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A general formalism for the scattering of heavy ions, which is especially convenient to
study the antisymmetrization effects, is developed. Antisymmetrization effects are investi-
gated by expanding the completely antisymmetrized wave function according to the number of
exchanged nucleons. The particle-core model for the scattering of nuclei with loosely bound
nucleons is presented. A formula for the additional contribution to the effective potential due
to antisymmetrization effects is obtained by calculating the expectation value of the Hamilto-
nian with intrinsic wave functions. Application of the formalism is illustrated for the N +!N

scattering problem and its usefulness is demonstrated.

I. INTRODUCTION

In the scattering of two identical light nuclei,
such as 2C, !N, °0, or '®0, the elastic excita-
tion functions reveal prominent gross structures
with widths of 2-3 MeV.'"® Furthermore, in the
excitation functions for the elastic scattering of
2C on *2C and 0 on 0, the intermediate struc-
tures of width ~0.3 MeV are superimposed over
the gross structure, while the *N-!*N and ¥0-!%0
cross sections seem to show no intermediate struc-
ture. This different behavior may be explained as
due to a stronger absorption of high partial waves
in the cases of N and '®0.*¢ This is because both
nuclei have loosely bound nucleons outside the
closed shells and, therefore, inelastic surface
reaction processes are more probable than in the
case of the closed-shell nuclei 2C and °O. In the
14N-1N scattering a further smoothing effect of
the gross structure arises due to the spin, I=1,
of the N nuclei since the scattering wave func-
tion has to be symmetrized differently compared
to the case of two identical spin-zero nuclei.”

The scattering of two N or O nuclei is inter-
esting to study in many respects. In this paper
we examine mainly the effects due to the antisym-
metrization between the nuclei. It is customary
to treat two identical nuclei with integer spin as
bosons and to symmetrize the wave function for
the exchange of the whole nuclei.! The scattering
wave function, then, consists of two terms, the
so-called divect and total exchange terms which
can be transformed into one another by replacing
the nucleons of nucleus 1 by the nucleons of nucle-
us 2 and vice versa. But these two terms repre-

sent only a part of the full antisymmetrization. In
an exact treatment the antisymmetrized wave func-
tion may be generated from the direct term by suc-
cessively interchanging the nucleons between the
nuclei.® When the maximum number of particles

is exchanged, the total exchange term is obtained
again.

For identical nuclei the total exchange term has
the same intrinsic wave function as the direct
term, i.e., both terms have maximum overlap,
if one integrates over the intrinsic nucleon coor-
dinates only. All other exchange terms have a
smaller intrinsic overlap with the direct term.
The overlap decreases with the number of nucle-
ons exchanged and vanishes asymptotically for
large separations of the nuclei.

The scattering amplitude depends on the inter-
action between the direct and exchange terms in
the wave function.® If the different terms do not
overlap, no antisymmetrization would be required
and the direct term alone would describe the scat-
tering correctly. In the surface region, where the
nuclei come into contact, the overlap of the direct
and the exchange terms decreases rapidly with the
number of exchanged nucleons. Since most of the
observed structure in the cross sections is pro-
duced in the surface region, effects due to the
Pauli principle can be analyzed with wave func-
tions which are expanded according to the number
of exchanged nucleons. This method is convenient
and useful because the additional nucleus-nucleus
potentials arising from the antisymmetrization
give only small contributions in the surface region
and decrease rapidly with the number of exchanged
particles. With increasing overlap of the nuclei,

1565




1566 PARK, SCHEID, AND GREINER 6

i.e., inside the surface region, the absorption
from the elastic channel increases strongly. Hence
no information about the real potential at short dis-
tances can be obtained from the elastic cross sec-
tion alone. One needs inelastic excitation func-
tions also.

We investigate the effects of antisymmetrization
between two nuclei in the framework of the parti-
cle-core model in which nuclei are considered to
be composed of inert cores surrounded by loosely
bound extracore nucleons. The total scattering
system is, therefore, described by two cores to
which a few extracore particles are bound. This
picture is quite familiar in molecular physics® and
was introduced first by von Oertzen!® ! into heavy-
ion physics.

The particle-core model circumvents the prob-
lems which arise in the antisymmetrization of the
relative coordinate between the two nuclear mass
centers. The relative coordinate is unsymmetri-
cal in the particle coordinates and, therefore,
affected by the antisymmetrization procedure.
This leads to nonlocalities in the effective differ-
ential equations for the scattering amplitude.?
One way to avoid the difficulties is to define a
scattering coordinate which is symmetrical in the
nuclear coordinates. For example, one could set
the scattering coordinate proportional to the
square root of the quadrupole moment of the nu-
cleus-nucleus system.!*!* In the particle-core
model the relative distance between the centers
of the cores serves naturally as the scattering
coordinate. It is affected by the antisymmetriza-
tion procedure only if the cores are exchanged,
i.e., all antisymmetrization effects between the
individual nucleons of the cores are neglected.
This approximation is applicable for reactions
proceeding mainly in the surface region where the
cores do not overlap and behave like inert spec-
tators.

It is useful to describe the motion of the extra-
core particles in an intrinsic coordinate system.
The symmetry axis of the intrinsic system is the
line connecting the centers of the cores which are
assumed to be spherical. This method corresponds
to the strong coupling limit of the Nilsson model
because the core system can be considered as a
strongly deformed compound system.'®> The aver-
age potential for the extracore particles is gen-
erated by the cores and depends on their relative
distance. The potential may be chosen to be the
two-center oscillator potential which was proposed
originally as a shell-model potential to describe
fission processes.?®~18

In this paper a general consideration of the scat-
tering of heavy ions and the antisymmetrization
problem is first discussed in Sec. II on the basis

of the theory of coupled equations. Next the par-
ticle-core model for the scattering of nuclei with
loosely bound nucleons is developed in Sec. III.

In Sec. IV, the effects of antisymmetrization on
the potentials are investigated and the application
of the formalism is illustrated for the *N-'*N scat-
tering problem.

II. GENERAL CONSIDERATIONS FOR THE
SCATTERING OF HEAVY IONS

When two nuclei are scattered various reaction
processes, such as transfer reactions and com-
pound-nucleus formation, will occur in addition
to the elastic scattering and the inelastic excita-
tion of the two nuclei. For simplicity we restrict
our considerations to the case when the nucleus-
nucleus system breaks up into only two parts after
the collision. Thereby, we avoid the complicated
three- and many-body problems of continuum wave
functions in the outgoing channels.

The asymptotic wave functions may be expanded
according to the different partitions in which the
A nucleons of the total system can be divided. The
different partitions are characterized by two
specifications. The first specifies which two nu-
clei can be measured in which nuclear states in
the asymptotic region; the second specifies the
various partitions of nucleons in the various states
in the two nuclei. Here we consider the protons
and neutrons as nucleons in different isospin states.
The second specification of the asymptotic wave
function cannot be distinguished by measurement
and is obviously related to the antisymmetrization
of the wave functions.?

A. Definition of the Coordinates

Let us assume that the nucleus-nucleus system
splits into two nuclei with A, and A, =A - A, par-
ticles. Further let us assign the particles with
numbers 7 <A, to nucleus 1 and the particles with
numbers i>A, to nucleus 2. To describe the scat-
tering of these nuclei it is convenient to introduce
the center-of-mass coordinate

A
R =% S, (1)
and the relative coordinate between the mass cen-
ters of the nuclei,

?41"2 =ﬁ41— ﬁﬁz ’ )

with
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and the sets of 34, - 3 and 34, - 3 independent in-
trinsic coordinates abbreviated by {a,} and {a,}.
The relatwe coordinates T; - RA for 1 <i<A, and

RA2 for A, +1<i <A are not 1ndependent but
are functions of the intrinsic coordinates {a,} and
{aAz}, respectively (see Flg 1).

The relative coordinate ¥, , depends on the dis-
tribution of the particles in the two nuclei. There
are A! /A,1A,! different possible choices of the
relative coordinate depending upon to which nucle-
us each particle belongs.® We choose the above
partition of the particles as our basic or direct
partition,

AfL,2,..,A}, AfA+1,4,42,...,4L ()

The numbers in the curly brackets in (3) denote
the assignment of the particles to the nuclei. If
particles are successively exchanged between the
two nuclei all relative coordinates are generated.
For an [-particle exchange the relative coordinate
becomes

. - 1 1 k=l . -
r21A2=rA1A2 - (A—1+’4—2>k=1: ikZS;A1<Ik (r‘k—rjk). (4)
In the special case when all nucleons of two nu-
clei with equal mass numbers are exchanged, i.e.,
A,=A;=1, wehaveT) , =-T, ,. To every parti-

tion of the particles we can construct two sets of
3A, -3 and 34, - 3 independent coordinates, as
already explained for the basic partition (3). For
convenience we abbreviate the relative coordinates
by T, 4,4, and the sets of intrinsic coordinates by
{as.a, 1 and {as,4,} in the following discussion. The
mdex S denotes different partitions of the particles
in the two nuclei with A, and A, nucleons.

B. Derivation of the Coupled Equations

The Hamiltonian can be written in the coordinates
defined above as

H=t,+25 Vi
i i<j
=Tem+ TA]_Ag(FS,AlAg) +HA1(aS,A1)

+HA2(as,A2) + VA1A2(FS-A142; O 4y as,Az) ’ (5)

1

expanded in terms of these eigenstates:

¥ =dm (R >

nAy.na2, Ay, (Ag=A-A;)

FIG. 1. General definition of the coordinates.

where the kinetic energy of the center of mass is
denoted by T, and that of the relative motion by
T 4,4, The Hamiltonians describing the individual
nuclei and the residual interaction are given, e.g.,
for the partition according to (3), by

Ay

HAl(aAl) Zt —TAl(RA1)+ E Viss
siz1

(6)

A A
HAZ(OlAz)=i 2 L-Th,Ru)+ 5 Vi,

=A3+1 i>izAy+1

and

Ay A
Va al(F Qu,0,)= v, (7
aty(Fayagi Qapy @)= 20 RYRCE )
Let us assume that we have already solved the
eigenequations

B=1,2,
®)

where 7,4, denotes the set of quantum numbers of
the states. The states ¢,,, are the intrinsic eigen-
states of the nuclei A, and A, for large separations

T 4,4, Then the asymptotic wave function can be

Hpg(@ag) @, (0g) =€, 50 4 0(as,),

(p"A1"M(f41Az)¢"A1(aAx)é"Az(aAz) : ©)

We assume that the intrinsic wave functions & are already antisymmetrized. Therefore, we only need to
antisymmetrize between the nuclei A, and A,, which is carried out by the antisymmetrization operator @.
It will be done by expanding the antisymmetrized wave function according to the number of particles ex-
changed between the nuclei.® Introducing the abbreviation

q"'(n‘x’ n‘z) = ‘p"Ax"Az(FAv‘z)q) (ah)@uz(a‘z) ’

nA1

(10)

the one-particle-exchange function is generated by interchanging two particles belonging to different nuclei,
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e.g.,
d)ex_l(l,...,i,...,Al;A1+1,...,j,...,A)=<I>d(1,...,j,...,Al;A1+1,...,i,...,A), (11)

and analogously for &, ;. The index d stands for direct; it characterizes the basic or direct partition.
There are A,A, wave functions of the one-exchange type, and in general, (41)(42) wave functions of the
l-exchange type. Thus, we obtain
¥ = Z [q’d(nAlx ”Az) +Z)(-)'Z)4’(es},x(m1, ”Az)]: (12a)
A).npy.np0 1 S
where we have omitted the center-of-mass function 3., , which is not important in the following discussion.
The summation over S denotes different possible I-exchange functions. Equation (12a) is identical with the
following expression using the above notation:
v = E E(_)tS(p"Ax"Az(?S.AlAz)q’"Al(aS-Ax)q’"m(as-lﬂz) ’ (12b)
Al.mar.np2 S
where I denotes that I particles are exchanged in partition S (see Sec. IL A). If the wave functions &, A
are restricted to the set of bound-state functions only, all functions in the expansion are orthogonal in the
asymptotic region where the fragments do not overlap. On the other hand, in the interaction region the
different terms of the wave function (12a) are nonorthogonal in general.
By projecting with the intrinsic functions &,, (@ ,,)®,,,(2,,) we can replace the Schrédinger equation
by an infinite system of coupled integrodifferential equations which depend only on the relative coordinates

T a4+ The set of intrinsic coordinates {a ap @ Az} corresponds to the basic partition given by (3). Hence,
we have

f &F (0,)8% (a0 )l -E - T, )¥da,da, =0, (13)

mA1

where da Alda denotes the volume element of the intrinsic coordinates. Using ¥ given by (12), and the
Hamiltonian (5), and introducing the difference function ¥’ by

‘I’;‘AI"Az =¥ - (p"Al"Az(FAlAz)q)"Al(aAl)é"Az(aAz) ’ (14)
we obtain from (13)

[TAxﬁz(-fAMz) tenptengp ™t V"Al"Az(?AlAz) - E](p"m"AzGAMz)
= —[TAMz(fAlAz) Ty T €y~ E] I q’:u(ah)q’:u(aAa)‘I’;AxﬂAzdandaAz

o LR CIRL I TR TR T LI
(15)
with the potential Vv, ., . given by

V"Al."Az(-f‘AlAZ) =f‘I’:Ax(ah)‘b'fn(ar‘n)VAMzGAlAz’ @4y aﬂz)d’"m(ah)‘b"Az(aAz)dandaf‘z . (16)

The right-hand side of Eq. (15), which vanishes in the asymptotic region, contains the various couplings
to other channels. The coupling potentials arise from several sources, namely due to the nuclear forces,

the nonorthogonality of the channel functions in the interaction region, and the antisymmetrization of the
wave function.

C. Formal Solution for the Nonlocal Coupling Potentials

The system of equations (15) can be formally solved by determining first the eigenvalues of the integral
equations!®

’
f‘I’:Al(aAl)‘I’:Az(aAz)(H -E- Tc.m.)z =) 5@y, (as,Af)‘I’nAz: (aS.Ag')v()\m)z’(.fs.AiAz')daAldaAg = V(xm)f'v():"{'(?Alaz) ’
s

(7
where X =(nA1, n4,) and A’ = ("41" n,;). Note that, in Eq. (17), one integrates over the intrinsic coordinates
of the basic partition. The coordinates of the different fragmentations A} and A} have to be expressed in
terms of the coordinates of the basic partition. The different eigenfunctions »{%, and their corresponding
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eigenvalues V{"%), are specified by the superscript m. The prime on the summation sign indicates that the
basic partition (3) does not occur for A =A’. Therefore, the eigenfunctions »{", are restricted to the inter-
action region. The eigenvalues V{®. are energy-dependent. From (17) one can obtain the following rela-
tion concerning the orthogonality of the eigenfunctions:

0=(ViR* = V) [ oA @ @ (18)

It is possible to order the eigenvalues so that
Vi, = vmE . (19)

Then the eigenfunctions can be normalized as follows:

fv‘{'{*(r)vx L@ r=5,,. (20)
In the special case when A =)\’, the eigenvalues are real. Using these results, Eq. (15) becomes
[T a1y )+ Vi gy o)+ €0y + €0y ~Eln@ == 3 [ KanE, 75 B)onEair’ (21)
N

with the energy-dependent kernel K, . given by
Kx(F, 75 E) =3 Vi (F) oim* @) . (22)
m

Equations (21) and (22) show explicitly the nonlocality of the coupling potentials.

D. Effects of the Spurious Center-of-Mass Motion

One usually describes the nuclear states with shell-model wave functions which depend on all particle
coordinates. These functions contain a spurious center-of-mass motion. In the following we discuss the
effect of the spurious center-of-mass motion on the calculation of the matrix elements of Eq. (15).

For many-body wave functions which are constructed from single-particle wave functions of the harmonic
oscillator, the center-of-mass part can be separated with the transformation to the center-of-mass and
intrinsic coordinates. For the product of an A,-particle oscillator function concentrated around the center
at E 4, and A,-particle oscillator function concentrated around the second center at E 4, it yields

XnAl( RAl) L -fAl - EAx)x"Az(Y‘Ax*l - BAz’ ceey FA _342)

Ha M, . . . . .
il s exp[-zu,;l(R,,l—5,,1)“’]exp[—%qu(RA2 -R,)0e,, ()8, (a,).

(23)
The oscillator length a Ag for the center of mass is given by
h— 1/2
“Aez(“"s)-m=(m> , B=1,2. (24)
8

The centers of mass of the nuclei are bound with an uncertainty of a 4, and a4, respectively, to the posi-
tions R Ry, and R . This uncertainty in the positions of the centers of mass 1s small compared to the nucle-
ar dimensions t because a,~1.0A"Y* F with Kw=41A""* MeV.'® Therefore, the wave functions (23) can be
used for an approximative calculation of matrix elements which appear in Eq. (15) and which connect the
basic partition of fragmentation n A, Ma, With a specific fragmentation » al» 1, and partition S:

I(F 4, 4,) =fd>,‘fu(a1)<l>,fn(az)< Z Vi )d’uy (05,4))®n 4y (U5, 49) P gys m gy (Fs,ajagddrd e, . (25)

i=A;<j

Replacing the functions &, which depend solely on the intrinsic coordinates by the functions x,, we obtain
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the analogous approximative expression:

_ I N - . (= - - =
IO_IX:Al(rl—BAI"" !rAl_BAl)XnAz(rA1+1—EAz!"' s T4 BAz)

A
X( E Vu) Xn gy (s, ‘ES,AI” X )Xnu, (?s.Alu —_§'_S.A2'7 v )<PnA1:, n g0 (fs.Al'Aé) H ar,. (26)

i<Ay<i v=1
In the following we consider further how Eq. (26) can be related to Eq. (25). For this purpose we connect
the position parameters Rs A Rs A and R Ry R Ry, by the following coordinate dependent transformation:
%S'A"z'_f.&‘ +§S'Ai_§'“’ @17)
Rsa; =B *Rs. 4~ Ry
Then we are able to integrate over the coordinate of the total center of mass in Eq. (26). The coordinate
of the center of mass is given by

-

1, - - 1
R By (AR, +AR,) =Z(A1Rs Af "’Ast,A;) . (28)
We thus obtain the following relation between Egs. (25) and (26):

I,= < 2 )3/2( 2 )3/2(‘/_7;)‘)-3.[]@.41‘42 +F) exp(=r2/23)d %, (29)

Ay /04 +as a0y aa/a45+an3/0,,

with the width A given by
=2(1/a, 2 +1/a, )7t +2(1/ay? +1/a,) Y, (30)

and the relative distance between the position parameters iAl A =E ™ —E 4, DBy using the shell-model wave
functions (23), instead of the exact intrinsic function given in Eq. (8), one averages the matrix elements
over a sphere of radius of about A, which is proportional to A~'/3 and thus becomes smaller for heavier
nuclei. All structures with widths smaller than A are smeared out in the approximative matrix elements
of Eq. (29). In the special case when one investigates antisymmetrization effects between identical nuclei,
the two prefactors in Eq. (29) become unity and we have A =V2a,,, since A, =A4,=A|=A}=A/2.

Apart from the prefactors which arise from the integration over the center-of-mass coordinate R of (28),
the integral I, given by (29) is the first term in an expansion of the exact integral I(¥ 4 Az)’ of Eq. (25),
namely,

¥,(0)
LW Z\II_L—(O)]-‘I' (FU(F 5,5, + DI (F)d %y, 31)
with the S-wave functions ¥, of the three-dimensional harmonic oscillator given by

= (VTN exp[-r*/(227)],
(32)
L= (T2 v“( )enﬂ—ﬁ/&AﬂL.“.

Relation (31) is immediately understood by realizing the identity

8(F) = T YDV, 0).

The expansion (31) converges more rapidly than the similar one
I(F, )= 29,0 f VEFE, ,, +Ddr.
k=0

This can be seen for I(f) = constant, in which case Eq. (31) reduces to one term, while all higher moments
contribute in the latter expansion.

E. Local Approximation of the Nonlocal Potentials

The potentials on the right-hand side of Eq. (15) are nonlocal. This nonlocality can be expressed in
terms of a local differential expression by expanding the relative coordinate ¥ s. A} A around the coordinates
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ifAlAz. We obtain, from (13) and (12b),

0= fQ"Al(aAl "Az(aAz)(H -E- TCm)\I’daAldaAz

©

1

m=0 Aln 41'n 2!

=21 Z Z( 1‘s§f * o (0y))@%, (0, )H -E-T,,)

- - - -
Xq’nm'(as.,«;)‘l’“z«(as.Aé)[(rs. Ajap ¥ rA,Az) ’ VrAlAg]mdaAldaAz <PanA2r(irAlA2) .

The differential operator V should only act on the function @ny

(33)
The upper sign is useful for particle

1'mg2’”

partitions differing little from the basic partition (3) while the lower sign should be applied for partitions
differing not much from the partitions in which all particles are exchanged. Thus, one minimizes the dif-

- -

ference T 4140 =Ty 4,-

Since P =(n/i)v
TA1A2

rA1A2’

Eq. (33) shows that the nonlocalities of Eq. (21) are transformed into a velocity
dependence of the potentials. Both forms are equivalent.

The velocity dependence (or nonlocality) is due

to the Pauli principle and the transfer of particles. The effects due to the Pauli principle and due to the

transfer processes (e.g.,
simultaneously described in Eq. (33).

recoil effects,?® Mitbewegungs effects) can obviously not be separated and are

When the colliding nuclei come into contact, the partitions in which a small number of particles or all
particles are exchanged play a dominant role, as will be shown in Sec. III. In these partitions the differ-
ences between the relative distances FS,A;Aé folAz are small so that in the first approximation the expan-

sion (33) can be restricted to the term with m =0:

0= [ @, ()%, (@00 ) =B = Te)

Alng1'nga’ S

1 -
Z E( 1) s‘b"m ®s, A')Q"Az’(aS-Aé)dandaAz(p"m'"Az’(rAxAz)'

(34)

Thus, one neglects all recoil effects and all nonlocalities arising from the antisymmetrization. Combining
Eq. (34) with Eq. (26), we finally obtain an approximate system of coupled equations for the case of scat-

tering of nuclei with A,=A,~A/2:

%) (T ayay € gy +€n gy =EVFrx(Fay ) + Vnr (Fa 0,) o (Faya,) =0, (35)
with
F\X'(FMAz) 1
V)\X'(.fAlAz J‘x"‘“ 1= A‘ ’ )X:Az(r'ﬁ“ Az’ T Z Vi
\:<A1 <j
A
XE(_)lanAl'(?s,l__R:Al’ . ")XnAZI(-fS.Ai+1_BA ’ ')HdTw (36)
S v=1

where A= (nAl,nAz)

"=(ngp,myy), and Ty, = EA; EAZ. If the many-body functions y,,

1» Xn,, are construct-

ed from single-particle functmns which are mutually orthogonal with respect to both centers at R and

R,,, then we have F,, =5,y.

III. PARTICLE-CORE MODEL

In the study of antisymmetrization effects in
heavy-ion scattering, it is convenient to describe
each nucleus in terms of a core and extracore
particles.'! The core is defined as the assembly
of deep-shell nucleons in the potentials of the two
fragments. It is not treated explicitly but described
by collective coordinates. Only the extracore par-
ticles are treated microscopically. The relative
motion of the nuclei is represented by the rela-
tive coordinate T between the centers of mass of

This is the case in the two-center shell model, as we shall see in Sec I B.

I
both nuclei. When the number of core particles
is large compared to the number of the extracore
particles, the distance between the cores is ap-
proximately equal to the distance between the mass
centers of the two nuclei. Therefore, in the par-
ticle-core model the distance between the mass
centers of the cores serves very naturally as the
relative coordinate for the scattering problem
(see Fig. 2).

Within the spirit of the particle-core model only
the antisymmetrization of the wave functions of the
extracore particles is considered. For identical
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cores, the intrinsic wave functions of the cores
should be symmetrized. This corresponds to the
change of the relative coordinate ¥ of the cores
to —F. A physical justification for the antisym-
metrization of the extracore part only is that for
heavy-ion scattering the region of the contact of
two colliding nuclei is the most important area
where the overlap of the cores is much smaller
than that of the extracore particles. Further-
more, the extracore particles are loosely bound
and their exchange leads to antisymmetrization
effects in the scattering which are expected to be
much more important than those of the core parti-
cles. In addition the imaginary part of the ion-ion
potential which increases for decreasing ion-ion
distance reduces more the exchange contribution
of the cores than that of the extracore particles.
An important advantage of the particle-core mod-
el is that the interchange of the extracore parti-
cles leaves the relative coordinate of the scatter-

FIG. 2. The particle-core model. (a) Schematic sketch
of the model. (b) The two-center oscillator potential.
The deep shells which are not explicitly treated (cores)
are dashed. The centers are concentrated at z = +z,,.

(c) Definition of the various coordinates.

ing problem unchanged. Moreover, the model sim-
plifies the antisymmetrization problem greatly in
many practical cases by reducing the number of
nucleons whose interchange need to be considered.

For example, the scattering of 'O on '*0 may
be studied within the model by considering the 20O
nucleus as a 'O core (a closed-shell nucleus) plus
two loosely bound neutrons. Arother example of
the particle-core model is the study of the '2C-
(0, '*0)*2C reaction by von Oertzen,?! who con-
sidered the '®O nucleus as a '>C core plus an «
cluster and investigated the exchange effects of
the a cluster between the two identical *2C cores
(for more examples see Ref. 10).

If A, and A, denote the number of nucleons in the
two colliding nuclei 1 and 2, respectively, and N,
and N, corresponding numbers of extracore nucle-
ons, the total nucleon number A of the system is
given by

A=A +A,
=[(A; =N)) +N, ] +[(A, =N,) +N, ]
= (A _N) +N ’ (37)
where N =N, +N, is the total number of the extra-
core nucleons in the system. For the scattering
of identical nuclei, A;=A,=A/2 and N,=N,=N/2.
A. Hamiltonian
In the particle-core model the Hamiltonian of the
system may be written in the form (see also Ref. 11)
. N N
H=T¢ +Tc,+W(fc 0, )+ 25 h@) + 1V =T,
i=1 i<j
(38)

FIG. 3. Rotating coordinate system. The arrows give
the direction of the laboratory z axis and the intrinsic
z' axis. The angle 6 between them is the scattering
angle.
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with
h(i)=t; +U(F;, Tc c,) -

The Hamiltonian contains the kinetic energies TCl
and Tc2 of the cores 1 and 2 and the intrinsic ener-
gy and their mutual interaction W('fC c,) Which de-

pends on the relative distance T , between the
cores (see Fig. 2). The one-body operators h(i)
describe the motion of the extracore particles
within an effective shell-model potential U(f;, ¥¢,c,)
generated by the cores. This may be the potential
of the two-center shell model. The two-body oper-
ators V,, represent the interaction between the
extracore particles. An extension of this ansatz
may include the dependence of the Hamiltonian on
the intrinsic core coordinates. The approximation
of the particle-core model consists of the neglect
of the internal degrees of freedom of the cores.

A further improvement may be obtained by allow-
ing collective modes, such as surface vibrations,
rotations, and giant-resonance oscillations for the
cores. We shall not, however, pursue here this
extension, which is rather straightforward.

It is convenient to describe the scattering of the
two nuclei by the relative distance between the nu-
clear centers and by the coordinates of the extra-
core particles. The relative coordinate T depends
on the partition of the extracore particles, as ex-
plained in Egs. (2)—(4). When the numbers of the
extracore particles are much smaller than those
of the core particles, i.e., N;/(A; -N;) <1, the
relative coordinate can be approximated by the
distance between the cores, i.e., T=T, . . In this
approximation the distance T, ., in the potentials
W and U in (38) may be replaced by T.

The relative coordinate ¥ includes already the
relative motion of the centers of mass of the extra-
core particles against each other. Therefore, one
choice of the coordinates of the extracore particles
is to measure the particle positions from the cen-
ters of mass of the nuclei to which each particle
belongs. Another possibility is to measure the
coordinates of the particles from the center of
mass of the total system. Both cases are studied
in the Appendix A. For N,/A,; <1 the kinetic ener-
gy in the particle-core model can be written, ac-
cording to Egs. (A7) and (A8) of Appendix A, as

1
T=§LP 2;421?,“ 2;4 > P (39
i=N;+1
or
1 N
TzﬁP +2M§P‘c‘m.2’

where p is the reduced mass, p=[A,4,/(4,+A4,)]M,
and P denotes the momentum of the relative mo-
tion. The particle momenta Pi ALand Pl 4, Ar€ TE-

ferred to the individual centers of mass at R 4, and
(see Fig. 1). Here, we assumed that particles

w1th i<N, belong to the nucleus A, and part1c1es

with i>N, to the nucleus A,. The momenta P

are referred to the center of mass of the total sys-

tem at R. Thus, the Hamiltonian (38) can be ap-

proximated, when N;/A; <1, by

H=H,+H,+H,, (40)
with
Hy=5—P2+W(r), (402)
2p
N
=2 h(), (40D)
i=1
and
N
H,=2 Vi, (40c)
i<j

where H, can be written as

Ny
1 Ape
ZWP‘M + (riA1+A r’r>
i=1
N
1 e A
+ Z ZMP‘A2 U(r,Az—Ar,r
1=N1+1
(41)
or

1
E mpi c.m,2 + U(Fi cm.’ ¥).
i=1

The Hamiltonian has been divided into operators
which are ordered according to the number of
extracore particles involved in the operators.
The particle coordinates ¥; , and T,  are mea-
sured from the nuclear centers at R, and R Ap?
respectively, and the coordinates ricm from the
center of mass at R. They are defined in the Ap-
pendix A (see Fig. 2).

B. Wave Function

1. Angular Momentum Coupling in the
Framewovk of the Two-Center
Shell Model

For scattering involving two heavy ions the total,
not yet antisymmetrized, wave function of the sys-
tem can usually be written as

¥= 3 Ruu(")[iLYL(e: P)®® s 1w (42)
ALJI

where R, ,,(r) represents the wave function de-
scribing the relative motion of the colliding nuclei
with the orbital angular momentum L when the
channel spin is J and the total angular momentum
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of the system is I. The function &, is the intrin-
sic wave function for the total system describing
all degrees of freedom except the center of mass
and the relative motion. Here, X denotes a set of
intrinsic quantum numbers. The structure of the
wave function (42) is convenient in the asymptotic
region (» > R, +R,, where R; are the nuclear radii).
We will show in the following that the wave func-
tion (42) can be brought to a strong-coupling form,
which is more advantageous for the internal region
(strong-coupling region, i.e., for » <R, +R,) than
the representation (42). In the internal region the
orbital angular momentum L and the channel spin
J are strongly coupled and hence they are no good
quantum numbers.

In scattering experiments, scattered nuclei are
usually detected at some angles #’ with the inci-
dent direction #. The total angular momentum I
and its projection M along a fixed quantization
axis (z axis) remain good quantum numbers dur-
ing the scattering process (see Fig. 3). On the
other hand, if the scattering is described in terms
of the two-center shell model,'® the quantization
axis is always taken along the direction connecting
the two centers (2’ axis in Fig. 3). This means
that the quantization axis rotates with the scatter-
ing angles and is not fixed in space.

Since the projection of the total angular momen-
tum M on a space-fixed axis is a good quantum
number during the scattering, we construct wave
functions from the two-center single-particle wave
function and rotate them to a space-fixed axis (say,
2 axis).

In the simplest case the two-center potential is
symmetric. For large separation distance of the
two centers the wave functions approach asymptot-
ically the one-center wave functions bound in gen-
eral to both individual centers. Since the two-cen-
ter potential approaches to spherically symmetric
potentials around each center, one can construct
new two-center wave functions which are bound
asymptotically only to one center and have good
angular momentum quantum number with respect
to this center (see Appendix B and Fig. 4). Such
wave functions are automatically obtained in the
case of the asymmetric two-center shell model
(asymmetric break-up).!”!® We denote the single-
particle wave functions by ¢}, ., where

lim @ =@nm ¥ ¥, 2" F2,). (43)
P

Here, we note that j is only asymptotically a good
quantum number. Therefore, j is placed inside
parentheses.

The plus and minus signs indicate that the wave
functions are asymptotically concentrated around
the right or left side in the two-center potential,

respectively. The distance between the two cen-
ters is » =2z, (see Fig. 2). The set of all other
quantum numbers is denoted by z, and the coordi-
nates x’,y’,z’ are related to a rotating system

(see Fig. 3). For later convenience we require

the following phase convention between the two
wave functions (symmetric two-center shell model):

(p;(j)m(x’! _y:, _ZI) - (_l)j-Zm(p;u)_m(xl’ yl’zl) .
(44)

This symmetry is identical with the R, symmetry
(rotation around the x’ axis) of the rotation-vibra-
tion model.'®

According to the usual shell-model procedure
we construct many-body wave functions x;,, from
these single-particle wave functions which describe
asymptotically nuclei with definite angular momen-
ta I and M concentrated at the right or left center
indicated by the + sign. The intrinsic wave func-
tion of the total system is then given in the rotating
system by

&))\(J)M(l,’2”r)
= [x:lp(l')@ Xy 2] yu
= D (LD MM MK 0, (), (2
1
’ (45)

Here, the sets of the particle coordinates are ab-
breviated by 1’ and 2’. The coordinates are re-
ferred to a rotating coordinate system in which
the z’ axis is defined by the direction connecting
the two centers. This z’ axis serves also as quan-
tization axis. The wave function & ,,,(1/,2’,7)
has good angular momentum only at large separa-
tion distance of the two nuclei, and hence J is
denoted by parentheses.

The rotated coordinate system is specified with
respect to the laboratory system by the two angles
¢ and 9 of the relative coordinate and a third angle
¥ which describes a rotation around the z’ axis
(see Appendix A). We assume that the Hamiltonian
of the system is expressed to depend on the rela-
tive coordinate and the intrinsic particle coordi-
nates of the rotating frame. For example, the two-
center shell-model Hamiltonian can be used for the
intrinsic Hamiltonian H,. As in the rotator model
with extracore particles, the three angles de-
scribe the rotation of the whole system so that
their canonically conjugate momenta are related
with the total angular momentum operator. Hence,

éx(,m:EDz::(qb,9,\1’)&))‘”)":(1’,2',1’). (46)
”I

This superposition of the two-center wave function
has asymptotically the intrinsic angular momen-
tum J and the projection M on the space-fixed axis.
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If we insert the wave function &, (), into the ansatz (42), we obtain a wave function which has asymptot-
ically the orbital angular momentum L and the intrinsic angular momentum J of the nuclei:

e

R)\LJ!(r)l}L YL(G’ ¢)®ZDI‘1’:'(¢» 0, ‘I’)&’X(J)M’(l, ’ 2’, 7’)]
"G

(2L +1\Y2 e Lrngr\ 7ol ~ ' o
=Rap;, 1) Y i %) LI [IM") D% (¢, 6, %)@ gy (17,27, 7).
<

Here, we used the identity®

DL I mM-m|IM)Y,, Dy,

2 1 1/2
=< I;: > (LJOM' |IM")DL%. .
(48)

In Eq. (47) L and J are asymptotic quantum num-
bers just like the asymptotic quantum numbers of
the Nilsson model. If we write the most general
solution in the form

¥= 2 éX(J)IM'(r)DA;;'«p’9’\?)&))(1)”’(1,:2,’7);
\JIM'
(49)

then the analogy with the strong-coupling wave func-
tions of the rotation-vibration model and the uni-
fied model becomes evident.!® In this connection

it is worthwhile to comment on the symmetries of
the wave functions. In the rotation-vibration model
two very essential symmetries are required, name-
ly, the invariance of the wave function under rota-
tions through 7 around the intrinsic z’ axis and the
x' (or y’) axis. The last symmetry is connected
with the exchange symmetry of identical nuclei
[see Eq. (51)]. The first symmetry usually leads
to the condition K -Q=2v (v=0,1,2,...) for the
wave function Df¥®, ,,o. In our case there re-
sults ¥=0 only, which simply means that rotations
described by the angle ¥ are redundant, i.e., they
are already described by the wave function &, ,,,
in its dependence on the particle coordinates. (See
the later discussion of &, ,,, in connection with
the particle-core model.) The wave function (49)
becomes asymptotically (i.e., for » - ) a super-
position of eigenstates of L? and J?, in addition to
I?, provided that

= L (2L +1\*?
Rx(.r)m'(")_’ZRun(T)‘L( P >

r—ew

X (LJOM' |IM") .

This condition expresses the dependence of the
radial wave function R on the substates M’ in the
asymptotic region. Since the total angular momen-
tum operator has to be expressed in terms of the
differential operators acting on the angles, one
immediately verifies that the wave function (47)

(47)

r
has good total angular momentum I and good pro-
jection M on the space-fixed z axis. One can eas-
ily show that the wave function has also a good
angular momentum asymptotically, by writing the
orbital angular momentum operator L in the rotat-
ing coordinate system:

L=1-7J, (50)
where T is the total angular momentum operator
of the system, and J’ =’I{ +T; is the sum of the in-
trinsic angular momentum operators of the nuclei
with respect to their centers [see Eq. (A13)].
Asymptotically it yields

J28, W1, 2, 7r)—JJT + )PP, ;) -

r—eo
The fact that the operator I acts on the Euler an-
gles of the wave function (47) only, together with
the above equation, indeed proves that the orbital
angular momentum becomes asymptotically a good
quantum number. Therefore, the wave function
(47) can be used to solve the scattering problem
since, as in ansatz (42), asymptotically the angu-
lar momentum splits into the orbital and the in-
trinsic angular momenta.

For the case of identical nuclei, the wave func-
tions are usually symmetrized for the exchange of
all particles between the two nuclei. With the aid
of Eq. (44) it turns out that the intrinsic wave func-
tion which is written in the rotating coordinate sys-
tem has to be symmetrized as the intrinsic wave
function in the laboratory system:

‘i’xu)u"' [szl)(ll)® X(-Iz)(z,)

(%G @)@ X (1) (51)

2. Intrinsic Wave Functlion

The intrinsic wave function can be chosen in two
different ways. In the first case one chooses the
product of the individual shell-model configura-
tions of the two fragments as a basis. These con-
figurations are not mutually orthogonal. In the
second case the antisymmetrized orthogonal two-
center shell-model wave functions are chosen as
basis states which are prediagonalized states.
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For simplicity of the discussion the two cores
are assumed to be composed of the same even-
even nucleus which can in general be in different
states. The numbers of extra-core particles in
both nuclei, however, need not to be the same. Since
the number of extracore nucleons is smaller than
the number of core nucleons, the relative coordi-
nate ¥ is approximately equal to the distance be-
tween the cores. When all nucleons are exchanged
between two nuclei having the same number of nu-
cleons, the relative coordinate T transforms to
—f. Even for two nuclei with different numbers of
nucleons, T transforms to -F approximately when
the cores as well as a maximum number of extra-
core particles are exchanged.
The intrinsic wave function &, , is assumed to be

we write

ru~ @, N [x,, @ +2)0 9, (1,2,...,N,, +20)]1,® X1, (1, -2,)® &, (N, +1,...,N,
+(=)[xrg, (L, -20)® &, (1,2,...,N

AND GREINER 6

separable into wave functions for the cores and
extracore particles. In the present treatment the
antisymmetrization between the cores and extra
core particles is neglected. It is useful to express
the wave function as a sum of two terms, the first
representing the usual product of the intrinsic
wave functions of the cores and extracore parti-
cles, the second corresponding to the similar prod-
uct with exchange of all core particles between the
two nuclei. In the second case, the z’ axis of the
rotating coordinate system is reversed to the -z’
axis. When the states of the cores are the same,
the second term gives the largest overlap with the
first term. Other wave functions corresponding

to exchange of only a part of the core particles all
give smaller overlaps with the first term. Thus,

"zo)]lz

1 =Z0)]1, ® [Xzg, 0, +20) ® @1 ,Wi+1, 0o N +20) ]

(52)

Here, L is the orbital angular momentum. The antisymmetrization operator @ acts on the coordinates of
the extracore particles described by the wave functions ®,y, and &,,, concentrated around the center at
z'=1xz, (see Fig. 2). They are already antisymmetrized, e.g.,

@7y, = %5, (L, N2 20) = (N D) 7V2@ 0], (V@ @, (2)® - s

(53)

with the single-particle wave functions (pii" corresponding to the nucleus A; and discussed in connection
with Eqs. (43) and (44). Both sets of single-particle wave functions o in; are orthonormalized, but they are

not necessarily mutually orthogonal.

In Eq. (52) the intrinsic wave functions of the cores are denoted by Xicy and X1gg* The intrinsic coordi-
nates of the cores are abbreviated by I and II. In most cases of application both cores are in the ground

state with zero spin. Therefore, we restrict further discussion to this case, namely,

Xrgy ™ Xigy = Xo- OnE

possible extension of the present work is to describe the cores by the vibrational wave functions x(a, u) of
the collective model.?® The symmetries discussed in the last section apply again for the total intrinsic
wave function, which is then constructed of products of particle and collective wave functions. In the case
when I, =1,,=0, the spin of the nuclei is due to the angular momentum of the extracore particles, i.e.,
I,=Iy andI,=Iy,. The wave functions &,,, may be simply written as

@4~ XoDXo(MBy,(1,2,... ,N;N, +1,...,N),

where

?a=[2,(1,2,...,N,,+2:)® &, (N, +1,...,N, -z,) +(-1)*¢, (1,2,...,N,, —20)® &, (N, +1,...,N, +2,)]

(54)

JM

(55)

It proves useful to expand the wave function &, ,, according to the number of nucleons exchanged between
the two nuclei. For this purpose, we define the normalized direct, nonexchange wave function &, as the

product of the wave functions of the two nuclei:

$4(1, .., NN +1, ... N) = [(@a| 0] %x0 DX 041, . . . ,Ni;N, +1,...,N).

(56)

The exchange wave function &), corresponding to the exchange of ! nucleons can be similarly expressed,

as shown in Eq. (11). For example,

W, =8,(1,N,+1,3,...,N,;2,N, +2,...,N).

Here, the superscript i specifies a particular partition for an exchange of [ particles. For an [-particle
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exchange there are (¥1)(42) possible combinations. The completely antisymmetrized and normalized intrin-
sic wave function &%, can now be expanded according to the number of nucleons exchanged®;

N (G2
N IN 1 1/2 1 ' 1 ] ;
0=y = | A e, + (-1 3 @G- (57)
" NIf 1=1 i=1
Here, we assumed N, <N,. As will be shown in Sec. IVA, the normalization constant f is given by
Ny
N,\ (N

e () () e (58)

1=1

C. System of Coupled Equations

The same method on which the approximation given in Eq. (35) is based is used to derive a system of cou-
pled equations which describes the relative motion of the nuclei in the particle-core model. For this we
integrate the Hamiltonian (40), over the extracore particle and intrinsic core coordinates and over the
angle coordinates of the relative motion using the wave functions constructed in the preceding section, III B.
The Schrédinger equation with the model Hamiltonian (40) is given by

HY=EV¥. (59)

The wave function ¥ can be expanded according to Eq. (42) or Eq. (47), which are rewritten here for con-
venience:

= )\%)’IRU,,(r)[iLY,_@@”],, ) (60a)
or
- 2L+1 l/2'14 ’ ’ I*x F 60b
v=y =) i Racwsyr@) D (LIJOM! [IM')DL%E, () - (60b)
ALJI M’

Only when J is a good quantum number, Egs. (60a) and (60b) are identical expansions. Both types of wave
functions are useful, depending on the choice of the single-particle states from which & is constructed.

(a) First we consider the case when the wave functions & in Eq. (60a) are constructed in terms of asymp-
totic single-particle states which are bound to individual centers, e.g., one-center oscillator states. These
states have good angular momentum j, so that the single-particle states can be coupled to the angular mo-
mentum J of the extracore particles. Then the angular momentum J in Eq. (60a) is a good quantum num-
ber which is independent of the relative distance of the nuclear centers. In addition to the intrinsic motion,
the wave functions &, , describe physically irrelevant spurious oscillations of the centers of mass. To be
consistent we have to omit the coupling terms between the spurious and relative motions, as was done in
Eq. (39). Since the one-body Hamiltonian H, is usually given in the coordinates of the rotating system, it
is convenient to transform the intrinsic functions &, ;, according to Eq. (46), to the rotating system. There-
by, Eq. (60a) transforms to Eq. (60b), and then by applying (60b), we obtain from Eq. (59), the following
system of coupled equations:

1 -
2 G W) =+ 3 I =M 107 G, ) | Bt
N

_ .L-L' B n d d L(L"‘l)h—2 ~ ~
=- > iLL(JIM -M | LO)J'IM -M | L 0)[(-W2;72;+—%T+W(r)-E)(@,\,MIQX,,,,)
NL'T'#(NLT), M

+ (‘i’xlu |H, +H,| &X'J'M>}R)\'L'J'l(r) ’
(61)
where H, and H, are defined by (40b) and (40c).

In Eq. (61) we assume that the one-body Hamiltonian H, is invariant under rotations around the z’ axis in
the rotating coordinate frame (see Fig. 3) so that no states with different angular momentum M are mixed
by H,. The right-hand side of Eq. (61) contains all the coupling terms to the inelastic channels.

(b) Next we study the case when the single-particle states in & of Eq. (60b) are solutions of the Hamil -
tonian H, of the two-center shell model. Then the particle-core interaction is already prediagonalized. An
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advantage of this method is that the single-particle functions are mutually orthogonal with respect to dif-
ferent nuclear centers and hence the calculation of the potentials is considerably simplified, as will be
shown in Sec. IV. The wave functions & do not fulfill the requirement of true intrinsic wave functions, i.e.
they are not independent of the relative motion of the nuclear centers besides the spurious oscillations of
the centers of mass of the extracore particles. We consider the dependence of the two-center wave func-
tions on the relative coordinate T as physically relevant. They describe already an important couplirlg of
the relative and the intrinsic motions, contained in H,. Therefore, the angular momentum operator J has
a good quantum number J only in the asymptotic region where the nuclear centers are well separated. Then
the orbital angular momentum appearing in the Hamiltonian is »-dependent, and has to be calculated accord-
ing to Eq. (50) using the coordinates of the rotating frame [see also Eq. (A12)]. We obtain from Egs. (59)
and (60b)

I:T)\(LJ')I(T) +W(r) -E "'Z (JIM -M | LO)*(® oy [ Hy +Hy| i’xum{le(uu(r)
M

=_ > QLT (<)M H (JIM” —M" | LO)J'IM' —=M"| L'0)
M M" N'T'L'=#=(\JL)

ZI+1

<Duu“q’x<.r>u”lH ElDuu’d’x (T M’ DRy (L’.r'u(”) (62)
62

Since the intrinsic functions & now have a physically relevant dependence on the relative coordinate ¥, the
operator p, of the relative motion in the kinetic energy of Eq. (40a) has to act also on the intrinsic function
&. Therefore, the operator T, ,,,,(7) of the kinetic energy on the left-hand side of Eq. (62) is given by

s —7 +E (JIM =M | LO)?

- 138 )2 9 |-
X {2 ‘I’x(.nu ‘i’xum dr ‘I’x(.r)u oy oy D yu
M'-M' ’ ’ " " 21+1 I% / 2 Ix 3
2ur D (MM JIM ~M"| LO)JIM” -M" | LO) “o—5— a7 Ditir ¥ o [(T=32| DLk (syu -

o (63)
The coupling term (&8 /97| ) is imaginary and vanishes for the usual two-center shell-model wave func-
tions. The nondiagonal matrix elements (éxla/arl 513,‘,) are different from zero and contribute on the right-
hand side of Eq. (62). They, together with the other nondiagonal terms of the kinetic-energy operator, de-
scribe the nonadiabaticity of the seattering process (Zener effect?!). The term
9

olesrals)

r? 877 ar
acts as an v -dependent additional potential. Such a potential must occur if one uses a relative coordinate
which leads to the reduced mass for all distances » in the relative motion.?® The additional potential van-
ishes outside of the overlap region of the two nuclei. The operator J’ is the angular momentum operator
of the extracore particles referred to the origin of the coordinates of the rotating frame [see Eq. (A14)].
The total angular momentum operator I ex_Pressed in Euler angles, acts on the rotator functions DJ¥..
The Coriolis term which is proportional to I-J’ is the only operator which mixes states with different in-
trinsic angular momentum projection M’. If axially asymmetric deformations are introduced in the two-
center shell-model potential, of course, additional M’-mixing terms will occur. Except for a small »-
independent contribution which can be neglected for small ratios N,/A; <1, as discussed in Appendix A
[Eq. (A10)], Eq. (63) has the same asymptotic behavior as Eq. (61),

o1 d . d L(L+1)h‘2 - -
l: e "1; T2 +W(7’)—E+(‘1’x(.r)u|H1“'Hzld’x(.r)u):lRMt,J,;(?’):O for y - .

Which of the two types of wave functions, constructed from one- or two-center shell-model functions, is
the most convenient one depends on the problem under consideration, especially on the relation between
the strength of the particle-core and the core-core interactions.
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IV. DIRECT AND EXCHANGE POTENTIALS

In addition to the core-core interaction W(r), the extracore particles contribute an effective potential in
Eq. (61) or Eq. (62) which is the sum of the expectation values of the one- and two-body Hamiltonians H,
and H, with the intrinsic wave functions. That is,

V(r) =23 (JIM =M| LOY* <@ \( sy [Hy +Hy | @ 5 s yu) - (64)
M

This equation represents an average over the matrix elements with different M values. In this section we
calculate the matrix elements occurring in (64). The matrix elements are the same in the space fixed and
rotating systems for T =72, i.e., if both coordinate systems coincide. Therefore, we are allowed to use
the functions &), which are identical to %, [see Eq. (57)] with the subsidiary condition ¥ =72:

Vo= (@r(somHy | B rm) = (B0 H, |®4,) ifF=rZ. (65)

In the following, we study in detail all contributions which arise from the antisymmetrization in (65).

A. General Case

The additional contribution to the effective potential V, of Eq. (65), due to antisymmetrization effects, is
calculated from the difference

AV,,(’V)=<¢$! IHn I‘I’A )_ <d)len |¢d> .

int
The operator H, can be a one- or two-body operator, H, or H,. The last term may be called the direct po-
tential, since it is the contribution of H, to V, when no antisymmetrization between the nuclei is applied.

It will now be shown that the correction term AV, can be expanded according to the number of exchanged
particles. Namely, using Eq. (57), we have

N! 1/2 1
f PYH, ¥4, dT = <W> f<1>*,,H,, &4, dr =7 f 3H, [(bd +y (-1
1

Since the wave functions are antisymmetrized within one nucleus, the matrix elements (®,|H, |d>(e',)( ,) are
independent of ¢ for all ! values. Hence, we obtain the expectation value of H, which is expanded according
to the number of nucleons exchanged:

@t iyl 28) = [c@attlo + T 7 (1) (M) @almieen |. (66)

This result is in agreement with a similar expansion for the scattering amplitude given by Goldberger and
Watson.® Since both &, and &, are normalized to unity, setting H,=1 in (66) immediately yields the ex-
pression for the normalization constant f given in (58). Thus, the additional contribution to the effective
potential due to antisymmetrization is given by

()
<I>(e",2',:| dar.

i

AV,,:(}% - 1) (@, |H,,|4>,)+% Zl: (-1) (f‘) (?’2) (@glHy | @ exs) - (67)

B. Case of Identical Nuclei

Since we are primarily concerned in the scattering of two identical nuclei, such as the *N + N scatter-
ing, we now consider an important special case in which the extracore particles in both nuclei are in the
same state, i.e., I,=I,=I. Furthermore, if, as in this case, N,=N,=N/2, the wave function (54) simpli-
fies to

@i~ XXM @ y(1,2,...,N/2; N/2+1,...,N), (68)
with
@a=3l1+(=1F*7*"2][&,(1,...,N/2, +2)®®,(N/2 +1,..., N, = 2) 1 . (682)

We note in (68a) that ¢, vanishes unless

L+J+N/2=even.
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This means that the sum of the angular momentum quantum numbers L and J has to be even or odd for the
scattering of identical nuclei depending whether the mass number A is even or odd. Indeed, for a nucleus
with even number of core nucleons the number N/2 of extracore particles is even (odd) when A is even
(odd). The direct wave function &, can be constructed by inserting ¢,, given by (68a), into Eq. (56).

1. Orthogonal Single-Particle Wave Functions

The single-particle wave functions, which are the same in both nuclei when the nuclei are identical, are
already orthonormal around each center. The formalism developed simplifies considerably when the
single-particle wave functions of both centers are also mutually orthogonal, e.g.,

(omlom =0

for all m and n. Such wave functions are, for example, obtained from the two-center shell model. In this
case all overlap integrals between the direct and exchange parts vanish, i.e.,

<¢dl¢ex,l>=0

for all I. It follows immediately from Eq. (58) that for orthogonal wave functions, we have f=1.

We investigate now the structure of the various possible matrix elements. The Hamiltonian can be ex-
pressed as a sum of n-body operators H, in the coordinates of the extracore particles [see Eq. (40)]. All
matrix elements of the n-body operator H, between the direct and /-nucleon exchange states vanish for [
larger than n/2, i.e.,

(B4|H,| @, )=0 for I>n/2. (69)
This is because, for example, an exchange of two nucleons necessarily involves a two-body force and a
one-body force cannot exchange particles. For a one-body operator H,, Eq. (69) implies

<(I>£“ IH1|¢£\1>=<4’¢IH1!¢4>:<4) |H‘|¢>, (70)

where ¢ is the wave function which is not antisymmetrized, namely
N/2
@ =Xo(DXo(]) [I'I Pu(R)® @r (N/2 +k)] . (70a)
R=1 I

Thus, we obtain the following well-known result: When the Hamiltonian consists of one-body operators,
which is symmetric in all particle coordinates, the Pauli principle is already fulfilled when simple prod-
uct wave functions are used, such as ® given in Eq. (70a), in which each particle occupies a different
single-particle state.

For a two-body operator H, only one transition matrix element does not vanish, namely (®,|H, |<I>ex_ -

2. Non-Orthogonal Single-Particle Wave Functions

In general two sets of single particle functions ¢;, and ¢, are used which are orthonormalized with re-
spect to each center at z’ =+ z, but which are not mutually orthogonal with respect to different centers (we
call such wave functions one-center functions). That is,

(Pmlo#0. (71)

In the following we consider the consequences of Eq. (71). To simplify the further discussion we restrict
us to the case of two identical nuclei with only two extracore particles bound to each center. Then, in the
framework of the particle-core model, the wave function which is antisymmetrized between the extracore
particles only may be written as follows:

14 (=1F* 1
<1>4=—————+(2)L 770D 3 le,.amam,,%G(<ﬂm,(1)<p,,.2(2)<pm3(3)cp...,(4))- (72)

mmamgmy

Here, the constant coefficients C,,,l,__ - describe the coupling of the various angular momenta and are
given by

c"'l"‘z"'s"‘4 =l1- (_1)2.1'1-16"1"26“]2] 1+ 6"1"25«7112).-2

X (JyJo 1y My | I My + m,)( Gy Gy mgmg |1 mg + m (I Imy + my mg + my|JM). (72a)
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For convenience, the single-particle wave functions are abbreviated by

(Pm1=<p:1!1m1: qomz:(p;zjzmz
(pmazgon-!jlm:;’ (»om‘l:(pn-zjzmi' (72b)

The single-particle states have angular momentum j with the projection m on the z axis of the laboratory
system. By n we denote all additional quantum numbers including the isospin quantum number. The sym-
bol m; indicates not only the projection of the angular momentum on the z axis, but also to which center
the wave function belongs; ¢=1,2 means ¢* and =3, 4 means ¢~. Introducing the matrix elements g;; de-
fined by the overlap integrals as

gil=<¢mi|‘pmi’> (i,j=1, 2: 3, 4), (73)

the normalization constant f can be expressed in terms of the determinant, det(g) which is constructed
with the matrix-elements g;;, namely,

f=u 4 le mgCmi...mjdet(g). (74)

myeeomy mi.

The expectation values of the one- and two-body operators H, and H, [see Eqs. (40b) and (40c)] are obtained
using the matrix elements g7%;; of the inverse matrix g~'. Namely,

H
o
Sair

1
<I’A>:f_ 2 2 CupoonCniee mjdet(g)
.. ceemg

4

2RI

i,i=1

4
2 Pm@m | VIOmomi)3(8 % 87 =8 s 87 H4) - (75)

i,d.k,1=1

It is evident that this formalism is not restricted only to four extracore particles. In the general case one
has only to replace the number 4 by the number N of the extracore particles.

In order to express the matrix elements in Eq. (75) in the form of the expansion similar to Eq. (66), we
note that the direct function &, in the expansion is given by

1 -1 +J
8, =L EU X Copm, 75 Ui (103,@)) 75 607 3)07,(4). (76)

The antisymmetrization operator @ acts only on the two-particle functions. The function &, is normalized.
The normalization constant f is obtained by setting N, =N, =2 in Eq. (58):

F=1=&Bg| @0, ) + (g Beyr) - (77)

In particular, we find

4(®d|¢ex,1)}

@, |90 E E C omi ‘?n; (gugu gugu)(gngn gugu)
a ex,2 my - 4 . |

peremgmy.

(813824 = £14823)( 831842 = 841 832) - (77a)

Summing up the terms in Eq. (77) one obtains again the result given in Eq. (74). Equation (77) is an expan-
sion of (74) according to the number of overlap integrals (¢} |¢.) between different centers appearing in
each term of the sum (77). The matrix element (&, Iéﬂ',) contains terms with only two factors of these
overlap integrals, while the matrix element (<I>,,|<I>ex'2) includes only terms which are products of four such
overlap integrals. Therefore, the expansion converges rapidly with increasing number of exchanged nu-
cleons and with increasing separation distance between the nuclear centers. Without going into details we
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|

give the following integral expressions from which the various matrix elements can be easily derived:
I<I>¢
<¢d|Hn 1>"_ Z Z le m4 m{eeemy

- mg m1
Iq’e)(.2>

. 4 (@7 (19, (2))8(@1,:(3)0 1 (4))
x 35 2 ot e @0nr B0n W, { G} )0 2N 5 (e 7 () xdr, - - dr,.
i#j=1R#1=3
G (3)P m (UP (1)@ 7 (2))

(78)
As an example, we give here the explicit expressions for the expectation values (®,|H,|®,) for the one-
and two-body operators. For the one-body operator H, we obtain
<q>d IHl '¢d> = 2 Z} cml cmy C (1 + 6nlnz Jlj2)2
mye-emg my
4 _ _ 2 . .
X 5mlml'6m2m2' E <(pmi|hl(pm">6m-m-'+6m méém‘lmé E <(pm,- 'h' ,(pm">6m m! > (79)
imi=3 the ] 3 i==1 i
and for the two-body operator H, we have
<¢d IH |¢d> = 2 E le cml'--'m,;(l +6n1n2611f2)
ﬂl M4 ml
X {5m1m{5m2mé(<kﬂ;3(ﬂ;4| VIPni@mi) = Prmg®ma| VIOm;0ms))
+ 0 miOmams(Pm Py | VIOrs Pmg) = @y | VIO ms 0 mi))
+(1+0, ,,0 1,2) Z) 3 k§_ PPy | VIO 0720 mim; ,..,...,} (80)

In Eq. (80) the last term contains the interaction between nucleons belonging to different centers. As one
can easily prove, the equations of this section can be reduced to the Egs. (69) and (70) of the last section in
the case where the wave functions at different centers are orthogonal, i.e., (¢ |®;)=0. For this case it
yields g;, =gy; =0 with i <2< k.

C. Application of the Formalism to the Scattering
of N on "N

To illustrate the application of the formalism developed, we consider the elastic scattering of N on N.
The problem of antisymmetrization can be studied explicitly in this case using the particle-core model.
The spin =1 of the ground state of *N enables us to examine the effects of spin on the elastic scattering.

Within the framework of the particle-core model we assume that each *N nucleus is composed of a '2C
core and two extracore nucleons, i.e., one 1p,,, proton and one 1p,,, neutron. Since the ground state of

12C has zero spin, these two extracore nucleons couple to give spin /=1 for the ground state of the N
nucleus.

In this section we calculate some special matrix elements using an attractive two-body force of Gaussian
type

Vi = Ve 7%, (81)
1. Divect Potential with a Two-Body Force

First, the direct potential, given by Eq. (80) is calculated with the two-body force (81). For this pur-
pose, we define the direct wave function of the extracore particles in analogy to Eq. (76), but without cou-
pling the angular momenta of the nuclei to a total channel spin J:

P upy(1,2,3,8)= D, (Emm, | 1M)G S mym,| 104,)

m1m2m3m4

X T (U] (DT, (2I0(2)) T @ (¥ ]y (37BN ] (4)0(4)). (82)
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In the wave function (82) it is assumed that a 1p,,, proton and a 1p,,, neutron are bound to each nuclear
center at z =+2z,=17/2 with the angular momenta coupled to /=1. The proton and neutron states are de-
noted by 7 and v, respectively. Since we calculate matrix elements using an isospin-independent force,
the antisymmetrization in (82) is, in fact, superfluous, but for the sake of completeness we retain it there.
The single-particle wave functions ¥}, are defined in terms of the 1p oscillator function <an,, Eq. (A19),
and the spin functions S,,_:

\Ilt%,mz Z) (I%mlms |%m)(pyinlsms' (83)

my,ms

From Eq. (80) and Appendix C we find
4
<¢a, MMy 2 Vi
i<j

with I, () given by (see Table II in Appendix C)
I, (7):Id (M’m,m)

Pa, ,,;M21> =0y uBupug 4 L) + 21, (r = 0)], (84)

_ -1/2 __¢ 2 5 2,43+8 5 QL 4]
=Vo(1+2¢) exp< 1+2€§>[1+2§+3§ +91+2§g§+9(1+2§)2£ , (85)

where £=Vu v, {=v/K, and u =Mw/fi. The r-independent term of Eq. (84) represents the interaction be-
tween the proton and neutron in the 1p,,, shell within each N nucleus. The matrix elements (84) are diag-
onal and do not depend on the angular momentum projections M, and M,. These results arise for two rea-
sons, namely, that the space distribution of the extracore nucleons is spherically symmetric for the wave
functions (82) around the two nuclear centers and that the two-body force used is independent of spin and
isospin.

Next the direct part of the intrinsic wave function of the N +*N system is defined according to Eq. (76),
by

Qd, M= %[1 + (—)J+L] xmc (I)Xlzc(n) MZA>I (1 1M1M2 IJM )<Pa.u,u2 . (86)
172

It is noted that all terms in Eq. (86) with M, =M, do not contribute to odd orbital angular momenta L; i.e.,
only even orbital angular momenta L are allowed when colliding !*N nuclei are in the same magnetic sub-
state. For different magnetic substates (M, #M,), there is no restriction on the L values. The direct part
in the effective potential, Eq. (64), which arises from the two-body forces between the extracore particles,
is easily obtained using the wave function (86) and Eq. (84). The result is independent of the angular mo-
menta L, J, and I:

Va =2 WM -M[ Loy <‘I’¢,m
M

i: Vi ‘i’a,m> =4L,(r)+2(r =0). (87)
i<j

The potential V, shown in Fig. 5 is calculated with the realistic parameters V,=-67.8 MeV, y=0.4217/F?,
which fit the low-energy nucleon-nucleon scattering data.?®

2. One-Exchange Matrix Elements

We calculate a special one-exchange matrix element defined by
Vex,l(MpMz) = -4<<Pa,ulu2(1, 21 3’ 4) I V!s l‘Pd.M1M2(3’ 2’ 1; 4)) . (88)

The minus sign and the factor 4 are inserted here because of the factor (-)'(¥1)? with /=1 and N, =2 which
appear in Eq. (66). The matrix element (88) is representative of the one-exchange contribution. It would
be the only nonvanishing matrix element in (@4 |H,|¢ o i [see Eq. (78)] if the single-particle wave functions

<p,’;,l and ¢, are mutually orthogonal. However, this is not the case in Eq. (82). The matrix element (88)
satisfies the following symmetry relation:

Vex ,1(M1;M2) = Vex ,1(M2,M1) = Vex ,1(_M1) _Mz) . (89)

Therefore, only four cases with M;=0, M,=0or 1 and M, =1, M, =+1 or -1 need to be calculated. The ma-
trix elements are obtained with the help of Table III in Appendix C and are listed in Table I. Their values
and the ratios V., ,(M,,M,)/4|l,|, with I, of Eq. (85), are shown in Figs. 6 and 7.

In the surface region where the “N surfaces first come into contact, that is, between » =5 and 7 F, the
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direct processes occur, generating the main structures in the various cross sections. In this region the
one-exchange term in the expansion of Eq. (66) contributes an additional effective potential which is of the
order of 10% compared to the direct term, as shown in Fig. 7. The small ratio of the one-exchange poten-
tial to the direct potential indicates that the effects arising from the antisymmetrization can be well treated
in the surface region by expanding the wave function according to the number of exchanged nucleons [see
Eq. (12a) or Eq. (57)]. With increasing overlap of the nuclei, higher-exchange terms become larger and,
therefore, have to be taken into account. This leads to a soft-core potential in heavy-ion collisions.™ ¥ 1t
is clear from the discussion that our treatment of antisymmetrization may be considered as an expansion
of the wave function from the asymptotic to the interior region of scattering.

V. SUMMARY AND CONCLUSIONS

A microscopic theory is developed to describe
the direct part of heavy-ion reactions, namely non-
compound reactions. In the region where the nu-
clei come in contact, the direct reactions play a
dominant role. All processes occurring in this
region can be classified according to the number
of nucleons transferred and exchanged between the
nuclei. A particular exchange of nucleons is con-
nected with the antisymmetrization of the wave
function. Therefore, transfer processes and the
Pauli principle produce equivalent effects and are
treated on the same footing in the present work.

The wave functions, and hence the matrix ele-
ments are expanded according to the number of
transferred and exchanged nucleons. This is ob-
viously an asymptotic expansion in the sense that
one starts with the asymptotic partition of nucle-
ons and adds the one-, two-, etc. nucleon exchange
parts to the wave function as it becomes necessary
for shorter distances of the nuclei. Therefore, the
method is convenient to apply for all surface reac-
tions which, in fact, can be adequately described
in a particle-core model. In this model, only a

@y
1ot

0.5
0
-05

0.51 9 {
0 .
-05+

FIG. 4. Potential and wave functions of the one-dimen-
sional two-center oscillator. For the distances z,/a =0,
1.3 and 2.7 the energies and wave functions of the two low-
est states are shown on the left and right side, respec-
tively. The oscillator constant is a =(%/Mw,)}/2, The
energies of the two states are given by (n,+1/2)fiw, with
ny,=0, 1for z(=0 and by 3% w, for z,—~%. The wave
functions have good parity with respect to z =0.

—

few nucleons are treated microscopically. In prin-
ciple, reactions which take place at smaller rela-
tive distances of the nuclei can also be studied in
the present formalism. However, in this case,

an increasing number of extracore particles
should be taken into consideration to ensure the
convergence of the method.?’

As a first test of the procedure we have exam-
ined how the antisymmetrization between the nu-
clei influences the real part of the heavy-ion po-
tential. For the contact region of two '*N nuclei
we find the expected result: The contributions
from the antisymmetrization decrease strongly
with the number of exchanged nucleons.

In the particle-core model the single-particle

r (fm)
(0] 2 4 6 8
0 T T T

27 MeV — —— —— — ———

Vg (MeV)

€= var

FIG. 5. The direct effective potential V; of the 1N+ 1N
scattering calculated from Eq. (87) for an attractive two-
body force of Gaussian type. The same paramters, V,
=—67.8 MeV and ¥=0.4217/F? are used in Figs. 5-11.
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TABLE I. One-exchange matrix elements V,, (M, M,)
for two-body force (¢ =V 7, £ =v/u).

Vex 1 (M4 M)
M; M, V(1 +22) 2 exp(—1£2) x
O N ez gt hE3ena 208+ 2020
11 2[1+20+32 -1+ 2008 + k(1 +20)%8Y
1 -1 fra+208

motion can be described by one- or two-center
wave functions. Both types of functions are equiv-
alently used in heavy-ion theories.!* 2873° With
one-center wave functions most of the matrix ele-
ments can be calculated analytically and without
difficulties. Many-body functions built from one-
center oscillator functions show a well-understood
and simple dependence on the spurious center-of-
mass motion. On the other hand two-center wave
functions are single-particle solutions in an ef-
fective potential generated by the two nuclei.
Therefore, they include the influence of the nu-

20

Vex,1 (MeV)

ol 1 1 1 1
o} | 2 3 4 5
&= vpr
L 1 1 1 ]
(o] 2 4 6 8

r(fm; p=0.4fm?)

FIG. 6. The one-nucleon exchange matrix elements
Vex, 1 for the N +N scattering defined by Eq. (88) and
listed in Table I. The curves correspond to the various
values of the angular momentum projection M of the col-
liding 1N nuclei.

cleus-nucleus interaction already (at least to an
essential extent) and describe the single-particle
motion rather realistically. Because two-center
functions form an orthonormalized set of functions
the number of matrix elements needed is appreci-
ably reduced and the formalism of the second
quantization can be applied. Both sets of single-
particle functions are advantageous in microscop-
ical scattering theories and which one is to be
preferred depends on the special problem con-
cerned.

The present work can be extended in two direc-
tions: namely, to study the nonlocality effects
of the potentials (which are equivalent to a veloc-
ity dependence) and to derive a theory for transfer
reactions.

In fact, two possibilities leading to energy-de-
pendent real potentials have been considered up
to now. Fliessbach?® obtains an energy-dependent
potential by calculating the expectation value of
the Hamiltonian using antisymmetrized, velocity-
dependent wave functions (see also Ref. 29). Miil-
ler®! investigates the extent to which nuclear mat-
ter is compressed in the overlap region of the nu-
clei as the bombarding energy increases. He ob-
tains a strongly energy-dependent potential by
eliminating the compression channel from the

[ Vax,1 (M}, M2) 74 14 |

@ M| =M2=0
@ M) =Mp =1
o

Q0.5

0.2

0.l }—
o
s
<<
[ s
0.05—
0.02}
0.0l 1
o) I 2 3 4 5
€=Vur
L 1 | 1 ]
0 2 4 6 8

r(fm; =04 fm2)

FIG. 7. The ratios of the one-nucleon exchange matrix

elements V., ; to the direct matrix element for various
M values.
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dynamical treatment. The energy dependence of
the potentials is caused by the nonlocality of the
nucleus-nucleus interaction. The equations de-
rived in Sec. II allow one to study the nonlocal
effects systematically and to transform them into
effective masses (which are coordinate-dependent)
and effective energy-dependent local potentials.
Recently semiclassical theories for transfer re-
actions with heavy ions were proposed by Toepf-
fer® and by Broglia and Winther.*® The theory
for transfer reactions between light nuclei in the
framework of a coupled-channel Born approxima-
tion has been studied by Tamura et al.3* An ex-
tension of the coupled-channel method can be made
starting from the system of equations shown in
Sec. II. In this theory recoil effects should also
be included since they cannot be neglected in the
scattering of light nuclei. As a first possible ap-
plication we mention the study of the *C-2°Ne
channel occurring in the !°0-!°0 scattering. This
channel is most strongly coupled to the elastic
180-1%0 entrance channel besides the inelastic ex-
citation of the '°0O nuclei, as it has been shown in
recent experiments.?® Theoretical studies on these
coupled molecular channels are in progress.
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APPENDIX A: KINETIC ENERGY IN THE
PARTICLE-CORE MODEL

The degrees of freedom in the particle-core
model are described by the coordinates of the two
cores, ﬁcl and ﬁcz, and the coordinates ¥,,...,F,
of the N extracore particles which are all mea-
sured from an arbitrary coordinate origin. If we
denote the momenta. canomcally conjugate to these
coordinates by -ﬁc Pcz, and P, , the kinetic en-
ergy in the partlcle -core model can be expressed
according to Eq. (38) as

ch Pcz o Pl

T=sc.m*ac,m’ < 3M°

(A1)

The cores contain Ci=Ai— N, nucleons (i=1, 2)
where A, is the atomic number and N, the number
of extracore particles of each nucleus. Since we
wish to describe the scattering of two nuclei with
the particle-core model we need to introduce the
relative coordinate T between the nuclei. But the
relative coordinate is not symmetrical in the par-
ticle coordinates [see Eq. (2)]. Therefore, all
coordinate transformations using the relative co-
ordinate T lead to expressions for the kinetic en-
ergy which are not symmetric in the coordinates

o

of the extracore particles.

In the following discussion we consider the basic
partition of extracore particles which is defined
by assigning all particles with numbers i <N, to
nucleus A, and all particles with numbers > N,
to nucleus A,. For such a partition the relative
coordinate T is given by

.1 .
r-A <C Rcl+ §lr > A <CZRCZ+ ‘t%zﬂr,-)
- - 15, o 1 F . -
=RCI_R02+A_ E(r,"'Rcl)‘_ Z: (rg-Rcz)-
14=1 2 i=Nj+1

(a2)

For small numbers of extracore particles (N, /
A,;<1) the relative coordinate can be approxi-
mated by the distance between the cores, i.e.,

T~ ﬁcl - ﬁcz, which is independent of the coordi-
nates of the extracore particles.

In the following we transform the coordinates
ﬁc,, ﬁcz, and T, to the center-of-mass coordinate

= 1{ = - N
R=Z<C1RCI+C2RCZ+ Z) r‘>,
i=1

with A=A4,+A,, to the relative coordinate ¥, Eq.
(A2) and 7 independent particle coordinates. De-
pending from which point we measure the particle
coordinates we distinguish the following two cases.

(a) In the first case the coordinates of the extra-
core particles are measured from the centers of
the individual nuclei at R,, and R, (Fig. 2):

- -> =
Tig =T~ R4,

s 1/ 3
=T, A—(Z_} T+ c) for i<N,,
(A3)
F"Azz-f‘—RAz
- 1
=r,——< > T +CZRC> for i>N,.
A, i=Np+1

The transformation (A3) is useful if one describes
the motion of the extracore particles by one-center
shell-model states concentrated around each cen-
ter at ﬁA, and ﬁA In this case the shell-model
functions depend on the distances ¥ T4, and Ty
respectwely Introducing the momenta P P

Pm,, P,Az, which are canonically conjugate to R

T, T4, and ¥, ,,, respectively, the kinetic energy
in the particle-core model, Eq. (A1), becomes

1 1 ¥ 1
2 2 2
2am” Y2 P e L +2M,E Piy

Ny+1

wagil 2P) ~zign (5, Pon)

(A4)
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where u is the reduced mass of the relative motion.

(b) In the second case the coordinates of the
extracore particles are measured from the center
of mass at R (Fig. 2).

- . = . 12X, - -
r‘c.m.=r‘ - R=ri _Z< Z:lri+ CIR'Cl +C2R02> . (A5)
i=

denoted by ﬁ,c_m_, the kinetic energy is given by

T= 1 P2+~—1—P2+—1—ZN)P 2, (-1
24M° Toptr TaM & iem T\ A,

If the numbers of the extracore particles are
small compared to those of the core particles
(N,/C,, N,/C,<1), the expression (A4) and (A6)
can be approximated by

T—_1P2+_1"'P2+_1—_<§P 2+ ZN) P 2)
T 2AM 207 2M\F T M i=Np+1 faz
(A7)
and
T= 1 P2+-—1—P2+-—1—ZN)P 2 (A8)
oam” taptr tom & Piem

To prove that both expressions (A7) and (A8) are
the same in the above approximation we consider
the transformation between the coordinates de-
fined in (A3) and (A5). In transforming Eq. (A4)
into (A6) we need to substitute

P‘Al and P‘Az-. P‘c.m.

and

= = 1

BB +A<A22 B ? me> (A9)
If we insert (A9) into Eq. (A7) and subtract Eq.
(A8) we obtain the difference term

21“3[1) P (Azz‘,P, ﬁ,c'm)]z-p,’E.
(A10)

This energy difference is small when N,/ C,<1,
and should be neglected in accordance with the
approximation ¥~ ¥ c - rc2

As discussed in Sec III B, it is convenient to
introduce a rotating coordinate system with the
2’ axis coinciding with the direction of ¥. The
rotating coordinate system is fixed by three Euler
angles which are the two polar angles defining the
direction of ¥ and an arbitrary angle describing
rotation around the z’ axis (see Fig. 3). The par-
ticle coordinates in the rotating frame are de-
noted by ¥{, , ¥{4,, and ¥; , where the coordi-

)

i=Np+1

1 -
s P, P
M ‘Z;:l P‘c.m. AzM '.=?1+1 'c.m> r

The coordinates (A5) are applicable if the motion
of the extracore particles is described by the
wave functions of the two-center shell model. In
this model all particle coordinates are measured
in the same coordinate system in which the origin
is assumed to coincide with the center of mass.
If the momenta canonically conjugate to ¥,  are

1 X

1 N 2
(ERL)

r

nates ¥/, and ¥/, are measured from the nuclear
centers and 7 r; . from the center of the total mass.
The transformatlon from the space-fixed system
to the rotating system can be carried out by re-
placing the momenta P, A P, 42 and P by the
corresponding momenta P, , P,Az, and P,’cm in
the intrinsic rotating frame, i.e.,

B, ~P B, P

ig1° i40° icm.
(A11)
The momentum of the relative motion transforms

as follows:
ﬁr"?Pv_[%x (T— },)]

[
=2'- -—+ :’Z’(If-J)

=t U =Jd)] (A12)

since #=2’. The angular momentum T of the total
system is the well-known differential operator
expressed in Euler angles.”® The intrinsic angular
momentum J’ depends on the coordinates of the
core particles used. If the coordinates r, and

4 2T€ used, J’ is the sum of the angular mo-
menta of the particles with respect to the two nu-
clear centers:

N
’ - D
IR P‘M)+ ' %z“(r;A2 X P;Az).

Jr=1y +14, = Z(r

(A13)

If the coordinates ¥, ,, are used, J’is the total
angular momentum of the extracore particles with
respect to the center of mass in the rotating frame,

N
Fr=x@; xP; ). (a14)
i=1 .m. c.m.

APPENDIX B: CONSTRUCTION OF ORTHOG-
ONAL TWO-CENTER WAVE FUNCTIONS
WITH ASYMPTOTIC BEHAVIOR
OF OSCILLATOR FUNCTIONS

In this Appendix we discuss two methods for
constructing an orthonormal set of two-center
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wave functions with the same asymptotic behavior:
namely, when the centers are separated far
enough, these wave functions approach oscillator
functions which are bound to only one of the two
centers.

1. Double Oscillator Model

The two-center oscillator model developed for
the description of nuclear fission®~'® provides a
very convenient basis for a microscopic formula-
tion of heavy-ion scattering.’* The model com-
bines the shell-model potentials of the nuclei into
a common potential for all the nucleons (see Fig. 4)

The Hamiltonian for the model in the symmetric
case without T -3 and 72 terms may be written as'®

H=T+3Mwl[x2+12+(|2]|- 2,)?]. (A15)
The single-particle solutions of the Hamiltonian
(A15) which form an orthogonal set are given by
Holzer et al.’ (see also Merzbacher®®). These
solutions can be grouped into wave functions which
are symmetric or antisymmetric with respect to
the z coordinate. For large separations of the
two centers the wave functions asymptotically ap-
proach the usual oscillator functions. There exists
a pair of symmetric and antisymmetric solutions,
@s and ¢ 4, which are asymptotically degenerate
in energy. This pair can be combined to give wave
functions, ¢* and ¢~, which are concentrated
asymptotically only on the right and left center
at z=1z2,, respectively (see Fig. 4):

PARK, SCHEID,
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- )
@ =7z PstPa), (A16)

1
Y =73 (s F@a).

Here, the upper sign should be taken if the wave
functions behave as follows for positive z and for
large separation z, of the two centers:

limgpg=limg, for z>0. (A17)
o

Zo"“"
Otherwise, the lower sign is used. Thus, by a
combination of the symmetric and antisymmetric
wave functions, we obtain a new orthonormal set
of single-particle wave functions with asymptotic
behavior as described above. We remark that
these functions ¢* and ¢~ are no longer eigen-
functions of the Hamiltonian (A15) for finite sepa-
rations of the two centers. In the case of the asym-
metric two-center shell model which has been re-
cently developed by Maruhn et al.,'™ '® the wave
functions are automatically orthonormal one-cen-
ter functions asymptotically; i.e., there is no
need to construct the functions ¢* as in the sym-
metric case.

In general, the eigenfunctions of the Hamiltonian
(A15) do not have good angular momentum around
each center for large separation distances. For
such large distances the eigenfunctions are a
superposition of oscillator functions which have
different angular momenta and are degenerate in
energy. This degeneracy is removed when the
12 and T -8 terms are included in the Hamiltonian.™

TABLE II. Direct and exchange matrix elements with 1p oscillator wave functions (¢ =Vur, ¢=v/u).

K, M, m;, mp)

Kex(M’ m;, m;)

M, my, m; V0(1+2§)_7/28X'p (_1+2§ §2> X V0(1+2g)'7’2exp(—-§-§2)x
41— 4t 1 +2¢)*
0 0 0 [1+2g+3§2+ 1(+2§)g2§2+ (152;)254] , [1+2;+3;2—(1+g)(1+zg)§2+(—+7£)—§4]
272
0 0 1 t (o 250 ¢ (o 1i2i)
0 1 1 (1+2¢ +2¢%) 22
0 1 -1 2¢? (1+2¢ +2¢2)
2
1 0 0 1+2) <1+§+ 1zfzg §2) g(“l:_‘z_z_égz)
ZEZ
1 0 1 5(5'14,2; §2> <1+g)(1+g—1—’;25—§2)
2 1 1 1+2¢ +2¢° 1+2¢ +2¢2




Therefore, if the eigenfunctions of the generalized
Hamiltonian with /2 and 1 -3 terms are used in Eq.
(A16), the wave functions, ¢* and ¢~, have good
angular momenta j asymptotically.

2. Two-Center Wave Functions Deduced
from One-Center Functions by Schmidt
Orthogonalization Procedure

Orthogonal two-center wave functions can be
also obtained from usual one-center wave func-
tions bound to different centers by the Schmidt
orthogonalization procedure. In order to general-
ize the method, we construct single-particle wave
functions which describe the states of different
nuclei.

Oscillator wave functions which are bound at the
centers 1 and 2 located at z=+2,, respectively,
with different oscillator strength are taken as the
basis states in the Schmidt orthogonalization pro-
cedure:

@ =@ mlx, v, 2= 2,) . “19)
Pp = (Pz,mm(x, Y, 2+ 2,)

10

(a)

Kg(M,m,m/)

(0,1,1,(2,1,1)

-Kg (MeV)

-2 1 ] L 1

€= ur
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Here, N denotes the principal quantum numoer of
the oscillator state. All oscillator functions ¢,
or ¢, belonging to the same center are already
orthonormal and complete. Wave functions with
different magnetic quantum numbers m around
different centers are also orthogonal. Therefore,
it is only necessary to orthonormalize the wave
functions ¢, and ¢, in the subsets of the same
magnetic quantum number .

Such orthogonalization can be accomplished
straightforwardly using the Schmidt orthogonali-
zation procedure. The only quantities needed in
this method are the overlap integrals:

f @it ondt
and
f ei*endT.

Calculations along these lines are done by Ong
and Fliessbach.2®

As an example, we consider the set of p-wave
functions with equal oscillator strength on both

10

(b)

Kex (M,m,m;")

= Kex (MeV)

(0,0,1) ~_

&= Vur

FIG. 8. (a) The direct matrix elements K, with 1p oscillator functions. (b) The one-nucleon exchange matrix
elements K, defined by Eq. (A27) and summarized in Table II.
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\
\
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® 0.4 ~
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o2k \\ \
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o4
~
\\
| ] 1 | ——=3
% I 2 3 4 5
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| 1 | | |
0 2 4 6 8

r(fm;pu=0.4 fmi2)

FIG. 9 The ratio of the one-nucleon exchange matrix
elements to direct matrix elements, K /K.

centers:
5\ 1/4
soi-:(%) expl-u[x®+ 5 + (27 2,)°]}
-(1/V2)(x+iy) m=1)
X{Z2¥F2, (m=0) ’ (A19)
1/V2)(x=iy) (m=-1)

where u=Mw/%. With these functions ¢, we con-
struct a set of symmetric and antisymmetric func-
tions with respect to the z coordinate which form

AND GREINER

|

an orthonormal set, namely,

2?' ., % =[2(1 #(-)"Kn)] 2 [om * (-1)"0x],

A, m
(A20)
where K,, denotes the overlap integral
Kn= f PmPmdT= eha’(1 - 20228 ;o) - (A21)

In the limit 2y~ 0, K, -1, and the normalization
constants for the wave functions @g m=o and ¢ 4 m=1,
become zero. Inthese cases a Taylor expansion
in the two-center distance z, yields the following
limiting expressions:

. 16 3\1/4
R L7

25— 0

xexp[-3u(x® +y7 +27)],
lim ¢A,m=t1=2‘/ﬂ z‘Pm=u(zo=O) .

250

(A22)

The other wave functions ¢g, mes; and @4, m=o do
not pose any difficulty in the limit, 2,-0, i.e.,

Ps,m=s1~ Pm=11(2,=0),
¢A.m=u - <Pm=o(zo=0) .

Now we construct orthonormal wave functions ¥,
which approach asymptotically to the functions
@ and ¢,. According to Eq. (A16) one obtains

1
‘I’;: =ﬁ ((pS, mt (pA,m) ’

(A23)
¥y = (=)™ %2(%, m=Pams
or in terms of the basis functions ¢,,,
¥ =Crpm+ (=" Crer, (A24)

where

Ci=H{[1- (-D)"K,] "2 £[1+(-)"K,] 7}

Orthonormal two-center wave functions constructed

TABLE III. Direct and exchange matrix elements I(M, m, m’) with 1p,,, wave functions (§=Vu 7, £ =y/u).

Id ©, %" _i‘) 0

1,00, %, %)}

L+ h Vol +2¢)~"2exp (._5_ gz) N

1+2¢

I1(0, %, %)

1 (0, %" _f)}
Iex(l' %' é')

Vo +28) " exp(-4£%) x

Vo(1+2¢)~"2 exp(—$£2) x

3 4
[1 MRS LIS ++2§g SIS +€2g)z g":l
($0+20)8%

[1+20+§2—F 1 +0) 1 +20) 8 + £ +20)%¢Y
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from one-center oscillator functions are advanta-
geous in practical calculations. Because of their
simplicity and of the convenience of the oscillator
wave functions, matrix elements between the basis
functions (A18) can be analytically given for ordi-
nary central forces. As shown in the above ex-
ample, a disadvantage of these functions lies in
their behavior at z,=0. However, since the scat-
tering of heavy ions is dominated by surface re-
actions, this behavior causes no real problems
in actual calculations.

APPENDIX C: MATRIX ELEMENTS
OF THE TWO-BODY FORCES

We summarize here the matrix elements of the
two-body force in two bases. Specifically, we
consider a Gaussian two-body central force,

V= Voe it (A25)

and give explicit expressions for the 1p oscillator
and 1p,,, functions in the particle-core model.
The results are used in the study of the N+ N
elastic scattering as discussed in Sec. IVC. The
following dimensionless quantities are used:

E=Vur, t=v/u, (A26)

where u=Mw/7 is the oscillator constant.

10

o O
@ lex (0,172,1/2)
@ lex(1,172,172)

0.5~

-1 (M,m,m") (MeV)

0.2}

ol
9 I 2 3 4 5
€=Jpr
1 1 ] ]
0 2 4 6 8

r(fm; p=0.4 tm2)

FIG. 10. The direct and one-nucleon exchange matrix
elements, I; and I.,, with 1p4 wave functions, as de-
fined by Eq. (A31) and summarized in Table III.

1. 1p-Oscillator Functions

First, we calculate matrix elements with 1p-
oscillator wave functions concentrated at different
centers for the two-body force. We use the follow-
ing notation for the direct and exchange matrix
elements:

KM ,m,,m])
= <<p;ll(1)(p;-m,(2)| V12 , (P;l;(l)(p;-m;(z)} H

(A27)
Kex W’ml’m II)

=<‘P;,(1)‘P.;-m,(2) l Vi l (P;;(z)(P;-m"(l» .

The 1p-wave functions ¢, are those given in
Eq. (A19).

The matrix elements K, and K., both satisfy
the following symmetry relations:

KM, ,m,,m])=KM,m},m,)
=K(-M,-m,;,-m)), (A28)
and with respect to the » dependence,
KM,m,,m},v)=KM,M -m ;,M-m},-7).
(A29)

Thus, only seven different matrix elements need
to be calculated for 1p-oscillator wave functions.
The results are summarized in Table II. Direct
and exchange matrix elements with V,=-67.8 MeV
and ¢ =1.054, which corresponds to p=0.4/F? and

lex (M, 172,172)/14

0.5

0.2

lex/d
(o]
I

0.05—

0.02-

0.0l |
0

= Var

FIG. 11. The ratios of the one-nucleon exchange ma-
trix elements to the direct matrix element I.,/l,.
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y=0.4217/F2, are plotted in Fig. 8. The ratios of
the exchange and direct matrix elements are
shown in Fig. 9, illustrating the dependence of
the exchange contribution on the separation dis-
tance of two colliding nuclei.

2. 1p,,, Wave Functions

Next, we calculate special matrix elements with
1p,,, wave functions given by (83),

¥in= 2 Azmmglzm)enSn (A30)

ml,

Here, the functions (p,f,, are the 1p wave functions
defined in (A19) and used in (A27). The spin func-
tions are denoted by S, . In Sec.IVC, we use the
following matrix elements, defined by

I1,MM,m,m")
=<‘I’¥,m(1)‘I’;_M-m(2) l V12 I\Il;,m'(l)‘ll;-,ﬂl -m’(2)> ’

(A31)
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IGX(M’m’mI)

=<‘I/;,m(1)‘l’; ) M-m(z) I Vlz "I‘;,m’(z)q’;,u-m'(l» .
(A31")
The matrix elements I, and I, both fulfill sym-
metry relations which have the same form as
given by Eqs. (A28) and (A29), namely

IM,m,m')=IM,m’',m)=I(-M,-m,-m"),
(A32)

IM,m,m’,v)=IM,M-m,M-m',-7).
Therefore, only three different matrix elements
need to be calculated using the results of Table II.
These are listed in Table III. The matrix elements
and the ratios of the exchange and direct terms
with V,=-67.8 MeV and ¢ =1.054 are shown in
Figs. 10 and 11. It is interesting to note that in
the case of 1p,,, wave functions the transition
matrix elements of 7, vanish and the expectation
values are independent of M and ». That is,

Id(Mim)m ’) =5m,m'1d(M’m’m) = 6m_m’14(r) .
(A33)
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The T(p, n)’He neutron source reaction has been reinvestigated utilizing the time-of-
flight technique. This study was motivated by the lack of cross-section data above 13 MeV,
by large uncertainties in the zero-degree absolute cross sections, and by the need to improve
the accuracy of both the absolute and relative cross-section data. Angular distributions were
measured from 0°-140° at proton energies of 6, 7, 10, 11, 12, 13, 14, 15, and 16 MeV with
a neutron detector whose relative efficiency was established to +1.5%. Absolute cross sec-
tions at zero degrees were obtained by normalization of the zero-degree yields measured
with the neutron detector to precise charged-particle cross sections obtained for the reac-
tion T( p,3He)n. These results were compared to data obtained with a proton-recoil counter

telescope.

I. INTRODUCTION

The reaction T(p, n)*He is widely used as a
source of monoenergetic neutrons. While the re-
action threshold occurs at 1.019-MeV incident pro-
ton energy, the spectrum is complicated by kine-
matic effects due to center-of-mass motion up to
1.148 MeV. Above this energy, only monoenerget-
ic neutrons are produced up to at least 8.34 MeV,
the threshold for the T(p, pn)D tritium breakup.
The breakup process seems to have a very low
cross section, however, at least up to 11.9 MeV.!
An accurate knowledge of the T(p, n)*He cross
section is increasingly important as nuclear reac-
tion measurements become more precise and de-
manding. Also, the total n+3He cross section,
which is the sum of the elastic scattering of neu-
trons by He and the charge-exchange reactions
SHe(n, p)T and *He(n, d)D, is poorly known at higher
energies. These charge-exchange cross sections
can be calculated from detailed balance once the

inverse cross sections are known. Finally, data
from the reaction T(p, n)*He give qualitative in-
formation concerning the intermediate excited
nucleus *He. For example, the broad peak in the
total cross section for this reaction centered near
3 MeV can be interpreted as indicating a 2~ (T =0)
excited state of *He near 22.4 MeV.?'3

Numerous angular distribution measurements
for this reaction between threshold and 5 MeV
were made with a long counter.?** The variation
in sensitivity of the long counter with energy was
investigated in detail by a group at Los Alamos®
who repeated the angular distribution measure-
ments and extended the zero-degree differential
cross section measurements up to 7.5 MeV, using
a proton-recoil counter telescope.® Before 1960,
measurements above 7.5 MeV were considerably
less extensive and precise’ than the data at lower
energies. In 1961, Wilson et al. at Wisconsin
published relative angular distributions and the
zero-degree differential cross section at about



