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The nucleons taking part in heavy ion reaction are considered as a three-component 
fluid. The first and second components correspond to the nucleons of the target and the 
projectile, while the thermalized nucleons produced in the Course of the collision belong to 
the third component. Making use of the Boltzmann equation, hydrodynamical equations 
are derived. An equation of state for anisotropic nuclear matter obtained from a field 
theoretical model in mean field approximation is applied in a one dimensional version of 
the three-component fluid model. The speed of thermalization is analyzed and compared 
to the results of cascade and kinetic models. 

[NUCLEAR REACTIONS Relativistic heavy-ion reactions, hydro- 
dynamic description. 1 

I. INTRODUCTION 

In recent years the hydrodynamical model was 
applied successfully for the description of energetic 
heavy ion collisions. Owing to the assumption of 
immediate local equilibration, however, the collec- 
tive flow arising from the high local pressure is 
somewhat overestimated in the model, while the 
conversion of kinetic energy into thermal excita- 
tions is inhibited, and hence insufficient entropy is 
produced.' This entropy deficiency can be 
remedied to some extent by including viscous pro- 
cesse~,*'~ but in the initial phase the deviations from 
local equilibrium are not small as it is assumed in 
viscous hydrodynamics. It was already pointed 
o ~ t ~ - ~  that the assumption of immediate local ther- 
mal equilibration may cause these deficiencies in 
the one-fluid hydrodynamical model. The first at- 
tempt to introduce a two fluid hydrodynamical 
model was made by Nix and his ~ o l l e a ~ u e s . ~  This 
modification improved the agreement of the results 
with experimental ones at high energies. However, 
the two fluids maintained their identity during the 
first part of the collision process, leaving no room 
for real thermalization. The development of such a 
thermalized matter is important unless the 
nucleon-nucleon Cross sections are extremely for- 
ward peaked (above 5 GeV/nucleon), and therefore 
the scattered particles cannot lose their distinguish- 
ing longitudinal momenta in a few collisions. In 

fact, collective scattering effects like critical fluc- 
tuations may even at higher energies favor thermali- 
~ a t i o n . ~  

In the hadron chemistry model" the development 
of this third thermal component was taken into ac- 
count, but collective effects like collective flow 
evolving from the interaction and pressure were 
neglected in the first nonthermalized stage of the 
collision. In another similar approach,' the ther- 
malization and shock front formation was analyzed 
in a one-dimensional many fluid model. 

The process of thermal equilibration was studied 
by ~ c ~ e r r a n , "  by Cugnon et a1.6 in a cascade ap- 
proach, and by ~ a n d r u ~ , ' ~  Pirner and 
schürmann,13 and ~anie lewicz '~  in spatially homo- 
geneous kinetic models, where the initial momen- 
tum distribution consisted of two identical dis- 
placed Fermi spheres. In the latter two calculations 
the time development of the whole momentum dis- 
tribution was determined by solving the Uehling- 
Uhlenbeck transport equations, and rapid thermali- 
zation ( t e 4 -  8 fm/c) was found especially at lower 
beam energies. At higher energies the peaks around 
the initial position of target and projectile momenta 
maintained their position longer, and their ampli- 
tude was slowly decreasing while a thermal back- 
ground component was evolving. 

In the above mentioned kinetic m o d e l ~ ' ~ - ' ~  the 
spatial distribution was not considered. In princi- 
ple, the cascade m o d e l ~ ~ " ~ " ~  should be a reasonable 
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framework to descnbe the nucleon distributions. 
However, the neglections (e.g., long range interac- 
tions, triple or multiple collisions, assumed 
minimum of the nucleon free path) in the presently 
existing cascade models, inhibit the approach to- 
wards local equilibrium. Consequently, the collec- 
tive processes are underestimated in these models. 

A sophisticated multiple collision model was 
developed recently by ~ a l f l i e t , ' ~  where the 
Boltzmann transport equation is solved both in 
space and momentum variables. The components 
reaching different levels of thermalization were 
treated separately. However, this model suffers also 
from the problem of the kinetic theories that multi- 
ple collisions and long range interactions cannot be 
considered and so the collective effects are underes- 
timated. 

In the present work we try to incorporate both 
equilibrium and nonequilibrium aspects into a uni- 
fied model; (i) the development of a thermalized 
matter component produced by the collisions, and 
(ii) the collective hydrodynamical motion of the 
thermalized and nonthermalized matter com- 
ponents. 

We start from kinetic theory, but derive an ap- 
proach which can be generalized to include physical 
properties of the real nuclear matter instead of 
those of an ideal gas. Hence, we will not be limited 
to the assumptions of the Boltzmann equation and 
dense systems may also be studied. In Sec. I IA the 
two- and more-fluid hydrodynamical approaches 
are discussed and their connection to the transport 
theory is shown. From the possible approaches a 
simple version is selected in Sec. IIB. It describes 
locally the gradual thermalization of the projectile 
and target nucleons. For this purpose at least a 
three-fluid hydrodynamical approach is necessary. 
In Sec. I11 the source terms of the three-fluid model 
are derived for an ideal nucleon gas, while in Sec. 
IV the source terms obtained in a relativistic mean 
field theory are discussed and extended to nonzero 
temperatures, and viscous and heat conductive pro- 
cesses. In Sec. V the results of a one dimensional 
test calculation and their consequences are present- 
ed . 

11. THE MULTICOMPONENT FLUID DYNAMICS 

A. The equations of a multicomponent 
nonthermalized fluid 

The simplest theory which describes the above 
mentioned processes is the Boltzmann kinetic trans- 

port theory. Our model is based on this theory, but 
later we may include other ingredients (quantum 
and relativistic effects, long range interactions, etc.) 
as it is usually done in the derivation of the Euler 
and Navier-Stokes equations. 

Let us suppose that the collision of two heavy 
ions at time t can be characterized by the nucleon 
distribution function in the p-space: f (r,u,t) ,  nor- 
malized to the density 

The time development of this distribution function 
is determined by the Boltzmann transport equation 
(external and long range forces are neglected) 

Wherever the Operator a, or V appears it acts on all 
quantities on the nght in the same term. The col- 
lision term C(r ,v ,  t) is defined as follows: 

C =  f 1 d3v,d3v;d3ur 

Here the transition rate of the nucleon-nucleon elas- 
tic collisions is denoted by W ( P,W, I W', ). If we 
multiply Eq. (1) with a quantity X(P) which is con- 
served in the microscopic collisions (mass, momen- 
tum, and kinetic energy), and calculate the local ex- 
pectation value of the equation by integrating over 
d3v, the right hand side (collision integral) of the 
equation vanishes for any distribution function 
f (F,P,~) .  The equations obtained this way will have 
a simple structure. Setting the X ( @ )  equal to m, 
m V ,  and m I (P -U / 2/2, where 

is the average flow velocity, we get a set of equa- 
tions equivalent to the hydrodynamical ones: 

where p(r , t )  is the total mass density, p(r , t )=mn,  
~ ( r , t )  is the energy density without the rest mass, 

g(r , t )  is the heat flux (multiplied by the rest mass), 
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pij(P,t) is the pressure tensor (superscripts are spa- 
tial indices), 

and in the last equation the tensor A"(r,t) contains 
the derivatives of the collective flow velocity, 

(V.P) is a vector whose ith component is z ~ ~ , P "  
and 

These equations are valid for any distribution 
f ( + , ~ , t ) .  If we suppose that the momentum distri- 
bution is a locally thermalized (Maxwell- 

Boltzmann) distribution fo ,  then Eqs. (3) reduce to 
the Euler equations of the hydrodynamics. If the 
distribution f is close to a local equilibrium distri- 
bution the quantities PiJ and q can be evaluated and 
the Navier-Stokes equations are obtained. 

When the system is far away from the thermal 
equilibrium, in some cases, as it will be shown, it is 
useful to decompose the distribution function of the 
indistinguishable particles in the following way: 

The type and number of components f i  depend on 
the specific physical problem to be discussed. On 
the basis of the Boltzmann equation, a coupled set 
of equations may be introduced as 

where the collision terms Ci are defined by 

Here the partial transition rates W~(CP ' ,W;  I w,w1 ) give 
the transition probability to the final state, charac- 
terized by the velocities W and cpl, under the condi- 
tion that the nucleon of velocity CP belongs to the 
component f i (p,  w,t) after the collision. Since the 
particles are indistinguishable, the transition proba- 
bility is independent of the initial components. If 
the sum of the partial transition rates is equal to the 
total one, i.e., 

then the sum of the solutions of the coupled set of 
equations ( 5 )  satisfies the original Boltzmann equa- 
tion. 

If one wants to solve the Boltzmann equation in 
its full complexity then, of Course, it is better to use 
the single equation instead of the coupled set of 
equations. If we Want, however, to solve the prob- 
lem only approximately, e.g., by the method of mo- 
ments, then the decomposition of the distributipn 
function may be useful because in this way the 
lowest order moments of the distribution function 
fi ,  namely the density, the flow velocity, and the 
energy density, may carry information about the 
system which othenvise is contained only in the 
higher order moments of the distribution function 
f.  On the other hand, by the decomposition of the 
distribution function f we can introduce physically 

plausible assumptions which cannot be formulated 
at all if we use the original Boltzmann equation. 

The partial transition rates are uniquely defined 
only if the distribution functions f i  do not overlap 
with each other. In the heavy ion collisions, howev- 
er, this is not the case, and therefore, the decompo- 
sition of the total transition rate is arbitrary. It 
should be noted, however, that the decomposition of 
the distribution function f into components fi is 
also completely arbitrary. The decomposition is de- 
fined by the prescription of the partial transition 
rates, by the initial conditions, and by the assumed 
functional form of the component distributions fi .  
This mathematical freedom gives us the possibility 
of introducing the appropriate physical assump- 
tions, reflecting the specific features of the physical 
system studied. 

Now we derive hydrodynamical equations for the 
multicomponent fluid. Similar to the way Eq. (3) is 
obtained18 but starting from Eq. ( 5 )  we end up at 
the following Set of equations: 
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where the notations are defined as follows: the par- 
tial particle number density 

n ; ( ~ , t ) =  J fifp,v,t)d3u , 

the flow velocity 

ui=ni- 'J f i ( ~ ~ , t ) u d 3 u =  (V) ;  , 

the energy density 

ei(p,t)=rn ( (P-U;) ' ) ; /~  , 

the pressure tensor 

~ ~ ( p , t ) = r n n ~ ( ( ~ - ~ ; ) o ( O - - U ~ ) ) ~  , 
the heat flux 

q i ( ~ , t ) = r n n i ( ( ~ - u i )  1 v-ui / ' ) ; /2,  

essentially different from the mixture of different 
fluids where the particles are physically distinguish- 
able (e.g., Proton and neutron fluids). In this latter 
case the particle transport between different fluids 
is not possible, hence the hydrodynamical equations 
describing such a system are somewhat simpler.'9 
The multicomponent fluid dynamics seems to pro- 
vide an appropriate tool to follow the process of the 
thermalization which is rather difficult in the 
framework of the conventional two-fluid dynam- 
i ~ s . ~ " ~  

A serious problem arises, however, in this 
separated multicomponent fluid dynamical ap- 
proach when we Want to generalize the source terms 
by including the long range i n t e r a c t i o n ~ , ~ ~ , ~ ~  viscous 
and heat conducting processes. In this case the 
source terms are not separable any more (see Sec. 

and finally the derivative tensor of the flow velocity IV). Nevertheless, in sec. I1 B we shall overcome 
this difficulty. 

In contrast to the case when the original 
Boltzmann equation is used, the collision integrals 
standing on the right hand side of Eqs. (8) do not 
vanish. These collision integrals are responsible for 
the mass, momentum, and energy transfer among 
the components. These equations can be considered 
as the generalization of the conventional hydro- 
dynamics for a multicomponent fluid. The main 
field of the application of this theory is the analysis 
of nonequilibrium processes, where the characteris- 
tic time of local equilibration and that of the collec- 
tive flow are of the Same order of magnitude. 

In order to avoid misunderstanding it is necessary 
to emphasize that the multicomponent fluid is 

A clear and simple separation of the Boltzmann 
equation was introduced by Malfliet in the multiple 
collision model." The distribution function was 
separated into an infinite number of components. 
A given component i contained the particles scat- 
tered i times and so the transition probabilities wi 
could be evaluated in a straightfonvard way. How- 
ever, to handle this infinite Set of separated 
Boltzmann equations additional simplifying as- 
sumptions had to be applied and so the spatial and 
time variations of the system could be studied only 
in a limited way. 

In order to analyze the structure of Eqs. (8) let us 
express the collision terms in the usual manner with 
the help of the effective cross section of the elastic 
scattering and the relative velocityI8 

If we assume that in the collision integrals the product of the cross section and the relative velocity can be re- 
placed by a mean value defined as 

then the collision term can be written as 

c i ~ z j k  [(UiUr~l )jk ~ d ~ u l f ~ ( ~ ~ ~ ' , t ) f k ( ~ , f f \ , t ) - ~ ~ ( U U ~ ~ ]  )jk Jd3uI f j ( ~ , w , t ) f k ( ~ , v l , t )  1 . (1 1) 

This approximation has the advantage that Eqs. (8) can be written in a simple and self-explanatory separated 
form 
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In this approximation, as it is seen from the second 
and third equation of (12), the removal of a particle 
from a given component is associated with the re- 
moval of the average value of the momentum and 
energy, thus keeping the momentum/particle and 
energy/particle ratio of this component unchanged. 
However, the momentum/particle and energy/ 
particle ratio of the component into which the par- 
ticle is scattered will be changed. 

B. Three-component fluid dynamics 
for heavy ion reactions 

Let us assume that the distribution can be physi- 
cally decomposed into three components and all 
three components can be described by an equilibrat- 
ed distribution (Fig. 1). The parameters of the dis- 
tributions are then ni, ui, and Ti: 

It follows from Eq. (13) by definition that 

n =Ei=1,3ni and , (14) 

where ni and ui are the partial density and mean 
flow velocity of component i, respectively. When 
we Want to apply Eqs. (8) or Eqs. (12) to determine 
the time dependence of these parameters a serious 
problem arises. 

We know that summing up over i in Eqs. (8) we 
must obtain the conventional equations of hydro- 
dynamics, Eqs. (3). But this is tme only if the 
quantities Ci, Pi, and gi are calculated by means of 
distribution functions fi satisfying the Boltzmann 
equations ( 5 ) .  However, the distributions f i  are not 
known and so we are forced to introduce some as- 
sumptions for f; when we evaluate the quantities 
Ci, Pi, and gi. Therefore, having summed up Eqs. 
(8) obtained in this way the recovery of the hydro- 
dynamical equations (3) is not ensured, in other 
words, the general conservation laws might be 
violated. 

The only possibility of avoiding this problem is to 
explicitly require Eq. (3) to be satisfied. In order to 
get a nonoverdetermined set of equations we can 
then omit from Eqs. (8) the Set of equations describ- 
ing one of the three components: 

On the basis of the physical process we Want to dis- 
cuss, we can use the following simplifying assump- 
tions: Each nucleon-nucleon collision between par- 

'Y' 
FIG. 1. Schematic plot of the time evolution of the 

velocity distribution in the three-component fluid approx- 
imation. The density is proportional to the density of the 
contour lines. 
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ticles belonging to different components, (i j)  
=(1,2), (1,3), and (2,3), populates the third com- 
ponent describing the thermalized particles, and so 
we can assume that the projectile and target com- 
ponents, i=1,2, move with constant velocities, 
u 1  =const, u2 =const, and their momentum distri- 
bution is not changing during the reaction 
Tl  =const, T2 =const. These assumptions are the 
local equivalents of the hadron chemistry model of 
Montvay and zimanyiIo and are motivated by the 
study of the time development of the nucleon 
momentum distribution12 in heavy ion reactions. It 
was found in a model c a l~u l a t i on~~  that the momen- 
tum distribution of the once scattered nucleon gen- 
eration can be approximated by a thermal distribu- 
tion if the projectile energy is relatively small 
(Ep  <0.6 GeV/nucleon), and so the initial target 
and projectile momentum distributions are not dis- 
joint spheres in momentum space. At higher ener- 
gies the momentum distribution of the collided par- 
ticles is elongated in the beam direction so that the 
anisotropy of this component distribution has to be 
taken into account. 

According to the assumptions above, a collision 
between different components does not populate f 
and fi. The flow velocity and the temperature are 
fixed for the components 1,2 and the continuity 
equation [first Eq. in (811 is simpler because only 
the loss term is present in the collision integral: 

Completing the hydrodynamical equation set for 
the whole matter with the continuity equation for 
the target and projectile components from the 
separated approach (8) we thus obtain a fully deter- 
mined set of equations: 

[a, + ( V - U ) ] ~  = O  , 

where Aui =ui -U and p=nm. To solve this sys- 
tem of equations we need the pressure tensor P", 
the collision numbers Z I 2 ,  Z l 3 ,  Z237 the heat con- 
duction vector q in the nonequilibrium matter, and 

the relation between the energy density E and the 
other parameters of the model (ni, Ti, Aui, i = i73  1. 

Equations (1 7) are general conservation laws, 
therefore more realistic source terms20 can also be 
applied. The number of differential equations to be 
solved in the one- and two-fluid model and in the 
three-component fluid model is 5, 10, and 15, 
respectively, while in the approach described above 
this number is 7. 

This approach is essentially different from the 
two-fluid model elaborated in Los ~ l a m o s . ~  Here 
the thermalized matter component coexists with the 
target and projectile components, and the particles 
are allowed to be exchanged among the com- 
ponents. 

111. SOURCE TERMS IN THE CASE 
OF AN IDEAL BOLTZMANN 

GAS MIXTURE 

Equations (17) contain the source terms 9, Pij, 
and Zkl. The evaluation of the first two quantities 
is relatively simple if all of the components fi are 
Maxwell-Boltzmann distributions: 

From the definition of the energy density: 

Introducing local coordinate Systems in each term, 
%i = P  - ui, the square of the velocity difference 
can be written as 

where Aui=ui-u. Since f; is spherically sym- 
metric in coordinates ai the last term does not con- 
tribute to the integral and so we obtain 

Here, according to the ideal gas assumption, the 
contribution of interactions to the energy density is 
neglected. In Sec. IV it will be pointed out how this 
and the following source terms may be modified in 
the case of an interacting Fermi System. 

For the calculation of the heat conduction we use 
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the same velocity coordinates Let us expand the function sh (X )  up to second or- 

In the integral three nonvanishing terms remain: 

8 = 0 . 5 m P j = l , 3 ~ d 3 ~ i [  A ~ ~ A u ~ ~ + A ~ ~ ~ ~ ~  

+ 2 % ; ( % ; ~ . h u i ) ~ , P  , (23) 

and so the heat conduction is 

=x;=1,39i . (24) 

The definition of the pressure tensor pik is 

~ ~ ~ = m P ~ = ~ , 3 l d ~ u ( $ - u j > i u ~ - u ~ ) f ~  , (25) 

and similar to the previous calculations we obtain: 

2 
wherep; = TET;. 

The evaluation of the collision integral Zjk leads 
to integrals not expressible in analytic form. Some 
limiting cases, however, can be written down. If the 
parameters of the two components i,k are identical 
the collision integral is given by18: 

Zjk = ~ ~ ~ ~ n ~ t 1 ~ 4 f l ~  . (27) 

In the extreme limiting case when the thermal ve- 
locities are negligible compared to the difference be- 
tween the mean velocities, l"?!i% <D, 
(59 = ui - Uk ) one obtains 

Zik =utotnjnkD . (28) 

If the two components have different temperatures 
but D =0, the collision integral is 

Zik = ut„njnk(m /2r13( Ti Tk )-3/2 

X l d 3 ~ e - ' v 2 4 ~  

where 

and 

6=m(l/Ti-1/Tk)/2 

der (i.e., for small 6 parameters) and perform the in- 
tegrations. We obtain 

where T =(Ti  + Tk )/2, and AT = (T j  - Tk ). Simi- 
larly for small mean velocity difference 
D < one gets 

Z i k = u t o t n i n k 4 - [ 1 + ~ 2 m / 3 ~ ] .  (31) 

The simple expression Zjk(D) = c m ,  
where C =uto,njnk and 

approximates relatively well the asymptotic 
behavior (D-tO, D+  W ,  AT-tO) of the collision 
integral in the case of two Boltzmann gases. 

Summarizing the results in the case of a distribu- 
tion f with three Maxwell-Boltzmann components, 
Eq. (131, the source terms [right hand sides of Eqs. 
(1 7)] contain the quantities 

where 

with ui being the average velocity of the partial dis- 
tribution fi(+,e,t), 9; is the relative velocity of 
particles in f i  with respect to U;, i.e., %; =ei -ui, 
and Aui is the difference of the average velocities in 
the rest System of the whole matter, Aui =U; -U. 

Since we assumed Maxwell-Boltzmann component 
distributions, the partial energy density of one com- 
ponent is €T; =3ni Tj/2. The total energy density 
contains these partial energy densities and the kinet- 
ic energy arising from the partial flow velocities 
Auj in the rest frame of the whole matter. 

IV. THE PRESSURE TENSOR AND THE 
ENERGY DENSITY 

A. Inclusion of realistic nuclear 
matter properties 

In Ref. 20 the equation of state for anisotropic, 
cold nuclear matter is studied in the framework of 
Walecka's mean field theory. The energy density 
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and the pressures are calculated for two simple 
cases which may be relevant in the description of 
heavy ion collisions: (i) the Fermi surface consists 
of two, nonoverlapping, Lorentz elongated spheres, 
and (ii) the Fermi surface is a reflection and axially 
symmetric ellipsoid. 

It should be noted that in both cases studied in 
Ref. 20 the nondiagonal elements of the stress ten- 
sor vanish because of the axial and reflection sym- 
metries of the system. Furthermore, it is 
worthwhile to emphasize that the pressure in the z 
direction is considerably greater than in the perpen- 
dicular directions, similar to the simple Boltzmann 
gas approximation. Note also that the pressure 
components in the perpendicular directions are also 
affected by the anisotropy. 

For the application in a three component fluid 
dynamical model, the following approximate ex- 
pressions are satisfactory, and reflect the basic 
properties of the source terms obtained in the above 
mode120: 

+ P ! $ ( ~ ~ , T ~ , A ~ ~ ) + P ~ ! , ~  

=p,Sik+~j:s , 

where p,(n) =nae,(n )/an - e,(n 1. (This relation 
can always be used if there is no phase transition in 
the matter.) The usual relations of equilibrium 
thermodynamics connecting the whole pressure ten- 
sor and energy density are not valid in our case. In 
the present calculations the temperature dependence 
of functions ET and p r  is approximated by the ther- 
mal energy and thermal pressure of the ideal gas as 
in Sec. 111: 

According to the restrictions introduced in Sec. I1 B 
for the components 1 and 2 the thermal energy van- 
ishes =eT2=0 because these components rep- 
resent the cold target and projectile components. 

In the c a l c ~ l a t i o n ~ ~  the heat conduction vanishes, 
owing to the symmetry of the discussed problem. 
So on the basis of Sec. I11 we use the following ex- 
pression: 

In the following one dimensional test calculation 

the interaction energy density eint and the interac- 
tion term of the pressure tensor P$ are calculated 
as in Sec. 111: 

The viscous and heat conductive terms in Eqs. (33) 
and (351, PVisc and gcond7 are given in Sec. IV B. 

B. Inclusion of viscous and heat conductive processes 
in a first order approximation 

In the previous sections the source terms were 
evaluated only in the zeroth order approximation18 
for a three component fluid. In the first order ap- 
proximation we can introduce two new physical 
properties not discussed yet. By adding a small per- 
turbation to the distribution f ( W )  we obtain the 
conventional viscous and heat conductive terms 
which are driving the system towards a spatial 
equilibrium. We add these terms to the ones ob- 
tained so far: 

These modifications are not strictly derived from a 
more fundamental theory, they follow only from 
the assumed similarity between the one and three 
fluid dynamics. 

Here the viscous pressure tensor is just the stan- 
dard Newtonian one involving the shear viscosity 
rl(p,T) and the bulk viscosity &,T). Experimen- 
tally, very Iittle is known about these coefficients, 
except for some information from low-energy col- 
lective motion such as f i ~ s i o n . ~ ~ , ~ ~  In principle, one 
might even question the validity of the Newtonian 
form for the viscous stress tensor in Eq. (37). Cal- 
culations for an ideal Fermi gas tend to show a 
strong temperature and density dependence accord- 
ing to Refs. 2 and 3 

where T. is the effective temperature of the cold 
nucleon gas calculated from the average velocity of 
the degenerate Fermi gas 

and T is evaluated from the total thermal energy 
density as T =2eT/3n. Since these calculations 
were not yet verified experimentally for heavy ions 
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at high energies, it appears more reasonable to re- 
gard 7 as a free Parameter and carry out systematic 
studies regarding its possible influence on the reac- 
tion. 

C. Inclusion of the Yukawa 
and Coulomb potentials 

Under the physical assumptions discussed above, 
the set of equations governing the heavy-ion col- 
lision are the classical equations of hydrodynamics, 
formulated as conservation equations for mass, 
momentum, and energy. In the presence of the long 
range interactions described by interaction poten- 
tials the momentum equation reads as25 

where the symbol V denotes the interaction poten- 
tials that were not included in the equation of state 
of nuclear matter because of their long-range prop- 
erties. A detailed discussion of how this separation 
of nucleon-nucleon interactions, into a short-range 
Part incorporated in the equation of state and a long 
range part treated explicitly, can be justified is given 
in Ref. 26. V is defined as a sum of a Yukawa and 
a Coulomb contribution, VY and V'. The Yukawa 
potential is determined from 

with ß= -280 MeV fm and a =2.1 fm-'. (These 
values were adjusted to reproduce reasonable sur- 
face properties for finite n ~ c l e i . ~ ~ )  For the 
Coulomb potential a constant charge-to-mass ratio 
is assumed: 

In relativistic calculations the means of introduc- 
ing potentials is unclear. Therefore up to now no 
relativistic calculations have incorporated potentials 
and one has to be content with not being able to 
describe droplet fornlation properly. In the Los 
Alamos calculations, e.g., negative pressures were 
cut off, because they led to the formation of drop- 
lets with unphysical properties.27 

The equation for the internal energy density does 
not contain the terms arising from this long range 
interaction. Moreover, the compressional energy 
density and the compressional pressure can be elim- 
inated from the equation as in the one fluid 
m o d e l ~ . ~ , ~ ~  Thus the whole system of equations we 
solve is the following: 

V. DISCUSSION OF THE MODEL 
AND ITS CONSEQUENCES 

A. Results of one dimensional calculations 

The model described above is solved numerically 
with a Eulerian method2' in one dimension. The 
equation of state was that of an ideal Boltzmann 
gas mixture with an additive compressional term 
taken from Ref. 29. From the long range potentials 
only the Yukawa potential was taken into account 
and in the present calculation we neglected the tem- 
perature dependence of the viscosity (7=20  
~eV/ fm 'c ,  c=O, ~ = 0 . 0 1 5  c/fm). The schedule of 
the solution was as follows: From Eqs. (43) we ob- 
tained n, n l ,  n2, U, and E „  in each integration step. 
Since the velocities of components 1 and 2 are fixed: 
Au l=u l  -U, Auz=u2-U, SO from Eq. (14) n3 and 
u3 can be obtained. Using the expression for the 
energy density [Eqs. (33) and (34)] the temperature 
T3 can be evaluated, as can the source terms [right 
hand sides of Eqs. (43)] for the following step. The 
details of the solution method are equivalent to the 
ones of Ref. 3. 

A symmetric system was analyzed corresponding 
to a central (slab) heavy-ion collision of 200 
MeV/nucleon projectile energy. The nucleon- 
nucleon cross section determining the collision 
number Z was varied and the penetration length of 
components 1 and 2 was studied (Figs. 2-4). The 
thermalized component developed rapidly for realis- 
tic cross sections and the interpenetration of com- 
ponents 1 and 2 was relatively small. 

In Fig. 2 the results of a calculation with realistic 
cross section g=25 mb are shown. At the compres- 
sion phase [Fig. 2(a)] the interpenetration of com- 
ponents 1 and 3 is about 3 fm although the observ- 
able width of the shock front is only 1.5 fm. The 
velocity of the 3rd component in the shock front 
drops down to Zero faster than that of the whole 
matter, because components 1 and 2 maintain their 
original average velocities and their momentum is 
balanced by the 3rd component. At the stage of 
maximum compression [Fig. 2(b)] there remains 
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FIG. 2. The density distributions of the different com- 
ponents and their time development in a one dimensional 
calculation describing a U + U  collision at 200 
MeV/nucleon bombarding energy. The nucleon-nucleon 
cross section is a=25 mb. Full lines belong to the whole 
matter density and velocity distributions, dashed lines to 
the partial densities of components 1 and 2, the dashed- 
dotted lines indicate the partial density and velocity of 
the 3rd thermal component, and the dotted lines show its 
temperature T3  in units of MeV. The three Sets of fig- 
ures (a), (b), and (C) belong to the indicated times. The 
overlap of components 1 and 3 is =3 fm at the initial 
phase. 

only a very small fraction of the cold components, 
while at late expansion stages [Fig. 2(c)] we already 
have a fully thermalized matter which expands with 
a velocity increasing linearly outwards. 

In this model it is possible to follow the transi- 
tion from the two independent interpenetrating 
fluids towards the conventional one fluid descrip- 
tion. If we increase the cross section to infinity 
component 1 or 2 vanishes immediately in the pres- 
ence of any other cornponent and consequently we 
have a sharp surface between the thermalized and 

FIG. 3. The Same as Fig. 2 with u=60 mb. 

cold components. Thus, to each space time point a 
unique velocity, temperature, and density can be at- 
tributed like in the one fluid case. This is obvious if 
we consider Eqs. (17) or (43). In these equations the 
second equation describes the transition from the 
cold components to the thermalized one. In Fig. 3 
the results of a calculation are shown with increased 
cross section u=60 mb. In the cornpression the in- 
terpenetration is reduced to 2 fm and at the full 
compression we already have no cold components. 

On the other hand, if we assume that the cross 
section goes to Zero we reach the noninteracting 
limit of the two-fluid model. Since we have seen 
that the separated Eqs. (8) are mathematically 
equivalent to Eqs. (17) we expect that the latter 
equations also reproduce the two fluid properties. 
For a perfect fluid this can be Seen analytically but 
a problem arises when we Want to introduce gen- 
eralizations (see Sec. IV) which reflect the proper- 
ties of the realistic nuclear matter (potentials, 
viscosity, heat conduction, compressional energy, 
etc.). Since the separation of these processes into 
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i 200 MeVIA ) u.=2mb the kinetic transport theory. In Fig. 5 the time evo- 
lution of the velocity distributions are plotted for a fl * ?  '= l 3  fq central region of length Az 

Az 12 
f ( u 7 t )  / h = J  Az/Tf(~ ,u7t )  dz , (44) 

where f ( z , ~ , t )  is the distribution given by Eqs. (13) 
and (18). The similarity suggests that although our 
model simplifies the kinetic aspects, the basic 
features of the evolution of momentum distribution 
are reflected properly. The velocity distribution 

FIG. 4. The same as Fig. 2 with u=2 mb. 

components is by no means trivial, their inclusion 
in the separated version of the model [Eqs. (8) or 
(1211 needs further considerations. To analyze the 
decoupling of the components from each other a 
calculation was performed using Eqs. (43) with a 
strongly decreased Cross section a = 2  mb (Fig. 4). 
Here components 1 and 2 survive the collision and 
leave the system with a density and velocity close to 
the initial ones. It is interesting to note that a siz- 
able amount of the 3rd component remains in the 
middle of the reaction Zone and the cold matter 
moving outwards drags some thermalized com- 
ponent with itself. Hence, the nuclei interpenetrat- 
ing each other obtain an observable thermal excita- 
tion. 

B. Evolution of the momentum distribution 

The momentum distribution in the central region 
changes rapidly in time and can be compared to the 
calculations of Ref. 12 made in the framework of 

FIG. 5. Time development of the momentum distribu- 
tion of the central region in the beam direction and 
orthogonally to it. The speed of thermalization is similar 
to the one obtained in the cascade and kinetic rnodels. 
The arrows indicate the velocity of the projectile/target 
in c.m. and the given percent values show the degree of 
the thermalization ( n ) /( n ) in the spatial region hz. 
The local thermalization is somewhat stronger than in ki- 
netic models because of the strong compression in the in- 
teraction region; however, if we take longer spatial inter- 
vals (Az =4 fm or more) the average thermalization 
speed decreases because of the gradual interpenetration. 
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resches an almost complete thermalization at the 
stage of full compression in a central U + U col- 
lision at 200 MeV/nucleon energy [t  =24 fm/c, 
Fig. 2(b)]. Before this stage the degree of thermali- 
zation (ratio of the 3rd component to the whole 
matter) is different in different locations. Already 
at an intermediate stage [ t  = 13 fm/c, Fig. 2(a)] the 
matter is thermalized to 90% in the middle but at 
the Same moment the matter in the compressed 
Zone ( - 3 fm < z < 3 fm) is thermalized to 50% 
only. Thus, the process of thermalization is by no 
means a minor effect during the collision. 

Finally, in Fig. 6 we show the qualitative differ- 
ence between the velocity distributions of the two- 
fluid model and ours. While in the two-fluid model 
[Fig. 6(b)] the average velocities of the two fluids 
approach each other owing to the drag terms in the 
Euler equation, in our model [Fig. 6(a)] a third ther- 
mal component develops and the resulting total 
velocity distribution may approach a thermalized 
one more smoothly. 

C. Conclusions 

At the end we answer qualitatively the question: 
What are the observable physical consequences of 
the explicit consideration of the thermalization pro- 
cess in a fluid dynamical model? 

By comparing the calculations with large and 

FIG. 6. Velocity distribution in the beam direction cal- 
culated in the three-component fluid dynamical model (a) 
in the middle of the reaction Zone ( z  = 0 )  for the case 
shown in Fig. 2(a). (b) Schematic plot of the velocity dis- 
tribution in a two fluid model like in Ref. 8. The two 
peaks are approaching each other due to the interaction 
between the two fluids. 

small cross sections we observe an important differ- 
ence: In the small cross section case the maximum 
compression and thermal excitation is essentially 
decreased. This is the consequence of the fact that 
in this case the existing cold components maintain 
their kinetic energy and so the compressional energy 
is smaller. The density increase is also smaller and 
the momentum of the incoming cold matter is bal- 
anced by the large interaction pressure pz ,  
However, the interaction pressure in the transverse 
directions vanishes in the ideal gas approximation 
and this means that all the compressional, thermal, 
and interaction pressure components Eq. (33) are 
smaller in transverse directions. Consequently the 
presence of the cold matter components decreases 
the momentum transfer into transverse directions. 

This effect may weaken somewhat the "side- 
splash" process and may change the deflection 
function 8(b)  of the "bounce-off "30 effect. The de- 
flection angle 0 will be slightly smaller especially at 
large impact parameters where the possibility of in- 
terpenetration is larger. 

We have seen, however, that in the examples 
presented above (Fig. 2) the thermalization is nearly 
complete. This result shows that the three- 
component fluid model yields similar results to the 
one fluid one in the case of central and nearly cen- 
tral collisions in the some 100 MeV/nucleon bom- 
barding energy region. Thus the strong hydro- 
dynarnical effects-the bounce off30 observed in the 
sideward peaked angular p, d, and t cross ~ections,~'  
in two-proton correlation experiments with heavy 
targets,32~33 and also in correlations between light 
and heavy ejected fragments34-which are caused 
mainly by central collisions will not be essentially 
changed in the three-component fluid dynamical 
model. 

In the three dimensional version of the model the 
inclusive spectra are expected to be reproduced 
better than in the one and two fluid models and it 
should provide us with a reliable description of col- 
lisions in the few GeV per nucleon energy region as 
well. 
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