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Abstract

Denervation-induced changes in excitatory synaptic strength were studied following entorhinal deafferentation of
hippocampal granule cells in mature ($3 weeks old) mouse organotypic entorhino-hippocampal slice cultures. Whole-cell
patch-clamp recordings revealed an increase in excitatory synaptic strength in response to denervation during the first
week after denervation. By the end of the second week synaptic strength had returned to baseline. Because these
adaptations occurred in response to the loss of excitatory afferents, they appeared to be in line with a homeostatic
adjustment of excitatory synaptic strength. To test whether denervation-induced changes in synaptic strength exploit
similar mechanisms as homeostatic synaptic scaling following pharmacological activity blockade, we treated denervated
cultures at 2 days post lesion for 2 days with tetrodotoxin. In these cultures, the effects of denervation and activity blockade
were not additive, suggesting that similar mechanisms are involved. Finally, we investigated whether entorhinal
denervation, which removes afferents from the distal dendrites of granule cells while leaving the associational afferents to
the proximal dendrites of granule cells intact, results in a global or a local up-scaling of granule cell synapses. By using
computational modeling and local electrical stimulations in Strontium (Sr2+)-containing bath solution, we found evidence
for a lamina-specific increase in excitatory synaptic strength in the denervated outer molecular layer at 3–4 days post lesion.
Taken together, our data show that entorhinal denervation results in homeostatic functional changes of excitatory
postsynapses of denervated dentate granule cells in vitro.
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Introduction

Denervation-induced plasticity is a form of neuronal plasticity

that is of particular interest in the context of neurological diseases.

Since neurons are highly interconnected cells, the degeneration of

a given neuronal population will inevitably result in the

denervation of its target neurons. If this denervation is sufficiently

extensive, transneuronal changes of the denervated neurons may

occur, ranging from spine loss and dendritic atrophy to cell death

[1,2]. Thus, secondary neuronal damage may follow neuronal

degeneration and this secondary damage may contribute to the

clinical symptoms of the disease as well as disease progression [3].

The loss of afferents, however, also induces other plastic changes

such as collateral sprouting of the remaining axons and reactive

synaptogenesis [1,2]. These denervation-induced forms of neuro-

nal plasticity compensate at least in part for the loss of afferent

innervation and may play a pivotal role for the functional recovery

of denervated neurons following denervation.

In recent years a new plasticity mechanism has been identified,

which compensates for changes in afferent neuronal activity by

homeostatically scaling the strength of synapses to keep the

afferent drive of a neuron within a physiological range [4,5]. A

reduction in afferent drive, which can be achieved by treatment

with the sodium channel blocker tetrodotoxin (TTX), will thus

result in a strengthening of excitatory synapses [6]. Since axonal

denervation results in the loss of synapses, we hypothesized that

this plasticity mechanism, i.e., homeostatic synaptic scaling, could

also play a role following deafferentation. To assess the effects of

partial deafferentation on excitatory synaptic strength, we

employed the versatile in vitro entorhinal lesion model [7], which

exhibits many of the features seen in vivo after entorhinal

denervation, including axonal sprouting [8] and dendritic

reorganization [9,10]. In this model entorhinal denervation results

in a layer-specific loss of synapses in the outer parts of the

molecular layer of the dentate gyrus while leaving afferent

synapses to the inner parts of the molecular layer intact [1,2,11].

Accordingly, the question can be addressed whether entorhinal

denervation elicits changes in synaptic strength of denervated

granule cells and whether these changes affect all synapses or only

those located in the outer parts of the molecular layer.

Whole-cell patch-clamp recordings of denervated and non-

denervated granule cells disclosed a denervation-induced increase

in excitatory synaptic strength. By combining entorhinal deaffer-

entation with TTX-treatment we acquired experimental evidence
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that denervation induces homeostatic up-scaling of excitatory

granule cell postsynapses. At 3–4 days post lesion (dpl) the increase

in synaptic strength was restricted to synapses located on

denervated dendritic segments in the outer parts of the molecular

layer, demonstrating that deafferentation results in a local

strengthening of surviving granule cell synapses. Taken together,

our results suggest that homeostatic plasticity mechanisms, such as

homeostatic synaptic scaling, can partially compensate for the

denervation-induced loss in afferent drive and can thus be

expected to play a role in the response of neurons to

denervation-induced damage.

Results

Entorhinal cortex lesion in vitro
Three weeks old entorhino-hippocampal slice cultures (18–20

days in vitro; div) were used in the experiments. The entorhinal

cortex was cut away from the hippocampus and removed from the

culture dish using a sterile scalpel (Figure 1A, B). This lesion does

not damage the granule cells or their dendrites in the dentate gyrus

[9], but results in a layer-specific loss of excitatory entorhinal

afferents to the outer molecular layer (OML) of the dentate gyrus

(Figure 1C, D; see also [9,10]). Associational fibers which arise

from glutamatergic mossy cells in the hilus and which terminate in

the inner molecular layer (IML) of the dentate gyrus are not

injured by the lesion [8,9,12,13].

Denervation induces an increase in excitatory synaptic
strength

To assess the effects of entorhinal denervation on glutamatergic

synaptic strength, miniature excitatory postsynaptic currents

(mEPSCs) were recorded from control and denervated granule

cells using whole-cell patch-clamp recordings at 3 h, 6 h, 12 h,

24 h, 48 h, 3–4 dpl, 7 dpl, 10 dpl and 14 dpl (age-matched

controls were recorded at 0–1 d, 3–4 d, 10 d and 14 d; n = 4–11

cultures per group; $3 neurons recorded per culture; 165 neurons

total; Figure 2). Recorded neurons were filled with biocytin, post

hoc stained and identified using morphological criteria (Figure 2A).

A significant increase in the mean mEPSC amplitude of

denervated granule cells compared to age-matched non-denervat-

ed controls was seen between 6 h and 10 dpl (Figure 2D). At

14 dpl no significant difference between denervated and non-

denervated granule cells was observed (control 14 d: 13,96

0.60 pA; denervated 14 dpl: 13,0760.59 pA; p = 0.33). The

frequency of mEPSC events was initially reduced (at 3 h post

lesion; control: 3.560.3 Hz; denervated: 1.660.1 Hz; p,0.01)

and recovered to control levels (Figure 2E). We concluded that

partial denervation of dentate granule cells in vitro induces an

increase in excitatory synaptic strength, which returns to baseline

between 10 and 14 dpl.

Because the adaptation of synaptic strength occurred in

response to the loss of excitatory entorhinal afferents, it appeared

to be in line with a compensatory adjustment in excitatory synaptic

strength, i.e., homeostatic synaptic up-scaling, which is observed in

other models after a prolonged reduction in the cell’s afferent

activity [4,5,14–16].

Denervation induces a compensatory increase in
excitatory synaptic strength similar to TTX

A well established method to perturb neuronal activity and to

induce homeostatic synaptic scaling is chronic blockade of sodium

channels with TTX (e.g., [17–23]). We therefore combined

denervation and TTX-treatment to test whether these two

experimental conditions exploit, at least in part, similar mecha-

nisms. A comparable approach to test for homeostatic synaptic

scaling has been reported previously [24,25]. If similar mecha-

nisms are involved, we hypothesized that TTX should have no

effect, or at least a smaller effect on mean mEPSC amplitude of

denervated granule cells in comparison to non-denervated granule

cells. If the underlying mechanisms are dissimilar, we expected

that denervation and TTX should have an additive effect on

granule cell mEPSC amplitudes. As shown in Figure 3, treatment

of non-lesioned control cultures with 2 mM TTX for 2 d induced a

significant increase in mEPSC amplitude, suggesting that dentate

granule cells show robust synaptic up-scaling. The combination of

denervation and TTX had no additive effect on the mean mEPSC

amplitude (Figure 3; n = 5 cultures per group, 3–4 neurons

recorded per culture).

Layer-specific strengthening of excitatory synapses at
3–4 days post lesion

Since entorhinal denervation results in synapse loss in the OML

[1,2] we assessed whether the observed changes in synaptic

strength were restricted to this zone. As the rise time of mEPSCs

Figure 1. Entorhinal denervation in vitro leads to a layer-specific loss of excitatory input. (A) Schematic of an organotypic entorhino-
hippocampal slice culture. The entorhino-hippocampal fiber tract (red) terminating in the outer molecular layer (OML) of the dentate gyrus (DG) and
the plane of transection (blue) are illustrated. (EC, entorhinal cortex; IML, inner molecular layer). (B) Control and denervated cultures (blue, TO-PRO
nuclear stain; white, plane of transection). In all denervation experiments the EC was removed. This procedure does not damage the DG. Scale bar:
500 mm. (C) Electrical stimulations of the entorhinal cortex while recording evoked EPSCs from dentate granule cells revealed an intact and functional
entorhino-hippocampal projection. The evoked EPSCs were blocked by application of the AMPA-receptor antagonist CNQX (10 mM). Scale bar:
500 mm. (D) Entorhinal denervation leads to a layer-specific loss of excitatory input in the OML, while dendritic segments in the IML are not
denervated (red, Mini-Rubi traced entorhinal fibers; green, schematic of a dentate granule cell). Scale bar: 50 mm.
doi:10.1371/journal.pone.0032883.g001

Denervation-Induced Homeostatic Synaptic Scaling
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can be used to determine the distance of synapses from the soma of

patched neurons [24,26–29], we plotted the amplitude of mEPSCs

recorded at 3–4 dpl against their rise time. This revealed that

events with a slow rise time, which originate from distal dendrites,

had significantly larger mean amplitudes following denervation

compared to controls. In contrast, events with a fast rise time,

which arise from proximal dendritic segments, did not exhibit

increased mEPSC amplitudes. At a rise time of ,0.85 ms the two

groups separated (Figure 4A).

We next computed the rise time to distance from soma

dependency using the compartmental model for mouse dentate

granule cells published by Schmidt-Hieber and colleagues [30].

This model has been recently validated by the first dual somato-

dendritic recordings of dentate granule cells by Krueppel et al.

[31], who demonstrated that the properties of dentate granule cell

dendrites can be well-described by the passive compartmental

model of Schmidt-Hieber [30]. Using this model we found that

synapses with a rise time of 0.85 ms are located at a distance of

,50 mm from the granule cell soma (Figure 4B). Since a distance

of 40–50 mm corresponds to the anatomical border between the

IML and OML in mouse [32–36], these computations support the

hypothesis that denervation leads to an increase in excitatory

synaptic strength in the denervated OML.

The work by Krueppel and colleagues [31] also indicated the

presence of low densities of voltage-dependent sodium channels

and A-type potassium channels in the dendritic compartment of

dentate granule cells. To verify that these active dendritic

properties do not affect our computational results, we repeated

the computations of the rise-time to distance from soma

dependency using these additional parameters. These computa-

tions yielded similar result as illustrated in Figure 4B (see Figure

S1).

Using the compartmental granule cell model of Schmidt-Hieber

et al., [30], we subsequently simulated mEPSCs under two

conditions: ‘‘global’’ strengthening of all synapses of a granule cell

and ‘‘local’’ increase in synaptic strength only in the OML

(Figure 4C, D; scaling all vs. scaling OML, n = 8 granule cells).

Under both conditions every third synapse in the OML was

silenced (switched off) to mimic spine loss following denervation

(for details on spine density changes see [10]). This computational

modeling approach revealed that a proportional strengthening of

synapses in the OML by a factor of ,1.5 (but not of all synapses)

results in mEPSC amplitude changes that are similar to the ones

we measured in our culture preparations after denervation.

Local electrical stimulations confirm layer-specific
strengthening of excitatory synapses after denervation

Since the validity of a computational modeling result depends

on the quality of the model as well as on the specific condition for

Figure 2. Denervation induces an increase in excitatory synaptic strength. (A) Granule cell in a denervated culture at 3–4 days post lesion
(dpl). The neuron was filled with biocytin and post-hoc identified using Alexa568-conjugated streptavidin (red; blue, TO-PRO nuclear stain). Scale bar:
50 mm. (B) Sample traces of miniature excitatory post synaptic currents (mEPSC) recordings from non-lesioned control cultures and from denervated
granule cells at 4 dpl. (C) Cumulative distribution diagrams of mEPSC amplitudes and inter-event intervals from control and denervated (3–4 dpl)
dentate granule cells revealed a significant increase in amplitude after denervation. (D, E) mEPSCs were recorded at 3 h, 6 h, 12 h, 24 h, 48 h, 3–
4 dpl, 7 dpl, 10 dpl and 14 dpl. Age-matched controls were recorded at 0–1 d, 3–4 d, 10 d and 14 d (n = 4–11 cultures per group; $3 neurons per
culture; 165 neurons total). These experiments demonstrated increased mEPSC amplitudes between 6 h and 10 dpl (D). The frequency of mEPSC
events was initially decreased (at 3 h post lesion) and subsequently recovered back to control levels (E).
doi:10.1371/journal.pone.0032883.g002

Figure 3. Denervation induces homeostatic synaptic scaling.
(A, B) Treatment of denervated cultures with the sodium channel
blocker tetrodotoxin (A; TTX 2 mM, 2 d) did not significantly change the
denervation-induced compensatory increase in excitatory synaptic
strength (B; n = 5 cultures per group), indicating that granule cells
utilize, at least in part, similar mechanisms to adjust their excitatory
synaptic strength in a homeostatic manner following denervation and
TTX-treatment.
doi:10.1371/journal.pone.0032883.g003

Denervation-Induced Homeostatic Synaptic Scaling
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which the model was generated, we experimentally verified the

predicted layer-specific strengthening of granule cell postsynapses.

In particular, we were concerned that the granule cell model by

Schmidt-Hieber et al. [30] is based on data obtained from acute

hippocampal slices and not on data from organotypic entorhino-

hippocampal slice cultures. Thus, we employed local electrical

stimulations in Strontium (Sr2+)-containing bath solution [37,38],

which allowed us to test the strength of granule cell postsynapses in

the denervated OML and the non-denervated IML. In this

solution Ca2+ is partially replaced with Sr2+, which results in the

asynchronous release of individual glutamate vesicles from

presynaptic terminals in response to local electrical stimulation.

The individual events that are recorded under these conditions

correspond to quanta released and recorded under mEPSC-

recording conditions. In contrast to conventional mEPSC

recordings, which are based on a stochastic release of presynaptic

vesicles, asynchronous EPSCs (aEPSCs) are induced by local

electrical stimulation and can thus be attributed to the stimulated

afferents [37,38].

Accordingly, we stimulated the OML or the IML while

recording asynchronous EPSCs (aEPSCs) [37,38] from control

or denervated dentate granule cells (at 3–4 dpl). Events within

400 ms after the stimulus were averaged for each neuron (Figure 5;

n = 4 cultures per group; 1–3 neurons per culture; 20 stimulations

at 0.1 Hz per layer). Indeed, high aEPSC amplitudes were only

observed when the OML of denervated granule cells was

stimulated. The mean amplitude of aEPSCs upon stimulation of

the IML was not significantly different between control and

denervated granule cells (Figure 5B). These data verified the

modeling results and demonstrated that granule cells respond to

entorhinal denervation with a layer-specific increase in excitatory

synaptic strength at 3–4 dpl.

Discussion

In the present study, we have addressed the hypothesis that

neurons could respond to a denervation-induced loss of excitatory

afferents with homeostatic up-scaling of their excitatory synaptic

strength. We tested this hypothesis in organotypic entorhino-

hippocampal slice culture preparations, in which we could reliably

remove the excitatory entorhinal input to the distal dendrites of

dentate granule cells, without injuring the cells themselves [9,10].

Whole-cell patch-clamp recordings from identified granule cells

revealed a denervation-induced increase in excitatory synaptic

strength, which was first evident 6 h after denervation and lasted

for at least 10 dpl. Of note, at 3–4 dpl changes in synaptic strength

appeared to be restricted to the layer of denervation, suggesting

that neurons which lose part of their input can adjust their

excitatory synaptic strength locally. Taken together, our results

provide the first experimental evidence for a denervation-induced

homeostatic response of excitatory synaptic strength, which may

compensate for the loss of afferent innervation.

Figure 4. Rise time to distance from soma dependency indicated layer-specific changes in excitatory synaptic strength. (A) Sorting of
mEPSC events by rise time revealed a significant difference between control and denervated dentate granule cells (at 3–4 dpl) for events with a rise
time .0.85 ms. Shorter rise times did not show a significant difference. (B) Using compartmental modeling the rise time to distance from soma
dependency was determined. Single mEPSCs were elicited at different locations along a dendrite and measured at the soma. Rise times of simulated
mEPSCs increased with increasing distance of the activated input from the soma (n = 8 granule cells). A rise time of 0.85 ms corresponds to a distance
of ,50 mm from the soma, which in turn corresponds to the anatomical border between the inner molecular layer (IML) and the outer molecular
layer (OML) of the dentate gyrus. (C, D) Experimental data and compartmental simulations of layer-specific scaling of excitatory synapses. Simulated
mEPSCs were monitored at the soma of 8 model granule cells, in which synaptic background activity was elicited by random activation of dendritic
synapses in the IML and OML. In agreement with mEPSC patch-clamp recordings, layer-specific scaling of OML synapses in model granule cells led to
a significant increase of slow mEPSC amplitudes (rise times .0.85 ms). In contrast, scaling of model synapses in both layers (OML and IML) resulted in
a significant increase of both slow and fast mEPSC amplitudes (rise times ,0.85 ms). Thus, scaling of synapses in the denervated OML explained the
experimental results illustrated in (A).
doi:10.1371/journal.pone.0032883.g004

Denervation-Induced Homeostatic Synaptic Scaling
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Changes in synaptic strength are inversely correlated
with denervation-induced changes in spine density

Axonal denervation is a strong stimulus for a neuron to remodel

its synapse population [1]. At the level of identified denervated

granule cells several studies have shown that granule cells respond

to entorhinal denervation with layer-specific changes in their spine

density and a profound remodeling of their dendritic arbor [39–

42]. We were recently able to confirm these findings using

entorhino-hippocampal slice cultures of Thy1-GFP mice [9,10]. In

these culture preparations layer-specific spine density changes

were seen: In the denervated OML spines were lost during the first

week and spine density dropped to approximately 60–70% (at

4 dpl). During the second week after denervation spine density

recovered.

At the functional level data on changes of identified granule cells

after denervation are surprisingly scarce [43,44]. Our study is the

first, which has systematically studied changes in excitatory

synaptic strength of denervated granule cells. Our results revealed

a biphasic pattern in the change of mEPSC amplitudes following

entorhinal deafferentation. The mean mEPSC amplitude in-

creased significantly between 3 h and 6 h after denervation,

reached a plateau between 1 dpl and 2 dpl and returned to the

level of age-matched controls by 14 dpl (Figure 2D). This

observation suggests an inverse interrelation between changes in

synaptic strength and changes in spine density, and is thus in line

with a compensatory, i.e., homeostatic response of granule cells

following denervation.

The mEPSC frequencies did not follow the characteristic

biphasic time-course of mEPSC amplitudes and spine density

changes. An initial reduction in mEPSC frequencies was observed

at 3 h following denervation, which subsequently recovered back

to baseline and remained unchanged until 14 dpl (Figure 2E).

Although a drop in mean mEPSC frequency was expected after

the lesion, in line with a reduction of the number of presynaptic

terminals, we were surprised by the speed of its recovery, which

does not correspond to the structural recovery of synapses. This

phenomenon cannot be explained at present, although it is likely

that presynaptic homeostatic plasticity mechanisms (discussed in

[4,45]) could play a role.

Changes in synaptic strength correlate with the loss and
recovery of afferent innervation

Another form of structural plasticity, which has been described

after entorhinal denervation is collateral sprouting of surviving

axons [1,2]. It has been proposed that axonal sprouting could

compensate for the loss of entorhinal innervation and could

contribute to the functional recovery of denervated dentate

granule cells [1,43]. Evidence for collateral sprouting of excitatory

mossy cell axons from the inner molecular layer has been provided

in organotypic slice cultures at 10 dpl [8]. This time point

coincides with the observed reduction of excitatory synaptic

strength back to control levels between 10 and 14 dpl in our

experiments. It appears plausible that sprouting of excitatory

afferents could result in an increased excitatory drive to

denervated granule cells. This increase in excitatory drive could,

in turn, lead to a homeostatic reduction in synaptic strength. Thus,

changes in synaptic strength may mirror denervation and

reinnervation, i.e., the loss of afferent input correlates with an

increase in excitatory synaptic strength and the recovery of

afferent input correlates with the decrease in synaptic strength.

Together these observations suggest that changes in the synaptic

strength of denervated granule cells are closely linked to granule

cell innervation.

Denervation-induced increase in synaptic strength is
comparable to TTX-induced homeostatic synaptic scaling

Homeostatic synaptic scaling is a plasticity mechanism which

stabilizes the activity of a neuron in the face of perturbations, such

as alterations in afferent input [4,5]. Although molecularly distinct

from classical Hebbian forms of plasticity, homeostatic synaptic

scaling is known to depend on changes in AMPA receptor

synthesis and accumulation at excitatory postsynapses (e.g.,

[17,21,22,46,47]). A classical experimental approach to induce

homeostatic synaptic up-scaling of excitatory synapses is a

prolonged blockade of neural activity with TTX [14]. This leads

to a compensatory strengthening of excitatory synapses which

preserves the relative weight between individual synapses and aims

at keeping the firing rate of a neuron within a dynamic range [14].

In the present study, we wondered whether the observed

denervation-induced increase in synaptic strength could resemble

homeostatic synaptic scaling as seen after TTX-treatment. This

appeared to be a possibility, since both, TTX-treatment as well as

entorhinal denervation reduces the excitatory drive to dentate

granule cells. Accordingly, we combined denervation and TTX-

treatment, in an approach similar to the one used by other groups

[24,25]. We predicted that the effect of the two treatments should

not be additive, if similar mechanisms are involved. Our

experiments indeed showed that the two treatments are not

additive at 4 dpl (Figure 3) and thus demonstrated that entorhinal

denervation induces an increase in excitatory synaptic strength

Figure 5. Electrically evoked asynchronous EPSCs confirmed
layer-specific increase in excitatory synaptic strength. (A)
Asynchronous EPSCs (aEPSC) were recorded from identified dentate
granule cells in control and denervated cultures upon local electrical
stimulation of the OML and IML (recordings performed in Sr2+-
containing bath solution; red, pipette containing the stimulating
electrode and Alexa568; green, patch-clamp electrode containing
Alexa488). Scale bar: 40 mm. (B) An increase in mean aEPSC amplitude
was observed in response to electrical stimulations of the OML but not
in response to electrical stimulations of the IML of denervated dentate
granule cells (n = 4 cultures each; 1–3 neurons per culture).
doi:10.1371/journal.pone.0032883.g005

Denervation-Induced Homeostatic Synaptic Scaling
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that appears to be in line with a homeostatic synaptic scaling

response observed in other experimental conditions.

Entorhinal denervation induces layer-specific
homeostatic synaptic up-scaling of granule excitatory
postsynapses at 3–4 days post lesion

A major strength of the entorhinal denervation model is the

laminar termination of afferents to the dentate gyrus [48].

Entorhinal fibers terminate in the OML, while associational fibers

terminate in the IML of the dentate gyrus. Since entorhinal

denervation removes entorhinal fibers from the OML while leaving

associational fibers to the IML intact, the effects of a partial and

layer-specific denervation of dentate granule cells can be studied

[1,2]. This anatomical organization made it possible to address the

question, whether partial denervation after entorhinal lesion elicits

global changes in the excitatory synaptic strength of granule cells or

local changes in the synaptic strength of surviving synapses within

the layer of denervation. In the former case we predicted that

entorhinal denervation should increase the strength of proximal as

well as distal synapses, in the latter case we predicted that entorhinal

denervation should increase the strength of distal synapses only.

To address this question experimentally, we employed mEPSC

rise time analysis, computational modeling and layer-specific

electrical stimulations in Sr2+-containing bath solution (Figures 4

and 5). Together, these approaches provided evidence for a lamina-

specific increase in excitatory synaptic strength 3–4 days following

entorhinal denervation. This observation is in line with a set of

publications, which have shown that neurons can scale their

synapses locally (e.g., [19,23,47,49–51]; for review see [52]). Thus,

following entorhinal denervation granule cells appear to increase

the strength of their surviving distal synapses, which are located in

the denervated OML, while maintaining the strength of their

proximal synapses, which are located in the non-denervated IML. It

remains to be shown, however, whether this ability of granule cells

to scale their excitatory postsynapses in a layer-specific fashion is a

property of the target cell or afferent-specific, as has been shown by

the group of Tsien [19,23] for the CA3 region of the hippocampus.

What are the molecular mechanisms which control
denervation-induced homeostatic synaptic scaling?

The signals that mediate layer-specific responses of dentate

granule cells to denervation are not understood. Evidence has

been provided for neuron-glia interactions, where glial cells

regulate critical steps of the reorganisation process [53–55].

Following entorhinal denervation glial cells delineate the dener-

vated zone [56–61] and are thus in the correct spatial position to

provide lamina-specific regulatory cues to denervated granule

cells. Since earlier reports have shown that astrocyte-derived

tumor necrosis factor alpha (TNFa) plays a role in synaptic scaling

by regulating the accumulation of AMPA receptors at the cell

surface [25,62–65], it appears to be plausible that TNFa could also

be involved in the denervation-induced homeostatic scaling

response. The time-course of mEPSC changes following entorh-

inal denervation reported in the present study will be useful in

future work focussing on the role of TNFa and other candidate

regulatory molecules implicated in homeostatic up- (week 1

following denervation) or down-scaling (week 2 following dener-

vation) of excitatory synaptic strength.

Homeostatic synaptic scaling and its role in diseases
associated with neuron or synapse loss

Homeostatic synaptic scaling has recently been discussed in the

context of neurological diseases. In particular, it has been

suggested that synaptic scaling may be a homeostatic mechanism

that could come into play following the loss of synapses or neurons

[66–68]. Our data support this hypothesis as we observed a

compensatory increase in excitatory synaptic strength following

denervation. Since denervation of brain regions connected with

lesion sites occurs in a large number of neurological diseases, it

appears highly plausible that a broad range of neurological

diseases will be accompanied by compensatory, i.e., homeostatic,

responses of denervated neurons.

The biological consequences of lesion-induced homeostatic

synaptic scaling for the course of a neurological disease are not yet

understood. On the one hand, it has been proposed that

homeostatic synaptic scaling could counteract the disease-induced

loss of afferent input to neurons by keeping the activity of the

affected neuron within a physiological range [66]. Such a

mechanism could be beneficial and could retard memory loss in

Alzheimer’s disease. On the other hand it has been also discussed

that epilepsy could be a consequence of homeostatic plasticity [69–

71]. The entorhinal cortex lesion model (in vivo and in vitro) may

be an ideal tool to address these important questions in future

work.

Materials and Methods

Ethics statement
Animal care and experimental procedures were performed in

agreement with the German law on the use of laboratory animals

(animal welfare act; TierSchG; 14 Abs. 3) and approved by the

animal welfare officer of Goethe-University, Faculty of medicine

(reference number BB01/10/2011).

Preparation of slice cultures
Entorhino-hippocampal slice cultures were prepared at postna-

tal day 4–5 from Thy1-GFP mice with a C57BL/6J background of

either sex as previously described [7,10,72]. Cultivation medium

contained 50% MEM, 25% basal medium eagle, 25% heat-

inactivated normal horse serum, 25 mM HEPES buffer solution,

0.15% bicarbonate, 0.65% glucose, 0.1 mg/ml streptomycin,

100 U/ml penicillin, and 2 mM glutamax. pH was adjusted to

7.3 and medium was replaced every second day. All slice cultures

were allowed to mature for 18–20 days in humidified atmosphere

with 5% CO2 at 35uC.

Entorhinal cortex lesion
Slice cultures (18–20 div) were completely transected from the

rhinal fissure to the hippocampal fissure using a sterile scalpel

blade. To ensure complete and reproducible separation of the

entorhinal cortex from the hippocampus, the entorhinal cortex

was removed (Figure 1B) in every denervation experiment.

Entorhinal fiber tracing and nuclear staining
A small cristal of Mini-Rubi [10,73] was inserted into the

entorhinal cortex of 3 weeks old slice cultures using a patch

pipette. Cultures were returned to the incubator and fixed 3 d

later in a solution of 4% (w/v) paraformaldehyde (PFA) in

phosphate buffered saline (PBS, 0.1 M, pH 7.4) and 4% (w/v)

sucrose for 1 h, followed by washing in PBS and counterstained

with TO-PRO nuclear stain (1:5000 in PBS for 10 min). Cultures

were washed again, transferred onto glass slides and mounted for

visualization with anti-fading mounting medium. Confocal images

were acquired using a Nikon Eclipse C1si laser-scanning

microscope with a 106 (numerical aperture, NA 0.30, Nikon)

and a 606 oil-immersion (NA 1.3, Nikon) objective lens,

respectively. Detector gain and amplifier were initially set to
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obtain pixel densities within a linear range. All images were

sampled with ideal Nyquist rate.

Whole-cell patch-clamp recordings
Whole-cell voltage-recordings from dentate granule cells were

carried out at 35uC as previously described [74]. The bath solution

contained 126 mM NaCl, 2.5 mM KCl, 26 mM NaHCO3,

1,25 mM NaH2PO4, 2 mM CaCl2, 2 mM MgCl2, and 10 mM

glucose. Patch pipettes contained 126 mM K-gluconate, 4 mM

KCl, 4 mM ATP-Mg, 0.3 mM GTP-Na2, 10 mM PO-Creatine,

10 mM HEPES and 0.3% Biocytin (pH = 7.25 with KOH, 290

mOsm with sucrose) having a resistance of 6–10 MOhm. Dentate

granule cells were recorded at 270 mV in the presence of 10 mM

D-AP5, 10 mM SR-95531 and 0.5 mM TTX. Neurons were post

hoc identified using Alexa568-conjugated streptavidin (Invitrogen,

1:500 in PBS, 1% NGS, 0.2% Triton X-100); on the basis of this

analysis (identification of basal dendrites and/or axonal projec-

tions within the dentate gyrus) 12 recorded neurons were excluded

from analysis in the present study. In all experiments series

resistance was monitored in 2–3 min intervals, and recordings

were discarded if the series resistance reached 30 MV.

Time course of synaptic scaling after denervation. In this

experiment n = 4–11 cultures per group with $3 neurons per culture

(165 neurons total) were recorded. Mean values of recorded neurons

were averaged per culture. Age-matched non-lesioned control

cultures prepared from the same animal or littermate animals

served as controls. Control cultures were recorded alternating with

the recordings of denervated cultures at 3 h, 6 h, 12 h and 24 h

(control cultures of these time points were pooled; data shown as 0/

1 d in Figure 2D, E), as well as for 3–4 dpl, 10 dpl and 14 dpl.

Recordings at 48 h and 7 dpl were not accompanied by age-

matched non-lesioned control data. Statistical comparison between

controls (0–1 d with 3–4 d; 3–4 d with 10 d or 14 d) revealed no

significant difference in the mEPSC properties of control neurons at

these ages. $8 independent litters were used in this set of

experiments. The resting membrane potential was not significantly

different between the groups (e.g., control, 276.361.8 mV; 3 h,

274.760.9 mV; 12 h, 275.361.3 mV; 24 h, 274.761.6 mV; 3–

4 dpl, 273.464.6 mV; 7 dpl, 278.162.0 mV; 14 d 275.56

1.2 mV).

TTX treatment of denervated cultures. In these

experiments n = 5 cultures were recorded per group,

accompanied by age-matched non-lesioned control cultures (see

above). TTX (2 mM) was added to the incubation medium at 2 dpl

for 2 days.

Local electrical stimulations in Sr2+-containing bath

solution. Local electrical stimulations were carried out in

Strontium (Sr2+)-containing bath solution (4 mM SrCl2, 1 mM

CaCl2, 2 mM MgCl2, 126 mM NaCl, 2.5 mM KCl, 10 mM

HEPES and 10 mM glucose; pH = 7.3 with NaOH), which leads

to an evoked asynchronous release of presynaptic glutamate

vesicles. Previous work [37,38] has shown that these locally evoked

events compare to mEPSCs, and can be used to assess the

postsynaptic strength of synapses on which the electrically

stimulated axons terminate. Glass pipettes (6–10 MOhm; filled

with bath solution and 10 mM Alexa568) holding the stimulation

electrode were positioned in the OML or IML (.20 mm apart

from closest dendritic branch) and current pulses (4 mA; 500 ms; 20

at 0.1 Hz each layer) were generated by a stimulus generator

STG1002 (Multichannel Systems, Reutlingen, Germany) while

recording evoked asynchronous EPSCs from individual granule

cells (age-matched controls vs. 3–4 dpl) in whole-cell voltage-mode

(events within a 400 ms following stimulation were analyzed). The

position of the stimulation pipette was documented in confocal

image stacks. Recorded neurons were filled with Alexa488

(10 mM) in these experiments (n = 4 cultures per group; 1–3

neurons recorded per culture).
Entorhinal cortex stimulation. A bipolar stimulation

electrode (NE-200, 0.5 mm tip separation, Rhodes Medical

Instruments, Wood hills, CA) was positioned in layer 2–3 of the

entorhinal cortex and current pulses (50 mA; 1 ms) were generated

by a stimulus generator STG1002 (Multichannel Systems,

Reutlingen, Germany) while recording from individual granule

cells in whole-cell mode (n = 5 cultures recorded at 18–20 div and

at 34 div).

Compartmental modeling
Compartmental simulations were performed using 8 morpho-

logically realistic mouse dentate granule cells [30] which were

downloaded from http://senselab.med.yale.edu/ModelDB/

ShowModel.asp?model = 95960. Model granule cells were imple-

mented in the simulation environment NEURON ([75]; www.

neuron.yale.edu). Realistic passive properties were taken from

Schmidt-Hieber et al. [30]. Excitatory (AMPA receptor-mediated)

synaptic conductance changes were simulated using the sum of

two exponential functions [30]: rise time 0.2 ms; decay time

2.5 ms; peak conductance 0.5 nS; reversal potential 0 mV.

Rise time to distance from soma dependency
To determine the distribution of simulated mEPSC rise times

with increasing distance from the granule cell layer, identical single

synaptic input was activated at different locations along a path

between the soma and a distal end of the dendrite, and

corresponding mEPSCs were detected at the soma. Simulated

cells were voltage clamped at 270 mV and an explicit series

resistance of 2 MV was included. In some experiments (see Figure

S1) the properties of these mouse model granule cells were

modified according to Krueppel et al. [31], by inserting a low

concentration of voltage-dependent sodium channels (1 mS/cm2)

and A-type potassium channels (10 mS/cm2).

Simulations of global and local scaling
To simulate the effects of scaling of dendritic synapses on

mEPSCs, we monitored voltage-clamped somatic currents in 8

model granule cells [30] in which synaptic background activity was

arising from the random (Poisson) low frequency activation

(0.017 Hz) of dendritic AMPA synapses in the inner and outer

molecular layer (IML/OML). In these simulations, AMPA

synapses were placed on all spines of granule cell OML and

IML dendrites. Spine numbers and densities for spine-bearing

compartments of 8 granule cells (average spine density:

2.3960.06/mm) were taken from Schmidt-Hieber et al. [30].

Spines were implicitly implemented into the model by scaling the

specific membrane resistance (Rm) and the specific membrane

capacitance (Cm) of dendritic compartments [30]. In each cell, all

synapses proximal to the IML/OML border (specified as somatic

length/2+44 mm) were defined as IML synapses. All synaptic

inputs located between the IML and the ends of distal dendrites

were defined as OML synapses. We used the same kinetic

parameters for dendritic OML/IML AMPA synapses as in single

mEPSC simulations: rise time 0.2 ms; decay time 2.5 ms. In

simulations of the synaptic scaling, following synaptic parameters

were used: reversal potential 0 mV; control mean peak conduc-

tance for synapses in the IML and the OML 0.25 nS (100%) and

0.5 nS (100%), respectively; scaled mean peak conductance for

synapses in the IML and the OML: 0.375 nS (150%) and 0.75 nS

(150%), respectively; holding voltage 270 mV; series resistance

2 MV. To add variability to synaptic events, the conductance
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values were sampled randomly from Gaussian distributions with

respective peak conductance means (see above) and a variance of

2.561026 nS. In ‘‘scaling OML’’ simulations, proportional

(150%) scaling of OML synapses was implemented and every

third OML synapse was silenced (switched off) to mimic the spine

loss following ECL (spine density is reduced down to approximate

60–70% at 4 dpl; [10]). In ‘‘scaling all’’ simulations the same

proportion of synapses was switched off in OML, but proportional

(150%) scaling of OML as well as IML synapses was used. Note

that in control (unscaled) conditions, larger conductance was used

for OML synapses as compared to IML synapses as patch-clamp

mEPSC data suggested larger synaptic strength of distal dendritic

inputs in comparison to proximal inputs (amplitudes of slow

mEPSCs with rise times .0.85 ms were larger than amplitudes of

fast mEPSCs with rise times ,0.85 ms). Analysis of amplitudes

and rise times of simulated mEPSCs was performed using an

automatic detection software MiniAnalysis (Synaptosoft, USA).

Quantification and statistics
Electrophysiological data were analyzed using pClamp 10.2

(Axon Instruments, USA) and MiniAnalysis (Synaptosoft, USA)

software. All events were visually inspected and detected by an

independent investigator blind to experimental condition. 300–

400 events were analyzed per recorded neuron. Evoked asyn-

chronous mEPSC were analyzed within 400 ms after each

stimulus (20 at 0.1 Hz in each layer). Statistical comparisons were

made using Wilcoxon-Mann-Whitney test followed by Bonferro-

ni’s correction where appropriate. P-values of less than 0.05 were

considered a significant difference. All values are expressed as

mean 6 SEM.

Digital Illustrations
Confocal image stacks were exported as 2D-projections and

stored as TIFF files. Figures were prepared using Photoshop CS2

graphics software (Adobe, San Jose, CA, USA). Image brightness

and contrast were adjusted.

Supporting Information

Figure S1 Comparison of rise time to distance from
soma dependencies using the passive model by Schmidt-
Hieber et al. (2007) and the active model by Krueppel
et al. (2011). Krueppel et al., (2011, [31]) assessed dendritic

properties of rat dentate granule cells using dual somato-dendritic

patch-clamp recordings. Although their results were in agreement

with the passive granule cell model of Schmidt-Hieber et al. (2007,

[30]), these authors also reported a low concentration of A-type

potassium currents (10 mS/cm2) and transient sodium currents

(1 mS/cm2) in the dendritic compartment of granule cells. To

exclude the possibility that these active channels could influence

the results of our computations, we repeated the rise time to

distance from soma dependency simulations using the dendritic

properties determined by Krueppel et al. (red; granule cell 7 from

Schmidt-Hieber et al., [30]). This yielded the same results as seen

in the passive model of Schmidt-Hieber et al. (black; granule cell

7). The rise time to distance from soma dependency was not

affected by the systematic variation of synaptic strength from

0.25 nS to 1 nS (data not shown).

(TIF)
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