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Abstract. According to the relativistic mean-field model, strong meson fields exist in normal
nuclei. Even stronger meson fields may be generated m highly compressed and excited hadronic
matter formed in relativistic heavy-ion collisions. The attractive interaction of baryons with
a scalar field resukts in a significant reduction of the energy gap in the Dirac spectrum.
The interaction with a vector field generated by baryon-rich medium is repulsive for baryons
and attractive for antibaryons. At high enough densities, the minimal energy of antibaryons
may become lower then —mp, where mp is the baryon mass in vacuum. Such a system
becomes unstable with respect to the spontaneous creation of baryon-antibaryon pairs. This
phenomenon is estimated to occur at densities exceeding the normal nuclear density by factor 3—
7. depending on the coupling constants. Spontaneous as well as induced pair creation will modify
drastically both the antiproton and antihyperon production in relativistic hieavy-ion collision. This
could have a sericus impact on recent proposal to use enhanced antihyperon production as an
unambiguous signal for the quark—ghuon plasma.

1. Introduction

In recent years the relativistic quantum hadrodynamics (QHD) model and, in particular,
relativistic mean-field model (RMFM) have been widely used for the description of nuclear
matter, finite nuclei, and ayclear dynamics (for reviews see [1,2]). This model is based
on the effective Lagrangian of baryons interacting with mean meson fields, At present the
limits of applicability of this model, especially far from the nuclear ground state, are unclear.
The mean-field approximation should work better at higher densities, when many particles
are present in spatial regions characterized by the strong interaction scale of the order of
1 fm. But at such densities one can expect correctlions due to the finite size and quark-gluon
structure of hadrons. The lattice gauge models based on the QCD Lagrangian predict that
at an energy density of the order of a few GeV fm™ hadronic matter undergoes a phase
transition from the baryon-meson phase to the quark—gluon plasma, Unfortunately, the
confinement properties of QCD are not understood yet and a quantitaive description of strong
interactions in terms of quarks and gluons is rather uncertain far from the asymptotically
free region. The most fruitful way to deal with this ‘non-perturbative’ situation, in our
opinion, would be to approach the problem from both sides, i.e. to develop the QUD- and
QCD-motivated models and to compare their predictions with the experimental data. One
might expect that in the transition region these models would describe the same observable
phenomena, but just in different languages.

* This work has been funded in part by the Bundesministerium fiir Forschung und Technologie.
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For instance, Theis er af [3] demonstrated that the RMFM exhibits a sudden change in
thermodynamical bchaviour around T. = 200 MeV at zero baryon density, in analogy to
quark—gluon deconfinement in lattice QCD. In addition, the RMPFM predicts a strong reduction
of baryon masses. This is similar to the chiral symmetry restoration observed in lattice
QCD. High abundance of low-mass baryon—-antibaryon pairs at temperatures ~ 1. may
result in a large enhancement of antiproton and antihyperon yields in relativistic heavy-ion
collision. This purely hadronic scenario can explain the recent observation of enhanced
A, T production in relativistic heavy-ion collision [4,5]. A similar enhancement had been
proposed earlier [6] as a potential candidate for a quask—gluon plasma signal. Let us keep
this in mind when we use below the RMFM to describe phenomena which may occur far
from the nuclear ground state.

Until recently only positive energy baryon states (valence baryons) were considered
explicitly in applications of the RMFM. But probably the most interesting features of the
RMFM are connected with the existence of negative energy baryon states (Dirac sea). Below
it is demonstrated that the RMFM predicts a substantial reduction of the baryon effective
masses and strongly attractive potentials for antibaryons already at normal nuclear density.
This effects become even more pronounced at the higher baryon densities which may be
reached in the course of intermediate and high-energy heavy-ion collisions. A strong space
and time variation of the background meson fields, as well as high thermal excitation, may
lead in this case to the considerable enhancement of the baryon-antibaryon pair production,
as compared with predictions of simple models disregarding in-medium effects. These
phenomena were first considered in our earlier publications [8-10]. In the present paper we
investigate the collective mechanism of antibaryon production in more details and discuss
the possible observable effects in relativistic heavy-ion collisions.

The paper is organized as follows. In section 2 we briefly present the model Lagrangian
and corresponding equations of motion in the mean-feld approximation. In section 3
we discuss the single-particle energies of baryons and antibaryons in mean meson fields
generated by the dense baryon-rich medium. In particuiar, the strongly attractive potentials
acting an the antibaryons are emphasized. In section 4 we formulate the critical conditions
for spontaneous baryon-antibaryon pair creation and calculate the corresponding critical
parameters. The sportaneous pair-production rate in relativistic heavy-ion collisions is
estimated in section 5, where possible obscrvable effects associated with the critical
phenomena are also discussed. Our conclusions and prospects for future studies are given in

section 6. The refiection coefficient for the combined scalar and vector potentials is derived
in the appendix.

2. Effective Lagrangian

Below we use the effective Lagrangian [1] containing baryon (W), scalar-meson (o) and
vector-meson (™) fieldsy:

L= Wpliy* (8, +igvaw,) — (mp — gspo)|¥s
B
— AP F* + tmlayef + 13,08%0 — V(o) (1)
where the sum runs over the baryon species B=N, A A, ...,
Fp:l.? = a'uﬁ)u - 3,,&),._,, (2)

t Units with # = ¢ = 1 arc used throughout the paper.
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is the vector ficld strength tensor and
1 2 b4,
= —m 0% + =0% + 3
Vo) 2mcr+3cr+4cr 3

is the scalar field poténtial including self-interaction terms [11], Here mgp, m,, my are
vacuum masses of the corresponding fields, gsp, gvs, b and c are the coupling constants.
The corresponding equations of motion are

liy*(3, + igvpw,) — (mp — gspo)]¥p =0 (4)
8,8%c +V'(o) =y _ gsapl” ®)
B
(0,8" + m2)w, — 3,(3,0°) =" gvaj. ©)
B

Here p{¥ = (¥5Wp) and j® = (Bpy,¥s) are, respectively, the scalar density and the

4-current associated with the baryon species B. Below we consider the isotropic system at
rest. In this case w, = (wy,0) and ;& = (P, 0, where p{¥ = (¥} W) is the vector
density of the baryon species B. In the mean-field approximation the meson field operators
are replaced by their expectation values. The total scalar and vector densities are given by

ps=30"  ov=) o )
B B

In the case of infinite nuciear matter at zero temperature (without hyperons) the model has
four adjustable parameters

mn mn
C —_— — C = ——
§ = gsN oy v g\mmw
b
Cy= —— Ca=—o @®@)
MNESN EsN

where my = 938 MeV is the vacuum nucleon mass. These parameters may be fixed by
the binding energy €5, baryon density po, effective mass my, and incompressibility modulus
K of isospin-symmetric nuclear matter in equilibrium. The simplest realization of the
model (C3 = C4 = 0) leads to an effective mass which is too low (m3; = 0.56mn) and an
incompressibility modulus which is too high (K = 540 MeV) [1]. One can get more realistic
values of mf; and K by introducing self-interaction terms in V(o) [11]. If the parameters
of the model are fixed by known nuclear matter properties, then the effective masses and
mean potentials of baryons as well as antibaryons may be unambiguously calculated on the
basis of the RMFM.

3. The baryon and antibaryon energies in mean meson fields
Let us consider now a finite region of space occupied by nuclear matter and characterized

by a spatial dimension R. For sufficiently large R the single particle states can be classified
by the 3-momentum p and (he internal baryon wavefunctions may be well approximated by
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plane waves. In the static case, the Dirac equation for baryons (3) leads to the following
single-particle energy spectrum:

E*(p) = Uyp £ /P2 + m§ )]

where

mg = mp — Ugg (10
is the effective baryon mass and

Uss = gspo (11)
Uvg = gve an (12)

are the effective scalar and vector potentials generated by the mean meson fields. These
fields are determined selfconsistently from the equations of motion (5), (6) by expressing
them in terms of pg and py. Here we consider the nucleonic system at zero temperature.
Then all states with p < pg are occupied, where pr is the nuclear Fermi momentum in the
inner part of the system. The vector and scalar densities are expressed as

_ f Ep _ ok
PVEN ] o @ om
& mt vk et (md
ps=w |  h Tl = R Nf%(-”) (13)
pgpp( ) P2+mﬁ2 T PF
where
x? JTFxi4
S(x) =1 +x2— —In}| T 14
) - ( —_— (14)

and vz is the spin-isospin degeneracy factor of baryon B (for nucleons vw = 4). It has
been demonstrated that the RMFM based on the nonlinear Lagrangian (1) reproduces well the
main properties of atomic nuclei [1,2]). The gualitative picture is as follows: the baryons
induce meson fields which in turn generate the selfconsistent potentials for baryons. It
is important to point ont that the relativistic Dirac equation (4) describes simuitaneously
baryons (nucleons) with an energy Ep(p) = E*(p) and antibaryons (antinucleons) with an
energy Ez(p) = —E™ (—p). The corresponding mean potentials acting on the baryons and
the antibaryons at p = 0 are respectively

Ug = Eg(0) —mp = Uyg — Usp
Ug=Ez(0) —my =—-Uyg — Uss. (15)

Note that the mean potential induced by the vector field is repulsive for the baryons, while it
is attractive for the antibaryons. This is a consequence of the negative G-parity of w-meson.

To calculate the potentiais one should solve the equations of motion for the meson fields.
Dropping the derivative terms in (5), (6), which is a good approximation for the inner part
of the system, one obtains the algebraic equations, which may be solved easily. Using (10)
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and (13} it is convenient {0 rewrite the equation for o in terms of the nucleon effective
mass as a function of the Fermi momentum:

* * 3 2 ¥ 3 2y ¥ *
c;z(l—-ﬂ)+c3(1—@) +c4( —’—’-'-’i) =£”F”‘N¢(@) (16)

my my my 4zt m} PF
where &(x) is defined in {14). At a reasonable choice of the parameters b and ¢ in the
nonlinear potential (3) the baryon effective mass (10) decreases gradually and tends to zero
at high baryon density and temperature. A few examples are shown in figwe 1. The
asymptotic value of the nucleon effective mass may differ from zero in a multicomponent
system of nucleons, baryonic resonances and hyperons. Such a situation may be realized at
high temperatures. Formally speaking, at some choices of model parameters the function
my(pv) may even cross zero and become negative. But this does not at all mean that the
nucleon effective mass would be negative. According to (9) and the discussion above, in

this case one should adopt the mass [mf| for the nucleons and antinucleons. In the cases
considered below we never get a negative my.

Effective mass in the RMF model
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Figure 1. The critical point in compressed nuclear matter is determined by the crossing of the
two curves stariing at my and —my. The case for the Walecka parameter set (solid lines) is
compared with that for a set fitted to finite nuclei (dotted lines). The inclusion of the A-isobars
(dash-dotted lfines} can diminish the critical density. In this calculation the ratio of the A and
the nucleon coupling constant is 1.31 for the scalar and 1.0 for the vector field.

For the zero component of the vector field we get, from (6),
= 2= oy, ' {17

At the normal nuclear density, pv = o = 0.15 fm™2, the vector and scalar potentials
predicted by the RMFM are rather large, of the order of a few hundred MeV. For nucleons
they nearly cancel each other, which results in the observed shallow potential well of about
60 MeV. However, for antinucleons a much deeper potential is predicted on the basis of
the G-parity transformation. For instance, in the original Walecka model (C: = Cy =0) a
potential depth of about 700 MeV deep is predicted. In more realistic nonlinear versions of



1308 I N Mishustin et al

the RMFM [11] the antinucleon potentials are usually smaller by a factor 2-3. The energy
levels of nucleons and antinucleons in a spherical nucleus of normal density are shown
schematically in figure 2. It is seen that the gap between upper and lower continuum states,
being 2my,, is substantially reduced inside the nucleus as compared with the vacuum. In
the figure one can also see the shallow nucleon potential (with respect to my) and the deep
antinucieon potential (with respect o —my).

Rl | W S S ——

Figure 2. Energy levels of nuclecns and antinucleons  Figure 3. Enetgy levels of nucleons and antinacleons

in a normmal nucleus of radius Rg. inside 2 domain of compressed nuclear matter, Vertical
and horizontal strows comespond to the induced and
spontaneonus pair-production processes, respectively.

Arguments in favour of a reduced gap and a stongly attractive interaction of
antinucleons inside the nucleus were put forward already in 1956 {13]. Later the strong
attraction in the nucleon—antinucleon system was emphasized as a possible mechanism for
NN bound states [14]. The importance of the reduction of the energy gap between baryon
and antibaryon states in nuclei was also discussed in [15].

What i known about the antinucleon-nuclens interaction from experiment? High-
precision data are available now at LEAR for antiproton energies of the order of 100 MeV.
At such energies the antiproton—nucleus interaction is dominated by the large annihilation
cross section, i.e. antinucleons can not pepetrate deeply into the nuclear interior due to the
strong absorption at the surface In contrast, the nucleons can traverse the whole nucleus.
From the optical-potential fits of the elastic scattering data {16,17] it is known that the
strong absorbtion radius is about 20-30% larger than the RMS nuclear radius. The real part
of the optical potential at this radius is very small, about —5MeV. In this situation any
extrapolation of the potential 1o the central region is found to be rather ambiguous, Fits
of the differential cross section based on a Woods-Saxon parametrization of the optical
potential usually yield values of Vy =~ —(30 + 80) MeV for the central domain of nuclei
[17]. However, it was shown [16] that values as deep as —300 MeV also yield reasonable
results. In fact, even the deep potentials predicted by the kMFM [18] can not be excluded
experimentally (for a further discussion see [19,20]).

The nucleon density corresponding to the strong-absorption radius may be estimated to
be about pp/10 or less. One cannot expect that the mean-field approximation is valid in
such dilute matter. The ¢-matrix approach should be more adequate in this situation, where
an incident antiproton undergoes only a few (maybe one) collisions with peripheral target
nucleons. This has indeed been demonstrated in [21,22), The difference in the nucleon and
antinucleon interaction with nuclei discussed above may explain the apparent violation [17]
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of the &-parity relation between their optical potentials. Indeed, the G-parity argument may
be applied only to test nucleons and antinucleons propagating in the same external fields.

The applicability of the RMFM could be verified if the evidence for the predicted desp
antinucleon potentials were found. The necessary conditions are realized potentially in
high-energy heavy-ion collisions. In this case antinucleons may be produced in individual
NN collisions or by the collective mechanism, described below, inside the dense baryon-
rich medium. Then the large difference in the mean potentials acting on the nucleons and
antinucleons may lead to the substantial difference in the slope parameters of the proton
and antiproton spectra which has been demonstrated in [23), This effect is indeed observed
in the AGS experiments [24],

4. Spontaneous baryon-antibaryon pair creation

It is interesting to see how the potentials behave at increasing baryon density gy. From
equation (17) it follows that the vector potential (12} changes linearly with gy, The scalar
potential (11) increases with gv, but more slowly than the vector potential. In fact, the scalar
potential tends to saturate at high baryon densities. Therefore the energy gap, 2Zmy, between
all baryon and antibaryon states diminishes. The boundaries of the gap bend upwards with
increasing baryon density. This is illustrated in figure 3.

At high enough density (py = p.) the upper edge of the Dirac sea raises above the lower
edge of the upper continuum (in vacuum this corresponds to the energy mg). In other words,
this means that the minimal antibaryon energy becomes lower than —mg. This situation
in strong fields is well known as the Klein paradox [25]. Under such conditions the finite
system becomes unstable with respect to the spontaneous baryon—antibaryon pair creation
al the boundary, where the meson fields vary very rapidly. As a resnit, a strongly bound
antibaryon appears in the dense nuclear medium accompanied by a low-energy baryon in
vacuum. This process is indicated in figure 3 by the hovizontal arrow, which shows the
tunnelling ransition of a baryon from the occupied lower continuom state into the empty
upper continuum. The hole in the lower continuum is usually interpreted as the antiparticle.

The appearance of antibaryons in dense baryonic matter lowers the baryon density
and, therefore, provides a negative feedback in the pair-creation process. Note that this
is a consequence of the spatial separation of the pair. The instability is terminated when
pv decreases 10 p,. Many single-particle states become unstable at the critical density in
the present case of an extended potential well. If the spontancous decay were very fast
compared to the compression and expansion time-scales in relativistic heavy-ion collisions,
then the critical density would be the limiting baryon density, which could not be exceeded
in a collision process. So if a baryon density higher than this critical density is generated
in a certain region by some dynamical processes, it will drop down due > the creation
of antibaryons (the baryons go outside) until it reaches the limiting value. In contrast,
the spontancous electron—positron pair production in a swong electric field generated by a
nucleus of an overcritical charge Z > 170 [26,27] is associated with the diving of only
one {1852} level into the negative energy sea. The phenomenon discussed here is similar to
the ‘electron condensation’ around a hypothetical *supercharged nucleus” studied in [28].
However, in the case considered antibaryons are produced in the baryon-rich environment
and, therefore, can easily annihilate while the baryons escape into the vacuum.

It is obvious that all baryonic states obeying the condition

Eg(p) = —Uvp+ P2+ mf < —mp (18)
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Table 1. The critical baryon densities for spontaneous NN pair production.

) K {00} my(pc) EB®

¢Z & G Ca YD MeV) po/m (MeV)  (GeVAN)  Ref.
3801 2941 0 0 0.53 5763 2.88 1687  2.00 31
3582 2745 0 ] 0.54 5444 309 1696  2.58 (30}
2671 1959 O 0 0.56 5446 435 1753 695 m
2610 2099 O 0 0.64 300 421 1847  6.44 [32] #
2114 1823 O 0 0.69 210 494 1929  9.57 [32] *
280.8 1994 S48 x107*  L15%x107% 065 400 442 2138 1M [33]
2865 1910 64ix 107% 200x 1077 067 3992 468 2302 842 2]
2332 1325 329 % 1077 3.99 x 1073 Q75 300 704 279.9 214 [33]
2404 1312 475x10°% 619x107* 075 2813 699 2602 211 27
2404 1312 475x107%  6.09x 10~* 075 2813 633 1473 169 [271t
2008 1325 -—245x107% 193x102 075 400 740 3423 238 133]
2182 1026 895%10°  369%x 1073 0.80 2400 935 3147 388 [34]

7 In this model, the expression for the vector potential contzins a phenomenological term -Cdpy 3. The two
versions given in the table comespond to the values Cy = 0.183 and 0.254.

b In addition, A-isobars are taken into account with a scalar coupling constant which is 1.31 times larger than that
for the nuclecn; the vector coupling constants are set to be equal (see also figure 1).

(i.e. E-(—p) = mg) will be unstable. The total number of such states per unit volume is

= % (19)
where prax is given by (18) with the equality sign:
Prax =/ (Uya — Usa)(Uys + Usg — 2mp) . (20)
The critical baryon density g, corresponds to pp.; = 0. This Jeads to the equation
Uyvg — my = ms 21)
or
Uyp + Usp = 2my (22)

i.e. the instability occurs when the sum of the vector and scalar potentials exceeds the gap
between positive- and negative-energy states in vacuam, This conclusion is valid for any
baryon species B, irrespective of the origin of w and o fields. If thess fields are generated
by purely nucleonic matter, one can use for ¢ and wy the explicit expressions obtained
above. Combining equations (22) and (16} one arrives at the transcendental equation for
the critical baryon (nucieon) density o¢® for each baryon species B.

Figure 1 illustrates the geometrical determination of the critical density. The instability
condition for the nucleons can be rewritten as my = Uy — mn where the RHS has a linear
dependance on the baryon density. The critical density corresponds to the point where this
line crosses the curve for my;. In figure 1 the calculation for the orignal parameter set of
Walecka (solid lines) is compared to that of the parameter set NL075 (dotted lines), which
gives a softer equation of state [29]. The critical point for the laiter case is definitely at
a higher density than that for the Walecka set, but the inclusion of A-isobars (dash-dotted
lines) can lower the critical density. It is assumed that A’s appear in the ground state when
the nucleon chemical potential exceeds the difference of the A and N effective masses.
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The critical baryon density p{? for spontaneous nucleon-antinucleon pair production
ig given in table 1 for several sets of model parameters used in [1,2,29-34]. We also show
the nucleon effective mass at the critical density, as well as the nucleon effective mass and
incompressibility modulus at normal nuclear density. Note that the parameter set of [29]
leads to a very good description of finite nuclei. From the table, ore can see that for the
majority of the models the critical density o'’ lies in the range of (3—7)g0 with an effective
nuciecn mass about 200 MeV. This density depends strongly on the effective mass my(0o0)
and (via the Hugengoltz—van Hove theorem [33]) on the vector coupling Cy. It is ¢lear that
the effective mass will decrease more and that the baryon-antibaryon pair production will
be enhanced at finite temperatures [10]. Many model calculations show that the required
baryon densitics and temperatures may well be reached in the course of relativistic nuclear
collisions. For instance, in [35,37,38] the density of shocked matter has been calculated
using RMFM. Baryon densities of 3 10 5pp are predicted at bombarding energies of about
2 GeV/nucleon, Calculations based on relativistic quantum molecular dynamics {39] lead
to maximum baryon densities exceeding 6,0y and 100y, respectively, in central collisions of
Si+ Au at 14.5 GeV/nucleon and Pb+ Pb at 10 GeV/nucleon. The average baryon densities
close to, and in some cases above, the critical dengsities given in table 1 are also predicted
by a two-fluid dynamical model [40].

Due to reduction of the baryon effective mass, the vacuum polarization effects,
assaciated with the excitation of virtual baryon—antibaryon pairs, should be important in
strong meson fields. As demonstrated in [38], these effects, at least partly, are taken into
account by self-interaction terms in V(o). As one can se¢ from table 1, these terms shift
the critical densities to higher values, compared with the linear version of the RMFM

It should be noted that the stopping regime in relativistic heavy-ion coilision takes place
only at energies of < 10 GeV/nucleon [40,41). At higher bombarding ¢nergies the partial
transparency effects become increasingly important. It is interesting that strong vector fields
may be generated in this two-stream regime, t00. Indeed, let us consider two interpenetrating
nucleon flows of the same density. In its rest frame, each flow generates only the time-like
component of the vector field «g. In the equal velocity (EV) frame, where the flows move
with velocities vy and —vp along the beam axis, the vector fields of the projectile (') and
target (w") flows can be written as

Wt = (ywo, 0,0, £y vowe) (23)

where y = (1 — v3)~!/2, In accordance with the superposition principle the net vector field
in the overlap region of nucleon flows is

o = o + o =(2yw,0,0,0). (24)

Comparing (24) and (17} one may conclode that the factor 2y in the amplitude of the
vector field in the case of interpenetrating nucleon flows is equivalent to the factor py/pg in
the case of compressed equilibrated matter. Bearing this in mind, one can easily calculate
the critical bombarding energy (per nucleon in the lab frame) EX® = 2mn(y2, — 1) for
spontaneous NN pair production}. The results of this calculation performed for different
model parameters are listed in table 1. One can see that in most cases the values of EX®
are rather low. At some choices of RMFM parameters E5™ is comparable with the threshold
energy 5.6 GeV for nucleon—antinucleon pair production in the individual nucleon-nucleon

1 Here we consider the free-streaming limit, disregarding the mutval slowing down and compression of
interpenetrating nuclecn flows.
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collisions in vacuum. It is worthwhile noting here that this threshold energy should be lower
by the factor m};/my due to the reduction of the effective mass in the medium.

However, these predictions should be regarded with some caution. It is well known
that the RMFM predicts a linear energy dependence of the nucleon-nucleus optical potential,
whereas the analysis of data on pA collisions show a saturation at energies 2, 0.3 GeV.
As argued in [42] the exchange corrections to the mean-ficld approximation suppress the
interaction of fast nucleons with the vector field of nuclear matter. Therefore, the simple
formula (24) may overestimate the amplitude of the w-field in the case of interpenetrating
nuclei moving with high enough relative energies.

It is interesting to estimate also the critical baryon density of*! for spontaneous lambda-
antilambda pair production. Our calculations show that o™ has reasonable values, say less
than 7po, only if the lambda—-meson coupling constants are close to the corresponding
nucleon constants. As was shown in [43], experimental data on hypernuclei do not exclude
such a possibility.

5. Estimate of the spontaneous pair-production rate

It may be shown that the antibaryon states with epergy E; < —mg are metastable at
pv > plB. To estimate the lifetime of these quasistationary states we assume that the
nuclear matter is separated from vacuum by a plane surface of width 4 and that the meson-
induced potentials change linearly in the surface region from their inner values Uvg, Usp
to zero. Then, in close analogy with the Schwinger formula [46], the barrier penetration
probability in a quasiclassical approximation is given by the expression

(mpUvg — EUsp)? + ph(UZy — U.‘.‘%B)]
(U2 — Ugp)*?

P(E, pr) = exp I:—zrd (25)

where E and pr are the energy and the transverse (with respect to the surface) momentam
of a baryon produced in the vacuum. These quantities are conserved in the course
of the tunnelling process., They vary in the limits ,/m% + p% € E € Emax(pr) and
0 < pr < (PT)max, where

Eam(pr) = Uyp — \/ p? + (mp — Usg)? (26)

1
(PT)man = M\/(U‘EB - Ug’B)[Ue'B — (2mg — USB)z] - 27

We define the pair production rate as the number of pairs with the baryon energies between
E and E +dFE and transverse momenta between pr and pr+ dpr produced per unit surface
area and per unit time )

dN,

pair (28)

I(E, pr) = —pair__
(BP0 = GE@pds

This guantity may be calculated analytically only for selected simple poicntials. We have
not found the exact solutions for the combination of linear vector and scalar potentials in the
literature. The case of the linear vector potential in a limited spatial domain was considered
in [47]. We circumvest this problem by assuming that the rate (28) may be represented as

I(E, pr) = I(E, p1) P(E, p1) (29)
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where P is the barrier penetration factor (25) which depends strongly on d, and f; is a
smooth function of d. It may be calculated rather easily in' the lowest approximation in
d/R, ie. for semj-infinite nuclear matter with a sharp boundary. Then we have [47]

Vg
(2mh)

In(E, pr) = InR"! | (30)

where R is the reflection coefficient for the step-like potental. This coefficient is well
known for the single vector or the scalar potential (see, for instance, [25]). We calculated
it for the case of the combined vector and scalar step-like potentials of height Us and Uy,
respectively (for brevity here and below we drop index B). We arrived at the following
result (see appendix):

_ mymycosh(y — y*) + p} + mm*

R= 31
mymy cosh(y + y*) + p} + mm* Gh

where the intemal y* and external y rapidities are defined by expressions
E=mycoshy U — E = mypcosh y* (32)

while the internal m and external my transverse masses are

my = /m* + p3 my = \/m®+ pf . (33)

Here m* = m — Us is the internal effective mass and m the baryon mass ih vacuum. In the
case of a pure vector potential (Us = 0) one armrives at the known resuit represented in a
slightly unusual form

_cosh(y —y*) +1
" cosh(y+y*) +1°

One can consider equation (29) as an interpolating formula which gives comect answers
in the two limiting cases d — 0 and d — oo and, therefore, it may be used for roagh
estimates at any d.

It is easy to show that InR~! vanishes at the kinematic boundary in the (E, pr)-plane
defined by (26)+(27) and that In R~} has values of the order of unity, except for the regions
adjacent to this boundary. Using (28)—(33) one can easily calculate the specira and the yields
of nucleons and antinucleons originating from the spontaneous NN production at various
densities of nuclear matter. The pr-spectrum of produced baryons is obtained by integrating
(28) over E. It drops approximately as exp{— p%/ZmNT,ff) with an effective ‘temperature’
Teg ~ hf2nd ~ 10-30 MeV (at d ~ 1 — 3 fm),

To get an idea about the magnitude of the pair-production effect we performed the
calculations with the coupling parameters of [2]. The calculated rates of the NN pair
production per unit surface area and unit time, dNp/dS de, are given in table 2. As
one can see from this table, the resulls are very sensitive to the density of coinpressed
matter and to the width of the surface region 4. In the same table we also present the
total numbers of pairs Ny assuming that the compressed region is formed in a central
collision of equal nuclei of mass A. For the surface area we take 2wr2A%® (ro = 1.1 fm).
We also assume that the lifetime of the compressed state is equal to the nuclei passage
tMe Tpass = 2roA’>/upy in the EV frame. This estimate agrees well with the time-scale
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‘Table 2. Yield of NN pairs spontanecusly produced in a slab of compressed nuclear matter.

d="1fm d=2fm
I i i 4
5 376 % 1073 620 % 107* 134 x 1078 2.23 % j03
6 3.98 x 1073 666 x 10" 357 x J07% 597 x 1073
7 268 x 10-2 448 % 107 399 x 1073 6.68 x 1072

extracted from dynamical calculations [39,40]. The yield of spontaneons antinucleons per
participant nucleon is estimated on the level of 1079-10"* for the collision energics about
10 GeV/nucleon (¥ = 3), assuming p/pp # 5. The antiproton yields of this order of
magnitude have been measured in AGS experiments at Brookhaven {24] (see also [48]).

The possibility of anti-matter cluster production is of great interest. The mechanism
considered above may lead to an enhanced yield of such objects as d, &. The reason is that in
large enough systems many nucleon states become unstable simnltaneously. The cormrelated
decay of this states will Jead to the enhanced formation of multi-antinucleon clasters. For
instance, if one considers ¢ and & as elementary particles with coupling constants and mass
equal to corresponding nucleon values multiplied by a factor four, then the ratio of & and
p yields is approximately proportional to P> (25). At the same paramelers as before, this
gives an extra factor of the order of 10-%-10" for the & yield, compared with the predicted
yield of antingcleons. This abundance is small but measurable [45] and we would strongly
recommend such measurements.

6. Conclusions

The RMFM predicts a strongly attractive interaction of antibaryons with the swrounding
baryon-rich matter. This may lead to interesting observable effects aiready at moderate
densities, of the order of pp. For instance, antibaryons produced in the interior of the
nucleys or inside the nuclear fireball have a chance o leave the system only if their kingtic
energy is high enough, ie. EY* > mp + |Us|. Slow antibaryons will be trapped in
the deep potential and will most probably annihilate inside the system. This situation is
discussed in [ 10] where a system of baryons, antibaryons and mesons in thermal equilibrium
is considered. As was shown in [23] the different shapes of the nucleon and antinucleon
spectra may be explained by strong mean fields, repulsive for nucleons and attractive for
antinucleons, of the same order of magnitude as predicted by the Walecka model. On the
other hand, the cascade models which do not take into account mean fields are not able to
explain the data. The importance of mean fields and annihilation effects for the antiproton
yields in heavy-ion collisions was emphasized recently within the framework of the RBUU
model [51].

Other even more dramatic phenomena may also occur in the course of high-cnergy
heavy-ion collisions where strong space and time variations of meson felds are expected;
it was demonstrated above that the baryonic stales of the negative Dirac sca may play
an important role in such a situation. In the present paper we consider the possibility of
spontaneous baryon—antitbaryon pair creation at the boundary between the dense baryonic
maiter and the vacuum. Dynamical calculations which take into account the vacuum
rearrangement effects in time-dependent meson fields are required to quantify these
predictions. The baryon-antibaryon pair production induced by the strong time-dependent
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fields might be more effective than the spontaneous one, in analogy to the electron—positron
case. These collective mechanisms, as well as the thermal excitation of the low continuum
states, potentially lead to a considerable enhancement of antibaryon and antihyperon yields
compared to the predictions of the models based on the free nucieon—nucleon collisions,
Antimatter cluster production may also become feasible on a measurable level, We think
that many observable signals proposed for the quark—gluon plasma, in particular enhanced
antihyperon yields, may be interpreted in the purely hadronic scenario, if the reduction of
hadron masses in dense matter is taken into account [10].

The annihilation of antibaryons in the surrounding matter must be included in a refined
realistic caiculation [23,52]. The antibaryon annihilation depends drastically on the in-
medium annihilation cross section. A large variety of annihilation channels are potentially
suppressed due to the decreased baryon effective masses. Therefore the annihilation cross
section should go down with decreasing mf. In the extreme case when m§ < m, pionic
final states are forbidden and the strong annihilation cross section vanishes. For the same
reason the threshold energy for BB pair production in individual NN collisions in matter
should be considerably lower than in vacuum. One additional important question 0 be
solved is how the ‘in medium’ baryons and antibaryons with reduced effective masses go
on the vacuum mass shell,
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Appendix. The reflection coefficient for supercritical scalar and vector potentials

Below, the formuta (31) for the reflection coefficient is derived. We consider the case of
semi-infinite nuclear matter of a constant density at z > 0. In the local approximation the
interaction of baryons with this matter can be described by the combination of the step-like
scalar Us®(z) and vector U@(z) potentials, where ©(z) = %(1 + signz). Hereafter, the
index B is omitted for brevity. The solution of the Dirac equation can be obtained by
generalizing the procedure suggested in [47,53]. The wavefunctions in regions I (z < 0)
and II (z > () can be represented as

Winlt, ¥) = e BP0 ), (A1)

Here E and pr are the energy and transverse momentum of a baryon in vacuum. Substituting
(A1) into the Dirac equation (4) we get the equations for spinors ¥y p(z):

(yupt —my(z) =0 (A2)

(YuPh —m")Ym(z) =0 (A3)
where

pt = (E, pr, —id;)

pﬁ =(E—-U, pr, —13)

m* =m — Us.
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The continuity condition at z =0 is

(=0) = Yn(+0) . (Ad)
In our case of a spin-independent interaction it is wseful to represent ¥p(z) as
1 0
@ =t +m ) | o+ | o | Pot (A3)
0 -1

Hereafter we use the standard represeniation [54] of Dirac matrices. The equations for
scalar functions £ (e = 1,2) are obtained by substituting (AS) into (A3). Then we have

[B24+(E- U —m?] [ =0 (A6)
where o = 1, 2 and m7 is defined in (33).

The analogous representation for n(z) is given by (A5) with the replacement II—1,
m* — m. Using (A2) we get the equations for f,(“)(a =12)

[2+ E*-md] ¥ =0 (AT)

where mr is defined in (33).
The general solutions of (AG), (A7) can be written as

l{ct) = a et 4 buc'ihz

F39 = a0 4 d e (AB)

where

ki =/ E —mi = mrsinhy (A9

kp = ‘/(E — Uy)? — m3? = mAsinhy* . (A10)

Here the definitions of (32) were used. The coefficients a,,, Py, ¢4, do should be determined
from the boundary conditions,

We are inicrested in the case when the spontaneous production of a B B—pair is possible
at given £ and py. Then Uy > E +m7 (26) and kp is real. In this case ¥y and vy describe
a propagation of a baryon and an antibaryon, respectively. Since by definition there is no
reflected wave in the region z > 0, we take d, = 0 in (A8). From (A4) one gets four
equations for coefficients a,, by, Ce (@ =1, 2). Then after ¢liminating ¢; ; we obtain the
set of equations relating a, and b,:

Alyy  p-BWM\( M A(=y)  p-B-y)\[{a\_ (0
(—p+B(y) A(y) ) (bz) * (—p+B(—y) A(—y) ) (ﬂz) B (0) (1D
where py = p; =ip, and

AQY) = mmie” +m* mre’ (A12)
B(y) = mhe” 4 mre” . (A13)
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The longitudinal component of the cwrrent in the region I is

h=P@he =2 [ImfOF - (E +i8) P

o=12

— 4k Y [(E—b)laal® — (B +h)lbal]. (A14)
w=1,2

The first and second term in the last equality in (A14) cotrespond, respectively, to the
incoming (J;") and reflected (J{‘f) components of the total current. Using (A11) we obtain
the expression for the reflection coefficient

jlmf

| E+kiBif + b
Jiin

K= = .
E—kla |2+ |aaf?

Solving (A11) one can express b, in terms of g,. Then we get the formula

_ o2y BN + PR AN —y)
B2(y) + pRA(y)

(A15)

As one should expect, R is independent of a,. Substituting (A12), (A13} into (A15) we
arrive at the final result (31).
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