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A general formalism is described for the treatment of Coulomb fission, within the framework of the semiquantal
theory. We develop a model for the fission probabilities of levels excited in Coulomb excitation. This model contains
penetration of the double-humped fission barrier, competition from gamma and neutron emission, and the spreading
of the collective states into noncollective compound states. For }*W 4-238U, the fission probability at 6, = 180° is
increased by a factor of 3.9, 3.3, and 2.0 at E/E,,=0.77, 0.85, and 0.935, respectively, compared to the
simplified sharp cutoff model used in earlier model calculations. The enhancement comes from barrier
penetration. The damping of the fission probability due to spreading into noncollective compound states is
small. Prompt Coulomb fission (near the distance of closest approach) is studied in a one-dimensional model.
The results clearly imply that prompt fission is negligible. We have also studied the sudden approximation for
collective rotational levels in connection with Coulomb fission. At high spins (Z =20), it leads to significant
errors. Contrary to the basic assumption of the sudden approximation that the nuclear symmetry axis remains fixed
during the collision, it is shown that Coulomb excitation results in a strong alignment of the nuclear symmetry axis
perpendicular to the beam axis at small internuclear distances.

NUCLEAR REACTIONS, FISSION Semiquantal theory of prompt and asymptotic
Coulomb fission, study of double-humped barrier penetration, damping effects,

neutron and Y emission. Calculated o(E,, 6, = 180°).
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I. INTRODUCTION

In anticipation of modern heavy-ion accelerators,
Guth and Wilets® proposed experiments to observe
Coulomb fission (CF), a new kind of process in-
duced entirely by the strong time-varying electric
interaction between heavy-ion projectile and tar-
get nucleus. Coulomb fission is unique among
fission mechanisms in that the Coulomb interaction
couples directly to the collective fission degree of
freedom. All other fission mechanisms proceed
indirectly through noncollective, compound nu-
clear states. As a result, CF should be faster
than other fission processes. Since the Coulomb
interaction with collective modes is rather well
understood, CF should be an excellent probe for
investigating collective potential energy surfaces
and collective dynamics at high excitation energy
and large deformations.

A number?-® of theoretical calculations of CF
have been published. These calculations confirm
the above conjecture, viz., that CF should be a
sensitive probe. Because of differences inthetreat-
ment of reaction dynamics and of nuclear structure in
these calculations, their predictions differ signi-
ficantly. Predictions of cross section magnitudes
differ by as much as 3 orders of magnitude. Dif-
ferent assumptions lead to predictions of angular
distributions which are qualitatively different.

Experimentally,® CF has been observed only re-
cently, and its characteristics are still not well
known. Sub-Coulomb, heavy-ion induced fission
events, suggestive of CF, had been observed ear-
lier at Berkeley!?'!! and at GSI*2'!3; however, in
those experiments it was impossible to separate
CF events from fission induced by the transfer of
one or more neutrons.

At sub-Coulomb energies, all the available data
seem to agree rather well with the predictions
based on the approach of Oberacker et al.® The ex-
perimental results of Backe et al.® for the CF of
2387 induced by bombardment with W ions are
shown in Fig. 1, along with the theoretical predic-
tions of Oberacker.’* Results consistent with the
earlier Berkeley and GSI data were discussed in
Ref. 8. There is no experimental evidence for the
deep Coulomb-nuclear interference minimum pre-
dicted by the theory. This interference seems to
depend sensitively on the nature of the nuclear in-
teraction of the ions at short distances and is
under study.

Because of the success of our approach in the
sub-Coulomb region, and because of the large
discrepancies between the predictions of compet-
ing models, we present here a discussion of the
dynamics of CF in order to illuminate the validity
and consequences of some of the important assump-
tions and approximations underlying various ap-
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FIG. 1. Experimental observation of Coulomb fission
(Ref. 9) compared to the theoretical predictions (Refs.
8 and 14).

proaches. We also discuss the competition of fis-
sion with other decay modes and the damping of
collective states into noncollective compound
states. These have not been treated previously

in the literature.

We begin with a brief outline of the coupled-
equations approach of Oberacker, Holm, and
Greiner,*5'® indicating how earlier calculations
can be generalized easily to include coupling of
collective bound states to continuum states and
to noncollective compound levels. In Sec. III we
critically examine the use of the sudden approxi-
mation in treating rotational excitations. Section
IV is concerned with the justification of the neglect
of direct couplings to the continuum in the Cou-
lomb excitation calculations—“prompt fission.”
Results summarized there are covered in greater
detail in the Appendix. In Sec. V, a model of fis-
sion probabilities is described which is more real-
istic than the classical “sharp cutoff” model used
earlier.*®®* Numerical results are given.

II. FORMAL TREATMENT

The mechanism of CF is Coulomb excitation of
collective resonances followed by spontaneous fis-
sion. We study the CF problem in semiquantal
approximation and derive a set of coupled equations
for fission caused by inelastic Coulomb or nuclear
excitation. Let us first consider the total Hamil-
tonian in the center-of-mass system,

H(E, £, T) = Ty + Hy(8,) +Hy(E,) + 7,y (E,, £, T) .
(2.1)
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The first term describes the kinetic energy of
relative motion. The symbols £, and H; (i =p,f)
represent the intrinsic coordinates and Hamilton-
ians of the projectile and target nucleus, respec-

tively. ¥, denotes the interaction potential con-

sisting of a real Coulomb and a complex optical
potential,'®

vpt(gp’ 5n.{') =Voou + (VHIW)gyer - (2.2a)
This potential may be split up into two parts,
Ve =U@) + [V, - UD]=U+V,,, (2.2b)

where U(T) is the real elastic potential depending
upon the relative coordinate only. The second term
V,, contains the complex coupling potentials and the
elastic imaginary potential. In this paper we con-
sider the excitation and fission of very heavy sys-
tems like %W +238U at bombarding energies E
<1.05E.,,. Under these restrictions we can treat
the relative motion of the colliding nuclei classic-
ally and neglect the small change in the orbit due

to energy and angular momentum transfer caused

by the coupling potentials. The classical trajec-
tory is therefore determined by the real elastic
potential U(T),

uE () == VUF()]. (2.3)

We treat the internal dynamics of the nuclei quan-
tum mechanically. This yields the time-dependent
Schrddinger equation,

[Hp(gp) +Ht‘(£t) + th[‘gp’ ‘Ep;(t)] - Zhait]zp<§pv ‘Eta t) =0.
(2.4)

If we restrict ourselves to the dominant monopole-
multipole interaction, i.e.,

Voelép £, T =V, [£,, T+ V,[E,, T®)], (2.5

the Schrodinger equation separates into two equa-
tions depending upon the internal coordinates of
either nucleus only. These have the form

{H@)+V[£,F(t>]—m§t}¢<§,t)=o. (2.6)

Since an exact solution of Eq. (2.6) is not possible
(except in oversimplified, one-dimensional cases
in which the differential equation can be solved
numerically), approximations must be made. Two
approaches have been put forward, both based on
the collective model. Levit and Smilansky apply
a semiclassical theory based on the path-integral
formalism. All other authors expand ¥(&,f) in a
finite set of collective bound state wave functions,
then solve the resulting coupled system of ordin-
ary differential equations for the time-dependent
amplitudes. We shall in this section follow the
latter philosophy, generalizing the method to in-



clude couplings to the continuum and noncollective
bound states. We begin with a review of the Ober-
acker-Holm-Greiner (OHG) approach.

A. The Oberacker-Holm-Greiner model

The coupled equations approach follows from the
expansion of :

9= @ iouta, ), 2.7

in which {¢,} is a set of collective model wave
functions with energies {€,=%w }. In the OHG
calculations, the rotation-vibration model (RVM)".
is used. The internal variables ¢ are the deforma-
tion coordinates a,,, a,,, and the Euler angles,

6,. Oberacker et al.°'® used a basis of order 256
consisting of rotational bands built upon beta and
gamma vibrations. Substitution of Eq. (2.7) into
Eq. (2.6) results in

ind =Y a,(tXe,| V()| @, e i@t (2.8)

This system is solved as a function of time. A
typical result of such calculations is sketched in
Fig. 2 for a highly excited level. The probability
|au|2 rises quickly after #=0 to its asymptotic val-
ue |a,()|®. Because of the rapid rise of |a,|?,
one can think of CF as proceeding in two stages,
Coulomb excitation followed by decay. The CF
cross section is given by

OCF=0R Elau(m)lzpu‘ (29)

In Eq. (2.9), oy is the Rutherford cross section,
and p , is the branching ratio

| 1
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4

FIG. 2. A sketch of the amplitude squared Iaul2 for a
typical fissioning level, and of the strength of the mono-
pole-quadrupole part of the Coulomb potential as function
of the time. The time of closest approach on the Ruther-
ford trajectory is t=0. The unit of time in the sketch is
the period of beta vibrations, 2m%/Eg.
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A simplified version of Eq. (2.10) has been used by
Holm and Greiner* and by Oberacker et al.°"®* This
recipe is based on barrier penetration considera-
tions. The penetrability of a barrier varies ex-
tremely rapidly with energy near the barrier top,
changing from very nearly zero to nearly one as
the energy rises above the barrier top. Based

on these qualitative considerations, a classical

or sharp cutoff model is introduced, in which
p,.=0, €,<B; p,=1, €,>B, where B is the height
of the fission barrier. Barrier parameters are
taken from analyses® of (d,p), (¢,p) induced fis-
sion. Despite the success of the calculations of
Oberacker et al. in correctly predicting experi-
mental results, this primitive model of the fission
probabilities clearly requires further study and
justification. Because barrier penetration is ig-
nored, the results may be overly sensitive to bar-
rier parameters. Barrier parameters are ob-
tained from experimental data but are model de-
pendent; different theoretical models result in
slightly different parameter sets. The OHG ap-
proach should also be refined to include the spread-
ing of the collective states into background com-
pound states. This step is necessary for the cor-
rect treatment of competing processes, such as
gamma ray/neutron emission, since these proces-
ses result primarily from the decay of the com-
pound states.

Before generalizing the OHG approach in these
ways, we comment on a closely related point a-
rising from a criticism by Levit and Smilansky®
of the OHG theory. These authors question the
validity of replacing unbound states, near the bar-
rier top and above, by discrete levels. Although
this is a legitimate concern, the problem is a
quantitative rather than a qualitative one. Certain-
ly one can and constaritly does represent states in
the continuum quite accurately by bound states.

All heavy nuclei undergo spontaneous fission;
therefore all their states including their ground
states are actually resonances in the scattering

of fission fragments. For low-lying states, these
resonances are extremely narrow, which implies
that the “on-resonance” continuum wave functions
are much larger inside the nucleus than outside.
Also, the wave functions inside the nucleus undergo
negligible changes in shape as the energy changes .
across the resonance. As a result, the interior
parts of the wave functions can be replaced ac-
curately by bound states with normalizations which
are energy dependent. Transition probabilities

for transitions between resonant states, integrated
over energies, agree extremely well with transi-



2468 KRUSE, PINKSTON, GREINER, AND OBERACKER 22

tion probabilities calculated with bound wave func-
tions. In such a region of sharp resonances, the
wave functions of states off resonance are negligi-
ble in the interior; thus in Coulomb excitation
calculations the coupling between these states and
resonant states can be neglected. Near the bar-
rier top and above it, the resonances become wid-
er and then begin to overlap. The distinction be-
tween resonant and nonresonant becomes hazy, and
the validity of calculations based on bound wave
functions becomes less obvious. However, past
experience (e.g., giant multipole resonances) in-
dicates that bound state methods are often sur-
prisingly accurate even when the resonances are
quite broad. In the next section we generalize the
OHG model to include couplings to the continuum.
We assume that the results derived there can be
applied to Coulomb fission even though we can
easily establish their validity only for narrow
states.

B. An exact system of coupled equations

The basis of the previous section can be expanded
to include continuum states and also noncollective
bound states. We denote these states by ¢, and
¢, respectively. We use Greek indices for collec-
tive bound states, Latin indices for compound
states, and denote continuum states by the energy
variable E. The ¢, and ¢, states are truly bound
(normalizable). If H denotes the exact Hamilton-
ian, these states are eigenstates of the zero order
Hamiltonian, i.e.,

Hy=Y P HP,+) P HP,+QHQ,
m K
Q=1-Y.pP, - ;P,{.

In Eq. (6), the P and @ operators are projectors,
e.g., P,=|¢,X¢,|. Ifthe ¢, are properly chos-
en, the continuum states ¢ will be nonresonant.

We assume delta function normalization of the

¢g 1.€.,

(¢p|05)=6(E-E).

The collective states couple to the continuum with
escape widths,

T,=21|{o,|H|op) |?=2n|H 4|?. (2.12)

We assume that the escape widths of the noncollec~
tive states ¢, are negligible, so that the collective
states are “doorways” to fission. We further as-
sume that the Coulomb excitation preferentially
connects collective states, so that

(PrlV]0) =V =0=(0| V]9, )2 Vg, =0=Vyp.

Coulomb fission is unique among fission mechan-

@.11)

isms in that the doorway is directly excited.

In Ref. 8, the coupling to compound states was
neglected. The prompt fission couplings
{¢,|V|¢y) were also neglected. The resulting
coupled equations are written down there. It was
argued, based on what is observed in Fig. 2, that
CF is a two-step process, so that the coupled
equations for Coulomb excitation can be solved
first, neglecting continuum couplings. Then, at
later times when V(¢)=0, the decay into the con-
tinuum can be solved for the fission width, Eq.
(2.12).

A more economical procedure, which avoids the
need for two separate steps, is to work directly
in the continuum basis. We use as our basis the
exact eigenstates of H. These new states have the
form

X ~A (B, + ZBMK(E)Wfde’C WlESE) @l -
K
(2.13)

The coefficients A, B, and C in Eq. (2.13) can be
determined, formally at least, by the approach of
Fano.!® Clearly, Eq. (2.13) is not completely gen-
eral. In writing it, we assume that, to a good ap-
proximation, the strength of a collective state ¢,
is spread over a small energy region in the neigh-
borhood of €,. No X; state has admixed in it more
than one collective component. These assumptions
are not valid for strongly damped states.

The ¢, states are strongly excited in Coulomb
excitation, and they decay strongly due to their
coupling to the ¢, states. This coupling results in
an “escape width.”  Their coupling to the ¢, also_
results in a spreading of the strength over energy.
In addition, the ¢, are strongly coupled to other
continua, not included in our formalism. These
couplings correspond to gamma-ray and neutron
emission and result in a decrease of fission pro-
babilities. The effect of these competing processes
on the fission probability will be discussed in de-
tail in Sec. V.

We assume that the wave function i can be ex-
panded as

2P=ZdeauE(t)xé“’e"'E”“-
m

In Eq. (2.14) we assume that each of the energy
integrations covers a finite energy range about
€ ,. Substitution into Eq. (2.6) results in coupled
equations of the form

(2.14)

i et =3 [ aBageriem ] V).
v

(2.15)

We assume that (@] V| ¢,) can be neglected in
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Eq. (2.15). This means we neglect the direct ex-
citation of the continuum. In an energy region of
very narrow resonances, we know this is a good
approximation, as discussed earlier. Because
these neglected matrix elements are important
only during the collision time, we consider them
to be the source of prompt fission events, as op-
posed to the “asymptotic fission” resulting from
the radioactive decay of quasibound collective
states. Prompt fission will be considered further
in Sec. 1V.

If the matrix elements (¢,|V|¢,) can be neg-
lected, then Eq. (2.15) can be simplified as fol-
lows:

il o™ uBt =A (E)* DV ()

x f dE A (E)e i“vBla 5 .

) (2.16)
This can be rewritten in the following form:

il peiout =A (B)* DV, (bemivvt

X deAV(E)aVE_ei[(wME-wu)t-(va-wV)t] A

(2.16')

If the exponential factor in the integral on the right
of Eq. (2.16’) can be approximated by unity, then
the resulting approximate system has as its solu-
tion

a,g=a, A (E)*, (2.17)

in which a,(t) is a solution of Eq. (2.8). In this
approximation, the effect of spreading on Coulomb
excitation is to spread the probability |a,|? over

a sharply peaked distribution centered about € .
Neglecting the variation of the exponential with
time is justified if the collision time is sufficiently
short. Using I',, T, as measures of |w,z~w,]|,

W, - wv[ , then the validity criterion is

T<i/T, (2.18)

in which 7 is the time interval over which |V, A4, |
is non-negligible and I" represents I', or I,. From
the sketch in Fig. 2, one sees that this product is
of the order of half the collision time. A collision
time is typically half a period of beta vibration;
therefore the inequality Eq. (2.18) holds for spread-
ing widths small compared to 2k wg.

The generalization of Egs. (2.9) and (2.10) fol-
lows immediately from this formalism. The fis-
sion probability of a state at energy E depends on
the ratio of escape widths of the several continua
contained in Xi;‘”- We can write immediately

ver =05 3|y |2 f aE|a, @)

x T/ (E)
T, (E)+T,(E)+ T (E)++++"

(2.19)

Equation (2.19) is the basis of model calculations
discussed in Sec. V. .

Before proceeding to estimates of the fission
probability based on Eq. (2.19), we first discuss
two approximations which have been introduced
to simplify CF calculations. The first is the use
by Beyer and Winther® and Levit and Smilansky®
of the sudden approximation in treating the rota-
tional degrees of freedom. The other is our own
neglect of direct couplings to the nonresonant con-
tinuum, i.e., prompt fission.

III. THE SUDDEN APPROXIMATION

In the papers of Beyer and Winther® and Levit
and Smilansky,’ the excitation of rotational states
is treated in sudden approximation. This approxi-
mation greatly simplifies the solution of Eq. (2.6)
by reducing the number of degrees of freedom of
the physical system. However, the results of
Ref. 6 are significantly different from those of
Ref. 8, especially the angular distributions of fis-
sion fragments. Since the sudden approximation
was not employed in Ref. 8, we suspect that its
use is the source of the discrepancy. Accordingly,
in this section we investigate the validity of this
use of the sudden approximation.

It is convenient here and in the following section
to work with a simple model of an axially sym-
metric nucleus, capable of rotations and axially
symmetric deformations depending upon a single
coordinate 8. For such a system, Eq. (2.6) be-
comes

{lh '53?_ Hy(ﬁ) - T,(B, 9) - V[ﬁ, 97 F(t)]}d)(ﬁ, 97 t) =0.
(3.1)

The rotational kinetic energy is 7,; the Hamilton-
ian H, corresponds to vibrations and fission. In
the sudden approximation, T, is neglected during
the collision. The result is a one-dimensional
time-dependent Schrodinger equation with solutions
parametrized by 6. Levit and Smilansky® solve
the resulting equation approximately by their path
integral method; however, its solution to any de-
sired accuracy by numerical procedures is quite
feasible. From these solutions the fission yield at
each orientation, and thus the angular distribution,
can be computed.
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A. Comparison with exact calculations

The sudden approximation consists of setting
equal to one all the exponential factors on the
right side of Eq. (2.8). Its validity*® depends on
the magnitude of the parameter, £=AET,/H, in
which 7, is the collision time and AE/7 is a mea-
sure of the quantities |w, - w,|, which are neg-
lected in Eq. (2.8). Thus the sudden approxima-
tion should be valid for £« 1. As we have seen,
7,1s about half a beta vibrational period. In Cou-
lomb fission, states with values of I =20 or more
are important. We, therefore, choose for A E the
difference in energy of the =20 and =18 members
of the ground-state band in 238(. The resulting £
value is 0.7; thus the sudden approximation is sus-
pect. These suspicions are easily confirmed by
the results of the following calculation. We cal-
culated the Coulomb excitation of a rigid rotor by
exact numerical integration of the equation

eq

[zha% - T,(By, 6) - %Zl;zt)—st(cos())]Y(e, 1) =0.
(3.2)

The charge Z, is that of the projectile. The sym-
bol @ represents the intrinsic quadrupole moment
of the target nucleus. This parameter and the
moment of inertia in the operator, T,, can be ob-
tained from the energy spacings and B(E2)’s in
the ground state band of the target. Only colli-
sions of zero impact parameter were treated, so
that the azimuthal angle ¢ can be ignored. The
angle 6 is the angle between the beam axis and the
nuclear symmetry axis. The initial wave function
Y(6,—) is the spherical harmonic Y.

In this simple model, the sudden approximation
is also quite easily calculated. Neglecting all
energy differences in the exponential factors in
Eq. (2.8) is mathematically equivalent to neglect-

ing T, in Eq. (3.2). If this is done, the solution
is given by

Ys(B,t)=Yooexp[—%ft V(G,t’)dt’]. (3.3)

The integral in Eq. (3.3) can be evaluated analy-
tically, yielding

Y(6,1) =7,—i_—ﬂ— exp (%—%72—;2% (3cos?9-1)
1/2
X{K(oo) K [(—:(f)l) ]}) :
[

(3.4)

ZZ]de2 1/2
n= o ’
12

K(x)= S+ 2x)(x® +1)3/2,

The charge Z, is that of the target, 7, is the dis-
tance of closest-approach, and m , is the reduced
mass of the system.

The resulting asymptotic wave functions Y (6, )
and Y (6, «) can be expanded, as in Eg. (2.7), in
spherical harmonic functions ¥ (6,0). This yields
the values of the expansion coefficients, g () and
a}®)(»), which are listed in Table I. Two cases
were considered: !¥2Xe on 2%*U and 2°*U on 238U.
The results are quoted for bombarding energies,
expressed as multiples of the Coulomb energy, de-
fined by !*

Econ =lezez//R’
R=1.16(A}3 +A;/3+2) (fm) .

(3.5)

From Table I it is clear that the sudden approxi-
mation greatly overestimates the population of high
angular momentum states. What effect this has on
the fission cross sections is not completely clear

TABLE I. Expansion coefficients |a ;(=)| for Coulomb excitation of a rigid rotor.

1826233y at 0.85Ecow

la,| 238y-238y at 0.8E o
J exact sudden S/E exact sudden S/E
0 5.88(—2) 3.41(-2) 0.58 6.62(-2) 2.80(=2) 0.42
2 7.30(-2) 2.66(—2) 0.36 7.02(-2) 1.96(—2) 0.28
4 7.55(=2) 6.06(—2) 0.80 8.38(-2) 4.76(=2) 0.57
6 6.44(—2) 1.61(=2) 0.25 5.95(=2) 1.48(-2) 0.25
8 8.89(—2) 7.26(—2) 0.82 8.18(=2) 5,18(—2) 0.63
10 4,22(~2) 3.66(—2) 0.87 4.75(—2) 2.84(-2) 0.60
12 1.07(=1) 2.94(-1) 0.27 8.47(-2) 2.73(=2) 0.32
14 5.85(=2) 1.02(-1) 1.74 3.86(—2) 6.88(—2) 1.78
18 1.87(=1) 1.24(=2) 0.09 6.50(—2) 3.96(—2) 0.61
22 7.62(=2) 1.75(-1) 2.30 9.20(-=2) 3.51(=2) 0.38
26 5.15(—=3) 8.51(—2) 16.52 6.55(—2) 7.97(=38) 1.22
30 8.35(—5) 1.16(-2) 138.90 4.68(-3) 1.41(=2) 30.13
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to us, but we suspect that the use of the sudden
approximation overestimates the fission cross sec-
tion by giving too large a probability to high spin
states near the barrier top and above. Another
important angular momentum effect, neglected

by Levit and Smilansky, is the lowering of the
effective fission barrier due to centrifugal stretch-
ing. It is very clear that the use of the sudden
approximation will lead to significant errors in the

angular distribution of fission fragments, since the -

angular distribution depends upon the relative pop-
ulation of different angular momentum states.
Further insight into the shortcomings of the sud-
den approximation can be obtained by inspection
of the wave function Y (0,?) plotted in Fig. 3. What
is plotted is actually siné I Y(6,1) |2; the quantity
27| Y (8,)|? singdé is the probability of observing
the rotor with orientation within d6 about 6. The
curves are labeled by distances between projectile
and target; negative distances correspond to the
ingoing branch of the Rutherford trajectory; posi-
tive distances correspond to the outgoing branch.
The case illustrated is ?**U-2%*U at E=0.8E,. One
sees that the idea that the orientation of the target
is fixed during the collision is quite wrong. What
actually happens is that the Coulomb field exerts
a torque which strongly aligns the nuclear sym-
metry axis perpendicular to the beam direction.
The maximum alignment occurs shortly after
closest approach, =25 fm, the delay being an-
inertial effect. At much later times the alignment
disappears and |Y(8,?)|? oscillates rapidly. If
CF is prompt, occurring during 7, then it is clear
from Fig. 3 that the fission fragments distribution

35k

0 15 30 45 60 75 @

FIG. 3. Probability density as a function of the angle
g for a ?3U-2%y collision in which the nuclei are treated
as rigid rotors. The curves are labeled by », the dis-
tance along the Rutherford trajectory. A negative »
implies the ingoing branch of the Rutherford trajectory.

should be sharply peaked at 90° relative to the

" beam. We conclude that the sudden approximation

is invalid for CF calculations. However, non€ of
the results discussed above contradicts the well-
known result*® that the sudden approximation is

~ valid for the excitation of low-lying rotational

states in lower energy collisions or collisions with
much lighter ions. In such cases, the relevant
value of AE is the 0*-2* energy spacing in the
ground band. This choice results in £ values of
order 0.1.

‘B. Comparison with classical mechanics

Although the sudden approximation is not a semi-
classical approximation, classical arguments are
often put forward to justify the sudden approxima-
tion. The sudden approximation assumes that the
angle 6 can be kept fixed during a collision. Clas-
sical calculations predict that aligning torques
produce rotations of only a few degrees, in agree-
ment with 8 being approximately fixed.

The results plotted in Fig. 3 contradict the pre-
dictions of classical mechanics. The classical
quantity analogous to that plotted in Fig. 3 is the
distribution function of an ensemble of identical

. systems, with random orientation initially. Since

the classical torques produce very small rotations,
the distribution function of a classical system will
change very little, during a collision, from its
initial isotropic form. However, classical mech-
anics is not a good approximation to these pro-
cesses, which is illustrated by yet another calcula-
tion.

In order for classical mechanics to be valid it
must be possible to form a narrow wave packet
which does not spread appreciably during the pro-
cess of interest. Accordingly, we solved Eq. (3.2)
with the interaction term V set to zero. An initial
wave function was chosen consisting of a Gauss
packet with a width of about 10° about the forward
direction, §=0. (Since there is no external field,
all angles are equivalent, and 6=0 is a convenient
choice, since ¢ can be neglected.)  Solutions of
Eq. (3.2) are plotted in Fig. 4 at three times, =0,
0.327,, and 0.957,. The unit of time 7, is the per-
iod of beta vibrational motion, 7,=27/w,, Aw, =1
MeV. A collision time is of order 0.57, to 0.67,.
The figure clearly shows significant spreading,
due to the uncertainty principle, during a collision
time; this invalidates the classical method. (An
initial width of 5° would result in a much greater
spreading.) The physical reasoning for the spread-
ing is obvious: A narrow packet requires large
angular momentum components, which result in
large angular displacements.

These results clearly illustrate the incorrect-
ness of a purely classical description of the rota-
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FIG. 4. The spreading of an angular wave packet in
time for *¥U. The three curves correspond to the times,
A (=0), B (¢=0.327p), C (t=0.957,).

tional motion in the energy region of interest in
CF. No conclusion can be drawn from them, how-
ever, concerning the validity of semiclassical
treatments® of Coulomb excitation induced by
heavy ions. An essential ingredient of the semi-
classical method, missing from the purely clas-
sical treatment, is the quantum mechanical inter-
ference of phases arising from different classical
trajectories.

IV. PROMPT COULOMB FISSION

In this section we present some results which
support the neglect of the direct couplings V,; of
collective states to continuum states. This neglect
is a practical necessity. Since the sudden approxi-
mation cannot be invoked to eliminate the rota-
tional degrees of freedom and thus simplify the
system, the coupled equations must be solved.

The system solved in Ref. 8 consisted of 256 simul-
taneous, first-order differential equations. The
solution of such a system involves a significant
computational effort, even when using the RVM,
which yields analytical formulas for many matrix
elements. If the basis were expanded to include
continuum states, the dimensions of the system
would increase greatly, and the simplicity of the
RVM would be lost. Such a calculation would be
infeasible at present. Instead of attempting it,
we here study a simple model of CF in order to
get a rough estimate of the relative importance of
the fast component.

Equation (3.1) forms the basis of this study. Only
collisions with zero impact parameter are consid-
ered. We wish to reduce Eq. (3.1) to a one-dimen-
sional system, which can be readily solved. In-
stead of using the sudden apprqximation, we as-

sume that the rotational behavior of the system is
essentially that of a rigid rotor, i.e., we write

Zp(ﬁ’eyt)gu(ﬁ, t)Y(eyt)' ) (41)

The function Y (8,¢) is known; it is the solution of
Eq. (3.2). It describes a time dependent orienta-
tion of the system. The function u(B, ) is to be
determined; it describes the breakup of the sys-
tem. The exact solution of Eq. (3.1) can be writ-
ten

0B, 8,8) = D u (B, )Y (8,0 (4.2)
I

Substitution of Eq. (4.2) into Eq. (3.1) results in a
set of coupled partial differential equations. One
can see the relation of the function « to the u by
expanding Y (6,¢) in spherical harmonics,

Y(8,1)= Y a, (t)e 2t /MY (6,0). (4.3)
1
The assumption, Eq. (4.1), is equivalent to

u (B, 1)~ a,(t)e™ i1/ M u(g, 1) .

Thus, the function # represents the average be-
havior of the functions u,. Substitution of Eqgs.
(4.1) and (4.3) into Eq. (3.1) results in the one-
dimensional Schrddinger equation obeyed by u:

. U _ LA +1)f 1 1
Z”E'{H”(B”Zl“’(”’ w5t~ o)

. T’(B,t)}u(ﬁ, ), o
VB, t)= Z Zal(l‘)*a,,(t)e tlop-w
I r

XY | V(B,0,1)|Y 1)

The quantity V is the perturbing monopole-quad-
rupole interaction, averaged over orientations.
The second term in the effective Hamiltonian is
the rotation-vibration coupling; ©(8) is the mo-
ment of inertia.

‘The physics of prompt fission and its relation-
ship to the coupled equations is illustrated sche-
matically in Fig. 5. The potential energy U in H,
is sketched. The broken line in Fig. 5(a) repre-
sents U,, the RVM potential. The arrows indicate
Coulomb excitation followed by fission. The wavy
arrow represents the neglected direct couplings to
the continuum. In Fig. 5(b) a different but equi-
valent viewpoint is illustrated. The total potential
energy function is sketched for two limiting cases,
6=0°and 6=90°, for U on U at a separation dis-
tance of 21 fm. For 6=90°, the top of the effective
barrier drops below the energy of the unperturbed
ground state. (At distances smaller than 20 fm, -
Coulomb-nuclear interference begins to raise the
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FIG. 5. (a) Schematic illustration of the OHG model of Coulomb fission, showing Coulomb excitation (vertical arrows)
and the neglected process (wavy arrow) of direct excitation of continuum states. (b) Raising and lowering of the fission
barrier due to the monopole-quadrupole interaction for U — U at 21 fm separation. The insets show the angles (0° and
90°) between the nuclear symmetry axis and the separation coordinate .

barrier.) One can think of prompt fission as frag-
ments escaping while the barrier is low. Prompt
fission events clearly should be emitted at angles
of about 90°. The dynamical orientation shown in
Fig. 3 is favorable to prompt fission. This orien-
tation is built into our model by virtue of Eq. (4.1).

In order to solve Eq. (4.4) we must develop a
physically reasonable model for the barrier U,
the collective mass parameter B(8), the moment
of inertia ©(B), and the interaction V(3,0,¢). A
connection must be made between the collective
variable 8 and the fragment separation coordinate
for large values of 3. The parameters B and 6
should be consistent with the known properties of
low energy collective excitations in heavy nuclei
for ~pB,. For large B they should agree with the
reduced mass and moment of inertia of separated
fragments. These matters are discussed in some
detail in the Appendix.

Using the parameters described in the Appendix,
Eq. (4.4) was solved with an initial wave function
u,(B,1), consisting of the ground state of the har-
monic oscillator potential U,. A number of differ-
ent cases were studied, for a variety of projectiles
and Actinide targets, at energies of 80% of the
Coulomb barrier. The parameters in B(g) and
©6(B) were varied to determine the sensitivity of
our results to these parameters. All cases studied

followed the same pattern, illustrated in Figs.
6(a) and 6(b) for the case 2°®U on 2°®U. The mass
parameter set A defined in the Appendix was used.
The value of the moment of inertia, ©,, at the lo-
cation of the second minimum was set equal to
1507%2/MeV.?' In Fig. 6(a) the gross behavior of
the wave function is shown as a function of time.
The quantity plotted is

ple,1) = ute, ) [F[BE) 2. (4.5)

The coordinate x is a dimensionless fission co-
ordinate, related to 8. In the Appendix, x is de-
fined and the normalization of Eq. (4.5) explained.
Figure 6(a) is a small-scale plot of p(x,?) in the
vicinity of the first minimum. The dashed line is
the effective potential in Eq. (4.4), consisting of
U, V, and the rotation-vibration coupling. The
curves are labeled by the distance of projectile
and target as in Fig. 3. On this scale there is no
evidence for fission, i.e., loss of probability from
the nuclear interior. The collision causes the
packet to oscillate in the potential well. This can
be thought of as the excitation of beta vibrations.
In Fig. 6(b), the tail of p is plotted on an expanded
scale for x values in the neighborhood of the sec-
ond minimum of U and the saddle point. For se-
parations of 85 fm on the outgoing branch of the
Rutherford trajectory, p is negligible at the sad-
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FIG. 6. (a) Plot showing the behavior of the probability
density p(x) as a function of time. The numbers in each
figure give the separation, in fm, of the ions on the
Rutherford trajectory. (b) Magnified picture of p(x) in
the vicinity of the second minimum and saddle points of
the potential energy surface, showing fission taking
place.

dle point. At later times there is a slow buildup
of a small “bump” which eventually escapes
through the barrier. At times corresponding to
separations of 150 fm, there is a rapid buildup of
p in the vicinity of the saddle point. The fission
probability P(¢) can be obtained by integrating p
in the exterior region or from the time integral
of the probability flux, evaluated at the saddle
point. This quantity is plotted in Fig. 7 for a num
ber of different projectiles and targets. The cal-
culations are all based on choice A of Fig. 11 of
the inertia function and ©, =150%72/MeV. The two
132X e on 2387 cases are at energies of 70% (2) and
85% (1) of the Coulomb barrier. All other cases
correspond to 80% of the Coulomb barrier. The
curves all show a very small prompt component
followed by a sharp rise at separation distances of
order 135 fm. The fission probabilities at later
times depend sensitively on the bombarding energy

1
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FIG. 7. Plot of fission probabilities as a function of
time (solid curves). The calculations are based on
choice Aof Fig. 11 and 6= 150}"Z2/MeV° The two Xe-U
cases are at energies 0.7E,(2) and 0.85E,(1). All other
cases are for 0.8E,, The dashed curves show the
quantity p ¢) defined in Eq. (4.6); the results are taken
from Ref. 7. '

and projectile charge. This is completely consis-
tent with the predictions of asymptotic CF. The
prompt component is extremely small and insen-
sitive to changes in these variables. Further re-
sults reported in the Appendix indicate that the
qualitative features of Figs. 6(a), 6(b), and 7 are
relatively insensitive to the parameters chosen.
It is possible to compare these results to those of
asymptotic CF. The function P(¢) is analogous to
the quantity

pO=3"la, 0|, (4.6)

in which the sum is over RVM levels lying above
the barrier. The models employed for prompt and
asymptotic CF are sufficiently different that one
should not expect these quantities to agree in mag-
nitude; however, a comparison of their time de-
pendences is very enlightening. The dashed curves
in Fig. T give the function p(¢), Eq. (4.6), for the
cases 29%Pp-2%8y and 2%®U-2%%Y. Comparing the ra-
pid rise in p(¢), the population of fissionable lev-
els, with the long delay in P(f), indicates that the
two-step picture of CF is very probably correct.
The nucleus is excited near the closest approach
point, then decays much later.

We conclude that the prompt fission mechanism
is unimportant. This is due to the short time of
the collisions. The collision time is of order 7, or



less, but this is the characteristic response time.
Lowering the fission barrier is like opening a
door. The fragments try to leave but move too
slowly. Raising the barrier shuts the door, driv-
ing the wave function back toward the first mini-
mum and adding vibrational energy to the system.
The alignment about 90°, therefore, does not pro-
duce the most favorable condition for CF. The
magnitude of the repulsive © =0° interaction is
much greater [see Fig. 5(b)] than the attractive
6 =90° interaction. Since the mechanism of CF
is pumping energy, rather than opening a door,
collisions with © =0° would be much more effective
"in producing CF, as originally suggested by Beyer
and Winther.3 /

V. CALCULATION OF FISSION PROBABILITIES

In this section we describe a model for the
spreading of the collective states ¢, and for the
decay widths in Eq. (14). Results of calculations
based on this model will then be presented. In
developing such a model, we have tried to keep it
as simple as possible. Because CF is such a com-
plex process, involving states with a wide range
of energies (0—15 MeV) and angular momenta
(0-30), the construction of more realistic models
will be a formidable job and is probably not justi-
fied by the present state of our experimental know-
ledge. Because our experimental knowledge is so
limited, the construction of more complicated
models at this time would probably result in a
proliferation of free parameters—more than can
be fitted to available data. Although it is simple,
we have tried to make this model consistent with
existing data on neutron, gamma, fission, and
spreading widths. We believe the results are
reasonably accurate, and that the model indicates
the important physical effects and direction for
future work.

A. Spreading of the collective states

The spreading of the collective levels ¢, into a
background of compound states is but one example
of a phenomenon frequently occurring in nuclear
physics.?? As a result of matrix elements H,,,
connecting the collective states to the noncollec-
tive states ¢,, there is a spreading width

v,=21D|H,,|?. (5.1)

The quantity D is the average spacing of energy
levels €, and is the inverse of the level density
p(€,). The strength of ¢, is spread over an energy
interval of order y,. The energy dependence of
IAM(E) |2, the probability of ¢, in a compound
state of energy E, is approximately of Breit-Wig-
ner form,
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IAu(E)lz”mi' (5.2)

In our calculations, we treat E as a continuous
variable. The constant S, is fixed by the normal-
ization condition

ple,) f |A,(E)|?dE=1. (5.3)

The density is not included in the integrand. This
is because the Lorentzian falls slowly with energy
at large E, whereas p increases exponentially.
The normalization integral in Eq. (5.3) would
therefore diverge if the upper limit were taken

to be infinity. In addition, the long tail of the Lo-
rentzian gives other unphysical results which will
be discussed later. They necessitate restricting
the integration in Eq. (2.19) to a fairly narrow
energy interval (~1 MeV) around €,. This approach
is, of course, oversimplified and does not proper-
ly account for the strongly damped states.

The quantity y, is extremely difficult to deter-
mine. No reliable microscopic model is available
for the matrix elements H,,. One might assume a
proportionality between y, and p; however, be-
cause of the exponential rise in p with energy, this
assumption results in increases of orders of mag-
nitude in y, over an energy increase of a few MeV.
A more reasonable approach is that suggested by

~ Lynn,?® who pointed out that the relevant density

in Eq. (5.1) is that of the states ¢, which couple
directly to ¢,. These “relevant” states can be
described by the collective model. Consider the
vibrational and intrinsic parts of a collective mod-
el wave function,

PulBX(Bo3 X1 - -+ 5 %y) -

For simplicity only the beta vibrational and in-
trinsic ground state parts of the wave function are
written down. The {xt} are a set of intrinsic space-
spin coordinates. In the collective model these
states interact with states

@n-l(B)Xe(Bo;xu .. 7xn) )

in which yx, is a one-particle, one-hole state built
on the ground state x,. These states are coupled
by the particle-surface coupling. This is obtained
in the usual way, by expanding the single-particle
potential, for arbitrary deformation B about the
equilibriam shape B,. The first order term re-
sults in a coupling matrix element,

<¢nxe| Vﬁsl PparXe) < (12,

In this model, the density of relevant states x, does
not vary with energy. The squared matrix ele-
ment in Eq. (5.1), however, increases in propor-
tion to #n+1, or roughly in proportion to the ex-
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citation energy. For 238U there is evidence that in
the first well near the barrier top y,~1 MeV, and
that in the second well v, = 100 keV. These results
are reproduced roughly by

Y, (MeV)=0.3E (MeV) -~ 0.5, (5.4)

where E is measured from the bottom of the ap-
propriate well. We use this relationship in our
calculations. For Ex1 MeV, n=1, the formula
predicts negative values, and y, is set to zero,
corresponding to zero spreading of the lowest
beta vibration. For angular momenta, />0, the
energy E in Eq. (5.4) is measured from the yrast
level of that spin.

Clearly, the above arguments are quite primi-
tive. In reality, the n=1 vibrational state is a
linear combination of low-lying particle-hole
states. It lies below the pairing gap and does not
spread. More highly excited vibrational states
are located in a sea of more complex states and
tend to dissolve into this background. Equation
(5.4) is a simple ansatz which probably gives a
reasonably accurate description of this spreading.
No effort has been made to refine Eq. (5.4) by
varying the constants.

A more correct theory of spreading would be
based upon a “doorway state” approach.?*?” In
such theories, one couples all collective and
compound states existing in both minima of the
potential energy surface. However, there is sim-
ply not enough information available, experimental
or theoretical, for us to develop a quantitative
theory of this sort for the range of energies and
angular momenta we must consider. Considering
some of the other uncertainties in the theory, it
would not be worth the effort. :

B. Gamma ray widths

Two kinds of gamma ray processes compete with
fission.. The collective component ¢, of the com-
pound state can decay by E2 decay to a lower ener-
gy collective state. The noncollective components
can decay to the lower lying odd-parity noncollec-
tive states by E1 emission. Decay to even-parity
compound states by M1 emission is possible but
is much weaker. The E2 widths are proportional
to the probability ]Au(E)Iz. Similarly, we assume
that the E1 emission rate is proportional to
1- |A,(E)|?, the probability of noncollective
states. Therefore, we write

T,=|A,(E)|*T,(E2)+[1~ |A,(E) |?]D(EL).
(5.5)
For the estimate of the E2 part, we assumed a
single collective transition. For a level with >0,
this was calculated from the B(E2) formula!” for
decay to the /- 2 state of the same band. For I

=0, we used the B(E2) formula!” for the transition,
0;—~2% ... For El decays we used the statistical
model formula of Back ef al.!® for the total E1
width of a compound level decaying to all allowed
compound states of lower energy,
I+l 5

D(EL; E; 1) =KA*/*p(E, D)™ ) f p(e,)E - €)de ..

: j=l I1-11 -0

(5.6)

The constant K is fitted to the known gamma width
of a low energy neutron resonant state. Its value
is 1.4x10™° MeV™3. The level densities for posi-
tive and negative parity are assumed to be equal.

C. Neutron widths

At energies above the neutron threshold, neutron
emission becomes a very important competing
process; therefore it is important to be able to
make estimates of neutron widths which are re-
liable over a wide range of energies and angular

"momenta. We follow the approach of Britt et al. 28

based on the continuum theory of nuclear reac-
tions.?® This formula is

T (E, D =[2np(&, D"

x Y fE-S"T,(kR)E(e,j)de.

i s=hj=1/2k 1=1I-sI "0
(5.7

The neutron binding energy is S,. The level densi-
ties in initial and daughter nuclei are denoted by

p and p, respectively. The T, are transmission
coefficients defined in the work of Blatt and Weiss-
kopf.?° The width computed from Eq. (5.7) is multi-
plied by 1- |A_(E)|? to get the width ' (E) for use
in Eq. (2.19).

D. Fission widths
We write for the fission width in Eq. (2.19),
T, = |4, (B) PT4+[1- |A,(EB) ). (5.8)

The width l"’; is the escape width of the collective

state ¢,. This is not the total fission width. At

higher energies other transitional states become

available to the compound system, resulting in

the second width l"ﬁ, which can become quite large.
The fission width I'¥, is given by

I.(E) =-’?2“’7ﬁ T,(E). (5.9)
The quantity 7' is a penetrability, and “’8/277 gives
the number of assaults on the barrier per second.
The penetrability 7' is computed as follows: Fol-
lowing Oberacker et gl.® we define an effective
barrier for a state of angular momentum I:



7l +1)
20(8)

The moment of inertia is chosen to be a linear
function of the collective coordinate 8 as suggested
by the data.%°:3' The function Eq. (5.10) can be
rather well approximated by smoothly joined para-
bolas. For each I, sucha fit was made and the
penetrabilities of the resulting well were computed
by the methods of Cramer and Nix.®* The func-
tions 7 ,(E) show penetration resonances corres-
ponding to states in the second minimum of the
potential well. The computer program was written
so that these could be suppressed; i.e., T ,(E)
could be replaced by a smooth monotonic curve
following the nonresonant behavior. By making
calculations with and without transmission reson-
ances, the effect on CF of states in the second well
could be roughly estimated.

The term I‘{_ is the average fission width of a
compound state proceeding through collective
states other than ¢,. These collective states are
built on excited intrinsic states; ¢, is built on
the lowest intrinsic state y,. For energies near
the barrier top and below, Fﬁ is completely negli-
gible, since the barriers for these other transi-
tional states are higher than the barrier U(B).

The barrier U(B) assumes adiabatic motion based
on the lowest intrinsic state. At energies greater
than the barrier height by the pairing gap 4, these

Ul B)=Ug+ (5.10)

Pn/l—‘(f:
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FIG. 8. Plots of the ratios I,/T for compound states
as functions of energy and angular momentum, The
energy is measured above the neutron threshold,
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other transitional states become important. We
follow the simple treatment of Vandenbosch and
Huizenga.?® For energies greater than B+ 4,
where B, is the barrier height of the function U,

in Eq. (5.10), we assume penetrabilities of unity.
For lower energies the penetrabilities are taken

to be zero. The continuum theory is assumed. The
result is

E-BI.- :
T/ =K' [2mp(E, D] f B(E', DAE" . (5.11)

A

"The denéity p is the density of states at the saddle

point. The constant K’ is an adjustable constant
introduced to make it possible to normalize the
theory to known values of the ratio I'"/T¥, mea-
sured in other reactions. The experimental data®?
seem to imply that this ratio has a value of about
5 and is approximately energy independent in the
energy range 2—5 MeV above the neutron thresh- '
old. We adjusted the value of K’ and also the pa-
rameters of pso that these trends were repro-
duced by our equations for low values of the an-
gular momentum. The value of K’ is 0.2; the p
parameters are discussed in the next section. Re-
sults for the calculated ratio I'"/T¥ are shown in
Fig. 8 for several values of the angular momentum.

E. Level density formula

The nuclear level density is used in Egs. (5.6),
(5.7), and (5.11). We need a level-density formula
which is reasonably accurate over a large range
of angular momenta, although extreme accuracy
is not important, since our goal is not a precise
theory of fission probabilities but only reasonable
estimates. The density used in our calculations
is 34

_Va(B*\/2 QI +1) exp{2[ak,,,(I)]}*'?}
PE,D=57 (29) B (DF :

(5.12)
The effective energy E;, is given by

Eoo(B,])=E - A-E . (). (5.13)

We follow Gilbert and Cameron® and let A=1.4
MeV and g =28.5 MeV™ in 2°®U. For the moment of
inertia ©, we use 6 =1027%% MeV™, which results
in p=4.26 x 10* MeV~! at the neutron threshold.
(For comparison, the RVM and rigid rotor values
of © are 67 and 131, respectively.) The yrast
energies were taken from Oberacker’s® RVM cal-
culations. For odd spins, needed in the calculation
of E1 widths, a linear extrapolation between even
spins was made. The density p was obtained from
p with the following changes in parameters: A
=1.0 MeV, 2=1.05¢=29.9 MeV~l. We attribute

no physical significance to these changes. We re-
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gard Eq. (5.11) as merely a reasonable parame-
trization of I'¥, with parameters chosen such that
the 1",/ T, experimental data can be approximately
reproduced. In order to calculate I',, Eq. (5.7),
we need density parameters for 2%7U. In place of
Eq. (5.13) we use

2
Ey,=E- A'——z’%l(ul). (5.14)

The rigid-body value is used for ©, ©,=%245/3/70.
The other parameters are A’ =0.7 and ¢ =27.8
MeV™. :

F. Results for the fission probability

We calculated the fission probability using Eq.
(2.19) and widths computed as outlined above. In
Fig. 9 the excitation function for W +232U at
6. =180° is shown. The results of the sharp cut-
off model shown in Fig. 9 are lower than those
shown in Fig. 1 by a factor of 1.1 to 1.6, depending
on the energy. This is because of an error in the

o 238, |
ol W+ gl
: $,=180° Pras
N

do/dQ, , [mb/sr]

]0-21111J¢L14L141|]1|11]1|1|]1x

0.80 090 100
E/Etoul

FIG. 9. Theoretical cross sections for Coulomb fis-
sion and fission following inelastic nuclear excitation
in comparison with the experimental data (Ref. 9).
Solid curve: pure CF cross section including barrier
penetration, damping into noncollective levels and y/n
competition [see Eq. (2.19]. Dashed curve: pure
Coulomb fission in the simplified sharp cutoff model
(Refs. 8 and 14), Dot-dashed curve: fission following
Coulomb and inelastic nuclear excitation (real Yukawa
potential) in the sharp cutoff model.

earlier calculations arising from an incorrect
RVM matrix element, {/,K’'=2, n,=0, n,=0|H|I,
K=0, n,=2, n,=0), in Ref. 36. One sees that the
sharp cutoff model and the full calculation (includ-
ing barrier penetration, damping, and y/%n compe-
tition) bracket the data in the sub-Coulomb region.
The improved treatment results in CF cross sec-
tions greater by a factor of about 3. The results
turned out to be somewhat sensitive to the function-
al form of |A,(E)|?, Eq. (5.2). Our earliest cal-
culations yielded a fission probability approxi-
mately 5 times greater than the sharp cutoff re-
sults of Oberacker ef al.® This large increase in
fission probability was the result of the term I',,
which increases rapidly with energy. The Lorent-
zian has such a long tail that, associated with each
collective state ¢,, there results a large contri-
bution to fission from compound states several
MeV higher in energy. This is unphysical and can
be remedied by the choice of a function, such as

a Gaussian, which falls more rapidly to zero with
IE— €ul. We chose simply to restrict the integra-
tion limits, so that no two levels of the same spin
had any overlap.. For levels with a large spread-
ing width y,, this is equivalent to assuming uni-
form spreading on a finite interval. This greatly
reduced the fission probabilities.

In order to understand the origins of the differ-
ence between the sharp cutoff and the extended
calculations, let us examine in detail the case
E/E,=0.85. The sharp cutoff model yields a fis-
sion probability of 1.1 X 1073, The calculations of
the present model yield 3.0 X 10"* when transmis-
sion resonances are suppressed and 3.6 X 10°2 when
they are included, Since it is well known that there
is damping in the second well, comparison of the
results with and without transmission resonances
somewhat overestimates their importance. We
conclude that they contribute, at most, about 15%
to the CF cross section. The full curve in Fig. 9
is calculated with the transmission resonances.

For states near the barrier top, the fission
probability lost by gamma-ray competition is
more than compensated for by that gained by the
barrier penetration of states below the barrier top.
At higher énergies, neutron emission becomes
very important, but its effect is partially compen-
sated for by the availability of new transition
states for fission. Although Eq. (2.19) is a sum
over many small numbers, we can see what is
happening by inspection of the histogram in Fig.
10. In this histogram the total contribution of all
states of a given angular momentum is plotted
against angular momentum. The sharp cutoff re-
sults are compared to the results of the more
realistic model. In the latter case, the effect
of states below the barrier top is indicated, show-
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FIG. 10, Histogram indicating the differences between
the predictions of fission probabilities of the sharp cut-
off model and the extended model. The contributions of
levels below the barrier, above the barrier, the con-
tribution of penetration resonances in the second mini-
mum of the double-humped well are indicated. The
bombarding energy is E=0.85E,.

ing the importance of barrier penetration. One
sees that, in each case, the contribution of states
above the barrier is decreased slightly due to
damping. The states of high angular momentum
are most strongly enhanced by barrier penetra-
tion effects. This is because there are strongly
excited, high angular momentum states just below
the barrier which are left out of the sharp cutoff
calculations. Because their populations ]au|2 are
large, they make a large contribution by barrier
penetration. The amplitudes of the low-spin states
just below the barrier top are significantly smal-
ler, because more steps of Coulomb excitation are
required to reach these states.

Quantitatively, these effects are somewhat ener-
gy dependent. The new fission probabilities are
increased by factors of 3.9, 3.3, and 2.0 at E/E,,
=0.77, 0.85, and 0.935, respectively, compared
to the sharp cutoff model. This can be easily un-
derstood; with increasing bombarding energy, the
mean excitation energy rises, and hence the pene-
tration effects from levels below the fission bar-
rier become less important. For incident energies
above the Coulomb barrier, one would expect both
curves to become almost equal.

V1. SUMMARY AND CONCLUSIONS

In this paper we have studied a number of differ-
ent aspects of Coulomb fission dynamics. Our mo-
tivation has been to examine the validity of the
Oberacker-Holm-Greiner model and improve on it.
The results of the paper can best be understood and
summarized by relating them to the following
questions concerning the OHG model:

(1) Does Coulomb fission indeed proceed in two
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steps, Coulomb excitation followed by spontaneous
fission?

(2) Can the Coulomb excitation step be calcula-
ted accurately by treating all collective states as
if they were bound?

(3) Can the fission probabilities in the second
step be calculated accurately from a simple,
sharp-cutoff model ?

A theoretical framework is presented which is a
unified treatment of Coulomb excitation, fission,
and competing processes. The collective states
are treated in a formally exact way as bound
states imbedded in a fission fragment continuum.
The formalism allows for the spreading of these
collective states into noncollective compound
states. By including other continua, the competing
processes (gamma-ray decay and neutron decay)
are taken into account.

In terms of this framework, questions (1) and

. (2) are shown to be closely related. If the quasi-

bound collective states correspond to sharp reso-
nances, then treating them as bound states and
neglecting direct couplings to the continuum is a
good approximation. Sufficiently sharp resonances
correspond to narrow escape widths and thus long
lifetimes relative to the collision time, in agree-
ment with the two-step mechanism. The Coulomb
excitation of broad resonances cannot be treated
accurately in terms of the quasibound states, and
they may decay appreciably during the collision.
Put in another way, if the resonances are broad,
one cannot neglect direct couplings to the fission
fragment continuum, and these couplings result in
prompt rather than asymptotic Coulomb fission.
Since the widths of the highly excited collective
states are not reliably known, we cannot resolve
these questions in a definite way. However, the
exact integration of the Coulomb fission problem
in one dimension (Sec. IV) yields a time depen=
dence which strongly supports the asymptotic CF
mechanism.

We approached question (3) by attempting to
make a more realistic model for the fission pro-
bability which includes the spreading or “damping”
of the collective states into the background of non-
collective compound states and the competing de-
cay channels. In the case of small or moderate
spreading, we showed that the amplitudes a, com-
puted without spreading can be used in a simple
formula for the fission probability which includes
spreading and competing processes. No simple
modification of the theory of Oberacker et al.®
has been devised which is correct in the case of
large spreading.

Numerical model calculations of fission proba-
bilities are discussed in Sec. V. These indicate
that the sharp cutoff model underestimates fission
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probabilities by a factor of 2 or 3. The increase in

fission probability is essentially a barrier pene-
‘tration effect; the effect is more pronounced for
low incident energies than for higher ones. We
also see from Fig. 10 that high-spin contributions,
i.e., spin 18 to 26, are significantly enhanced
compared to contributions from lower spins. The
enhancement of CF for states below the barrier by
coupling to states in the second minimum of the
well is small but significant.

One should keep in mind that the absolute cross
sections computed by either the sharp cutoff model
or the improved model are sensitive to the bar-
rier parameters used. We could have improved
the agreement of both models with experiment by
changing the barrier parameters of Ref. 18 within
their error bars; however, we did not. An agree-
ment within a factor 2 or 3 supports the sharp
cutoff model as a first approximation. However,
we strongly suggest the use of the improved mod-~
el, especially for predictions concerning the de-
tails of CF, such as angular distributions, depen-
dence on projectile charge and others.

On the other hand, the new version of the theory
results in CF cross sections greater than those of
Backe et al.’ by a factor of about 2, depending on
energy, which suggests that physical effects
have been neglected which are of the same impor-
tance as those already included in the extended
model. It is easy to identify a number of reasons
why the calculations overestimate the CF cross
section. One obvious reason is the neglect of
nuclear forces in the present calculations; we
decided to study their influence separately since
the Coulomb-~nuclear interference problem is not
yet completely understood. Another reason is the
use of the RVM. Although the RVM gives a rather
good account of the energies and electromagnetic
properties of the ground state and gamma bands,
it overestimates the B(E2) value for 0} - 23.
Therefore, the |au|2 of highly excited states,
computed in Ref. 8, are probably too large. On
the other hand, the octupole states of 233U are
highly excited in heavy-ion Coulomb excitation
experiments. These bands have been left out in
all calculations to date. Correcting the RVM for
overpredicting the excitation of beta vibrations
and including octupole bands should be the direc-
tion of the theory in the immediate future. All of
these improvements can be included in a straight-
forward way in the present approach.

We have also investigated the possibility of sim-
plifying the treatment of the rotational motion by
using the sudden approximation. The results re-
ported in Sec. III show that this approximation is
not valid for Coulomb fission. The full coupled
equations treatment is necessary.

Over the years great strides have been made in
understanding fission. The theoretical develop-
ments have tended to follow experimental develop-
ments. Coulomb fission will probably be no ex-
ception. At present there is an excessive richness
of theoretical speculation; however, as more data
become available, we are confident that CF will be
a valuable source of information on the importance
of various multipoles, the potential energy sur-
face, moments of inertia and collective mass
parameters for large deformations.

APPENDIX: THE PROMPT FISSION MODEL

In this appendix the prompt fission model is dis-
cussed. A reader requiring more details can find
them in Refs. 7 and 37. Since this model was not
developed in order to make reliable predictions
about fission yields, but only to give an idea of how
fission events develop in time, it is accordingly
very simple and phenomenological, but with as
much realism as possible incorporated.

The fission coordinate X

For deformations between equilibrium and scis-
sion we assume an axially symmetric nuclear
surface, described by

R(6")=CR,[1+bP,(coss’)]. (A1)

The symmetry axis is the Z’ axis and 6’ is the

- polar angle. The spherical shapeisdefinedbyC=1,

b=0. For b# 0the value forc is found by requiring
volume conservation. We define a length xR, to be
the distance between the mass centers of equal
halves, resulting from dividing the nucleus by a
plane perpendicular to the symmetric axis. For a
spherical shape, x=2. Beyond scission, xR, is
defined to be the separation of the fission frag-
ments. The value of x can be related to b and ¢
using Eq. (A1). The nuclear shapes described by
the parameter b in the immediate vicinity of the
scission point are not completely adequate. In
spite of this we feel that the coordinate x will de-
scribe the dynamics of fission reasonably.

The vibrational inertia B

We write the vibrational kinetic energy in terms
of a variable mass parameter B(x)
T = n? 1 9 1 8

v T 9 '[B(x)]l/Z 9x [B(x)]l/z ox

(A2)

This has the consequence'” that the solutions to Eq.
(4.4) must be normalized according to

fmIu(x,t)[z[B(x)]mdx=1. (A3)



We choose a simple formula for B which contains
parameters which can be adjusted so that B has
correct properties in two limits, viz., near the
equilibrium deformation x, and for separated frag-
ments, i.e.,
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T”~—_——25R02W’ x=, (A4)
In Eq. (A4) p is the reduced mass of the fission
fragments. Between the two limits, the shape of
the function B(x) should also be adjustable, so
that we can determine how sensitive our results
are to the shape of the function, B. A convenient
form for B(x) is

- 2
B(x) =A{1 +B, explif-%-l] -B, exp[&é—)—c—]} ,
1 2

(A5)
A=uR}.

The parameters of the first exponential are ad-
justed to determine the overall shape; the para-
meters of the second are adjusted so that B(x) is
slowly varying near x=x, The inertia is given a
square to facilitate the use of B(x) in expressions
such as Eq. (A3). In Fig. 11, B is plotted for sev-
eral parameter sets which were used in the cal-
culations. The parameter values corresponding
to each curve are also shown on the figure.

The fission barrier U

We represent the fission barrier as smoothly
joined parabolas. The barrier parameters of
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FIG. 11, Mass parameters B(x) are shown for 238y

for different values of the parameters By, Cy, B,, and
Cj.
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Back ef al.'® were used. These parameters result
from the analysis of transfer fission data involving
light ions. The data analysis depends on barrier
penetrabilities, which in turn depend on the barrier
parameters. For smoothly joined parabolas and
for an inertia B which is constant, i.e., not a
function of deformation, the penetrabilities are
mass independent.®? In the present study B is tak-
en to be a function of x. In order to use the exper-
imentally determined barrier parameters con-
sistently with a deformation dependent mass, we
make the following change of variable. A new co-
ordinate y is introduced, defined by

y= f [B(x)]** dx . (A8)

Because of the simple form, Eq. (A5) chosen for
B, Eq. (A6) is easily integrated, yielding an an-
alytical form for y(x). In terms of y, the vibra-
tional Hamiltonian can be written

2 82

7 -
Hv———-2~—a—y—2+ U(y). (A7)

The barrier U is constructed from smoothly joined
parabolas in the variable y, using the parameters
of Ref. 18. This means that the penetrabilities of
our H are consistent with the transfer data. Given
U(y) and y(x), the barrier U(x) can be constructed
for any choice of B,, B,, C,, and C, in Eq. (A5).
We find it more convenient to work with x; how-
ever, one could equally well transform all the
quantities in Eq. (4.4) into functions of y.

The location x, of the first minimum of U is de-
termined by the intrinsic quadrupole moment’ of
the ground state band. At large x, U should join
smoothly to the Coulomb repulsion of the fission
fragments, i.e.,

2

Ze
~—_— . 8
Ulx) I, Ty, large x (A8)

The quantity T, is the total kinetic energy ac-
quired by the fragments. In fitting the parabolic
part of U to Eq. (A8), we treated T; as an adjusta-
ble parameter; however, its values always stayed
in a reasonable range, between 150 and 200 MeV.
The parabolic barrier and the asymptotic form
Eq. (A8), are joined by a cubic splice. The re-
sulting U functions, and their dependence on the
mass function B are shown in Fig. 12,

Moment of inertia ©

The moment of inertia function 6(x) should vanish
at the spherical shape x=0.75. For x=x, the
value of 6(x,) can be determined from the 2; - 0;
energy spacing. For large x, it should approach
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FIG. 12, Fission barriers U(x) used in the present
study, corresponding to different mass parameters.
The curves are labeled according to the parameter sets
of Fig. 11,

6~Ax®=uR,2x?%, large x. (A9)

Between x=x, and x=x,, the location of the second
minimum, there is evidence®®3! that ¢ varies lin-
early with deformation. To achieve these proper-
ties the range of x values is divided into 4 regions,
and 6(x) is represented by a different polynomial
in each region. The polynomials are joined
smoothly at the boundaries. The function 6(x)
used for ?3%U is shown in Fig. 13. The value 6(x,)
=1507%2/MeV was used in most calculations; how-
ever, calculations were also performed with the
value 2007%2/MeV. ‘

700

w D
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I I

moment of inertia (fi°/MeV)
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| | |
05 10 15 20 25 30
.fission coordinate  x

FIG. 13. Solid curve: The moment of inertia 6 for
28y as a function of the fission coordinate X, Dashed
curve: The function F(x) of the monopole quadrupole
interaction as a function of the fission coordinate x.

The monopole-quadrupole interaction V¥

The interaction V is given by

2
V=_—;ZfJ('§3- f pE')r'?P,(cosw)d®r’, »({#)>r’,
(A10)

where T’ is an intrinsic coordinate of the nucleus
and w is the angle between ¥ and ¥’. For a uni-
form density within the surface defined by Eq.
(A1), the integral in Eq. (A10) can be computed
analytically. For values of x beyond scission, the
target is thought to consist of two equal point
charges separated by a distance xR,. In both cases
V is of the form,

F(x)

V=;—(—t)—3 PZ(COSG) . (All)

The function F(x) resulting from Eq. (A10) and the
asymptotic form are smoothly joined by a cubic
spline. The resulting function is shown in Fig. 13.
The form Eq. (A10) for V is valid only for »(f)
> Ryx/2. For #3%U —2387 collisions, the smallest
value of 7 is about 21 fm; R, is about 7 fm. The
validity criterion is thus x < 6, Calculations show
that u(x, #) remains localized well inside this dis-
tance during the collision time,

Calculations

For the solution of Eq. (4.4) and the other dif-
ferential equations, a computer program was de-
veloped based on the standard Crank-Nicholson
algorithm.®® This method is very stable against
the propagation of round-off errors. Calculations
were carried out on a DEC-10 computer. On this
computer, each case studied required about one
hour of CPU time. The initial state was chosen
to be a ground state harmonic oscillator wave
function, in the coordinate y. With this initial
wave function and V set to zero, it was found that
]u] changed negligibly over time intervals very
large compared to a collision time.

When the interaction is not zero, the initial state
is perturbed by the time dependent effective inter-
action V(x,t) defined by Eq. (4.4). In Fig. 14 is
plotted the expectation value of V, i.e.,

(V)= fdx[B(x)]W lulx, £) |2V (x, £) . (A12)

The case illustrated is 2%U - 238U at 80% of the
Coulomb energy. The abscissa is the separation
coordinate 7, on the outgoing branch of the Ruther-
ford trajectory. The maximum effective inter-
action occurs a short distance beyond the closest
approach distance of 21 fm. This occurs because
of the alignment, shown in Fig. 3, which reaches
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FIG. 14. The expectation value <V>, Eq. (A12), as a
function of ion separation on the outgoing branch of the
Rutherford trajectory.

its maximum after closest approach. The dashed
line in Fig. 14 indicates the distance corresponding
to a time of 0.5 7, after closest approach. From
Fig, 14 it is clear that the perturbation V is
“turned on” for a time short compared to a beta
vibration. The fission probability P(¢) was obtained
from the time-integrated flux at the saddle point,
using the quantum-mechanical flux appropriate to
Eq. (4.4).

The results of calculations have already been
illustrated in Figs. 6, 7, and 8. In Fig. 15, some
additional results are plotted for the collision
systems 238U — 28U and **°U - 2°°Cm. The case
labeled (A) is the same #3¥U - 238U case in Fig. 8.
Case (C) corresponds to mass parameter C of
Fig. 11. This case was calculated to see whether
the use of a smaller inertia would result in a more
rapid response and thus to greater prompt fission.
This is not the case. This fission probability in-
creases and with it the prompt component; how-
ever the shape of the P(¢) curve changes very
little. The curve labeled (E) results from the use
of 200 772/MeV for 6,. This results in a reduction
of the time-dependent rotation-vibration term in
Eq. (4.4), which acts as an angular momentum
barrier. The fission probability again increases.

fission probability
3
I

P ) 28y - B8
07 () 28y - 2
o - (-
' (/™0 - "t
10‘8 | | l
0 100 200 300 400

separation  [fm]

FIG. 15. Plot of fission probabilities as a function of
time to test the sensitivity of prompt Coulomb fission to
the parameters of the model 4, C,E) and the fissi-
bility of the target (F). Incident energy: E=0.8E,.

The shape of P(¢) changes slightly, but without a
significant change in the prompt component. Curve
(F) results from the use of a more fissile target,
250Cm. The nucleus ?*°Cm has a lower fission bar-
rier than 23®U. Because of this, the fission yield
in curve (F) is higher than that in curve (4); how-
ever, again the shape is the same, and one sees
no evidence that more fissile nuclei undergo sig-
nificantly more prompt fission.
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