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The rotatioil-vibration niodel arid the hydrodynamic dipole-oscillation model are unified. A couplirig 
between the dipole oscillatioiis and the quadrupole vibrations is introduced in the adiabatic approximation. 
The dipole oscillatioiis act as a "driving force" for the quadrupole vibrations arid stal~ilize the intrinsic iiu- 
cleus in a nonaxially syrninetric equilibriurli shape. The higher dipole resonance splits into two peaks sepa- 
rated by about 1.5-2 MeV. On top oi tlie several giant resonarices occur bands due to rotations aiid vibrations 
of tlie intrinsic nucleus. The dipole operator is establishecl in terms of tlie collective coordinates and the 
T-absorption Cross sectioi~ is clerived. For the rnost important 1- levels the relative dipole excitation is esti- 
mated. I t  is found that  sonie of the dipole strength of the higlier giant resoriance states is shared witli tliose 
states in which one surface vibratiori quantuni is excited iii addition to tlie giant resonance. 

I. INTRODUCTION 

I T has been emphasized by Faessler and Greiner' that 
the anharmonicity of the nuclear surface vibrations 

implies in a certain sense a triaxiality of the nucleus. 
I n  this paper we show that this triaxiality manifests 
itself in the photonuclear giant resonance. The de- 
generacy of the upper peak, which in the static nlodeI2j3 
is due to the equality of the two minor axes, disappears. 
Thus, in a dynamic treatment, there appear three dipole 
peaks which, however, overlap due to the danlping of 
the giant resonance. In  the remainder of the Intro- 
duction we first give some background material, and 
then we describe the contents of this paper. 

The collective model of surfacc vibrations and ro- 
tations has been spectacularly successfiil in explaining 
the nuclear low-energy spectr11rn.~-"iinilarly, the 

* Research supported in part by the Gerinaii Buiidesministerium 
fur Wissenschaftliche Forschung arid the U. S. Office of hTaval 
Research. 

1 Permanent address: Physikalisches Institut der Universitat 
Freiburg/Brsg., Freiburg, Germany. 
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3 K. Okamoto, Phys. Rev. 110, 143 (1958). 
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%. S. Davydov and G. F. Filippov, Nucl. Phys. 8, 237 (1958). 
6 A. Faessler and \V. Greiner, 2. Physik 168, 425 (1962). 

collective snodel predictions of the most important 
electric dipole transitions have been quite well con- 
firmed by the experiments within the region of appli- 
cability, and significantly, the agreement has improved 
with the increase of details of the theorv and with the 
iniproveinent of the experimental a c c ~ r a c y . ~ , ~  I n  the 
present paper we intend to unify these two aspects of 
the collective inodel of the iliicleus, namely the unified 
rnodel and the dipole giant resonance model. I n  other 
words, we would like to develop the cornplete quantum- 
mechanical collective nlodel of the nucleus, treating all 
collective degrees of freedoin as quantum-mechanical 
variables. However, we consider in this paper only 
even-even nuclei. 147e should emphasize that our treat- 
nlent is phenomenological in that we do not attempt to 
derive the collective Hamiltonian from the nuclear 
many-body problen-i. Instead, we assume the model and 
determine its consequences in as consistent a wap as 
possible. By comparing our results with experiment one 
can then decide the lirnits of the validity of the n~odel. 

We just note for completeness that a considerable 
amount of worli on a "fundamental" level has been 

E. G. Fuller snd T, Iiayward, in ATzicle~ai Reactions,  edited by 
P. M. Endt and I'. B. Sinith (North-Holland Publishing Corupany, 
Anisterdam, 1962), Vol. 11. 

J. S. Levinger, Nuclear Plzoto-Disinteg~ation (Oxford Cni- 
versity Press, London, 1960). 
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done since the introductioil of the collective rnodels, 
nainely, by the Copenhagen School on the low-energy 
part9-l2 and by the Hole-Particle School on the high- 
energy part.13-I; For this work the reader is referred to 
the original Papers. 

SVe now suminarize the results of this paper. I n  Sec. 
I1 we write down the Hamiltonian. i.e.. we define the 

8 ! 

model. For the low-energy part we follo~v closely the 
work of Faessler and Greiner.6 We should therefore 
expect the treatmeiit to be applicable for nuclei heavier 
than, say, A=50. For lighter nuclei the assuinption of, 
e.g., an infinite nunlber of rotatioiial states is not well 
justified, and, in fact, the nurnber of such states can be 
quite limited.IG However, within the region of applica- 
bilitv, the rotation-vibration Dart of the Hamiltonian 
is f ~ &  determined except forLfour adjustable parame- 
ters which are taken from low-energy data: moment 
of inertia, deformation, frequencies of the ß and y 
vibrations; in ß vibrations the nuclear defornlation 
oscillates around the eaiiilibrium deformation leavincr " 
the nucleus axially symmetrical, while in y vibrations 
the deformation stays essentially constailt and the ratio 
of the lengths of the shorter axes of the nucleus oscillates 
about the equilibriurn value, which here is assumed to 
eqiial unity [see Eq. (4) below and footnote 261. For 
the giant resonance part, u7e take the hydrodynamic 
model. This again limits the region of applicability. 
The model is expected to be good for medium and heavy 
nuclei except for a small number of nuclei around doubly 
closed shells; the region of validity thus complenients 
the region where particle-hole calculations are feasible. 
This additional limitation is due to the requirement of 
high-level densities for the validity of the hydrodynamic 
model. I n  order for the idiosyncrasies of the different 
nuclei to average out and thus approach a classical 
situation, a sufficiently large number of roughly equally 
important configurations must participate in the dipole 
state. T h i ~  is evidently not true for light nuclei and it is 
not really true for Pb208 where, again, the number of 
important configurations17 is only about 10. 

The position of the resonance energies depends in the 
hydrodynamic model on one adjustable parameter 
which, however, is fixed by the integrated Cross sec- 

B. hlottelson and S. G. Xilsson, Kgl. Danske Videnskab. 
Selskab, Mat. Fys. Skrifter 1, No. 8 (1958). 

S. T. Belyaev, Kgl. Danske Videnskab. Selsltab, Mat. Fys. 
Medd. 31, No. 11 (1958). 

I' L. S. ~issl inge;  a n d ' ~ .  A. Sorenseii, Kgl. Danske Videnskab. 
Selskab, Mat. Fys. hledd. 32, 707 (1960). 

V. G. Solovev, Doltl. Acad. Naulr SSSR 139, 847 (1961) 
[English transl.: Soviet Phys.-Doklady 6, 707 (1962)l. 

'3 S. Fallieros, thesis, University of Maryland, Department of 
Physics, College Park, Maryland, 1959 (unpublished). 

l4 G. E. Bro~vn, L. Castillejo, and J. A. Evans, Nucl. Phys. 22, 
1 11961) 
- \ - -  --, 
'q. Gillet. thesis. Universitv of Paris. 1962 (un~ublishedi. 

l7 V. V. Balashov, V. G. Shevcheriko, and N. P. Yudiri, Zh. 
Eksperim. i Teor. Fiz. 11, 1929 (1961) [English transl. : Soviet 
Phys.-JETP 14, 1371 (1962)l. 

tion,'8J9 and which is due to the nuclear exchange 
forces. According to one's taste, one may or may not 
consider this parameter to be a free paraineter of the 
theory. This point has been more fully discussed in 
Ref. 19. 

The complete Hamiltonian contains, in addition to 
the terms describing the rotations, vibrations and dipole 
oscillations, interaction terms between all these degrees 
of freedom. We limit ourselves to the linear approxi- 
matiorl in which the different amplitudes are considered 
to be sinall compared tvith the appropriate "unit 
amplitudes" and we treat some of the interaction terms 
as perturbations since they contain products of the 
amplitudes and thus are smaller than the main 
terms. 

Our treatment goes beyond the treatment of this 
problem within classical mechanics by A r a u j ~ . ~ ~  He  
does not discuss the coupling between the different 
inodes. His treatinent was, however, more general in 
that he considered also the nuclear compressibility. We 
neglect this nuclear property and as a result lose the 
states corresponding to compression waves (ordinary 
sound). SVe feel justified in doing so because the com- 
pressibility of nuclear matter seems to be relatively 
small and the sound-wave states would thus lie a t  a 
niuch higher energy than the dipole states. 

We include formally a term in the Hamiltonian in 
order to describe the dainping of the giant resonance. 
It is supposed to lead to off-diagonal matrix elements 
connecting the dipole states with other states which 
do not have a dipole moment. We assume that this term 
can be treated by the Wigner-Weisskopf p r ~ c e d u r e . ~ ~  
We do so in order to have a Hermitian Hamiltonian. 
An alternative procedure would be to assuine that the 
energy of the dipole states is complex. We prefer tlie 
first of these alternatives because of mathematical 
simplici ty. 

I n  Sec. I11 we discuss the spectrum of the Hamil- 
tonian. The low-energy part of the spectrum re~nains 
unchanged from previous t rea t r i~ents .~ ,~  I n  the high- 
energy part in essence two new features arise. 

First, the higher peak of the giant resonance is 
connected with angular inomentum f 1 along the 
intrinsic axis of the nucleus. The coupling between the 
dipole mode and the surface leads to y vibrations of the 
nuclear shape which in turn causes a split of this higher 
giant resonance. This can be explained as follows: I t  
has been shown that the 7 vibrations are anharmonic. 
As a consequence, the probability distribution of y has 
nlaxima a t  yZO and i t  vanishes for y=O, even in the 
ground state. Therefore, the nucleus is in effect "asyn- 
metric," though not, however, in the sense of Davydov 

l8  W. itrild, Sitzungsberichte Bairische Akademie der Wis- 
senschaften Katurw. Klasse p. 371, Munchen, 1955 (unpublished). 

'@ M. Danos, Pliotonuclear Physics, Lectures at  the University 
of Maryland, 1961, Technical Report No. 221 (unpublished). 

J. hil. Araujo, Nuovo Cimento 12, 780 (1954). 
21 V. Weisskopf and E.  Wigner, Z. Physik 63, 54 (1930). 
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et a1.,5,22'23 who assurne a periiianently defonned triaxial 
shape. Upoii excitation of a "transverse" dipole mode 
the nuclear s h a ~ e  becomes stabilized in its axiallv 
asymmetric form. This way the degeneracy of the 
upper dipole resonance is removed and two resonances 
will appiar corresponding to the two axes perpendicular 
to the '(sym~netry" axis. We would just like to rnention 
that this degeneracy remains intact if one neglects the 
anhaimonicity of the y vibrations and treats them as 
being harmonic. 

Second, each dipole state forms the basis of vibra- 
tional and rotational bands (Fig. 1). The dipole states 
thus behave in a tvay completely analogous to that of 
the odd-particle states in the low-energy regi0n,2~ a not 
very surprising result. 

In  Sec. IV nre calculate the dipole operator and 
derive expressions for the dipole transition probabilities. 
We find the rather surprising result that, in addition 
to the dipole states, also those states have an appreciable 
photon absorption Cross section where a vibrational 
state is excited in addition to the transverse d i ~ o l e  
states. The transverse dipole states thus each acquire 
a "satellite" a t  an energy about 0.8 MeV higher (Fig. 
2). Offhand, one would expect that transitions to these 

ENERGY 

FIG. 1. Schematical level diagram of 
the lowest giant resoriance bands. = 0 
indicates the excitation of the 70- 
mode; U =  f 1 indicates the lower and 
U = -1 indicates the higher minimum 
of V(enl), Fig. 6. There are still further 
bands with K=2, 3 in this energy 
region. 

satellite states should be inhibited by a selection rule 
analogous to the K selection rule in the low-energy 
spectrum, since in these states nlore than one degree of 
freedom makes a transition and the dipole operator is a 
one-body operator. The breakdonn of this selection 
rule is again associated with the anharmonicity of the 
y vibratioiis and their strong coupling to the "trans- 
verse" dipole modes. 

11. THE COUPLING OB ROTATIONS, QUADRUPOLE 
VIBRATIONS, AND DIPOLE OSCILLATIONS 

A. The Rotation-Quadrupole Vibration 

We describe the excited states of a deformed nucleus 
in the extended Bohr-Mottelson model, where the 
assumption is made that the nucleus in its ground state 
consists of a rotating intrinsic nucleus with an axially 
symmetric equilibrium shape which can perform ao and 
az vibrations (see below) about this eq~il ibriurn.~ With 
this model the low-energy collective spectra can be 
very well understood. The Parameters entering this 
description are deterinined fronl the low-energy ex- 
citations. I n  addition, we now have the "iriternal" 
degree of freedonl of giant resonance dipole oscillations, 
i.e., vibrations of the proton and neutron fluids against 
each other. Let the angular inonientum of the dipole 
oscillations be j and that of the rotations be R. Then 
the total angular momentum is 

and we have, therefore, for the rotational e n e r g ~ ~ ~  T 

FIG. 2. Schematic picture of the dipole strength distribution. h2 
The higher resonance of the static model (dashed line) splits into T=C --- 
two lines which each has a weak satellite a t  a somewhat higher 

(Mv-jv)' ; 
energy. The total energy spread of tliese lines is about 2 MeV. 2Jv(a,> 
All the iiidicated lines are broadened by "friction" to a midth of B 

(2) 
2-3 MeV and thus overlap. 

J1,2=-(8a22+12aoQ8(6)112azao), JQ= 8Baz2, 
22A. S. Davydov and V. S. Kostovsky, Nucl. Phys. 12, 58 4 

(1959). 
23 A. S. Davydov and A. A. Chaban, Nucl. Phys. 20, 499 (1960). 25 A. Kerrna~i, in Nl~tleal Reactions I ,  edited by P. M. Eiidt 
24 S. G. Nilsson, Kgl. Danske Videnskab. Selskah, Mat Fys. and M. Demeur (North-Hollaiid Publishing Company, 

Medd. 29, No. 16 (1955). Amsterdam, 1959). 
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where J,(a,) are the moments of inertia and a, are the 
Parameters specifying the intrinsic shape given by 

The energy, Eq. (2), contains the energy of the pure 
rotations, of the rotation-vibration interaction and of 
the Coriolis coupling (RPC teims). We introduce the 
quadrupole vibrations by writingZ6 

where ßo and ß2 denote the eqiiilibrium values and the 
primed quantities are the vibrational coordinates, 
mhich are assumed to be small compared with the 
equilibrium deformation. The quadrupole-vibrational 
Hamiltonian is1*6 

where B is the Parameter occurring in the moments of 
inertia in Eq. (2) and Co, C2 characterize the vibrational 
energies. 

Expanding Eq. (2) about the equilibrium values, 
Eq. (4), and using Eq. (S), me obtain for the rotation- 
vibration Hamiltonian 

T+ Hvib= Hrot+Hvib+Hvib rot+Hrot dip 3 (6) 
with 

One Sees in this equation that the a2 vibrations cannot 
be harmonic. The name one gives the t e m s  of the 
Hamiltonian which depend on more than one dynamical 
variable is quite arbitrary. We have written the last 
term of Eq. ( 7 )  together with the rotational part of the 
Hamiltonian, and not with the term Nvib r o t ,  because 
this term cannot be treated as a perturbationG since 
the range of azl includes the value Zero. We are going 
to use the adiabatic approximation with the justifi- 
cation that both the vibrations anrl the dipole oscil- 
lations have much higher energy than the rotations. 
Then the last terrn of Eq. (7) will contribute a 
"potential" term to Eq. (5) making the vibrational 
Hamiltonian anharmonic. For ( M a -  ja)"O this term 
has simply the character of a centrifugal potential. 
The (- 1) in this teml has, however, a different origin; 
i t  cornes frorn the phase space of the az vibratior~s.~ I t  
appears via the Jacobian whcn one chooses the volume 
element to be d~=da,da2dfl with dQ the differential of 

2Wsually the intrinsic paralneters are give~i hy ß and y ~vhicli 
are connected x i t h  the a, hy ao=ß cosy, a2=3ß sin-y. Therefore, 
ao vibrations are essentially ß vibrations and a2' vibrations are y 
vibrations. 

the Euler angles. Further, 

Here M+= MlAiMz, j+= jlf ijz. Equation (8) couples 
the vibrations with the rotations and Eq. (9) couples 
the rotations with the dipole oscillation (Coriolis term). 

B. The Dipole-Oscillation Hamiltonian 

We construct the Hamiltonian for the dipole oscil- 
lations in the adiabatic approximation, i.e., with the 
assumption that the quadrupole vibrations (-1 MeV) 
and the rotations (-100 keV) are slow compared with 
the giant dipole oscillations (15-20 MeV). Thus, 15-20 
dipole oscillations occur during one quadrupole vibra- 
tion. Therefore, the dipole oscillations ''see" the nuclear 
shape fixed a t  each moinent, so to say. Thus, we have 
a t  every moment a triaxial ilucleus. In such an ellipsoid 
three eigenvibrations exist along the three axes which 
are 

\kl= jl(K1r) sin0 cosq , 

with the wave n u m b e r ~ ~ . ~ ~  

where Ri are the radii of the three axes given according 
to Eq. (3) by 

Inserting Eq. (12) into Eq. ( l l ) ,  using Eq. (4) and 
expanding in the small quantities U,', we get 

kl,z= ki,z(0)[1+GaaUIf GZUZ'], 

k3= k3(0)[1+Fao'], (13) 

27 E. V. Inopin, Zh. Eksperim. i Teor. Fiz. 38, 992 (1960) 
[English transl.: Soviet Phys.-JETP 11, 714 (1960)l. 
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where 

The frequencies of the three eigenvibrations, Eq. (10), 
are given in the hydrodynamical model by 

w Y = ~ k „  v = 1 , 2 , 3 ,  
where 

(15) 

U" (~K/M*)  (lITZ/Az) . (16) 

K is the symmetry-energy parameter, M* is the effective 
nucleon mass18Jg; iV, Z, and A the nuinber of ileutrons, 
Protons, and nucleons, respectively. Inserting Eq. (13) 
into Eq. (15) we get 

wi,z=wi,z(O)[l+Goao'*Gza~], 

w3=ws(O)Cl+Faoll, 
where 

(17) 

wi,z(O)~wl~w-i=uki,z(0), 

Assuming harmonic eiant d i ~ o l e  oscillations and intro- " 
ducing the appropriate annihilation and creation Oper- 
ators b„ b,+ for the modes, Eq. (10), we can write 

This ansatz contains the pure dipole oscillations as well 
as their coupling to quadrupole vibrations via the terms 
with a,' in Eq. (17). We have in Eq. (19) no zero-point 
dipole energy. The states b,+ 0 )  which correspond to 
the '?I'k of Eq. (10) have the disadvantage that they are, 
according to Eq. (10), a superposition of states with 
different angular inonienta alone the iiitrinsic axis. We " U 

therefore introduce new states with definite coin- 
ponents of angular momenturn along the intrinsic axis 
by the canonical transformation 

which we shall denote by V „  are characterized by the 
angular moinentum component V alorig the intrinsic 
axis. Since they describe the annihilation and creation 
of states with spin 1 the ß„ P,+ fulfill the boson com- 
mutation rules. Introducing Eq. (20) into Eq. (19) we 
find 

Equation (21) shows explicitly the mixing of the az 
vibrations with the excitations Pi+, @-I+. The last tenli 
of Eq. (21a) vanishes since we consider the equilibrium 
of the intrinsic nucleus to be axially sjmmetric, and 
therefore fiwl=fiwz [see Eq. (B)]. 

We are now able to write down the total Hamiltonian. 
To the above discussed terins we add a terin H1, which 
includes all terins omitted in the discussion so far. This 
is supposed to contain all other nuclear degrees of 
freedom, e.g., the single-particle coordinates. Formally, 
it is just H1= H„cl„,-H„ll„„,„ the difference between 
the actual nuclear Hamiltonian, HmCi„„ and the model 
Hamiltonia~i, I t  thus describes the non- 
stationary character of the higher energy states. \Ve 
shall consider its influence later (Sec. IV) together with 
the term Hrad which describes the interaction with the 
radiation field. Thus, we have for the total Hamiltonian 

111. SOLUTIONS OF THE HAMILTONIAN-THE 
ENERGY SPECTRUM 

\Ve are interestecl in the basic structure of the energy 
spectruni of Eq. (22); therefore the rotation-vibration 
interaction can be neglected because for low spins i t  is 
one or two orders of magnitude smaller than H„,. One 
nlight expect that even the rotational energy can be 
neglected compared with quadrupole vibrations and 
dipole oscillatioiis. This, however, is not true for states 
with Kf 0, where K is the coniponent of the total 
angular niomenturn along the intriilsic axis. In  such 
states the third rnoinent of inertia may contain an 
energy which is comparable with that of the quadrupole 
vibrations. Furthermore, we would lose with the ro- 
tations the orientation of the nucleus in space aild 
effects such as nuclear tensor p o l a r i ~ a b i l i t y ~ ~ . ~  could 
not be discussed consistently. 

\Ve neglect the Coriolis terins; this is reasoilable for 
low spins. They inay be of some inlportance for higher 
spins. The terms H1 and Hrnd are treated later as a 
perturbation (see Sec. IV). We are then left with the 

One can easily see f ro~n Eq. (10) that the states ß,+(0), E. G. Fuller and E. Hayward, Nucl. Phys. 30, 613 (1962). 
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FIG. 4. Potential energy for the ei vibrations, transverse dipole 
modes. (A) Orthogoilal coordinate system: For even K>2, Erl. 
(36b) and for odd K nithout the linear term in Eq. (36a). The 
minima of the potential lie symmetrically at  6 and -6. (B) Non- 
orthogoiial coordiriate system: For odd K a i t h  the linear terni in 
Eq. (36a). The mi~iima of the potential are displaced to the left 
to the places ä' and -6". They do not lie symmetrically with 
respect to a2=0. The situation shown corresponds to the excitation 
of the dipole nlode vl-q-i. For the excitation of the mode vl+v-l 
the minima mould shift to the right and iie at  6" and -6'. Both 
dipole modes thus split in the Same way, which is a consequence 
of the symmetry hetween the X' and y' directions in the intrinsic 
system. 

The uK„'(ao') satisfy 

Both lead to harmonic vibrations with a frequency 
w2= Co/B around the new equilibriiirn value of ao. 

Awo 
aoo=ßo--F-P~+ßo~, 

Co 

Here we have expressed the quantities ßo, in terms of 
the parameters Ep,  ßa, and ~=h"lJo=h~/3Bß0~ which 
are known from the low-energy spectra. The energies 
are ~ i v e n  bv 

where h(C0/B)U2=E6 and the wave functions are 
Hermite polynomials H „  about the new equilibrium 
value. The constant terms in Eq. (33) give the energy 
change due to the change of the shape of the intrinsic 
nucleus. Explicitly the wave functions are 

The p ~ , , , „ ' ( a ~ )  satisfy the Eqs. (35a) for odd K 
and (35b) for even R. 

Renieinbering from Eq. (14) that G2 is negative, the 
effective potential of the az' vibrations, is shown in 
Fig. 4. I t  ic Seen that two stable minima occur in the 
potential energy : 

h2(K2- 1) 
V~,o(a2') = +C;?azt2 , 

16Bai2 
K =  2, 4, 6, . . . (36b) 

vvhich are a t  the positions 
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for KZO 

E,=h(C2/B)1'Gs the y-vibration energy. 
Equation (37a) represents the first two terms of a 

perturbation expansion which considers the shift of 
the poteiitial minirnuin due to the linear term (see 
Fig. 4) to be small. Indeed, tlie second teri i~ of Eq. 
(37a) is small compared with the first term arid is of 
the order $ f l ( h ~ ~ G ~ / E , )  ( ~ / E , ) ~ i ~ ß ~ -  $. NO displaced 
equilibrium value exists for K=O. Instead we have a 
situation as sliown in Fig. 5. The frequericies about the 
new equilibrium values, Eq. (371, are given by tlie 
curvature of the potential energy, Eq. (361, a t  these 
points : 

2Cz(0)=8C2, for K Z O ,  K = 2 , 4 , 6 ,  . . . ,  (38b) 

so we see that both rnininla in Fig. 4 lead to approxi- 
mately the sanie vibrational energies given by 

However, tlie ground states have different energies. 
We can solve Eq. (35a) approximately. Since we 

saw that the two ininima in the potential energy occur 
a t  tlie same ä12~,+1 and the linear ternzs do not iilfluence 
the curvature, Eq. (38), we cail expect that the wave 
functions are not very sensitive to these linear teriils, 

FIG. 5. Potential energy for the n2 vibrations, 7" dipole mode, 
and K=Q.  The nucleus retains its axially syinmetric ahape. 

FIG. 6. The same as Fig. 4(B), redrawn in an orthogonal co- 
ordinate System. The wave function for the az vihrations is indi- 
cated: for V =  -1, full line; for U =  f l ,  dashed linc. For the mode 
qi-v-i left and right must be interchanged. o = + l  indicates that 
the wave function is nonvariishing on the side of the lower po- 
tential minimum. 

which influence only the energies: Orie minimuni is 
shifted up, the other one down. The change of energies 
is given approximately by replacing the uzt in the linear 
term by the appropriate equilibrium values, Eq. (37a). 
Theil the equations to be solved are 

and Eq. (33b) is not changed, of Course. The solutions 
of both Eqs. (40) and (35b) areljG 

X a2tl~flc?h~z'21f?1(-m > 1 K + 3 .  2 ,  kai2) 
where 

, (41) 

l ~ =  -++$(l+K2)'i2, for odd K 

= -++@, for even K 

4BCz 
~2,- and ~ 2 ' 2 0 .  

h2 

The f~inction y in (-21) is normalized to unity in the 
range O<az1< m. I t  ii consistent to have <p finite only 
on one side, i.e., either for az' positive or for az' negative, 
since the potential barrier 1 l a i 2  is irnpenetrable. How- 
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ever, the state where, e.g., (E= + 1 and y is finite for u=O for even I< and U =  it 1 for odd K .  (Here U char- 
azl>O is degenerate with the state, where d= -1 and acterizes the higher or lower rniriirriiim of Fig. 4.) For 
<p is finite for azf<O (See Fig. 6). Therefore, one must odd Ii the two rnodes (ql&s-l) are degenerate. 
take a suitable linear superposition of these two 
possibilities. This point will be discussed below, Sec. 
IIIA. \!Te introduce a new quanturn number U to labe1 A. The Complete Level Scheme 

these linear combinations. Then the energies are given „, disciiss the complete level scheme of the 
by1s6 Hamiltonian Eq. (23). For this purpose we write down 

(2nz+l& ;)Ey+u.4,,, gz2=0, 1, 2, . . . . (42) the total wave functions and energies. 

U = &  1 ,  I = K ,  K+1, K+2, . . . ,  K = l ,  3, 5 ,  . . .  and a i>O.  (43) 

I= 1, 3, 5, . . . , for K=O, 

=K,  K+1, K+2, . . . , for K P O .  (45) 
tz2 

E K , ~ ~ , ~ = O I =  ( I ( I+ l ) -  KZ)-+~WO- #Po'E+ (no++)Es+ (2nz+ ZK+;)E~. 
2Jo  

(46) 

We have chosen the linear combination in Eq. (43) 
and Eq. (45) in such a way that the following additional 
symmetry is fulfilled: A rotation through $T around 
the z' axis (see Fig. 3) and a simultaneous replacement 
of az by -az [see Eq. (12)] should leave the wave 
function invariant.2"ii~ce the rnentioned rotation 
changes 

one checks that Eq. (43) and Eq. (45) fulfill this 
symmetry if we choose 

quadrupole vibrational states with one and more 
quadrupole quanta excited on top of the dipole quanta. 

The transition energies are found by subtracting frorn 
the energies (44) and (46) the ground-state energy which 
can be obtained by replacing in (46) Rwo by Zero and 
inserting I=K=no=nz=O;  ZK= -+. 

I n  this discussion we have so far neglected the 
rotation-vibration iiiteraction and the Coriolis terrii. 
The first one is very sinall and it is to be expected to 
change things by  negligible amouiits (except for very 
high spins). The second one is of the order of the 
rotational energy. At high spins the Coriolis force is 
therefore expected to nlix several bands (qo; ql1q-1). 
However, e;en for high spins the effect of this rnixing 

The energy spectruili in the giant resOnance regiOn cause an energy &ift of the bands of only few 
is shown in Fig. 1. ?i7e now coilsider first the 1- levels. hundred keV. 
Going up in energy the first state is tlie pure giailt 
resonance no alongthe major axis of the ell~psoid.-~he IV. THE DIPOLE OPERATOR AND THE 
next levels are this same resonance with ß and 7 vibra- ABSORPTION CROSS SECTION 
tions on top of i t  (the starting levels of the first three 
bands in Fig. 1). Some MeV above these levels follow 

A. The Dipole Operator 

the giant resonances 71 and q-l where the neutron- Oiir prograrn is non7 to calculate the dipole operator 
Proton fluid oscillates along the rninor axis. Two states in terms of the creation and annihilatioii Operators P,+, 
of this type occur corresponding to the two new P, of dipole quanta and to establish its additional 
equilibrium shapes in Fig. 4. Above these levels come dependence on the shape of the intrinsic nucleus. We 
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need for this calculation, as we will see, the potential 
energy of the dipole oscillations. Siilce we assume 
harmonic dipole oscillations i t  must be of the form 

where t, characterizes the amplitude of dipole vibration 
connected with ßP 10). The proton distribution is given 
b Y 

(P*),= pP(0)(1+ t,Ppj1 (k,~) Y l J ,  (48) 

where F, is a normalization factor, p,(O) is the un- 
perturbed proton distribution. M7e calculate the energy 
constant C, in the hydrodynamical model 

where K is the symnletry energy parameter in the 
Bethe-\Veizsäcker semiempirical binding energy 
formula and where po is the unperturbed matter clis- 
tribution and the integration goes over the volume of 
the intrinsic niicleiis. We obtain with Eq. (48) ex- 
panding in the small Parameters a„ Eq. (4) : 

and 
T,= (5 / /4~)~ '~(1020 1 10) ( 1 ~ 2 0  1 lp) . 

So we get 

If one takes ao=4 and k,Ro=2.08 one estimates that 

The dipole operator in the intrinsic system is defined as 

Il'ith Eq. (48) u7e get after some calculations similar to 
those above 

where we have used Eq. (51) and introduced annihi- 
lation and creation operators of the dipole quanta by 
means of C;,= (hw,/2C,)112(ß,++ßp), and where w,(,u= 0, 
& 1) is given by Eq. (18). We have introduced further 

G (p) = - 3 (p cosp- sinp) - p2 sinp ; (54) 

where T ,  is given by Eq. (50). 
Equation (54) is again an expansion of the integral, 

Eq. (52), in terms of the surface pararneters. I t  is easy 
to check tliat the second term of Eq. (54) is of the order 
$ smaller tlian the first one. The norsnalization factor 
F, has clropped out in Eq. (53). This form of the 
intrinsic dipole operator is still not suitable for calcii- 
lations since it contains thc quadrupolc vibrational 
coordinates a, in a conlplicated form. Inserting the w, 
from Eq. (17) and Q, from Eq. (51) we obtain tinally 
af ter some expansions 

where 

and hw,(O) is given by Eq. (18). Terms linear in U$ do 
not contribute to transitions from the ground state. 

The expression Eq. (55) shows explicitly how the 
dipole operator depends iii lowest approximation on 
the quadrupole coordinates U,'. Since the J,  are pure 
coefficients of the order 1, one can already see that the 
contribution of the latter terms to the dipole Cross 
section are of the order & compared with that of the 
"pure" giant dipole operator. Equation (55) is the 
dipole operator in intrisiric coordinates. In tlie labora- 
tory system it is obtained by rotating it with the D$ 
matrices. 

D, = xv (e)B,. (57) 
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B. The y-Absorption Cross Section aged may by the ansatz 

The giant resonance is usually studied by y-absorp- 
tion experiments: A bremsstrahlung beam falls on the 
target and the photon absorption is measured. We treat 
the problern by assuming <hat a t  t=O an electromag- 
netic field of frequency W is swit~hed on, arid we deter- 
mine the behavior of the systern for tinles long com- 
pared with the lifetime of the excited levels. h-ow let 
II!, be the ground state and \kf the excited state. The 
ground state is stable; i.e., it  does not decay. The 
excited state, however, decays partly into the con- 
tinuunl aild mostly to other configurations which are 
not of the giant resonance type. Let us describe the 
total system by Eq. (22) 

where H O  is the rot-vib-dip Harniltonian which we have 
discussed so far. H1 shall describe the decay of the 
dipole levels, i.e., there will exist nonvanisliing ofl- 
diagonal matrix elernents of H1 which connect the 
dipole levels with other excited level~.~O Hrnd is the 
interaction with the electromagnetic field. 

where E is the electric field, D is the dipole operator, 
Eq. (57), and e the electron charge, and 

E = EEO sinwt . (60) 

If a„ af are the amplitudes of the states \k„ Pi and if 
II!, is a complete orthonormal set and eigenfunctions of 
HO, then we get in the usual manner 

I n  the first equation we have neglected the trarisitions 
from the ground state to other excited states, because 
they are "oft resoilance." By definitioii, the Hamiltonian 
H1 does not contain matrix elements to the ground 
state. Therefore, the sum in the second equation is 
restricted to vZ1. Tlris suin describes, so to say, the 
thernialization of tlle energy contained in the excited 
state qf. Followiag Wigner and W e i ~ s k o p f , ~ " ~ ~  we take 
thir energy dissipation into account in a certain aver- 

30 We assume in the seiise of the randoin-phase approximation 
that the interaction of the giant resonance levels due to H1 

averages out to Zero, 

zv (Q~,I~,Q~)(*~,IIIQO) P- - 0. 
E,-E, 

3' A similar procedurc was used by S. Flügge for the derivation 
of the Breit-mTigner-formula CS. Flügge, 2. Naturforsch. 1, 121 
(1946) ; 3a, 97 (1948)l. 

i.e., we assume that the different phases in the sum of 
Eq. (62) average IVe have a system of coupled 
equations where a„ af have to fulfill the initial 
conditions 

We can solve Eq. (63) by inserting for U, its initial 
value, Eq. (62) and we get 

The probability for observing the excited state \kf after 
a long tiine is given by 

The y-absorption cross section u(hw) is defined as the 
energy absorbed during the lifetinle .h/r of the excited 
state divided by the incoming energy flux per unit area 
arid second. 

1af(co)j2Efi 2~ 1 
U ( E )  = --P 1 (Hrad) f z 1 

(Eo2c/8?r) (iz/r)- ~i E O ~ C  

This forniula exhibits the resonance behavior of the 
cross section as a Breit-Wigner-type formula. I t  is 
derived, as we see, by a straightforward procedure. I t  
is interesting to discuss on this basis the autocorrelation 
edects of our s y s t e i i ~ . ~ ~  By this we mean the following: 
Since the rotational times for low spins are of the order 
h/100 keV and the decay time of the giant resonance is 
of the order h / r=h/2  MeV (which is our measuring 
time) we expect that the system "sees" the intrinsic 
nucleus. Indeed, we see from Eq. (67) that since r = 2  
MeV the resonance energy E/, can be shifted by 
arnounts AE<<F, i.e., we can neglect the rotational 
energies. If, however, the rotational energies become 
of the order of r or even larger, then we can detect 
these shifts according to Eq. (67). I n  this latter case 
me do not See the "intrinsic" nucleus biit the nucleus 
of the laboratory systeni. 

C. Estimates of the Absorption Cross Section 

The strength of the absorption cross section is given 
by the square of the dipole nlatrix elements. We do not 
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perform detailed calculations and coniparison with vibrations. These cross sectioiis are different only 
experiments here. Such calculations are to be published because the overlap integrals of the az' vibrational wave 
elsewhere. However, we would like to give an estimate functions differ. The vibrational function is given by 
of the relative strength of the most important levels; Eq. (41). 
i.e., essentially the excitation of the two giant modes The overlap integral leading froin the grouncl state to 
along the minor axis and the excitation of the first az' the excited states is 

Here exists the general f o r r n ~ l a ~ ~  (in which p is the arbitrary), 

I n  deriving the secoxid, more syrnmetrical expression above, use is made of the fact that nl is an integer.33 
Note that four of the above factorials are, with the abbreviation (U).= F (a+?z)/r (U), siniply 

In (69) we have ( ~ ( 1 ~ ~ - Z ~ , - p ) ) „ l ( l ~ , + $ ) „  as factor. 
Thus, we can write 

X3F~(-nl, -n2, $ ( ~ I < ~ + / K ~ +  p+3); l-nlf $(1Kz-~K1+p), 1-%2(1~1-1~?+$) ; 1) 9 (70) 

and (68) becomes For the ratio of the absorption Cross scction leading 
from the ground state to the lowest state of one of the 
bands (Fig. 6), on the one hand, and to the first az' 

<pooor (U,') ~ i , a , ~ ~ ' ( a 2 ' ) d a i  vibrational satellite on the other hand we find 

X [nz!l' (n2+11+$)]-"z. (68') 

3% L, J. Slater, ConfEuent Hypergeometric Fzhnctions (Cambridge 
University Press, Cambridge, 1960), p. 54, Eq. (3.7.4). 

33 W. N. Bailey, Genevalized Hypergeometric Series (Cambridge 
University Press, Csmbridge, 1935). The relevant equation in the 
notation used by Bailey (see p. 22) is r(oi12,?)r(a124)Fp(0; 4,5) 
= (- l)mr(oio26)r(~o~~)F~(5; 0,2). 

i.e., the absorption cross section to the pure "trans- 
verse" dipole state, i.e., that associatecl with an  ex- 
citation along thc short axis, is about 10 times stronger 
than that to the vibrational satellite of this state. The 
transitions to both "transverse" dipole states are of 




