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Abstract: In this paper, similarity hypotheses for the atmospheric surface layer (ASL) are reviewed using non-
dimensional characteristic invariants, referred to as -numbers. The basic idea of this dimensional -invariants analysis 
(sometimes also called Buckingham’s -theorem) is described in a mathematically generalized formalism. To illustrate 
the task of this powerful method and how it can be applied to deduce a variety of reasonable solutions by the formalized 
procedure of non-dimensionalization, various instances are represented that are relevant to the turbulence transfer across 
the ASL and prevailing structure of ASL turbulence. Within the framework of our review we consider both (a) Monin-
Obukhov scaling for forced-convective conditions, and (b) Prandtl-Obukhov-Priestley scaling for free-convective condi-
tions. It is shown that in the various instances of Monin-Obukhov scaling generally two -numbers occur that result in 
corresponding similarity functions. In contrast to that, Prandtl-Obukhov-Priestley scaling will lead to only one  number 
in each case usually considered as a non-dimensional universal constant. 

Since an explicit mathematical relationship for the similarity functions cannot be obtained from a dimensional -
invariants analysis, elementary laws of -invariants have to be pointed out using empirical or/and theoretical findings. To 
evaluate empirical similarity functions usually considered within the framework flux-profile relationships, so-called inte-
gral similarity functions for momentum and sensible heat are presented and assessed on the basis of the friction velocity 
and the vertical component of the eddy flux densities of sensible and latent heat directly measured during the GREIV I 
1974 field campaign. 
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1. INTRODUCTION 

 The idea on which dimensional analysis is based is very 
simple. It is inferred from the fact that physical laws do not 
depend on arbitrarily chosen basic units of measurements. In 
recognizing this simple idea, one may conclude that the 
functions that express physical laws must possess a certain 
fundamental property, which, from a mathematical point of 
view, is called the generalized homogeneity or symmetry [1]. 
This property allows the number of arguments in these func-
tions to be reduced, thereby making it simpler to obtain 
them. As Barenblatt [1] pointed out, this is the entire content 
of dimensional analysis – there is nothing more to it. 

 Often, solutions for physical problems, especially in me-
chanics and fluid mechanics [1-8], blackbody radiation [9, 
10], and cloud microphysics [11], can be found on the basis 
of similarity hypotheses that comprise all problem-relevant 
dimensional quantities and serve to possess the physical 
mechanisms of these problems. Such similarity hypotheses 
implicitly describe the functional dependence between these  
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dimensional quantities in a mathematical form. This does not 
mean that this functional dependence can explicitly substan-
tiated by formulating a similarity hypothesis only. A similar-
ity hypothesis will become successful if a generalized homo-
geneity or symmetry exists. 

 If similarity is hypothesized, its mathematical treatment 
can further be performed by the procedure of dimensional -
invariants analysis (sometimes also called Buckingham’s -
theorem; for basic details see, e.g., [1, 4-6, 8, 10, 12]. By 
means of this mathematical treatment the relationship of sub-
sets of the problem-relevant dimensionality quantities holds 
as a function of non-dimensional characteristic invariants, 
referred to as -numbers. However, an explicit mathematical 
relationship cannot be obtained from a -invariants analysis. 
Elementary laws of -invariants have to be pointed out in 
accord with empirical or/and theoretical principles. 

 Various similarity hypotheses associated with the atmos-
pheric surface layer (ASL, also called the Prandtl layer) have 
been discussed by Zdunkowski and Bott [7], but without a 
sufficient mathematical treatment of the -invariants analy-
sis. The same is true in the instance of Kitaigorodski’s [3] 
paper, even though this contribution is by far the most com-
plete one in the literature when the ASL is considered exclu-
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sively. Recently, Foken [13] gave a historical survey of “50 
years of Monin-Obukhov similarity theory”. Even though the 
notion Monin-Obukhov similarity theory is customary, here 
we only use the notion Monin-Obukhov similarity hypothe-
sis and its result is called a Monin-Obukhov similarity law, 
in accord with Barenblatt [1]. 

 In the following section 2, foundations of dimensional 
analysis of -invariants are described in a mathematically 
generalized formalism. In section 3, the scope of the ASL 
physics is outlined, and the constant flux principles of the 
ASL are derived and assessed. For this layer the difference 
between complete and incomplete similarity is pointed out in 
section 4. Various prominent examples of ASL similarity 
laws are represented in sections 5 and 6, namely (a) Monin-
Obukhov scaling for forced-convective conditions [14], and 
(b) Prandtl-Obukhov-Priestley scaling for free-convective 
conditions [15-17]. 

 It is shown that in the various instances of Monin-
Obukhov scaling generally two  numbers occur that result 
in corresponding similarity functions. Such customarily 
called universal functions for variance and covariance terms 
depending on the Obukhov number, , are established using 
empirical or/and theoretical findings. In contrast to that, 
Prandtl-Obukhov-Priestley scaling will lead to only one  
number in each case; it is usually considered as a non-
dimensional universal constant. This kind of scaling is util-
ized here to derive the asymptotic solutions for free-
convective conditions. 

 For more practical purposes, various so-called integral 
similarity functions are presented in section 7 that are used to 
formulate flux-profile relationships. In this section, these 
integral similarity functions are assessed on the basis of the 
friction velocity and the vertical components of the eddy flux 
densities (hereafter simply called the eddy fluxes) of sensible 
and latent heat directly measured during the GREIV I 1974 
experiment. These data, fully documented in [18], were not 
used in deriving the universal functions on which the integral 
similarity functions presented here are based. 

2. DIMENSIONAL SIMILARITY INVARIANTS 
ANALYSIS 

2.1. Description of the Procedure 

 The theoretical foundation of the procedure, described in 
this section, is linked to various sources, for instance, Ki-
taigorodskij [3], Barenblatt [1, 4-6], Herbert [19], Pal Arya 
[20], Sorbjan [21], Brown [11], and Kramm and Herbert [8, 
10] which are devoted to characteristic scaling problems in 
fluid dynamics and turbulence, boundary layer meteorology 
and other physical disciplines. The description mainly fol-
lows the guideline of Kramm and Herbert [8, 10]. 

 Let adopt that, associated with a certain physical prob-
lem, we can select a set of characteristic dimensionality 
quantities, for instance, k variables, parameters or/and con-
stants, 

 
Q1, Q2 ,…,Qk  that unambiguously and evidently rep-

resent the arguments of a mathematical relationship. First 
this “law” is unspecified; therefore it is formally employed 

as a general postulate, commonly referred to as the similarity 
hypothesis of the problem, which may read 

 
F Q1, Q2 , ...., Qk( ) = 0 .       (2.1) 

 In its implicit representation Eq. (2.1) declares k 1  free 

or independent arguments as well as a transformation of the 
full series of Qj  for 

 
j = 1,…, k  to a series of p non-

dimensional invariants i  for 
 
i = 1,…, p  in terms of a fac-

torization by powers. Correspondingly, in that mind each 

i -expression is defined by 

i = Q1
x1,i Q2

x2,i ....Qk
xk,i

= Qj
xj,i

j=1

k

 for 
 
i = 1,…, p ,     (2.2) 

and it is necessarily linked with the condition of non-
dimensionality 

dim i = 1  for 
 
i = 1,…, p ,       (2.3) 

where p < k  is customarily valid. 

 Next, we will suppose that the i -invariants can have 

interdependencies of arbitrary forms, and it may exist a cor-
responding relation 

1, 2 , ..., p( ) = 0         (2.4) 

which is to be understood as an alternative similarity hy-
pothesis to Eq. (2.1). In this function the powers x j,i  from 

Eq. (2.2) are basically unknown numbers, and their determi-
nation is the proper problem of the Buckingham -theorem. 
If there are more than one -invariant, i.e., p > 1, then we 
have with Eq. (2.4) the explicit representation 

  
i

= 1, 2 , ..., p( )         (2.5) 

in which  may be interpreted as a universal function 

within the framework of the similarity hypothesis, where, 
according to the implicit formulation (2.4), i  (for any arbi-

trary 
 
i 1,…, p{ } ) is not an argument of that universal func-

tion. Note that in the special case of p = 1 , we will merely 

obtain one -invariant, that is a non-dimensional universal 
constant. This special case is expressed by Eq. (2.5) in the 
singular form 

= const          (2.6) 

(or = const. ). In view to the determination of the powers 

i,jx , we will extend our treatment to the concise set of fun-

damental dimensions, Dn  for 
 
n = 1,…, r  such as length L, 

time T, mass M, temperature , considering that any quan-
tity’s dimension can be analyzed in terms of the independent 
Dn  by homogeneous power factorization. Let that be ex-

pressed by 

dim Qj = D1
g1, j D2

g2, j ....Dr
gr , j

= Dn
gn, j

n=1

r

 for 
 
j = 1,…, k   (2.7) 
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in which the powers gn, j  for 
 
n = 1,…, r  and 

 
j = 1,…, k  are 

known from the relevant quantities Qj  according to the hy-

pothesized similarity condition. Note that r k  is valid, 

where r  is the highest number of fundamental dimensions 
that may occur. In other words: for k quantities Qj  including 

r  fundamental dimensions Dn  we obtain p = k r  inde-

pendent non-dimensional invariants, so-called  numbers. 

 Now a straight-forward development of the analytical 
framework is attained by introducing Eq. (2.7) together with 
the factorization by powers from Eq. (2.2) into the condition 
of non-dimensionality (2.3). In doing so, we obtain this basic 
law as described in the following detailed representation 

dim i = Dn
gn, j

n=1

r x j,i

= 1
j=1

k

 for 
 
i = 1,…, p      (2.8) 

Combining the two factorizations 
j

 and 
n

 in this 

equation enables to rewrite this set of conditions in the fully 
equivalent form 

dim i = Dn

gn, j x j,i
j=1

k

= 1
n=1

r

 for 
 
i = 1,…, p      (2.9) 

For the following conclusion, the latter is more suitable than 
the former. Indeed, we may immediately infer from the fac-
torizing analysis in dependence on the bases Dn  for 

 
n = 1,…, r  that the set of conditions 

gn, j x j,i = 0
j=1

k

 for 
 
n = 1,…, r  and 

 
i = 1,…, p    (2.10) 

has to hold since each Dn -exponential factor must satisfy, 

owing to its mathematical independence, the condition of 
non-dimensionality (see Eqs. (2.3) and (2.9)), i.e., to be 
equal to unity. In matrix notation, Eq. (2.10) may be ex-
pressed by 

 

g1,1 g1,2 ..... g1,k
g2,1 g2,2 ..... g2,k
..... ..... ..... .....

gr,1 gr,2 ..... gr,k

dimensional matrix

G = gr,k{ }

x1,1 x1,2 ..... x1,p
x2,1 x2,2 ..... x2,p
..... ..... ..... .....

xk,1 xk,2 ..... xk,p

matrix of powers

A = xk,p{ }

= 0{ }
  (2.11) 

where the notation 0{ }  is an r p  matrix, and each col-

umn of the matrix of powers, A , is forming so-called solu-
tion vectors xi  for the invariants i  for 

 
i = 1,…, p . The set 

of equations (2.11) serves to determine the powers x j,i  

for
 
j = 1,…, k , and 

 
i = 1,…, p . So the homogeneous system 

of linear equations has, in accord with Eq. (2.11), for each of 
these -invariants the alternative notation 

 

 

G xi = 0 or

g1,1 g1,2 ..... g1,k
g2,1 g2,2 ..... g2,k
..... ..... ..... .....

gr,1 gr,2 ..... gr,k

x1,i
x2,i
....

xk,i

= 0{ }

 for 
 
i = 1,…, p       (2.12) 

The rank of the dimensional matrix is equal to the number of 
fundamental dimensions, r. If the number of dimensional 
quantities, k, is equal to r, we will obtain: p = 0 . In this case 

there is only a trivial solution. In the case of p > 0 , the ho-

mogeneous system of linear equation (2.12) is indeterminate, 
i.e., more unknowns than equations, a fact that is true in all 
instances presented here. Hence, for each of the p  non-

dimensional  numbers, it is necessary to make a reason-
able choice for p  of these unknowns, xk,i , to put this set of 

equations into a solvable state. After that we obtain for each 
 number an inhomogeneous linear equation system that 

serves to determine the remaining r = k p  unknowns. 

Thus, the remaining r r  dimensional matrix G0 = gr,r{ }  

has the rank r, too. It is the largest square sub-matrix for 

which the determinant is unequal to zero ( gr,r 0 ). Thus, 

we have 

G0 xi = Bi or

g1,1 g1,2 ..... g1,r
g2,1 g2,2 ..... g2,r
..... ..... ..... .....

gr,1 gr,2 ..... gr,r

x1,i
x2,i
....

xr,i

=

B1,i
B2,i
....

Br,i
 for 

 
i = 1,…, p       (2.13) 

 This inhomogeneous system of linear equations can be 
solved for xm,i  for 

 
m = 1,…, r  by employing Cramer’s rule. 

2.2. Example: The Logarithmic Wind Profile 

 By following the general procedure explained before, a 
concrete analysis is now treated at which one is led to the 
logarithmic wind profile for thermally neutral stratification. 
At this example we will confine our attention to three basic 
quantities: Q1  is the height difference z d  (in m), where  

z and d are the height above ground and the zero-plane dis-
placement, respectively, Q2  is the height-invariant friction 

velocity u* (in m s 1 ), and Q3  is the shear of the mean hori-

zontal wind speed U z  (in s-1) with U = v̂H . In so doing, 

we may set up the similarity hypothesis 

 
F z d, u*, U z( ) = 0 . Obviously, only L  and T  oc-

cur as fundamental independent dimensions. 

 Next, depending on D1 = L  and D2 = T , Eq. (2.9) yields 

D1

g1, j x j,i
j=1

3

D2

g2, j x j,i
j=1

3

= Lx1,i + x2,i T x2,i x3,i
= 1   

for 
 
i = 1,…, p      (2.14) 
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 So, in agreement with formulae (2.10) to (2.12) one has 

the dimensional matrix G =
1 1 0

0 1 1
 and, hence, the 

(under-determined) homogeneous equations of solution 

G xi = 0 or
1 1 0

0 1 1

x1,i
x2,i
x3,i

= 0   

for 
 
i = 1,…, p        (2.15) 

with which k = 3  and r = 2  (rank of matrix G ) and, conse-

quently, p = k r = 1  are given. This designates a case of 

one non-dimensional invariant  only. In a free choice we 
may arbitrarily define x1,1 = 1  without loss of generality to 

obtain from Eq. (2.15) the two inhomogeneous equations of 
solution (in accord with Eq. (2.12)) 

1 0

1 1

x2,1
x3,1

=
1

0
      (2.16) 

From this equation one easily calculate x2,1 = 1  and 

x3,1 = 1 . Thus, the full solution vector reads 

x1 =

x1,1
x2,1
x3,1

=

1

1

1

      (2.17) 

Finally, the elements of this solution vector are to be utilized 
owing to the general context of formulae (2.2) and (2.5) to find 
the desired universal relationship (i.e., the similarity law) 

1 = z d( )
1
u*

1 U

z

1

=
z d

u*

U

z
= const    (2.18) 

or in the re-arranged form 

U

z
=

u*
z d( )

       (2.19) 

where = 1
1  is another non-dimensional universal constant 

[1, 4], namely the von Kármán constant (see subsection 5.6). 

 We will append to Eq. (2.18) that since 1  is yet arbi-

trary. If we choose, for instance, x1,1 = a , where a 0  is an 

arbitrary real number, we will lead to another invariant 1 * . 

The relationship between this  invariant and that, occur-

ring in Eq. (2.18), is given by 1 = 1 *a . Therefore, for 

convenience, we may simply choose: x1,1 = 1 . 

 Integrating Eq. (2.19) over the height interval zr , zR[ ] , 

where zr  and zR  are the lower and upper boundaries of the 

fully turbulent part of the ASL, respectively, yields 

U zR( ) U zr( ) =
u* dz

z d
dz

zr

zR

=
u* ln

zR d

zr d
   (2.20) 

If we assume that U zr( )  extrapolates to zero when zr  tends 

to zr = z0 + d , where z0  is the roughness length, we may 

write 

U zR( ) =
u* ln

zR d

z0
      (2.21) 

This expression is called the logarithmic wind profile for 
(thermally) neutral stratification. Multiplying nominator and 
denominator of the logarithm in Eq. (2.21) by u* , where 

 is the kinematic viscosity, and rearranging this equation 
yields 

uR
+
=
U zR( )
u*

=
1
ln
u* zR d( ) 1

ln
u* z0    (2.22) 

Over aerodynamically smooth surfaces we can ignore the 
zero-plane displacement, d . Thus, if we define the local (or 
roughness) Reynolds number by 

=
u* z        (2.23) 

the global Reynolds number by 

R =
u* zR          (2.24) 

and 

D =
1
ln
u* z0       (2.25) 

we will obtain 

uR
+
=
1
ln R( ) + D       (2.26) 

 For aerodynamically smooth surfaces we have D 5.5  

[22]. This equation for the normalized velocity, 
uR

+
= U zR( ) u* , describes the turbulent approximation of 

Prandtl and Taylor for sufficiently large Reynolds numbers 
(e.g., [23-26]). 

3. THE ATMOSPHERIC SURFACE LAYER 

3.1. The Scope of the ASL Physics 

 To outline the scope of the ASL physics, it is indispensa-
ble to consider the governing local balance equations for 
momentum (Newton’s 2nd axiom), water vapor, and total 
mass. For a turbulent system like the ASL these balance 
equations read [27-34] 

dv̂
dt

+ p E + J + F( ) = 2 v̂      (3.1) 

dq̂

dt
+ Jw +W( ) = Iw         (3.2) 

and 

t
+ v̂( ) = 0         (3.3) 
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respectively. Here,  is the density of air, v  is the wind vec-

tor, where u , v , and w  are its components in east (x), north 
(y), and vertical (z) direction of a Cartesian coordinate frame 
with the corresponding unit vectors i , j , and k , t  is time, 

p  is the air pressure,  is the geopotential,  is the angular 

velocity of the Earth, and q = w  is the specific humidity, 

where w  is the partial density of water vapor. Furthermore, 

E  is the identity tensor, 

J = ( v̂ + ( v̂)T ) + (μd
2

3
) ( v̂) E  is the mean 

Stokes stress tensor that corresponds to a symmetric second-
rank tensor (( v̂ )T means v̂ , i.e., the Nabla operator acts on 
v̂ , but the tensorial product is arranged as shown),  is the 
kinematic viscosity, d is the second viscosity [35] also called 

the volume viscosity or the bulk viscosity, F = v" v"  is the 

Reynolds stress tensor (also considered as symmetric), Jw  is 

the macroscopic water vapor flux, W = v" q"  is the eddy 

flux of water vapor, and Iw  is the phase transition rate that 

represents a source or sink of water vapor. In the case of only 
humid air as customarily considered within the framework of 
the ASL physics Iw  may be ignored. Thus, eddy fluxes of 

water drops and ice particles are omitted. Note that Hessel-

berg’s [36] density-weighted average, ˆ = , is applied 

denoted by a hat and for longer expressions by braces (
 
… ), 

where  represents a field quantity like v , h , and q ; the 

overbar (… ) designates the Reynolds’ mean, and the devia-
tions from Reynolds’ mean and Hesselberg’s mean are de-
noted by a prime (') and a double prime ("), respectively. 
Moreover, the substantial derivative with respect to time of 
any field quantity, d/dt, is expressed by Euler’s operator for 
the Hesselberg fluid [33] given by 

d

dt
=
t
+ v̂          (3.4) 

Note that Eq. (3.1) is also called the equation of motion, and 
Eq. (3.3) is usually called the equation of continuity. 

 In addition to these balance equations, we have to consider 
the prognostic equation for the potential temperature, . In the 
case of humid air this equation can be approximated by [33] 

cp
d ˆ

dt
R + Jh + 1 +

cp,v
cp,d

1 q̂ H{ }

+

1 +
cp,v
cp,d

1 q̂ H

+ cp,d
ˆ cp,v

cp,d
1 W

+ * J : v̂

  (3.5) 

Here, cp  is the specific heat of humid air at constant pres-

sure, cp,d  is that of dry air, and cp,v  is that of water vapor. 

Furthermore, = T  is the Exner function, R  represents 

the radiative flux, H = cp,0 v" "  is the turbulent buoy-

ancy heat flux, Jh = cp T T  is the molecular enthalpy 

flux (Fourier’s law of heat conduction), and T is the thermal 
diffusivity assumed to be isotropic. Moreover, the quantities 

J : v̂ > 0  and * = J : v" > 0  represent the direct 

dissipation and the turbulent dissipation of kinetic energy 
into internal energy, respectively, where the colon in these 
expressions denotes the double scalar product of the tensor 
algebra. Obviously, Eq. (3.5) has its origin in the first princi-
ple of thermodynamics (e.g., [29, 33]). 

 With respect to the Cartesian coordinate frame the mean 
Coriolis acceleration may be expressed by 

2 v̂ = 2 cos ŵ 2 sin v̂( ) i

2 sin û j + 2 cos û k
     (3.6) 

or, with the definitions of the Coriolis parameters 
f = 2 sin  and f * = 2 cos , where  is the latitude, 

2 v̂ = f * ŵ f v̂( ) i f û j + f * û k      (3.7) 

These equations are only valid for the northern hemisphere. 
For the southern hemisphere, we obtain them in an analo-
gous manner. Since in most cases f * ŵ << f v̂ , the term 

f * ŵ  may be ignored, especially under the prerequisites of 

the ASL physics. As the magnitude of f * û  is much smaller 

than that of the acceleration of gravity, g = z , this Cori-

olis term may be ignored, too. 

 Following Monin and Obukhov [14], stationary and hori-
zontally homogeneous conditions are prominent prerequi-
sites of the ASL physics, i.e., any derivative with respect to 
time expressed by t  and with respect to the horizontal 

directions expressed by x  and y  may be neglected. 

Horizontal variations of the pressure field, however, should 
not be excluded. Under these premises we can infer from the 
equation of continuity (3.3) that ŵ( ) z = 0  and, hence, 

ŵ = const.  Since ŵ  vanishes at any rigid surface like the 

earth’s surface and  keeps finite (customarily considered as 

invariant with height within the framework of the ASL phys-

ics), the condition ŵ = const.  can only be fulfilled if 

ŵ = 0 . Thus, under stationary and horizontally homogene-

ous conditions the substantial derivative with respect to time 
as given by Eq. (3.4) equals zero. Therefore, the equation of 
motion (Eq. (3.1)) can be simplified to 

0 = H p f k v̂H +
z

       (3.8) 

and 
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z
w"2( ) =

p

z
g        (3.9) 

Here, the subscript H denotes the horizontal components of 
the wind vector and the gradient of the air pressure, and 
= m + t  is the total friction stress vector, where m  rep-

resents the molecular friction stress vector and 

t = u" w" i v" w" j  the Reynolds stress vector. 

Using the definition of the geostrophic wind vector, 

vG = k H p f( ) , leads to 

z
= f k v̂H vG( )       (3.10) 

where vG = v̂H vG  is customarily called the ageostrophic 

wind vector. It describes the deviation of the horizontal wind 
vector from the geostrophic wind vector customarily ex-
pressed by v̂H = vG + vG . Equation (3.10) represents the 

basis for the so-called Ekman physics; a special solution of 
them is the conventional Ekman spiral. Obviously, Eq. (3.9) 
becomes independent of the mean horizontal flow that obeys 
Eq. (3.8) (or (3.10)). Furthermore, it is usually assumed that 
for a mean representative state the condition 

w"2( ) z << p z  is nearly fulfilled. Thus, Eq. 

(3.9) may further be simplified to 

p

z
= g .       (3.11) 

This equation expresses the so-called hydrostatic equilibrium 
and is usually denoted as the hydrostatic equation. 

 We can see that the friction stress vector is only invariant 
with height if either f = 0  or v̂H = vG . The former is ful-

filled at the equator for which sin = 0 , i.e., this is the triv-

ial case. The latter is fulfilled at the top of the Ekman layer, 
zE , when the mean horizontal wind vector completely coin-

cides with the geostrophic wind vector, i.e., v̂H = vG . Below 

this height, the variation of the friction stress vector with 
height depends on the ageostrophic wind vector vG . 

 Integrating Eq. (3.10) over the height interval [0,zR], 
where zR  is the upper boundary of the ASL, yields 

zR( ) 0( ) = f k v̂H vG( ) dz
0

zR

    (3.12) 

From this equation we can infer that 

0( ) zR( ) 0( ) zR( )

= f k vG v̂H( ) dz
0

zR

f k vG v̂H( ) dz
0

zR    (3.13) 

As f k vG v̂H( ) = f vG v̂H , Eq. (3.13) may be 

written as 

0( ) zR( ) f vG v̂H dz
0

zR

    (3.14) 

 Apparently, the variation of the magnitude of the friction 
stress vector with height depends on that of the ageostrophic 

wind vector. As the condition 0( ) > zR( )  is usually 

fulfilled, we may write 0( ) zR( ) = 0( ) zR( ) . 

If we assume that the magnitude of the Reynolds stress does 
not decrease more than 10 percent across that height interval 
0, zR[ ]  we may define the height of the ASL in such a sense 

that we demand 

0( ) zR( )
0( )

1

0( )
f vG v̂H dz

0

zR

0.1   (3.15) 

This decrease corresponds to the relative accuracy with 
which the Reynolds stress vector can directly be determined. 

 In the case of the conventional Ekman spiral the magni-
tude of Reynolds stress vector varies with height according 
to 

z( ) = 0( ) exp a z( )      (3.16) 

with a = f 2 Km( ) , where Km  is the eddy diffusivity as-

sumed as height-invariant. The reciprocal of a  may be 
called the Ekman length. Introducing formula (3.16) into Eq. 
(3.15) yields 

0( ) 0( ) exp a zR( )
0( )

= 1 exp a zR( ) 0.1    (3.17) 

which is equivalent with 1 exp a zR( ) 0.9 . Thus, we 

obtain for the height of the ASL 

zR
1

a
ln 0.9( ) =

zE ln 0.9( ) 3.35 10 2 zE    (3.18) 

where the relationship between the Ekman height and the 
Ekman length, zE = a , was used. For typical values of 

Km = 5 m 2 s 1  and f = 0.0001 s 1 , we obtain 

zE 993.5 m , and, hence, zR 33.3 m . 

 Recognizing the premises of the ASL physics, the bal-
ance equation for water vapor (Eq. (3.2)) amounts to 

z
Jw,Z + WZ( ) = Iw       (3.19) 

where the subscript Z  denotes the vertical components. 
Since within the framework of the ASL physics only humid 
air is considered, phase transition processes are omitted. 
Thus, we have 

z
Jw,Z + WZ( ) = 0 Jw,Z + WZ = const     (3.20) 

 Note that in the case of a fog event Eq. (3.19) should be 
used to prove whether the water vapor flux varies more than 
10 percent of its near-surface amount. 
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 By ignoring the direct and turbulent dissipation of kinetic 
energy with respect to the first term of the right-hand side of 
Eq. (3.5) and, again, recognizing the premises of the ASL 
physics, Eq. (3.5) reduces to 

z
RZ + Jh,Z + 1 +

cp,v
cp,d

1 q̂ HZ{ }

= 1 +
cp,v
cp,d

1 q̂ HZ + cp,d
ˆ cp,v

cp,d
1 WZ z

   (3.21) 

 In accord with the hydrostatic equation (3.11), the term 

z  may be expressed by 

z
=

g

cp
ˆ        (3.22) 

Obviously, this term is very small ( 3.4 10 5 m 1 ). Since 

the radiative effect RZ z  is often ignored within the 

framework of the ASL physics and cp,v cp,d 1( ) q̂ << 1 , we 

have 

z
Jh,Z + HZ( ) = HZ + cp,d

ˆ cp,v
cp,d

1 WZ

g

cp
ˆ   (3.23) 

Even for large amounts of HZ  and Wz  the right-hand side of 

this equation keeps relatively small so that we may consider 

the flux Jh,Z + HZ  is nearly height-invariant, too. Gener-

ally, we have to expect that the thickness of the constant flux 
layer for the transfer of sensible heat differs from that for the 
water vapor transfer and even differs from that for the trans-
fer of momentum. 

3.2. The Constant Flux Approximation 

 As we have outlined before, the most important prerequi-
site implies that the friction stress vector and the vertical 
components of the turbulent fluxes of heat and water vapor 
(here designated as micrometeorological fluxes) are consid-
ered as invariant with height. It can be expressed by 
F z = 0 F = const z( ) , where F stands for the microme-

teorological fluxes of momentum (i.e., the magnitude of the 
friction stress vector), 

= = u" w"
2
+ v" w"

2( )
1

2
= u*

2
= const    (3.24) 

sensible heat (from now on the subscript Z  will be omitted), 

H = cp,d w" " = cp,d u* * = const     (3.25) 

and water vapor, 

W = w" q" = u* q* = const      (3.26) 

respectively, where all molecular effects were neglected in 
comparison with the corresponding turbulent ones. This ne-
glect is quite justified in the case of the fully turbulent ASL. 

Here, u* = +  is the friction velocity, *  is the heat 

flux temperature (also called the temperature scale), and q*  

is the water vapor flux concentration (also called the humid-
ity scale). Note that in our contribution v̂  is arbitrarily cho-
sen as equal to zero. This choice can be justified by arrang-
ing the x-axis (and, hence, the y-axis) in such a manner that 
v̂  vanishes. 

 This height-invariance of the micrometeorological fluxes 
may serve to define the thickness of the ASL. As outlined 
before, it generally demands that steady-state conditions and 
the condition of horizontally uniform fields of mean wind 
speed (i.e., ŵ = 0 ), mean temperature, and mean humidity 

are fulfilled. In addition, net source and sink effects owing to 
phase transition processes are excluded. Even though the 
condition of height invariance may customarily be fulfilled 
only in a micrometeorological sense (i.e., these micrometeo-
rological fluxes may vary with height across the entire ASL, 
but not more than 10 percent of their values in the immediate 
vicinity of the surface), it serves as the basis for the so-called 
constant flux approximation on which micrometeorological 
scaling is based, namely (a) Monin-Obukhov scaling for 
forced-convective conditions [14], and (b) Prandt-Obukhov-
Priestley scaling for free-convective conditions [15-17], re-
spectively. 

3.3. Flux-Gradient Relationships and Characteristic 
Numbers 

 Analogous to Newton's law of friction in a viscous flow, 
Fourier's law of heat conduction, and Fick's law of diffusion, 
flux-gradient relationships for momentum (subscript m), 
sensible heat (subscript h), and water vapor (subscript q) are 
often used in micrometeorology to parameterize the respec-
tive eddy fluxes, i.e., 

u*
2
= = Km

v̂H
z

      (3.27) 

H = cp,d Kh

ˆ

z
      (3.28) 

and 

W = Kq

q̂

z
       (3.29) 

Here, Km , Kh , and Kq  are the corresponding eddy diffu-

sivities with respect to the vertical direction. These eddy 
diffusivities can be related to each other by the turbulent 
Prandtl number 

Prt =
Km

Kh

       (3.30) 

the turbulent Schmidt number for water vapor, 

Sct,q =
Km

Kq

       (3.31) 

and the turbulent Lewis-Semenov number for water vapor, 
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LSt,q =
Kh

Kq

       (3.32) 

These non-dimensional characteristic numbers are frequently 
assumed to be equal to unity. We will scrutinize this assump-
tion in subsection 5.5. 

 Since these micrometeorological fluxes are considered to 
be proportional to the vertical gradients of the mean field 
quantities, i.e., F ˆ z , where = vH  for F = , 

=  for F = H , and = q  for F = W , the constant-flux 

approximation serves to mediate simple connections of ver-
tical profiles of the mean quantity, ˆ , to the turbulent flux, 

F , even under non-neutral stratification of the ASL. 

3.4. The Local Balance Equation of Turbulent Kinetic 
Energy 

 The local balance equation of turbulent kinetic energy 
(TKE) serves to derive the eddy diffusivities for momentum 
and - via the turbulent Prandtl number and the species-
dependent turbulent Schmidt numbers - the eddy diffusivities 
for sensible heat, water vapor, and trace species. It is cus-
tomarily denoted as one-and-a-half-order closure. For hori-
zontally homogeneous conditions it reads (e.g., [33, 37]) 

t

1

2
v"2 +

z

1

2
w" v"2 +

1
w" p '

= *
v̂H
z
1 Rif( )

   (3.33) 

Here, 1
2 v"

2  is the specific TKE of the eddying motion, 

E = 1
2 w" v"2  is the eddy flux of TKE, P w" p '  is 

the eddy flux of pressure, p , = u" w" i v" w" j  is 

the Reynolds’ stress vector, and v̂H = û i + v̂ j  is the mean 

horizontal wind vector. Furthermore, Rif  is the so-called 

flux-Richardson number. It represents the ratio of the ther-
mal gain (or loss) of TKE to the mechanically generated 
TKE. In the case of humid air, the flux-Richardson number 
for horizontally homogeneous conditions amounts to [33] 

Rif =
g

cp
ˆ

1 +
cp,v
cp,d

1 q̂ H + cp,d
ˆ cp,v
cp,d

1 W

v̂H
z

  (3.34) 

The flux-Richardson number serves to characterize the ther-
mal stratification of air. For unstable stratification we have 

Rif < 0 if 1 +
cp,v
cp,d

1 q̂ H + cp,d
ˆ cp,v
cp,d

1 W > 0  

Stable stratification is characterized by 

Rif > 0 if 1 +
cp,v
cp,d

1 q̂ H + cp,d
ˆ cp,v
cp,d

1 W < 0  

Neutral stratification means that Rif = 0 . 

 In the case of stable stratification, there exists a critical 
value of the flux-Richardson number given by Rif = 1 . It is 

characterized by the fact that TKE mechanical gain is equal 
to TKE thermal loss, so that the turbulent flow becomes in-
creasingly viscous (laminar) owing to the concurrently act-
ing direct and turbulent dissipation of TKE. It is to be ex-
pected that the true critical value is smaller than Rif = 1 . 

Currently, a critical value of Rif,cr = 0.25  is accepted (e.g., 

[21, 24, 33, 38]). 

 Introducing the flux-gradient relationships leads to 

Ri = Prt Rif        (3.35) 

where Ri is the so-called gradient-Richardson number given 
by 

Ri =
g
ˆ

1 +
cp,v
cp,d

1 q̂
ˆ

z
+
cp,v
cp,d

1 ˆ q̂

z

v̂H
z

2    (3.36) 

Like the flux-Richardson number, the gradient-Richardson 
number serves to characterize the thermal stratification of the 
ASL. It is positive for stable stratification ( Ri > 0 ) and 

negative for unstable stratification (Ri < 0 ). The case of 

neutral stratification is characterized by Ri = 0 . If the turbu-

lent Prandtl number is equal to unity as frequently assumed, 
the gradient-Richardson number and the flux-Richardson 
number would be identical. Note that the various Ri  num-
bers may be simplified by using cp,v cp,d 1( ) q̂ << 1 . 

3.5. The Local Balance Equations of Temperature  
Variance 

 Local balance equations for the temperature variance, 

"2 , can be deduced like the local balance equation of 

TKE (3.33). For horizontally homogeneous conditions one 
obtains (e.g., [33, 37]) 

t

1

2
"2 +

z

1

2
w" "2

= w" "
ˆ

z

1

cp
"
Jh,Z
z

    (3.37) 

where the second term of the right-hand side of this equation 
can be approximated by 

1

c p
"
Jh,Z
z

T

2 z

"2( )
z

+ T

"

z

2

= T

2 z

"2( )
z

+ T

"

z

2
  (3.38) 

using " T" . Thus, we have 
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t

1

2
"2 +

z

1

2
w" "2

= w" "
ˆ

z
+ T

2 z

"2( )
z

N̂

   (3.39) 

where the so-called dissipation of temperature variance, N̂ , 
is defined by 

N̂ = T

"

z

2

      (3.40) 

Similar equations can be derived for the variances of specific 
humidity and the mass fractions of trace species, if phase 
transition processes and chemical reactions may be ignored. 
Otherwise, additional terms occur [33]. 

4. COMPLETE SIMILARITY VERSUS INCOMPLETE 
SIMILARITY 

 Before we derive the similarity hypotheses for the ASL, 
it seems to be indispensable to discuss what complete simi-
larity and incomplete similarity does mean. Let us consider 
the transfer of momentum, sensible heat, and water vapor 
across the ASL. The standardized procedure of dimensional 
analysis described in section 2 provides for Monin-Obukhov 
scaling [1] 

z d

u*

U

z
= m , , R , Pr, Scq( )        (4.1) 

z d

*

ˆ

z
= h , , R , Pr, Scq( )        (4.2) 

and 

z d

q*

q̂

z
= q , , R , Pr, Scq( )        (4.3) 

Here, m , , R , Pr, Scq( ) , h , , R , Pr, Scq( ) , and 

q , , R , Pr, Scq( )  are the local stability functions (or 

similarity functions) for momentum, sensible heat, and water 
vapor, respectively. Furthermore, = z d( ) L  is the 

Obukhov number, and L  is the Obukhov stability length 
given by [14, 16, 39] 

L =
cp,d u*

3

g
ˆ H + 0.61 cp,d

ˆ W( )

=
u*
2

g
ˆ * + 0.61 ˆ q*( )

      (4.4) 

g  is the acceleration of gravity, and ˆ  is the mean potential 

temperature customarily chosen as a representative value for 
the ASL. Furthermore, Pr = T  is the Prandtl number, 

Scq = / Dq  is the Schmidt number for water vapor, and 

Dq  is the corresponding molecular diffusivity. As pointed 

out by Barenblatt [1], this kind of scaling is based on the 
assumption of complete similarity of the flow in both Rey-
nolds numbers, i.e. the local one, , and the global one, R . 

The plausibility of such an assumption and, consequently, of 
neglecting the dependence on  and R  is usually argued 

on the basis of the very large values of both Reynolds num-
bers above the thin sublayer, a layer of a few millimeters 
thickness adjacent to the earth’s surface usually called the 
viscous sublayer. The assumption of the existence of finite 
limits of the local stability functions m ( ) , h ( ) , and 

q ( )  as both Reynolds numbers tend to infinity is accepted 

implicitly. If m ( ) , h ( ) , and q ( )  tend to finite limits 

as  and R  in accordance with the assumption 

of complete similarity, then for sufficiently large  and R  

a universal similarity law, independent of both Reynolds 
numbers, must hold [1]; and the local similarity functions for 
momentum, sensible heat and water vapor, 

z d

u*

U

z
= m , Pr, Scq( )        (4.5) 

z d

*

ˆ

z
= h , Pr, Scq( )        (4.6) 

and 

z d

q*

q̂

z
= q , Pr, Scq( )        (4.7) 

may be considered as universal functions. These are custom-
arily called the Monin-Obukhov similarity laws [1]. Note 
that in the case of the fully turbulent ASL the dependence of 
these universal functions on both the Prandt number and the 
Schmidt number for water vapor plays no role. 

 It is known that already in the case of neutral stratifica-
tion one can detect a weak dependence of these universal 
functions on both Reynolds numbers. The weak dependence 
serves to introduce the assumption of incomplete similarity 
of the flow in the local Reynolds number, which is appar-
ently not contradicted by experimental data on flows in 
smooth pipes, etc. [1]. Thus, Barenblatt and Monin [40, 41] 
made a similar assumption for thermally stratified flows in 
the ASL. 

5. MONIN-OBUKHOV SCALING 

5.1. Similarity Hypothesis for Momentum 

 Considering the first similarity hypothesis of Monin and 
Obukhov [14] that states that the vertical transfer of momen-
tum across the ASL is only determined by Q1 = z d , the 

Obukhov stability length, Q2 = L , the friction velocity, 

Q3 = u* , and Q4 = U z , the similarity hypothesis can 

mathematically be expressed by 

 
F Q1, Q2 , Q3, Q4( ) = F z d, L, u*, U z( ) = 0 . Obvi-

ously, the number of dimensional quantities is k = 4 . The 

rank of the dimensional matrix is r = 2 , and we have 
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p = k r = 2  independent  numbers, and, hence, a univer-

sal function is established. These facts are true in all in-
stances of flux-gradient relationships presented here. The 
dimensional -invariants analysis provides then 

1 =
z d

u*

U

z
= m 2( ) = m ( )        (5.1) 

with 2 = z d( ) L = . Apparently, this formula does not 

contain . This is quite reasonable because the von Kármán 
constant is a non-dimensional quantity. In the case of neutral 
stratification  is related to a  number by 

1 = m 0( ) = 1  (see Eq. (2.19)). In the case of non-neutral 

stratification, however, it cannot directly be addressed by a 
formalized procedure of non-dimensionalization. Following 
Monin and Obukhov [14], we may put this constant into Eq. 
(5.1), but mainly for historical reasons and convenience. 
Thus, the non-dimensional wind shear is given by 

z d( )
u*

U

z
= m ( )         (5.2) 

where m ( ) = m ( )  is the conventional local similarity 

function (or conventional universal function) for momentum 
[14, 42]. Note that the quantity P = z d( )  in Eq. (5.2) is 

customarily designated as Prandtl’s mixing length of the 
universal wall law for thermally neutral stratification 
( m 0( ) = 1 ). This kind of stratification may prevail either 

(a) during the transition from stable to unstable stratification 
and vice versa when steady-state conditions, as required by 
the constant flux approximation, are not to be expected (e.g., 
[43, 44]), or (b) under the condition of strong wind shear 
when thermal effects become of minor importance. 

 Combining Eqs. (3.27) and (5.2) provides [42] 

Km =
u* z d( )

m ( )
        (5.3) 

As mentioned before, for neutral stratification, i.e., = 0 , 

we obtain m 0( ) = 1 . Thus, Eq. (5.3) amounts to 

Km = u* z d( ) = u* P , and Eq. (3.27) becomes 

U z = u* P  which is identical with Eq. (2.19). 

 In all instances with more than one  number, a univer-
sal function cannot be quantified by the dimensional -
invariants analysis. However, as mentioned before, the local 
similarity function for momentum must be equal to unity if 
= 0 . But for non-neutral conditions as originally investi-

gated by Monin and Obukhov [14], it has to be determined 
empirically or/and theoretically. 

5.2. Similarity Hypothesis for Sensible Heat 

 The second similarity hypothesis of Monin and Obukhov 
[14] states that the vertical transfer of sensible heat across 

the ASL is only determined by z d , L , * , and ˆ z , 

expressed by 
 
F z d, L, *,

ˆ z( ) = 0 . The dimen-

sional -invariants analysis provides then 

1 =
z d

*

ˆ

z
= h 2( ) = h ( )        (5.4) 

As before, the von Kármán constant may be put into Eq. 
(5.4) for historical reasons and convenience. In doing so, the 
non-dimensional vertical component of the temperature gra-
dient reads 

z d( )

*

ˆ

z
= h ( )         (5.5) 

where h ( ) = h ( )  is the conventional local similarity 

function (or conventional universal function) for sensible 
heat [14]. Sometimes, an additional factor h is introduced 
into Eq. (5.5), 

h z d( )

*

ˆ

z
= h h ( ) = h

* ( )       (5.6) 

with h
* ( ) = h h ( ) , to address that the turbulent 

Prandtl number, Prt , differ from unity in the case of neutral 

stratification [45]. Such an additional factor might be used 
for convenience. But it cannot be justified on the basis of 
dimensional analysis. Under neutral condition with respect to 
dry air, as considered, for instance, by Businger et al. [46], 
the similarity hypothesis mentioned before is not fulfilled 
because the vertical component of the temperature gradient, 
ˆ z , is equal to zero, and, hence, formulae (5.4) to (5.6) 

become unpredictable. Consequently, the similarity function 
(5.6) is not further considered here. 

 Combining Eqs. (3.28) and (5.5) leads to the eddy diffu-
sivity for sensible heat 

Kh =
u* z d( )

h ( )
        (5.7) 

Thus, we obtain for the turbulent Prandtl number given by 
Eq. (3.30) 

Prt =
h ( )

m ( )
         (5.8) 

5.3. Similarity Hypothesis for Water Vapor 

 Monin and Obukhov [14] did not consider the vertical 
transfer of water vapor across the ASL. But this transfer of 
matter can be dealt with in a similar manner, i.e., the water 
vapor transfer is only determined by z d , L , the density  

scale of water vapor, w,*  ( w,* = q* ) and the vertical gra-

dient, w z , of the mean partial density of water vapor, 

w = q̂ , expressed by 
 
F z d, L, w,*, w z( ) = 0 . 

The use of the partial density of water vapor is required be-
cause the specific humidity is a mass fraction, and, hence, a 



58    The Open Atmospheric Science Journal, 2009, Volume 3 Kramm and Herbert 

non-dimensional quantity. The dimensional -invariants 
analysis provides then 

1 =
z d

w,*

w

z
= q 2( ) = q ( )        (5.9) 

If we assume that the mean air density is height-invariant in 
the ASL and define q ( ) = q ( ) , where q ( )  is 

called the conventional local similarity function (or conven-
tional universal function) for water vapor, we will obtain for 
the non-dimensional vertical component of the humidity 
gradient 

z d( )
q*

q̂

z
= q ( )       (5.10) 

If we combine Eqs. (3.29) and (5.10), we will obtain for the 
eddy diffusivity for water vapor: 

Kq =
u* z d( )

q ( )
      (5.11) 

Thus, for water vapor, the turbulent Schmidt number, Eq. 
(3.31), and the turbulent Lewis-Semenov number, Eq. (3.32), 
read 

Sct,q =
q ( )

m ( )
       (5.12) 

and 

LSt,q =
Kq

Kh

=
h ( )

q ( )
      (5.13) 

respectively. 

5.4. Empirical -Functions for the Transfer of Momen-
tum, Sensible Heat, and Water Vapor 

 Since the similarity hypotheses of Monin and Obukhov 
[14] can only serve to show that universal functions may 
exist, such conventional -functions for the transfer of 
momentum, sensible heat, and water vapor have to be deter-
mined empirically and/or theoretically. Unfortunately, the 
results of these -functions obtained from sophisticated 
field campaigns show a considerable scatter (see Figs. 1, 2). 

 The empirical results of Zilitinkevi  and alikov [47] for 
stable stratification and Dyer and Hicks [48] for unstable 
stratification, for instance, may be gathered by 

m ( ) =

1 2( )
1/4

1

1 + 1

for < 0 unstable( )

for = 0 neutral( )

for > 0 stable( )

 (5.14) 

and 

q ( ) = h ( ) =

m
2 ( )

1

m ( )

for < 0

for = 0

for > 0

. (5.15) 

 

Fig. (1). The local similarity functions m ( )  and h ( )  as a 

function of  for stable stratification (adopted from [53]). For the 

references in this figure see [46, 47, 117]. 

with 1 5  and 2 16 . The relationship 

m ( ) = 1 2( )
1/4

 in Eq. (5.14) is called the Businger-

Dyer-Pandolfo relationship (Dyer, unpublished, [49-51]), 
later experimentally proved by Dyer and Hicks [48],  
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Fig. (2). As in Fig. (1), but for unstable stratification. For the refer-
ences in this figure see [46, 47, 57, 117, 126]. 

Businger et al. [46] and others, where their results mainly 
cover the stability range 2 < 0  (see also [21, 52, 53], 

as well as Fig. (2)). The linear formula m ( ) = 1 + 1  in 

Eq. (5.14) was first recommended by Monin and Obukhov 
[14] for stable stratification (and weakly unstable stratifica-
tion) and later experimentally proved by alikov [54], 
Zilitinkevi  and alikov [47], Businger et al. [46] and others 
mainly for the stability range 0 < 1 , but there is a large 

scatter in the case of momentum with some values of 

m ( )  for > 1  (see Fig. 1). The relationship for unstable 

stratification, h ( ) = m
2 ( )  in Eq. (5.15), as already sug-

gested by Businger [49] and Pandolfo [50] was eventually 
proved by Dyer and Hicks [48] for the stability range  
 

 

 

Fig. (3). Gradient Richardson number, Ri , versus Obukhov num-
ber, , for various field experiments (adopted from [51]). For the 

references in this figure see [57, 58]. 

1 < 0 . As recommended by Webb [55], the relation-

ship q ( ) = h ( ) = m ( )  may be acceptable for stable 

stratification. 

 Expressing the gradient-Richardson number (3.36) by the non- 
dimensional gradients and assuming that 

q ( ) = h ( )  

(see formula (5.15)) yield then [56] 

Ri = h ( )

m ( )( )
2        (5.16) 
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Obviously, the Businger-Pandolfo relationship h ( ) = m
2 ( )  

for unstable stratification leads to 

Ri = for < 0       (5.17) 

Dyer and Bradley [57] and Webb [58], however, pointed out 
that small deviations from this identity might occur (see Fig. 
3). 

 If we accept Webb’s [55] recommendation 

q ( ) = h ( ) = m ( )  for stable stratification we will 

obtain 

Ri =
1 + 1

for > 0       (5.18) 

Obviously, under such conditions Prt  is equal (or close) to 

unity for stable stratification, i.e., Ri  and Rif  are (nearly) 

identical. We can infer from Eq. (5.18) that for stable strati-
fication 1  is not a constant because it depends on both the 

gradient Richardson number and the Obukhov number ex-
pressed by 

1 =
1
1

Ri
1

0       (5.19) 

Such a dependency of 1  on the Obukhov number was 

found by Kramm et al. [59]. If Ri Rif,cr = 0.25  the quan-

tity 1  will equal 1 = 1 3( ) . As illustrated in Fig. (1), 

Obukhov numbers greater than two do not frequently occur. 
Therefore for strongly stable stratification a value of 

1 1 6  has to be expected. 

 Beside the formulae (5.14) and (5.15), Businger et al. 
[46] found 

m ( ) =

1 4( )
1/4

1

1 + 3

for < 0

for = 0

for > 0

   (5.20) 

and 

h ( ) =

0.74 1 5( )
1/2

0.74

0.74 + 3

for < 0

for = 0

for > 0

   (5.21) 

with 3 4.7 , 4 15 , and 5 9 . Introducing these local 

similarity functions into formula (5.16) provides 

Ri =

0.74
1 4

1 5

1

2

for < 0

1 + 3

1
0.26

1 + 3

for > 0

    (5.22) 

Obviously, for unstable stratification we have Ri < . In 

the case of stable stratification the influence of the term 
0.26 1 + 3( )  becomes weaker and weaker when the 

Obukhov number increases, i.e., the results inferred from 
formulae (5.18) and (5.22) only differ slightly for strongly 
stable conditions. 

 Recently, Cheng and Brutsaert [60] suggested for stable 
stratification 

m ( ) = 1 + 6

+ 7 1 + 7( )
1 7

7

+ 1 + 7( )
1

7

    (5.23) 

and 

h ( ) = 1 + 8

+ 9 1 + 9( )
1 9

9

+ 1 + 9( )
1

9

    (5.24) 

with 6 = 6.1 , 7 = 2.5 , 8 = 5.3 , and 9 = 1.1 .These for-

mulae should cover the entire range of stable stratification. 
For neutral conditions, i.e., = 0 , one obtains 

h 0( ) = m 0( ) = 1 . For moderate stable stratification both 

formulae can be approximated by linear expressions, 

m ( ) 1 + 6  and h ( ) 1 + 8 . For increasing sta-

bility formulae (5.23) and (5.24) tend to m ( ) = 1 + 6  and 

h ( ) = 1 + 8 . Obviously, for the entire range of stable 

stratification m ( )  and h ( )  slightly differ from each 

other. 

 The results for strongly stable stratification should gener-
ally be considered with care. As reported by Cheng and 
Brutsaert [60], the calculated h ( ) 1  data points for 

> 2  were excluded from the analysis because the larger 

scatter suggested either unacceptable error in the measure-
ments or perhaps other unexplained physical effects. As 
these authors pointed out, one possible reason could be that 
these data points are already outside the stable surface layer 
so that Monin-Obukhov similarity, as expressed, for in-
stance, by Eqs. (4.6) and (5.5), may not be valid. 

 It is obvious that formulae (5.23) and (5.24) lead to loga-
rithmic profiles for neutral and strongly stable conditions. 
The latter, already found by Webb [55], seems to be awk-
ward because if the magnitude of turbulent fluctuations de-
creases towards the small values of the quiet regime with 
increasing stability (e.g., [61, 62]), the near-surface flow 
should become mainly laminar. In the case of a pure laminar 
flow viscous effects are dominant leading to U = u* , 

ˆ = Pr * , and q̂ = Scq u* . Thus, linear profiles 

have to be expected. The same is true when the respective 
eddy diffusivities become invariant with height. Such height 
invariance might be possible when the quiet regime prevails  
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and the magnitude of the turbulent fluctuations is small 
across the entire ASL. Thus, we have to assume that Monin-
Obukhov similarity is incomplete (see section 4) under 
strongly stable conditions. If under such conditions the con-
stant flux approximation is no longer valid as debated, for 
instance, by Webb [55] and Poulos and Burns [63], Monin-
Obukhov similarity must not be expected. 

 Instead of the Businger-Dyer-Pandolfo relationship for 
momentum under unstable stratification, the O'KEYPS for-
mula1, 

m
4 ( ) 10 m

3 ( ) = 1 for 0 ,   (5.25) 

may alternatively be applied. It indicates a 

m ( ) 10( )
1 3

 behavior for large negative Obukhov 

numbers, for which m ( ) << 10  becomes valid. The 

O'KEYPS formula with 10 = 9  is experimentally proved for 

the range 2 < 0  [46]; Panofsky and Dutton [52], how-

ever, recommended: 10 = 15 . From a physical point of 

view the O'KEYPS formula seems to be more preferable 
than the Businger-Dyer-Pandolfo relationship because the 
former can be related to the local balance equation of the 
TKE (see subsection 3.4). For horizontally homogeneous 
and steady-state conditions the non-dimensional form of this 
TKE equation reads 

0 = d ( ) + m ( ) ( )     (5.26) 

where d ( ) = E ( ) + P ( )  represent the non-

dimensional divergence of both the eddy flux of TKE, 

E = 1
2 w" v"2 , denoted by E ( )  and the eddy flux 

P w" p '  resulting from pressure and vertical wind 

speed fluctuations and expressed by P ( ) . Furthermore, 

( )  is the similarity function of the energy dissipation 

                                                
1 O'KEYPS stands for the initials of various authors who proposed this for-
mula (Obukhov [16], Kazansky and Monin [64], Ellison [65], Yamamoto 
[66], Panofsky [67], Sellers [68]). 

ˆ = *  (see Eq. (5.47)). Relating the latter to the Heisen-

berg-von Weizsäcker law, ˆ = Km
3 4  [69, 70], and postu-

lating a mixing length for non-neutral conditions by 
= P ( ) , with which Fortak [71] and Herbert and 

Panhans [72, 73] introduced the further similarity function 

( )  for improving the treatment of this length scale in 

dependence on non-neutral conditions (see also Eq. (5.34)), 
lead to 

m
4 ( ) d ( )

1 m
3 ( ) =

4 ( )    (5.27) 

Herbert and Panhans [72, 73] also examined different ex-
pressions for ( )  (see Table 1 and Fig. (4)). As illus-

trated in Figs. (5, 6), they found that its definition at the cost 
of an analytical hypothesis for the TKE-transport term leads 
to the most satisfactory agreement with the observational 
data in [74]. 

 

Fig. (4). Similarity function ( )  as a function of  (adopted from 

[72, 73]). The numbers are related to the models listed in Table 1. 

 The simplest possible case of interest, however, is a 
Prandtl-type mixing length for neutral stratification so that 

= P . The omission of non-neutral effects in ( )  sup-

poses the argument that buoyancy and mean wind shear may 
generate turbulence in which the deviation of ( )  from 

Table 1. Various Formulae for the Similarity Function ( )  [72, 73] 

 

Model Number Formulae 

1 ( ) = m
1 ( )  

2 ( ) = 1
1

2 m ( ){ }
1

2 ' m '( ){ }
1

2
d

d
ln m '( ) d '

0

 

3 ( ) = 0.11 + 1 + 0.11( )
2{ }

1

2
 

4 ( ) = m
1 ( ) 1 h ( )

m
2 ( )

1

4

 



62    The Open Atmospheric Science Journal, 2009, Volume 3 Kramm and Herbert 

unity is too small to contribute significantly to the energy 
dissipation. This concept is usually employed in one-and-a-
half-order closure schemes (e.g., [38, 75]). With this simpli-
fication, Eq. (5.27) becomes an extended version of the 
O’KEYPS formula given by [59] 

 

Fig. (5). Non-dimensional rate of TKE, E ( ) , as a function of  

(adopted from [72, 73]). The numbers are related to the models 
listed in Table 1, and the W & C points represent observed values 
of Wyngaard and Coté [74]. 

 

Fig. (6). As in Fig. (5), but for the similarity function, ( ) , of 

the energy dissipation. 

m
4 ( ) d ( )

1 m
3 ( ) = 1     (5.28) 

Comparing this equation with formula (5.25) yields then 

10 =
d ( )

1       (5.29) 

i.e., it is unlikely that the quantity 10  is a constant, as al-

ready pointed out by Fortak [71], Herbert and Panhans [72, 
73], and Kramm et al. [59]. In contrast to the conventional 
O’KEYPS formula, the extended version (5.28) is not re-
stricted to unstable stratification. The same is true in the case 
of formula (5.27). 

 Local similarity functions of the form 

m ( ) = 1 11( )
1/3

      (5.30) 

as found, for instance, by Carl et al. [76] as well as Gavrilov 
and Petrov [77] for unstable stratification in the range of 
10 < 0 , reflect the same asymptotic behavior like the 

conventional O’KEYPS formula, but they disagree with that 
of the Businger-Dyer-Pandolfo relationship. Here, 11 = 15  

is assumed. 

 Recently, McNaughton [78] disputed the Monin-
Obukhov similarity in an unstable ASL beneath a convective 
outer layer. He stated that “Monin–Obukhov similarity the-
ory is flawed because it fails to account for the variations in 
the forcing of the whole surface layer imposed by the large 
eddies of the outer layer”. As several of McNaughton’s [78] 
model assumptions are rather arbitrary (leading to some in-
consistent formulations) and are not always covered by the 
scope of the ASL physics, we do not further assess his find-
ings. 

5.5. The Turbulent Numbers of Schmidt, Prandtl and 
Lewis-Semenov 

 Often, the turbulent Schmidt and Prandtl numbers are 
related to each other by Sct,q Prt . Thus, the turbulent 

Lewis-Semenov number amounts to LSt,q 1 q ( ) h ( ) , 

i.e., the values of Prt , Sct,q , and LSt,q  only depend on the 

ratio of the local stability functions for heat and momentum. 
The use of a common eddy diffusivity and, hence, of a 
common local stability function for all scalar quantities is 
based on some empirical results that the turbulent transfer of 
sensible heat and water vapor is similar (e.g., [48, 79, 80]), 
which is adopted to the other scalars as well (e.g., [52, 81, 
82]). This is in agreement with some empirical results de-
rived from concurrent measurements of ozone fluxes and 
ozone profiles [83]. 

 Obviously, Webb’s [55] recommendation for stable 
stratification suggests that the turbulent Prandtl number ap-
proaches to Prt = 1  for stable (and nearly neutral) stratifica-

tion. Whereas the expressions of Businger et al. [46] lead to 
Prt = 0.74  for (nearly) neutral conditions. The latter one 

substantially agrees with an average of Prt = 0.78  suggested 
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by Reichardt [84]. Laboratory results like that of Reichardt, 
however, are equally inconsistent with each other, suggest-
ing only that the turbulent Prandtl number is not to far from 
unity [42]. Empirical findings (e.g., [85-88]) and theoretical 
results (e.g., [89-91]) of different authors, for instance, sug-
gest that Prt  depends on the local (or roughness) Reynolds 

number, , and may vary between 0.5 and 1. On the other 

hand, Deissler’s [92] results indicate that Prt  approaches to 

unity at high velocity gradients regardless of the (molecular) 
Prandtl number. It might be pertinent to remark that most 
existing theories of heat transfer either assume Prt = 1  or an 

average, but constant value of Prt = 0.78  (e.g., [23, 84, 93]). 

Note that Ludwieg’s [86] investigation mentioned above 
bears an aura of credibility and provides a link to Taylor’s 
vorticity transport theory [93]. Ludwieg [86] measured the 
variation with the normalized radius r/R (r is the radial dis-
tance from the centre of the pipe, R is the pipe radius) of the 
turbulent Prandtl number for air flowing in a pipe. As illus-
trated in Fig. (7), his results indicate that Prt  varies smoothly 

and continuously from a value nearly 0.94 close to the pipe 
wall to a value of about 0.67 at the centre of the pipe, where 
a possible dependence on the Mach number, Ma, cannot be 
not detected. Obviously, Prt = 0.67  also corresponds to that 

of Businger et al. [46] for nearly neutral conditions. Accord-
ing to Kestin and Richardson [93] as well as Schlichting 
[23], Ludwieg’s [78] results are closest to being correct. It 
may be represented by [94] (see Fig. 7) 

Prt =
0.649 0.952

1 + exp

r

R
0.438

0.162

+ 0.952     (5.31) 

 

Fig. (7). Variation of the turbulent Prandtl number, Prt, with the 

normalized radius r/R (r is the radial distance from the center of the 
pipe, R is the pipe radius) for air flowing in a pipe, where Ma is the 
Mach number (adopted from [86]). 

 Nevertheless, we have to notice that already the Prt val-

ues empirically derived for the (nearly) neutral atmospheric 
surface layer from the aforementioned relationships can no-
tably differ from each other. These controversial results, of 

course, may be associated with the value of the von Kármán 
constant = 0.35  obtained by Businger et al. [46], which 

appreciably differs from = 0.4  used by Reichardt [84] as 

well as from = 0.41  suggested by Dyer and Hicks [48]. 

Lumley and Panofsky [42] already pointed out that the ques-
tion of the relative size of Kh  and Km  has still not been 

answered satisfactorily. Nearly forty years later, Kramm et 

al. [94] stated: “We have to recognize that their statement is 
further valid.” Hitherto, values of turbulent Schmidt numbers 
determined for the ASL are scarce, and the value of Dyer 
and Hicks [48] for water vapor seems to be one of the most 
reliable results. 

 Following, for instance, Panofsky and Dutton [52], Pal 
Arya [20], as well as Kraus and Businger [95] the expres-
sions (5.14) and (5.15) should be used for practical purposes, 
where a von Kármán constant of = 0.4  has to be preferred. 

This recommendation will be scrutinized in section 7. 

5.6. The Von Kármán Constant 

 In the previous subsection we stated that the controver-
sial results regarding the turbulent Prandtl number may be 
associated with the value of the von Kármán constant. This 
constant is related to the mixing length  by [23, 96] 

=

U

z
2U

z2

       (5.32) 

For thermally neutral stratification for which the logarithmic 
wind profile may be valid (see, e.g., Eq. (2.21)) we obtain 

= P = z d( ) , i.e., Prandtl’s mixing length. In the case 

of non-neutral stratification Eq. (5.32) results in 

=
z d

z d( )

m ( ) z m ( ) 1

= P ( )     (5.33) 

with 

( ) =
1

z d( )

m ( ) z m ( ) 1

     (5.34) 

The similarity function ( )  introduced by Fortak [71] 

and Herbert and Panhans [72, 73] for improving the treat-
ment of this length scale in dependence on non-neutral con-
ditions is quite justified by this equation. With this similarity 

function one obtains Eq. (5.27). If 
z d( )

m ( ) z m ( ) << 1  

this similarity function may be approximated by ( ) 1 , 

and, hence, Eq. (5.27) results in formula (5.28). 
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 Usually, a value of = 0.40  is preferred. However, 

based on 553 independent determinations of  (the largest, 
most comprehensive atmospheric data set ever used to 
evaluate the von Kármán constant) Andreas et al. [26] de-
rived a value of = 0.387 ± 0.003 , constant for 

2 100 . These independent determinations were per-

formed on the basis of the friction stress, , and the vertical 

profiles of wind speed, U z( ) , collected during the compre-

hensive study of the Surface Heat Budget of the Arctic 
Ocean (SHEBA), and an 800 h of observation period over 
the Antarctic sea ice on Ice Station Weddell (ISW). All of 
these profiles reflect near-neutral stratification, and each 
exhibits a logarithmic layer that extends over all sampling 
heights. A value of = 0.387 ± 0.010  was also found by 

Frenzen and Vogel [97] but their result is based on 29 data 
pairs only. Frenzen and Vogel [97, 98] also suggest that  
decreases weakly with increasing roughness Reynolds num-
ber. Obviously, their findings disagree with those of Andreas 
et al. [26]. Nevertheless, for consistent modeling purposes 
we recommend to use the value of the von Kármán constant 
simultaneously derived with the local similarity functions of 
momentum, sensible heat, and matter. 

5.7. Variance Relationships 

 In the subsections 5.1 to 5.3, we have derived flux-
gradient relationships on the basis of the dimensional -
invariants analysis. In studies on ASL turbulence, however, 
we have not only to consider covariance terms that represent 
the eddy fluxes, but also variance terms. Therefore, there is a 
strong interest to apply the procedure of non-
dimensionalization for determining the various variance 

terms like u"2 , v"2 , w"2 , "2 , and q"2 . To 

make this goal, we have to replace the vertical gradients in 
the various similarity hypotheses by the respective variance 
terms. Thus, in all instances of variance relationships, the 
number of dimensional quantities is k = 4 , too. The rank of 

the various dimensional matrices is r = 2 , and, again, we 

have p = k r = 2  independent  numbers, i.e., also in the 

cases of variance relationships universal functions are estab-
lished. 

 In the case of momentum, we consider the variance of the 

vertical velocity component, w"2 . Therefore, the similar-

ity hypothesis reads 
 
F z d, L, u*, w"

2( ) = 0 . The di-

mensional -invariants analysis provides then 

1 =
w

u*
= w 2( ) = w ( )      (5.35) 

where w = w"2
1/2

 is the standard deviation of the vertical 

velocity component, w u*  is called the normalized stan-

dard deviation, and w ( )  is the respective local similarity 

function (or universal function). Since it cannot be quantified 
by the dimensional -invariants analysis because there ex-
ist, again, two  numbers, it has to be determined empirically 

or/and theoretically. Lumley and Panofsky [42], for instance, 
recommended for both stable and unstable stratification 

w

u*
= w ( ) = Aw m ( ) 2.5( )

1

3     (5.36) 

that leads to w u* = Aw = 1.3  for neutral stratification (re-

cently disputed by Wilson [99]). This formula fits the obser-
vation well, but in the case of stable stratification there is a 
large scatter [52]. Panofsky et al. [100] eventually recom-
mended for unstable stratification 

w

u*
= w ( ) = Aw 1 3( )

1

3      (5.37) 

that fits observation at smooth sites very well [52]. Since  

varies with height and u*  is height-invariant, the normalized 

standard deviation is a function of height, too. Its variation 
with height can simply be determined by using the condition: 

w w ( ) = const.  

 Local similarity functions for the normalized standard 

deviations u u* = u"2
1/2
u* = u ( )  and 

v u* = v"2
1/2
u* = v ( )  of the horizontal velocity com-

ponents u and v can be deduced in a similar manner. How-
ever, u ( )  and v ( )  considerably differ from w ( ) . 

Following Panofsky et al. [100], the normalized standard 
deviation of the horizontal wind component, U u* , may be 

written as 

U

u*
= AU BU i( )

1

3       (5.38) 

with AU = 12  and BU = 0.5 , where i  corresponds to the 

height of the lowest inversion, zi , considered as the top of 

the boundary layer. In contrast to this, the results of Johans-
son et al. [101] suggest AU = 10  and BU = 0.88 . Customar-

ily, the Deardorff velocity w* = g H zi m cp( )( )
1

3  is con-

sidered as an appropriate velocity scale in convective-mixed-
layer similarity, but not the friction velocity. However, in 
accord with the definition of the Obukhov stability length 
(4.4) this velocity can be related to the friction velocity by 

w* = u*
1 3

i( )
1 3

 [100]. As a fixed height zi  is used in 

this formula, the quantity U u*  does not vary with height, 

in complete contrast to w u* . This instance of the normal-

ized standard deviation of the horizontal wind component 
reflects a weakness of the dimensional -invariants analy-
sis. It might be that the similarity hypothesis provides an 
apparently reasonable result, even though it disagrees with 
the physical behavior because a generalized homogeneity or 
symmetry does not exist. Thus, in their comments on the 
paper of Johansson et al. [101] Andreas and Hicks [102] 
argued that, perhaps, it is time to acknowledge that the simi-
larity hypothesis on which the derivation of U u*  is based, 
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violates too many of the assumptions on which Monin-
Obukhov scaling relies and to stop trying to force U u*  

into artificial similarity relations (see also subsection 5.10). 

 In the instance of the temperature variance, "2 , the 

similarity hypothesis is given by 

 
F z d, L, *, "2( ) = 0 . The dimensional -

invariants analysis provides 

1 =
*

= 2( ) = ( )      (5.39) 

where = "2
1/2

 is the standard deviation of the poten-

tial temperature, *  is the normalized standard devia-

tion for temperature, and ( )  is the respective local simi-

larity (or universal) function. Since *  is height-invariant, 

the standard deviation is a function of height, according to 

( )  = const. The local similarity function may be 

expressed by [21] 

( ) =
A B C( )

1

3 for < 0

const. for 0
   (5.40) 

Here, A , B , and C  are constants. Wyngaard et al. 

[103], for instance, found for unstable stratification in the 
range of 0.7 < 0 : A = 0.95 , B = 0 , and C = 1  

which closely agree with those of Monji [104] deduced for 
the range of 10 0.1 . Tillman’s [105] results also 

derived for the range of 10 0.1  differ notably. He 

found: A = 0.95 , B = 0.05 , and C = 1 . For stable strati-

fication in the range of 0 1 , Wyngaard et al. [103] ob-

tained ( ) = 1.8 . This result was confirmed by Tillman 

[105], but only for the range of 0 0.5 . 

 In the case of water vapor, we have to consider the fluc-

tuation of the partial density of water vapor, w '
2  because, 

as mentioned before, the specific humidity is a non-
dimensional quantity. The similarity hypothesis reads: 

 
F z d, L, w,*, w '

2( ) = 0 . The dimensional -invariants 

analysis gives then 

 

q

w,*

q"2
1

2

q*
=
q"2

1

2

q*
=

q

q*
= q ( )     (5.41) 

where 
 

q = w '
2( )

1/2
 is the standard deviation of the partial den-

sity of water vapor. It may be approximated by 

 
q = w '

2( )
1/2 2

q"2( )
1 2

= q"2
1 2

 with q = q"2
1 2

, 

the standard deviation of the specific humidity. The local similar-
ity function, q ( ) , may be considered as a universal function, 

too. Again, we have: q q ( ) = const.  The local similarity 

function q ( )  may be expressed in a similar manner like 

( )  (see Eq. (5.40)). Högström and Smedman-Högström 

[106], for instance, postulated for unstable stratification: 

q ( ) = 1.03
1

3        (5.42) 

 As pointed out by Panofsky and Dutton [52], it does not 
significantly differ from the normalized standard deviation 
recommended by Wyngaard et al. [103] for the potential 
temperature. 

 Equations (5.37), (5.40), and (5.42) can be applied to 
derive the so-called structure parameters (also called the 
structure constant), C 2  (  stands for w , , and q ), that 

are closely identified with the structure parameter Cn
2  of the 

refractive index for acoustic and electromagnetic waves 
propagating to the atmosphere (e.g., [8, 52, 107]). Rearrang-
ing, for instance, Eq. (5.40) provides 

"2 = *
2 2 ( )       (5.43) 

Dividing this equation by z d( )
2 3

 yields then 

C 2
=

"2

z d( )
2

3

=
*
2 2 ( )

z d( )
2

3

     (5.44) 

The quantity C 2  is the structure parameter for forced-

convective conditions, where z d  serves as a characteristic 

length scale. Combining formulae (5.40) and (5.44) provides 
for unstable stratification: 

C 2 z d( )
2

3

*
2 = 0.90

2

3       (5.45) 

Such a 2 3 - behavior was also suggested by Kaimal and 

Finnigan [107]. These authors related the left side of this 
equation - via the terms in the one-dimensional spectral 
forms for velocity and temperature - to the energy dissipa-
tion. Their values are nearly 50 per cent higher than those 
provided by formula (5.45). 

5.8. Dissipation of Kinetic Energy 

 In deriving the local similarity function (or universal 
function) for the averaged dissipation of kinetic energy ˆ , 
we have to replace the vertical gradient of the mean horizon-
tal wind speed, Q4 = U z , in the similarity hypothesis of 

subsection 5.1 by ˆ . Thus, the similarity hypothesis reads: 

 
F z d, L, u*, ˆ( ) = 0 . The dimensional -invariants 

analysis provides then 

1 =
z d

u*
3
ˆ = 2( ) = ( )      (5.46) 

Introducing, again, the von Kármán constant  yields [56] 
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z d( )
u*

3
ˆ = ( )       (5.47) 

This local similarity function ( ) = ( )  may also be 

considered as a universal function. Note that in the case of 
neutral stratification for which the similarity hypothesis, 

 
F z d, u*, ˆ( ) = 0 , seems to be acceptable,  is related 

to the  number by 1 = 0( ) = 1 . It follows that 0( )  

is equal to unity. For thermal stratification, Wyngaard and 
Coté [74] as well as Kaimal et al. [108], for instance, rec-
ommended 

( ) =

1 + 0.5
2 3( )

3 2

for 2 0

1 + 2.5
3 5( )

3 2

for 0 2

   (5.48) 

5.9. Dissipation of Temperature Variance 

 The dissipation of the temperature variance may be con-
sidered as an example for the dissipation of variance of a 
passive scalar. The similarity hypothesis for describing this 

dissipation reads 
 
F z d, L, u*, *, N̂( ) = 0 , where N̂  is, 

again, the mean dissipation rate of temperature variance (see 
Eq. (3.40)). Obviously, the number of the dimensional quan-
tities is k = 5 , and the rank of the dimensional matrix is 

r = 3 . Again, we have p = k r = 2  independent  num-

bers. Based on the dimensional -invariants analysis we can 
deduce 

1 =
z d

u* *
2 N̂ = N 2( ) = N ( )      (5.49) 

or by introducing, again, the von Kármán constant  

z d( )
u* *

2 N̂ = N ( )       (5.50) 

where 
N ( ) = N ( )  may also be considered as the uni-

versal function of the dissipation of temperature variance. If 

the quantity = N̂ ˆ  relates the dissipation of temperature 

variance to the dissipation of kinetic energy [8], we will ob-
tain 

=
N̂
ˆ
=

*
2

N ( )
u*
2 ( )

      (5.51) 

Since the scaling quantities u*  and *  are considered as 

height-invariant with within the framework of Monin-
Obukhov scaling, the variation of  with height is governed 
by the similarity functions N ( )  and ( ) . 

5.10. Numerical Predictions of Various -Functions 

 Predictions of Monin-Obukhov similarity functions were 
performed, for instance, by Prenosil [109], Claussen [110], 

and Khanna and Brasseur [111] using different theoretical 
principles. 

 Prenosil [109] used a second-order closure model, a no-
tably improved version of the ASL model of Lewellen and 
Teske [112]. As he reported, m ( )  and h ( )  could be 

verified favorably; where difficulties arose in the case of all 
variance terms, especially within the range of unstable strati-
fication. 

 Claussen’s [110] results are based on a spectral model, 
where measured one-dimensional spectra of velocity and 
temperature variance were considered. The similarity func-
tions m ( )  and h ( )  were calculated for the range 

2 2 . His results showed a good agreement with ob-

servations with the exception of the range 1 0  in 

which m ( )  was overestimated. It seems that this overes-

timation was caused by neglecting the spectral divergence of 
the vertical transport of TKE. 

 Monin-Obukhov similarity may be indirectly influenced 
by the boundary layer depth, zi . In such a case complete 

similarity must not be expected. The global Reynolds num-
ber (see Eq. (2.24)), now slightly modified by i = u* zi , 

has to be considered in the local similarity functions, as ex-
pressed by Eqs. (4.1) to (4.3). Based on their detailed analy-
sis of the Monin–Obukhov similarity from high-resolution 
large-eddy simulation (LES) data, Khanna and Brasseur 
[111] argued that such an indirect influence is possible. The 
results of these authors can be summarized as follows: The 
simulated temperature field is found to satisfy the Monin-
Obukhov similarity hypothesis and agree well with observa-
tions. The simulated velocity field, on the other hand, shows 
significant departures. Except for the horizontal variance 
(see subsection 5.7), Monin-Obukhov scales are the appro-
priate normalizing scales for the near-ground-layer statistics. 
However, the LES suggest that zi  (or i = u* zi ) has an 

‘indirect’ influence on all near-ground-layer variables except 
temperature, and the LES-predicted Monin-Obukhov-scaled 
variables exhibit a functional dependence on both = z L  

and i = z zi . The simulated two-dimensional spectra of 

velocity and temperature fluctuations, however, suggest that 
while large scales deviate from Monin-Obukhov similarity, 
inertial range scales are Monin-Obukhov-similar. Discrepan-
cies with field observations raise important questions of the 
non-dimensional quantity i  over which Monin-Obukhov 

similarity holds for a particular variable. However, in their 
conclusions Khanna and Brasseur [111] conceded that, al-
though LES provides complete time-dependent three-
dimensional information of the large-scale fields, Monin-
Obukhov similarity is a near-ground phenomenon and there  
are numerical difficulties in simulating this region that hin-
der a detailed analysis. 

 Obviously, there is an urgent need to improve higher-
order closure models and LES techniques for better predict-
ing Monin-Obukhov similarity laws. 
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6. PRANDTL-OBUKHOV-PRIESTLEY SCALING 

6.1. Similarity Hypothesis for Sensible Heat 

 Under free-convective conditions the Obukhov stability 
length is not longer relevant for the vertical profiles of mean 
values of wind speed, potential temperature, and specific 
humidity (and long-lived trace species) because the vertical 
transfer of momentum, sensible heat, and matter is rather 
independent of the friction velocity u* [42]. 

 According to Prandtl [15], Obukhov [16], and Priestley 
[17], the similarity hypothesis for the free-convective range 
is given by 

 
F Q1, Q2 , Q3, Q4( ) =  

 
F z d, H cp,0( ), g m ,

ˆ z( ) = 0 , 

where Q2 = H cp,0( )  and Q3 = g m . In this instance, the 

number of the dimensional quantities is k = 4 , too. Now, 

the rank of the dimensional matrix is r = 3 , and we obtain 

p = k r = 1  independent  number. The dimensional -

invariants analysis provides then 

1 = z d( )
4

3
H

cp,0

2

3 g

m

1

3
ˆ

z
      (6.1) 

Rearranging provides finally 

ˆ

z
= 1

H

cp,0

2

3 g

m

1

3

z d( )
4

3       (6.2) 

The  number is equal to Priestley’s constant, C, i.e., 

1 = C 1.07 . Equation (6.2) is customarily called the 

4 3  power law [75]. Rearranging this equation in the 

sense of Monin-Obukhov scaling, where only dry air is con-
sidered (i.e., the influence of water vapor is ignored), leads 
to [75] 

z d( )

*

ˆ

z
=

4 3 ( )
1 3

= 0.32 ( )
1 3

= 30.5( )
1 3

   (6.3) 

It is obvious that formula (5.12) with 

h ( ) = m
2 ( ) = 1( )

1 2
 does not converge to the 

asymptotic solution (6.3) when << 0 . Furthermore, the 

local similarity function (5.30) and the O’KEYPS formula 
(5.25) on the one hand and formula (6.3) on the other hand 
suggest that under free-convective conditions the 1 3  power 

law, and, hence, formula (5.30) should be valid for both 
momentum and sensible heat. 

6.2. Variance Relationship 

 To derive the variance relationship for free-convective 
conditions, we have to replace the vertical gradient of the 
potential temperature in the similarity hypotheses of subsec-

tion 6.1 by the variance term "2 . In doing so, we obtain: 

 
F z d, H cp,0( ), g m , "2( ) = 0 . The dimensional -

invariants analysis gives then 

1 = z d( )
1

3
H

cp,0

2

3 g

m

1

3 "2
1

2         (6.4) 

or 

"2
1

2 = 1

H

cp,0

2

3 g

m

1

3 z d( )
1

3       (6.5) 

Rearranging this equation in the sense of the Monin-
Obukhov similarity hypothesis, where, as before, only dry 
air is considered (see subsection 6.1), leads to the asymptotic 
solution for free-convective conditions 

*

=
"2

1 2

*

= 1
1 3 1 3        (6.6) 

Apparently, any empirical approach like formula (5.30) 

should be in agreement with the 
1
3  behavior under free-

convective conditions. In accord with the empirical results of 
Wyngaard et al. [103], Monji [104], and Tillman [105], the 
normalized standard deviation *  shows a 1 3  behav-

ior for the entire unstable range. 

 According to formula (6.5), we obtain for the tempera-
ture variance 

"2 = 1
2 H

cp,0

4

3 g

m

2

3 z d( )
2

3       (6.7) 

Dividing this equation by z d( )
2 3

 yields then 

C 2
=

"2

z d( )
2

3

= 1
2 H

cp,0

4

3 g

m

2

3

z d( )
4

3      (6.8) 

where C 2  is the structure parameter for free-convective 

conditions. Panofsky and Dutton [52] recommended 

1
2 2.5  so that the  number amounts to 1 1.58 . 

Thus, the product 1
1 3  that occurs in Eq. (6.6) amounts to 

1
1 3 1.16 , when = 0.4  is adopted. This value is more 

than 20 per cent higher than that recommended by Wyngaard 
et al. [103]. 

7. ASSESSING THE INTEGRAL SIMILARITY  
FUNCTIONS 

 It is well known that gradients of horizontal wind speed, 
temperature and humidity cannot be measured because of the 
limited spatial resolution of available sensors. This means 
that the true flux-gradient relationships and, hence, the local 
similarity functions, which can also be considered as non-
dimensional gradients, are unsuitable for estimating the eddy 
fluxes of momentum, sensible heat and water vapor. Conse-
quently, it is indispensable to relate these eddy fluxes, at 
least, to finite differences of horizontal wind speed, tempera-
ture, and humidity. This can be performed by integrating the 
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non-dimensional gradients over the layer under study, where 
the constant flux assumptions (or approximations), as dis-
cussed in section 3, are considered. This was already carried 
out in the case of the logarithmic wind profile for neutral 
stratification (see formula (2.20)). The results of such inte-
grations are customarily denoted as (vertical) profile func-
tions. 

 Results from direct measurements of eddy fluxes and 
corresponding vertical profiles of the mean values of wind 
speed, temperature, and humidity obtained from concurrent 
measurements can be used to derive local similarity func-
tions. Note that for the purpose of evaluation of such local 
similarity functions, quite independent data sets of directly 
measured eddy fluxes and mean vertical profiles even ob-
tained concurrently are required. Data sets from field cam-
paigns not considered for deriving such local similarity func-
tions clearly satisfy this requirement. 

7.1. Profile Relations and Integral Similarity Functions 

 Integrating expression (5.2) for the non-dimensional 
wind shear, m ( ) , over the height interval zr , zR[ ] , where 

zr  and zR  are the lower and upper boundaries of the fully 

turbulent part of the ASL, respectively, yields 

U zR( ) U zr( ) =
u* m z d( ) L( )

z d
dz

zr

zR

=
u* 1 1 + m z d( ) L( )

z d
dz

zr

zR

=
u* 1

z d
dz

zr

zR 1 m z d( ) L( )
z d

dz
zr

zR

=
u* ln

zR d

zr d m R , r( )

   (7.1) 

with 

m R , r( ) =
1 m z d( ) L( )

z d
dz

zr

zR

=
1 m ( )

d
r

R

   (7.2) 

that is called the integral similarity function for momentum. 

 Equation (7.1) was derived first by Panofsky [113] to 
obtain the so-called logarithmic wind profile if for neutral 
stratification m ( )  approaches to unity leading to 

m R , r( ) = 0 . The integral similarity function is clearly 

defined by Eq. (7.2), i.e., this definition is independent of the 
shape of m ( )  as illustrated, for instance, by formulae 

(5.14) (5.20), and (5.25). 

 Introducing formulae (5.14) into Eq. (7.2) yields [44, 
114] 

m R , r( ) =

1 R r( ) for L > 0

0 for L

2 ln
1 + yR
1 + yr

+ ln
1 + yR

2

1 + yr
2 2 arctan

yR yr
1 + yR yr

for L < 0

     (7.3) 

with yr, R = m
1

r, R( ) = 1 2 r, R( )
1/4

, the reciprocal ex-

pressions of the local similarity functions in the unstable 
case at the two heights zr  and zR . Paulson’s [115] solutions 

substantially agree with our solutions when yr  approaches 

to unity while r 0 . Introducing the conventional 

O'KEYPS formula (5.25) into Eq. (7.2) provides 

m R , r( ) = m r( ) m R( )

+ 2 ln
1 + m R( )
1 + m r( )

+ ln
1 + m

2
R( )

1 + m
2

r( )

+ 2 arctan m R( ) m r( )
1 + m R( ) m r( )

3 ln m R( )

m r( )

for L 0      (7.4) 

with m r, R( )  provided by the O’KEYPS formula. Obvi-

ously, the O'KEYPS solution (7.4) is more bulky than that 
obtained with the Businger-Dyer-Pandolfo relationship. This 
might be the reason why the latter is more widely used, even 
though the former has a stronger physical background. For 

r 0 , we have m r( ) 1 , and, hence, formula (7.4) 

approaches to Paulson’s [115] O'KEYPS-solution. 

 Introducing formula (5.30) into Eq. (7.2) provides 

m R , r( ) =
3

2
ln
yR

2
+ yR + 1

yr
2
+ yr + 1

3 arctan
xR xr
1 + xR xr

for L 0

  (7.5) 

with yr, R = m
1

r, R( ) = 1 11 r, R( )
1/3

, the reciprocal ex-

pressions of the local similarity functions in the unstable 
case at the two heights zr  and zR , and 

xr, R = 2 yr, R + 1( ) 3 . It approaches to Lettau’s [116] solu-

tion when r  tends to zero. Equations (7.3) to (7.5) are illus-

trated in Fig. (8). As expected, formulae (7.4) and (7.5) only 
differ hardly when  tends to Obukhov numbers much 

smaller than zero which represent free-convective condi-
tions. Simultaneously, the difference between Eq. (7.3) and 
the other two formulae grows continuously. 
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Fig. (8). The integral similarity function m R , 0( )  for momen-

tum obtained from formulae (7.3) to (7.5) and plotted against the 
Obukhov number R = zR L . 

 Equation (5.5) for the non-dimensional temperature gra-
dient, h ( ) , can be integrated over the height interval 

zr , zR[ ]  in a similar manner like in the case of momentum 

(see formulae (7.1) and (7.2)). One obtains 

ˆ zR( ) ˆ zr( ) = * ln
zR d

zr d h R , r( )      (7.6) 

with 

h R , r( ) =
1 h ( )

d
r

R

       (7.7) 

that is called the integral similarity function for sensible heat. 
As in the case of momentum, this definition is independent 
of the shape of the respective local similarity function. 

 Introducing formulae (5.15) into the definition  
(7.7) yields [44, 114] 

h R , r( ) =

m R , r( ) for L > 0

0 for L

2 ln
1 + yR

2

1 + yr
2 for L < 0

      (7.8) 

Paulson’s [115] solutions substantially agree with those of 
Eq. (7.8) when yr 1  while r 0 . 

 If we assume that h ( ) = m
2 ( ) Ri =  holds for 

the entire range of unstable stratification and that the local 
similarity function for momentum is given by Eq. (5.30), we 
will obtain 

h R , r( ) =
3

2
ln
yR

2
+ yR + 1

yr
2
+ yr + 1

+ 3 arctan
xR xr
1 + xR xr

for L 0

   (7.9) 

Formulae (7.8) and (7.9) are illustrated in Fig. (9). As 
shown, Eq. (7.9) provides appreciably larger values of 

h R , 0( )  than formula (7.8). 

 

Fig. (9). The integral similarity function h R , 0( )  for sensible 

heat obtained from Eqs. (7.8) and (7.9) and plotted against the 
Obukhov number R = zR L . 

 Equation (5.10) for the non-dimensional humidity gradi-
ent, q ( ) , can be integrated over the height interval 

zr , zR[ ]  in a similar manner like in the case of momentum. 

One obtains 

q̂ zR( ) q̂ zr( ) =
q* ln

zR d

zr d q R , r( )    (7.10) 

with 

q R , r( ) =
1 q ( )

d
r

R

       (7.11) 

that is called the integral similarity function for water vapor. 
Assuming q ( ) = h ( ) , as recommended by Webb [55] 

and Dyer [117] for stable stratification as well as Dyer and 
Hicks [48] as well as Dyer and Bradley [57] for unstable 
stratification, one obtains the same expression like in the 
case of the sensible heat transfer. Note that long-lived trace 
species can be dealt with in a similar manner. 

 Obviously, the local similarity functions, m ( ) , 

h ( ) , and q ( ) , impose as universal laws for describing 

the surface (constant flux) layer turbulence [59, 118]. Re-
views of empirical findings can be found in [21, 75, 117, 
119]. The equation sets (7.1) to (7.3), (7.6) to (7.8), (7.10), 
and (7.11) may be used to determine the scaling quantities 
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u* , * , and q* , and, hence the corresponding fluxes 

, H, and W , as well as the roughness length, z0  (for 

zr = z0 + d ), and the zero-plane displacement, d, from verti-

cal profile measurements of wind speed, temperature and 
humidity (e.g., [43, 44, 59, 114, 120-122]). 

 Integrating Eq. (6.2) over the interval zr , zR[ ]  leads to 

the Priestley-Estoque relation [123] 

H

Q
= h

cp,0
ˆ
R

ˆ
r( )

q̂R q̂r
    (7.12) 

with 

h =
C1

3 zr d( )
1

3 zR d( )
1

3

g

m

ˆ
R

ˆ
r( )

3 zr d( )
1

3 zR d( )
1

3

1

2     (7.13) 

where, as in the case of forced-convective conditions, 
Sct,i Prt  is assumed to determine the vertical transfer of 

water vapor also. The constant C1 0.90  can be derived 

from Priestley’s constant. Note that this expression is 
strongly sensitive to the choice of zr . 

 As under free-convective conditions Monin-Obukhov 
scaling fails, Estoque [123] proposed to calculate the friction 
velocity in the same manner like the vertical eddy fluxes of 
sensible heat and water vapor. Thus, one obtains 

u*
2
= u ûR ûr( )         (7.14) 

with u = h . Unfortunately, Estoque’s [123] postulate is 

not scrutinized, and other relations might be more adequate. 
By assuming that h ( ) = m

2 ( )  holds for the entire range 

of unstable stratification, Herbert and Kramm [124], for in-
stance, derived: 

u =
C2

6 zr d( )
1

6 zR d( )
1

6

ûR ûr

6 zr d( )
1

6 zR d( )
1

6

g

m

ˆ
r

ˆ
R( )

3 zr d( )
1

3 zR d( )
1

3

1

3   (7.15) 

It is strongly sensitive to the choice of 
r
z , too. 

 

 

 

 

7.2. Computed Eddy Fluxes Versus Measured Eddy 
Fluxes 

 As mentioned before, the equation sets (7.1) to (7.3), 
(7.6) to (7.8), (7.10), and (7.11) may be used to determine 
the scaling quantities u* , * , and q* , and, hence the corre-

sponding fluxes , H , and W , as well as the roughness 
length, z0 (for zr = z0 + d ), and the zero-plane displace-

ment, d , from vertical profile measurements of wind speed, 
temperature and humidity. 

 Results derived with the method developed by Kramm 
and Herbert [44, 114] are illustrated in Figs. (10-24). This 
method is described in the Appendix. Figs. (10, 11) show 
examples of vertical profile of wind speed, potential tem-
perature and specific humidity obtained from observed data 
collected during the GREIV I 1974 experiment. This ex-
periment took place over a flat site covered with winter bar-
ley (about 0.25 m high) and rape (0.50 to 0.75 m high), near 
Meppen/Emsland in northern Germany in April 1974. Data 
sets of wind speed, dry- and wet-bulb temperatures (simulta-
neously measured 30-min averages) were obtained by groups 
from the Universities of Kiel (April 20 - 24, 1974) and Mu-
nich (April 24 - 27, 1974). The observations of the Kiel 
group were performed at heights of 0.5, 1.26, 3.18 and 8 m 
and those of the Munich group at heights of 0.5, 1, 2, 4, 8 
and 16 m above ground. Both groups used Lambrecht cup 
anemometers and Frankenberger-type psychrometers. In 
addition, the 30-min run data of friction velocity and the 
vertical eddy fluxes of sensible and latent heat directly de-
termined by the University of Mainz group using ultrasonic 
anemometer-thermometer (Kaijo-Denki 3D) and Lyman 
alpha hygrometer (self-developed) measurements were used 
for comparison. These fast-response measurements of the 
Mainz group were carried out in the vicinity of the instru-
mented mast of the Kiel group at a height of 2 m above 
ground. Note that the GREIV I 1974 data, fully documented 
in [18], has not been used in deriving the universal functions 
on which the integral similarity functions presented here are 
based. 

 If z0 + d > z1  or more than 40 iteration steps had been 

required to determine z0  and d , the profile data sets were 

generally rejected by the computer program. As mentioned 
before, such criteria occurred for profile data collected under 
very stable conditions with low wind speeds and temperature 
inversions or in the transition phase between lapse and inver-
sion conditions, if stationary states required by the constant 
flux concept must not be expected [43, 44]. 

 Of 109 profile data sets of the Kiel group, 77 data sets 
were suitable for computation. From the 110 data sets of the 
Munich group, 73 an 69 data sets, respectively, were appro-
priate for computation, based on vertical profiles which in-
cluded 5 and 6 levels (with and without the 16 m level of 
observation). 
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Fig. (10). Typical vertical profile of wind speed, potential temperature and specific humidity calculated for unstable stratification. The dots 
represent the observed values and the solid lines the calculated profiles. 

 

Fig. (11). As in Fig. (10), but for stable stratification. 
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Fig. (12). Calculated friction velocity (index C) versus directly 
determined friction velocity (index M). A0  and A1  are the coeffi-

cients of the least-squares fit (solid line), and R  is the correlation 
coefficient. The dashed lines represent the 95 % confidence band 
(with reference to [44]). 

 

Fig. (13). As in Fig. (12), but for the vertical component of the 
sensible heat flux. 

 

Fig. (14). As in Fig. (12), but for the vertical component of the 
latent heat flux. 

 

Fig. (15). As in Fig. (12), but Eqs. (7.3) and (7.8) are replaced by 
Eqs. (7.5) and (7.9), respectively, when unstable stratification is 
considered. 

 

Fig. (16). As in Fig. (15), but for the vertical component of the 
sensible heat flux. 

 

Fig. (17). As in Fig. (15), but for the vertical component of the 
latent heat flux. 
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Fig. (18). Gradient Richardson number, Ri , versus Obukhov num-

ber, . The one-to-one line represents h ( ) = m
2 ( )  that 

leads to Ri =  (see formula (5.17)). For the reference in this fig-

ure see [57]. 

 

Fig. (19). As in Fig. (12), but Eq. (7.3) is replaced by Eq. (7.5) 
when unstable stratification is considered. 

 

Fig. (20). As in Fig. (19), but for the vertical component of the 
sensible heat flux. 

 

Fig. (21). As in Fig. (19), but for the vertical component of the 
latent heat flux. 

 

Fig. (22). As in Fig. (12), but Eqs. (7.3) and (7.8) are replaced by 
Eq. (7.5) when unstable stratification is considered. 

 

Fig. (23). As in Fig. (22), but for the vertical component of the 
sensible heat flux. 
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Fig. (24). As in Fig. (22), but for the vertical component of the 
latent heat flux. 

 The two instances of different thermal stratification illus-
trated in Figs. (10, 11) show that the calculated least squares 
fits coincide very well with the values observed. General 
agreement also exist between the eddy flux values of mo-
mentum (characterized by u* ), sensible and latent heat cal-

culated with formulae (7.1) to (7.3), (7.6) to (7.8), (7.10), 
and (7.11) and those directly measured (see Figs. 12-14). It 
is called the reference case. Note that the sampling intervals 
of the vertical profile measurements and the direct measure-
ments of eddy fluxes differ by about 15 min. 

 As illustrated in Fig. (8), the results provided by formulae 
(7.4) and (7.5) only differ hardly when  tends to large 

negative Obukhov numbers that represent free-convective 
conditions. Since Eq. (7.4) is more bulky than Eq. (7.5), it 
seems to be reasonable to replace formula (7.3), that does not 
match free-convective conditions, by formula (7.5) and, with 
respect to h ( ) = m

2 ( ) Ri = , Eq. (7.8) by Eq. (7.9) 

when unstable stratification of air is considered. Compared 
with the reference case, this combination of formulae pro-
vides eddy flux results that more disagree with those directly 
determined (see Figs. 15-17). In comparison with the refer-
ence case, a notably better agreement especially for the eddy 
flux of sensible heat can be achieved when for unstable 
stratification only formula (7.3) is replaced by formula (7.5). 
Consequently, Ri =  is not longer valid. As illustrated in 

Fig. (18), this combination leads to Ri . The eddy 

flux results obtained with this combination of equations are 
shown in Figs. (19-21). 

 As mentioned before, the local similarity function (5.30) 
as found, for instance, by Carl et al. [76] as well as Gavrilov 
and Petrov [77] for unstable stratification and the conven-
tional O’KEYPS formula (5.25) on the one hand and Eq. 
(6.3) on the other hand suggest that under free-convective 
conditions the one-thirds law, and, hence, Eq. (7.5) should be 
valid for both momentum and sensible heat. However, using 
formula (7.5) for both momentum and sensible heat (and 
water vapor) only yields rather insufficient results for the 
vertical eddy fluxes of sensible and latent heat (see Figs. 22-

24). Consequently, Estoque’s [123] suggestion that u = h  

has to be considered with care. 

 To assess the impact of a value for the von Kármán con-
stant not simultaneously derived with the local similarity 
functions of momentum, sensible heat and matter, we con-
sider principles of Gaussian error propagation. The devia-
tion, for instance, of the friction velocity owing to the devia-
tion of the von Kármán constant from its original value can 
be expressed by 

u* = ±
u*        (7.16) 

with 

u* =
u* 1 +

ln
zR d

zr d m R , r( )

m R , r( )
   (7.17) 

 The derivative m R , r( )  depends on the integral 

similarity function used (see subsection 7.1). For neutral 
conditions we simply obtain u* = u*  and in a further 

step for the relative deviation of the friction velocity 

u*
u*

= ±        (7.18) 

 Thus, if = 0.35  is the value simultaneously derived 

with the local similarity functions for momentum and sensi-
ble heat by Businger et al. [46], but the “true” value of 

= 0.387  derived by Andreas et al. [26] is used, the relative 

deviation of u*  will amount to 10.6 % . 

8. FINAL REMARKS AND CONCLUSIONS 

 In this paper, the basic idea of the dimensional -
invariants analysis was outlined in a mathematically general-
ized formalism to illustrate the task of this powerful method 
and how it can be applied to deduce a variety of reasonable 
solutions by a formalized procedure of non-
dimensionalization. Various instances were represented that 
are relevant to the turbulent transfer across the ASL and the 
prevailing structure of ASL turbulence, in particular, (a) 
Monin-Obukhov scaling for forced-convective conditions, 
and (b) Prandtl-Obukhov-Priestley scaling for free-
convective condition. 

 It was shown that in the case of only one  number the 
derived equations are really applicable if this  number can 
be determined empirically or/and theoretically. Such a  
number can be considered as a non-dimensional universal 
constant. This is true in the instances (a) of neutral stratifica-
tion, when in the case of momentum transfer a logarithmic 
wind profile prevails and the  number is equal to the recip-
rocal of the von Kármán constant, and (b) of the Prandtl-
Obukhov-Priestley scaling for free-convective condition, for 
which flux-gradient relationships and the temperature variance 
relationship were derived. Furthermore, it was shown that in 
the case of Monin-Obukhov scaling generally two  numbers 
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occur. In such kind of scaling local similarity functions de-
pending on the Obukhov number, , can be established that 

may be considered as universal functions within the frame-
work of the various similarity hypotheses. Unfortunately, 
these universal functions cannot be quantified by the dimen-
sional -invariants analysis so that their determination by 
empirical or/and theoretical work is indispensable. This is true 
for forced-convective conditions for which local similarity 
functions of the flux-gradient relationships for the transfer of 
momentum, sensible heat and water vapor as well as local 
similarity functions of the energy dissipation and the normal-
ized variances of wind components, potential temperature and 
specific humidity were derived empirically by several authors 
during the last five decades. However, especially for strongly 
stable stratification further research is urgently required be-
cause it seems that in this stability range Monin-Obukhov 
similarity is incomplete. Prandtl-Obukhov-Priestley similarity 
may be adequate for free-convective conditions, but a suffi-
cient degree of evidence is indispensable. Even though the 
value of the von Kármán constant, = 0.387 ± 0.003 , de-

rived by Andreas et al. [26], is based on the largest, most 
comprehensive atmospheric data set ever used, this value has 
to be confirmed for wide ranges of non-neutral stratification. 

 The eddy flux results provided by the different param-
eterization schemes substantiate that great uncertainty exists 
in the prediction of the eddy fluxes of sensible and latent 
heat. With respect to climate predictions especially for high 
latitude regions like the Arctic, this uncertainty seems to be 
too large. Thus, more direct eddy flux measurements are 
necessary for improving such parameterization schemes and 
for minimizing their uncertainty. 

 The great uncertainty, inherent in the universal functions 
on which the integral similarity functions assessed before are 
based, is not only reflected by the gradient-Richardson num-
ber, but also in the turbulent Prandtl number, Prt , the turbu-

lent Schmidt number, Sct,q , and the turbulent Lewis-

Semenov number, LSt,q  both for water vapor. Lumley and 

Panofsky [42] already pointed out that the question of the 
relative size of Kh  and Km  has still not been answered sat-

isfactorily. We have to recognize that, even forty years later, 
their statement is further valid. Hitherto, values of the turbu-
lent Prandtl number, the turbulent Schmidt number and the 
turbulent Lewis-Semenov number determined for the ASL 
are still scarce. As these integral similarity functions are fre-
quently used in state-of-the-art weather forecast or climate 
prediction models, there is an urgent need to reduce this un-
certainty by gaining more empirical material either to verify 
such universal functions or to derive improved universal 
functions. 

APPENDIX: LEAST SQUARES TECHNIQUES 

 In this section least squares techniques are presented that 
are applied to estimate the ASL parameters mentioned above 
from vertical profiles of wind speed, temperature and humid-
ity. 

 In order to be able to establish the best approximations for 
the roughness length, z0 , and the zero-plane displacement, d , 

as well as the relevant reference values r and qr, the follow-

ing expressions have to be minimized [44]: 

x( )
2
= UM,i Ui x

T( )( )
2

i=1

N

= min       (A1) 

and 

r( )
2
= ˆ

M,i
ˆ
i r( )( )

2

i=1

N

= min       (A2) 

with 

xT = z0 , d( )          (A3) 

and 

=
, potential temperature

q , specific humidity
       (A4) 

Here, N 3  is the number of observation levels, UM,i  is the 

mean wind speed observed at the height zi z1  ( z1  is the 

lowest observation level), ˆ M,i  and q̂M,i  are the correspond-

ing mean values of the potential temperature and the specific 
humidity, respectively. 

 Appropriate values for the scaling parameters u*, * and 

q* are provided by the arithmetic averages 

u*

*

q*

=
1

N 1

u*, j

*, j

q*, j
j=1

N 1

       (A5) 

The quantities u*, j , *, j , and q*, j  are calculated from the 

vertical profile data collected at the adjacent observation levels 
zi  and zi+1 . 

 In the case of stable stratification it can be done as fol-
lows: Introducing a common local stability function for mo-
mentum, sensible heat, and water vapor, 

q ( ) = h ( ) = m ( )  with m ( ) = 1 + , into Eqs. 

(7.2), (7.7), and (7.11) simply provides: 

q i+1, i( ) = h i+1, i( ) = m i+1, i( )

= i+1 i( )
     (A6) 

where zR  and zr  were replaced by zi+1  and zi , respectively. 

Thus, combining Eqs. (7.1) to (7.6) and Eq. (7.10) yields 
then [24, 44] 

u*, j

*, j

q*, j

= Cj

U zi+1( ) U zi( )
ˆ zi+1( ) ˆ zi( )
q̂ zi+1( ) q̂ zi( )

       (A7) 

with 
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Cj =
1 RiB, j( )

ln
zi+1 d

zi d

        (A8) 

where RiB  is the so-called bulk-Richardson number for the 

layer zi , zi+1[ ]  given by (e.g., [44, 75]) 

RiB, j =
g

m

ˆ zi+1( ) ˆ zi( ) + 0.61 m q̂ zi+1( ) q̂ zi( )( )
U zi+1( ) U zi( )( )

2 zi+1 zi( )   (A9) 

 In contrast to the exact solution for stable stratification, 
the scaling parameters u*, j , *, j , and q*, j  and the related 

quantities have to be determined by a method of successive 
approximations. Following iteration scheme may be used 
[44]: 

u*, j
i+1( )

= Cm,j
i( ) U zi+1( ) U zi( )( )      (A10) 

*, j
i+1( )

q*, j
i+1( )

= Ch, j
i( )

ˆ zi+1( ) ˆ zi( )

q̂ zi+1( ) q̂ zi( )

    (A11) 

Cm,j
i( )

=

ln
zi+1 d

zi d m
i( )

i+1, i( )
    (A12) 

Ch, j
i( )

=

ln
zi+1 d

zi d h
i( )

i+1, i( )
    (A13) 

and 

L i( )
=

u*
i( )( )

2

g

m
*
i( )
+ 0.61 m q*

i( )( )
    (A14) 

The integral similarity functions m
i( )

i+1, i( )  and 

h
i( )

i+1, i( )  may be calculated using either formulae (7.3) 

and (7.8), formulae (7.5) and (7.9), or formulae (7.5) and 
(7.8), i.e., 

m, j
i( )

i+1, i( ) = 2 ln
1 + yi+1

i( )

1 + yi
i( )

+ ln
1 + yi+1

i( )

( )
2

1 + yi
i( )

( )
2 2 arctan

yi+1
i( ) yi

i( )

1 + yi+1
i( ) yi

i( )

 (A15a) 

h, j
i( )

i+1, i( ) = 2 ln
1 + yi+1

i( )( )
2

1 + yi
i( )( )

2   (A16a) 

yi
i( )
= 1 2

L i( )
zi d( )

1

4
    (A17a) 

and 

yi+1
i( )
= 1 2

L i( )
zi+1 d( )

1

4
   (A18a) 

or 

m, j
i( )

i+1, i( ) =
3

2
ln

yi+1
i( )( )

2
+ yi+1

i( )
+ 1

yi
i( )( )

2
+ yi

i( )
+ 1

3 arctan
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i( ) xi
i( )

1 + xi+1
i( ) xi

i( )

  (A15b) 

h, j
i( )

i+1, i( ) =
3

2
ln

yi+1
i( )( )

2
+ yi+1

i( )
+ 1

yi
i( )( )

2
+ yi

i( )
+ 1

+ 3 arctan
xi+1

i( ) xi
i( )

1 + xi+1
i( ) xi

i( )

  (A16b) 

yi
i( )
= 1 11

L i( )
zi d( )

1

3
    (A17b) 

yi+1
i( )
= 1 11

L i( )
zi+1 d( )

1

3
   (A18b) 

xi
i( )
=
2 yi

i( )
+ 1

3
       (A19) 

and 

xi+1
i( )
=
2 yi+1

i( )
+ 1

3
      (A20) 

From the minimum condition (A2) one obtains the optimum 
reference values r  and qr  as follows 

r

qr
=
1

N

ˆ
M,i

q̂M,ii=1

N 1 *

q*
ln
zi d

z0
h i , r( )

i=1

N

  (A21) 

The nonlinear least squares equation (A1) can only be solved 
by a method of successive approximation. This procedure 
can be derived from the approximation of the nonlinear least 
squares formula by series of linear least squares equations, 
i.e., if x  is an approximation for the optimum solution, then 
the optimum solution 

x * = x + Df x( )
T
Df x( )( )

1

Df x( )
T x( )     (A22) 

of the linear least squares expression 

min x( ) Df x( ) x * x( )
2

     (A23) 

is, in general, a better approximation of the nonlinear least 

squares formula than x  expressed by x *( )
2
< x( )

2
 

[44, 125]. The quantity Df x( )  is the Jacobian given by 
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Df x( ) =

U1

z0

U1

d

UN

z0

UN

d

      (A24) 

and Df x( )
T

 is its transpose. The elements of the Jacobian 

are given by 

Ui

z0
=

u*
z0

m r( ) +
1
ln
zi d

z0
m i , r( )

u*
z0

   (A25) 

and 

Ui

d
=

u*
zi d( ) m i( ) +

1
ln
zi d

z0
m i , r( )

u*
d

 (A26) 

The derivations of u*  with respect to z0 , and d , respec-

tively, can be approximated by 

u*
z0

0         (A27) 

and 

u*
d

=
1

N 1

1

zi+1 d

1

zi d

ln
zi+1 d

zi d

u*, j for L > 0

yi+1
1

zi+1 d

yi
1

zi d

ln
zi+1 d

zi d m i+1, i( )
u*, j for L < 0

j=1

N 1

  (A28) 

The iteration procedure may be started with the conditions of 
a neutrally stratified ASL for which L 1( ) . Thus, 

m
1( )

i+1, i( )  and h
1( )

i+1, i( )  are equal to zero. With 

these first approximations we may obtain the second ap-
proximations, and so on. At the beginning, the roughness 
length and the zero-plane-displacement have to fulfill the 

conditions: z0
1( )
> 0  and d 1( )

< z1  The iteration procedure 

will be stopped if after the kth iteration step the scaling pa-
rameters are computed with an accuracy of 

u*
k+1( ) u*

k( )
< 10 4 m s 1 , 

*
k+1( )

*
k( )

< 10 6 K  

and 

q*
k+1( ) q*

k( )
< 10 7  

that may be considered as sufficient. Usually, three or four 
iteration steps are required [63]. 
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