, the actual stock investment has to be negative.

Conversely, if � = −1, the unconstrained stock investment will often be far above 100% since

labor income then constitutes a negative implicit position in the stock.

For the more reasonable situation of risky and unspanned labor income as well as portfolio

constraints, a closed-form solution for the optimal consumption and investment strategy and the

3 If rg = 0, interpret 1
rg

(1− e−rg(T−t)) as its limit as rg → 0, which is T − t. Similarly for rF .
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investor’s indirect utility seems impossible to find. A separation like (5) does not hold as the

valuation of future income will depend on wealth and risk aversion. Below we introduce a specific

consumption and investment strategy, which is relatively simple to compute and implement, and

we demonstrate that this strategy is close to optimal in a certain, very reasonable metric. The

consumption and investment strategy we suggest will be motivated by the optimal solutions in

various artificial markets to which we turn now.

3 The Artificial Markets

Karatzas, Lehoczky, Shreve and Xu (1991) and Cvitanić and Karatzas (1992) show how to

construct the relevant artificial markets for a number of different portfolio constraints, including

the constraint that the investor cannot trade a specific risk, i.e., that the market is incomplete.

In the artificial markets associated with our problem, the drift of the stock and the risk-free rate

are adjusted because of the constraint �St ∈ [0, 1]. Let � = (�t) denote a stochastic process with

values in ℝ and define �−t = max(−�t, 0) and �+
t = max(�t, 0). Each � defines a certain artificial

market. In the artificially unconstrained market corresponding to any given �, the risk-free rate

is assumed to be r̃t = r+�−t (instead of just r as in the true market) and the drift of the stock is

assumed to be r+�S�S +�+
t = r̃t+�S�S +�t. If the unconstrained �St is above 1—which often

happens with substantial human wealth and low or even negative �—we raise the risk-free rate

and keep the drift of the stock fixed, which makes the stock less attractive relative to the bank

account. This corresponds to a negative value of �t. If the unconstrained �St is below 0—which

may happen when �, �,  are relatively high and �S relatively low—we increase the drift of the

stock and keep the risk-free rate fixed, which makes the stock more attractive relative to the

bank account. This corresponds to a positive value of �t.

Assuming � > 0 and ∣�∣ < 1, the individual faces unspanned income risk until retirement.

The artificially unconstrained markets allow for investment in an “income contract” character-

ized by the market price of risk �It associated with the standard Brownian motion WY . The

time t price is It and evolves according to

dIt = It [(r̃t + �It) dt+ dWY t] . (8)

Let �It be the fraction of wealth invested in the income contract. �I can be positive or negative

and is, in general, a stochastic process.

Every pair of processes (�, �I), satisfying certain technical conditions, defines an artificial

market. There are no constraints on the consumption and investment strategy in the artificial

markets except for the standard integrability conditions and the constraint that consumption

and terminal wealth have to be non-negative. As labor income is perfectly hedgeable in the

artificial markets, we do not need Xt ≥ 0 for all t to ensure XT ≥ 0, as we do in the true market.
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Let J(t, x, y; �, �I) denote the indirect utility in the artificial market corresponding to (�, �I).

A strategy (c, �S) that is feasible in the true market will, together with a zero investment in the

income contract, leads to at least the same expected utility in any of the artificial markets as in

the true market. The reason is that the risk-free rate and the return on the risky investment is at

least as big in the artificial markets and, hence, terminal wealth will also be at least as big. Many

other strategies are feasible in the artificial markets, so the indirect utility in each artificial market

is greater than or equal to the indirect utility in the true market, J(t, x, y; �, �I) ≥ J(t, x, y).

Karatzas, Lehoczky, Shreve and Xu (1991) and Cvitanić and Karatzas (1992) show that the

minimum of the indirect utility J(t, x, y; �, �I) over all the processes (�, �I) satisfying certain

technical conditions is equal to the indirect utility in the true constrained market, i.e., the

solution in the true constrained market is equal to the solution in the worst of all the artificially

unconstrained markets. Alas, since we cannot compute J(t, x, y; �, �I) for all (�, �I), we cannot

minimize over (�, �I), so this result does not generally provide a way of finding the optimal

constrained strategy.

However, we can compute J(t, x, y; �, �I) in some artificial markets. To keep the solution

simple, we focus on the artificial markets with deterministic (�, �I) and use the notation �(t)

instead of �t and similarly for �I . The pair (�, �I) representing the worst artificial market

will presumably depend on financial wealth and income (and age) and will thus be stochastic

processes.4 Our method could be extended to certain exogenous stochastic processes � and

�I . As long as the price dynamics in the artificial market has an affine or quadratic structure

(Liu (2007)), closed-form solutions exist (in some cases one or more simple ordinary differential

equations have to be solved numerically), but the solutions will be more complex with stochastic

(�, �). Apparently, we cannot allow � or �I to depend explicitly on wealth and still obtain closed-

form solutions. As we report below, the method is already very precise when restricted to simple

deterministic (�, �I).

At retirement, income becomes risk-free, which will presumably lead to a big shift in the

allocation of the investment between the risk-free asset and the risky asset, so that a constraint

which is binding just before retirement may not be binding immediately after and vice versa.

4 In the HJB equation corresponding to the problem (4), �S has to maximize �S�SJx+ 1
2
�2
S�

2
SxJxx+���SyJxy.

If we impose the constraint �S ≤ 1 and let m denote the associated non-negative Lagrange multiplier, the

Lagrangian consists of the terms listed before plus m(1− �S). By maximizing with respect to �S , we find

�S = − Jx
xJxx

�S − m
Jx

�S
− ��

�S

yJxy
xJxx

.

This shows that the appropriate reduction of the Sharpe ratio is closely related to the Lagrangian multiplier

associated with the constraint. For �S = 1, we get m/Jx = �S + ��yJxy/Jx + �SxJxy/Jx, which depends on

x and y as well as the age and risk aversion of the individual.
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Therefore, we allow for different �(t) in retirement and in the active phase as represented by

�R(t) and �A(t).

In retirement, there is no income risk so �I is irrelevant and the artificial markets are just

characterized by �R. For any function �R(t), the solution to the utility maximization in the

corresponding artificial unconstrained market is stated below; see Appendix A for proofs.

Theorem 1 (In retirement). The indirect utility during retirement in the artificial market char-

acterized by �R(t) is given by

JR(t, x; �R) =
1

1− 
gR(t; �R)

(
x+ �YT̃FR(t; �R)

)1−
,

where

FR(t; �R) =

∫ T

t
e−
∫ u
t (r+�R(�)−) d� du,

gR(t; �R) = "1/e−
∫ T
t ℎR(�R(�)) d� +

∫ T

t
e−
∫ u
t ℎR(�R(�)) d� du,

ℎR(�R(�)) =
�


+
 − 1



(
r + �R(�)−

)
+
 − 1

22

(
�S +

�R(�)

�S

)2

.

The corresponding optimal consumption and investment strategy is

ct =
Xt + �YT̃FR(t; �R)

gR(t; �R)
, (9)

�St =

[
1 +

�YT̃FR(t; �R)

Xt

]
�S�S + �R(t)

�2
S

. (10)

In retirement, income affects the optimal strategy only through the addition of human

capital to current financial wealth and thus drives up consumption and the risky investment.

Note that during retirement, �S will never be negative since �S is positive, so we can focus

on the constraint �S ≤ 1. To avoid �S > 1, we may need �R < 0. Then FR and the present

value of future income is smaller, so �S is indeed smaller. Since ℎR can be smaller or bigger

(than with �R = 0), it is not clear whether gR is smaller or bigger, so the effect on consumption

is not obvious.

Let JA(t, x, y; �A, �I) denote the indirect utility function in the active phase in this artificial

market. We have the boundary condition

JA(T̃ , x, y; �A, �I) = JR(T̃ , x; �R) =
1

1− 
gR(T̃ ; �R)

(
x+ �YT̃FR(T̃ ; �R)

)1−
.

Via this boundary condition, the indirect utility in the active phase will also depend on the

perturbation �R(t) of the expected returns on the risk-free asset and the stock in retirement.

Theorem 2 (In active phase). The indirect utility before retirement in the artificial market

characterized by �A(t) and �I(t) is given by

JA(t, x, y; �A, �R, �I) =
1

1− 
gA(t; �A, �R, �I)

 (x+ yFA(t; �A, �R, �I))
1− ,
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where

FA(t; �A, �R, �I) = e−
∫ T̃
t rA(�A(u),�I(u)) du�FR(T̃ ; �R) +

∫ T̃

t
e−
∫ u
t rA(�A(�),�I(�)) d� du,

gA(t; �A, �R, �I) = e−
∫ T̃
t ℎA(�A(u),�I(u)) dugR(T̃ ; �R) +

∫ T̃

t
e−
∫ u
t ℎA(�A(�),�I(�)) d� du,

rA(�A(t), �I(t)) = r + �A(t)− − �+ ��

(
�S +

�A(t)

�S

)
+ �

√
1− �2�I(t), (11)

ℎA(�A(t), �I(t)) =
�


+
 − 1



(
r + �A(�)−

)
+
 − 1

22

[(
�S +

�A(t)

�S

)2

+ �I(t)
2

]
.

The corresponding optimal consumption and investment strategy is

ct =
Xt + YtFA(t; �A, �R, �I)

gA(t; �A, �R, �I)
, (12)

�St =
�S�S + �A(t)

�2
S

+
YtFA(t; �A, �R, �I)

Xt

[
�S�S + �A(t)

�2
S

− ��

�S

]
, (13)

�It =
�I(t)


+
YtFA(t; �A, �R, �I)

Xt

[
�I(t)


− �

√
1− �2

]
. (14)

Before retirement, labor income influences the optimal strategy via the addition of human

wealth to financial wealth, just as in retirement. In addition, the optimal stock investment is

affected via the term − ��
�S

YtFA(t)
Xt

which adjusts the explicit investment in the stock by the stock

investment implicit in human wealth through the income-stock correlation �. This is in line with

the intuition of Bodie, Merton and Samuelson (1992).

We want to minimize the indirect utility over the selected artificial markets since that

provides an upper bound for the indirect utility in the true constrained market. To perform the

minimization, we need to parameterize the functions �R(t), �A(t), and �I(t).

First, consider �R(t). If �S < �S , the constraint will not be active without income, i.e.,

just before the terminal date. We can let �R(t) = −vR(T̂ − t)+ for some T̂ ≤ T and some

(presumably positive) constant vR (the integrals is the expressions for FR and gR are then easily

computed).

Next, consider the choice of �A(t) and �I(t). How binding the constraints are, will depend on

wealth. Since expected wealth in most models increases up to retirement, we try affine functions

of time

�I(t) = �0 + �1t, �A(t) = v0 + v1t.

The integrals in the expressions for FA and gA can then be computed by standard numerical

integration techniques. With these specifications, the strategies and the indirect utility are

parameterized by the six constants � = (v0, v1, vR, T̂ , �0, �1), and we denote the associated

indirect utility by JA(t, x, y;�) and the corresponding optimal strategy by (c(�), �S(�), �I(�)).

We can now compute an upper bound on the indirect utility in the true constrained market

by a minimization over the parameterized artificial markets,
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J̄(t, x, y) ≡ JA(t, x, y; �̄) ≡ min
�̄
JA(t, x, y;�),

which is implemented using a standard unconstrained numerical optimization algorithm.

4 A Near-Optimal Strategy in the True Market

We derive a promising candidate for a good consumption-investment strategy in the true con-

strained market from the optimal strategies in the parameterized family of artificial markets in

the following way. For each � = (v0, v1, vR, T̂ , �0, �1), we take the optimal strategy (c(�), �S(�))

in the corresponding artificial market—the strategy given by (9)–(10) in retirement and (12)–

(14) before retirement—and transform it into a strategy which is feasible in the true market.

We need to make sure that financial wealth stays non-negative. In particular, when financial

wealth approaches zero (from above), we have to refrain from investing in the risky asset and

to consume less than current income. Intuitively, this liquidity constraint implies that future

income has a smaller present value when current financial wealth is small. A parsimonious way

to capture this effect is by multiplying the human capital YtFA(t) by a factor (1− e−�Xt), where

� is a positive constant to be determined. For large financial wealth, the factor is close to one

so that human capital is not significantly reduced. When financial wealth approaches zero, the

factor approaches zero so that human capital is reduced to zero.5 Furthermore, we have to make

sure �St ∈ [0, 1], so an obvious candidate for a good strategy in retirement, i.e. for t ∈ (T̃ , T ], is

ct =
Xt + �YT̃FR(t)(1− e−�Xt)

gR(t)
, (15)

�St =

(
min

{
1,

[
1 +

�YT̃FR(t)(1− e−�Xt)
Xt

]
�S�S + �R(t)

�2
S

})+

, (16)

where we have suppressed the dependence of FR and gR on �R.

In the active phase, we disregard the investment in the artificial income contract, and ensure

that constraints are satisfied just as in retirement. The modified strategy for t ∈ [0, T̃ ] is thus

ct =
Xt + YtFA(t)(1− e−�Xt)

gA(t)
, (17)

�St =

(
min

{
1,
�S�S + �A(t)

�2
S

+
YtFA(t)(1− e−�Xt)

Xt

[
�S�S + �A(t)

�2
S

− ��

�S

]})+

, (18)

where we have suppressed the dependence of FA and gA on �A, �R, �I .

For any set of the (seven) constants  = (�, �), the Equations (15)–(18) define a feasible

strategy (c( ), �S( )) in the true market. For any  , we can approximate the expected utility

5 In principle, consumption for near-zero financial wealth could exceed current income in which case we would

have to reduce consumption to ensure financial wealth stays non-negative. However, this never happened in

our simulations.
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J(t, x, y; ) generated with (c( ), �S( )) by Monte Carlo simulation of the income dynam-

ics (1) and the wealth dynamics (3) substituting in (c( ), �S( )). Searching through different

 , we find the best of the feasible strategies (c( ∗), �S( ∗)) with an associated expected util-

ity of J(t, x, y; ∗). Again, this can be implemented by a standard unconstrained numerical

optimization algorithm.

We can evaluate the performance of any admissible consumption and investment strategy

(c, �S)—including our candidate (c( ∗), �S( ∗)) defined above—in the following way. We com-

pare the expected utility generated by the strategy, Jc,�S (t, x, y), to the upper bound J̄(t, x, y)

on the maximum utility. If the distance is close, the strategy is near-optimal. More precisely,

we can compute an upper bound L = Lc,�S (t, x, y) on the welfare loss suffered when following

the specific strategy (c, �S) by solving the equation

Jc,�S (t, x, y) = J̄(t, x[1− L], y[1− L]).

Lc,�S (t, x, y) is interpreted as an upper bound on the fraction of total wealth (current wealth as

well as current and future income) that the individual would be willing to throw away to get

access to the unknown optimal strategy, instead of following the strategy (c, �S). If we focus on

the active phase, it follows from Theorem 2 that

J̄(t, x[1− L], y[1− L]) = JA(t, x[1− L], y[1− L]; �̄) = (1− L)1−JA(t, x, y; �̄),

so the upper bound on the welfare loss becomes

Lc,�S (t, x, y) = 1−
(
Jc,�S (t, x, y)

JA(t, x, y; �̄)

) 1
1−

.

5 Numerical Results

The results presented below are based on Monte Carlo simulations using 10,000 paths. Along

each path the consumption and investment strategy is reset with a frequency of � = 0.05, i.e.,

20 times a year (more frequent resetting of consumption and portfolio does not change results

significantly). In order to reduce any simulation bias in the loss, we also compute the upper

utility bound JA(t, x, y; �̄) by Monte Carlo simulation—here it is the wealth dynamics in the

artificial market which is simulated—applying the same set of random numbers as used in the

computation of the utility J(t, x, y; ∗) for our best feasible strategy. The benchmark values

for the parameters describing the characteristics of the individual, the income process, and the

financial market are summarized in Table 1. The benchmark values are similar to those used

in the existing literature; see, e.g., Cocco, Gomes and Maenhout (2005) and Kraft and Munk

(2011) and the references therein. The individual has a relative risk aversion of 4, has 30 years
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until retirement, and subsequently lives for another 20 years. The initial time is t = 0, unless

mentioned otherwise. Whenever we need to use levels of current wealth, labor income etc., we

use a unit of USD 10,000 scaled by one plus the inflation rate in the perishable consumption

good. As the benchmark we put x = 2 and y = 2 representing an initial financial wealth of

USD 20,000 and an initial annual income of USD 20,000, which are in line with the median net

worth and before-tax income statistics derived from the 2007 Survey of Consumer Finances for

individuals of age 30-40, cf. (Bucks, Kennickell, Mach and Moore, 2009, pp. A5 and A11); the

Survey also reveals a huge variation in wealth and income across individuals.

5.1 Main Results

First, we consider the size of the upper bound L on the welfare loss from following the strategy

derived by our method instead of the unknown optimal strategy throughout the entire life.

Consumption and investment strategies are known to depend on the ratio between financial

wealth and income, as well as the correlation between stock returns and labor income, so we

focus first on the sensitivity of the loss with respect to these quantities. Table 2 shows that for

a wide range of values for the initial wealth/income ratio, the welfare loss bound is below 0.5%

of current total wealth for an income-stock correlation of 0.2 or higher; in fact, in many cases

the welfare loss bound is much lower than 0.5%. The welfare loss bound is somewhat higher

for a zero income-stock correlation, but at most 1.1%. These results confirm that our proposed

strategy is indeed near-optimal.

It is intuitively reasonable that the loss bound is largest for a zero correlation, because in

this case the optimal unconstrained strategy will be a highly leveraged position in the stock

for many years. Moreover, with zero correlation, the labor income is “far” from being spanned.

Loosely speaking, the true market is very different from the artificial unconstrained markets. For

intermediate values of the correlation, the portfolio constraint on the stock is rarely binding, and

the loss bound is very small. For very high values of the correlation, the optimal unconstrained

strategy would involve some shorting of the stock in the early years, so the loss bound is slightly

higher than for intermediate correlations.

Table 3 shows how the upper bound on the welfare loss varies with the initial date and thus

with the time to retirement assuming that the initial value of the wealth/income ratio is fixed

at 1. As the investment horizon decreases, human wealth decreases. This reduces the wealth

effect of labor income on the stock investment and it also reduces the adjustment for stock-like

income risk. As the latter reduction depends on the correlation, the net effect of the decrease

in the investment horizon also depends on correlation. For low correlations this implies that

the no borrowing constraint is less tight and thus the loss bound tends to decrease. For higher

correlations, constraints may become more frequently active over shorter horizons, and the loss
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bound may increase. As the initial date is moved close to the retirement date, the loss bound

begins to increase for any correlation value.

5.2 A Comparison with a Standard Numerical Method

We have also solved the utility maximization problem (4) with the socalled Markov Chain Ap-

proximation (MCA) Method, which is a well-studied and frequently applied numerical approach

(Kushner and Dupuis (2001); Munk (2000) and Munk (2003)). The indirect utility function is

homogeneous of degree 1−  and can therefore be written as J(t, x, y) = y1−H(t, x/y). From

the HJB equation for J , a non-linear second-order PDE for H can be derived, and this PDE

is the HJB equation for another stochastic control problem where the controls are simple scal-

ings of the original consumption and portfolio plans. The MCA Method discretizes this control

problem. The dynamics of the wealth/income ratio is approximated by a Markov chain on a

grid defined by N equidistant time points and I equidistant values of the wealth/income ratio.

In the continuous-time model, the wealth/income ratio is unbounded from above, but the MCA

Method has to impose an upper bound. The optimization problem is solved by backwards recur-

sion starting at the terminal date T . In each time step the value function for each state in the

grid is maximized by policy iterations. The entire procedure is roughly equivalent to solving the

HJB equation for H by a (specific) finite difference approach, similar to the one used by Bren-

nan, Schwartz and Lagnado (1997) and others. The precision of the method depends heavily on

the number of grid points and the size of the imposed upper bound. Ideally, the bound should

be set so high that it is very unlikely that the wealth/income ratio would exceed that bound

when the optimal strategies are followed. This can be checked by simulating the wealth/income

ratio using the strategies obtained with the method for a given upper bound. If sufficiently

many paths exceed the bound, the MCA method must be rerun with a higher imposed bound.

This complicates the application of the MCA Method as well as other grid-based methods.

We have solved our problem with the MCA method both for a very fine grid (N = 4000,

I = 12000) and a coarser—but still quite fine—grid (N = 2000, I = 4000). We evaluate the

expected utility of the consumption and investment strategy derived with the MCA method by

Monte Carlo simulation using the same random numbers as in the valuation of our suggested

strategy, in order to avoid any bias stemming from the simulations. Table 4 presents the upper

bounds on the percentage welfare loss for the MCA method for both grids and compares with the

upper bound for our SAMS method. The loss difference is simply the loss bound for our method

minus the loss bound for the MCA method, i.e., the increase in the upper bound by applying our

SAMS method instead of the MCA method. The table assumes an initial wealth/income ratio

of 1, but the results are similar for other values. The table shows that our method is roughly as

good as the MCA method with the very fine grid in the sense that the loss from following our
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strategy instead of the MCA-based strategy is at most 0.115% of wealth. With the very fine

grid the derived strategy can be expected to be very close to the truly optimal strategy, so the

results that the strategy derived by our method is also very close to optimal and that the upper

bound on the welfare loss is not very tight. Furthermore, our method beats the MCA method

with the coarser grid.

For problems with a single state variable, like the one we consider, the MCA method can

be implemented with a very fine grid. For problems with two or three state variables, however,

fine grids are intractable. For example, a grid with two state variables and 12000 gridpoints

per state variable, as we have used, would have 144 million gridpoints at each point in time

considered, requiring a lot of computer memory and leading to long computation times. The

above results suggest that our SAMS approach would outperform tractable implementations

of the MCA method for problems with two or three state variables. For problems with more

than three state variables (after any homogeneity is exploited), all grid-based methods seem

computationally infeasible. In contrast, our SAMS method is still applicable.

5.3 Detailed Results from our Method

Next, we investigate the auxiliary parameters  ∗ underlying the best of the strategies of the

form in (15)–(18). Table 5 shows the optimal auxiliary parameters, corresponding to  ∗, for

different stock-income correlations and for an initial wealth/income ratio of 1. As for any

multi-dimensional numerical optimization, some experimentation with starting values, possible

sequential optimization over different subsets of parameters and so on is recommended. With

the parameter values and initial state variables listed in Table 1, our experiments have shown

that best results are obtained by fixing vR = 0 (and then T̂ is meaningless) and � = 30, and

then run a simulated annealing optimization routine to find the optimal remaining parameters

displayed in Table 5.6 The values of �0 and �1 indicate that the risk premium which the

individual associates with the unspanned income risk is positive and decreasing over life, and

the risk premium is higher for low correlations. A high risk premium translates into a low value

of the income multiplier FA(t), i.e., a low human wealth.

For a zero correlation, the optimized �At = v0 +v1t is negative over most of the working life.

This indicates that the risk-free rate is artificially increased to make the stock less attractive,

because the unrestricted fraction of wealth invested in the stock would exceed one. For very

high correlations, the optimized �At is positive, artificially increasing the expected return on

the stock, which makes good sense early in life where the unrestricted stock investment would

6 With our parameters, financial wealth will be sufficiently big at retirement that the portfolio constraints are

not binding, so it is natural to have �R(t) = 0. The large value of � indicates that downwards scaling of human

wealth imposed in (17)–(18) is only significant for very small levels of financial wealth.
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be negative in this case. However, �0 and �1 also affect the stock investment via the income

multiplier FA(t), so that it is difficult to interpret the values of v0 and v1.

In general, we would optimize over the auxiliary parameters in  for each value of the

wealth/income ratio x/y of interest. However, the optimal parameters vary only relatively little

with x/y and, for a fixed x/y, the expected utility J(t, x, y; ) is relatively insensitive to  

around the optimal value  ∗. We have performed the following experiment. For any given

correlation, we find the optimal parameters for x/y = 1 and then apply the same parameters for

the other values of x/y considered. Obviously, applying the strategy based on the non-optimal

parameters leads to a higher welfare loss bound. Table 6 documents that the increase in the

percentage welfare loss caused by not re-optimizing over the parameters when x/y is different

from 1 is very small. In particular, for a local sensitivity analysis of the near-optimal strategy

with respect to changes in x or y, it is fair to keep the parameters fixed.

6 Some Properties of the Solution

Although the focus of this paper is on the solution technique, we take a brief look at some key

properties of our solution. First, we have derived our near-optimal consumption and investment

strategy as a function of age, financial wealth, and labor income. Then we have simulated 10,000

paths of financial wealth using this strategy and labor income over the life of the individual.

Figure 1 shows how the average (over the 10,000 paths) fraction of wealth invested in the stock

varies over the life-cycle for different values of the income-stock correlation �. For a zero or

low stock-income correlation, the individual invests the entire financial wealth in the stock in

the early years and then gradually, as human wealth decreases, replaces a fraction of the stock

investment by a risk-free investment. For a high correlation, the individual would initially like to

short the stock, so the optimal constrained investment strategy is to invest the entire financial

wealth in the risk-free asset. Later, as human wealth decreases, the stock is included in the

portfolio.

At retirement, the optimal asset allocation changes dramatically because the income risk

is suddenly resolved. After retirement, both human wealth and the optimal fraction of total

wealth invested in the stock are independent of what the stock-income correlation was before

retirement. However, the financial wealth build up during the active phase will depend on the

correlation. On average, individuals with a high stock-income correlation enter retirement with

a low financial wealth, since they have been investing little in the stock compared to individuals

with a low correlation. For an individual with a high correlation, financial wealth constitutes a

lower fraction of total wealth at retirement, and to obtain the desired overall risk exposure of

total wealth, this individual will have to invest a higher fraction of financial wealth in the stock,

as shown in the graph.
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Figure 2 depicts how the optimal fraction of financial wealth invested in the stock at time

t = 0 depends on the initial ratio of financial wealth to annual income. As the wealth/income

ratio approaches infinity, income becomes irrelevant so the investor should optimally invest the

fraction �S/(�S) = 0.3125 of financial wealth in the stock, as in the no-income setting of Merton

(1971). For a zero or low stock-income correlation, labor income mainly influences investments

through the addition of human wealth to financial wealth. When the wealth/income ratio is

small, the entire (but small) financial wealth is therefore invested in the stock in order to obtain

the best possible overall risk exposure. As the wealth/income ratio is increased, the optimal

fraction of financial wealth invested in the stock will eventually fall below 1 and thus decrease

towards the asymptotic value of 0.3125. Conversely, for a high correlation labor income is

much like an implicit stock investment. The optimal fraction of financial wealth invested in the

stock will therefore be zero for low wealth/income ratios, but become positive for a high enough

wealth/income ratio, and eventually approach the asymptotic 0.3125. These results demonstrate

that the sensitivity of the optimal stock investment to the initial wealth and income is highly

dependent on the risk characteristics of labor income.

Because of unspanned income risk (unless ∣�∣ = 1 or � = 0) and portfolio constraints, the

future income stream cannot be valued like the dividends from a traded asset. The human

wealth will depend on the stock-income correlation and on the risk aversion and wealth of the

individual. We compute human wealth H as the minimum extra financial wealth that the

individual would need as compensation if the entire income stream is taken away, i.e.,

J(t, x, y) = J(t, x+H, 0),

where the left-hand side is the indirect utility with the income stream and the right-hand side

is the indirect utility without the income stream but a higher financial wealth. Given our

benchmark parameter values, the portfolio constrains are not binding in the case without income,

so the right-hand side equals

J(t, x+H, 0) =
1

1− 
(gcom(t))(x+H)1− ,

where gcom is defined in (7). Hence, we can compute H as

H = [(1− )J(t, x, y)]
1

1− (gcom(t))

−1 − x.

We can interpret H/y as an income multiplier, since this is the factor that current income has

to be multiplied by to get the human wealth. We replace the unkown indirect utility J(t, x, y)

with the expected utility generated by our near-optimal strategy.

Table 7 reports the income multiplier H/y for different combinations of the stock-income

correlation and the initial wealth/income ratio. The income multiplier is increasing in the

wealth/income ratio, because with relatively high financial wealth the individual is less concerned
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with unspanned income risk and the portfolio constraints will rarely bind, especially for low

correlations. The income multiplier is decreasing in the stock-income correlation (except close

to perfect correlation which is a very special case). The lower the correlation, the better the

inherent income risk hedging properties of a positive investment in the risky asset and, thus,

the more valuable the income stream. The differences in the displayed income multipliers are

modest, however. For example, with zero correlation, the multiplier is 11.7% smaller starting

with a low wealth (x/y = 0.1) than a high wealth (x/y = 10).

7 Comparative Statics

To check the robustness of our results, we now vary selected parameters of our benchmark case

one by one. We focus on the relative risk aversion and the parameters driving the income

process, and for each parameter we consider a value below and a value above the benchmark

value. Table 8 reports both the upper loss bounds for our method and the increase in the loss

bound relative to the MCA approach implemented with the fine grid. Overall, the welfare loss

bound remains small for all the considered parameter values and the two methods provide very

similar results. For 7 out of the 24 parameter combinations considered in the table, our method

outperforms the MCA approach with the fine grid. Compared to the MCA with the coarser

grid, our method does better for 16 out of the 24 parameter combinations considered in the

table (results not shown, but are available upon request).

The loss bound is somewhat higher for a low risk aversion than for a high risk aversion. For

a lower risk aversion, the unrestricted speculative stock demand will be more sensitive to the

human capital and will stay above the imposed maximum of 100% for a longer period of time,

so the imposed portfolio constraints are more binding for  = 3 than for  = 5 and a zero or

moderate correlation. It is then not surprising that the welfare loss bound is higher for  = 3

than for  = 5.

The welfare loss bound tends to increase with the riskiness of the income stream measured

by its volatility �, which makes sense as the unspanned income risk is then bigger. Note that

for the case of high income volatility and zero income-stock correlation, in which the upper loss

bound is highest (1.5%), our method performs significantly better than the MCA approach.

The expected income growth rate � enters the optimal strategies only via the FA-function,

which is increasing in �. As indicated by (11), variations in � that make constraints more or less

binding are easily mitigated by varying �A and �I . Consequently, after optimizing over these

parameters, the welfare loss bound is relatively insensitive to �.

Finally, the welfare loss is slightly increasing in the income replacement ratio � , as this

increases human capital and thus tends to make portfolio constraints more binding early in life.
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8 Extension to Stochastic Interest Rates

Until now we have assumed a simple Black-Scholes type financial market, but our approach

applies to more general settings. As an example we consider the case where interest rates are

stochastic as described by the Vasicek (1977) model so that the short-term interest rate rt has

dynamics

drt = �[r̄ − rt] dt− �r dWrt,

where r̄, �, and �r are constants, and Wr is a standard Brownian motion. The price Bt of any

bond has dynamics of the form

dBt = Bt
[(
rt + �B�B(rt, t)

)
dt+ �B(rt, t) dWrt

]
,

where �B is a constant market price of interest rate risk. For a zero-coupon bond with a time-to-

maturity of � , the price is of the form Bt = exp{−A(�)−ℬ�(�)rt}, so that �B(rt, t) = �rℬ�(�).

Here ℬm(�) = (1 − e−m� )/m for any constant m, and A is another deterministic function of

minor importance for what follows. The dynamics of the stock price and the labor income is

now assumed to be

dSt = St [(rt + �S�S) dt+ �S(�SB dWrt + �̂S dWSt)] ,

dYt = Yt [�dt+ �(�Y B dWrt + �̂Y S dWSt + �̂Y dWY t)] , t < T̃ ,

where Wr,WS ,WY are independent standard Brownian motions and

�̂S =
√

1− �2
SB, �̂Y S =

�Y S − �SB�Y B√
1− �2

SB

, �̂Y =
√

1− �2
Y B − �̂2

Y S

where �SB, �Y B, and �Y S are the pairwise stock-bond, income-bond, and income-stock correla-

tions. In retirement, the income is again given by (2).7

The individual can trade in the stock, the instantaneously risk-free bank account, and a

single bond index. The bond index is continuously rebalanced so that at any point in time it

corresponds to a zero-coupon bond having a time-to-maturity of �̄ and, consequently, a constant

volatility of �B = �rℬ�(�̄). Let �St and �Bt denote the fractions of financial wealth invested in

the stock and the bond index, respectively, at time t. The remaining financial wealth Wt(1 −

�St − �Bt) is invested in the bank account. We impose the constraints that �St, �Bt ∈ [0, 1],

�St + �Bt ≤ 1 (borrowing prohibited), and before retirement we also have to make sure that

financial wealth stays non-negative as in the problem studied in the preceding sections.

An artificial market corresponding to this constrained, incomplete market is characterized

by a triple (�S , �B, �I) of stochastic processes such that (see Cvitanić and Karatzas (1992))

7 Dynamic portfolio choice with Vasicek-type interest rates has been studied by Sørensen (1999), Brennan and

Xia (2000), and Campbell and Viceira (2001) without labor income and Koijen, Nijman and Werker (2010),

Van Hemert (2010), Munk and Sørensen (2010), and Kraft and Munk (2011) with labor income.
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(i) the short-term interest rate is r̃t = rt + max(�−Bt, �
−
St),

(ii) the drift of the stock price is r̃t + �S�S + �St,

(iii) the drift of the bond price is r̃t + �B�B + �Bt, and

(iv) until retirement the individual can trade in an income contract with price dynamics (8), that

is with Sharpe ratio �It.

For artificial markets associated with deterministic processes (�S , �B, �I), the unconstrained

utility maximization problem can be solved in closed form by extending the results of Liu (2007)

and Munk and Sørensen (2010). Before retirement, the indirect utility function is of the form

JA(t, x, y, r; �S , �B, �I) =
1

1− 
gA(t, r) (x+ yFA(t, r))1− ,

where the functions gA and FA depend on �S , �B, �I , and the optimal strategies are

ct =
Xt + YtFA(t, rt)

gA(t, rt)
,

�Bt =

(
1

(1− �2
SB)�B

[
�B +

�B(t)

�B
− �SB

(
�S +

�S(t)

�S

)]
− �r
�B

gAr(t, rt)

gA(t, rt)

)
Xt + YtFA(t, rt)

Xt

−
(
�

�B

[
�Y B −

�̂Y S�SB
�̂S

]
− �r
�B

FAr(t, rt)

FA(t, rt)

)
YtFA(t, rt)

Xt

�St =
1

(1− �2
SB)�S

[
�S +

�S(t)

�S
− �SB

(
�B +

�B(t)

�B

)]
Xt + YtFA(t, rt)

Xt
− �

�S

�̂Y S
�̂S

YtFA(t, rt)

Xt

�It =
�I(t)



Xt + YtFA(t, rt)

Xt
− ��̂Y

YtFA(t, rt)

Xt
.

Here gAr and FAr denote the derivatives of gA and FA with respect to r. Similar expressions

apply in retirement, however the income contract is not included and the terms with � in �B

and �S vanish. Details can be found in Appendix B.

We specialize again to the simple deterministic functions

�S(t) =

⎧⎨⎩vS0 + vS1t , for t ∈ [0, T̃ ],

−vSR(T̂S − t)+ , for t ∈ [T̃ , T ],

�B(t) =

⎧⎨⎩vB0 + vB1t , for t ∈ [0, T̃ ],

−vBR(T̂B − t)+ , for t ∈ [T̃ , T ],

�I(t) = �0 + �1t,

where T̂S < T and T̂B < T , so that we only have to optimize over a small set of constants. We

minimize JA(t, x, y, r; �S , �B, �I) over all the simple artificial markets to find the upper bound on

the obtainable utility in the true market. The optimal strategy in any simple artificial market

is transformed into a feasible strategy in the true market by disregarding the income contract,

pruning the investments in the bond and the stock to comply with constraints,8 and multiplying

8 If �S and �B are both positive and their sum is above 1, we divide both of them by the sum.
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human wealth by (1− e−�Xt) to ensure non-negative financial wealth before retirement. We can

evaluate each of these feasible strategies by Monte Carlo simulation and build this evaluation

into a standard optimization routine.

In the following numerical example we assume the values of the interest rate related pa-

rameters listed in Table 9, whereas the values of the other parameters are still the same as

in Table 1. In particular, we consider a very long-duration bond index with a volatility of

�B ≈ �r/� = 5% and an excess expected return of �B�B ≈ 0.5%. We assume that the initial

value of the short-term interest rate equals the long-run average of 2%.

The upper bound on the percentage welfare loss associated with the strategy derived by

our method is shown in Table 10 for different values of the stock-income correlation �Y S and

the ratio x/y between initial financial wealth and initial annual income. The loss bound is at

most 1.4% and often much lower (we find similar results for other parameter combinations).

The results for the model with constant interest rates suggest that the bound is not very tight

so that actual losses are much smaller.

To indicate that our solution makes economical sense, Figure 3 shows the average (over

10,000 paths) optimal allocation to the stock, the bond index, and the bank account over the

life-cycle. Panel (a) is for a zero income-stock correlation, whereas Panel (b) is for a correlation

of 0.8. With zero correlation, almost the entire financial wealth is invested in the stock early

in life. The long-term bond would be useful to hedge interest rate risk but, on the other hand,

the bond has a much smaller Sharpe ratio than the stock and the bond is positively correlated

with income. In retirement, the portfolio is still dominated by the stock, but now a significant

fraction of financial wealth should be invested in the bond because of its hedging property.

When the income is highly correlated with the stock, all financial wealth is invested in the bond

through most of working life. In retirement, income is risk-free so the stock becomes attractive.

Note again that the income-stock correlation before retirement affects the optimal portfolio in

retirement. With a high income-stock correlation, financial wealth at retirement tends to be

lower so that a bigger share of that wealth has to be invested in the stock to obtain the desired

overall risk-return balance in retirement.

9 Conclusion

This paper has suggested and tested an easy procedure for finding a simple, near-optimal con-

sumption and investment strategy of an investor receiving an unspanned labor income stream.

This procedure is valuable since it appears to be impossible to find the truly optimal solution

in closed form and very difficult to approximate it precisely using standard numerical solution

techniques. For illustrative purposes we have focused on standard models of the price dynamics
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of traded assets. However, we emphasize that the procedure can be generalized to models of the

affine or quadratic classes considered in many recent papers on portfolio choice in the absence

of labor income, since in those settings (i) we would still be able to find explicit solutions in

the artificially completed markets and (ii) we can still evaluate the performance of a specific

strategy by Monte Carlo simulations.
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A Proofs for Constant Interest Rates

Proof of Theorem 1. The dynamics of financial wealth in retirement in the artificial market

characterized by �R(t) is

dXt = Xt [(r̃(t) + �St[�S�S + �R(t)]) dt+ �St�S dWt] + (�YT̃ − ct) dt,

where r̃(t) = r + �R(t)−. The Hamilton-Jacobi-Bellman (HJB) equation for the indirect utility

function J = JR(t, x; �R) is

�J = sup
c,�S

{
U(c) + Jt + (�YT̃ − c)Jx + (r̃(t) + �S [�S�S + �R(t)])xJx +

1

2
�2
S�

2
Sx

2Jxx

}
,

where subscripts on J denote partial derivatives, and the terminal condition is J(T, x) =

" 1
1−x

1− . The first-order conditions for c and �S lead to

c = J−1/
x , �S = −�S�S + �R(t)

�2
S

Jx
xJxx

. (19)

After substitution of these controls, the HJB equation reduces to

�J =


1− 
J1−1/
x + Jt + �YT̃Jx + r̃(t)xJx −

1

2

(�S�S + �R(t))2

�2
S

J2
x

Jxx
. (20)

Conjecture a solution of the form

J(t, x) =
1

1− 
g(t)

(
x+ �YT̃F (t)

)1−
, (21)

where g(T ) = "1/ , F (T ) = 0 to satisfy the terminal condition. After substituting (21) into (20),

we collect terms involving (x + �YT̃F (t))1− and the remaining terms that all involve (x +

�YT̃F (t))− . This leads to the ordinary differential equations

F ′(t)− r̃(t)F (t) + 1 = 0,

g′(t)− ℎ(t)g(t) + 1 = 0,

where

ℎ(�) =
�


+
 − 1



(
r + �R(�)−

)
+
 − 1

22

(�S�S + �R(�))2

�2
S

.

The solutions that satisfy the above-mentioned terminal values are

F (t) =

∫ T

t
e−
∫ u
t r̃(�) d� du,

g(t) = "1/e−
∫ T
t ℎ(�) d� +

∫ T

t
e−
∫ u
t ℎ(�) d� du.

Inserting the conjectured indirect utility function into (19), we obtain the optimal controls

c =
x+ �YT̃F (t)

g(t)
, �S =

1



x+ �YT̃F (t)

x

�S�S + �R(t)

�2
S

,

which define an admissible strategy in this artificial market. □
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Proof of Theorem 2. The dynamics of financial wealth before retirement in the artificial

market characterized by �A(t), �R(t), �I(t) is

dXt = Xt [(r̃(t) + �St[�S�S + �A(t)] + �It�I(t)) dt+ �St�S dWt + �It dWY t] + (Yt − ct) dt,

where r̃(t) = r + �A(t)−. The Hamilton-Jacobi-Bellman (HJB) equation for the indirect utility

function J = JA(t, x; �A, �I) is

�J = sup
c,�S ,�I

{
U(c) + Jt + (y − c)Jx + (r̃(t) + �S [�S�S + �A(t)] + �I�I(t))xJx

+
1

2
(�2
S�

2
S + �2

I )x
2Jxx + �yJy +

1

2
�2y2Jyy + (��S�S +

√
1− �2�I)�xyJxy

}
,

where subscripts on J denote partial derivatives, and the terminal condition is

J(T̃ , x, y) =
1

1− 
gR(T̃ ; �R)

(
x+ �yFR(T̃ ; �R)

)1−
.

The first-order conditions for c, �S , and �I lead to

c = J−1/
x ,

�S = −�S�S + �A(t)

�2
S

Jx
xJxx

− ��

�S

yJxy
xJxx

,

�I = −�I(t)
Jx
xJxx

− �
√

1− �2
yJxy
xJxx

.

(22)

After substitution of these controls, the HJB equation becomes

�J =


1− 
J1−1/
x + Jt + yJx + r̃(t)xJx + �yJy +

1

2
�2y2Jyy

− 1

2

(
(�S�S + �A(t))2

�2
S

+ �I(t)
2

)
J2
x

Jxx
− 1

2
�2y2

J2
xy

Jxx

− �
(
�
�S�S + �A(t)

�S
+
√

1− �2�I(t)

)
y
JxJxy
Jxx

.

(23)

Conjecture a solution of the form

J(t, x, y) =
1

1− 
g(t) (x+ yF (t))1− , (24)

where g(T̃ ) = gR(T̃ ; �R), F (T̃ ) = �FR(T̃ ; �R) to satisfy the terminal condition. After substi-

tuting (24) into (23), the terms involving (x + yF (t))−−1 cancel. We collect terms involving

(x+yF (t))1− and the remaining terms that all involve (x+yF (t))− . This leads to the ordinary

differential equations

F ′(t)− rA(t)(t)F (t) + 1 = 0,

g′(t)− ℎA(t)g(t) + 1 = 0,

where

rA(�) = r̃(�)− �− �
(
�
�S�S + �A(�)

�S
+
√

1− �2�I(t)

)
and
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ℎA(�) =
�


+
 − 1



(
r + �A(�)−

)
+
 − 1

22

[
(�S�S + �A(�))2

�2
S

+ �I(�)2

]
.

The solutions consistent with the above-mentioned values at time T̃ are

F (t) = e−
∫ T̃
t rA(u) du�FR(T̃ ; �R) +

∫ T̃

t
e−
∫ u
t rA(�) d� du,

g(t) = e−
∫ T̃
t ℎA(u) dugR(T̃ ; �R) +

∫ T̃

t
e−
∫ u
t ℎA(�) d� du.

Inserting the conjectured indirect utility function into (22), we obtain the optimal controls

c =
x+ yF (t)

g(t)
,

�S =
1



x+ yF (t)

x

�S�S + �A(t)

�2
S

− ��

�S

yF (t)

x
,

�I =
�I(t)



x+ yF (t)

x
− �

√
1− �2

yF (t)

x
,

which define an admissible strategy in this artificial market. □

B Detailed Results for Stochastic Interest Rates

Here we state results for the artificial markets in the model with stochastic interest rates consid-

ered in Section 8. The proofs are similar to the case of constant interest rates (see Appendix A),

although many expressions and computations are more involved because of the additional state

variable. Detailed proofs are available from the authors upon request.

In retirement, there is no income risk and thus no income contract, so �I is irrelevant

and a simple artificial market is characterized by �S(t) and �B(t). The solution to the utility

maximization problem in such an artificial market is as follows:

Theorem 3. The indirect utility during retirement in the artificial market characterized by

�S(t), �B(t) is given by

JR(t, x, r; �S , �B) =
1

1− 
gR(t, r; �S , �B)

(
x+ �YT̃FR(t, r; �S , �B)

)1−
,

where (suppressing dependence on �S , �B for notational simplicity)

FR(t, r) =

∫ T

t
e−
∫ s
t max[�−B (u),�−S (u)] du−A(t,s)−ℬ�(s−t)r ds,

gR(t, r) = "
1
 e
− �


(T−t)− −1


(D(t,T )+ℬ�(T−t)r)
+

∫ T

t
e
− �


(s−t)− −1


(D(t,s)+ℬ�(s−t)r)
ds,

with auxiliary functions



48 Björn Bick, Holger Kraft, Claus Munk

A(t, s) = (� + �r�B)
1

�

(
s− t− ℬ�(s− t)

)
+
�r
�B

∫ s

t
�B(u)ℬ�(s− u) du

− �2
r

2�2

(
s− t− 2ℬ�(s− t) + ℬ2�(s− t)

)
,

D(t, s) =

∫ s

t
max

[
�−B (u), �−S (u)

]
du+

 − 1


A(t, s) +

1



∫ s

t
�B(u)ℬ�(s− u) du+

D̃(t, s)

2(1− �2
SB)

,

D̃(t, s) =
(
�2
B − 2�SB�B�S + �2

S

)
(s− t) +

1

�2
B

∫ s

t
�B(u)2 du+

2

�B
(�B − �SB�S)

∫ s

t
�B(u) du

+
1

�2
s

∫ s

t
�S(u)2du+

2

�S
(�S − �SB�B)

∫ s

t
�S(u) du− 2

�SB
�B�S

∫ s

t
�S(u)�B(u) du.

The optimal consumption and investment strategies are

ct =
Xt + �YT̃FR(t, r)

gR(t, r)
,

�Bt =

(
1

(1− �2
SB)�B

[
�B +

�B(t)

�B
− �SB

(
�S +

�S(t)

�S

)]
− �r
�B

gRr(t, r)

gR(t, r)

)
Xt + �YT̃FR(t, r)

Xt

+
�r
�B

�YT̃FR(t, r)

Xt

FRr(t, r)

FR(t, r)
,

�St =
1

(1− �2
SB)�S

[
�S +

�S(t)

�S
− �SB

(
�B +

�B(t)

�B

)]
Xt + �YT̃FR(t, r)

Xt
.

The indirect utility function JA for the active phase must satisfy the boundary condition

JA(T̃ , x, y, r; �S , nuB, �I) = JR(T̃ , x, r; �S , �B)

=
1

1− 
gR(T̃ , r; �S , �B)

(
x+ �YT̃FR(T̃ , r; �S), �B

)1−
.

The following theorem states the indirect utility and the optimal strategies before retirement.

Theorem 4. The indirect utility before retirement in the artificial market characterized by

�S(t), �B(t), �I(t) is given by

JA(t, x, y, r; �S , �B, �I) =
1

1− 
gA(t, r; �S , �B, �I)

 (x+ yFA(t, r; �S , �B, �I))
1− ,

where (suppressing dependence on �S , �B, �I for notational simplicity)

FA(t, r) = �

∫ T

T̃
e
−
∫ s
t

(
max[�−B (u),�−S (u)]+1{u≤T̃}�ℎ(u)

)
du−A(t,s)+f(t,T̃ ,s)−ℬ�(s−t)r

ds

+

∫ T̃

t
e−
∫ s
t (max[�−B (u),�−S (u)]+�ℎ(u)) du−A(t,s)+f(t,s,s)−ℬ�(s−t)r ds,

gA(t, r) = "
1
 e
− �


(T−t)− −1
 (D(t,T )+�(t,T̃ )+ℬ�(T−t)r)

+

∫ T

t
e
− �


(s−t)− −1
 (D(t,s)+�(t,s∧T̃ )+ℬ�(s−t)r) ds,

with additional auxiliary functions

ℎ(u) =

(
�Y B −

�̂Y S − �SB
�̂S

)(
�B +

�B(u)

�B

)
+
�̂Y S
�̂S

(
�S +

�S(u)

�S

)
+ �̂Y (�0 + �1u) ,

f(t, u, s) = (u− t)�+
�r�Y B�

�

(
u− t− ℬ�(s− u)− ℬ�(s− t)

)
,

�(t, s) =
1

2

[
�2

0(s− t) + �0�1(s2 − t2) +
1

3
�2

1(s3 − t3)

]
.
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The optimal consumption and investment strategies are

ct =
Xt + YtFA(t, rt)

gA(t, rt)
,

�Bt =

(
1

(1− �2
SB)�B

[
�B +

�B(t)

�B
− �SB

(
�S +

�S(t)

�S

)]
− �r
�B

gAr(t, rt)

gA(t, rt)

)
Xt + YtFA(t, rt)

Xt

−
(
�

�B

[
�Y B −

�̂Y S�SB
�̂S

]
− �r
�B

FAr(t, rt)

FA(t, rt)

)
YtFA(t, rt)

Xt

�St =
1

(1− �2
SB)�S

[
�S +

�S(t)

�S
− �SB

(
�B +

�B(t)

�B

)]
Xt + YtFA(t, rt)

Xt
− �

�S

�̂Y S
�̂S

YtFA(t, rt)

Xt

�It =
�I(t)



Xt + YtFA(t, rt)

Xt
− ��̂Y

YtFA(t, rt)

Xt
.
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� time preference rate 0.03 �S stock Sharpe ratio 0.25
 relative risk aversion 4 �S stock volatility 0.2
T̃ retirement date 30 y annual income 2
T terminal date 50 � expected income growth 0.01
x financial wealth 2 � income volatility 0.1
r risk-free rate 0.02 � replacement ratio 0.6

Table 1: Benchmark parameter values. The table shows the values of the model
parameters used in the numerical computations unless mentioned otherwise. Time is
measured in years. The initial wealth x = 2 and annual income y = 2 are interpreted as
USD 20,000.

stock-income correlation �

wealth/income ratio x/y 0 0.2 0.4 0.6 0.8 1

0.1 0.686% 0.426% 0.327% 0.045% 0.084% 0.135%
0.25 0.714% 0.435% 0.305% 0.046% 0.078% 0.144%

1 0.842% 0.477% 0.182% 0.038% 0.082% 0.100%
4 1.110% 0.478% 0.153% 0.039% 0.035% 0.093%
10 0.815% 0.351% 0.149% 0.057% 0.019% 0.033%

Table 2: Upper bound on welfare loss. Upper bound on the welfare loss as a
percentage of total wealth for different values of the stock-income correlation and the
wealth/income ratio.

stock-income correlation �

initial time t 0 0.2 0.4 0.6 0.8 1

0 0.842% 0.477% 0.182% 0.038% 0.082% 0.100%
10 0.645% 0.415% 0.191% 0.029% 0.085% 0.120%
20 0.467% 0.377% 0.265% 0.228% 0.247% 0.289%
25 0.801% 0.795% 0.781% 0.749% 0.804% 0.844%

Table 3: Upper bound on welfare loss for different horizons. Upper bound on
the percentage welfare loss for different time horizons and stock-income correlations. The
wealth/income ratio at time t is fixed at 1.

stock-income correlation �

method 0 0.2 0.4 0.6 0.8 1

our SAMS method 0.842% 0.477% 0.182% 0.038% 0.082% 0.100%

MCA method, fine grid 0.728% 0.454% 0.185% 0.038% 0.080% 0.068%
loss difference 0.115% 0.023% -0.003% -0.000% 0.003% 0.032%

MCA method, coarse grid 0.879% 0.621% 0.212% 0.076% 0.105% 0.246%
loss difference -0.037% -0.144% -0.030% -0.038% -0.023% -0.147%

Table 4: Upper bounds on welfare loss for two different methods. Upper
bounds on the percentage welfare loss for the two different methods and the increase in
the upper bound (the loss difference) by applying our SAMS method instead of the MCA
method. We assume the benchmark parameter values as well as t = 0 and x/y = 1.
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stock-income correlation �

parameter 0 0.2 0.4 0.6 0.8 1

�0 0.43578 0.40760 0.40764 0.28137 0.28139 0.00799
�1 -0.00261 -0.00143 -0.00141 -0.00067 -0.00060 -0.00027
v0 -0.01559 0.00070 0.00074 0.00008 0.00014 0.00009
v1 0.00064 -0.00002 0.00006 0.00002 0.00005 0.00015

Table 5: Optimal parameters for the incomplete market. Optimal parameters
for the incomplete market for x/y = 1 and t = 0. In addition, vR = 0 (so that T̂ is
meaningless) and � = 30.

stock-income correlation �

wealth/income ratio x/y 0 0.2 0.4 0.6 0.8 1

0.1 0.08% 0.04% 0.00% 0.00% 0.00% 0.01%
0.25 0.04% 0.03% 0.01% 0.01% 0.00% 0.01%

1 0% 0% 0% 0% 0% 0%
4 0.15% 0.02% 0.00% 0.01% 0.00% 0.01%
10 0.37% 0.05% 0.01% 0.00% 0.00% 0.02%

Table 6: Increase in percentage welfare loss. Increase in percentage welfare loss
bound from applying the strategy based on the parameter  ∗ optimal for x/y = 1 for
other values of x/y. For instance, the 0.08% reported for x/y = 0.1 and � = 0 means
that the upper bound on the welfare loss increases by 0.08 percentage points when using
the auxiliary parameters found optimal for x/y = 1 in the consumption and investment
strategy for x/y = 0.1 instead of the auxiliary parameters that are indeed optimal for
x/y = 0.1.

stock-income correlation �

wealth/income ratio x/y 0 0.2 0.4 0.6 0.8 1

0.1 23.06 22.49 21.96 21.57 21.48 21.53
0.25 23.16 22.56 22.00 21.59 21.50 21.54

1 23.60 22.87 22.19 21.72 21.59 21.64
4 24.82 23.70 22.74 22.13 21.86 21.86
10 26.12 24.65 23.52 22.70 22.19 22.02

Table 7: Income multipliers. Income multipliers at time t = 0 for different
wealth/income ratios x/y and different stock-income correlations �.
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stock-income correlation �

0 0.4 0.8

parameter bound MCA diff. bound MCA diff. bound MCA diff.

 = 3 0.938% 0.168% 0.414% 0.038% 0.102% 0.006%
 = 5 0.813% 0.061% 0.044% -0.022% 0.062% 0.020%

� = 0.005 0.887% 0.097% 0.155% -0.004% 0.098% -0.000%
� = 0.015 0.783% 0.125% 0.242% -0.000% 0.067% 0.000%

� = 0.05 0.624% 0.156% 0.383% 0.068% 0.224% 0.027%
� = 0.15 1.500% -0.357% 0.266% -0.023% 0.457% 0.042%

� = 0.5 0.809% 0.093% 0.151% -0.005% 0.086% 0.001%
� = 0.7 0.896% 0.139% 0.245% 0.006% 0.102% 0.003%

Table 8: Robustness checks. For each correlation value the left column shows the
upper bound on percentage welfare losses when the value of the parameter is changed
from its benchmark value as indicated. The right column shows the additional welfare loss
from applying the consumption and investment strategy suggested by our method instead
of the strategy suggested by the Markov Chain Approximation method implemented with
a fine grid (N = 4000, I = 12000).

� mean reversion speed 0.2
r̄ long-run short rate 0.02
�r short rate volatility 0.01
�B bond Sharpe ratio 0.1
�̄ bond maturity 50
�SB stock-bond correlation 0.1
�Y B income-bond correlation 0.25

Table 9: Additional parameter values with stochastic interest rates. The table
shows the values of the additional parameters in the model with stochastic interest rates.

stock-income correlation �Y S

wealth/income ratio x/y 0 0.2 0.4 0.6 0.8

0.1 1.094% 0.958% 0.679% 0.400% 0.175%
0.25 1.113% 0.963% 0.629% 0.420% 0.190%

1 1.261% 1.151% 0.739% 0.350% 0.236%
4 1.431% 0.652% 0.428% 0.425% 0.451%
10 0.715% 0.327% 0.180% 0.149% 0.525%

Table 10: Upper bound on welfare loss for stochastic interest rates. Upper
bound on the percentage welfare loss in the case with stochastic interest rates for different
values of the wealth/income ratio and the stock-income correlation.
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Figure 1: Stock weight over the life-cycle. For each point in time the graph shows
the average fraction of financial wealth invested in the stock across all simulated paths.
The initial wealth-income ratio is assumed to be x/y = 1.
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Figure 2: Financial wealth fractions. The initial fraction of financial wealth invested
in the stock for different values of the stock-income correlation.
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(a) Correlation �Y S = 0.0
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(b) Correlation �Y S = 0.8

Figure 3: Optimal portfolios over the life-cycle. The graphs show how the average
portfolio varies over the life-cycle when the income-stock correlation is 0 (Panel a) or 0.8
(Panel b). The optimal strategies are computed with our numerical method explained in
the text. 10,000 paths of income, interest rates, and wealth (applying those strategies)
are then simulated over the 50-year period considered. The graphs show averages over
the paths.
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Consumption-Portfolio Choice with Unspanned Labor Income

and Stochastic Volatility

Björn Bick

Summary. We analyze a consumption-portfolio choice problem of an investor that receives labor in-

come and faces a stock market with stochastic volatility. We show how labor income and stochastic

volatility affect the decisions on optimal portfolio holdings and consumption over the lifetime. We pro-

vide closed-form solutions for a market where the income stream of the investor is spanned by traded

assets. Furthermore, we discuss solution techniques for the case of unspanned income where explicit

solutions do not exist. We compare a method suggested in Bick, Kraft and Munk (2011) with a standard

finite-difference algorithm and show that the first method outperforms the numerical algorithm.

1 Introduction

Labor income is one of the dominant assets for most individuals. Since, at the beginning of an

individuals life, his present value of all future income (also called human wealth) is worth much

more than his current financial wealth, income has a large influence on his optimal portfolio and

consumption decisions over the life-cycle. In addition, it is well-documented that the volatilities

of asset returns are stochastic. Consequently, the investor has to take the additional volatility

risk into account. In general, both labor income and stochastic volatility of returns involve

additional idiosyncratic risk components. By including derivatives that are able to hedge the

volatility shocks, we can handle this specific risk component. Nevertheless, we still face an

incomplete market as the individuum is not able to hedge against unfavorable shocks to his

income stream because the income stream is typically not spanned by traded assets. In contrast

to the volatility risk that can be hedged by derivatives, there do not exist any markets where

claims on income are traded.1 Hence, it seems impossible to find closed-form expressions for the

dynamic consumption and investment strategies maximizing the lifetime utility of an individual

consumer-investor.

In our study, we examine an investor that makes his decisions in continuous-time and max-

imizes expected power utility from terminal wealth and intermediate consumption. During his

1 Although there exist income insurance contracts offered by governments and insurance companies, they are far

from being perfect due to moral hazard problems.
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lifetime, the investor is allowed to invest in stocks and a money market account and has access

to the derivative market to get the desired exposure to volatility risk. Moreover, he receives an

exogenously given stochastic income stream until a predetermined retirement date. After retire-

ment, income becomes risk-free and the individuum receives a constant fraction of his last salary.

The stochastic volatility process and the asset returns are modeled using a Heston framework

(Heston (1993)). The corresponding dynamic of the specific derivative follows by a replication

argument and is unique once we have specified the market price of volatility risk (see Liu and

Pan (2003)).

Nevertheless, we are still left with the risky and unspanned income risk. In our main

analysis, we will investigate two scenarios. First, we assume that labor income is fully spanned

by traded assets and that there are no constraints on investment decisions. In that case, human

wealth, which is defined as the present value of all future labor income, can be computed

by no-arbitrage arguments. We derive closed-form solutions for the optimal investment and

consumption decisions, basically by replacing financial wealth by total wealth2 and following

the procedure of Merton (1969) and Merton (1971). Although the assumption of spanned

income is debatable and not realistic, the explicit solutions provide some intuition behind the

optimal strategies. In order to solve the involved optimization problem, it is formulated in

terms of exposures to the different risk components. These exposures are then transformed to

the optimal investment proportions in the stock and the option. The optimal strategies can be

decomposed into speculative demands and hedging demands for volatility and stock-like income

risk. The large influence of human wealth becomes evident when looking at the corresponding

investment and consumption strategies. Regarding the investment in the derivative contract,

we observe that the ability of the specific contract to hedge against volatility risk plays a crucial

role. We illustrate our findings by several life-cycle studies where we apply a realistic calibrated

parameter set. Our model is able to replicate patterns that are found in several life-cycle

studies like hump-shaped financial wealth (see e.g Munk and Soerensen (2010) and Kraft and

Munk (2011)). In the second scenario, we allow for unspanned income risk and impose liquidity

constraints, i.e the investor must not borrow against future income during his working career.

Consequently, we face an incomplete market and cannot solve the problem in closed-form. To

obtain solutions, two approaches are applied. The first approach is based on a paper by Bick,

Kraft and Munk (2011), who introduce a hypothetical income contract to create an artificial

unconstrained market where they are able to compute closed-form solutions. The authors refer

to their approach as SAMS, short for Simulation of Artificial Markets Strategies. Following this

idea, we transform the strategies from these artificially markets to strategies that are admissible

in the true incomplete market and measure their performances via upper bounds on welfare

losses which represent the utility losses stated in terms of total wealth. Our upper bounds are

2 Total wealth is the sum of financial wealth and human wealth.
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at most about 6.7% over an investment horizon of 40 years and in many cases they are much

lower. In the second approach, we use a standard grid-based numerical dynamic programming

procedure. In our study, we choose the Markov chain approach, which is an application of a

finite difference scheme and frequently applied to consumption-portfolio problems. Comparing

both methods, we find that SAMS always outperforms the Markov chain technique although

the latter is computationally much more intensive. We wish to stress that SAMS could also

be applied to problems of higher dimensions whereas it seems impossible to solve grid-based

schemes with more than three state variables.

Let us briefly review the related literature of this study. A common assumption in most of

the literature about portfolio optimization is that investors live off financial wealth exclusively

and disregard labor income completely (e.g. Merton (1969), Samuelson (1969), Campbell and

Viceira (2001), Liu, Longstaff and Pan (2003), and Liu (2007)). There also exist several studies

that include income risk in a setting with constant investment opportunities. Hakansson (1970)

and Merton (1971) consider a deterministic income stream which is equivalent to an implicit

investment in the risk-free asset. As a result, the optimal fraction of financial wealth invested

into the stock market will increase if labor income is present. Bodie, Merton and Samuelson

(1992) account for a risky income stream, but assume that human wealth is spanned by traded

assets. They derive closed-form strategies and show that the optimal investments are strongly

dependent on the stock-like income risk which can result in large positions. On the other hand,

there are also several papers that allow for unspanned income risk (e.g. Munk (2000) and Cocco,

Gomes and Maenhout (2005)). In all these papers, the authors have to use numerical solution

techniques that are based on a finite difference scheme. The Markov chain approximation

method that we use in this paper is adopted from Munk (2000). There are many studies that

deal with the optimal portfolio decisions when the investor faces a stochastic opportunity set.

More specific, when it is assumed that volatility is stochastic, Kraft (2005) and Liu (2007) show

that there exist closed-form solutions for an investor with power utility that receives utility

from terminal wealth only. Both studies can solve the problem in an incomplete market and

do not need additional derivatives, which is only possible as they do not consider utility from

intermediate consumption. Liu and Pan (2003) include derivatives to the investment set and

show that there is significant benefit from using derivatives. In their paper, the investor only gets

utility from terminal wealth. The work of Munk and Soerensen (2010) is similar to ours. They

solve a model where interest rates are stochastic and the investor can additionally invest in the

bond market to hedge the interest rate risk. The idea of artificially completing the market was

developed in the work of Cvitanić and Karatzas (1992) who add penalty terms to the interest

rate and drift of the stock to obtain unconstrained artificially markets.

The remainder of the paper is structured as follows. Section 2 describes the consumption and

portfolio choice problem of the investor. Section 3 summarizes the solution for the case where
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labor income is spanned by traded assets. In Section 4, we describe the artificially completed

markets and derive the corresponding optimal consumption and investment strategies. Moreover,

we explain how to transform the optimal strategies in the artificial market into admissible

strategies in the real market, how we find the best of such strategies, how we evaluate the

performance of these strategies, and how we apply the Markov chain approximation technique

to our problem. Section 5 discusses several numerical results, in both the complete and the

incomplete market. Finally, Section 6 concludes. All proofs are summarized in the Appendix.

2 The Problem

We study the life-cycle consumption and portfolio decisions of an investor. We assume that the

individual can invest his money in a single stock (e.g. representing the stock market index), an

option on the stock, and a bank account offering a constant risk-free rate of r. Moreover, the

investor receives a stochastic stream of income payments from non-financial sources, which we

refer to as labor income. We assume that there is a single consumption good in the economy

that serves as the numeraire. This means that all prices are expressed in units of this numeraire

that we choose to be money.

2.1 Financial Assets

As we assume a constant short-term interest rate, the money market account becomes

Mt = ert (1)

Additionally, the agent can put his money into a stock (e.g. representing the stock market index)

that pays no dividends. We model the evolution of the stock by a stochastic volatility model.

Such a model assumes that the volatility vt of the stock is itself a stochastic process. The time

t price of the stock is denoted by St and the price dynamics read

dSt = St [(r + �Svt)dt+
√
vtdWSt] , (2)

where WSt = (WSt)t≥0 is a standard Brownian motion and the excess return of the stock �Svt

is assumed to be the product of volatility and the constant parameter �S . In order to obtain

a tractable model, we choose the affine stochastic volatility model of Heston. Heston (1993)

models the volatility by a square-root mean-reverting process

dvt = (� − �vt)dt+ �̄
√
vt (�̂vdWvt + �svdWSt) , (3)

where Wvt = (Wvt)t≥0 is a standard Brownian motion independent of WSt. The parameters

�, �, �̄ are assumed to be constant, �sv is the instantaneous correlation between the stock and

volatility, and
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�̂v =
√

1− �2
sv.

It is well known that such a model is able to generate several empirical stylized facts such as

heavy tails and high peaks of asset returns (e.g. Andersen, Benzoni and Lund (2002) and Eraker,

Johannes and Polson (2003)). Further, we can create arbitrary correlations between the stock

price and volatility which enables us to model the well-documented leverage effect.

In order to manage volatility risk, we introduce a derivative Ot that can be used to hedge

this risk. If a derivative is traded, we assume that there exists a function ℎ such that the price

of the claim fulfills Ot = ℎ(t, St, vt). Applying Ito’s formula, we can deduce the following SDE

dOt = Otr dt+
(
ℎsSt + ℎv�̄�sv

)
(�Svt dt+

√
vz dWSt) + ℎv�̄�̂v (�vvt dt+

√
vt dWvt) , (4)

where

ℎs =
∂ℎ(t, s, v)

∂s

∣∣∣
(St,vt)

ℎv =
∂ℎ(t, s, v)

∂v

∣∣∣
(St,vt)

denote the corresponding derivatives. These derivatives express how sensitive the price of the

option reacts to changes in stock price and volatility, respectively. Consequently, an option

with ℎs ∕= 0 provides exposure to the price shock WS ; a derivative with non-zero ℎv provides

exposure to the volatility risk component. The functions ℎs and ℎv are also known as the delta

and the vega of the option. The constant parameter �v can be interpreted as the risk premium

of volatility risk. To be more precise, �v
√
vt is the risk premium for incurring one unit of Wvt.

2.2 Labor Income

In our analysis, the agent receives a continuous income stream of Yt that is exogenously given.

Until the predetermined retirement date T̃ the income stream is both stochastic and unspanned

and follows the dynamics

dYt = Yt

[
�dt+ �̂

√
vt (�ysdWSt + �̂yvdWvt + �̂ydWY t)

]
, 0 ≤ t ≤ T̃ , (5)

where WY t = (WY t)t≥0 is a Brownian motion that is independent of WSt and Wvt. In the labor

income dynamics, �ys is the constant correlation between asset return and income growth, and

�̂yv =
�yv − �sv�ys√

1− �2
sv

, �̂y =
√

1− �2
ys − �̂2

yv,

where �yv is the constant correlation between income and volatility.3

The constant parameter � represents the expected income growth in the active working

phase and the volatility �̂
√
vt is represented by the constant parameter �̂. Our analysis can

3 To create such an interaction structure in a tractable form, we applied a Cholesky decomposition to the original

correlation matrix.
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easily be extended to account for a time dependent income growth rate in order to capture the

fluctuations of labor income over the life-cycle (see e.g. Munk and Soerensen (2010), Cocco,

Gomes and Maenhout (2005)).

In the retirement period (T̃ , T ], the investor receives a retirement pension Ỹt which is as-

sumed to be risk-free. The first income payment in retirement at T̃ equals a fraction � (called

replacement rate) of his last observed income payment YT̃ , so that we observe a downward jump

at retirement. We also allow the income process to grow at a constant rate �̃ in this period

dỸt = �̃Ỹtdt, ỸT̃ = �YT̃ . (6)

We wish to stress that after retirement the individual always faces a complete market. In

contrast, when the investor is still working, we have in general to deal with an incomplete

market setting. There are two special cases where the market is complete, even in the active

phases. The first case emerges when the idiosyncratic risk component of income is assumed away,

i.e �̂y = 0. This implies that as long as we do not impose any constraints on the investments,

income shocks are spanned and we are always able to replicate the income stream. To derive

closed-form strategies, we could also assume that income is risk-free by setting �̂ = 0 (see

Hakansson (1970)). In the remainder, when considering complete markets, we focus primarily

on the spanned income case. However, the results collapse into the solution to the problem with

risk-free income stream by setting �̂ = 0.

2.3 Wealth Dynamics and Preferences

At every point in time, the individual can choose a consumption and an investment strategy.

The consumption strategy is described by a stochastic process c = (ct)t≥0 with the requirement

that ct ≥ 0 for all t. An investment strategy is characterized by the processes �S = (�St)t≥0

and �O = (�Ot)t≥0, which are the fractions of financial wealth invested in the stock and the

option. Consequently, the remaining fraction (1 − �St − �Ot) is invested in the money market

account. Let Xt denote the financial wealth of the individuum at time t. Then, for a specific

consumption and investment choice (c, �)4, the evolution of the wealth process is given by

dXt =Xt

[(
r + �S�Svt + �O

(ℎsSt + ℎv�̄�sv)�S + ℎv�̄�̂v�v
Ot

vt

)
dt (7)

+

(
�S + �O

ℎsSt + ℎv�̄�sv
Ot

)
√
vtdWSt + �O

ℎv�̄�̂v
Ot

√
vtdWvt

]
+ (1t<T̃Yt + 1t≥T̃ Ỹt − ct)dt.

In the remainder of this study, we will examine two different sets of strategies. If we only

demand positive terminal wealth XT ≥ 0 from a strategy, Aunct will denote the set of admissible

4 The different strategies have to satisfy some technical conditions to have a well-defined wealth process Xt.
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strategies over the time interval [t, T ] and we will use this set when we assume that income is

spanned. For the case where we cannot replicate income, the individual is not allowed to have

negative financial wealth during his working phase as he cannot make sure that he ends up with

positive financial wealth, i.e. that he can liquidate all short positions until death. The set of

admissible strategies with this liquidity constraint is denoted by Acont .

The individual has time additive preferences with respect to consumption and terminal

wealth. An admissible consumption and investment strategy (c;�) generates the expected utility

J(t, x, v, y; c, �) = Et

[∫ T

t
e−�(s−t)u(cs)ds+ "e−�(T−t)u(XT )

]
, (8)

where the expectation is conditioned on Xt = x, vt = v and Yt = y 5, � is the subjective discount

rate, and " models the relative weight of terminal wealth and intermediate consumption. The

indirect utility function is given by

J(t, x, v, y) = max
(c;�)∈A

J(t, x, v, y; c, �),

where A is either equal to Aunct or to Acont . We will use both sets in the upcoming sections.

Throughout the paper, we assume that the utility function exhibits a constant relative risk

aversion, i.e. u(c) = c1−

1− with  > 1.

In order to compute the optimal strategies, we solve the Hamilton-Jacobi-Bellmann equation

(HJB), which is involved for the wealth equation (7). Therefore, we refrain from expressing the

dynamics of the financial wealth process in terms of � and instead use risk exposures. As

argued by Liu and Pan (2003) and Kraft (2003), working in terms of the optimal exposure is

mathematically more convenient than working with the optimal portfolio weights. Under the

assumption that the agent can always invest in a derivative with non-zero vega ℎv and non-zero

price ℎ ∕= 0, it is equivalent to decide on his optimal portfolio holdings or on his optimal exposure

with respect to the risk factors. For given portfolio weights �St and �Ot, these factor exposures

are defined as

�St = �St + �Ot
ℎsSt + ℎv�̄�sv

Ot
, (9)

�vt = �Ot
ℎv�̄�̂v
Ot

. (10)

In terms of factor exposures � = (�v, �S), the dynamics of wealth are then given by

dXt = Xt[rdt+ �St(�Svtdt+
√
vtdWSt) + �vt(�vvtdt+

√
vtdWvt)] (11)

+ (1t<T̃Yt + 1t≥T̃ Ỹt − ct)dt,

where �St can be interpreted as the the fraction of wealth invested into
√
vtWSt. Equivalently,

�vt is the fraction invested in
√
vtWvt.

5 If t ≥ T̃ , Yt will be replaced by Ỹt.
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By investing �St and �Ot in the stock and the option, our agent holds the desired amounts

�St in the diffusive part of the stock and �vt in the additional volatility risk. Taking a position

of �St in the stock market yields an exposure to the risk component in stock prices, which is

quite intuitive. On the other side, taking a position �Ot in the derivative market yields exposure

to both the volatility diffusion Wv and the stock Brownian WS as ℎv ∕= 0. Furthermore, it also

provides exposure to the stock diffusion whenever the option-delta is different from 0. In all our

calculations we will use the form (11) of the wealth process. To write the HJB equation in a

compact and tractable form, we introduce some matrix notation. Let us define

�t = (�v
√
vt, �S

√
vt, 0)T , �t = (�v

√
vt, �S

√
vt, 0)T ,

�Zt = (� − �vt, �Yt)T , �Zt =

(
�̄
√
vt�̂v �̄

√
vt�sv 0

�̂
√
vt�̂yv �̂

√
vt�ys �̂

√
vt�̂y

)
,MY t =

(
1 0

0 Yt

)
.

Setting Z = (v, Y )T ,yields the following wealth and state dynamics

dXt =
(
rXt +Xt�

T
t �t − ct + Yt

)
dt+Xt�

T
t d

⎛⎜⎝Wvt

WSt

WY t

⎞⎟⎠ , (12)

dZt = �Zt dt+MY t�Ztd

⎛⎜⎝Wvt

WSt

WY t

⎞⎟⎠ . (13)

Now, we can rewrite the HJB equation as follows:6

0 = max
(c;�)

{
Jt − �J + (rX + Y )JX + �TZJZ +

1

2
tr
[
MY�Z�

T
ZM

T
Y JZZ

]
+X�T�JX (14)

+
1

2
X2�T�T�JXX +X�T�T

ZMY JXZ +
1

1− 
c1− − cJX

}
,

where Jt, JX , and JZ denote the derivatives of the indirect utility function with respect to t,

X, and Z, and equivalent definitions with respect to higher derivatives.

3 Solution for Spanned Income

In this section, we study the case when the income stream is spanned by traded assets. We thus

set �̂y = 0 to get rid of the idiosyncratic shock to the income stream, which implies that

�̂yv =+
−

√
1− �2

ys.

Therefore, we face a complete market7 where the human capital, which we define as the expected

discounted value of all future labor earnings, can be computed by risk-neutral pricing. Note that

6 For shorter notations, we omit the time-dependency of variables and vectors.

7 We would also get a complete market if we had a risk-free income stream. We do not examine this case in

detail. But, all results follow by just setting �̂ = 0.
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we do not impose any constraints on the investor. In the notation of the previous section, we

thus consider policies (c;�) ∈ Aunc. In such a complete market with unique risk-neutral pricing

measure ℚ, the human capital is given by

Lcom(t, vt) = Eℚ
t

[∫ T

t
e−r(s−t)Ys ds

]
, (15)

which can, up to numerical integrals, be computed in closed-form. As we see in the following

theorem, the time t value of human wealth can also be expressed as

Lcom(t, vt) =

⎧⎨⎩YtF
com(t, vt), t ≤ T̃ ,

�YtF
com(t, vt), t ∈ (T̃ , T ].

(16)

Next, following Hakansson (1970) and Bodie, Merton and Samuelson (1992), one can think

of the investor selling his remaining income for the amount Lcom(t, vt). Therefore, total wealth

at time t becomes X(t)+Lcom(t, vt). Notice that human capital depends on the volatility process

vt, which complicates all further computations.

We try to derive the optimal policies from the optimal strategies for the case without

income, but with a financial wealth of Xt + Lcom(t, vt) instead of just Xt. Due to the assumed

completeness, the affine process dynamics, and the assumption of unconstrained controls, the

problem can be solved explicitly. The following theorem summarizes the results.

Theorem 5. (Solution for Truly Complete Market) Assume �̂y = 0. Then the indirect

utility function is given by

Jcom(t, x, v, y) =
1

1− 
gcom(t, v)(x+ yF com(t, v))1− , (17)

where

gcom(t, v) =

⎧⎨⎩

"
1
 e−rg(T−t)−Ar(T̃ ,T )−A�(T )(t,T̃ )−B�(T )(t,T̃ )v +

∫ T
T̃ e−rg(s−t)−Ar(T̃ ,s)−A�(s)(t,T̃ )−B�(s)(t,T̃ )v ds

+
∫ T̃
t e−rg(s−t)−A0(t,s)−B0(t,s)vds, t ≤ T̃ ,

"
1
 e−rg(T−t)−Ar(t,T )−Br(t,T )v

+
∫ T
t e−rg(s−t)−Ar(t,s)−Br(t,s)vds, t ∈ (T̃ , T ].

F com(t, v) =

⎧⎨⎩� F
com(T̃ , v)e−(r−�)(T̃−t)−AF (t,T̃ )−BF (t,T̃ )v +

∫ T̃
t e−(r−�)(s−t)−AF (t,s)−BF (t,s)v ds, t ≤ T̃ ,

1
r−�̃

[
1− e−(r−�̃)(T−t)] , t ∈ (T̃ , T ].

(18)

and we have introduced the constant

rg =
�


+
 − 1


r.

The deterministic functions AF , BF , A�(s), B�(s), A
r, and Br are defined as
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AF (t, s) = −�(˜̃�− aF )

�̄2
(s− t) +

2�

�̄2
ln

⎛⎝1− ˜̃�−aF
˜̃�+aF

e−a
F (T−t)

1− ˜̃�−aF
˜̃�+aF

⎞⎠ ,

BF (t, s) = −(aF − ˜̃�)e−a
F (s−t) + ˜̃�− aF

�̄2
(
aF−˜̃�
˜̃�+aF

e−aF (s−t) + 1
) ,

A�(s)(t, s) = −�(�̃− ag)
�̄2

(s− t) +
2�

�̄2
ln

(
1− k�e−a

g(s−t)

1− k�

)
,

B�(s)(t, s) = −−k�(�̃+ ag)e−a
g(s−t) + �̃− ag

�̄2
(
−k�e−ag(s−t) + 1

) ,

Ar = −�(�̃− a)

�̄2
(s− t) +

2�

�̄2
ln

(
1− �̃−a

�̃+ae
−a(T−t)

1− �̃−a
�̃+a

)
,

Br = −(a− �̃)e−a(s−t) + �̃− a

�̄2
(
a−�̃
�̃+ae

−a(s−t) + 1
) .

The corresponding parameters are given in the Appendix A. The optimal fractions of wealth

invested in the specific risk exposures are given by

�vt =
1



Xt + YtF
com(t, vt)

Xt
�v −

(
�̂�̂yv

YtF
com(t, vt)

Xt
+ �̄�̂v

YtF
com(t, vt)

Xt

F comv (t, vt)

F com(t, vt)

)
+ �̄�̂v

gcomv (t, vt)

gcom(t, vt)

Xt + YtF
com(t, vt)

Xt
,

�St =
1



Xt + YtF
com(t, vt)

Xt
�S −

(
�̂�ys

YtF
com(t, vt)

Xt
+ �̄�sv

YtF
com(t, vt)

Xt

F comv (t, vt)

F com(t, vt)

)
+ �̄�sv

gcomv (t, vt)

gcom(t, vt)

Xt + YtF
com(t, vt)

Xt
.

The optimal consumption rate reads

ct =
Xt + YtF

com(t, vt)

gcom(t, vt)
.

Up to numerical integrals, all expressions can be computed in closed-form. The specific

integrals are calculated by a Romberg procedure.8 Note that F com does not depend on volatil-

ity v for t ≥ T̃ since pension payments are not correlated with the volatility process at all.

The function gcom captures the non-wealth dependent parts of the individual’s indirect utility.

Compared to a problem without labor income, the initial financial wealth is simply adjusted by

adding the initial value of human wealth. The optimal consumption strategy is to consume a

fraction of total wealth, 1
gcom(t,vt)

.

3.1 Optimal Strategies

To obtain an attainable strategy, we have to transform the proportional risk exposures � back

to the optimal investment fractions �. This transformation is always possible due to our stand-

8 Romberg’s method computes an approximate solution to a definite integral. It is based on a Newton–Cotes

formula and evaluates the integrand at equally-spaced points.
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ing assumption of a non-zero option vega. The optimal positions in the risk securities follow

immediately by applying formulas (9) and (10)

Lemma 1. In a complete market setting, i.e �̂y = 0, and under the standing assumption that

ℎv ∕= 0 and ℎ ∕= 0, the optimal portions of financial wealth invested in the corresponding assets

are represented by

�St =
1



Xt + YtF
com(t, vt)

Xt

[
�S − �v

�sv
�̂v

]
+ �̂

(
�̂yv

�sv
�̂v
− �ys

)
YtF

com(t, vt)

Xt
− �Ot

ℎsSt
Ot

, (19)

�Ot =

{
1



Xt + YtF
com(t, vt)

Xt

�v
�̄�̂v
−

(
�̂

�̄

�̂yv
�̂v

YtF
com(t, vt)

Xt
+
YtF

com(t, vt)

Xt

F comv (t, vt)

F com(t, vt)

)
(20)

+
gcomv (t, vt)

gcom(t, vt)

Xt + YtF
com(t, vt)

Xt

}
Ot
ℎv
.

The results of the previous lemma show that the optimal portfolio weights do not depend

on financial wealth and human wealth separately, but only on the wealth-income ratio.

Regarding the demand for the derivative, recall that we added this security to be able to

hedge volatility shocks. Hence, the derivative is mainly needed to get a specific exposure to the

volatility risk. To understand how effective a specific claim is in creating exposure to volatility,

one can use the ratio ℎv
Ot

. As in Liu and Pan (2003) this ratio represents the ”volatility exposure

for each dollar invested in the derivative security”. This means that a contract with a high ℎv
Ot

is more likely to create a desired exposure than a contract with a low ratio. Therefore, we can

invest less money in the derivative when the ratio is high. This can be seen from (20) where the

amount of financial wealth invested in the derivative is inversely proportional to the ratio ℎv
Ot

.

We also notice that the optimal option investment consists of three terms. The first term

corresponds to the standard myopic optimal portfolio and depends on risk aversion  and the

risk premium �v. As usual, the more risk-averse the investor is the smaller is the absolute

position. The other decisive component in computing the speculative demand is the volatility

risk premium. For example, for a positive volatility risk premium �v, the investor wants to have

a long position in volatility. This position can be achieved by buying the derivative whenever

its vega is positive and by selling the security when its vega is negative. Note that the first

component also highly depends on the wealth-income ratio and that both effects are amplified

when human wealth is increasing. The second part represents an adjustment of the investments

to the risk profile of human wealth and can be deduced in the following way. First, determine

the optimal riskiness of total wealth with respect to the exogenous shock, which was originally

determined by Merton (1969). Then we subtract the risk amount of human wealth to obtain

the desired exposures towards the shocks. This term also reflects a correction for the option-

like income risk and depends on the correlation structure. When the investor does not receive

income, this part will vanish. Finally, the third term is a hedge against variations in future
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volatilities and crucially depends on the ratio gcomv
gcom that can be computed in closed-form (up to

numerical integrals). The volatility hedge term is influenced by the wealth-income ratio, too.

Now, we examine the demand for the stock (19) that can be divided into three parts. The

first term is the myopic or speculative demand. In contrast to the derivative, the myopic demand

does not only depend on the stock risk premium �S , but also on the volatility risk premium �v

and the imposed correlation structure. This is needed to account for the stock-like volatility

risk. For example, by assuming a negative correlation �sv between stock returns and volatility, a

long position in volatility would imply a short position in the stock, and vice versa. The second

component is again a correction term for income risk and is mainly driven by the correlation

coefficients. In particular, the sign of the demand is determined by �sv. Since the underlying of

the option is the stock itself, there is always an implicit stock exposure when we invest in the

option. The delta of the option ℎS describes the magnitude of this implicit holding. Therefore,

the stock holding is adjusted via the third term.

4 Solution for Unspanned Income

In the previous section, the indirect utility has satisfied a Merton-type separation

Jcom(t, x, v, y) =
1

1− 
gcom(t, v)(x+ yF com(t, v))1− ,

where financial wealth Xt was replaced by total wealth Xt+YtF
com(t, vt). For the more realistic

situation of unspanned labor income risk and liquidity constraints9, it is impossible to replicate

human wealth by traded assets. Hence, such an approach and the associated intuitive derivation

of the optimal strategy break down. One can even show that a separation like (23) does not hold

in the true incomplete market. To summarize, it seems impossible to find closed-form solutions

in this incomplete market.

In the remainder of this section, we will apply two different approaches to obtain controls in

the incomplete market. We measure their performance by a simple metric, the so called welfare

losses. The first method can be used to derive consumption and investment strategies in closed-

form that are simple to compute and in some sense near-optimal. This method was developed in

Bick, Kraft and Munk (2011) and we will refer to it as SAMS. In the second approach, we solve

the involved dynamic optimization problem (14) with a Markov Chain Approximation (MCA)

method that rests upon a finite difference scheme.

4.1 Artificially Completed Markets

Bick, Kraft and Munk (2011) use a hypothetical labor contract to complete the market. Follow-

ing this idea, we consider an artificially completed market that consists of the original risk-free

9 This means that we consider the set Acont .
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bank account and the stock, augmented by an asset making the market complete. We use their

approach, which basically consists of three steps.

First, look at a subset of artificially completed markets. Varying, for example, the risk

premium of the hypothetical asset, results in a whole family of such markets. Ignoring the

investment in the artificial contract and after a small adjustment, we obtain strategies that can be

applied in the true incomplete market. In the second step, we perform a utility maximization over

this family of strategies. That will define a specific consumption and investment strategy in the

incomplete market. The utility generated by the optimal incomplete market strategy is unknown,

but by construction lower than the utility obtained in any of the artificially completed markets.

Thus, we can derive an upper bound on the maximum obtainable utility in the incomplete

market by minimizing over the expected utilities of the artificially completed markets.

To be more precise, we assume that in the artificially markets the agent can invest in a

hypothetical income contract I until the retirement date T̃ .10 In the following, we will refer to

this hypothetical asset as an income contract. This contract is characterized by the risk premium

�I . The time-t price It evolves according to

dIt = It [(r + �Ivt) dt+
√
vtdWY t] . (21)

Since the single purpose of this contract is to complete the market, we let him only depend on

the idiosyncratic shock of income risk WY and assume that its volatility is given by
√
vt.

Therefore, every artificial market is characterized by a choice of �I . There are no constraints

on the consumption and investment strategy in the artificial markets except for the standard

integrability conditions and the constraint that terminal wealth XT has to be non-negative.

As labor income is perfectly hedgeable in the artificial markets, we do not have to impose any

liquidity constraints to ensure XT ≥ 0, as we do in the true incomplete market.

Let �It denote the fraction of financial wealth invested in the income contract I at time t.

Due to the simplicity of the contract, we get �It = �It with �It being the fraction invested in the

diffusive component WY . In this artificially completed market, the wealth dynamics in terms of

the factor exposures (�v, �S , �I) read

dXt = Xt[rdt+ �St(�Svtdt+
√
vtdWSt) + �vt(�vvtdt+

√
vtdWvt)] (22)

+ 1t<T̃�I(�Ivt dt+
√
vtdWY t) + (1t<T̃Yt + 1t≥T̃ Ỹt − ct)dt,

and for a given market price of risk �I , the indirect utility Jart(t, x, v, y; �I) is defined as

Jart(t, x, v, y; �I) = max
(c;�v ,�S ,�I)

{
Et

[∫ T

t
e−�(s−t)u(cs)ds+ "e−�(T−t)u(XT )

]}

10 Note that there is no demand for the income contract when t ≥ T̃ as we already face a complete market setting

in this period.
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In general, the risk premium might be a stochastic process. As theoretically shown in Cvitanić

and Karatzas (1992), the minimum of the indirect utility Jart(t, x, v, y; �I) over all (possible)

stochastic processes �I is equal to the indirect utility in the true constrained market. But this

does not facilitate the actual computation of the optimal solution.

Although there do not exist closed-form solutions for a general stochastic risk premium

�I , we can still compute the optimal strategies for a constant risk premium and measure the

performance of them.11. The following theorem gives us the desired solutions.

Theorem 6. (Solution with income contracts) If the investor has access to income contracts

until retirement date T̃ , his indirect utility is given by

Jart(t, x, v, y; �I) =
1

1− 
gart(t, v; �I)

(x+ yF art(t, v; �I))
1− , (23)

where

gart(t, v; �I) =

⎧⎨⎩

"
1
 e−rg(T−t)−Ar(T̃ ,T )−A�(T )(t,T̃ ;�I)−B�(T )(t,T̃ ;�I)v

+
∫ T
T̃ e−rg(s−t)−Ar(T̃ ,s)−A�(s)(t,T̃ ;�I)−B�(s)(t,T̃ ;�I)v ds

+
∫ T̃
t e−rg(s−t)−A0(t,s;�I)−B0(t,s;�I)vds, t ≤ T̃ ,

gcom(t, v), t ∈ (T̃ , T ].

F art(t, v; �I) =

⎧⎨⎩
� F com(T̃ , v)e−(r−�)(T̃−t)−AF (t,T̃ ;�I)−BF (t,T̃ ;�I)v

+
∫ T̃
t e−(r−�)(s−t)−AF (t,s;�I)−BF (t,s;�I)v ds, t ≤ T̃ ,

F com(t, v), t ∈ (T̃ , T ].

The deterministic functions AF (., .; �I), B
F (., .; �I), A�(s)(., .; �I), and B�(s)(., .; �I) are defined

as

AF (t, s; �I) = −�(˜̃�− aF (�I))

�̄2
(s− t) +

2�

�̄2
ln

⎛⎝1− ˜̃�−aF (�I)
˜̃�+aF (�I)

e−a
F (�I)(T−t)

1− ˜̃�−aF (�I)
˜̃�+aF (�I)

⎞⎠ ,

BF (t, s; �I) = −(aF (�I)− ˜̃�)e−a
F (�I)(s−t) + ˜̃�− aF (�I)

�̄2
(
aF (�I)−˜̃�
˜̃�+aF (�I)

e−aF (�I)(s−t) + 1
) ,

A�(s)(t, s; �I) = −�(�̃− ag(�I))
�̄2

(s− t) +
2�

�̄2
ln

(
1− k�e−a

g(�I)(s−t)

1− k�

)
,

B�(s)(t, s; �I) = −−k�(�̃+ ag(�I))e
−ag(�I)(s−t) + �̃− ag(�I)

�̄2
(
−k�e−ag(�I)(s−t) + 1

) .

The corresponding parameters are given in the Appendix A. The optimal fractions of wealth

invested in the specific risk exposures are given by

11 Even for deterministic risk premia, we are not able to derive close-form solutions as the ODEs for the functions

B and A have to be solved numerically.



Consumption-Portfolio Choice with Unspanned Labor Income and Stochastic Volatility 69

�vt(�I) =
1



Xt + YtF
art(t, vt; �I)

Xt
�v −

(
�̂�̂yv

YtF
art(t, vt; �I)

Xt
+ �̄�̂v

YtF
art(t, vt; �I)

Xt

F artv (t, vt; �I)

F art(t, vt; �I)

)
+ �̄�̂v

gartv (t, vt; �I)

gart(t, vt; �I)

Xt + YtF
art(t, vt; �I)

Xt
,

�St(�I) =
1



Xt + YtF
art(t, vt; �I)

Xt
�S −

(
�̂�ys

YtF
art(t, vt; �I)

Xt
+ �̄�sv

YtF
art(t, vt; �I)

Xt

F artv (t, vt; �I)

F art(t, vt; �I)

)
+ �̄�sv

gartv (t, vt; �I)

gart(t, vt; �I)

Xt + YtF
art(t, vt; �I)

Xt
,

�Y t(�I) =
1



Xt + YtF
art(t, vt; �I)

Xt
�I − �̂�̂y

YtF
art(t, vt; �I)

Xt
.

The optimal consumption rate reads

ct(�I) =
Xt + YtF

art(t, vt; �I)

gart(t, vt; �I)
.

The corresponding investment fractions are equivalent to (19) and (20) and �It = �It.

Of course, the indirect utility in the artificially completed market for any choice of �I will

be at least as high as the unknown solution in the truly incomplete market. Given Theorem 6,

one easily obtains �̄I := arg�I min Jart(t, x, v, y; �I) which gives us an upper bound on the truly

incomplete market

J̄(t, x, v, y) = Jart(t, x, v, y; �̄I). (24)

Next, we take a strategy from an artificial market that is parameterized by �I and transform

it to a strategy that is feasible in the incomplete market. Recall that the individual has to

comply with the liquidity constraint until retirement to make sure that he ends up with positive

terminal wealth. In retirement, the income stream becomes deterministic and we allow the

agent to borrow against his future income. Therefore, by ignoring the investment in the income

contract, we obtain a family of strategies that is feasible in the retirement period. When the

investor is still working, the problem becomes more involved. To satisfy the liquidity constraint

in the active phase, we have to adapt the strategies in order to make them admissible. Following

Bick, Kraft and Munk (2011), we modify the strategies as follows

�St(�I) =
1



Xt + 1{Xt>k}YtF
art(t, vt)

Xt

[
�S − �v

�sv
�̂v

]
+ �̂�̂yv

�sv
�̂v

1{Xt>k}YtF
art(t, vt)

Xt
− �Ot

ℎsSt
Ot

,

�Ot(�I) =

{
1



Xt + 1{Xt>k}YtF
art(t, vt)

Xt

�v
�̄�̂v
− 1{Xt>k}

(
�̂

�̄

�̂yv
�̂v

YtF
art(t, vt)

Xt
+
YtF

art(t, vt)

Xt

F artv (t, vt)

F art(t, vt)

)
(25)

+
gartv (t, vt)

gart(t, vt)

Xt + 1{Xt>k}YtF
art(t, vt)

Xt

}
Ot
ℎv
,

ct(�I) =

⎧⎨⎩
Xt+YtFart(t,vt;�I)

gart(t,vt;�I) , if Xt+YtFart(t,vt;�I)
gart(t,vt;�I) < Yt OR Xt > k,

�Yt, otherwise,
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where k and � are constants. After this transformation, we can ensure that financial wealth

stays positive for t < T̃ .12

While we are not able to derive the optimal consumption and investment strategy in the

truly incomplete market, we can evaluate the performance of any admissible consumption and

investment strategy in the following way. For any risk premium �I , we get feasible strategies from

(25) and approximate the corresponding expected utility J(t, x, v, y; (c(�I), �(�I))) by Monte

Carlo simulations. Then, we measure the performance of a strategy defined by �I by comparing

the expected utility J(t, x, v, y; (c(�I), �(�I))) to the upper bound J̄(t, x, v, y). If this distance

is small, Bick, Kraft and Munk (2011) call the strategy near-optimal. The metric that they use

to assess whether the distance is close is an upper bound L := L(t, x, v, y; (c, �)) on the welfare

loss which is defined as

J(t, x, v, y; (c(�I), �(�I))) = J̄(t, [1− L]x, v, [1− L]y).

The value L can be interpreted as an upper bound on the fraction of total wealth that the

investor would be willing to pay to get access to the unknown optimal strategy, instead of

following (c(�I), �(�I)). Due to the specification of (23), we get a close-form expression for L

L = 1−
(
J(t, x, v, y; (c(�I), �(�I)))

J̄(t, x, v, y)

) 1
1−

. (26)

Finally, we search through different �I to find the best of feasible strategies (c(�I), �(�I)) which

yields the smallest value L.

It is important to mention that this is only an upper bound and we do not have any

information on how close J̄(t, x, v, y) is to the true incomplete indirect utility value. We will

investigate this point in the later analysis.

4.2 Markov Chain Approximation

We have also solved the utility maximization problem (4) with the so called Markov Chain

Approximation Method, which is a well-studied and frequently applied numerical approach

(Kushner and Dupuis (1992), Munk (2000)). We solve a problem that is similar to the one

studied in Munk and Soerensen (2010). The original problem consists of three state variables:

wealth, income and volatility. Among others, Munk and Soerensen (2010) show that the indirect

utility is homogeneous of degree 1 −  in wealth and income. The same holds true for our

problem and we can reduce the problem to two dimensions by rewriting the indirect utility as

J(t, x, v, y) = y1−H(t, xy , v), where the function H is defined as

H(t, z, v) = J(t, z, v, 1). (27)

12 See Bick, Kraft and Munk (2011) for further details.
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Substituting (27) into the original HJB (14) and rearranging yields a non-linear second-order

PDE for H

0 = Ht − �̂(v)H +
1

1− 
ĉ1− +Hv

[
� − �v + v�̄�̂�yv(1− )

]
+

1

2
�̄2vHvv (28)

+Hz

{
1− ĉ+ z

[
r − �+ �̂2v + �T�− �̂

√
v�T (�̂yv, �ys)

T
]}

+
1

2
z2Hzz

[
�T�+ �̂2v − 2�̂

√
v�T (�̂yv, �ys)

T
]

+ zHvz�̄
√
v
[
�T (�̂v, �sv)

T − �̂
√
v�yv

]
,

where we define �̂(v) = �−�(1−)+0.5(1−)�̂2v and ĉ = c
y is the ratio between consumption

and income.

The MCA Method discretizes this control problem. The dynamics of the wealth-income

ratio and the volatility process are approximated by a Markov chain on a grid defined by N

equidistant time points, I equidistant values of the wealth/income ratio, and J equidistant values

of the volatility process. In the continuous-time model, both the wealth/income ratio and the

volatility process are unbounded from above, but the MCA Method has to impose upper bounds.

The optimization problem is solved by backwards recursion starting at the terminal date T . In

each time step the value function for each state in the grid is maximized by policy iterations.

The entire procedure is roughly equivalent to solving the HJB equation for H by a (specific)

finite difference approach, similar to the one used by Brennan, Schwartz and Lagnado (1997)

and others. The precision of the method strongly depends on the number of grid points and the

size of the imposed upper bound.

5 Numerical Results

This section contains a numerical study of the proposed investment and consumption strategies

both for the complete market and the incomplete market. To examine these strategies, we

fix a set of several parameters that describe the investors preferences, the income process, the

volatility process, and the stock process. Many papers deal with the calibration of the Heston

model (see, e.g., Pan (2002)) and provide parameter estimates for a stochastic volatility model.

The parameters we use in this study resemble the ones found in the literature. The benchmark

values for the income process are similar to those in the existing literature (Cocco, Gomes and

Maenhout (2005), Munk and Soerensen (2010)). We assume a risk aversion of  = 4, a time-

preference rate of � = 0.03, and a weight between consumption and terminal wealth of " = 5.

This means that the utility that is derived from a terminal wealth of a is approximately the

same as the utility one gets from consuming the value a in each of the last 5 years. Further, we

assume the investor works for 20 years and subsequently receives a retirement pension of 40%

of his last salary for the next 20 years. The benchmark parameters are summarized in Table

1. The fraction �
� gives us the mean reversion level of the volatility. The constant parameter
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�S in combination with the average volatility yields an average equity excess return of 4.95%.

Similarly, we have an expected income volatility of 9.75%.

There are several empirical studies that support the choice of a negative volatility risk

premium, i.e. we get a premium for short positions in volatility.13 Therefore, we chose �v = −1.

At this point, we do not specify the correlation parameter between stock and income �ys

and between volatility and income �yv. Although, there is empirical evidence that �ys is close to

zero, we will vary it in the next part of this section to achieve several combinations of spanned

income.14 As the benchmark, we choose a financial wealth at time zero of x = 2 and an initial

income of y = 2. These values can be interpreted as USD 20, 000. In the remainder, we will

often vary the wealth income ratio to show different effects.

5.1 Results for Spanned Income

In this part, a complete market setup is analyzed. Hence, we have to assume that the income

stream is either spanned by traded assets or risk-free and that the investor does not face any

liquidity constraints. We will focus on the spanned income case, where the income stream can

be replicated at every point in time. We thus have to consider combinations of �ys and �yv that

result in �̂y = 0, i.e. for fixed �sv, we must choose values of �ys and �yv such that

�yv − �sv�ys =+
−

√
1− �2

ys

√
1− �2

sv.

We are going to study the optimal investments given in Lemma 1 for three stock-income cor-

relations (�ys = −1, 0, and 1). We still have to specify the security ℎ because we need to

compute the price, the delta, and the vega of the option in Formulas (19) and (20). In order

to get a clearer interpretation of the specific stock investment components, we get rid of the

”delta-hedging” part in (19) and choose a derivative with a delta of zero. This results in an

optimal stock investment of

�St =
1



(
1 +

Lcom(t, vt)

Xt

)[
�S − �v

�sv
�̂v

]
︸ ︷︷ ︸

myopic demand

+ �̂

(
�̂yv

�sv
�̂v
− �ys

)
Lcom(t, vt)

Xt︸ ︷︷ ︸
income hedge

. (29)

As in Liu and Pan (2003), delta neutral straddles are the prime security in our research. A

straddle is a long position in a call and a put option with the same strike and expiration date.15

For a specific option maturity � and spot price, one can always compute a strike price K such

that the straddle becomes delta neutral. We choose a maturity of � = 0.3.16 Table 2 shows the

13 For a discussion of the empirical studies, we refer to Liu and Pan (2003).

14 We cannot freely choose the different correlation parameters since we have to ensure that the correlation matrix

stays positive definite.

15 All options are assumed to be European options.

16 We assume that the agent is able to invest in such a contract at every point in time.
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dependency of �S on different wealth-income ratios and four 17 combinations of the correlations

at time 0. The optimal fractions of total wealth invested in the stock market are decomposed

into its specific components. First, note that the ratio of wealth to income and thus the ratio of

financial wealth to human wealth has a huge impact on the optimal decisions (no matter which

correlation scenario we consider). This partially results in huge fractions of financial wealth (e.g.

297) that are invested in stock whenever human wealth dominates financial wealth, i.e. when we

deal with a low x
y . However, the portions of total wealth seem quite moderate. Moreover, the

results indicate that the optimal �S converges to the case without income when human wealth

is decreasing. We also notice that the optimal investments depend largely upon the correlation

structure. For example when the idiosyncratic shocks to labor income and the stock market are

perfectly positively correlated, the investor wants to take a large short position in the stock.

In contrast when they are perfectly negatively correlated, he takes huge long positions. When

both risk shocks are not correlated at all, we can examine two scenarios (two different �yv are

possible). In both cases, the agent takes long positions.

To get a better understanding of the previous results, the different components of the stock

investment in (29), which consist of the myopic (also called speculative demand) and a hedge

demand for income risk, are analyzed. Remember that we do not consider the ”delta-hedging”

effects here as we use delta-neutral straddles. As already mentioned, the correlation structure

has a huge influence on the optimal investments. For instance, when �ys = 1, income can be

interpreted as an implicit investment in stock and hence, we should reduce the actual investment

in stock. This already indicates that human wealth is driven by the specific correlations. Table 3

summarizes the human wealth values for an initial labor income of y = 2, a retirement period of

T̃ = 20 and a terminal date of T = 40. The results show that human wealth has a higher value

when the income stream is negatively correlated with stock returns. This fact is emphasized

when regarding the two extreme values of perfect negatively correlated streams and perfect

positively correlated streams. The reason is that income payments that are high when stock

returns are low are very valuable. Therefore, investing in the stock will provide a good hedge

against unfavorable income shocks. Similarly, income payments that are positively correlated

with volatility shocks have a high value. Regarding the respective hedging terms and the absolute

values of the income hedges, we see that both terms are mainly affected by the fraction of human

wealth to financial wealth Lcom(t,v)
x . The sign of the myopic part is computed by (�S − �v �sv�̂v )

which is always positive for our benchmark parameters. Due to the term (�̂yv
�sv
�̂v
−�ys), the sign

of the income hedge term is influenced by the imposed correlation parameters and can change

in the examined scenarios.

17 Note that for a correlation of �ys = 0, there exist two values of �yv that yield a �̂yv of zero.
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Next, we have a look at the investments in the delta-neutral straddle which are displayed

in Table 4. Like the optimal stock weights, the investments in the straddle are influenced by

the impact of human wealth and the specific correlation structure, which was discussed in the

previous paragraph. The speculative demand is always negative due to the negative volatility

risk premium �v. The sign of the income hedge term is mainly determined by �̂yv. In addition to

these terms, the investor also hedges against volatility risk. The magnitude of this component

also depends on human wealth and the sign is defined by gv, which was negative in all our

computations. The table also indicates that the assumed straddle has a high quality to create

the desired exposure to volatility risk.

Of course, the specific portfolio weights for both the stock and the derivative would change

when we used other derivatives to hedge volatility shocks. Therefore, we do the same analysis

when the agent is allowed to invest in Call and Put options which are both traded at the money.

The corresponding results are displayed in Table 5

After setting �ys = 0.2 and �̂yv = −0.948, we conduct some robustness checks with respect

to different parameters. Figure 1 depicts the results.

Unfortunately, we are not able to compute the expected value of total wealth in closed-form

which is necessary for a study of portfolio and investment decisions of an investor over his life-

cycle. However, we can simulate the process via a Monte Carlo simulation. In our study, we

use 10,000 simulations and 100 discretization steps per year and simulate the expected values of

total wealth, human wealth, and financial wealth over a period of 40 years. Within this period,

the investor retires after 20 years. We simulate an investor with an initial wealth of x = 2 and

income of y = 2 who can invest in delta-neutral straddle. Again we set �ys = 0.2 �̂yv = −0.948.

Figure 2 illustrates how the dollar amounts invested in the different assets change over the life-

cycle. The expected amount invested in stock are stable at approximately 25 (250,000 USD)

until 7 years before the retirement date and slowly decreases afterwards. At the retirement date

T̃ = 20, the amount drops from 21 to 16 and then decreases to zero at T = 40. This profile is in

line with the advice most economists would give you (to invest more in stock at the beginning

of the working career).

The straddle investment starts at roughly 6 and slowly decreases until retirement where the

investor reallocates his portfolio and takes a short position of -4.5. Then the option investment

increases to zero until the terminal date.

Figure 2 also illustrates the huge short positions of the investor in the bank account at

time zero. He needs to borrow much money to mainly finance his stock investments and his

consumption. But the magnitude of this position is fast declining when the investor approaches

retirement. At the retirement date, he even deposits 10 in his bank account.
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Figure 3 displays the expected values of financial, human, and total wealth that arise when

following the optimal investments and consumption strategies discussed in the earlier sections.

It becomes evident that human wealth is clearly dominating financial wealth until shortly before

the retirement date where they overlap. Due to the replacement ratio, we observe a small hump

at the retirement date. Afterwards human wealth monotonically decreases until the terminal

date.

Moreover, we see that financial wealth is hump-shaped, a fact that is often found in life-cylce

studies (e.g. Munk and Soerensen (2010), Kraft and Munk (2011)). We see that financial wealth

is accumulated until 3 years after retirement. The investor does so to finance consumption in

the retirement period where he only receives a fraction of his last salary. We also notice that

financial wealth and total wealth are approaching with time and reach an expected terminal

wealth of 5.5 that the individual passes on to his heirs.

5.2 Results for Unspanned Income

In this section, we examine the two methods proposed in part 4 to solve the involved problem.

To provide results for the artificially completed market method (SAMS), we use Monte Carlo

simulations to compute the bound on the true incomplete market J̄(t, x, v, y) and to evaluate

the strategies (c(�I), �(�I)) that result in values J(t, x, v, y; (c(�I), �(�I))). Note that, although

we have J̄(t, x, v, y) in closed-form, we evaluate it by Monte Carlo simulations, too. This is to

avoid any bias in the welfare losses due to simulation. Moreover, a derivative does not have to

be specified since we simulate all dynamics with respect to the risk exposures (see (11)).

First, we want to consider the welfare losses L defined by (26) that we attain by following

our strategies (c(�I), �(�I)). We only report the losses for the best of our feasible strategies.18

The results presented below are based on our benchmark parameters that are tabulated in Table

1. We use 10, 000 simulations and 100 time steps per year to discretize the wealth and income

process and fix the volatility-income correlation at �yv = −0.2. Since we have to adapt the

strategies to become admissible, we choose k = 0.2 and � = 0.95.19 Motivated by the results

from the previous section, where we see that the involved strategies can change dramatically

with the wealth-income ratios and volatilities, we focus on the sensitivity of the welfare loss

with respect to these quantities. Table 6 reports the upper bounds on the welfare losses for

different correlations �ys and several wealth-income ratios. The welfare losses are at most 6.7%

and in many cases the upper bounds on losses are much lower. The impact of the correlation

between income and stock is evident. The loss bounds are lowest for high correlations (except

18 This strategy is easily obtained by a standard line search algorithm.

19 With this specification, we did not observe one single simulation path with a negative financial wealth, in all

our simulations.
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for �ys = 0.8) and highest for correlations near zero. This is not surprising as we implement

strategies in the true incomplete market that are derived in a complete market. It is also

striking that the utility losses are decreasing with increasing wealth-income ratio. The effects

of variations in this ratio stem from the fact that decreasing the wealth-income ratio leads to

a higher value of the individual’s labor income and thus makes the unspanned labor income

relatively more important.

We wish to stress that all numbers represent upper bounds on welfare losses and that those

bounds might be very weak. The upper bounds that we use are computed in an artificially

completed market where the investor is allowed to borrow against expected future income which

often results in negative financial wealth.20 In contrast, we have to impose this liquidity con-

straint in the true incomplete market because we have to make sure that financial wealth stays

positive during the working phase.21 This indicates that a large part of the loss might be due

to the liquidity constraint that is not captured in the artificially completed markets. Hence, we

argue that the upper bound that was derived in the artificially completed market J̄(t, x, v, y)

is far away from the true unknown utility in the incomplete market. The numbers in Table 6

support this fact as losses are higher for lower wealth-income ratios, i.e. when human wealth

compared to financial wealth is large. When human wealth is a large part of financial wealth,

the investor wants to borrow a large amount against his future human wealth. This behavior is

supported by the results in the previous subsection.

To test SAMS further, it is compared with a well-established alternative numerical method.

We choose the Markov chain approach that was explained in the previous chapter. In order

to have a fair comparison, we evaluate the expected utility generated by the investment and

consumption strategies derived with the Markov chain method by Monte Carlo simulations

using the same random numbers as in the valuation of the near-optimal strategy.22 Comparing

this expected utility with the upper bound in the artificial completed market (see (24)), we

obtain a welfare loss on the numerical policies. In spite of the dimension reduction, we still have

to deal with two state variables and one time variable. The numerical PDE problem is solved

with a very fine grid where the number of points approximating the wealth-income ratio are set

to I = 2000 and the number of points for the volatility process are set to J = 40. This already

results in 80, 000 grid points at each point time which requires a lot of computer memory and

computation time. Further, we use 100 steps per year to discretize the time dimension. Table 7

summarizes the welfare losses for different wealth-income ratios and stock-income correlations

and compares the Markov chain method with SAMS. We see that SAMS outperforms the

20 Indeed, we can observe nearly 70% of paths on average that contain at least one negative realization of financial

wealth.

21 Recall that we cannot hedge the unspanned income process in the incomplete market.

22 We do this to avoid any bias stemming from simulations.
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grid search algorithm for all combinations of wealth-income ratio and stock-income correlation

which is a strong argument for SAMS. In the analysis of Bick, Kraft and Munk (2011), the

authors show that their method has roughly the same precision as a standard finite difference

solution. However, they only have to deal with one state variable. Instead, we have to consider

an additional state variable and thus the approximation suffers from the well-known curse of

dimensionality. It is also known that numerical solution techniques have a poor performance at

the boundaries of the grid (e.g see Munk (2000)). However, the investor in the true incomplete

market often wants to take fairly extreme positions (see previous results) and thus frequently

realizes values of financial wealth that are near the lower boundary. Therefore, the imprecise

policies of the numerical algorithm near the boundary are frequently attained which results in

high welfare losses compared to the analysis of Bick, Kraft and Munk (2011). Furthermore,

the grid-based method does not give any intuition behind the optimal strategies and little is

known about the precision. In contrast, SAMS gives us closed-form expressions that are easy to

interpret. Moreover, it provides an upper bound on possible welfare losses.

As in the previous part, we can now use the near-optimal policies from SAMS to conduct

a life-cycle study with an initial wealth of x = 2 and initial income of y = 2. The investor is

assumed to retire after 20 years and the investment horizon is set to 40 years. We analyze a

situation where the stock-income correlation is �ys = 0.2 and the income-volatility correlation

is �yv = −0.2. We illustrate the expected amounts invested in the risky assets in Figure 4. We

see that the investor takes more moderate positions in risky assets compared to the complete

market setting. One reason for this behavior is the imposed liquidity constraint that the investor

has to obey. It also becomes evident that the agent takes a short position in the straddle over

his whole life-cycle since the volatility risk premium is chosen to be negative. The optimal

investment proportions after retirement are by definition identical to the ones attained in the

complete market setting. Following these strategies, the investor realizes expected values of

financial wealth, human wealth, and total wealth that are depicted in Figure 5. The graphs

show that human wealth is much lower compared to the analysis in the complete market, which

also explains the more moderate positions in assets.

6 Conclusion

This paper has analyzed a consumption-portfolio choice problem of an investor that receives

labor income and faces stochastic volatility. In our analysis, we have studied two scenarios.

First, we have assumed a spanned income stream and we have provided closed-form solutions

and investigated their components. Moreover, we have illustrated our findings by a life-cycle

analysis where we could replicate the patterns found in similar studies. In the second part

of this paper, we have allowed for unspanned income and have additionally imposed liquidity
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constraints on the portfolio strategies which results in a problem where closed-form solutions

seem impossible to find. We have compared two methods that try to find a solution to this

problem. Our results clearly indicate that SAMS performs better than a standard Markov chain

approach when having more than one state variable. We wish to emphasize that SAMS could

also be applied to higher dimensions whereas numerical solution techniques do not seem to be

tractable when facing more than two state variables.
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A Proofs

Proof of Theorem 1. In the retirement phase, where the investor receives a risk-free income

stream, the general Hamilton-Jacobi-Bellman (HJB) equation in (14) can be simplified to

0 = max
(c;�)

{
Jt − �J + (rx+ Ỹ )Jx + (� − �v)Jv +

1

2
�̄2vJvv + xv(�S�S + �V �v)Jx (30)

+
1

2
x2v(�2

S + �2
v)Jxx +Xv�̄(�̂v�v + �sv�S)Jxv + �̃ỹJy +

1

1− 
c1− − cJx

}
,

where subscripts denote partial derivatives and the terminal condition is given by J(T, x, v) =

" 1
1−x

1− . From this HJB, we can derive the first order conditions (FOC) for �S , �v, and c

�S = −�S
Jx
xJxx

− �̄�sv
Jxv
xJxx

,

�v = −�v
Jx
xJxx

− �̄�̂v
Jxv
xJxx

,

c = J
−1

x .

Moreover, we conjecture a solution of the form

J(t, x, y, v) =
1

1− 
gret(t, v)(x+ yF ret(t))1− , (31)

where gret(T, v) = "
1
 and F ret(T ) = 0 satisfy the terminal condition. Now, after substituting

(31) into (30) and using the FOC’s, we arrive at

0 = grett − rretg (v)gret + (� − �̃v)gretv + 0.5�̄2vgretvv + 1,

0 = F rett − (r − �̃)F ret + 1,

and we have introduced the function rretg (v) = rg + −1
22

(�2
v + �2

S)v and the constant �̃ = � +

−1
 �̄(�̂v�v + �sv�S). The solutions that satisfy the above-mentioned equations are

F ret(t) =
1

r − �̃

[
1− e−(r−�̃)(T−t)

]
,

gret(t, v) = "
1
 Ẽt

[
e−
∫ T
t rretg (vu) du

]
+

∫ T

t
Ẽt

[
e−
∫ s
t r

ret
g (vu) du

]
.

Following a theorem from Kraft (2005), we can solve the expectation and get

gret(t, v) = "
1
 e−rg(T−t)−Ar(t,T )−Br(t,T )v

+

∫ T

t
e−rg(s−t)−Ar(t,s)−Br(t,s)vds,

with

Ar = −�(�̃− a)

�̄2
(s− t) +

2�

�̄2
ln

(
1− �̃−a

�̃+ae
−a(T−t)

1− �̃−a
˜̃�+a

)
,

Br = −(a− �̃)e−a(s−t) + �̃− a

�̄2
(
a−�̃
�̃+ae

−a(s−t) + 1
) .
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The parameter a is a constat given by a =
√
�̃+ −1

2
(�2
v + �2

S)�̄2.

Before retirement, we apply the law of iterated expectations and write the indirect utility

as

J(t, x, y, v) = Et

[∫ T̃

t
e−�(s−t)u(cs) ds+ e−�(T̃−t)

1

1− 
gret(T̃ , v)(xT̃ + �yT̃F

ret(T̃ ))1−

]
.

The HJB equation associated with this problem is

0 = ℒ1J + ℒ2J + ℒ3J, (32)

where23

ℒ1 = max
c

{
1

1− 
c1− − cJx

}
, (33)

ℒ2 = max
�

{
�T�Jx + 0.5�T�T�Jxx + �T�T

ZJxz
}
, (34)

ℒ3 = Jt − �J + (rx+ y)Jx + �TZJz + 0.5tr
[
�Z�

T
ZJzz

]
(35)

The FOC’s involved by ℒ1 and ℒ2 are

� =
1

Jxx

(
�T
)−1 [−�Jx −�T

ZJxz
]

and (36)

c = J
−1

x . (37)

We handle each of these terms separately and then combine them afterwards.24 This leads to

two PDE’s given by

0 = gt − rretg (v)g + (� − �̃v)gretv + 0.5�̄2vgretvv + 1, (38)

0 = Ft − rF (v)F + �F (v) + 0.5�̄2vFvv + 1 = 0, (39)

with terminal conditions g(T̃ , v) = gret(T̃ , v) and F (T̃ , v) = �F ret(T̃ ). As above, we solve these

PDE’s by an application of Feynman Kac and the theorem of Kraft (2005). The solutions lead

to the formulas in Theorem 5. The missing constants are defined as

23 Here, we use the matrix notation that was introduced in Section 2.

24 The expressions for the operators become quite lengthy. Therefore, we do not report them. The formulas are

available upon request.
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�̂ = �̂yv�v + �ys�S ,

bF = �̂�̂,

˜̃� = �+ �̄(�̂v�v + �sv�S),

aF =

√
˜̃�2 + 2bF �̄2,

bg =
 − 1

22
�,

ag =

√
�̃2 + 2bg�̄2,

�(s) = Br(T̃ , s) ∀s ≥ T̃ ,

k�(s) =
�(s)�̄2 + �̃− ag

�(s)�̄2 + �̃+ ag
.

The optimal strategies follow by solving the FOC’s.

Proof of Theorem 3. Clearly, the solution after retirement is equal to the first theorem

since the investor is not allowed to invest in the income contract after his retirement.

In the active phase, we have to account for the additional hypothetical income contract.

Therefore, we have to modify the matrix notation introduced in Section 2. Then, the proof is

equivalent to the proof of Theorem 1. The general formulas will remain the same. We only

have to adapt the specific parameters since they will depend on the risk premium of the income

contract. The parameters are listed below

�̂(�I) = �̂yv�v + �ys�S + �̂y�I ,

bF (�I) = �̂�̂,

aF (�I) =

√
˜̃�2 + 2bF (�I)�̄2,

bg(�I) =
 − 1

22
(�2
I + �),

ag(�I) =
√
�̃2 + 2bg(�I)�̄2,

k�(s)(�I) =
�(s)�̄2 + �̃− ag(�I)
�(s)�̄2 + �̃+ ag(�I)

.
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� time preference rate 0.03 � first param vola 0.12375
 risk aversion 4 � mean reversion speed 5.5
" weight 5 �̄ vol of vol 0.25
T̃ retirement date 20 �sv correl. vola and stock risk −0.5
T terminal date 40 � expected active income growth 0.015
r interest rate 0.02 �̃ expected retirement growth 0
�S stock excess return 2.2 �̂ income volatility 0.65
�v volatility risk premium −1 � replacement ratio 0.4

Table 1: Benchmark parameter values. The table shows the values of the model
parameters in our main analysis unless otherwise stated. Time is measured in years.

x
y myopic demand income hedge delta hedge total over total wealth

�ys = 0 and �yv = 0.866
0.25 50.365 -46.218 0 4.148 0.033
0.5 25.386 -23.109 0 2.277 0.036
1 12.896 -11.554 0 1.341 0.042
2 6.651 -5.777 0 0.873 0.053
4 3.528 -2.889 0 0.64 0.074

no income 0.406 0 0 0.406 0.406

�ys = 0 and �yv = −0.866
0.25 34.093 31.164 0 65.257 0.776
0.5 17.249 15.582 0 32.832 0.772
1 8.828 7.791 0 16.619 0.764
2 4.617 3.896 0 8.512 0.748
4 2.511 1.948 0 4.459 0.72

no income 0.406 0 0 0.406 0.406

�ys = 1 and �yv = −0.5
0.25 27.65 -43.654 0 -16.004 -0.235
0.5 14.028 -21.827 0 -7.799 -0.226
1 7.217 -10.913 0 -3.697 -0.208
2 3.811 -5.457 0 -1.646 -0.175
4 2.108 -2.728 0 -0.62 -0.119

no income 0.406 0 0 0.406 0.406

�ys = −1 and �yv = 0.5
0.25 65.187 103.8 0 168.987 1.052
0.5 32.796 51.9 0 84.696 1.048
1 16.601 25.95 0 42.551 1.04
2 8.503 12.975 0 21.478 1.025
4 4.454 6.488 0 10.942 0.996

no income 0.406 0 0 0.406 0.406

Table 2: Stock investments for different correlation combinations in the com-
plete market. This table shows how the optimal fraction of financial wealth invested
in the stock market depends on different income-stock correlations and wealth/income
ratios (total). We also consider the case for no income. We further show the specific com-
ponents and the investment over total wealth (over total wealth). We set the volatility
at time zero equal to its long run mean 0.0225.
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�ys �yv Lcom(t, v)
0 0.8666 94.959
0 -0.8666 53.642
1 -0.5 40.091
-1 0.5 140.615

Table 3: Human wealth for different correlation combinations in the com-
plete market. This table shows the value of human wealth for different correlation
combinations that imply a complete market. We set the volatility at time zero equal to
its long run mean 0.0225. Initial financial wealth and income are set to 2.

x
y myopic demand income hedge vola hedge Ot

ℎv
total over total wealth

�ys = 0 and �yv = 0.866
0.25 -143.363 -386.1 -13.132 0.09 -48.654 -0.392
0.5 -72.259 -193.05 -6.619 0.09 -24.383 -0.39
1 -36.707 -96.525 -3.362 0.09 -12.248 -0.385
2 -18.931 -48.262 -1.734 0.09 -6.181 -0.377
4 -10.043 -24.131 -0.92 0.09 -3.147 -0.362

no income -1.155 0 -0.106 0.09 -0.113 -0.113

�ys = 0 and �yv = −0.866
0.25 -97.045 259.701 -8.889 0.09 13.788 0.164
0.5 -49.1 129.85 -4.497 0.09 6.838 0.161
1 -25.127 64.925 -2.302 0.09 3.362 0.155
2 -13.141 32.463 -1.204 0.09 1.625 0.143
4 -7.148 16.231 -0.655 0.09 0.756 0.122

no income -1.155 0 -0.106 0.09 -0.113 -0.113

�ys = 1 and �yv = −0.5
0.25 -78.704 18.639 -7.209 0.09 -6.032 -0.089
0.5 -39.929 9.32 -3.657 0.09 -3.073 -0.089
1 -20.542 4.66 -1.882 0.09 -1.593 -0.09
2 -10.848 2.33 -0.994 0.09 -0.853 -0.091
4 -6.002 1.165 -0.55 0.09 -0.483 -0.093

no income -1.155 0 -0.106 0.09 -0.113 -0.113

�ys = −1 and �yv = 0.5
0.25 -185.552 -46.213 -16.996 0.09 -22.306 -0.139
0.5 -93.353 -23.106 -8.551 0.09 -11.21 -0.139
1 -47.254 -11.553 -4.328 0.09 -5.661 -0.138
2 -24.204 -5.777 -2.217 0.09 -2.887 -0.138
4 -12.68 -2.888 -1.161 0.09 -1.5 -0.137

no income -1.155 0 -0.106 0.09 -0.113 -0.113

Table 4: Investments in straddle for different correlation combinations in the
complete market. This table shows how the optimal fraction of financial wealth in-
vested in the straddle depends on different income-stock correlations and wealth/income
ratios (total). We also consider the case of zero income (no income). We further show
the specific components and the investment over total wealth (over total wealth). We
set the volatility at time zero equal to its long run mean 0.0225.
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x
y

Ot
ℎv

(C) Ot
ℎv

(P) total (C) total (P) over total wealth (C) over total wealth (P)

�ys = 0 and �yv = 0.866
0.25 0.099 0.083 -53.749 -44.857 -0.433 -0.361
0.5 0.099 0.083 -26.937 -22.481 -0.43 -0.359
1 0.099 0.083 -13.531 -11.292 -0.426 -0.355
2 0.099 0.083 -6.828 -5.698 -0.416 -0.348
4 0.099 0.083 -3.476 -2.901 -0.4 -0.334

no income 0.099 0.083 -0.125 -0.104 -0.125 -0.104

�ys = 0 and �yv = −0.866
0.25 0.099 0.083 15.232 12.712 0.181 0.151
0.5 0.099 0.083 7.554 6.304 0.178 0.148
1 0.099 0.083 3.714 3.1 0.171 0.142
2 0.099 0.083 1.795 1.498 0.158 0.132
4 0.099 0.083 0.835 0.697 0.135 0.113

no income 0.099 0.083 -0.125 -0.104 -0.125 -0.104

�ys = 1 and �yv = −0.5
0.25 0.099 0.083 -6.664 -5.562 -0.098 -0.082
0.5 0.099 0.083 -3.394 -2.833 -0.098 -0.082
1 0.099 0.083 -1.76 -1.469 -0.099 -0.083
2 0.099 0.083 -0.942 -0.786 -0.1 -0.084
4 0.099 0.083 -0.534 -0.445 -0.103 -0.086

no income 0.099 0.083 -0.125 -0.104 -0.125 -0.104

�ys = −1 and �yv = 0.5
0.25 0.099 0.083 -24.642 -20.565 -0.153 -0.128
0.5 0.099 0.083 -12.383 -10.335 -0.153 -0.128
1 0.099 0.083 -6.254 -5.219 -0.153 -0.128
2 0.099 0.083 -3.189 -2.662 -0.152 -0.127
4 0.099 0.083 -1.657 -1.383 -0.151 -0.126

no income 0.099 0.083 -0.125 -0.104 -0.125 -0.104

Table 5: Investments in Call (C) and Put (P) for different correlation com-
binations in the complete market. This table shows how the optimal fraction of
financial wealth invested in the derivatives depends on different income-stock correla-
tions and wealth/income ratios (total). We also consider the case of zero income (no
income). We further show the specific components and the investment over total wealth
(over total wealth). We set the volatility at time zero equal to its long run mean 0.0225.
Both options are at the money and have a maturity of 3 months.

stock income correlation �ys
wealth-income ratio x

y 0 0.2 0.4 0.6 0.8
0.25 6.686 3.159 1.826 1.627 2.09
0.5 6.031 2.942 1.617 1.283 1.708
1 4.489 2.163 1.248 0.837 1.203
2 3.468 1.654 0.83 0.571 0.688
4 2.227 1.008 0.5 0.321 0.252

Table 6: Percentage welfare losses. This table shows the welfare losses for different
stock-income correlations and several wealth-income ratios when using SAMS. We set the
volatility at time zero equal to its long run mean 0.0225. The stock-volatility correlation
reads �yv = −0.2. All numbers represent percentage values.
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stock income correlation �ys
wealth-income ratio x

y 0 0.2 0.4 0.6 0.8
0.25 14.46 10.95 9.46 9.28 9.86

difference in losses 7.77 7.79 7.63 7.65 7.77
0.5 13.57 10.48 8.99 8.66 9.26

difference in losses 7.54 7.54 7.37 7.38 7.55
1 11.79 9.44 8.36 7.95 8.53

difference in losses 7.3 7.28 7.11 7.11 7.33
2 10.46 8.36 7.33 7.02 7.28

difference in losses 6.99 6.71 6.5 6.45 6.59
4 8.9 7.15 6.39 6.12 6.11

difference in losses 6.67 6.14 5.89 5.8 5.86

Table 7: Percentage welfare losses for two methods. This table shows the welfare
losses for different stock-income correlations and several wealth-income ratios for the
Markov chain method. The second row of each wealth-income specification represents
the difference in welfare losses compared with SAMS (see Table 6). We set the volatility
at time zero equal to its long run mean 0.0225. The stock-volatility correlation reads
�yv = −0.2. All numbers represent percentage values.
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Figure 1: Optimal portfolio weights at time 0. The graphs display the optimal
portfolio fractions on the risky stock (solid line), on the delta-neutral straddle straddle
(dashed line), and on the risk-free bank account (dotted line) in a complete market. The
base-case parameters are as described in Table 1. The volatility v0 is set to its long
run mean. Initial wealth and initial income are assumed to be 2. The stock-income
correlation reads �ys = 0.2 which implies �̂yv = −0.948.
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Figure 2: Expected investments over the life-cycle. The curves show the expected
spending in thousands of US dollars on the risky stock (solid line), on the delta-neutral
straddle (dashed line), and on the risk-free bank account (dotted line) in a complete
market. The results are generated with the benchmark parameters in Table 1. The
current volatility is set to its long run mean. The current financial wealth is x = 20,000
USD, and the current income is y = 20,000 USD per year. The stock-income correlation
reads �ys = 0.2 which implies �̂yv = −0.948.



90 FIGURES

45 Total wealth Financial wealth Human wealth

35

40

30

35

ea
lt
h

20

25

pe
ct
ed

 w
e

10

15Ex
p

0

5

0
0 5 10 15 20 25 30 35 40

Time, years

Figure 3: Expected wealth over the life-cycle. The curves show the expectations
of the total wealth (solid line), financial wealth (dashed line), and human wealth (dotted
line) over the life-cycle in a complete market. The results are generated with the bench-
mark parameters in Table 1. The current volatility is set to its long run mean. The
current financial wealth is x = 20,000 USD, and the current income is y = 20,000 USD
per year. The stock-income correlation reads �ys = 0.2 which implies �̂yv = −0.948.
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Figure 4: Expected investments over the life-cycle. The curves show the expected
spending in thousands of US dollars on the risky stock (solid line), on the delta-neutral
straddle (dashed line), and on the risk-free bank account (dotted line) in an incomplete
market (We use SAMS to obtain the strategies). The results are generated with the
benchmark parameters in Table 1. The current volatility is set to its long run mean.
The current financial wealth is x = 20,000 USD, and the current income is y = 20,000
USD per year. The stock-income correlation reads �ys = 0.2 and the income-volatility
correlation is set to �yv = −0.2.
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Figure 5: Expected wealth over the life-cycle. The curves show the expectations
of the total wealth (solid line), financial wealth (dashed line), and human wealth (dotted
line) over the life-cycle in an incomplete market (We use SAMS to obtain the strategies).
The results are generated with the benchmark parameters in Table 1. The current
volatility is set to its long run mean. The current financial wealth is x = 20,000 USD,
and the current income is y = 20,000 USD per year. The stock-income correlation reads
�ys = 0.2 and the income-volatility correlation is set to �yv = −0.2.



Default and Idiosyncratic Risk Anomalies Revisited 93

Default and Idiosyncratic Risk Anomalies Revisited

Björn Bick, Christian Hirsch, Holger Kraft, Yildiray Yildirim

Summary. This paper studies the default anomaly that has been documented in the literature. We

show that after controlling for the default-risk premium the default anomaly disappears. In contrast,

controlling for credit spreads does not fully eliminate the anomaly. We also relate our results to the

IVOL anomaly and find evidence that this anomaly disappears when one controls for default risk via the

default-risk premia.

1 Introduction

In this paper, we revisit two anomalies studied in the finance literature. The first anomaly

is the idiosyncratic volatility (IVOL) anomaly. Under the assumptions of the Capital Asset

Pricing Model (CAPM) only systematic risk is priced1 suggesting that high expected returns

are associated with high levels of systematic risk. This is because investors are assumed to hold

well diversified portfolios. However, many investors are not well diversified2, so both systematic

and idiosyncratic risk might matter. Merton (1987) and Malkiel and Xu (2004) show that

idiosyncratic risk can be priced. Less diversified investors care about the total risk and not

only about the systematic risk. As a result, a risk premium for idiosyncratic risk might emerge.

Empirical evidence of a cross-sectional relationship between idiosyncratic risk and stock returns

is mixed. While the majority of studies such as Malkiel and Xu (2004), Spiegel and Wang

(2005), Fu (2009), and others suggest a positive relationship, Ang et al. (2006, 2009) document

a negative relationship.

The second anomaly we are going to address is the distress anomaly. The literature suggests

financial distress as another missing factor of CAPM. In earlier studies, value and size effects are

used as proxies for financial distress. Chan and Chen (1991) document that financial distress

can not be diversified away and hence investors require a premium for bearing such risk. Fama

and French (1996) show that book-to-market (BTM) and high-minus-low (HML) portfolios are

1 If the CAPM holds, then the market portfolio is the tangency portfolio, and the estimated alpha should be

zero and total risk is only the systematic (e.g. market) risk.

2 Goetzmann and Kumar (2007) show that more than 25% of the investors hold only one stock in their portfolio.
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proxies for distress. Ferguson and Shockley (2003) document that distress risk is priced in

equity returns. Although distress risk seems to be a missing factor, the empirical evidence on

the relation between distress risk and equity returns is mixed. For example, after controlling

for the Fama-French factors, Campbell, Hilscher and Szilagyi (2008) show that distressed firms

deliver lower returns than non-distressed firms. This result is interesting for two reasons: First,

there are significant abnormal returns. Secondly, the result contradicts the intuition that higher

risk should be rewarded by higher returns. These findings suggest that the size and value

factors of the model by Fama and French (1993) cannot fully capture default risk and point in

the direction of a missing factor that is related to default risk. While Dichev (1998), Griffin and

Lemmon (2002) and Campbell, Hilscher and Szilagyi (2008) find a negative relationship between

distress risk and equity returns, Vassalou and Xing (2004) and Da and Gao (2008) document a

positive relationship.

Dichev (1998) documents that non-distressed firms outperform distressed firms when using

both Altman’s (1968) Z-score and Ohlson’s (1980) O-score as proxies for financial distress. Griffin

and Lemmon (2002) and George and Hwang (2010) also find evidence in support of the distress

anomaly using the O-score. Campbell, Hilscher and Szilagyi (2008) use a discrete time hazard

model similar to those used by Shumway (2001) and Chava and Jarrow (2004) and find that

there is a strong negative distress premium. Avramov, Chordia, Gergana and Philipov (2009)

use credit ratings from S&P and find a negative distress premium due to the poor performance

of low rated firms during periods of distress. Garlappi, Shu and Yan (2008) use Expected

Default Frequencies (EDF) from Moody’s KMV and find that stock returns are not positively

related to distress risk. However, they do not find evidence of a negative premium. Vassalou

and Xing (2004) provide one of the few studies documenting a positive relationship between

default risk and future returns. They use Merton’s (1974) option pricing model and firm equity

characteristics to form default likelihood indicators (DLI) as proxies for distress. However, Da

and Gao (2010) find that the results of Vassalou an Xing are driven by high returns earned

by high distance-to-default firms that recently experienced large negative returns. All of these

studies calculate default probabilities under the physical measure (P measure) and not under

the risk-neutral measure (Q measure).

There is evidence that the two anomalies are related. Campbell and Taksler (2003) show

that idiosyncratic firm-level volatility can explain cross-sectional variation in corporate yields

because it increases the probability of default. They document a link between the idiosyncratic

risk and distress risk. In this paper, we first revisit the anomalies, and then address the link

between them.

We argue that the distress anomaly should disappear when we correct for an appropriate

measure of default risk. Our paper addresses this point and shows that the default-risk premium

can successfully be used as a control to eliminate the default anomaly. The default-risk premium
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plays a central role in credit-risk theory and can be viewed as the Sharpe ratio of credit risk. It

is defined as the ratio of the credit spread of a firm over its actual physical default probability.3

Since the credit spread is the excess return that an investor receives for bearing a firm’s default

risk, the default-risk premium is the excess return per unit of default risk, i.e. it is a relative

risk premium. Put differently, a small default risk premium indicates that a firm can cheaply

issue debt relative to its default risk. Analogous to the ordinary Sharpe ratio, which is defined

as the excess return of a stock over its volatility, the default risk premium is relevant for several

reasons. First, Merton (1971) shows that an investor’s optimal demand for a corporate bond

is driven by the default risk premium. Secondly, the default risk premium characterizes the

risk-neutral probability measure used to price credit-risky assets (see, e.g. Duffie (2001)).

The previous discussion suggests that apart from the default-risk premium there are two

other default measures that can be used to control for credit risk. These are the credit spread

(numerator of the default-risk premium) and the actual default probability (denominator of

the default-risk premium). There are different ways of determining both variables. To estimate

credit spreads, data for traded securities are needed and one can use quotes from either corporate

bonds or credit default swaps (CDS). Longstaff, Mithal and Neis (2005) document that corporate

bond prices are affected by several factors including liquidity and tax issues and suggest that

CDS are a cleaner measure of default risk. To estimate actual default probabilities, a database

with actual defaults is needed so that one can calibrate an econometric model to these data.

Then, mainly two approaches are used: logit-type regressions4 or methods based on the firm-

value approach by Merton (1974). Campbell, Hilscher and Szilagyi (2008) document the default

anomaly by using a logit specification to extract actual default probabilities and sorting on

these probabilities. Running Fama-French regressions, they find positive alphas for portfolios

with low default probabilities and negative alphas for portfolios with high default probabilities.

They also show that their method of estimating actual default probabilities is superior over

alternative methods. Anginer and Yildizhan (2010) compute credit spreads as the difference

between a firm’s bond yield and the corresponding maturity matched treasury rate. Using this

particular measure of the credit spread they find that the default anomaly disappears. Berndt,

Lookman and Obreja (2007) construct a default-risk related factor from the prices of default

contingent claims. In contrast to the Fama-French factors, their factor is not the return of a

trading strategy. Berndt, Douglas, Duffie, Ferguson and Schranz (2008) extract default risk

premia of several firms. They obtain the firm’s actual default probabilities using expected

3 More precisely, it is the risk-neutral default probability and not the credit spread, but both concepts are closely

related. We will come back to that point later on.

4 See, e.g., Shumway (2001), Chava and Jarrow (2004), Bever, McNichols and Rhie (2005).



96 Björn Bick, Christian Hirsch, Holger Kraft, Yildiray Yildirim

default frequencies as provided by Moody’s KMV5 and estimate the credit spreads from CDS

data. Their focus differs from ours since they concentrate on the time variation of the risk

premia. Vassalou and Xing (2004) analyze the effect of default risk on equity returns using a

distance-to-default measure. They find some evidence that distressed stocks, mainly in the small

value group, earn higher returns. Value and size effects have also been attributed to be proxies

for financial distress (Chan and Chen (1991) and Fama and French (1996)).

In this paper, we use all three measures as controls. We extract the actual default proba-

bilities using the approach by Campbell, Hilscher and Szilagyi (2008). We obtained CDS data

from Markit to determine credit spreads for more than 700 firms from 2001 to 2010. We then

calculate the risk premium by calculating the ratio of credit spread to the pyhsical default prob-

ability. Like Campbell, Hilscher and Szilagyi (2008), we find a default anomaly when sorting on

actual default probabilities. The anomaly becomes smaller, but is not fully eliminated when we

sort with respect to credit spreads extracted from CDS data. However, when we use the default

risk premium to control for default risk, the anomaly completely disappears. This suggests that

the default risk premium is a superior measure of default risk. Finally, we relate these results

to the idiosyncratic volatility (IVOL) anomaly. We first document that the IVOL anomaly is

present in our data. Then we provide evidence that this anomaly only disappears if default risk

premia are used as controls. This is not true for physical default probabilities or credit spreads.

Apart from the previously mentioned papers, our study is related to several other papers.

First, a number of existing papers study risk-neutral default probabilities using CDS data. Das,

Hanouna and Sarin (2009) examine how accounting-based and market-based variables perform

in pricing the risks of default by using a large sample of CDS data. They find that models

using accounting data explain CDS spreads at least as well as structural models that use market

data. Tang and Yan (2010) empirically investigate the explanatory power of macroeconomic

conditions and firm characteristics and the effect of their interactions. They identify implied

volatility as the most significant determinant of default risk among firm-level characteristics.

Furthermore, Zhang, Zhou and Zhu (2009) try to explain CDS spreads by using volatility risks

and jump risks of individual firms. They incorporate these risks in a Merton-type structural

model in order to price CDS. Cesare and Guazzarotti (2010) analyze how the recent financial

crisis has changed the way credit risk is priced in CDS markets. In their regressions, they include

the theoretical spread that follows from a simple Merton model in order to deal with non-linear

relationships. They find that including this theoretical spread improves the explanatory power

of fundamental variables. Moreover, their model is able to explain more than one half of the

variation in CDS spreads before and during the crisis. They also find that leverage affected

5 Moody’s KMV offer a proprietary database. Although KMV has made it public that their method is based on

Merton’s approach, the exact procedure of how the actual probabilities are calculated is not disclosed so that

their estimates cannot easily be replicated. See, e.g. Duffie and Singleton (2003) for more details.
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CDS spreads much more during the crisis than before. At the same time, the impact of equity

volatility substantially decreased.

Secondly, there is a strand of literature that deals with bond risk premia including Cieslak

and Povala (2010) , Driessen (2005), Ludvigson and Ng (2009), and Westerkamp and Zechner

(2010), among others. Westerkamp and Zechner (2010) examine whether corporate bond risk

premia vary systematically across bond specific characteristics and across time. Cieslak and

Povala (2010) decompose long-term yields into a persistent component and maturity-related

cycles to study the predictability of bond excess returns. Ludvigson and Ng (2009) study

whether bond market risk premia are directly related to cyclical macroeconomic behavior and

identify macroeconomic variables that drive bond risk premia. They find a strong predictable

variation in excess bond returns that is related to macroeconomic activity. Their results suggest

that investors are compensated for risks that are related to recessions. Furthermore, several

authors study the components of corporate yield spreads including Eom, Helwege and Huang

(2004), Huang and Huang (2003), Collin-Dufresne, Goldstein and Helwege (2003), and Longstaff,

Mithal and Neis (2005).

The remainder of the paper is structured as follows: Section 2 explains how the default

risk premium is defined and Section 3 explains the logit approach to estimate physical default

probabilities. Section 4 discusses how the risk-neutral default probabilities are extracted and

Section 5 reports the main results of the paper and shows that the default anomaly is eliminated

once one controls for the default risk premim of a firm. The paper concludes in Section 6.

2 Default Risk Premium

Default risk premia are central for the understanding of this paper. Therefore, we briefly sum-

marize some relevant properties. Following Jarrow and Turnbull (1995) and Duffie and Singleton

(1999) we assume that default occurs as a sudden surprise. More formally, this can be modeled

via the first jump of some exogenously given counting process jumps. For a short time interval,

dt, the actual default probability is then approximately equal to �Pt dt, where �Pt denotes the

physical default intensity. For small default probabilities, the intensity is roughly equal to the

annual default probability. For instance, if �P = 0.01, then the annual default intensity is about

1%. This is because for a constant intensity the default probability over the time period [t, T ]

is given by

PD(t, T ) = 1− e�P (T−t) ≈ �P (T − t). (1)

For the pricing of credit-risky securities, the risk-neutral default intensity, �Q, is relevant. The

ratio of both intensities is the default risk premium which is defined by:

� =
�Q

�P
,
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where �Q is the risk-neutral default intensity. If default risk has a positive risk premium, then

� is greater than one.6 In this paper, we are going to use all three possible measures of default

risk: the physical default intensity �P , the risk-neutral default intensity �Q, and the default risk

premium �.

To estimate the physical default intensity, we use the approach by Campbell, Hilscher and

Szilagyi (2008). The risk-neutral default intensities can be extracted from CDS quotes. In

particular, under the assumption of a constant default intensity a firm’s CDS quote is related

to its risk-neutral intensity in the following way:7

CDS = ℓ�Q,

where ℓ denotes the expected loss. Throughout this paper we assume that the expected loss is

60%. Therefore, we can extract implied risk-neutral default intensities from a time-series of CDS

quotes given that intensities are constant which we assume in our benchmark analysis. Physical

default intensity directly follow from (1). As a robustness check, we have also studied a model

with stochastic intensities, but the results are very similar.

3 Estimating Physical Default Probabilities

To estimate actual default probabilities, we apply a dynamic logit approach. Following Camp-

bell, Hilscher and Szilagyi (2008), among others, we assume that the marginal probability of

default over the next period is given by a logistic distribution

PD(t− 1, t) = Pt−1(Dit = 1) =
1

1 + exp(−�− �xi,t−1)

whereDit is a dummy variable equal to one if the firm defaults within month t and zero otherwise.

The term xi,t−1 represents a vector of explanatory variables. We use the “best-model variables”

as identified by Campbell, Hilscher and Szilagyi (2008).8

3.1 Data

Our default information ranges from January 1986 to December 2009 and comes from Moodys‘s

default risk service database. All firms in our CDS sample have a rating. Faulkender and Pe-

tersen (2006) show that firms with access to the public bond market (i.e. rated firms) differ from

firms without access to bond markets. Therefore, physical default probabilities are estimated

6 Sometimes the default risk premium is defined as � ≡ �− 1 so that there is a premium if � greater than zero.

Since this shifts all default risk premia at the same time and does not effect their rankings, we use �.

7 See, e.g., Longstaff, Mithal and Neis (2005).

8 Model 2 in Table III of Campbell, Hilscher and Szilagyi (2008).
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from rated firms only. To obtain information on firm characteristics we merge quarterly ac-

counting data from Compustat and daily and monthly stock price information from CRSP. We

assume that the accounting information is available two months after the end of the accounting

quarter. We follow Faulkender and Petersen (2006) and classify firms in a given month as rated

if the firm has a S&P long-term or S&P short-term rating outstanding in Compustat. Our sam-

ple period begins in January of 1986 because this is when rating information becomes available

in Compustat. We exclude financial firms from our analysis.

Table 1 reports the number and percentage of defaulted firms in our sample. The second

column presents the average number of active firms in the sample for a given year. The average

number for firms is calculated in two steps. We first calculate the average number of firms in a

given month. To arrive at the average over a given year reported in the table we average over the

monthly averages. Compared to other studies that use monthly observations to predict default

probabilities (e.g. Chava and Jarrow (2004) or Campbell, Hilscher and Szilagyi (2008)) we have

less observations because these studies do not restrict their sample to include rated firms only.

However, the ratio of defaulted firms to active firms is comparable to other studies.

Following Campbell, Hilscher and Szilagyi (2008) the variables for the prediction of physical

default probabilities are constructed as follows: TLMTA is a measure of the firm’s leverage. It is

defined as the book value of total liabilities over the market value of total assets. The book value

of total liabilities is the sum of total liabilities (Compustat item: LTQ) and minority interests

(MIBQ). The market value of total assets is defined as the market value of equity (ME ) obtained

from CRSP and the book value of total liabilities (LTQ +MIBQ). The monthly CRSP stock file

is used to calculate market value of equity. We expect leverage to be positively related to default.

CASHMTA is a liquidity measure. It is constructed as cash and short-term investments (CHEQ)

over market value of total assets. We expect that the more liquidity the firm has at hand, the

lower is the likelihood of default. PRICE is the firm‘s log price per share truncated above 15

dollars. Firms that are close to default trade at very low stock prices. RSIZE is constructed as

the log ratio of the market value of equity of the firm in a given month to the total market value

of the constituents of the S&P 500 index in that month. We follow Davis, Fama and French

(2000) and Cohen, Polk and Vuolteenaho (2003) in constructing the book value of equity for our

MB variable. We further adjust the book value of equity (BE ) to account for very small values

that would lead to very large values of MB using the following equation:

BEadjusted,i,t = BEi,t + 0.1(MEi,t −BEi,t).

Campbell, Hilscher and Szilagyi (2008) argue that the market-to-book variable may reflect over-

valuation of distressed firms that have recently experienced heavy losses. SIGMA is our measure

of equity volatility. It is computed using the annualized 3-month standard deviation of the firms‘s

daily stock return. If less than 5 non-missing return observations are available SIGMA is set
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to missing. We expect distressed firms to have very high volatility levels. Our measure of the

profitability of the firm (NIMTA) is constructed as the ratio of net income (NIQ) to market value

of total assets. Campbell, Hilscher and Szilagyi (2008) find that the history of profitability is

a more informative measure of default than just the most recent observation since firms about

to default tend to incur losses over longer time periods. To account for this, we construct the

variable NIMTAAVG which is computed as the geometric weighted average level of profitability

where the weight is halved over each month:

NIMTAAV Gt−1,t−12 =
1− �

1− �12
(NIMTAt−1 + ...+NIMTAt−12) (2)

with � = 2−
1
3 .

Lastly, we include a measure of excess return (EXRET ) which is the stock return of the firm

minus the return of the S&P 500 index. Like profitability we also expect firms near default to

experience negative returns for an extended period of time. We therefore construct EXRETAVG

as

EXTRETAV Gt−1,t−12 =
1− �

1− �12
(EXRETt−1 + ...+ EXRETt−12) (3)

with � = 2−
1
3 .

We winzorize TLMTA, NIMTA, EXRET, MB, RSIZE, and CASHMTA at the 5/95 % level to

account for outliers and other data problems. A firm-month is included in our default prediction

sample if we observe TLMTA, NIMTA, EXRET, and RSIZE. We replace missing values of

SIGMA and CASHMTA with its cross-sectional mean. When constructing NIMTAAVG and

EXRETAVG we also replace lagged missing values of NIMTA and EXRET with their cross-

sectional mean.

Table 2 provides descriptive statistics for the explanatory variables used in the dynamic logit

default prediction model. In Panel A descriptive statistics for the entire sample are reported.

Compared to Campbell, Hilscher and Szilagyi (2008) the firms in our sample have lower varia-

tions in returns as measured by SIGMA. E.g. Campbell, Hilscher and Szilagyi (2008) report a

mean (median) SIGMA of 0.562 (0.471). In contrast, the mean (median) SIGMA in our data

set is 0.418 (0.339). This is in line with rated firms using more leverage and therefore having

lower volatility (Faulkender and Petersen (2006)). The firms in our data set are generally larger

irrespective of size or price. Again this is consistent with the findings of Faulkender and Petersen

(2006), among others, that rated firms tend to be large.

Table 2, Panel B reports descriptive statistics for the sample of defaulted firms. The ex-

planatory variables are reported in the month immediately preceding default. Comparing Panel

A and B shows that the two subgroups differ as expected in most of the explanatory variables.
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Exceptions are MB and CASHMTA. Note that the difference in the mean PRICE variable be-

tween the two groups is higher (2.47 - 0.235) than reported in Campbell, Hilscher and Szilagyi

(2008) (2.01 - 0.432). The same is true for the median. This means that in our sample the

PRICE variable better discriminates between default and non-default firms. On the other hand

MB and CASHMTA do not differ by much in the two subgroups. We expect these variables not

to be valuable when it comes to prediction.

3.2 Results

The results of our logit analysis are presented in Table 3. All explanatory variables have the

expected sign and are in line with the findings of Campbell, Hilscher and Szilagyi (2008). An

exception is RSIZE which is negative and significant at the 10% level. Larger firms are less likely

to go bankrupt.9 Furthermore, we find MB not to be significant (although it shows the right

sign). Note that the pseudo-R2 of our regression is higher than in the paper of Campbell, Hilscher

and Szilagyi (2008). One possible explanation for this could be that explanatory variables related

to firm size (RSIZE and PRICE ) better identify distressed firms in our sample. This is because

in restricting our sample to rated firms we effectively select the largest firms in the population,

while Campbell, Hilscher, and Szilagyi (2008) use the entire universe of firms from the merged

Compustat-CRSP database.

4 Estimating Risk-neutral Default Intensities

Our CDS data comes from Markit. To calculate default risk premia, we have to restrict our

analysis to CDS contracts written on firms for which data is available in Compustat and CRSP.

We merge daily CDS spread data to our monthly predicted physical default probabilities using

ticker and company names.10 Table 4 presents summary statistics for the default risk premia

sample. The number of observations per year is reported in Column (2), while Column (3)

shows the average number of active firms in the sample. In total we have over 650 000 daily

observations. Table 5 presents descriptive statistics for default risk premia calculated under

the assumption that default intensities are constant. Compared to Berndt, Douglas, Duffie,

Ferguson and Schranz (2008) our estimates are generally higher. However, their time series ends

before the financial crisis.

9 Notice that for model 1 in Campbell, Hilscher and Szilagyi (2008) the loading is also negative.

10 One reason why we are not able to find a match in Compustat and CRSP is that these firms are subsidaries

(e.g. Ford Motor Credit Company or General Motors Acceptance Corp.) with no stock data available in CRSP.
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5 Asset Pricing Tests

In this section, we sort our observations into portfolios according to three different measures

for a firm’s default risk. These are the physical default intensity �P , the risk-neutral default

intensity �Q, and the default risk premium � = �Q/�P . More precisely, each quarter we form

five portfolios sorted on each firm’s median �P , �Q, or � for the previous quarter. The first

(fifth) portfolio consists of firms with the smallest (biggest) �P , �Q, or �, respectively. We have

decided to sort the firms into five rather than ten portfolios to ensure that we have on average

50 firms in every portfolio.11 Sorting into five instead of ten portfolios should however make it

harder to find anomalies since the first (fifth) portfolio is a blend of portfolios one and two (nine

and ten) if one sorts into ten portfolios.

We then compute value-weighted returns for every day of the quarter and run the following

Fama-French regressions on the daily returns of the portfolios:

rit − r
f
t = �it + �M,i

t (rM − rf )t + �SMB,i
t SMBt + �HML,i

t HMLt + �UMD,i
t UMDt + "it, (4)

i = 1, . . . , 5, where rit is the return of the i-th portfolio, rft is the Fama riskfree rate, and

(rM − rf )t, SMBt, HMLt, and UMDt denote the returns on the three Fama-French factor

portfolios (market, size, book) and momentum. Finally, we calculate the time series averages

and t-statistics of all coefficients. The alphas reported in the tables are annualized. Additionally,

we also compute the average alpha of the difference portfolios (“five minus one”).

Table 6 reports the regression results when we sort on the physical default intensities. In

line with the findings of Campbell, Hilscher and Szilagyi (2008), we find significantly negative

alphas for the portfolio consisting of firms with the highest physical default probabilities.12

Furthermore, the alpha of the difference portfolio is also significantly negative, which documents

the default anomaly in our dataset. Although the size of the firms decreases over the portfolios,

all firms are still large compared to the firms in data set of Campbell, Hilscher and Szilagyi

(2008). This shows that the default anomaly can also be found in samples consisting of bigger

firms only.

Next we sort on the risk-neutral default intensities of the firms that we have calculated

from CDS quotes. These intensities are relevant for the pricing of credit-risky securities issued

by the firms. As explained above, such an intensity can be viewed as the credit spread of

the particular firm. Anginer and Yildizhan (2010) perform a similar sort, but use yields of

corporate bonds as proxies for the credit spread. However, Elton, Gruber, Agrawal and Mann

11 Although we have a rich data set with many CDS quotes, the number of firms is smaller than in other papers

using the entire Compustat-CRSP database.

12 Notice that Campbell, Hilscher and Szilagyi (2008) find significant alphas for the firms with the lowest physical

default probabilities only if they apply a three-factor Fama-French model.
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(2001) and Longstaff, Mithal and Neis (2005), among others, document that significant parts

of the yields cannot be attributed to default risk. Therefore, sorting by yields might not fully

capture the pricing relevant default risk. In this case, it might be so that non-significant results

can have two reasons: Either the yield is indeed the appropriate control for default risk or it

is too much contaminated by other effects such as taxes or liquidity. Anginer and Yildizhan

(2010) report that after controlling for corporate bond yields the default anomaly disappears.

The abnormal return of their difference portfolio13 is negative with a t-statistic of -0.68. Our

results are reported in Table 7. The abnormal return of the difference portfolio is borderline

significant at the 10% level (p-value: 10.5%). Therefore, the default anomaly is mitigated by

controlling via risk-neutral default intensities, but it does not fully disappear. In particular, the

point estimate of the abnormal return of the difference portfolio is still negative and comparable

in magnitude to the result for the physical default intensity. Our result might be attributed to

the fact that credit default swaps are a cleaner measure for default risk than corporate bond

spreads.

Third, we sort on the default risk premia of the firms that are given by the ratios of the

risk-neutral and the physical default intensities. This measure might be an appropriate control

for default risk since it captures the relative costs of a firm’s debt. Put differently, the relative

costs for issuing corporate debt are low if the default risk premium is low as well. Everything

else equal, equity holders should benefit from a low default risk premium. Table 8 reports our

regression results which show that when using the default risk premium as a measure of default

risk, the default anomaly is eliminated. None of the portfolios has a significant alpha and the

alpha of the difference portfolio is also insignificant (p-value: 81.39 % ). Besides, the average

point estimates of the alphas are about 10 times smaller than when sorting on the physical or

risk-neutral default intensities. Albeit not significant, the alpha of the difference portfolio is

positive as opposed to the previous sorts.

Figure 1 confirms the previous results. It depicts the cumulative alphas of the difference

portfolios from 2001 to 2010. It can be seen that the cumulative alphas become the largest when

sorting on the physical default intensities (dotted line). This is in line with the default anomaly

documented in Table 6. The anomaly becomes less pronounced, but does not fully disappear

when sorting on the risk-neutral default intensities (grey line). When we sort on the default risk

premium, the cumulative alpha is very small and even changes its sign over time (black line).

13 They sort into 10 portfolios. Therefore, the return of the difference portfolio is the return of portfolio 10 minus

the return of portfolio 1.
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5.1 Number of Portfolios

First, we sort our observations into three instead of five portfolios. This could have two com-

peting effects. If the sizes of the portfolios remained the same, then reducing the number of the

portfolios should make it more difficult to find significant results. This is because the extreme

portfolios (one and three) are then mixtures of two portfolios when we sort into five portfolios.

However, the size of the portfolios increases, which is in fact one of the reasons why we perform

this check. Therefore, it might be so that the effects observed for five portfolios are becoming

more pronounced. Consequently, it is not obvious which results to expect. Table 9 shows our

results that confirm the findings for the sorts into five portfolios and in the case of risk-neutral

default intensities even become stronger. For physical default intensities, we find a pronounced

default anomaly with significantly negative alphas for firms with high physical default intensity

and for the difference portfolio. For the risk-neutral default intensity, we now obtain significantly

positive alpha for firms with low risk-neutral intensity. The return of the difference portfolio

is still borderline significant. When using the default risk premium, the alphas for the default

anomaly are insignificant. To summarize, using the default risk premium as a control makes the

distress anomaly disappear.

5.2 Stochastic Intensities: Black-Karasinski Model

As an additional robustness check, we use a one-factor stochastic intensity model for the physical

default intensity. Following Berndt, Douglas, Duffie, Ferguson and Schranz (2008) the dynamics

of the intensity are given by

d�t = �t [�(� − log �t) dt+ �dWt] , (5)

where �, �, and � are constants and Wt is a one-dimensional Brownian motion under the

physical measure P . This implies that the logarithm of the intensity is mean-reverting and

normally distributed. Such a model is called a Black-Karasinski (BK) model. By assuming that

the default risk premium also follows a Black-Karasinski model, one can show that this is also

true for the risk-neutral intensity. Further details can be found in Appendix B. Our main results

however hardly change and are thus not reported here.

5.3 Idiosyncratic Volatility

Recent research has documented another anomaly that is related to the idiosyncratic volatility

of a firm’s stock (see, e.g., Ang, Hodrick, Xing and Zhang (2006)). The idiosyncratic volatility

(short: IVOL) can be extracted using the Fama-French regression (4). We follow Ang, Hodrick,

Xing and Zhang (2006) and disregard the momentum factor when computing the IVOL. The
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IVOL is then defined as the standard deviation of the residuals,
√

Var("it). There is evidence

that this anomaly is related to the default anomaly (e.g., Chen, Jing, Lorán Chollete, and Rina

Ray, 2010 ).

First, we check whether we can document the IVOL anomaly in our dataset. Therefore, we

sort on idiosyncratic volatilities of the stocks in our sample and form five portfolios, where the

first (fifth) portfolio consists of firms with the smallest (biggest) IVOL. Then we run Fama-French

regressions (4) to obtain estimates for the average alphas of the portfolios.14 Table 10 reports our

results. The alphas across portfolios are decreasing (except for the third portfolio) starting with

a significantly positive alpha for the first portfolio. The point estimates for portfolio four and

five are negative. The return of the difference portfolio is negative, but not significant (p-value:

20.35% ). In Table 11, we report results when sorting firms into three portfolios instead of five.

For three portfolios, the IVOL anomaly becomes more pronounced and the abnormal return of

the difference portfolio is significantly negative. We thus conclude that the IVOL anomaly is

present in our data.

We now study whether the IVOL anomaly is related to the distress risk anomaly. First, we

construct additional factors from the sorts into five portfolios on the default risk premia and

the default intensities. More precisely, we use the returns of every difference portfolio as an

additional factor in the Fama-French model. Then we sort our observations into three portfolios

according to a firm’s IVOL at the beginning of every quarter and run Fama-French regressions

on the returns of every quarter adding one of the factors to the Fama-French model. The goal is

to check whether these factors are able to eliminate the abnormal returns that we observe when

sorting on the IVOL only (see Table 11). The results are presented in Tables 12, 13 and 14.

It can be seen that all factors eliminate the significance of the alpha of the difference portfolio.

However, the factor stemming from the sort on the risk-neutral default intensity is not able to

eliminate the significance of the first portfolio’s alpha. The results for the default risk premium

and the physical default intensity are similar.

To get a clearer picture, we perform three double sorts. In all three cases, we first form three

portfolios sorted according to the IVOLs of the firms over the previous quarter. Then, within

each IVOL portfolio, we sort firms into two portfolios according to their median (i) physical

default intensities, (ii) risk-neutral default intensities, or (iii) default risk premia. Table 15

reports the results when we sort quarterly and run four-factor Fama-French regressions on daily

portfolio returns. When we double sort on the default risk premium, the alphas are insignificant.

This means that the IVOL anomaly disappears if we control for the default risk premium of

a firm. This is not the case for both intensities. For the risk-neutral default intensity, firms

14 Although the momentum factor is disregarded when extracting the IVOL, Ang, Hodrick, Xing and Zhang

(2006) include this factor in their the Fama-French regressions.



106 Björn Bick, Christian Hirsch, Holger Kraft, Yildiray Yildirim

with low IVOL and low risk-neutral default intensity have significantly positive alphas. On

the other hand, firms with high IVOL and high risk-neutral default intensity have significantly

negative alphas. This is in line with the findings of Ang, Hodrick, Xing and Zhang (2006) on

the IVOL anomaly and our results concerning the risk-neutral default intensities (see Table 7).

For the physical default intensity, we obtain a surprising result: If we consider firms with low

IVOLs only, then firms with high physical default intensity exhibit significantly positive alphas.

Therefore, for these firms the default anomaly is reversed. To summarize, only for the default

risk premia the IVOL anomaly is completely eliminated.

6 Conclusion

The capital asset pricing model predicts a positive relationship between expected stock returns

and its risk. On the contrary, empirical evidence points in the direction of an opposite relation-

ship if in addition to the Fama-French factors distress risk is incorporated as a missing factor.

Several recent papers however quantify distress risk based on physical or risk-neutral default

probabilities. In this paper, we show that distress risk premia can resolve the distress risk and

idiosyncratic risk puzzles, whereas distress risk probabilities (physical or risk-neutral) are not

able to eliminate the corresponding abnormal returns.
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A CDS Pricing

This appendix briefly summarizes how CDS contracts are prized in reduced-form models. A

CDS consists of two legs, the fee and protection leg. During the lifetime of a CDS the buyer

of a CDS (called the protection buyer) pays a fee (called the CDS premium) for a protection

against default risk to the protection seller. This fee is paid quarterly or semiannually in arrear

and is fixed at the time when the CDS is issued. For pricing purposes, it will be chosen such

that the initial value of the CDS is zero. This payment stream of premium payments stops

at the maturity of the CDS or at default, whichever occurs first. In case of a default before

maturity of the CDS, the protection buyer is compensated for the loss that a typical bondholder

would suffer. This compensation scheme is called recovery of treasury. We do not consider any

counterparty risks in our setup.

In the remainder of this paper, we will work with the following setup. We consider a CDS which

starts at time t and has a maturity of T . The time-t CDS spread is denoted by St = St(T ).

During the lifetime of the CDS fee payments are made at times tj , j = 1, . . . , n if default has

not occurred before tj . Note that the last payment date should coincide with the maturity of

the contract, i.e. T = tn. Moreover, payments are made at equidistant points in time, i.e.

� = tj − tj−1 for all j = 1, . . . , n. Since we look at spot CDS contracts, we have t0 = t. For the

sake of simplicity, we normalize the notional to one. As already described, the default time is

modeled via the stopping time

� = inf{t ∈ ℝ+∣Nt > 0} (6)

Employing these notations, the fee payment at time tj is given by

St�1{�>tj}. (7)

If a default happens between tj−1 and tj , then an accrued fee payment is due at default:

St�
j
d1{tj−1≤�≤tj}, (8)

where �jd := � − tj−1 is the length of the last interval.

Under the absence of arbitrage, we can apply risk-neutral pricing methods to evaluate noth

legs. The value of the fee leg per 1bp of fee payments reads

V fee
t =

n∑
j=1

(
�EQt

[
1{�>tj}

B(t, tj)

]
+ EQt

[
�jd1{tj−1≤�≤tj}

B(t, �)

])
, (9)

where B(t, s) is the value of the money market account.

The amount that the protection seller has to pay upon default reads

V prot
t = ℓEQt

[
1{t0≤�≤T}

B(t, �)

]
, (10)
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where ℓ is the expected loss given default. Assume that the short rate r and �Q are independent.

After using integration by parts, we get

V fee
t = �

n∑
j=1

P (t, tj)q(t, tj) +
n∑
j=1

∫ tj

tj−1

(s− tj−1)P (t, s)∂s(1− q(t, s)) ds

V prot
t = ℓ

∫ T

t
P (t, s)∂s(1− q(t, s)) ds,

where P (t, s) is the time-t price of a zero bond maturing at time s.

As it can be quite time-consuming to evaluate the integrals, we use an approximation pro-

posed by Hull and White (2006). They assume that defaults occur in the middle of a period

and get

V fee
t ≈ �

n∑
j=1

P (t, tj)q(t, tj) + 0.5

n∑
j=1

� (q(t, tj−1)− q(t, tj))
√
P (t, ti)P (t, ti−1)

V prot
t ≈ ℓ

n∑
j=1

� (q(t, tj−1)− q(t, tj))
√
P (t, ti)P (t, ti−1).

Form now on, we use these approximations to compute CDS spreads. We also implemented

the correct formulas of both legs and observed that the error of the approximating formulas are

negligible. Therefore, we prefer the discrete version of both legs.

B Stochastic Intensity Model

Ito’s lemma yields

d log �t = �(� − �2

2�
− log �t) dt+ �dWt.

In this model, the intensity is mean-reverting and positive. In contrast to the class of affine

processes, the BK model does not have a closed-form solution for the default probablities.

Therefore, we rely on numerical procedures to calculate the survival probabilities. We use a

two-stage procedure for constructing trinomial trees (see, e.g., Hull and White (1994)).

In contrast to Berndt, Douglas, Duffie, Ferguson and Schranz (2008), we now assume that

the risk premium satisfies a BK model as well:

d�t = �t

[
�(�̂ − log �t) dt+ �̂dWt

]
, (11)

where �, �̂, and �̂ are constants. For simplicity, we assume that both the risk premium and

the intensity under the physical measure have the same speed of mean reversion �. Applying

Ito’s lemma again, we see that the risk neutral intensities under the physical measure fulfill the

following SDE

d�Qt = �Qt

[
�(� + �̂ +

��̂

�
− log �Qt ) dt+ (� + �̂)dWt

]
.



112 Björn Bick, Christian Hirsch, Holger Kraft, Yildiray Yildirim

To price CDS contracts, we have to work with risk-neutral survival probabilities. Hence, we

need the dynamics of the risk-neutral intensities under the risk-neutral measure Q and specify

the change of measure via

dW = dWQ − �

� + �̂
,

where � is the market price of risk (Girsanov kernel) that is assumed to be constant. Notice

that there are two risk premia. One is due to the default event risk (�) and one due to the

market price of risk of the factor driving the changes in the risk-neutral intensity (�). Applying

the change of measure, we arrive at

d�Qt = �Qt

[
�(� + �̂ − �

�
+
��̂

�
− log �Qt ) dt+ (� + �̂)dWQ

t

]
(12)

= �Qt

[
�(�Q − log �Qt ) dt+ �QdWQ

t

]
.

with �Q = � + �̂ − �
� + ��̂

� and �Q = � + �̂. Consequently, the risk-neutral intensity has

BK dynamics as well. Therefore, we can use the same numerical procedure to calculate the

risk neutral probabilities. In contrast to the constant intensity model, we need to estimate

this parametric model to be able to calculate risk premiums. This procedure is described in

Appendix C.

C Maximum Likelihood Estimation of Default Intensities

In a first step, we want estimate the risk-neutral default intensities. For this purpose, our data

consists of daily 5-year credit default swap rates. Therefore, for every firm, we observe several

CDS spreads St at consecutive dates t, t+d, t+2d, ..., where d is a day. Given theses observations,

we will estimate a time-series model of the Black-Karasinski process. This leads us with the

parameter vector �̂ = (�, �̂, �̂, �). The estimation has to be done for every firm i. We assume

that we have D days of data in total and let us denote the 5-year CDS spread at day d for firm

i is given by Cid. The maximum likelihood estimator is obtained firm by firm. Therefore, we

have to find a parameter vector �̃ that solves

sup
�̂

ℎP (Ci0, C
i
1, ..., C

i
D∣�̂), (13)

with ℎP being the joint P-density of the observed probabilities.

Applying the law of total probability and using the fact that the default intensity follows a

Markov process, function (13) becomes

ℎ(CiD∣CiD−1, �̂) ⋅ ... ⋅ ℎ(Ci1∣Ci0, �̂)× ℎ(Ci0∣�̂),

where ℎ denotes the marginal probability of the CDS spread. The log-likelihood function of the

observations for a given parameter set �̂ now becomes
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l(�̂;Ci0, ...C
i
D) =

D∑
d=1

ln(ℎ(Cid∣Cid−1, �̂)) + ln(ℎ(Ci0∣�̂)). (14)

In our computations, we do not consider the las term ln(ℎ(Ci0∣�̂)). The MLE �̃ of the unknown

parameter vector �̂ is then given by sup�̂ l(�̂;Ci0, ...C
i
D).

Now, we have to deduce the marginal distribution of CDS spreads. Since the CDS spread

St is computed such that the initial value of the CDS is zero, it is obtained by

St =
V prot
t

V fee
t

(15)

and both the fee leg and the protection leg depend on default probabilities. Hence, there exists

a function g with St = g(�Qt ; �̂) and �̂ = (�, �̂, �̂, �) (Note that we can determine the default

probabilities by a trinomial-tree scheme!). Here, the parameter � is included in the estimation

procedure as we need the dynamics of the risk-neutral intensity process under the physical

measure. The reason for this is that the Maximum-Likelihood procedure uses P-densities. Under

mild technical conditions, the conditional P-density of Cid given Cid−1 and �̂ is given by

ℎ(c∣Cid−1, �̂) =
d
(
g−1(c; �̂)∣g−1(Cid−1; �̂), �̂

)
g′(g−1(c; �̂); �̂)

,

with d(.∣�Q
i

d−1) being the conditional P-density of �Q
i

d . As the dynamics of the intensity process

are of the Black-Karasisnki type, we know that the conditional P-density is lognormal.

Now, we can conduct the second step where we estimate our physical default intensities. At

first, we ignore misspecification of our default probabilities itself and assume that 1− p(t, t+ 1)

is indeed the current one-month default probability. For every firm, we observe several default

probabilities p(t, t+ 1) at successive dates t, t+m, t+ 2m, where m is now a month. Note that

the mean reversion speed � will be the same for both intensities under the risk-neutral measure

and for intensities under the real-world measure. So in terms of estimation, we only have to

deal with the parameter vector � = (�, �) and do not need to include � that has already been

calculated in the first step. Again, by applying numerics, we can compute the physical default

probabilities and get a function f such that p(t, t+ 1) = f(�t;�). Now,we can almost apply the

same procedure as in the preceding part by replacing the function g with f to determine the

physical default intensities.
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Year Active Firms Defaults (%)
1986 868 9 1.03
1987 912 10 1.09
1988 856 10 1.16
1989 799 10 1.25
1990 745 19 2.54
1991 705 12 1.70
1992 747 7 0.93
1993 820 6 0.73
1994 906 4 0.44
1995 950 5 0.52
1996 1050 7 0.66
1997 1164 10 0.85
1998 1282 19 1.48
1999 1357 24 1.76
2000 1361 25 1.83
2001 1332 44 3.30
2002 1301 27 2.07
2003 1268 17 1.33
2004 1293 7 0.54
2005 1289 10 0.77
2006 1265 2 0.15
2007 1223 2 0.16
2008 1182 11 0.92
2009 1286 27 2.09

Table 1: Number of defaults per year.
The table presents average number of active firms and the number of defaults for every year of the sample used to

predict default. The sample consists of all rated non-financial firms in the intersection of Compustat and CRSP

in the period January 1986 to December 2009. A firm is classified as rated in a given month if the firm has a

S&P long-term or S&P short-term rating outstanding in Compustat. The default information comes from the

Moody’s default history database. The first column reports the year. The average number for firms in the second

column is calculated in two steps. We first calculate the average number of firms in a given month. To arrive

at the average over a given year reported in the table we average over the monthly averages. The third column

reports the number of defaults. Finally the forth column presents the percent of defaults relative to the average

number of active firm in the sample.
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Variable Mean Median Std. Dev. p25 p75
Panel A: Entire sample

NIMTAAVG .0032 .0056 .0133 .0009 .0101
TLMTA .5676 .5654 .2401 .3818 .7775
EXRETAVG -.0029 .0001 .0384 -.0212 .0192
SIGMA .4186 .3399 .2670 .2393 .5028
RSIZE -9.2308 -9.0282 1.5105 -10.1686 -7.8763
CASHMTA .0603 .0300 .07849 .0103 .0782
MB 2.0621 1.8068 1.4875 1.1084 2.2757
PRICE 2.4743 2.7080 .5535 2.6119 2.7080

Panel B: Default subgroup
NIMTAAVG -.02856 -.02370 .0243 -.0482 -.0091
TLMTA .8863 .9216 .0813 .8872 .9216
EXRETAVG -.0842 -.0871 .0567 -.1260 -.0427
SIGMA 1.2003 1.326 .3232 .9765 1.4661
RSIZE -12.3357 -12.5299 1.4814 -13.6115 -11.4249
CASHMTA .0570 .0311 .0701 .0127 .0728
MB 2.2531 1.0040 2.4860 .4483 2.2757
PRICE .2359 .2271 1.0631 -.4259 .9530

Table 2: Summary statistics.
The table reports summary statistics for the explanatory variables used to predict default. The sample consists of

all rated non-financial firms in the intersection of Compustat and CRSP in the period January 1986 to December

2009. A firm is classified as rated in a given month if the firm has a S&P long-term or S&P short-term rating

outstanding in Compustat. The default information comes from the Moody’s default history database. Panel A

presents summary statistics for the entire sample and Panel B reports summary statistics for the subgroup of

firms that default over the next month.

The variables are defined as follows: NIMTAAVG is computed as the geometric weighted average level of NIMTA

over the most recent 12 months where the weight is halved over each month. NIMTA is constructed as the ratio

of net income (NIQ) to market value of total assets; TLMTA is defined as the book value of total liabilities over

the market value of total assets. The book value of total liabilities is the sum of total liabilities (Compustat item:

LTQ) and minority interests (MIBQ). The market value of total assets is defined as the market value of equity

(ME) obtained from the monthly CRSP files and the book value of total liabilities (LTQ +MIBQ); EXRETAVG

computed as the geometric weighted average level of EXRET over the most recent 12 months where the weight

is halved over each month. EXRET ) is the stock return of the firm relative to the return of the S&P 500 index;

SIGMA is computed using the annualized 3-month standard deviation of the firms‘s daily stock return. If less

than 5 non-missing return observations are available SIGMA is set to missing; RSIZE is constructed as the log

ratio of the market value of equity of the firm in a given month to the total market value of the constituents of the

S&P 500 index in that month; CASHMTA is constructed as cash and short-term investments (CHEQ) over market

value of total assets; MB is constructed using Davis, Fama and French (2000) and Cohen, Polk and Vuolteenaho

(2003) in constructing the book value of equity; finally PRICE is the firm‘s log price per share truncated above

$ 15.
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Explanatory variable Coefficient (z-value)
NIMTAAVG -16.66***

(-6.42)
TLMTA 5.89***

(7.44)
EXRETAVG -4.51***

(-4.02)
SIGMA 1.97***

(8.97)
RSIZE -.099*

(-1.95)
CASHMTA -4.51***

(-5.41)
MB .001

(0.05)
PRICE -.431***

(-5.80)
Constant -13.28***

(-15.41)
Observations 311,436
Defaults 324
Pseudo-R2 0.3644

Table 3: Default prediction.
The table presents results from a dynamic logit regression of default dummy variable on explanatory variables.

The sample consists of all rated non-financial firms in the intersection of Compustat and CRSP in the period

January 1986 to December 2009. A firm is classified as rated in a given month if the firm has a S&P long-term

or S&P short-term rating outstanding in Compustat. The default information comes from the Moody’s default

history database. The dependent variable is a dummy variable equal to one if the firm defaults within the next

month and zero otherwise. The explanatory variables are defined as follows: NIMTAAVG is computed as the

geometric weighted average level of NIMTA over the most recent 12 months where the weight is halved over each

month. NIMTA is constructed as the ratio of net income (NIQ) to market value of total assets; TLMTA is defined

as the book value of total liabilities over the market value of total assets. The book value of total liabilities is

the sum of total liabilities (Compustat item: LTQ) and minority interests (MIBQ). The market value of total

assets is defined as the market value of equity (ME) obtained from the monthly CRSP files and the book value

of total liabilities (LTQ +MIBQ); EXRETAVG computed as the geometric weighted average level of EXRET

over the most recent 12 months where the weight is halved over each month. EXRET ) is the stock return of the

firm relative to the return of the S&P 500 index; SIGMA is computed using the annualized 3-month standard

deviation of the firms‘s daily stock return. If less than 5 non-missing return observations are available SIGMA is

set to missing; RSIZE is constructed as the log ratio of the market value of equity of the firm in a given month to

the total market value of the constituents of the S&P 500 index in that month; CASHMTA is constructed as cash

and short-term investments (CHEQ) over market value of total assets; MB is constructed using Davis, Fama and

French (2000) and Cohen, Polk and Vuolteenaho (2003) in constructing the book value of equity; finally PRICE

is the firm‘s log price per share truncated above $ 15. *** ,** , and * indicate significance at the 1%, 5%, and

10% level. z-values are reported in parenthesis.
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Year Observations Active Firms
2001 24957 121
2002 48456 203
2003 56204 241
2004 72297 304
2005 76639 318
2006 75102 308
2007 86142 351
2008 73764 302
2009 86582 350
2010 73377 326

Table 4: Characteristics of the default risk premia sample by year.
The table reports characteristics of the default risk premia sample. For a firm day to be included
in the sample we must observe CDS spreads and predicted default probabilities from the dynamic
logit model in Table 3. Column 2 presents the number of observations per year for the entire
sample and Column 3 reports the average number of firms in the sample in a given year The
average number of firms is calculated in two steps. We first calculate the average number of
firms in a given month. Column (3) reports the average over the monthly averages.

Year Mean Std. Dev. p25 p50 p75 Observations
2001 64.04 107.45 10.01 24.81 66.20 24957
2002 99.80 183.89 11.35 31.65 94.92 48456
2003 78.84 158.49 10.80 27.47 77.36 56204
2004 93.14 183.43 15.88 42.15 103.18 72297
2005 107.20 220.79 18.75 50.23 122.88 76639
2006 107.27 227.14 18.00 47.03 109.28 75102
2007 127.11 263.51 21.22 55.41 134.45 86142
2008 140.92 362.50 18.59 58.94 144.87 73764
2009 78.46 155.33 10.92 33.39 85.15 86582
2010 120.92 154.23 29.71 71.80 148.39 73377
Total 105.24 222.02 15.85 45.05 113.87 673520

Table 5: Summary statistics for default risk premia by year.
The table reports descriptive statistics for default risk premia calculated using a constant default
intensity model. For a firm day to be included in the sample we must observe CDS spreads and
predicted default probabilities from the dynamic logit model in Table 3.

PF1 PF2 PF3 PF4 PF5 PF5− PF1
mktrf 0.9863*** 0.9552*** 1.0026*** 1.0195*** 1.1004***

(77.9184) (55.3096) (43.5272) (41.5917) (47.3288)
smb -0.1627*** -0.0774*** -0.0582* -0.1217*** 0.1655***

(-8.8456) (-3.9018) (-1.7144) (-4.3627) (3.8725)
hml -0.3868*** 0.0870 0.2958*** 0.2263*** 0.6994***

(-11.8191) (1.5729) (5.4369) (3.6903) (7.6093)
umd 0.1263*** 0.0426 0.1419*** -0.0773** -0.3039***

(3.6763) (1.0333) (2.9310) (-2.4275) (-5.9120)
alpha 0.0113 -0.03105 0.04025 -0.0220 -0.102** -0.1133**

(0.7918) (-1.1371) (1.6099) (-0.6319) (-2.1201) (-2.1050)
size 16.69 16.10 15.85 15.53 14.61
average return 0.0634 0.0581 0.1201 0.0871 0.0664

Table 6: Fama-French regressions for portfolios sorted on LAMBDA P.
Each quarter we form 5 portfolios sorted on each firm‘s median LAMBDA P for that quarter. We compute

value-weighted returns every day for the following quarter. PF1 contains the firms with the lowest median, and

PF5 contains the firms with the highest median. We run 4 Factor Fama-French regressions on daily returns each

quarter. The table reports the time-series average of the coefficients. t-values are reported below coefficients.***

,** , and * indicate significance at the 1%, 5%, and 10% level. All alphas and the average return are annualized

by multiplying the daily alpha with 250.
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PF1 PF2 PF3 PF4 PF5 PF5−PF1
mktrf 0.9874*** 0.9715*** 0.9829*** 1.0581*** 1.1215***

(65.9147) (55.2394) (49.0442) (46.0548) (36.8089)
smb -0.2033*** -0.0661** -0.0551** -0.0151 0.3205***

(-9.6540) (-2.7097) (-2.5332) (-0.4732) (7.5157)
hml -0.2347*** 0.1508** 0.1239** 0.2373*** 0.4505***

(-7.2052) (2.4407) (2.2487) (3.3918) (4.5039)
umd 0.0958*** 0.1070** 0.0102 0.0606 -0.1898

(2.9631) (2.4140) (0.2785) (1.1041) (-2.0973)**
alpha 0.0215 0.0331 -0.050 -0.025 -0.067 -0.089

(1.6002) (1.5333) (-2.2792)** (-0.6979) (-1.3712) (-1.6607)
size 16.86 16.09 15.74 15.42 14.58
average return 0.0631 0.1013 0.0538 0.0967 0.0902

Table 7: Fama-French regressions for portfolios sorted on LAMBDA Q.
Each quarter we form 5 portfolios sorted on each firm‘s median LAMBDA Q for that quarter. We compute

value-weighted returns every day for the following quarter. PF1 contains the firms with the lowest median, and

PF5 contains the firms with the highest median. We run 4 Factor Fama-French regressions on daily returns each

quarter. The table reports the time-series average of the coefficients. t-values are reported below coefficients.***

,** , and * indicate significance at the 1%, 5%, and 10% level. All alphas and the average return are annualized

by multiplying the daily alpha with 250.

PF1 PF2 PF3 PF4 PF5 PF5−PF1
mktrf 1.0328*** 0.9955*** 0.9484*** 0.9622*** 1.0307***

(37.2629) (48.1947) (45.3426) (53.6187) (72.5798)
smb -0.1515*** -0.0590* -0.0824*** -0.1326*** -0.0696***

(-3.7585) (-1.9074) (-3.0216) (-5.6114) (-3.0878)
hml 0.2182*** 0.3648*** 0.1306* -0.1283*** -0.4298***

(3.7419) (5.8824) (1.9020) (-3.4115) (-10.3487)
umd -0.1708*** 0.0392 0.0888* 0.0636* 0.1379***

(-4.5436) (1.0764) (1.8371) (1.7814) (3.8665)
alpha -0.0083 -0.0353 0.0045 -0.0037 0 0.0107

(-0.2241) (-1.3105) (0.1791) (-0.1755) (0.1114) (0.2371)
size 15.16 15.60 15.80 16.08 16.20
average return 0.0969 0.0779 0.1028 0.0681 0.0583

Table 8: Fama-French regressions for portfolios sorted on default risk pre-
mium.

Each quarter we form 5 portfolios sorted on each firm‘s median default risk premia for that quarter. We compute

value-weighted returns every day for the following quarter. PF1 contains the firms with the lowest median, and

PF5 contains the firms with the highest median. We run 4 Factor Fama-French regressions on daily returns each

quarter. The table reports the time-series average of the coefficients. t-values are reported below coefficients. ***

,** , and * indicate significance at the 1%, 5%, and 10% level. All alphas and the average return are annualized

by multiplying the daily alpha with 250.

PF1 PF2 PF3 PF3−PF1
lambda p 0.0043 0.0197 -0.0687* -0.0730*

(0.2647) (0.9825) (-1.9815) (-2.0088)
lambda q 0.0215* -0.0235 -0.0519 -0.0734

(1.7319) (-1.0991) (-1.1834) (-1.5828)
drp -0.0053 -0.0134 0.0000 0.0039

(-0.1734) (-0.6407) (0.2281) (0.2536)

Table 9: Alphas of Fama-French regressions for three portfolios.
Each quarter we form 3 portfolios sorted on lambda p, lambda q, or drp for that quarter. We compute value-

weighted returns every day for the following quarter. PF1 contains the firms with the lowest, and PF3 contains

the firms with the highest. We run 4 Factor Fama-French regressions on daily returns each quarter. The table

reports the time-series average of the constant. t-values are reported below coefficients.*** ,** , and * indicate

significance at the 1%, 5%, and 10% level. All alphas are annualized by multiplying the daily alpha with 250.
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PF1 PF2 PF3 PF4 PF5 PF5−PF1
mktrf 0.9273*** 0.9630*** 1.0605*** 1.1140*** 1.1143***

(44.6771) (48.1792) (63.1858) (46.0331) (24.4993)
smb -0.2096*** -0.1219*** -0.0919*** -0.0223 0.2353***

(-9.4239) (-4.3660) (-3.8205) (-0.6612) (4.9104)
hml -0.0864** -0.0679 0.0519 0.0907 0.2559***

(-2.1441) (-1.4975) (0.9233) (1.2252) (2.8005)
umd -0.0030 0.0576* 0.1036** 0.1768** 0.0672

(-0.0719) (1.7557) (2.7045) (2.3233) (0.6241)
alpha 0.0372* 0.016 -0.0361 -0.0312 -0.0322 -.0695

(1.9092) (0.6423) (-1.5267) (-1.0463) (-0.7274) (-1.2940)
size 16.44 16.06 15.89 15.62 14.92
average return 0.0746 0.0727 0.0789 0.1225 0.0918

Table 10: Fama-French regressions for portfolios sorted on IVOL.
Each quarter we form five portfolios sorted on each firm‘s IVOL for that quarter. We compute value-weighted

returns every day for the following quarter. PF1 contains the firms with the lowest median, and PF5 contains the

firms with the highest median. We run 4 Factor Fama-French regressions on daily returns each quarter. The table

reports the time-series average of the coefficients. t-values are reported below coefficients. *** ,** , and * indicate

significance at the 1%, 5%, and 10% level. All alphas and the average return are annualized by multiplying the

daily alpha with 250.

PF1 PF2 PF3 PF3−PF1
mktrf 0.9351*** 1.0589*** 1.1090***

(51.6256) (80.1309) (37.7101)
smb -0.2140*** -0.0776*** 0.1001***

(-9.1999) (-3.9353) (3.0792)
hml -0.1145*** 0.0229 0.1847**

(-3.8149) (0.5114) (2.4354)
umd 0.0257 0.0865*** 0.1373

(0.6742) (2.6129) (1.4655)
alpha 0.0409** -0.0311 -0.0437 -0.0846*

(2.2105) (-1.5927) (-1.1900) (-1.9490)
size 16.32 15.88 15.15
average return 0.0760 0.0735 0.1003

Table 11: Fama-French Regressions for three portfolios sorted on IVOL.
Each quarter we form three portfolios sorted on IVOL for that quarter. We compute value-weighted returns

every day for the following quarter. PF1 contains the firms with the lowest, and PF3 contains the firms with the

highest. We run 4 Factor Fama-French regressions on daily returns each quarter. The table reports the time-series

average of the constant. t-values are reported below coefficients.*** ,** , and * indicate significance at the 1%,

5%, and 10% level. All alphas and the average return are annualized by multiplying the daily alpha with 250.

PF1 PF2 PF3 PF3−PF1
mktrf 0.9245*** 1.0631*** 1.1095***

(61.5787) (89.1333) (41.9066)
smb -0.1934*** -0.0844*** 0.0814**

(-9.5039) (-4.8212) (2.5631)
hml -0.1688*** 0.0969** 0.2802***

(-5.1384) (2.0435) (3.9828)
umd 0.0468 0.0707** 0.1062

(1.3532) (2.1366) (1.2509)
drp -0.0916*** 0.0683*** 0.1379***

(-3.8177) (2.9964) (3.6304)
alpha 0.0207 -0.0310 -0.0269 -0.0476

(1.1949) (-1.6642) (-0.8891) (-1.3157)
size 16.32 15.88 15.15
average return 0.0760 0.0735 0.1003

Table 12: Fama-French Regressions for portfolios sorted on IVOL: default
risk factor.

Each quarter we form 3 portfolios sorted on each firm‘s IVOL for that quarter. We compute value-weighted

returns every day for the following quarter. PF1 contains the firms with the lowest median, and PF3 contains the

firms with the highest median. We run 4 Factor Fama-French regressions with ADDITIONAL FACTOR: DRP

on daily returns each quarter. The table reports the time-series average of the coefficients. t-values are reported

below coefficients. *** ,** , and * indicate significance at the 1%, 5%, and 10% level.All alphas and the average

return are annualized by multiplying the daily alpha with 250.
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PF1 PF2 PF3 PF3−PF1
mktrf 0.9431*** 1.0673*** 1.1136***

(52.6984) (85.0083) (36.9761)
smb -0.1927*** -0.0726*** 0.0778**

(-8.2531) (-3.6114) (2.1211)
hml -0.0451 0.0676 0.1576*

(-1.2421) (1.3392) (1.9473)
umd -0.0022 0.0738** 0.1755**

(-0.0595) (2.3879) (2.1947)
lambda p -0.0526*** -0.0327* 0.0280

(-3.0702) (-1.9102) (0.8392)
alpha 0.0269 -0.0316 -0.0202 -0.0471

(1.4821) (-1.6310) (-0.6620) (-1.2546)
size 16.32 15.88 15.15
average return 0.0760 0.0735 0.1003

Table 13: Fama-French regressions for portfolios sorted on IVOL: LAMBDA
P factor.

Each quarter we form 3 portfolios sorted on each firm‘s IVOL for that quarter. We compute value-weighted

returns every day for the following quarter. PF1 contains the firms with the lowest median, and PF3 contains

the firms with the highest median. We run 4 Factor Fama-French regressions with ADDITIONAL FACTOR:

LAMBDA P on daily returns each quarter. The table reports the time-series average of the coefficients. t-values

are reported below coefficients. *** ,** , and * indicate significance at the 1%, 5%, and 10% level. All alphas and

the average return are annualized by multiplying the daily alpha with 250.

PF1 PF2 PF3 PF3−PF1

mktrf 0.9480*** 1.0617*** 1.0786***
(51.0030) (82.2115) (38.9201)

smb -0.1508*** -0.0621*** -0.0152
(-7.7129) (-3.4009) (-0.4779)

hml -0.0267 0.0450 0.0347
(-0.8879) (0.9734) (0.5654)

umd -0.0257 0.0709** 0.2191***
(-0.9067) (2.1348) (2.8674)

lambda q -0.1157*** -0.0094 0.2203***
(-8.8256) (-0.5609) (10.7477)

alpha 0.0311* -0.0354* -0.0111 -0.0422
(1.8882) (-1.7471) (-0.3713) (-1.1960)

size 16.32 15.88 15.15
average return 0.0760 0.0735 0.1003

Table 14: Fama-French Regressions for portfolios sorted on IVOL: LAMBDA
Q factor.

Each quarter we form three portfolios sorted on each firm‘s IVOL for that quarter. We compute value-weighted

returns every day for the following quarter. PF1 contains the firms with the lowest median, and PF3 contains

the firms with the highest median. We run 4 Factor Fama-French regressions with ADDITIONAL FACTOR:

LAMBDA Q on daily returns each quarter. The table reports the time-series average of the coefficients. t-values

are reported below coefficients. *** ,** , and * indicate significance at the 1%, 5%, and 10% level. All alphas and

the average return are annualized by multiplying the daily alpha with 250.
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Panel A: DRP
IVOL PF1 IVOL PF2 IVOL PF3 IVOL PF3− PF1

DRP PF1 0.0331 -0.0289 -0.0330 -0.0662
(1.4384) (-0.9274) (-0.6530) (-1.1765)

DRP PF2 0.0230 -0.0262 -0.0375 -0.0606
(0.8155) (-1.1400) (-0.9958) (-1.2487)

Panel B: LAMBDA P
LAMBDA P PF1 0.0247 0.0342 -0.0163 -0.0410

(1.0693) (-1.5048) (-0.4216) (-0.8471)
LAMBDA P PF2 0.0442* -0.0111 -0.0760 -0.1202*

(1.7562) (-0.3342) (-1.2876) (-1.8274)
Panel C: LAMBDA Q

LAMBDA Q PF1 0.0510** -0.0180 -0.0094 -0.0604
(2.3990) (-0.8885) (-0.2386) (-1.2834)

LAMBDA Q PF2 0.0072 -0.0431 -0.0994* -0.1066
(0.2502) (-1.1314) (-1.7055) (-1.6411)

Table 15: Fama-French Regressions for double sorts on IVOL and a default
measure.

The table reports the regression results of three double sorts, where we double sort on IVOL and (i) MEDIAN

DRP, (ii) MEDIAN LAMBDA P, or (iii) MEDIAN LAMBDA Q. Each quarter we first form three portfolios

sorted according to the IVOL of the firm over the last quarter (IVOL PF1, IVOL PF2, IVOL PF3). Then we

split up each of the three IVOL portfolios into two portfolios, one with low DRP, LAMBDA P, or LAMBDA Q

and one with high DRP, LAMBDA P, or LAMBDA Q. For instance, for DRP the portfolio IVOL-PF1-DR-PF1

contains the firms with the lowest ivol and the lowest default risk premium, whereas IVOL-PF3-DR-PF2 contains

the firms with the highest ivol and the highest default risk premium. Each quarter we run 4 Factor Fama-French

regressions. The table reports the time-series average of the constant. t-values are reported below coefficients.

All alphas are annualized by multiplying the daily alpha with 250.
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Figure 1: Cumulative Alphas. The figure depicts cumulative alphas of the three
difference portfolios.
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Hedging Structured Credit Products During the Credit Crunch

Björn Bick, Holger Kraft

Summary. Pricing and hedging structured credit products poses major challenges to financial institu-

tions. This has become very clear during the recent credit crisis. This paper puts several valuation

approaches through a crucial test: How did these models perform in one of the worst periods of economic

history, September 2008, when Lehman Brothers went down? Did they produce reasonable hedging

strategies? We study several bottom-up and top-down credit portfolio models and compute the resulting

delta hedging strategies using either index contracts or a portfolio of single-name CDS contracts as hedg-

ing instruments. We compute the profit-and-loss profiles and assess the performances of these hedging

strategies. Among all 10 pricing models that we consider the Student-t copula model performs the best.

The dynamical generalized-Poisson loss model is the best top-down model, but this model class has in

general problems to hedge equity tranches. Our major finding is however that single-name and index

CDS contracts are not appropriate instruments to hedge CDO tranches.

1 Introduction

The ongoing credit crisis has documented the need of a proper risk-management of structured

credit products. We put ourselves into the shoes of a risk manager in a financial institution

and address a crucial question: Was it possible to hedge CDO tranches during the heat of the

crisis using any of the existing credit portfolio approaches? To answer this question, we consider

eleven1 pricing models and compare them with respect to their abilities of fitting market data

and providing accurate hedging strategies. We focus on delta hedging, an approach which is

widely used in practice, and carry out a profit-and-loss analysis to assess the hedging strategies

empirically. We use both index contracts and a portfolio of single-name CDS contracts as

hedging instruments. The particular models are tested in realistic settings using market data

from April and September 2008. Among all models that we consider the Student-t copula model

performs the best. The dynamical generalized-Poisson loss model is the best top-down model,

but this model class has in general problems to hedge equity tranches. On of our major findings

is that single-name and index CDS contracts are no useful instruments to hedge CDO tranches.

1 More precisely, we use eleven models to calibrate the data and ten to calculate deltas.



124 Björn Bick, Holger Kraft

We document that this is because of the loose connection between the price dynamics of CDS

contracts and CDO tranches. Therefore, the overall hedge performances of all models are poor.

Even for the best models, the biggest daily losses can exceed 5% of the tranche notional.2 Given

that financial institutions are highly leveraged entities with leverage ratios of more than 90%

these are severe numbers.

The first family of models that are studied are Copula models that are so-called bottom-

up models. In bottom-up models, the loss distribution of a credit portfolio is constructed

by combining marginal distributions of the portfolio constituents with a specific dependence

structure. Copula models used to be the industry standard. In the one-factor version, default

dependencies are modeled by a single common factor. Therefore, the conditional marginal

default probabilities become the key input for this approach. A typical example of a copula is

the Gaussian copula (see, e.g., Li (2000)) that is still important in practice. They are used to

quote tranche prices via implied correlations, which is similar to the industry standard to quote

option prices via implied volatilities. Unfortunately, Gaussian copulas have several limitations

including a severe restriction on the amount of correlation that can be achieved in these models.

Therefore, we will also consider other copulas like the Student-t or the Clayton copula. Although,

these models overcome some of the problems inherent in the Gaussian copula, they are still static

models in the sense that the correlation structure is static and thus does not change with time.

Consequently, copula models are not able to generate correlation dynamics that depend on

the default history. This stylized fact is documented in empirical studies (see, e.g., Longstaff

and Rajan (2008)) and is referred to as contagion effects. To calibrate a copula pricing model

we follow market practice and provide per tranche fits, i.e. every tranche is calibrated via a

separate correlation parameter. We use both implied and base correlations and compare the

respective hedging performances. Copula approaches typically make the so-called homogeneous-

pool assumption (all firms are assumed to be identical), which simplifies the computation of the

portfolio loss distribution (see, e.g., Cousin, Crépey and Kan (2011)). On the contrary, we

allow for heterogeneous pools of firms (at least with respect to the default probabilities) to be

able to compute single-name sensitivities of credit tranches. Papers applying copula models to

price credit derivatives include Andersen, Sidenius and Basu (2003), Hull and White (2004),

and Schloegl and O’Kane (2005), among others. In particular, Burtschell, Gregory and Laurent

(2009) compare several copula models and list their properties. There are also studies that extend

the standard copula models to random recoveries like the works of Andersen and Sidenius (2004)

and Krekel (2008).

In contrast to bottom-up models, the top-down approach first puts some structure on the

portfolio loss process without referring to specific constituents of the credit portfolio. This means

2 We emphasize that the market value of the position is much smaller than the tranche notional.
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that the difference between two top-down models only lies in the distributional assumptions

about the loss distribution. They do not give any information about which firms have actually

triggered these losses. For the pricing of structured credit tranches like CDOs, this might be

an advantage since the latter information is not necessarily needed for this purpose. Moreover,

it seems to be easier to include dynamic contagion effects in top-down models. The lacking

connection between single defaults and the loss process however becomes a challenge when

tranches shall be hedged via single-name credit products such as CDS contracts. To overcome

this issue, we apply the so-called random thinning approach that was introduced by Giesecke,

Goldberg and Ding (2011). More precisely, we use a variant of this method presented by Halperin

and Tomecek (2009) that aims to find top-down matrices that allocate the defaults on portfolio

level to their underlying single names. We focus on three top-down models that have previously

been studied by Brigo, Pallavicini and Torresetti (2006), Longstaff and Rajan (2008), and Errais,

Giesecke and Goldberg (2010).

To summarize, the contributions of our paper are the following: In a very comprehensive

study involving more than 10 credit models, we compare top-down with bottom-up approaches.

Applying random thinning we are able to compute index deltas and single-name deltas for all,

but the Longstaff-Rajan model. In contrast, Cont and Kan (2011) apply a recalibration approach

to derive index deltas in top-down models. We find that none of the top-down models is able to

outperform the Student-t copula, which is the best bottom-up model in our study. In particular,

top-down models fail to hedge equity tranches. Using average absolute hedging errors (instead

of average hedging error as, e.g., in Cont and Kan (2011) and Cousin, Crépey and Kan (2011)),

we also find that hedging performances of all models are unsatisfactory. Besides, we confirm

that delta hedging with Gaussian copulas works very poorly, which is in line with the results

by Giesecke, Goldberg and Ding (2011). We also compare the index and single-name deltas of

several copula models that are either calibrated with compound or base correlations. We find

evidence that the copulas calibrated with base correlations provide more stable profit-and-loss

paths. This observation is consistent with the findings in Ammann and Brommundt (2009)

and Cousin, Crépey and Kan (2011). In contrast to our study, both papers only analyze the

Gaussian copula. Notice that Ammann and Brommundt (2009) do not use index- or single-

name deltas. Instead they hedge CDO tranches via other tranches. As a robustness check, we

have also performed a similar analysis which shows that hedging tranches with tranches leads

to descent hedging results. The question however arises whether this is a tractable strategy in

practice.

The remainder of the paper is structured as follows. Section 2 defines the general default

processes and describes the payoffs of index default swaps, CDO tranches, and credit default

swaps. Section 3 reviews the copula models studied in this paper and derives the relevant

conditional default probabilities. In Section 4, we describe the top-down models and show how
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to derive the relevant portfolio probabilities. In Section 5, we present the methods used to fit

the models to market data. Moreover, we provide numerical results on the model’s calibration

errors. Section 6 discusses the random thinning procedure and provides a detailed profit-and-loss

analysis across all models. Finally, Section 7 concludes.

2 Portfolio Credit Derivatives

In our study, we consider a portfolio of I credit-risky securities such as loans or credit swaps that

are issued by different entities. The main object of interest is the aggregate loss in this portfolio.

The process Nt denotes the number of defaults up to time t.3 The default stopping times of the

single firms are denoted by �1, �2, ..., �I . The default times of the portfolio are represented by an

increasing sequence of stopping times T1 ≤ T2 ≤ ... ≤ TI meaning that Ti is the i-th jump time

of Nt. Therefore, the total number of defaults in the portfolio are given by

Nt =
I∑
i≥1

1{Ti≤t}. (1)

Equivalently, we can define

Nt =

I∑
i≥1

1{�i≤t}. (2)

Since we are going to compare top-down and bottom-up models, we either use formula (1) or

(2). The first formula is applied when analyzing top-down models, the second is needed to

study bottom-up models.4 To price credit derivatives, we have to specify the losses incurred by

defaults in the portfolio and define the loss process Lt by

Lt =

I∑
i≥1

li1{�i≤t}, (3)

where li is the loss associated with the default of firm i. Assuming a constant recovery rate

R and an equally weighted portfolio with a common notional of 1/I, the loss process can be

rewritten as Lt = 1−R
I Nt.

In the remainder, we will concentrate on two contracts: index credit default swaps (index

CDS) and collateralized debt obligations (CDO). Both contracts involve two parties, a protection

buyer and a protection seller. The protection buyer is compensated for all losses from defaults

3 We assume a complete probability space (
,ℱ , Q, (ℱt)). The complete filtration (ℱt) contains the information

up to time t.

4 Note that both methods generate different filtrations. The filtration generated by a top-down model is always

fine enough to distinguish the arrival of defaults, but does not contain any information about the default

identities. In contrast, the filtration implied by a bottom-up approach is much finer and gives us this additional

information. This fact explains much of the structural differences of both methods. For a detailed discussion

of bottom-up and top-down models, we refer to Giesecke (2008) and Bielecki, Crépey and Jeanblanc (2010).
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in the pool. We refer to this payment stream as default leg. In exchange, the protection buyer

pays a fixed fee to the protection seller at specific payment dates t1, ..., tK , where T = tK is

the maturity date. These cash flows are said to be the fee leg. We assume that the payment

dates are equidistant with tk− tk−1 = �, for some constant �. Moreover, we make the standing

assumption that the risk-free interest (short) rate r and the default-counting process N are

independent. We further assume that the distributions of the loss rates ( li, i = 1, ..., I) are

independent of each other and independent of r and N . Under this assumption, the distribution

of the loss process can be derived from the default process (see Giesecke, Goldberg and Ding

(2011)).

2.1 Index Credit Default Swaps

The underlying of an index CDS (e.g. CDX, iTraxx) is a portfolio that consists of single-name

CDS contracts written on I different firms. All contracts have the same maturity T , equal

premium payment dates (tk) and are equally weighted (same notionals 1/I). The buyer of such

a contract receives full protection of this portfolio. Whenever a reference entity in the pool

defaults, the protection seller will pay the corresponding losses. Hence, the default leg at time

t < T reads

Def indext = Et

[∫ T

t
e−
∫ s
t ru du dLs

]
, (4)

where Et[⋅] denotes the conditional expectation under a risk-neutral measure Q. Following Hull

and White (2006) who assume that defaults can only occur in the middle of two consecutive

payment dates, (4) simplifies to

Def indext ≈
∑
tk≥t

B(t,
tk−1 + tk

2
)
(
Et[Ltk ]− Et[Ltk−1

]
)
, (5)

where B(t, s) is the time-t price of a zero-coupon Treasury bond maturing at time s. Since the

approximation errors are small, we will use representation (5) throughout this paper.

The protection buyer pays a fee on the remaining notional in the portfolio. The remaining

notional Ft at time t represents the total notional of all firms that have survived until time t

and is given by

Ft = 1− Nt

I
. (6)

The fee payment at time tk is thus given by Sindext �Ftk , where Sindext denotes the annualized

fixed index spread that was contracted at initiation t. Hence, the expected discounted value of

all premium payments at time s, s ≥ t, per one unit of fee payments is given by

Feeindexs = Es

⎡⎣∑
tk≥s

e−
∫ tk
s ru du�Ftk

⎤⎦ = �
∑
tk≥s

B(s, tk)

(
1− Es[Ntk ]

I

)
, (7)

such that the present value of total fee payments at time s reads Sindext Feeindexs .



128 Björn Bick, Holger Kraft

Since the index spread Sindext has to be computed such that the initial value of the contract

at time t is zero, it is obtained by

Sindext =
Def indext

Feeindext

=

∑
tk≥tB(t,

tk−1+tk
2 )

(
Et[Ltk ]− Et[Ltk−1

]
)

�
∑

tk≥tB(t, tk)

(
1− Et[Ntk ]

I

) . (8)

To obtain the fair spread, we thus need to compute expected loss Et[Ls] and the expected number

of defaults Et[Ns]. For the special case when I = 1, the above formulas can be used to calculate

the fair spread of a single-name CDS with notional 1. The fair CDS spread of firm i becomes

Sit =
li
∑

tk≥tB(t,
tk−1+tk

2 ) (Qt(�i > tk−1)−Qt(�i > tk))

�
∑

tk≥tB(t, tk)Qt(�i > tk)
. (9)

2.2 Collateralized Debt Obligations

In general, CDOs are financial claims to the cash flows generated by a portfolio of I debt

securities. To offer a variation in risk-return profiles, the total portfolio notional is sliced into

M different tranches that are described by a sequence 0 = K0 < K1... < KM = 1 of attachment

and detachment points. Thus, the m-th tranche is specified by its attachment point Km−1 and

its detachment point Km, m = 1, ...,M . It is assumed that the firm’s notionals are the same

and we normalize their sum to 1. Then, the face value of tranche m is given by Km −Km−1.

The cash flows and losses generated by the portfolio are used to service the tranches according

to their seniority. The percentage loss of tranche [Km−1,Km] can be written as

Lmt =
1

Km −Km−1
{max{Lt −Km−1, 0} −max{Lt −Km, 0}} , (10)

which is the scaled difference between two call payoffs. Now, the holder of a tranche receives

interest payments on the remaining tranche notional, but has to take losses that are attributed

to the tranche. Similar to (4), the default leg of a CDO contract with maturity T at time t < T

reads5

Defmt ≈
∑
tk≥t

B(t,
tk−1 + tk

2
)
(

Et[L
m
tk

]− Et[L
m
tk−1

]
)

(11)

and the fee leg per one unit of fee payments at time s, s ≥ t, is given by

Feems = �
∑
tk≥s

B(s, tk)
(
1− Es[L

m
tk

]
)
. (12)

Hence, the fair spread of tranche m is

Smt =

∑
tk≥tB(t,

tk−1+tk
2 )

(
Et[L

m
tk

]− Et[L
m
tk−1

]
)

�
∑

tk≥tB(t, tk)
(
1− Et[Lmtk ]

) . (13)

5 Here, we also assume that defaults can only occur in the middle of the period between two payment dates.
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Some tranches (typically the equity tranche) are sometimes quoted in terms of an upfront pay-

ment umt and a fixed running spread Sfix. Then, the present value of fee payments can be

rewritten as

F̃ ee
m

t = umt + Sfix�
∑
tk≥t

B(t, tk)
(
1− Et[L

m
tk

]
)

(14)

and we have to compute umt . Similar to the computation of index swaps, the pricing formula

(13) requires the computation of expressions of the form Et[f(Ls)], where f is some deterministic

function.

2.3 Marking to Market

As we want to study hedge ratios, we have to work with the mark-to-market values of the specific

contracts. As in Masol and Schoutens (2008), Cont and Kan (2011) and Cousin, Crépey and

Kan (2011) we concentrate on the mark-to-market value of a protection seller’s position at time

s who initiated the contract at time t. At time t the spread is chosen such that both legs have

the same values. For an index CDS, this means that Sindext Feeindext − Def indext = 0. At time

s > t, the mark-to-market value of a protection seller’s position in an index CDS is given by

MTM index
s =

(
Sindext − Sindexs

)
Feeindexs . (15)

The corresponding single-name CDS mark-to-market value follows by setting I = 1. This value

is denoted by MTM i
s. Similarly, the mark-to-market value of a protection seller’s position in

the m-th tranche of a CDO at time s is given by

MTMm
s = (Smt − Sms )Feems . (16)

An upfront payment in some tranche m will result in a mark-to-market value of

MTMm
s = −ums .

3 Bottom-Up Models: Copulas

In this section, we briefly summarize some results on copula models (see, e.g., Li (2000), Andersen

and Sidenius (2004), Laurent and Gregory (2005)). In our analysis, we focus on one-factor

models. As we deal with a bottom-up approach, the single default probabilities of all firms are

explicitly modeled. We model each firm’s default time as the first jump of an inhomogeneous

Poisson process (see, e.g., Jarrow and Turnbull (1995)). Then the probability of firm i to default

before time s conditioned on survival up to time t reads

Qt(�i < s) = 1− e−
∫ s
t �i(u) du, (17)
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where �i(t) is a deterministic intensity. To shorten notations, we disregard the subscript t in the

remainder of this section and denote the distribution function of �i by Qi(⋅). We assume that

these default probabilities are known for each company.6 In order to generate a factor model for

the default times (�1, ...�I), we link them to a vector of random variables (X1, ..., XI), which we

also refer to as latent variables. The distribution of this random vector depends on the specific

copula. Details about the copulas and the involved portfolio probabilities used in our paper can

be found in Appendix A.1.

4 Top-Down Models

In this section, we briefly summarize some facts about three top-down models that we will con-

sider later on. These are the models by Brigo, Pallavicini and Torresetti (2006), Longstaff and

Rajan (2008), and Errais, Giesecke and Goldberg (2010). Instead of focusing on the aggrega-

tion of single-name default probabilities, the portfolio loss process itself becomes the modeling

primitive in every top-down approach. This means that the losses are not directly attributed

to particular firms. The main difference between these models are their approaches to model

contagion effects.

4.1 Longstaff-Rajan

Longstaff and Rajan (2008) model contagion effects via joint defaults. More precisely, the model

allows for small losses (single firms), medium losses (sector), and large losses (economy). This

means that, in contrast to other methods, the authors explicitly allow for multiple defaults at

the same time. The loss process per $1 notional is given by

Lt = 1− e−1N1te−2N2te−3N3t (18)

and the parameters i are nonnegative constants that define the jump sizes. The portfolio loss is

generated by three factors represented by three independent Cox processes Nit. The intensities

of the three Cox processes are given by

d�1t = �1

√
�1tdW1t,

d�2t = �2

√
�2tdW2t,

d�3t = �3

√
�3tdW3t,

6 In practice, we can usually bootstrap the default probabilities from single-name CDS quotes. As single-name

CDS quotes are only available at discrete points in time, the intensity process �i will become a piecewise

constant function.
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where Wit are independent Brownian motions and �i are constant volatility parameters for

i = 1, 2, 3. As the intensities are stochastic, default correlations vary over time. Longstaff and

Rajan (2008) show that the expectation of an arbitrary function of the loss process f(Ls) is

given by

E[f(Ls)] =
∞∑
j=0

∞∑
k=0

∞∑
l=0

P 1
j (�1 0, s)

j!

P 2
k (�2 0, s)

k!

P 3
l (�3 0, s)

l!
fj,k,l, (19)

where we define fj,k,l = f
(
1− e−1je−2ke−3l

)
. The function P ij (�i 0, s) is equal to j! times the

probability that Nis = j. Using formula (19), all portfolio products can be priced.

4.2 Self-Exciting Framework

Errais, Giesecke and Goldberg (2010) present an affine point process framework to price portfolio

credit derivatives. The portfolio default times are generated by an intensity that is driven by

market factors which are assumed to follow an affine jump process. In their setup, the loss process

itself becomes such a risk factor. This so-called self-exciting property captures the empirically

documented effects of default clustering and contagion. Defaults arrive with intensity � given

by the dynamics

d�t = �(� − �t) dt+ � dLt, (20)

where �, �, and � are positive constants. Ito’s Lemma yields

�t = � + (�0 − �)e−�t + �

∫ t

0
e−�(t−s) dLs.

Upon default the intensity increases by the realized loss scaled by the sensitivity parameter �.

The impact of an default event exponentially decays over time with rate � such that the intensity

reverts back to its long-run mean �. The self-exciting effect is controlled via the constant �: the

bigger �, the bigger the effect. In contrast to Errais, Giesecke and Goldberg (2010), who allow for

a stochastic recovery distribution at the default times, we assume a constant loss given default

of l.7 We further assume an equally weighted portfolio with a common notional of 1/I such that

the loss and default process are related via Lt = l
INt. Therefore, it is sufficient to consider the

default distribution which can be calculated using the transform approach of Duffie, Pan and

Singleton (2000):

Et
[
euNs

]
= ea(t)+b(t)�s+uNt , (21)

where u ∈ ℂ and the coefficient functions a(t) = a(u, t, s) and b(t) = b(u, t, s) satisfy the

following ODEs:

∂tb(t) = �b(t)− eu+�lb(t) + 1,

∂ta(t) = −��b(t),

7 We also tested a self-exciting framework with stochastic recoveries, but our results are hardly affected. There-

fore, we decided to use a constant recovery rate.
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with boundary conditions a(s) = b(s) = 0. We use a FFT to invert (21), which yields the default

distribution.

4.3 Dynamical Generalized-Poisson Loss Model

Finally, we consider the model by Brigo, Pallavicini and Torresetti (2006) that is based on I

independent Poisson processes M1, ...,MI . We use homogeneous Poisson processes with constant

intensities �1, ..., �I and define the total number of defaults by the stochastic process

Zt =
I∑
i=1

�iMit (22)

where �i ∈ {1, ..., I} can be interpreted as jump sizes. The default process is then defined by

Nt = min(Zt, I). When a jump occurs in some Mi, this event triggers �i defaults to happen

simultaneously. Brigo, Pallavicini and Torresetti (2006) call this process a generalized-Poisson

process since Z can have multiple jumps at the same time which is also possible in the LR

model, but different from the self-exciting approach.8 The distribution of Z, which can easily

be transformed into the distribution of N (see Brigo, Pallavicini and Torresetti (2006)), is given

by the Laplace transform of Z

E
[
euZt

]
= exp

(
I∑
i=1

�i
(
eiu − 1

))
, (23)

with u ∈ ℂ. As for the previous model, we employ a FFT to invert (23) which gives us the

desired distribution of the default process after a simple transformation. Assuming a constant

recovery rate, the loss distribution can easily be calculated.

5 Calibration

To demonstrate how the different approaches can be calibrated to market data, we use mid quotes

of market prices of CDOs, index CDS, and their corresponding constituent CDS spreads. Market

quotes at time t are denoted by CDOmt , Indext, and CDSit , respectively. Here, m represents

the particular tranche and i stands for the firm. For numerical illustration, we use the 5-year

iTraxx.EU tranche and index data throughout the paper. The iTraxx.EU is a pool consisting of

I = 125 obligors that represent the most liquid names in the European credit derivatives market.

There are several CDO tranches written on the iTraxx: [0 − 3%],[3 − 6%],[6 − 9%],[9 − 12%],

[12− 22%], and [22− 100%]. We consider the series iTraxx.EU S9 that was on the run in 2008.

In our analysis, we concentrate on market data from April and September 2008 and exclude the

super senior tranche [22− 100%] since data is sparse.

8 Here, a jump of M1 can be interpreted as idiosyncratic risk, a jump of M10 as a catastrophic event, and a jump

of M100 as systemic risk.



Hedging Structured Credit Products During the Credit Crunch 133

All considered contracts have a maturity of T = 5 years. Index, tranche, and single-name

data are quoted in basis points (bp) based on quarterly premium payments (� = 0.25). An

exception is the equity tranche ([0 − 3%] tranche) which according to market conventions is

quoted in terms of an upfront payment and a running spread of 500 bps. Figure 1 depicts

the tranche and index data in September 2008 and shows the single-name CDS spreads of three

constituents that represent high risk, middle risk, and low risk firms.

In addition to this data, we collect 3-month, 6-month, 12-month Libor rates, and 2-year, 3-

year, and 5-year swap rates that we get from Datastream. To approximate the term structure, we

bootstrap the specific discount factors from these data by splines. Furthermore, all calibrations

assume a fixed recovery rate of R = 40%.9 To shorten our exposition, we introduce abbreviations

that are summarized in Table 1.

5.1 Basis Adjustment

Before calibrating the models, we perform a so-called basis adjustment that ensures that the

market index spread is matched by its theoretical bottom-up equivalent. This theoretical coun-

terpart is derived in the following way. Starting from the single default level, the index spread

at time t can also be expressed as

Indext =

∑I
i=1CDS

i
tFee

i
t∑I

i=1 Fee
i
t

,

where Feeit is firm i’s present value of all premium payments per 1 bp of fee payments and

can be derived from (7) by setting I = 1. However, we typically observe a deviation between

this bottom-up index spread and the market index spread because index and single-name CDS

contracts might be written on different sets of credit events and have different levels of liquidity.

This difference is called the CDS basis. As it is market practice,10 we remove this CDS basis by

commonly adjusting the single-name CDS spreads. In our applications, the basis turned out be

at most 8 bp and was on average 3 bp.

5.2 Bottom-Up

As we consider an inhomogeneous pool of firms, all single default probabilities must be calibrated

to single-name CDS spreads, which has to be done for each time point in the data set. By

assuming constant intensities that trigger the firm defaults, a general approximation of the

intensities is given by CDSi

1−R and the desired default probabilities follow by (17).

9 In the Longstaff-Rajan model, we do not have to assume a recovery rate since recovery rates are implicitly

computed in the model.

10 See, e.g, Halperin and Tomecek (2009), Eckner (2009), and Giesecke, Goldberg and Ding (2011).
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It is well known that one-factor copulas cannot price tranches consistently (see Burtschell,

Gregory and Laurent (2009)). Consequently, we use different correlation parameters for each

tranche and calibrate these parameters to the respective market data points.11 The implied

correlations are called implied or compound correlations. Figure 2 shows a calibrated curve of

compound correlations if a Gaussian copula is applied. The curve does not exhibit the typical

skew form that we saw in the market before the crisis.12 Table 2 lists the implied correlations

of the other copulas. In total, we study 8 copula models taking into account that we consider

different specifications of the Student-t and Double-t copula. It can be seen that all models

lead to similar forms of compound correlations as the one depicted in Figure 2. We further

note that the Student-t copula is not able to fit the [6− 9%] mezzanine tranche for this specific

date. This is a known problem that especially became apparent during the financial crisis

where copula models could not longer fit all tranches. To analyze this problem in detail, Table

3 tabulates the average calibration errors for the period of September. It becomes obvious that

all copulas have problems to calibrate the [6− 9%] tranche, especially the Student-t copula.

As there are several drawbacks of the compound correlation concept (e.g. two implied com-

pound correlations for one tranche), we also consider another definition that is known as base

correlation.13 The concept of base correlations decomposes each tranche into combinations of

first loss tranches. For example, a tranche with attachment point a and detachment point b

is decomposed into the first loss tranches [0, a] and [0, b]. The particular base correlations are

then calculated via a bootstrapping procedure. One major advantage of this approach is that

it delivers unique solutions. Moreover, one can apply the base correlation concept to determine

the value of tranches that are not actively traded.14 We list the base correlations in Table 4. By

construction, base and compound correlations are equal for equity tranches and then increase

with seniority. To compare the calibration performance of both concepts, Table 5 reports

the calibration errors when we fit tranche prices via base correlations. The calibration errors

(especially for the Student-t copula) are on average smaller and the mezzanine tranche is now

fitted perfectly.

11 In our study, we either have to fit the correlation parameter � or the frailty parameter �. This can be done by

a simple bisection method.

12 De Servigny (2007) and Burtschell, Gregory and Laurent (2009) observe a correlation skew based on pre-crisis

market data.

13 For more details about both concepts, we refer the reader to O’Kane and Livesey (2004) and Kakodkar, Galiani

and Shchetkovskiy (2004).

14 This can be seen in the linear structure of base correlations in Figure 2.
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5.3 Top-Down

For the top-down models, we must calibrate several parameters to the observed tranche and

index spreads (instead of just one parameter for the single-factor bottom-up models). On each

trading day in our data set the respective model is recalibrated by minimizing the root mean

squared percentage calibration error (RMSPE), which for day t is defined as(∑
m

(
CDOmt −Modmt (�)

CDOmt

)2

+

(
Indext −Modindt (�)

Indext

)2
)1/2

, (24)

where � is a vector of parameters and Mod represents the specific model. For the LR and the SE

model, we solve this minimization problem by a numerical algorithm like Powell’s method.15 As

Powell’s algorithm only provides us with local minima, the optimization procedure is repeated

several times and we choose the optimal parameters to be the solution to (24) with the smallest

RMSPE amongst all runs. The starting values for � are drawn form a uniform distribution

in every run. This procedure is very similar to the one used in Giesecke, Goldberg and Ding

(2011). In the following, we summarize our calibration results for every model.

Longstaff-Rajan In the LR model, we have to estimate three jumps sizes, three volatilities,

and three intensities so that the parameter vector becomes � = (�i, �i, i; i = 1, 2, 3). In contrast

to Longstaff and Rajan (2008), we daily recalibrate the jump and volatility parameters. Table 6

summarizes the calibrated parameters for a particular day in our data set. The estimated jump

sizes are in line with the intuition provided by Longstaff and Rajan (2008) that the three factors

represent small, medium, and large losses. For instance, the jump size associated with first

Cox process is 0.0084 which is exactly the weight of one firm in the portfolio (1/125 = 0.008)

and can thus be interpreted as idiosyncratic risk. Furthermore, the intensities decrease with

the corresponding jump size which shows that unsystematic shocks happen more often than

systemic shocks.

Self-Exciting For the self-exciting model, we need to calibrate four parameters summarized

in the vector � = (�0, �, �, �). In September 2008, the average value of the parameter � turned

out to be about 7, which reflects a high risk of contagion effects in this period.

DGLP In the DGLP model, the parameter vector � becomes high-dimensional (in fact, the

dimension is 250) since both the vector of jump sizes �i and the respective constant intensities

�i have to be calibrated. Hence, ordinary numerical optimization algorithms would be slow and

become intractable. To fit the parameters, we apply an approach suggested in Brigo, Pallavicini

15 See Powell (1964). Powell’s method is a conjugate gradient algorithm to find local minima of a function. We

have also used a simulated annealing procedure with similar results. However, we decided to apply Powell’s

method since it turned out to be much faster.
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and Torresetti (2006) that adds one jump process in every step. Details on the procedure can

be found in Appendix A.2.

Table 7 shows the relative calibration errors for all tranches across all three top-down models.

It can be seen that the LR model yields the best fit across all tranches. This can be attributed

to number of parameters that are used to calibrate this model. On the contrary, the SE model

provides a poor fit of the [3− 6%] and the [12− 22%] tranche although calibration errors of 10%

might still be seen as reasonable (see Cont and Kan (2011)).

6 Hedging

In this section, we compare the performances of the hedging strategies that can be derived from

the different models. We consider an agent who has sold protection on a CDO tranche and is

thus exposed to changes in the default risk of the constituents. As it is market practice (see,

e.g., Petrelli, Zhang, Jobst and Kapoor (2007), Masol and Schoutens (2008), and Cont and Kan

(2011)), we will use single-name or index CDS contracts as hedging instrument. To hedge the

mark-to-market (MTM) dynamics of the tranche position, the agent thus buys protection on

the single-name or index CDS. The tranche sensitivities with respect to these contracts are said

to be the single-name delta and index delta that are defined as follows16

 m,it =
∂MTMm

t

∂MTM i
t

, (25)

 m,indext =
∂MTMm

t

∂MTM index
t

. (26)

In all models, the hedge ratios (25) and (26) have to be computed numerically. As we have seen

in Section 3, the tranche spreads of bottom-up models exclusively depend on the single default

probabilities and some model parameters �. Therefore, (25) is approximated by

 m,it ≈ MTMm
t ((S1

t , ..., S
i
t + ", ..., SIt );�)−MTMm

t ((S1
t , ..., S

i
t , ..., S

I
t );�)

MTM i
t (S

i
t + ")−MTM i

t (S
i
t)

, (27)

so that the single-name delta is defined as the ratio of the change of the MTM tranche value

to the change of the MTM single-name CDS value when we disturb the i-th CDS spread by

". To compute (27), we follow the approach explained in Section 5.2 and calibrate both the

marginal default probabilities and the correlation/frailty parameter to market prices. We then

shift the single-name CDS spread of firm i by " = 1 bp and recalibrate the marginal default

probability of firm i (the default probabilities of all other firms and the correlation parameter

are not changed).17 In the last step, the new values for the tranche spread and single-name CDS

spread of obligor i are computed.

16 Since the fee legs given in (7) and (12) are expressed in terms of normalized notional values, the MTM values

are also normalized and we do not have to adjust the corresponding deltas.

17 We also tested shifts of 5 bp and 10 bp, but the results are hardly affected.
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Since a change in the index spread can be interpreted as a parallel shift in all individual

spreads, (26) is approximated by

 m,indext ≈ MTMm
t ((S1

t + ", ..., Sit + ", ..., SIt + ");�)−MTMm
t ((S1

t , ..., S
i
t , ..., S

I
t );�)

MTM index
t ((S1

t + ", ..., Sit + ", ..., SIt + ");�)−MTM index
t ((S1

t , ..., S
i
t , ..., S

I
t );�)

.

(28)

To compute this formula, we apply a similar approach as for the single-name spreads except

that now all single-name CDS spreads are shifted by " = 1 bp. As a robustness check, we will

also use CDO tranches as hedging instrument, i.e. we use tranches to hedge other tranches. As

in Ammann and Brommundt (2009), the delta of tranche m with respect to tranche k is defined

as

 m,kt =
∂MTMm

t

∂MTMk
t

=

∂MTMm
t

∂MTM index
t

∂MTMk
t

∂MTM index
t

(29)

and (28) can be applied to compute this hedge ratio.

Pricing a tranche with either the tranche’s compound or base correlation in general produces

the same result. In fact, both correlations are calibrated from market data to match traded

prices (see Section 5). This is not true for the sensitivity parameters that both concepts deliver,

which has been documented in the literature. For example, Cont and Kan (2011) use compound

correlations to compute deltas in a Gaussian copula model, whereas Cousin, Crépey and Kan

(2011) use base correlations to compute deltas.

6.1 Random Thinning

In top-down models hedging becomes more involved. This is because top-down models delib-

erately abstract from the identities of the defaulted firms. At first sight, this might complicate

risk management considerably because a calculation of single-name sensitivities as in (25) seems

impossible. This problem can be resolved by an approach called random thinning (RT) that

is discussed in Halperin and Tomecek (2009) and Giesecke, Goldberg and Ding (2011). It al-

lows us to attribute risk to the portfolios constituents. In our study, we follow the approach of

Halperin and Tomecek (2009) who take a probabilistic view of RT. Central to their approach is

the computation of the following matrix

TD
(l)
ij = Q ({�i = Tj} ∩ {tl−1 ≤ �i ≤ tl}) , i, j = 1, ..., I, (30)

where TD
(l)
ij represents the probability that the i-th name is the j-th defaulter and that the

corresponding default event happens between tl−1 and tl. We refer to this matrix as the thinning

matrix. Details on this procedure can be found in Appendix A.3. Having calibrated this matrix,

we are able to compute the CDS deltas by (27) and (28). Figure 3 shows an example of a

calibrated RT matrix where the portfolio probabilities were generated by the DGPL model.
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6.2 Hedging Results

The values of single-name and index deltas are model dependent. Figure 4 depicts the index

deltas of different models for the equity and the [9 − 12%] tranche when using compound cor-

relations. It shows that there can be significant differences across models. In this example, the

index deltas computed with the Gaussian, Clayton, and Student-t copula are of the same order

and are quite stable. On the contrary, the implied deltas of Double-t copulas are much more

volatile and different. Figure 5 depicts the corresponding deltas induced by the base correlation

method which significantly differ across copulas. As already discussed, it becomes obvious that

both concepts provide different deltas. We even observe negative ones, which has also been

documented by Morgan and Mortensen (2007) and Halperin and Tomecek (2009). To compare

these results with the results for top-down models, we also compute index deltas of the SE and

DGPL models (see Figure 6). Notice that, although the LR model almost yields a perfect fit to

market data, we cannot apply the random thinning approach to this model since it is not possible

to derive the distribution of the number of defaults in the LR model. Consequently, it cannot

be included in this analysis. In comparison to the Gaussian index deltas, the top-down deltas

are higher for the equity tranche and lower for the mezzanine tranche. The deltas computed

in the SE model are always higher than the corresponding ones from the DGPL model. These

results suggest that there is a significant model risk involved when CDO tranches are hedged.

To measure the performances of the particular hedging strategies, we run a profit-and-loss

analysis (P&L). The P&L of the delta at time t is defined as

PLt = �MTMm
t −  

m,index/CDS
t−1 �MTM

CDS/Index
t ,

where �MTMm
t and �MTM

CDS/Index
t represent the changes in the mark-to-market values

of the corresponding contracts between times t − 1 and t. In our analysis, we rebalance the

hedging portfolio every day and report the daily profit/loss, PLt. More precisely, it is assumed

that our position in the single-name/index CDS that we entered the day before is liquidated

at the end of the following day. Then we set up a new hedge portfolio such that the total

position is delta neutral. Disregarding transaction costs, entering a new position at time t does

not involve a payment because the spread at time t is set in such a way that the MTM value

of the single-name/index CDS is zero (see Section 2). To assess the hedging strategies, we use

a metric proposed by Ederington (1979) who measures the performance of a hedging strategy

as the percentage reduction in standard deviations of the hedged and unhedged portfolio. We

further report a hedging error that is defined as the ratio between the mean absolute values

of the hedged and unhedged portfolio.18 Formally, hedging error and volatility reduction are

18 Cont and Kan (2011) and Cousin, Crépey and Kan (2011) define the hedging error as the ratio of average P&L

of the hedged and unhedged portfolio and do not take absolute values. Therefore, in their analysis a gain of

1m dollars cancels out a loss of 1m dollars, although at both days the hedging strategy was off 1m dollars.
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defined as

hedging error =
Average absolute P&L of the hedged position

Average absolute P&L of the unhedged position
, (31)

vola residual =
Volatiltiy of the P&L of the hedged position

Volatiltiy of the P&L of the unhedged position
. (32)

An efficient hedging strategy should reduce both numbers.

6.2.1 Index Hedging

First, we analyze the hedging errors (31) and volatility residuals (32) when using the index

contract as hedging instrument. We consider two different months, April and September 2008.

To implement a hedging strategy, we recalibrate the models on every day (see Section 5) and

rebalance the portfolio. In this section, we will focus on four bottom-up models (Gauss, Clay,

DT(4/4), and T(4)) and the two top-down models (SE and DGPL)).19 Figure 7 depicts the

performances of the bottom-up copula models in April and September when using compound

correlations. In both periods, index delta hedging only provides useful strategies for the tranches

[0−3%] and [3−6%] where both the hedging errors and volatilities are reduced. In both periods,

index delta hedging reduces hedging errors and volatilities only for the tranches [0 − 3%] and

[3 − 6%]. Nevertheless, the hedging errors are still larger than 70% which might result in

huge losses. For the [6 − 9%] tranche the models fail to work which can be attributed to poor

calibrations of this tranche (see Table 3). We further conclude that bottom-up models do not

provide effective strategies when it comes to hedging the more senior tranches (especially in

September 2008).

For the Gaussian copula, our results are comparable to the ones of Cont and Kan (2011) who

study hedge ratios of tranches on the CDX index in the same period. Figure 8 depicts the results

for the concept of base correlations. By definition, the results for the equity tranche are the same

as in Figure 7. Although the hedging strategies for base correlations are still not satisfying, they

seem to be more stable and to perform better than the ones we get for compound correlation

calibration.20 Although a similar result has been documented for the Gaussian copula,21 we

thus show that this result carries over to other copula models. Consequently, we will always use

the base correlation concept to compare top-down models with bottom-up models.

19 The results for the omitted models are available upon request. We do not include the Student-t copulas with

8 and 12 degrees of freedom in this analysis since the results are comparable to the T(4) model. Moreover, the

results for the other Double-t copulas are not reported here as they turned out to be worse than the ones for

the DT(4/4) model.

20 In particular, for the T(4) model hedging errors and volatilities are reduced across all tranches.

21 See, e.g., Cousin, Crépey and Kan (2011). Ammann and Brommundt (2009) also find evidence that base

correlations provide better hedging strategies. However, they do not study index deltas, but examine deltas of

tranches with respect to other tranches.
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Now, we consider the performance of hedging strategies following from top-down models.

Figure 9 depicts our findings and compares them to two bottom-up models. Obviously, both

top-down strategies do not provide a reasonable hedge of the equity tranche. However, with in-

creasing seniority the performance of the hedging strategies improves. The SE model performs

worse than the DGPL model (especially in April) which can be attributed to the inferior calibra-

tion of some tranches (see Table 7). Furthermore, we do not find clear evidence that top-down

hedging strategies dominate bottom-up strategies. Although the hedging strategies implied by

both top-down models are far away from being perfect, we remark that combining top-down

models with random thinning might overcome the problem of hedging the senior tranches that

is mentioned by Cousin, Crépey and Kan (2011) and Cont and Kan (2011). Both studies use a

local intensity model, which also belongs to the class of top-down approaches, and carry out a

similar analysis in the same period. In contrast to our findings, their model does not result in

effective hedging strategies for senior tranches. In fact, they realize hedging errors of more than

200% for the senior tranches. However, they do not apply random thinning, but use martingale

representation techniques (see Cousin, Crépey and Kan (2011)) to derive index deltas.

6.2.2 Single-Name Hedging

In the next step, we hedge CDO tranches by a portfolio of several single-name CDS contracts.

We consider a case where the single-name CDS portfolio consists of three contracts.22 We only

report the results for the bottom-up models that are calibrated using base correlations. The

corresponding results for the compound correlations can be found in the Appendix. Since the

weight of a single CDS is typically really small in the portfolio, the delta that is calculated due

to (27) will be small, too. Therefore, building a hedging strategy with just one contract and

neglecting the others will virtually have no effect on the profit-and-loss dynamics. Hence, we

divide the pool in three groups ordered with respect to the sizes of the single-name CDS spreads

and search a firm in each group that has a spread close to the average single-name CDS spread

in this group. For instance, the three constituents depicted in Figure 1 can be interpreted as

representatives of small-risk, middle-risk, and high-risk names.

Table 8 reports the tranche sensitivities for these three firms, Danone, France Telecom,

and Tate and Lyle. Comparing the deltas across firms shows that changes in credit risk of

higher risk names have a higher effect on the equity tranche, which is true for all three models.

This is because the equity tranche is primarily exposed to idiosyncratic risks of single high-risk

firms. For both top-down models, we find that the low-risk firms have a large influence on the

22 As robustness check, we also studied portfolios with five CDS contracts. However, results are hardly affected.

Therefore, we will not report them.
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senior tranche.23 This is reasonable since defaults of low-risk firms are usually triggered by

systematic events. To summarize, the hedge ratios of top-down models with respect to single

names correctly attribute their loadings to the tranches: Senior tranches load on low-risk firms,

whereas equity and mezzanine tranches load on high-risk firms.

In contrast, the Gaussian copula model performs poorly for senior tranches since deltas

can even become negative.24 This can be attributed to the static nature of copulas, which

makes it harder to capture dynamic contagion effects. Table 9 illustrates the hedging errors

and volatility residuals for single-name and index hedging in September 2008.25 We see that

delta hedging with a portfolio of three single-name CDS contracts does not improve the hedge

performance significantly. Moreover, we find that a standard Gaussian copula model fails to

hedge the [9 − 12%] and [12 − 22%] tranches with a portfolio of single-name CDS contracts,

whereas the Student-t copula and both top-down models provide at least efficient strategies for

these tranches although hedging errors and volatility residuals are still above 80%.

6.3 What Complicates Hedging?

In the previous analysis, we have seen that delta hedging both with index and single-name

CDS contracts can lead to substantial hedging errors. The smallest hedging errors and residual

volatilities across all models and tranches were still around 65%. The sizes of the biggest losses

and expected shortfalls as reported in Table 10 suggest that the proposed strategies can even

worsen the portfolio performance compared to an unhedged position.26

These numbers indicate that the models failed to provide useful hedges during the heat of

the credit crisis. Although we allow for daily rebalancing of the portfolio, which is unrealistic

in practice due to transaction costs, losses and expected shortfalls for the hedged portfolios can

be significantly higher than for the unhedged position. There are two possible explanations for

the poor performance of the hedging strategies: Either CDS contracts are not the appropriate

hedging instruments to hedge CDO tranches or the models are not able to capture the underlying

dynamics. To address the first point, we examine the correlation between the realized returns

of the tranches and the index (Table 11). As expected, the correlations between back-to-back

tranches (tranches that share attachment/detachment points) are the highest (up to 98%). On

the other hand, the correlations between the tranches and the index are quite low, which suggests

that the index was not an appropriate hedging instrument in the credit crisis. The reason for

23 Eckner (2009) who applies an affine jump diffusion model to compute sensitivities, finds a similar behavior of

single-name deltas.

24 This problem has already been discussed in Section 5.

25 The corresponding results for the period of April 2008 can be found in the Appendix.

26 The results for April 2008 are shifted to the Appendix.
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these low correlations can be seen in Figure 10 that depicts the comovements of index and

tranche returns. Obviously, there were several days where index and tranches returns moved in

opposite directions.27 For example, 9 out of 22 returns of the equity tranche and the index have

opposite signs. Since the model deltas are in general positive, frequent opposite movements lead

to serious problems. This explains much of the bad performance of our hedging strategies. The

patterns for single-name CDS returns are similar and thus single-name/index CDS contracts

were apparently not an appropriate instrument to hedge CDO tranches during the credit crisis.

To address the question of whether the models were wrong, we study the hedge performances

when tranches are hedged by other tranches. Notice that we observed high correlations between

tranche returns and that returns move in tandem (see Figure 11). We focus on the T(4) and the

DGPL model who turned out to provide the most efficient strategies in the previous analysis.

Table 12 illustrates the performance of both models. We use all tranches as hedging instruments

and find that both hedging errors and volatility residuals are much smaller than before. For

example, disregarding the equity tranche, the DGPL model provides hedging errors that are, in

the worst case, about 58% and in all other cases between 19% and 30% when using back-to-back

tranches as hedging instrument. Moreover, residual volatilities are significantly reduced (about

30%). It also becomes evident that the DGPL model still fails to hedge equity tranches. On the

other hand, DGPL outperforms the T(4) model when we hedge senior tranches. The results for

April 2008 are similar and can be find in the Appendix. For the sake of completeness, Table 13

reports the biggest loss and expected shortfall when we use the [12 − 22%] tranche as hedging

instrument. Apart from the equity tranche, we see that the corresponding numbers are much

lower than in Table 10.

7 Conclusion

This paper has analyzed bottom-up and top-down credit portfolio models. First, we have cal-

ibrated all models to market data from 2008 and studied the specific calibration errors. Then

we have computed both index deltas and single-name deltas and backtested their hedging per-

formance by a profit-and-loss analysis. Our results indicate that the base correlation concept

provides better results than the compound correlation approach across all copula models, a

result that was previously found for Gaussian copulas. Using a random thinning method, we

are also able to calculate deltas in top-down models. We find that the market practice of delta

hedging CDO tranches using CDS contracts failed during the crisis. Even for the best models

(Student-t and dynamical generalized-Poisson model) daily losses can easily exceed 5% of the

tranche notional. This is a huge number given that banks are highly leveraged with equity

27 See also Cont and Kan (2011) who study the CDX index in the same period.
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ratios of around 10% or less. Neither single-name nor index CDS contracts were appropriate

instruments to hedge CDO tranches.
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A Technical Part

A.1 Copula Models

Gaussian Copula In the Gaussian copula model by Li (2000), the random variables Xi are

defined as

Xi = �M +
√

1− �2Zi, (33)

where � is a constant parameter between 0 and 1. The random variables Zi and M are standard

normally distributed are assumed to be independent of each other. This implies that the latent

variables Xi are standard normal distributed for i = 1, ..., I, too. In this scenario, Zi can be

interpreted as the individual risk factor whereas M represents a common risk factor. This

setup defines a common correlation structure between the Xi that is exclusively implied by the

single parameter � and we have Corr(Xi, Xj) = �2. We will thus refer to � as the correlation

parameter. As outlined in Hull and White (2004) and Burtschell, Gregory and Laurent (2009),

we can map the latent variable Xi to the default time �i via the relation �i = Qi
−1

(�(Xi)),

where �(.) denotes the cumulative distribution function of a standard-normal random variable.

Hence, we can express the conditional marginal default probability of firm i as

Qi∣M (s) := Q(�i < s∣M) = �

{
�−1(Qi(s))− �M√

1− �2

}
. (34)

We see that a correlation parameter of � = 0 implies independent default times and that an

increase in � leads to an increase in the default dependence. In other words, this meas that the

probability mass is shifted to both ends of the probability distribution.

Student-t Copula To overcome some of the shortcomings of the Gaussian copula model,

a simple extension of the Gaussian copula is the Student-t copula which has also been applied

in the finance literature (see Andersen, Sidenius and Basu (2003) and Schloegl and O’Kane

(2005)). A detailed description of this type of copula can be found in Demarta and McNeil

(2005) who show for example that the Student-t copula can generate fat-tailed distributions.

In contrast, the Gaussian copula cannot produce fat-tails which has often been criticized in

literature. Similar to the Gaussian framework, we set up a factor model and define

Xi =
�M +

√
1− �2Zi√
P
�

, (35)

where M and Zi are independent normal distributed random variables and P follows a �2
�

distribution with � degrees of freedom such that Xi is Student-t distributed with � degrees of

freedom.28 Then, we have �i = Qi
−1

(t�(Xi)), where t�(.) denotes the cumulative distribution

function of a Student-t random variable with � degrees of freedom. In contrast to the previous

28 A random variable of the form X√
Y
�

with X standard normal and Y �2
� distributed, is Student-t distributed.
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approach, we now have to condition on both factors M and P to get independence of default

times which results in the following conditional marginal default probabilities of firm i:

Qi∣M,P (s) := Q(�i < s∣M,P ) = �

⎧⎨⎩
√

P
� t
−1
� (Qi(s))− �M√

1− �2

⎫⎬⎭ . (36)

Furthermore, we want to remark that setting � = 0 does not result in independent default times

which is induced by the tail dependence of the Student-t copula.

Double-t Copula Like the already discussed copulas, the Double-t copula also bases on a

factor model and belongs to the class of elliptical copulas. Hull and White (2004) and Burtschell,

Gregory and Laurent (2009) discuss the properties of the Double-t copula and apply it to price

CDO contracts. Here, the latent variables Xi are a mixture of Student-t variables and are

defined as

Xi = �

√
� − 2

�
M +

√
1− �2

√
�̃ − 2

�̃
Zi, (37)

where M and Zi are independent random variables that follow a Student-t distribution with �

and �̃ degrees of freedom, respectively. Both random variables are scaled by a factor to ensure

unit variance. Unfortunately, the sum of two Student-t distributed variables does not give a

Student-t variable. The cumulative distribution function of Xi is denoted by H(.).29 In a

work of Vrins (2009), the author claims that there does not exist an analytical solution of this

distribution function such that it has to be computed numerically. In our paper, we adapt the

semi-analytical approach of Vrins (2009) to solve this problem. Having solved this problem, the

default times are given by �i = Qi
−1

(H(Xi)) and the conditional marginal default probabilities

read

Qi∣M (s) := Q(�i < s∣M) = �

⎧⎨⎩
√

�̃

�̃ − 2

H−1(Qi(s))− �
√

�
�−2M√

1− �2

⎫⎬⎭ . (38)

Clayton Copula As last approach, we present the Clayton copula which belongs to the

class of Archimedean copulas. Here, the latent variable follows

Xi =  

(
− ln(Zi)

M

)
, (39)

where Zi are independent uniform random variables which are also independent of M . The

common factor M , which is also called frailty, is assumed to be standard Gamma distributed

with parameter 1/� and  (s) = (1+s)−1/� is a deterministic function. Eventually, the conditional

marginal default probabilities read

Qi∣M (s) := Q(�i < s∣M) = exp
(
V (1−Qi(s)−�)

)
. (40)

29 Note that the distribution function H(.) does not depend on the specific firm i since the random variables Zi

are identically distributed. Moreover, H(.) will depend on the parameter �.
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For a general derivation of this method and for further information we refer the reader to Laurent

and Gregory (2005) and Schönbucher (2003).

Number of Defaults To price portfolio products, the distribution of the number of de-

faults is required. In the previous analysis, the conditional marginal default probabilities of the

different copula models were derived. With the formulas given in (34), (36), (38), and (40), it be-

comes straightforward to compute the conditional distribution of the number of defaults because

the single default times are independent when conditioned on the common factor. For instance,

when dealing with a homogeneous pool of assets, one only has to evaluate a standard binomial

distribution. However, when dealing with a heterogenous pool of assets, i.e. the firms have

different default probabilities, it can become computationally expensive to get the portfolio loss

distribution when I becomes large. This is the case since we have to consider
(
I
k

)
combinations

of getting k defaults in a pool of I obligors and every combination involves further computations

(see Hull and White (2004)). In the literature, there are basically two semi-analytical solution

techniques to tackle this problem: Fast Fourier techniques (FFT) (see Laurent and Gregory

(2005)) and the procedure of probability bucketing (see Andersen, Sidenius and Basu (2003)

and Hull and White (2004)). We tested these methods in several experiments and it turned out

that they both outperform the combinatorial technique in terms od CPU time. Furthermore,

the probability bucketing approach is always faster than the FFT and the differences in the

resulting probabilities are negligible. We thus decided to use the bucketing approach that bases

on a recursion algorithm. This algorithm provides us with the probability distribution of the

number of defaults conditioned on the common factor. We denote the conditional probability

of having k defaults at time s by q
i∣M
k (s) where k = 0, ..., I.

In the last step, the unconditional probability distribution can be determined by numerically

integrating q
i∣M
s (k) over the distribution of M .30 This integration is accomplished in a fast way

by using quadrature techniques. As the common factor is distributed differently depending on

the copula, we use several quadrature techniques that are summarized in table (17)

A.2 Calibration of the DGPL model

Following Brigo, Pallavicini and Torresetti (2006), we calibrate the DGPL model as follows:

(i) Set �1 = 1 and calibrate �1. All other �i are assumed to be zero.

(ii) Add the jump size �2 and find its best positive integer value between 1 and 125. This is

done by calibrating the intensities �1 and �2 (we take the calibrated value of �1 from step 1

as an initial guess) for each value of �2 in [1, 125].

30 Recall that we have to perform a two-dimensional integration when we deal with the Student-t copula.
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(iii) Repeat the second step for �i, i = 3, ..., I, and calibrate the intensities �1, �2, ..., �i by

minimizing (24). As in step 2, use �1, �2, ..., �i−1 from the previous step as initial guess for

the intensities.

In all cases, we have needed less than 7 iterations to achieve a perfect fit (defined as the RMSPE

being smaller than 1bp). Nevertheless, repeating this calibration exercise every day would be

time-consuming. Hence, we decided to calibrate the full DGPL model on the first day only

and keep the size parameters �i for the calibrations on the next days. Therefore, we only have

to estimate the respective intensities which still provides remarkable good fits. The estimated

parameters for a particular day in the data set are shown in Table 18.

A.3 Random Thinning Procedure

The aim of this method is to choose the elements TD
(l)
ij such that all single-name CDS spreads

are fitted. To this end, we have to introduce further notation and define w(l)(j) as the probability

that the number of defaults in the portfolio at time tl is at least j. Furthermore, Q
(l)
i denotes

the probability of firm i to default before time tl. The probabilities w(l)(j), j = 0, ..., I are

known from the respective top-down model calibrated to market data and Q
(l)
i , i = 1, ..., I can

be calibrated using CDS quotes. By construction, these probabilities and the elements of the

RT matrix are related via

I∑
i=1

TD
(l)
ij = w(l)(j)− w(l−1)(j), for all j = 1, ..., I, (41)

I∑
j=1

TD
(l)
ij = Q

(l)
i −Q

(l−1)
i , for all j = 1, ..., I. (42)

In our study, we apply the iterative scaling algorithm proposed by Halperin and Tomecek (2009)

to back out the probabilities TD
(l)
ij . Having found the thinning matrix, we proceed as follows:

(i) Calibrate the relevant top-down model and the marginal default probabilities to market data,

which gives us w(l)(j), j = 0, ..., I and Q
(l)
i , i = 1, ..., I.

(ii) Shift the single-name CDS spread of firm i by 1 bp, recalibrate the firms default probability,

and store the proportional change � of this probability.

(iii) Change the i-th row of the RT matrix such that TD
(l)
ij = TD

(l)
ij (1 + �) for all j = 1, ..., I.

This adjustment results in the desired shift of the default probability of firm i (see (42)). In

addition, the change of the matrix yields new top down probabilities w(l)(j) = w(l)(j)+TD
(l)
ij �

for all j = 1, ..., I (see (41)).

(iv) Use the adjusted top-down probabilities of step (iii) to compute the change in the MTM

value of a given tranche.



150 Björn Bick, Holger Kraft

A similar approach can be used to calculate the index spread. Here, we only have to shift all

CDS spreads in step (ii) by 1 bp. The resulting RT matrix adjustment in step (iii) will then

affect all rows.31

31 Note that our approach is slightly different form the approach in Halperin and Tomecek (2009) who use the

same proportional change � for every firm. Additionally, they only use approximations of the MTM values of

the specific securities.
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Model Abbreviation
Gaussian copula Gau
Clayton copula Clay

Student-t copula with � degrees of freedom T(�)
Double-t copula with � and �̃ degrees of freedom DT(�/�̃)

Longstaff-Rajan LR
Self-exciting framework SE

Dynamical generalized-Poisson Loss model DGPL

Table 1: Abbreviations of the relevant bottom-up and top-down models.

Model [0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%]
Gau 0.49 0.94 0.03 0.12 0.23
Clay 0.41 1.36 0.02 0.07 0.15

DT(4/4) 0.6 0.82 0.04 0.16 0.23
DT(6/4) 0.59 0.85 0.03 0.13 0.2
DT(6/6) 0.57 0.85 0.03 0.15 0.22

T(4) 0.38 0.89 1 0.01 0.04
T(8) 0.44 0.9 1 0.01 0.14
T(12) 0.46 0.9 1 0.05 0.17

Table 2: Compound correlations on 09/05/08. This table shows the compound
correlations for the copula models under study.

Model [0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%]
Gau 0 0.57 4.69 0 0
Clay 0 0 0.82 0 0

DT (4/4) 0 0 0.25 0 0
DT (6/4) 0 0 0.4 0 0
DT (6/6) 0 0 0.39 0 0

T (4) 0 0 13.12 10.93 0.57
T (8) 0 0 13.44 8.79 0
T (12) 0 0 13.85 1.86 0

Table 3: Average calibration error in percent implied by compound correla-
tions. This table shows the average calibration errors as percentages of market spreads
of the particular bottom-up models when we use compound correlations. The time period
is 09/01/08 to 09/22/08.

Model [0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%]
Gau 0.49 0.62 0.69 0.75 0.94
Clay 0.41 0.59 0.71 0.86 1.52

DT(4/4) 0.6 0.66 0.68 0.74 0.85
DT(6/4) 0.59 0.66 0.69 0.74 0.9
DT(6/6) 0.57 0.64 0.68 0.73 0.89

T(4) 0.38 0.53 0.61 0.69 0.91
T(8) 0.44 0.57 0.65 0.72 0.92
T(12) 0.46 0.59 0.66 0.73 0.92

Table 4: Base correlations on 09/05/08. This table shows the base correlations for
the copula models under study.
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Model [0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%]
Gau 0 0 0 0.01 0.26
Clay 0 0 0 0 0

DT (4/4) 0 0 0 0.01 2.49
DT (6/4) 0 0 0 0.01 2.03
DT (6/6) 0 0 0 0.01 1.85

T (4) 0 0 0 0 0.72
T (8) 0 0 0 0.01 0.85
T (12) 0 0 0 0.01 0.73

Table 5: Average calibration error in percent implied by base correlations.
This table shows the average calibration errors as percentages of market spreads of the
particular bottom-up models when we use base correlations. The time period is 09/01/08
to 09/22/08.

vola �i jump i intensity �i
first process 0.3114 0.0084 0.4718

second process 0.2625 0.0825 0.0257
third process 0.2211 0.1584 0.0082

Table 6: Calibrated parameters in the LR model on 09/05/08.

Model [0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%]
SE 0 16.16 2.83 0.94 13.06

DGPL 0.01 0.85 1.47 6.46 3.49
LR 0.06 0.08 0.06 0.12 0.07

Table 7: Average calibration error in percent across all top-down models.
This table shows the average calibration errors as a percentage of market spreads of the
top-down models under study. The time period is 09/01/08 to 09/22/08.

Firm [0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%]
Gaussian copula with base correlation

Danone 0.0289 0.0206 0.0077 0.019 -0.0149
France Telecom 0.0413 0.0318 0.014 0.0301 -0.0115
Tate and Lyle 0.0674 0.0719 0.0517 0.0245 0.0409

Self-exciting
Danone 0.1231 0.061 0.0349 0.0228 0.0114

France Telecom 0.1403 0.0626 0.0327 0.0199 0.0089
Tate and Lyle 0.1578 0.0635 0.0299 0.0162 0.0059

DGPL
Danone 0.079 0.0321 0.0222 0.0157 0.0088

France Telecom 0.0986 0.0361 0.0228 0.015 0.0075
Tate and Lyle 0.1244 0.0412 0.0232 0.0138 0.0054

Table 8: Tranche deltas with respect to single-name CDS on 09/05/08. This
table shows single-name deltas with respect to the three firms Danone (small-risk), France
Telecom (middle-risk), and Tate and Lyle (high-risk) computed with three different mod-
els.

Model [0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%]

Index
Gau 83.7 (75.27) 82.01 (76.35) 84.08 (77.28) 108.65 (95.31) 113.48 (118.23)
T(4) 82.5 (76.66) 83.39 (77.76) 79.64 (74.83) 96.83 (86.67) 94.02 (85.07)
SE 230.32 (223.69) 140.09 (131.43) 108.26 (102.53) 126.61 (117.22) 118.8 (108.53)

DGPL 165.74 (153.33) 91.66 (86.22) 84.5 (82.84) 104.42 (96.45) 106.5 (96.09)

Portfolio of three single-name CDS
Gau 75.08 (70.61) 69.89 (68.63) 71.92 (66.31) 114.87 (112.78) 110.4 (101.96)
T(4) 77.81 (74.37) 72.18 (69.55) 70.04 (68.99) 90.96 (78.94) 91.09 (89.14)
SE 194.11 (198.56) 111.04 (105.29) 83.65 (81.07) 96.61 (93.29) 94.19 (89.13)

DGPL 142.47 (138.93) 75.63 (72.53) 72.63 (70.32) 88.51 (81.71) 89.75 (83.74)

Table 9: Comparison of index CDS and a portfolio of three single-name CDS
contracts in September 2008. This table compares the hedging errors and residual
volatilities (in brackets) that are either computed with the index as hedging instrument
or with a portfolio of three single-name CDS contracts. The period is September 2008.
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0 3 6 9 12 0 3 6 9 12
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

3% 6% 9% 12% 22% 3% 6% 9% 12% 22%
Biggest loss Expected shortfall

Unhedged position
7.71 5.89 3.62 2.08 1.02 2.03 1.29 0.81 0.61 0.23

Index hedging
Gau 4.5 3.87 2.29 1.77 1.43 1.66 1.34 1.07 0.45 0.26
T(4) 4.63 3.84 2.6 1.24 0.68 1.61 1.26 0.92 0.65 0.28
SE 13.03 5.09 2.99 1.84 0.9 4.48 2.3 1.2 0.85 0.38

DGPL 7.73 4.28 2.67 1.58 0.83 3.29 1.41 0.98 0.71 0.3
Single-name hedging

Gau 4.9 4.21 2.47 2.04 0.89 1.53 1.1 0.87 0.54 0.39
T(4) 5.22 4.21 2.85 1.35 0.85 1.38 1.15 0.77 0.63 0.25
SE 11.19 5.16 2.98 1.66 0.77 3.98 1.99 0.84 0.7 0.26

DGPL 7.31 4.39 2.7 1.54 0.74 2.97 1.26 0.82 0.57 0.25

Table 10: Biggest losses and expected shortfall in September 2008. This
table shows the biggest losses and the expected shortfall (expected value of P&L path
conditioned on losses) for different hedging strategies and different hedging instruments
(index hedging and single-name hedging). All numbers are given in percentage of the
tranche notional. We also report the corresponding values if the position is not hedged.
The period is September 2008.

[0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%] Index
[0− 3%] 100
[3− 6%] 96.63 100
[6− 9%] 94.06 98.52 100
[9− 12%] 89.9 95.91 97.05 100
[12− 22%] 88.94 92.78 94.85 97.92 100

Index 63.16 64.24 66.38 59.55 59.88 100

Table 11: Correlations between tranches and index CDS. This table plots the
correlation of tranche and index CDS returns that were realized in September 2008.

T(4)
Hedging instrument [0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%]

[0− 3%] 0 (0) 26.35 (27.21) 29.92 (33.42) 60.3 (61.34) 52.99 (52.99)
[3− 6%] 26.3 (25.74) 0 (0) 22.27 (20.46) 48.85 (45.68) 46.18 (43.26)
[6− 9%] 29.86 (33.86) 21.91 (20.88) 0 (0) 49.69 (52.03) 45.49 (41.74)
[9− 12%] 98.46 (104.55) 80.89 (81.94) 87.18 (93.41) 0 (0) 46.65 (46.74)
[12− 22%] 82.23 (85.82) 67.11 (67.04) 71.54 (71.37) 42.06 (40.13) 0 (0)

DGPL
Hedging instrument [0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%]

[0− 3%] 0 (0) 57.31 (53.01) 59.2 (56.64) 59.3 (56.42) 61.07 (57.93)
[3− 6%] 111.47 (105.3) 0 (0) 18.75 (16.6) 36.71 (31.04) 48.03 (41.64)
[6− 9%] 116.59 (113.83) 19.24 (17.13) 0 (0) 29.51 (29.29) 40.95 (37.59)
[9− 12%] 106.17 (100.43) 34.23 (28.32) 26.86 (25.52) 0 (0) 20.92 (21.03)
[12− 22%] 108.31 (109.24) 42.41 (37) 34.94 (31.88) 19.66 (20.52) 0 (0)

Table 12: Hedging tranches with tranches in September 2008. This table shows
the hedging errors and residual volatilities (numbers in brackets) when we hedge tranches
with other tranches. We plot the results for the models T(4) and DGPL. The tranches
in the column labeled ”Hedging instrument” represent the tranches that are used for
hedging. The period is September 2008.
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0 3 6 9 12 0 3 6 9 12
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

3% 6% 9% 12% 22% 3% 6% 9% 12% 22%
Biggest loss Expected shortfall

Unhedged position
7.71 5.89 3.62 2.08 1.02 2.03 1.29 0.81 0.61 0.23

Hedging with the [12− 22%] tranche
DGPL 3.78 1.82 0.78 0.16 0 2.06 0.51 0.27 0.09 0

Table 13: Biggest losses and expected shortfall in September 2008. This
table shows the biggest losses and the expected shortfall (expected value of P&L path
conditioned on losses) for the DGPL model. We use the [12−22%] as hedging instrument.
All numbers are given in percentage of the tranche notional. For comparison, we also
plot the corresponding values when we do not hedge (Unhedged position). The period is
September 2008.

Model [0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%]

Index
Gau 84.37 (81.03) 68.78 (72.25) 78.38 (83.72) 68.75 (71.71) 103.24 (105.91)
T(4) 87.14 (83.38) 71.85 (74.66) 66.81 (73.11) 75.5 (81.04) 67.99 (72.11)
SE 202.21 (174.34) 125.02 (121.11) 78.58 (82.16) 64.78 (72.52) 64.34 (67.39)

DGPL 128.38 (114.24) 68.86 (72.15) 67.31 (73.1) 64.77 (70.27) 64.11 (68.14)

Portfolio of three single-name CDS
Gau 109.53 (99.15) 92.81 (96.11) 92.67 (100.17) 101.68 (104) 100.16 (119.92)
T(4) 129.79 (116.98) 95.32 (97.99) 82.06 (84.74) 84.45 (94.92) 77.9 (78.04)
SE 262.03 (223.07) 152.46 (148.17) 91.63 (93.15) 76.8 (81.25) 68.5 (73.18)

DGPL 175.89 (153.01) 81.04 (84.26) 75.8 (79.66) 72.32 (78.17) 69.11 (74.46)

Table 14: Comparison of index CDS and a portfolio of three single-name
CDS contracts in April 2008. This table compares the hedging errors and residual
volatilities (in brackets) that are either computed with the index as hedging instrument
or with a portfolio of three single-name CDS contracts. The period is April 2008.

0 3 6 9 12 0 3 6 9 12
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

3% 6% 9% 12% 22% 3% 6% 9% 12% 22%
Biggest loss Expected shortfall

Unhedged position
3.28 1.96 1.49 0.99 0.73 1.55 0.71 0.76 0.48 0.23

Index hedging
Gau 2.53 1.01 1.33 0.63 0.76 1.07 0.61 0.54 0.43 0.28
T(4) 2.66 1.07 1.26 0.86 0.46 1.15 0.64 0.5 0.36 0.18
SE 6.33 2.41 1.14 0.78 0.42 3.07 1.22 0.59 0.31 0.15

DGPL 4 1.08 1.22 0.72 0.44 2.19 0.6 0.47 0.3 0.15
Single-name hedging

Gau 3.52 2.02 1.94 1.4 1.07 1.65 0.91 0.74 0.68 0.28
T(4) 4.21 2.11 1.35 1.51 0.45 2.04 0.93 0.65 0.55 0.23
SE 8.78 3.35 1.6 1.06 0.51 4.01 1.34 0.72 0.47 0.16

DGPL 5.69 1.8 1.27 0.99 0.53 2.86 0.74 0.57 0.38 0.17

Table 15: Biggest losses and expected shortfall in April 2008. This table shows
the biggest losses and the expected shortfall (expected value of P&L path conditioned on
losses) for different hedging strategies and different hedging instruments (Index hedging
and single-name hedging). All numbers are given in percentage of the tranche notional.
For comparison, we also plot the corresponding values when we do not hedge (Unhedged
position). The period is April 2008.
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T(4)
Hedging instrument [0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%]

[0− 3%] 0 (0) 27.43 (32.82) 42.22 (43.98) 46.11 (48.98) 61.37 (62.28)
[3− 6%] 28.7 (31.41) 0 (0) 25.93 (25.63) 35.14 (37.58) 48.29 (49.29)
[6− 9%] 54.55 (52.8) 31.52 (31.03) 0 (0) 36.9 (38.67) 44.78 (47.8)
[9− 12%] 69.09 (67.3) 58.08 (67.39) 50.25 (59.36) 0 (0) 67.94 (74.71)
[12− 22%] 376.5 (825.28) 319.83 (774.3) 217 (520.11) 337.87 (890.85) 0 (0)

DGPL
Hedging instrument [0− 3%] [3− 6%] [6− 9%] [9− 12%] [12− 22%]

[0− 3%] 0 (0) 47.45 (46.9) 58.35 (57.18) 59.14 (58.59) 59.99 (60)
[3− 6%] 87.68 (81.23) 0 (0) 24.44 (24.67) 26.35 (29.99) 28.34 (31.82)
[6− 9%] 130.01 (119.43) 29.25 (29.6) 0 (0) 22.47 (25.6) 27.16 (30.18)
[9− 12%] 131.06 (116.55) 30.67 (33.18) 22.31 (24.49) 0 (0) 27.84 (27.33)
[12− 22%] 134.76 (129.72) 33.59 (38.15) 27.41 (31.05) 28.53 (29.8) 0 (0)

Table 16: Hedging tranches with tranches in April 2008. This table shows the
hedging errors and residual volatilities (numbers in brackets) when we hedge tranches
with other tranches. We plot the results for the models T(4) and DGPL. The tranches
in column ”Hedging instrument” represent the tranches that are used for hedging. The
period is April 2008.

Copula Method
Gaussian Gauss-Hermite
Student-t Gauss-Hermite (M)

Gauss-Laguerre (P)
Double-t Gauss-Legendre
Clayton Gauss-Laguerre

Table 17: Methods for numerical integration. This table shows the numerical
methods that are used to approximate the specific integrals. The Student-t copula requires
a two-dimensional integration.

N1 N2 N3 N4 N5 N6

�i 1 19 3 125 4 20
�i 0.1309 0.0178 0.0566 0.0064 0.1221 0.0016

Table 18: Calibrated parameters in the DGPL model on 09/05/08.
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Figure 1: Tranche, index, and constituent spreads on 5-year iTraxx.EU Series
9 from 09/01/08 to 09/22/08.
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Figure 2: Compound and base correlations for Gaussian copula on 09/05/08.
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Figure 3: Random thinning. This figure shows the random thinning matrix generated
by the DGPL model on 09/05/08.
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Figure 4: Index deltas across copula models calibrated with compound cor-
relations. The left panel shows the index deltas for the equity tranche in September
2008, the right panel depicts the corresponding deltas for the [9− 12%] tranche.
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Figure 5: Index deltas across copula models calibrated with base correlations.
The figure shows the index deltas for the [9− 12%] tranche in September 2008.
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Figure 6: Index deltas across top-down models. The left panel shows the index
deltas for the equity tranche in September 2008, the right panel depicts the corresponding
deltas for the [9− 12%] tranche. For comparison, the respective deltas for the Gaussian
copula (calibrated with compound correlations) are plotted.
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Figure 7: Bottom-up P&L analysis with delta hedging index and compound
correlations. The upper pictures show the hedging errors and volatility reductions of
hedging strategies implied by several bottom-up models in April 2008. The lower pictures
show the corresponding results for the period of September. The deltas are computed
using the compound correlation method.
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Figure 8: Bottom-up P&L analysis with index hedging and base correlations.
The upper figures show the hedging errors and volatility reductions of hedging strategies
implied by several bottom-up models in April 2008. The lower pictures show the corre-
sponding results for September 2008. The deltas are computed using the base correlation
method.
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Figure 9: Top-down P&L analysis with index hedging. The upper pictures show
the hedging errors and volatility reductions of hedging strategies implied by the SE
and DGPL models in April 2008. To make the results comparable, the numbers for the
Gaussian and Clayton copula are also plotted. The lower pictures show the corresponding
results for the period of September.
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Figure 10: Daily index returns versus daily tranche returns. The pictures
display scatter plots of realized index returns and tranche returns in September 2008.
The left panel contains equity tranche returns, the right panel contains senior tranche
returns.
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Figure 11: Daily tranche returns versus daily tranche returns. The pictures
display scatter plots of realized index returns and tranche returns in September 2008.
The left panel contains equity tranche returns, the right panel contains senior tranche
returns.
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Figure 12: Bottom-up P&L analysis with three single-name CDS contracts as
hedging instruments and compound correlations. The upper pictures show the
hedging errors and volatility reductions of hedging strategies implied by several bottom-
up models in April 2008. The lower pictures show the corresponding results for the
period of September. The deltas are computed by the concept of compound correlations.
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Figure 13: Bottom-up P&L analysis with three single-name CDS contracts as
hedging instruments and base correlations. The upper pictures show the hedging
errors and volatility reductions of hedging strategies implied by several bottom-up models
in April 2008. The lower pictures show the corresponding results for the period of
September. The deltas are computed by the concept of base correlations.
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