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The theory of Raman scattering is extended to include electric-quadrupole radiation. The results obtained
are used to compute the elastic and Raman scattering cross sections of heavy deformed nuclei. The dipole
and quadrupole resonances are described by a previously developed theory which includes surface vibrations
and rotations. The computed cross sections are compared with experimental data for all those nuclei where
both absorption and scattering cross sections are available. Some discrepances still exist in certain details;
however, the over-all agreement between theory and experiment is very good.

I. INTRODUCTION

HE present paper has two parts. In the first part,
the theory of elastic and Raman scattering is
extended to quadrupole radiation including dipole-
quadrupole interference. Together with the well-known
results for dipole radiation,’? the formulas obtained are
used to compute the photon-scattering cross sections
on the basis of the dynamic collective theory®® of the
giant resonance in heavy deformed nuclei. In the second
part, we attempt to obtain as complete as possible
theoretical fits to the presently available high-resolution
experiments, taking together both absorption and
scattering data. In other words, our aim is to determine
how consistent is the totality of the information con-
cerning the nuclear giant resonance.

We believe that this is the correct time for such an
attempt. The development of both theory and experi-
ment of the photonuclear effect over the last 15 years
has led from a qualitative picture to a quantitative
description.” In other words, the qualitative features
are quite well understood. The open questions are of a
quantitative nature; e.g., what fraction of the oscillator
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strength is associated with the giant resonance, or, to
what accuracy can the shape of the cross section be
quantitatively described, etc. It will be seen that very
few nuclei have been investigated with a sufficient
accuracy for an analysis of the kind attempted here.
Tt would also be exceedingly desirable to have available
high-quality data concerning nuclei from the transition
region, i.e., from the region where the deformations
become small. Examples of such nuclei are neodymium,
samarium, and osmium. The data should include the
region above 20 MeV, i.e., the location of the giant
quadrupole resonance.5¢

The theoretical part of the paper is contained in
Secs. II through IV. The formulas for the electric
quadrupole elastic and Raman scattering including
interference with dipole radiation are developed in
Sec. II. The scattering amplitudes are given in terms of
reduced matrix elements of the multipole operators.
The final formulas for the diverse scattering cross
sections are worked out for nonaligned targets. In a
description of experiments performed with aligned
targets,® one would have to use directly the expressions
for the scattering amplitudes. A résumé of the nuclear
theory is given in Sec. III, and the reduced matrix
elements needed in the formulas for the different cross
sections are evaluated in Sec. IV. The second part of
the paper, i.e., the detailed comparison between the
experimental data and the theoretical predictions, is
contained in Sec. V. We have analyzed the data of all
cases where both absorption and scattering cross
sections, i.e., a complete set of data, are available.
Section VI contains a summary and a discussion of the
results obtained.

8 E. Ambler, E. G. Fuller, and H. Marshak, Phys. Rev. 138,
B117 (1965).
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II. SCATTERING AND ABSORPTION
CROSS-SECTION FORMULAS

The transition probability for the scattering of incoming photons with wave vector k into outgoing photons &’
is given by?®
do/dQ=(K'/k)| Ks|?, (1
the nuclear state changing from 7 to f.
We devote this section to the description of the matrix elements K,;. We begin by developing the general
formula for arbitrary photon multipolarity. Later we specialize to the case of dipole and quadrupole scattering. In
general we have

etk z[m [i-a00r—— [i-a0015

A [5-400—— /i-A*(k')m]- ©)

In this equation ey and ey, are the polarization unit vectors of the photons for circular polarization, E is the
incoming photon energy, H is the nuclear Hamiltonian normalized so that the nuclear ground-state energy equals
zero, and

K=

A(k) =egeiT 3)

is the vector potential. The imaginary part n of the energy denominators is to be taken in the limit n— 0.

In Appendix B of Ref. 10 it was shown that under certain circumstances the absorption cross section of a
damped giant resonance state | GR) can be approx1ma.ted by a Lorentz line, i.e., that it is described by the forward
scattering amplitude f(£) which has an imaginary part glven by

T/2

= j- A*(k o e 12/
Imf(E) 62|:<0l /J ( ”GR) (E— _GGR)2+P2/4

<GR|/5.A<k>|o>

| /2

—{0] [3-Akk)|GR}————(GR]| | j-A(k)|0)

; ol [ awioR) o ar] [i-aml0 |
Tes

ol fi m—
T
Egr?= eqr2+T?/4. ®)

One sees that the same imaginary part is obtained if in (2) one replaces formally the eigenstates |#) of the
nuclear Hamiltonian by the giant resonance state | GR) and introduces a finite width I' which formally replaces
7 in the energy denominators.

With these substitutions, we thus have

4)

Imf(E)=ImK (E). (6)

Then from the dispersion relations it follows that also the real parts of K (Z) and f(E) are equal if ReK (0) = Ref(0).
This is so because the real part of the scattering amplitude at zero energy is given by the Thomson amplitude in
both cases. We emphasize that the above replacements are only approximately valid and refer to Ref. 10 for a
discussion of the limits of validity. If several giant resonances are present, which is the case in heavy nuclei, then
their contributions to the scattering amplitude add. Thus we finally have for the complete scattering amplitude

e
Kij=— Mczek'x'*'ekxﬁif‘l-; l:(fl /JA* (k)] GRn)E

(GRu| f AW

—‘E—fi n

] f - A0)|GR.)

—(GR,| | 3-A*(K) i) |.
LY /: @] o

9 W. Heitler, The Quantum Theory of Radiation (Clarendon Press, Oxford, England, 1954).
10 M. Danos and W. Greiner, Phys. Rev. 138, B876 (1965).
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In the following we shall drop the notation | GR,) and replace it by | ), where # now stands for the state of the
nth giant resonance.
We now perform a multipole expansion of the vector potential,* i.e.,

A* (k’) — ep*e—-ik’ T (21‘.)1/2 Z (__ )L—pL (2L+ I)I/ZBLMVP:DM,——pL s
L,M

By ?=pALy® (m)+iALy® (e), ' (8)

which is an expansion in multipole fields Az defined in a rotated coordinate system. The arguments of the rotation
matrices Dy x” are the Euler angles specifying the orientation of the rotated system. The phase convention used
in this paper is that of Biedenharn and Rose.” Then (7) becomes

Z2e?

AME :D—p—p'au' Z Z ( ) -

n L, L' M

Kiy=— (=)

X cwts sl [i-Buse 1ol [i-Barlivtcar sl [i-Buplnnl [ B[], ©)

where

2
Cunt! ==L QLAD) QLA D] ———
E —-—E——iI‘n/Z

o 1
Coal¥’ ——¢L+L'[(2L+1)(2L’+1)]1/2——— (10)
Ey+E/+il,/2

In the following we restrict ourselves to electric-dipole and -quadrupole radiation. We now rewrlte Eq. (9) in
terms of the nuclear polarizabilities .-%, which are implicitly defined by the equation

L L r r I, I,
K= (=)' S 5> (= >ff—Mf<2L’+1>( ' )( )%“‘)M'—v'“)- (11)
L=1 L'=0 p M —M—p/\M+p —M; M,

Tt will be shown in the Appendix that th1s definition leads to the following explicit expression for the polariza-
bility tensor:

L
Bt ()T {In )

/ 2

Iy

i ! . Z
L} Gtk () Cua b P QI I (12)

2
where

Curt=Cuti [ - A @)L [5- A @),

@2nL=C2nLL<Ifaj”/jfALk(e)“Inan><Inan”—/j'ALk, ()| ). ‘ (13)
The reduced matrix elements of the Wigner-Eckart theorem are defined by

I I :
(LM 5| o | LM )= (— ),,_M,< / )munnm. e (14)

M; M M,

To compute the scattering cross section we need the absolute square of K;s. Using

K J\yL K J 7

Y O)(—p' » O>P.r (cosh), (15)

1 M. E. Rose, Elementary Theory of Angular Momentum (Interscience Publishers, Inc:; New York, 1957).
2L, C. Biedenharn and M. E. Rose, Rev. Mod. Phys. 25, 729 (1953).

L
Dt "(0,6,0) Dt **(0,6,0) = (=) 22 (27 +1) (M
J
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we obtain from (11)

2L 2K

|Kis|?= %:. 2

L,K=1 J L'=0 K'=0

r I; I¢)< K’ 1 Iz)(
X
(M-f—j) —M; MJ\M+p —M; M,

This is the final formula which can be written before
specifying the polarization of the beam and of the
target nucleus. In the general case where the nuclei may
be aligned or polarized one will have to use (16)
directly, e.g., in the density-matrix formalism," to
describe the experimental situation. We shall, however,
at this time specialize to a nonaligned target. Then the
cross sections are obtained by an incoherent averaging
over the initial direction, i.e., summing over M;. We
also shall take the photons to be unpolarized. The cross
section then is given by averaging over both orientation
and polarization of the initial state of the nucleus and
the photon, M; and #, respectively, and summing over
the same quantities in the final state, M; and p’. In
this case we obtain

do 1 F 2

2L
> g KE@BLABE, (A7)
dQ 21,41k Lk=1 L'=0

where
guxL(6)
= (—)HEHEE [ (=) ] QL+ 1) (2T +1)
7

L K J\(L K
(2ol
1 -1 o/ \K L
Obviously there holds

gL FE(0)=gu ik, (19)

The functions g-%%(6) describe the different angular
distributions. So K=L=1 describes the dipole photon
scattering. L'=0 is the scalar part, L'=1 is the vector
part, and L'=2 is the tensor part. Similarly, K=L=2
describes the quadrupole scattering. L’ here goes from
0 to 4. The dipole-quadrupole interference is given by
the terms K=1, L=2. These terms vanish at 6=90°,
We have explicitly

go'=2%(14-cos%),
g =%(2-+sin’%),
g =75 (134-cos%),

J
]P;(cosﬁ) . (18)
LI

(20)

137, Fano, J. Opt. Soc. Am. 39, 859 (1949); Phys. Rev. 90
577 (1953). g ’
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L L L' \K K K
53 (2L’+1)(2K/+1)(2J+1)(—‘)M+p'<P M —-M—~{>)<P M —-M i’)

L K J I
0)‘J3Lr B E*Py(cosh). (16)

g0 =1%(1—3 cos?6+4 cosf),
g1%=(1/20) (3415 cos®— 16 cos*f) ,
g2 = (1/28) (13— 15 cos?6+16 cosd)
gs2=1(3—cos¥),

g2=(1/35)(24+3 cos®+cos'd) (21)
g012= — (1/151/2) cos*f 5

gi?=— (1/20112) cos8(3—2 cos?)

2= — (1/8412) cosf(3-+2 cos¥). (22)

.We now turn to the multipole matrix elements. By
virtue of Siegert’s theorem we have

/ i Aru(e)dr=—e / P®Ludr, (23)
where
1/L4-1\12 (B)L
Pry= ‘“( ) Yiu. (24)
B\ L/ @L+)n
Introducing the multipole moment
Qru= / prEY pydr, (25)
we finally have
] L+1\2 1
‘/]-ALM(e)d‘r:—-ekl"l( ) QL. (26)
L/ @L+n!
The time derivative in (25) is simply
E
Qry= 7";QLM . @7

We note that Qry in (25) is normalized differently
than usually in that Y1y is used instead of the usual
Legendre polynomial Pyy.

Using Egs. (26) and (27), Eq. (12) becomes

. 41!' L’ If I,‘ ,
Pu 3w {z,. 1 1}EE
XA QU w){T||Q4]I1:)

[ (=)~ 1
En— E—3T, E,.+E’+%iI‘,,:|

2

08z 0(— )3 (20 4-1) (28)

. €
AMe’
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and Here the dipole and the quadrupole cross sections are
_m (EE® (L' I I,-} L1 3w ETLE Qi) (31
2= Ogbs — - ’
15 (e {1,, 2 2 " UL 3 de'w (Ei— BT BT,
and
XA | Qell T )T al|Q:lI 1) 1 8 &
T abs —_
(=)* 1 T 75 (o)
x| — —| @ BT.E |l Qi
E,—E—%il'y E,+E+§T, X , (32)
n (Eni— BT B2
respectively.

The absorption cross section then is given by Writing for the scattering cross section

1 do dop dog dopg
AT o T (0=0, E= ) @ e a @
one finally obtains explicit expressions for the partial
=G abs”+ 0abs® - (30) cross sections by inserting (28) and (29) in (17).
S O {L' N
a 2141 E L'=0 3 (he)r » I, 1
)L' ZZez 2
e Jroupwa-rrBseranr—], @)
doq 1 E s iwe (BEP _ (L' I, L (=) 2
dﬂ=21i+1EL'=) 15 (ko) Z' 2 }<f IIQ2|I"><n”Q2IIi>[En—E—%ir,,'E,,+E'+%irn] ;89
oo 2T s werl(T s [0 Mamoion
a 2141 E v=o 3ha I, 1 1
XI: e f . ]+5z‘f5L'o(—)""[3(ZIH-I)]”LZE)
Eu—E—3Ty E,+E+%T, AMe
xet (EE'? _ (L' I, I, . (=) 1 *
X(l—s (he)* g{ln 2 2}<f Qi (%”QZM[E,,— —%iI‘n:E,.+E’ %11‘]) } 2

In the special case I;=0 (even-even nuclei) only the term L'=1; contributes. Here also only the scalar part
occurs in the elastic scattering.

III. RESUME OF THE COLLECTIVE MODEL
In this section we give a short review of the dynamic collective model of the giant resonance which has been
developed in a series of earlier papers.®—$

The Hamiltonian for the collective surface degrees of freedom, the collective internal degrees of freedom, for the
odd particle, and the various interactions between these degrees of freedom is

H= Hrot+ Hvib+Hpart+Hdip+Hquad+Hd ipvib+Hquadvib
#? 2 B2

=2—J—;(I2 I2— dgz—q32)+ [(Is ]s)2+d e L 1]_83n2(13—j3)(d3+q3)

i 02
—_— 1C C H ar ha, 1) 1 G a) 6 b (I)Tb @
ZB(6£2+ 2 an) o+ Cor’+ Hpai -2 [14+Gu® (&+pmn/6) Jou

+ 3 70, P[14G, D (£— 1811, m0/6) 16, @b, D 71w ® (0) (0.284/VZ) (g @183 @ + 5,18,y (36)
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with
14-0.08(—2)~I#15,
14 (=2)~ 15,
7o, @ =1o® (0)[14 (3u2—1)0.2848,],  7® (0)= (3.34/2.08)7w® (0),

T = 1o (0)

Gu<1>=(—2)—'~'<5/41r)1/2(— G — )
» 14 (=218, 140.08(—2)~#13,/

(3,2—1)0.2848,
14 (3,2—1)0.2848,
Bo= (5/4m)1728,. 37

b® and b® are the annihilation operators for the dipole and quadrupole giant resonances, respectively. For
H ot we use the Nilsson Hamiltonian

Hpart = %Fw(_ V2+K2f2) - Fwﬁ072 Y20+Cwl : S+Cw/l2 . (38)

G,®=

The refinements included in this paper which go beyond the treatment of the-earlier work are the following.
Firstly, the differential equation for the 5 vibrations has been solved numerically since the accuracy of the perturba-
tion treatment used previously was not sufficient. Secondly, the off-diagonal term

(#/8B*) (Is— j5) (ds+gs) (39)

has been taken into account. The first change resulted in a slight increase in the energy spacing of the upper
states and in a substantial change in the absorption strengths of the vibrational satellites. The second change
increases the spacing between the main upper lines by about 150 keV.

The wave functions for the Hamiltonian (36), excluding the off-diagonal term (39), are

241\
'IMK,QCY,%Qno,ms,ﬂl>=< P 2) Ung st (EN [ Dax Xga— (— )FHAHE+H (A + (sqn -8, ) Dyr _xTX_ga ]

s
X‘pms (1)¢nt(2) P|K—~Q|ng,ms,nt (_ 7’)+ (_)%(K—fl——s(s—l = HEZDMKIXQL\:— ('— )I+j+K+Q+%s(s——1) (Sgl’li-i—ag,o) gDM,_KIX,Qa:I

x‘pm-—s(l)‘pn(—)tg(z)ﬂolK-—ﬂlnz,ms,M("l)} ) (40)
where

sgnu=p/|p| for ws=0, sgn0=0.

The meaning of the quantum numbers is the following: I, M, and K are the total spin and its projection on the
laboratory and intrinsic axis, respectively; & and « are the quantum numbers of the Nilsson state; 7, and 7,
describe the 7 and ¢ vibrations, respectively; # and # give the number of dipole and quadrupole giant resonance
phonons, respectively, and s and ¢ are their Cartesian classifications. Since a Nilsson wave function does not have
a good angular momentum, the symbol (—)7is to be considered as an operator. The off-diagonal interaction (39)
mixes the Cartesian giant resonance components s and —s, and separately { and —¢.

The symmetries contained in (40) impose the following conditions upon the states.

For m=1, n=0 we have’®

K=0—1S|,Q—|S|+2,0—|S|+4, ---, I=|K]|, |K|+1, |[K|+2,---, (41)
and for m=0, n=1 we have
K=0—|t],0—[t| 42,2~ [t|4+4, ---, I=|K|, |K|+1, |K|+2, ---. (42)
The energies corresponding to the wave functions (40) are

EIK.Qa,ms,nt,ng,nu= [I(I+ 1)— K—s?— t2_92]ER+ (”0+%)Et3—m(hws(l)Gs(l)/Eﬁ)2
X3ErBo*—n(hw®G® ) Eg) 3 ErBo*+mhw, V+nhw P+ eaat E\k—a) npmesnt.  (43)
1 This term has also been considered by S. F. Semenko, Phys. Letters 13, 157 (1964) ; Yadernaya Fiz. 1, 414 (1965) [ English transl. :

Soviet J. Nucl. Phys. 1, 295 (1965)7. We thank her for a private communication.
15 The selection rule, as given in Ref. 4, contains an error for @=3%.
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The last term in (43) gives the energy of the 5 vibrations. For s=0, ¢=0, 2 it can be given explicitly:
E\g—aingmo,nt= {2naH3[ (K— Q)+ ] P} Ey . (44)

For the other cases this energy has been obtained by numerical solution of the equation for the 5 vibrations.

As final step we now consider the off-diagonal operator (39). That means that we still have to diagonalize a

two-by-two matrix which has diagonal elements given by (43) and off-diagonal elements which have to be com-
puted numerically. They are

(1) For one giant dipole phonon,
_3Ends(18— j3)502
1692

= — 8110k K: 000 0aaOngny 05— 51(3/16) ErBe* (K—Q)S( @ k-0 (ny 1500 77%| @1 k—0lng1500).  (452)

(2) For one giant quadrupole phonon,

3ErB93(Is— js)
167%

= — 8110k k000D aaBnonydt—1 (3/16) ErBo* (K~ ¢| (@1 K-01ny 00,10 |[772] @1 K01 ns,00,10).  (45b)

This completes the computation of the energy spectrum.

{I'K' Qo /na'n’, 157,00 IK Qa,n:m,0,15,00)

<I,KI, ’a',ng’no’,OO,lt' - IK,Qa,Wz%o,OO,It’)

IV. PHOTON-INTERACTION MATRIX ELEMENTS

In the computation of the reduced matrix elements of the multipole operators (25) needed in (30) and (32), two
steps can be distinguished : (i) The operators (25) have to be written in terms of the giant resonance and surface
coordinates in the intrinsic system. (ii) The matrix elements of these operators between the various states have to
be evaluated. After expressing the operators in the intrinsic system they can be expanded in terms of the surface
parameters. We shall limit ourselves to terms quadratic in the static deformation parameter 8o and to terms linear
in the vibrational amplitudes ¢ and ». This leads to the following expressions for the intrinsic components of the
dipole and quadrupole operator:

Quu=d ) OLLEM By @ 1401y @) = p (b P b ) ]
XLA-Su®ETA+La! (Bray @ t4b1w D) 4w (bt P b @) ([ [V6)Su @}, (46)

with
3 NZ (1+a) 1 \'2
d0(1>=h<_ﬁ__ ) (0.9254-0.3385+0.32385),
8r A M oW
3 NZ (14a) 1 \'72
d,® = <__ - ) (—0.654+40.1148,—0.148,>) ,
&r A M oW
S, = (—2)~1¥10,349 (46")
and

Qo= P[P (b1 P 4D @) —sgnps 2P12(b ) @by @) ]
X145, @£ ]— [ (bo— ) @ t4-bo 1) @) Fsgnp (B1u—2@ 1Dy @) VZ(3V3)016110.497n} ,  (47)
with
6 NZ (1+q)
do® = h(— -
r A M hw®

: <3 NZ (14+ae) 1 )”2

1/2
) R0.311(14-0.49780+1.218¢%) ,

A M hw®

3NZ (14a) 1 \'72 ;
dy® = h(— ) Ry0.311(1—0 49760+0.2984) ,
T A M hw®

dh®=—1 R0.311(140.24880+0.428%) ,

2— u?

S, ="""0.497. \ 1)
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The parameter « has been introduced originally to account for the exchange forces in terms of an effective nuclear
mass. Here it is used strictly as a scaling factor to adjust the absolute magnitude of the cross sections in a given

nucleus.

The evaluation of the matrix elements of these operators using the wave functions (40) is lengthy but straight-

forward. The final results are

(1) Even-even nuclei:

I'+1)(2I+1)

<I’K',n2'no', 1S,00”Q1”IK,1127’L0,00,00> = (

I
XLt (- ik (s

8(14-6x0) (140x+0)

1/2 4
) 2o (=)IHEHG L, O G115 g), 1 — 85— 101)

y=—1

e e L )]

X (@& ny1500| P& n30000){%nyr1500] 1S5 D E| #ng0000)

Here m, is the parity of ¢xny0000.

(I'K’ n3'ny’ ,00,14||Q:|| IK ,122920,0000)

@r4+1)2r+1) \'2 =2 I 2
)£l

8(1+6Ko) (1—]—51{'0) 2 v

- oy

p=—

A= (—)"(sgni+8:0)( (82151 —58N¥8t,— 1) {#ng001e] 1Sy @ | ng000) (@ &' ny ,001¢| @K ma0000)

(2) Odd-4 nuclei:
(I'K',Q’a’,m’no',IS,OO]]Q1]]IK,Qa,n2n0,00,00)

1 I 1 I
= (—)+E"+ 800w (1/8)(2I'4+1)(2I4-1)]12 32 dlvl(i|”'5sw|‘—v5s,—|u|)<K >

(I'K',Q’a’,ng'no',OO, 115“Qz”IK,QOL,’ﬂz,ﬂo,O0,00)

2 I
= (=) saube[(1/8) QIH1) QLI+ DI X diy (2)(K

At=(—)"(sgni480,)[ (8¢jy a1t —sgnwit 2,1, )){Ung001¢| 1S @ E| 1ng0000){ @1 K'—0 | ny001¢| @] K2 my0000)

+ ()5S ok ny1s00| (| 2]4/6)S, 9| 0030000 Uy 1500 no0000)) . (48)
r ‘ I 2 T
)+<—)I( )]
—K' —-K v —K
X[ 14y (— ) U= GO+ =D, - (sgni-80r) (— ) K +HA 1]
— (Be,2—1vF-SENIO_1,2-141) By 0012 | Bng0000){ P K7 myr001e| V2 (V3/2)212110,497n| @ ngo0n0)).  (49)
y=—1 14 “'KI
X[t (— ) 10K+ P14 (=) K=K =I8]({ @ k'—0 | ne' 1800 | €1 K—01n20000)%ne 1500 | 14y @ & | #ng0000)
+ (—=)8S2 o1 k1o myr1800 | (| #]A/6)S, D | 0) k-0 120000) (%ne 1500 | ngo000)) ,  (50)
2 I )
v —K’
X[1+7!'¢(—)[Kl—n_lll_l_y("_l)“” (1t1—1)1 lQ][A vt+ (sgnt—I—Bo;) (—)K"'“"A_,,‘:] ,
— (84,2152 11 SZNEB1, | |—2) (Ueno 0012 | %ng0000){ @1 K70 | ngr001:| V2 (V3 / 2)21#1110.497 | @1 k0, mp,0000) ]  (51)

These matrix elements contain overlap integrals of
the n-vibration wave functions, which have been
evaluated numerically.!®

V. ANALYSIS OF EXPERIMENTAL DATA

Up to now, scattering experiments have been per-
formed only for four heavy deformed nuclei, namely,

16 The matrix elements for the dipole operator in odd-4 nuclei
as given in Ref. 4 contain an error in the phases. As a result of
this error the n-parity selection rule discussed in that paper is
wrong. We acknowledge discussions with E. G. Fuller concerning

this point. —

Tb, Ho, Er, Ta. We shall try to give as complete as
possible an analysis for these four cases.

The analysis proceeds in the following manner.
Among the parameters determining the theoretical
cross sections the three parameters Eg, E,, and Eg are
taken from the low-energy spectra. The deformation
parameter B¢ can, in principle, also be determined from
the low-energy data. We still consider 8y to be an
adjustable parameter, both because it is not too well
determined by the Coulomb-excitation experiment, and
in order to check for over-all consistency between the
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values of B, obtained by both methods. The other
parameters determine, crudely, the position, absolute
magnitude, and widths of the resonances. For the width
of the different dipole resonances we assume that they
only depend on the excitation energy and we describe
this by a power law; i.e., we put

Tn=To(E./Eq)’. (52)

All widths thus are described by two parameters I'q
and 6. Finally, we are left with two parameters, namely,
E,, the position of the low-energy giant resonance,
and a, the exchange correction to the integrated cross
section!”8 (effective-mass correction of the hydro-
dynamic model).

The adjustment of the five parameters would be an
almost insurmountable job. Fortunately in this case,
different features of the cross section have different
sensitivity with respect to the different parameters.
Thus the parameters Eo, I'o, and « are practically fixed
by the low-energy peak of the absorption cross section.
The remaining two parameters Bo and & are then de-
termined by the over-all splitting and by the height of
the upper bump, respectively. The fitting thus consists
in an iterative procedure going through the above se-
quence of parameter adjustments until a satisfactory
fit has been obtained.

In odd-4 nuclei the low-energy parameters are not
necessarily available from the low-energy data. In such
cases parameters from neighboring nuclei were used.
This procedure evidently introduces some uncertainties.
This is particularly true for the vibrational energy E,.
In these cases, therefore, E, was also varied while
fitting the theoretical curve to the experimental data.

The precision with which the different parameters
could be determined was highest for Eo (less than 19,),
T'y (about 5%,), and Bo (about 10%). It should be noted
that the different parameters can be slightly changed
by making small changes in other parameters. A correct
determination of the region of best fit would have
required extensive numerical computations. These were,
however, not carried out. The above-quoted uncer-
tainties include an estimated uncertainty resulting from
this interrelation of the parameters. Unfortunately, the
accuracy in the absolute magnitude of the experimental
cross sections still seems to preclude a complete inter-
comparison between absorption and scattering data.
The conclusions of our paper are thus based mostly on
fits to the energy dependence of the different cross
sections, and no definite conclusions can be drawn
concerning the parameter a, i.e., on the magnitude of
the integrated cross section.

We now proceed to the discussion of the different
nuclei.

177, S, Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950).
18 M. Gell-Mann, M. L. Goldberger, and W. E. Thirring, Phys.
Rev. 95, 1612 (1954).
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TasiE I. Resonance parameters for erbium.

Er E, Es E, Ty
(keV) (keV) (MeV) (MeV) (MeV) o 5 o
11.68 758 1.46 12.1 2.2 0.29 1.5 0.09

Erbium

The photon-absorption experiment!® has been per-
formed only on natural erbium in which the abundances
of the different even-even isotopes are 33.49, for 1%Er,
27.19, for ¥8Er, and 14.9%, for Er. The low-energy
spectra are well known for **Er and *¥Er, not so well
known for '“Er. The low-energy parameters are practi-
cally the same for *Er and '**Er. The computations
thus were performed with the parameters of the most
abundant isotope %6Er. The fit obtained is shown in
Fig. 1. The parameters are given in Table 1.2

The level scheme and the dipole strengths for the
glant resonances are shown in Fig. 2. The dashed line
shows the position and the strength of the transversal
mode if the coupling to the surface vibrations is omitted
(Danos-Okamoto picture). The main effect of the
coupling to the surface mode is a splitting of the
transversal mode by almost 2 MeV. Many vibrational
satellites also appear. However, only one of them
acquires an appreciable dipole strength.

The scattering cross sections, which result with the
above obtained parameters, are shown in Figs. 3 to 5.
Both the elastic and the Raman scattering cross
sections are given. The largest cross sections are shown
in Fig. 3. The elastic scattering here is purely scalar,
since the ground-state spin vanishes. Tensor scattering
is included in Fig. 3, leading to the first rotational state

3001~ Er -

[ L1 1 L
b 14 lJe". gL
E, MeV

Fi1G. 1. y-absorption cross section of Er, experimental data
from Refs. 19 and 20.

B E, G. Fuller and E. Hayward, Nucl. Phys. 30, 613 (1962).

® As a result of a redetermination of the neutron-detector
eﬂjaency, the cross sections in Refs. 19 and 28 have to be multi-
plied by 0.67 and 0.75, respectively [E. G. Fuller and H. Gersten-
berg (private communication)].
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|
1
o) l I I 1 l. ‘l 1
(o} 10 12 14 16 18 20 22 E, MeVv
1 | 1 Lo NS 11 | A
A S R
§ 5 8 958§ 882 =8 8 &
=) ) = T=zZ==z=z === == = ~
_ = —_ SaL I =T _— -_ c
4
=

(2+) and to the y-band head. The latter cross section
is remarkable. It is by about an order of magnitude
larger than the vibrational Raman scattering cross
sections shown in Figs. 4 and 5. The reason for this is
the following. The scattering strengths [see Eq. (48)]
contain overlap integrals between the p-vibrational
wave functions. They are in general very small and
would even vanish exactly except for the presence of
the rotation-vibration and dipole-vibration interaction.
Explicitly, this effect results from the presence of the
term (I+ds?)/(16By?), Eq. (36). Thus the differential
equation for the wave function of the » vibrations is
different for different bands. However, the overlap
integrals are still small for those wave functions which
would have been orthogonal in the absence of the above
term. The structure of the n-vibration band head, as
seen from its quantum numbers /=2, K=2, n,=0,
and #7,=0, actually involves no n-vibration phonon. It
merely indicates a kind of centrifugal stretching result-
ing from the finite K, which leads to a dynamic perma-

8 10

20

22 24

16 I8
E, MeV

Fi1c. 3. Calculated elastic and inelastic scattering <ross sections
of Er for scattering into the ground-state band (0*,2+) and the
v band (2'%).

nent triaxially deformed shape. The energy of this state
is connected with the genuine n-vibration energy via
the restoring forces. The absence of a vibrational kinetic
energy also shows up in Eq. (44). An energy 2E, is
associated with a genuine vibration while these pseudo-
vibrations are associated with energies F,.

The quadrupole scattering associated with the FE2
giant resonances has also been computed. It is not
separately shown, since its magnitude is generally
small. However, it shows up in interference effects with
dipole scattering. The expected angular distributions
are plotted for several energies in Fig. 6. The pure
dipole distributions are indicated by dashed lines. The
only experimental data? available at this time are also
plotted. One cannot claim agreement between theory
and experiment at 20 MeV, where the interference

22

T16. 4. Calculated inelastic scattering cross sections
of Er for scattering into the 8 band.

# M. Langevin, J. M. Loiscaux, and J. M. Maison, Nucl. Phys.
54, 114 (1964).
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effects are largest.”? However, the agreement is satis-
factory at lower energies.

The total quasi-elastic scattering cross section at
140° is shown in Fig. 7. The experimental points are
from Ref. 21. The agreement is excellent, bearing in
mind that no adjustments have been made in the
parameters obtained from a fit to the absorption data.

Holmium

As compared with erbium, the situation in holmium
is, on the one hand, clearer because the nucleus is mono-
isotopic; on the other hand, it is more uncertain because
no consistent analysis of the low-energy data is available
as yet. However, two y-band heads with spins §~ and
11/2— at 514 and 687 keV,?® respectively, seem to be
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T16. 7. Total quasi-elastic scattering cross section of Er with
experimental data from Ref. 21, multiplied by 7/9.

7 T T T T T T
o+ | indicated. This would yield for the 5-vibration param-
eter about E, = 500-700 keV. Such a value for £, would

s _ also agree with the systematics of the #-vibrational

— energies in the neighboring nuclei.* Because of these

N . uncertainties, we took E, to be a free parameter.

e

8 3 - TaBLE II. Resonance parameters for 15Ho.

=

_.g 2 - Er E.y Eg Ey Ty

os (keV) (MeV) (MeV) (MeV) (MeV) Bo 5 Ref.
I+ —l 10.5 0.6 1.46 120 21 0.28 1.5  0.05 19

Ly 10.5 1.0 146 120 23 024 16 013 25

03 10 12 IJ4 IIG 8 20 22 24

E, MeV

T16. 5. Calculated inelastic scattering cross sections
of Er for scattering into the higher y band.

F1c. 6. Angular
distributions of the
total  quasi-elastic

3
X i scattering cross sec-
< e tion of Er for differ-
ent energies. The
N dashed line shows

the angular distribu-
tion for pure dipole
scattering. The ex-
perimental points are
taken from Ref. 21.
Top: 11.5-14 MeV,
middle: 14-17.3
MeV, bottom: 17.5-
20 MeV.

548 /5

| 2

s0° 700 90 1d 30" 150"
6

22 A similar observation has already been made by E. G. Fuller
(private communication).

2 R. M. Diamond, B. Elbek, and F. S. Stephens, Nucl. Phys.
43, 560 (1963).

Two absorption experiments exist in the literature.1®:2%
We matched theoretical absorption cross sections to
both sets of experimental data. The parameters ob-
tained are listed in Table I1.2°

The cross section corresponding to the data of Ref. 25
is shown in Fig. 8. These data suggest the onset of the

300|—

mb

9 12 14

16
E, MeV

FiG. 8. y-absorption cross section of 1%Ho from Ref. 25. The
theoretical curve is computed with the second parameter set of
Table II.

24 A, Faessler, W. Greiner, and R. K. Sheline, Nucl. Phys. 70,
33 (1965).

25 R, L. Bramblett, J. T. Caldwell, G. F. Auchampaugh, and
S. C. Fultz, Phys. Rev. 129, 2723 (1963).



1120 ARENHOVEL, DANOS,
10 T T T 1
} 165
08— I Ho o
= |
2 I
5 06— i —
2 1
2 04— | —
o
= |
Q |
02— ll‘ | —
|
|
1 , I‘A ll I -
10 12 14 16 E,Mev I8
I\JLA AJLA I\/A)\A A/I’\\A A/I!% N
Qo OO0 F YT ITTIRTIL O
S8 38 33325538338 ©
Yo ¢ TITTTITIIIOND o
gg ) é Gae ase i e oy :~
T 7T i8e33a3iias o

FiG. 9. Level scheme and dipole strengths of the giant
dipole resonance states of 1%Ho.

E2 giant resonance at about 21 MeV.%26 The cross
section corresponding to the data of Ref. 19 is not
shown separately, since it is practically indistinguishable
from Fig. 1.

The spectrum and the strengths of the dipole states
which are computed with the first parameter set of
Table II are shown in Fig. 9. The spectrum now is
considerably richer. However, the dipole-strength
distribution has remained practically unchanged com-
pared to the even-even case. Thus, summing the
strengths of the different main peaks, we have the
distribution 86:51:20:79 for %Ho as compared to
86:58:17:80 for *®Er. This is a quantitative test for
the assumption that the odd particle has no influence
on the distribution of the dipole strengths. However,
the dipole strength is split up into several’components
lying at exceedingly close energies.

The different contributions to the scattering cross
section are shown in Figs. 10-13. Because of the finite

8 10 2 14 13 18 20 22 24
E, MeV

Fic. 10. Calculated elastic and inelastic scattering cross sections
for scattering into the ground-state band of 165Ho.

26 R. Ligensa and W. Greiner, Nucl. Phys. A92, 673 (1967).
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ground-state spin, the elastic scattering now has both
scalar tensor contributions. The scalar contribution is
indicated separately by the dashed line in Fig. 10. Now
two rotational Raman lines of the ground-state band
can be reached. They are also shown in Fig. 10. Figure
11 shows the Raman scattering into the states of the
v bands. In the lower v band (K=3%) five rotational
states can be reached. The corresponding scattering
cross sections are plotted except for the transition into
the state I=11/2, K=%, which has too small an in-
tensity to be plotted. Because of the dipole selection
rules only the band head of the K=11/2 v band can
be reached. The total scattering into the y bands
corresponds to the scattering into the y-band head in
even-even nuclei as discussed in detail above.

The Raman scattering into the 8 band and the
higher y band are shown in Figs. 12 and 13. The total
quasi-elastic scattering cross section is shown in Fig. 14,
together with the available experimental data.?':%”

T T T T T T
12— 1,K —
e w2 LT
—
N
o 8 n
§
Q
l:‘) H— —
o
[
‘e
_2aq— .
3]0:
<
O - ol
10 12 [ 8 20 22

4 16
E, Mev

Fi6. 11. Calculated inelastic scattering cross sections
for scattering into the two v bands of 1$5Ho.

1 T T L T i

8 10 12 [ 18 20 22

4 16
£, MeV

Fic. 12. Calculated inelastic scattering cross sections
for scattering into the 8 band of %5Ho.

2 P. A. Tipler, P. Axel, N. Stein, and D. C. Sutton, Phys.
Rev. 129, 2096 (1963).




157

The quasi-elastic scattering cross section computed
with the parameters obtained from the fit of the
absorption cross section to the Fuller-Hayward data!®®
is shown in Fig. 15. Both sets of parameters evidently
give reasonable agreement with the scattering data.
However, considering the total mass of data together,
the Fuller-Hayward data give a more consistent over-all
picture. Firstly, the parameter E, is more in line with
the value expected from the low-energy spectrum (see
above). The same holds for the deformation parameter
B, which in this region of atomic number is around 0.3
instead of 0.24. Finally, the agreement with the scatter-
ing data of the two theoretical curves seem to favor
somewhat the Fuller-Hayward parameters. We believe
that two systematic effects are responsible for the
differences between the betatron data'® and the positron-
annihilation data.?’ First, it seems that the resolution
of the betatron experiment is higher. This shows up
the difference in the values Ty, viz., 2.1 and 2.3 MeV.
Second, the neutron multiplicity corrections seem to
have been overestimated by the Livermore group. All

I T T T T T T

772 He

9/2

| m;\ |

8 10 12 14 [ 18 20 22 24
E, MeV

F1c. 13. Calculated inelastic scattering cross sections
for scattering into the higher v band of 1%Ho.

E:S’). » [16%em? /%]

ol | I I ] | |

0 12 14 ]
E, MeVv

Fic. 14. Total quasi-elastic scattering cross section of 1%Ho
from Ref. 27 (open circles) and Ref. 21 (closed circles multiplied
by 7/9). The theoretical curve is computed with the second set
of parameters of Table II.
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Fic. 15. Total quasi-elastic scattering cross section of $5Ho
computed with the first set of parameters of Table II, except
«=0.16; experimental points as in Fig. 14.

these discrepancies lie within the stated systematic
uncertainties of the experiments. Each of our stated
reasons by itself would not be sufficient to favor one
set of data over the other. However, taken together,
we believe that they justify our conclusion.

Terbium

Measurements on ®*Tb have been performed by
various groups, three of which were available to us.28-%
The obtained resonance parameters are given in
Table III.

E, is in good agreement with those of neighboring
nuclei. However, the deformation parameter 3, is in
both cases smaller than that obtained from Coulomb
excitation.

Both sets of parameters give reasonable fits, as
Figs. 16 and 17 show. The total scattering cross sections
are given in Figs. 18 and 19. The scattering data are
those of Ref. 21, except that they are multiplied by
0.823 and shifted in energy in the plots of Figs. 18
and 19.

Tantalum

For ¥Ta we used the data of three groups,?5?%2 two
of which coincide within the experimental errors.25?

TasLe III. Resonance parameters of 1#Th.

Egr E, Eg Ey Ty
(keV) (MeV) (MeV) (MeV) (MeV) Bo 8

Ref.
11.6 1.0 1.5 12,00 25 024 16 0.17 30
116 10 1.5 1234 27 026 14 0.68 2829

28 E, G. Fuller and M. S. Weiss, Phys. Rev. 112, 560 (1958).

2 0. V. Bogdankevich, B. I. Goryachev, and V. A. Zapevalov,
Zh. Eksperim. i Teor. Fiz. 42, 1502 (1962) [ English transl.: Soviet
Phys.—JETP 15, 1044 (1962)].

3% R. L. Bramblett, J. T. Caldwell, R. R. Harvey, and S. C.
Fultz, Phys. Rev. 133, B869 (1964).
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F16. 16. y-absorption cross section of 1%*Th from Ref. 30. The
theoretical curve is computed with the first set of parameters
of Table III.

| .
o 2 14 16 18 20 22
E,MeV.

T1G. 17. y-absorption cross section of 1%Tb from Ref. 28] (circles,
multiplied by 1.07) and from Ref. 29 (dots). The theoretical curve
is computed with the second set of parameters of Table III.
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Fic. 18. Total quasi-elastic scattering cross section of 1%Th
from Ref. 21 (multiplied by 0.823; energy scale is shifted up by
0.6 MeV). The theoretical curve is computed with the first set
of parameters of Table II1I.

The absorption cross sections are shown in Figs. 20
and 21 and the fitting parameters are listed in Table IV,
The fitting parameters differ in the values for E, and
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TFic. 19. Total quasi-elastic scattering cross section of 1%Th
computed with the second set of parameters of Table III, except
a=0.175; experimental points as in Fig. 18.
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F16. 20. v-absorption cross section of 18T from Refs. 25 and 29.
(Data_from Ref. 29 is multiplied by 0.652.) The theoretical curve
is computed with the first set of parameters of Table IV.

300

200

14 16 8 20 2
E, Mev

T1G. 21. y-absorption cross section of 81 Ta from Ref. 28 (multi-
plied by 0.704). The theoretical curve is computed with the
second set of parameters of Table IV.

slightly for Eo. In this region one would expect E,~1.2
MeV, Bo=0.20-0.25 from neighboring nuclei. The
resulting total scattering cross sections in Figs. 22 and
23 are both in reasonable agreement with the experi-
mental data of Ref. 21.
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16
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F16. 22. Total quasi-elastic scattering cross section of 181Ta from
Ref. 21 (multiplied by 0.65; energy scale is shifted up by 1.0 MeV).
The theoretical curve is computed with the first set of parameters
of Table IV.

VI. SUMMARY

In this paper we have found good agreement be-
tween experimental data and theoretical predictions.
The obtained nuclear parameters were found to be
consistent with the values expected from low-energy
spectra. Also, the data on the damping parameters of
the giant resonance T, and 6 are consistent with
theoretical estimates.’®

However, there seems to be an indication that the

2£ﬁ|“ - [|o*‘cm’/sr]

8 10 12 4 18 18 20 22 24
E, Mev

Fic. 23. Total quasi-elastic scattering cross section of %Ta
computed with the second set of parameters of Table IV. Experi-
mental points as in Fig. 22 (energy scale is shifted up by 1.2 MeV).

TasLe IV. Resonance parameters for 181Ta.

Egr E, Eg Eq Ty

(keV) MeV) MeV) (MeV) (MeV) Bo 5 Ref.
15.1 0.6 1.4 12.55 23 019 1.8 0.03 2529
15.1 1.2 14 1235 23 021 18 0.12 28

“high-energy deformations” are slightly smaller than
the measured B¢’s from the low-energy spectrum, as
shown in Table V.3

TasLE V. The deformation parameter 8o of 15Th, 16Ho, 1%Er, 181Ta, and neighboring even-even nuclei from Coulomb excitation
(8o, cr) and from the giant-resonance splitting (8o,cr). The B(E2) values are taken from Ref. 31. Bo, cr is evaluated from

3Z A2yt I P 2
B(E2I; — If)=| —————Q@I;+1)12 >ﬂ0(1—|—0.36[30):| , r=12F.
4 i i
zZ A I~ I, B(E2;I;—1Ij) (e2107%8 cm?) Bo, cB Bo,ar (Ref.)
Gadolinium 64 158 ot 2+ 48 04 0.31
5.44-£0.25 0.32
Terbium 65 159 3+ s+ 2.81£0.08 0.32
3+ i+ 1.2740.13 0.29
1.45:£0.06 0.31
0.24 (30)
0.26 (28,29)
Dysprosium 66 160 o+ 2+ 4.46+0.30 0.28
Dysprosium 66 164 0+ 2+ 5.64-+0.25 0.31
Holmium 67 165 3 i 28 04 0.33
2.41+0.07 0.31
i~ 11/2- 0.63:0.04 0.31
0.6520.13 0.32
0.28 (19)
0.24 (25)
Erbium 68 166 0+ 2+ 6.4 0.6 0.32
0.29 19)
Hafnium 72 180 0+ 2+ 4.93-+0.35 0.26
4.3520.20 0.24
Tantalum 73 181 3+ §+ 1.9 403 0.24
2.17£0.17 0.26
I+ 11/2+ 0.590.05 0.26
0.48+0.08 0.24
0.19 (25,29)
: 0.21 (28)
Wolfram 74 182 0t 2+ 4.584-0.40

0
4.00=+-0.20 0.
4.2 0.5 0
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The deformation parameter By cr for odd-4 nuclei
which are deduced from Coulomb excitation data are
in good agreement with those of neighboring even-even
nuclei. This is expected from the collective property
of Bo. In all cases, Bo,cr taken from the giant resonance
is smaller than Bo,ce. More precise absorption and
scattering measurements are required to show whether
these indications are indeed true.

Some of these discrepancies may be associated with
the incompleteness of the employed model. First, of the
nuclear surface modes only the quadrupole mode has
been treated dynamically, and higher multipoles of the
nuclear deformation have been neglected. Even limiting
oneself to terms containing at most three amplitude
functions, evidently a large number of couplings with
the higher multipole modes are possible, e.g.,
bW1EDg®1t, where a®T is the creation operator for
surface octupole oscillations. Also, the higher static
deformations® can have an influence on the results.

Tke model also does not yet incorporate the low-
energy tails of the nonresonating high-energy absorption
mechanisms, viz., the direct photo-ionization processes
and the quasideuteron effect. The existence of these
effects is suggested by the photon-absorption experi-
ments of Ambler, Fuller, and Marshak® with aligned
nuclei. Unfortunately, the experiments with nonaligned
targets are not sufficiently accurate to show the
difference in the shape of various cross sections which

M
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would result from the presence of an additional scalar
component with a magnitude of about 159, indicated
by the experiments,® a magnitude consistent with
theoretical expectations about these nonresonating
processes.

The small irregularities on the rising side of the cross
section are very likely the effects of the individual
particle structure which in the Brown-Bolsterli model®
would give up all the dipole strengths to the collective
states. Such states, perhaps, can be described in the
collective model by spin-isospin waves first considered
by Wild.3

The modifications of the predictions which would
arise if the theory would be refined to take into account
these effects can be expected to be small. Within these
limitations, agreement between theory and experiment
is such that one has to conclude that the collective
model is valid to a very high degree for nuclei of the
deformed region.
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APPENDIX

We write Eq. (9) in the case of only electric-dipole
and -quadrupole radiation:

(A1)

Ryt = (- (Gt [ A @i [3-805400 10
Z2
+Can (]| / i Aryt(e) | m)n] f i A (¢) li>)— (—)pﬁmafﬁ%z - (A2)

The decomposition of R, into irreducible parts Rz s~ leads to

2L L L
Roui= 32 (=)wss(ar 1 P s (A3)
. L'=0 p M —M—p
with
Rew?=2 (-)M'(ZL’+1)1’2<L Eor )Rp "
» p M—p —M] "
L !
=Z (_)L+M'(2LI+1)1/2( ){Z (_)Ip—M/+I,.—M,.
) p M—p —M/1n
I, L I.,\; I, L I I, L I,\/I. L I
A(( X Jourt( X o]
—M; M'—p M,J\~M, p M, —M; p MJ\-M. M—p M,
Z2e?
Fan (-t (a9

8 J. Lindskog, T. Sundstrom, and P. Sparmann, in Alpha-Beta- and Gamma-Ray Speciroscopy, edited by K. Siegbahn (Interscience

Publishers, Inc., New York, 1965), Vol. IL.

% G. E. Brown and M. Bolsterli, Phys. Rev. Letters 3, 472 (1959).
4 W. Wild, Sitzber, Math.-Naturw. Kl. Bayer. Akad. Wiss. Muenchen 1955, 371 (1955).
# M. Danos, W. Greiner, and C. B. Kohr, Phys. Letters 12, 344 (1964).
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using the Wigner-Eckart theorem (14) for the photon-interaction matrix elements. The meaning of the €. is
given in (13). M’ is restricted to M’=M;— M The sum of three 3; symbols over p shortens to a 35 and a 67
symbol.

Z(—)zn—Mn-Mf(L Lo L )( I, L 1)( I L zi>
’ p M—p —M/\=M; M'—p MJ\=M. p M,

=(_)L,(L' Iy I,-){L’ I Ii}’

M —-M; M/, L L
> (—)Iﬂ—M,,—M'<L L r )< I; L I, )( 1, L Ii)
! p M—p —M/\=M; p M/\=M, M'—p M;

oI, LI I, I
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Inserting (AS5) and (A6) in (A4), we get
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Therefore we get from (A1), (A3), and (A7)
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This is Eq. (11) with the polarizabilities (12).



