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Abstract

Assessing the uncertainties of simulation results of ecological models is becoming of
increasing importance, specifically if these models are used to estimate greenhouse
gas emissions at site to regional/national levels. Four general sources of uncertainty
effect the outcome of process-based models: (i) uncertainty of information used to5

initialise and drive the model, (ii) uncertainty of model parameters describing specific
ecosystem processes, (iii) uncertainty of the model structure and (iv) accurateness of
measurements (e.g. soil-atmosphere greenhouse gas exchange) which are used for
model testing and development.

The aim of our study was to assess the simulation uncertainty of the process-based10

biogeochemical model LandscapeDNDC. For this we set up a Bayesian framework
using a Markov Chain Monte Carlo (MCMC) method, to estimate the joint model pa-
rameter distribution. Data for model testing, parameter estimation and uncertainty as-
sessment were taken from observations of soil fluxes of nitrous oxide (N2O), nitric oxide
(NO), and carbon dioxide (CO2) as observed over a 10 yr period at the spruce site of15

the Höglwald Forest, Germany. By running four independent Markov Chains in parallel
with identical properties (except for the parameter start values), an objective criteria for
chain convergence developed by Gelman et al. (2003) could be used.

Our approach showed that by means of the joined parameter distribution, we were
able not only to limit the parameter space and specify the probability of parameter val-20

ues, but also to assess the complex dependencies among model parameters used for
simulating soil C and N trace gas emissions. This helped to improve the understanding
of the behaviour of the complex LandscapeDNDC model while simulating soil C and N
turnover processes and associated C and N soil-atmosphere exchange.

In a final step the parameter distribution of the most sensitive parameters determin-25

ing soil-atmosphere C and N exchange were used to obtain the parameter-induced
uncertainty of simulated N2O, NO and CO2 emissions. These were compared to ob-
servational data of the calibration set (6 yr) and an independent validation set of 4 yr.
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The comparison showed that most of the annual observed trace gas emissions were
in the range of simulated values and were predicted with a high certainty (Residual
mean squared error (RMSE) NO: 2.5 to 21.3 gNha−1 d−1, N2O: 0.2 to 21.4 gNha−1 d−1,
CO2: 5.8 to 12.6 kgCha−1 d−1). However, LandscapeDNDC simulations were some-
times limited to accurately predict observed seasonal variations in fluxes.5

1 Introduction

Trace gas emissions (N2O, NO and CO2) from soils of terrestrial ecosystems are highly
variable in space and time due to the interplay of climatic drivers (mainly rainfall and
temperature) and various ecosystem processes involved in C and N transformation
and associated formation of trace gases. Therefore, quantification of the annual sink10

or source strength of soil greenhouse gases (GHG) is still a challenge. For sound esti-
mates at site scale, measurements are labour and cost intensive since they should be
carried out at high temporal scale covering full annual cycles (Kiese et al., 2005; Werner
et al., 2006). For that reason quantification of soil GHG emission on regional/national
scale cannot solely depend on measurements but need to follow a joint measuring and15

modelling approach. In recent years an increasing number of biogeochemical models
were tested on site scale and after sound validation were applied in a coupled GIS
model approach for regionalization of soil GHG emissions (Del Grosso et al., 2006;
Kesik et al., 2006; Pathak et al., 2005; Li et al., 2004; Salas et al., 2007; Potter et al.,
1996; Butterbach-Bahl et al., 2001; Kiese et al., 2005). This approach is in line with the20

IPCC recommendations and requirements to develop improved inventories by use of
biogeochemical models. However, the so-called Tier 3 approach includes not only up-
scaling of GHG emissions but also the obligation to perform uncertainty quantification
of the simulation results.

Uncertainty of model predictions can be classified into four categories: (i) uncertainty25

of information used to initialise and drive the model (Vrugt et al., 2008; Wikle, 2003),
(ii) uncertainty of model parameters (e.g. describing specific ecosystem processes)
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(Vrugt et al., 2003), (iii) uncertainty of the model structure (Refsgaard et al., 2006) and
(iv) accurateness of measurements (e.g. soil-atmosphere greenhouse gas exchange),
which are used for model improvement and development (e.g., van Oijen et al., 2005).
Uncertainty estimates in many studies investigating the soil-atmosphere exchange of
trace gases only cover the assessment of uncertainty imposed by input data (e.g., Li5

et al., 2004; Werner et al., 2007; Winiwarter and Rypdal, 2001; Kiese et al., 2005).
Due to the high complexity and large number of model parameters, work focused less
on uncertainty related to model parameters as the computational demand of complex
models is high and often model adaptations are required to allow application of statis-
tical methods.10

In recent years the Bayesian approach was increasingly used to quantify model pa-
rameter uncertainty on simulation results of process-based models. The Bayesian the-
orem was used for calibration and uncertainty assessment of parameters of dynamic
process-based forest models mainly focusing on carbon turnover (van Oijen et al.,
2005; Svensson et al., 2008; Klemedtsson et al., 2008) and more recently also for pa-15

rameters involved in production, consumption, transport and emissions of soil GHGs
(e.g., Lehuger et al., 2009). To our knowledge van Oijen et al. (2011) is the only study
so far comparing four process-based biogeochemical forest models within a Bayesian
model comparison framework. In contrast to such a model inter-comparison, the aim
of this study is to provide deeper insights into the individual parameter uncertainty and20

calibration of the model LandscapeDNDC and the subsequent uncertainty of simulated
trace gas exchange. The parameter distribution, which was estimated after an objective
multi-chain convergence check, was additionally tested on a validation dataset.

LandscapeDNDC is a process-oriented biogeochemical model, which simulates the
biosphere-atmosphere exchange of greenhouse gases on basis of the simulation25

of all major ecosystem C and N cycling processes, thereby considering (a) micro-
bial processes (e.g. immobilisation, nitrification, denitrification), (b) plant processes
(e.g., photosynthesis, respiration, N-immobilisation, litter fall) as well as (c) a series of
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physico-chemical processes (e.g. gas diffusion, water movement in soils) (Butterbach-
Bahl et al., 2004; Li et al., 2001; Grote et al., 2009, 2011; Haas et al., 2012).

We used a time series covering 10 yr of soil-atmosphere trace gas fluxes as observed
continuously in sub-daily time resolution at the Höglwald spruce forest, Germany (e.g.,
Butterbach-Bahl et al., 2002; Wu et al., 2010), to assess the model parameter uncer-5

tainty of the LandscapeDNDC model.
Results of the Bayesian calibration approach can be used to gain insights into the

complex parameter dependencies, to identify weaknesses in process descriptions and
to narrow the range of likely parameter values of the model, which finally reduces
uncertainty of the simulation results.10

2 Model description and model parameter selection

The LandscapeDNDC model applied in this study is a derivate of the DNDC model
family further developed at IMK-IFU Garmisch-Partenkirchen, Germany. LandscapeD-
NDC was developed from DNDC (agricultural sites) and PnET-N-DNDC/Forest-DNDC
(forest sites), which were initially set up to predict soil carbon and nitrogen biogeo-15

chemistry, with a specific focus on the simulation of soil N trace gas emissions (Li
et al., 2000; Stange et al., 2000; Butterbach-Bahl et al., 2001; Kiese et al., 2005; Kesik
et al., 2005; Werner et al., 2007).

LandscapeDNDC integrates different modules for describing soil environmental con-
ditions (temperature, moisture, pH, nutrient availability and anaerobic volume frac-20

tions), soil-chemistry integrating microbial C and N turnover processes (mineralisation,
nitrification and denitrification) and associated C and N trace gas emissions (e.g. N2O,
NO and CO2) as well as vegetation dynamics (nutrient uptake, growth and litterfall).

Each module includes parameters derived from physical and chemical principals
and laboratory measurements. In this study we focus on the analysis of parameter-25

induced uncertainty quantification stemming from the soil-chemistry module describing
all processes relevant for C and N trace gas production, consumption and transport,
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being crucial for the simulation of soil GHG emissions. Here, we do not consider model
parameters for the plant growth and soil water cycling modules in order to reduce
complexity and degrees of freedom and increase efficiency of the calibration process.

The soil-chemistry sub-module in total holds 67 parameters, mostly describing bio-
logical kinetics of nutrient turnover and transformation by growth and death of different5

types of microbes (e.g. nitrifiers and denitrifiers). Parameter values are generally de-
rived from laboratory measurements and expert knowledge, if detailed information is
not available. This introduces different levels of uncertainty, which need to be quantified
and requires calibration.

The model parameters can only be estimated and optimised by an inverse calibra-10

tion technique (cf. Vrugt et al., 2003), which compares model simulation output by using
randomly selected model parameter vectors with measured observations. The obser-
vational data used was collected at the Höglwald spruce forest, Germany, covering the
years 1994 to 1997 and 2002 to 2003 (Papen and Butterbach-Bahl, 1999; Gasche and
Papen, 1999). The remaining observation period (years 2004 to 2007) was used for15

validation purpose and finally for assessing the prediction uncertainty.
Each parameter included into the uncertainty analysis adds a new dimension in the

parameter space. Therefore, computational cost rises tremendously with the increasing
number of parameters while efficiency of the calibration technique decreases. Further-
more, correlations among parameters become more likely by increasing the number of20

parameters. This subsequently leads to slower convergence rates (requiring additional
iterations), as only parameter vectors which comply with these relations are accepted
by the Bayesian algorithm (cf. Gilks et al., 1996). Additionally, more degrees of free-
dom exist, i.e. parameter configurations producing similar outputs may not be unique.
To avoid these obstacles we used a sensitivity analysis (Saltelli, 2008) developed by25

Morris (1991) prior to the Bayesian calibration method in order to restrict the analysis
to the most influential parameters and to avoid over-fitting effects.

The method introduced by Morris is an efficient tool for parameter screening, since
it can easily be implemented and computational demands are low (van Oijen et al.,
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2011). The method varies parameter values and finally produces a ranking of the model
parameters based on their impact on the simulated model output of C and N trace gas
emissions and soil moisture.

This procedure divides each parameter range in n (here n = 6) equidistant levels,
starts with a random parameter vector using these levels and randomly changes one5

parameter after another to one of the other levels (1 iteration). Differences in model
output are stored and used to rank the model parameters according to their influence
on the simulation output. Since the trajectory of parameter changes per iteration is
randomly selected m times (here m = 5000), the method spans the parameter space
better than a “one-parameter-at-a-time approach” (see Hamby, 1994). The model pa-10

rameters, which produce largest differences (i.e. having highest sensitivity on the out-
put variable), are regarded as the most influential ones.

To identify the most sensitive parameters of LandscapeDNDC affecting soil C and N
fluxes we initialised and run the model with specific site information (soil, vegetation and
climate) of the Höglwald spruce forest. This approach does not require a comparison15

of simulated emission to measurements, since the sensitivity analysis only focuses on
parameter-induced changes of model output. Parameter sensitivities were calculated
separately for the output variables of soil N2O, NO and CO2 emissions, which finally re-
sulted in three different parameter-ranking lists. We selected the first 20 most influential
parameters of any list, thereby considering the trade-off between over-parameterisation20

and under-representing significant processes. Due to close linkage of C and N cycling
and in particular NO and N2O emission there was a good overlap of the most sensitive
parameters, which lead to a overall selection of 26 parameters (see Table 1).

For evaluation, whether the reduced parameter set accounts for most of the models
behaviour, we regressed the stored model output (a) to all parameters and (b) to the25

reduced parameter subset and compared the adjusted coefficient of determination R̄2

of both linear regressions (cf. van Oijen et al., 2011). The results show that for N2O
and CO2 more than 90 % of the models behaviour is explained by the subset of the
parameters. The behaviour of NO simulations is explained by 65 % using the subset.
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We regard these numbers to be sufficient for continuing the Bayesian calibration ap-
proach with the restricted parameter set and at the same time assure a balance with
calibration efficiency, which will be reduced when introducing more parameters as al-
ready stated before. Following the selection of the most sensitive model parameters,
the joined parameter distribution given the data was estimated by means of a Bayesian5

calibration. From this distribution parameter values can be sampled to perform simula-
tion runs and finally address the frequency distribution of simulation results. See Fig. 1
for an illustration of the workflow.

3 Bayesian calibration

In a standard frequency approach the parameter value is not regarded as a random10

variable. The used parameter value is either the true value or it is not (see Ellison,
1996). Therefore, a Bayesian approach is needed (Clark, 2005; van Oijen et al., 2005;
Klemedtsson et al., 2008; Gelman et al., 2003; Reinds et al., 2008; Lehuger et al.,
2009) since it models the parameter vector θ as a random vector, which allows a direct
quantification of the probability of a certain parameter realisation/range.15

The probability density of a parameter value given the measurement D (posterior) is:

p(θ |D) . (1)

By using Bayes theorem, the posterior is proportional to the product of the likelihood
p(D|θ ) and the prior density p(θ ):20

p(θ |D) ∝ p(D|θ ) ·p(θ ). (2)

The prior, describing the a priori knowledge on parameters, is determined by using lit-
erature data and biogeochemical principles to address the most likely parameter value
and to constrain the range of a parameter. We use an uninformed prior (uniform dis-
tribution) ranging between provided minima and maxima for the given parameter as25
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derived from expert knowledge or laboratory and field experiments. The likelihood, the
only unknown term, describes the probability of a data realisation for a particular pa-
rameter vector.

We assume the error D−M between data D and model M to be normal distributed,
hence the likelihood is (van Oijen et al., 2005):5

p(D|θ ) =
1

√
2πσ

e−
(D−M(θ ))2

2σ2 (3)

Since this term cannot be solved analytically, a Metropolis algorithm (Metropolis et al.,
1953) generates a Markov chain, which samples from the posterior distribution after
convergence of the chain (see next section for convergence criteria).

Although the model produces results on a daily time-step, simulations and measure-10

ments were aggregated to weekly means to avoid that minor temporal lags between
measured data and model simulations penalise likelihood calculations. A further aggre-
gation of data to e.g. monthly means, however, results in a significant loss of seasonal
dynamics of trace gas fluxes and was thus not applied here.

In order to increase computation efficiency, we run the model in parallel for the six15

simulated calibration years on a High Performance Computing (HPC) Linux cluster.

3.1 Criteria to define convergence while using a multi-chain approach

As it is not possible to draw any statistical inference from the sampled parameter vec-
tors if the Markov chain has not converged (Gilks et al., 1996), we used four inde-
pendent Markov chains (differing only in the individual parameter starting points) and20

tested for convergence at each iteration step. When convergence was reached (end
of “burn in phase”), the previous parameter samples were discarded and all following
data were included in the further analysis.

To quantify convergence, Gelman et al. (2003) introduced the measure R̂ which
compares the variances of each chain (within sequence variance, Eq. 4) to the joined25
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variance of all chains (between sequence variance, Eq. 5)

W =
1
m

m∑
j=1

s2
j , where s2

j =
1

n−1

n∑
i=1

(ψi ,j − ψ̄.j )
2 (4)

B =
n

m−1

m∑
j=1

(ψ̄.j − ψ̄..)
2, where ψ̄.j =

1
n

n∑
i=1

ψi j , ψ̄.. =
1
m

m∑
j=1

ψ̄.j . (5)

In the process of convergence the measure R̂ =
√

n−1
n + B

nW approaches from values5

> 1.0 to 1.0. As R̂ is not expected to reach exactly 1.0, a threshold of 1.2 is introduced
as the acceptance threshold (Kass et al., 1998).

By using four chains, our implementation spreads the model to 24 CPUs (4 chains×
6 separate simulation years) using the Message Passing Interface (MPI). After 1000
iteration steps the Gelman/Rubin statistic was calculated and continuously updated10

until convergence (according to R̂) of chains. In our setup, burn-in of all parameters
was completed after 31 656 iteration steps. Following convergence, 50 000 additional
iterations were sampled for each chain, which resulted in a total of 200 000 samples
from the posterior distribution.

The acceptance-rates of the four chains ranged from 13 % to 17 % (using a step-15

width of 0.04). These are reasonable values taking into account the large dataset (6 yr
of data in daily time resolution and 4 target variables: CO2, N2O, NO and water content)
and therefore a rather strict rejection step due to a narrow shaped posterior (Arhonditsis
et al., 2008; Clark, 2005; Rahn et al., 2011).

3.2 Effective data storage20

The study design and computational setup lead to substantial amounts of data, which
need to be efficiently handled within subsequent data analysis. For that reason a
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interface to a relational database was developed using structured query language
(SQL) which warranted a concurrent access and high data integrity.

4 Estimating simulated gas flux distributions

In a second step the posterior distribution of the 26 parameters was used to quantify the
uncertainty of LandscapeDNDC simulations for soil N2O, NO and CO2 emissions of the5

Höglwald Forest spruce site (see Fig. 1). For this, we used a total of 20 000 posterior-
parameter vectors (posterior-samples) by selecting every 10th parameter vector out of
the 200 000 posterior-parameter samples of the four chains (50 000 for each chain).
Thereby, we reduced dependencies between parameter vectors of consecutive itera-
tions (Kass et al., 1998; Toft et al., 2007), which arose as each parameter vector of the10

posterior distribution had been taken dependent on its predecessor during the calibra-
tion process.

Following the selection of the posterior-samples, we executed LandscapeDNDC with
the parameter realisations for the calibration set (years 1994 to 1997 and 2002 to 2003)
and an independent validation data set (years 2004 to 2007). As a result we obtained15

distributions (including associated uncertainty) of simulated soil N2O, NO and CO2
emissions.

The residual mean squared error (RMSE) is used to quantify the error between mea-
surements and simulations. Therefore, we defined the distance of measurements to
the distribution of the simulations as the minimum of the distances between the mea-20

surements and the two boundaries of the credible interval or 0 whenever the mea-
surement is within the range of the credible interval. The RMSE of the best simulation
(RMSE(θMAP)) is calculated using the common definition.
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5 Results

5.1 Posterior parameter distribution

An estimate for the posterior distribution of the 26 most sensitive LandscapeDNDC
parameters for simulation of soil N2O, NO and CO2 emissions was obtained by using
Bayesian calibration technique and initial information on the likely range of the selected5

parameters. To illustrate common features of the obtained marginal posterior distribu-
tions, we present a subset of four model parameters (see Fig. 4 and Table 2). For each
marginal histogram, 4×50000 post burn-in chain steps were used.

In the first histogram (Fig. 4a) the marginal distribution of the parameter KN2O,
the loss rate of N2O during nitrification, is displayed. The prior parameter uncertainty10

(SDprior = 0.026) was reduced substantially (SDpost = 0.006) and the most probable
value of the right skewed distribution is in a narrow region between 0.002 and 0.008.

Figure 4b shows a bimodal distribution for the parameter EFFAC, i.e. the parameter
describing the partitioning of CO2 and DOC production during microbial decomposi-
tion of organic matter. As a result of the calibration procedure EFFAC has two regions15

of “attraction” separated by a region, which is less probable (lower posterior values).
For bimodal distributions it is difficult for the metropolis algorithm to traverse from one
mode of the parameter space to the other (cf. Vrugt et al., 2009). Therefore, the con-
vergence rate, which describes how fast the chains converge to the posterior distri-
bution, is lower. Two of the four chains (red and blue lines) sample from both modes,20

whereas the other two (yellow and green lines) are still taking most of the samples from
only one mode. Although the Gelman/Rubin Statistics indicated a converged chain, the
plots indicate, that the calculation procedure still would need to continue well beyond
the achieved runs to reach a true convergence. Nevertheless, as samples from four
chains are available, which almost all support the two modes, the number of samples25

is sufficient to approximate the full bimodal distribution of the parameter EFFAC.
Figure 4c displays the posterior distribution of the parameter KHDC L. This parame-

ter is the decomposition constant for the labile humads pool (death microbial biomass).
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For this model parameter the posterior distribution is flat, i.e. all values across the
explored range are of similar probability. Here, the uncertainty of the initial param-
eter could not be reduced significantly by the Bayesian calibration and only values
approaching zero are less likely than others.

An example for a left skewed distribution of a parameter is given in Fig. 4d, in this5

case of KRCL. KRCL is the decomposition constant for the labile litter pool. Although
there is a tendency for higher values, smaller values can still occur depending on the
values of the other 25 parameters. In conclusion, the uncertainty of the parameter
KRCL is reduced, however, not as much as compared to KN2O.

A correlation analysis between the 26 selected parameters revealed for most pair-10

wise constellations no relevant correlations. This is due to the large number of sam-
pling points in the entire parameter space (see Fig. 9. Higher correlations in absolute
appeared only between KMNO2 (Michaelis-Menten constant for NO2 to NO3 during
heterotrophic nitrification) and DRF (scaling factor for decomposition rate constants
of SOM) with a correlation of −0.62, between EFFAC and D N2O with 0.48, and be-15

tween EFFAC and FNO3 U (fraction of microbial N-uptake as NO3) with 0.46. All other
correlations were in the range of ±0.40, most of them between ±0.25 (Fig. 8.

However, that does not fully exclude any relationship between parameters, since they
are often of non-linear character. Figure 2 shows that limiting the values of EFFAC to
values < 0.5 leads to a bell shaped distribution of the parameter DRF (scaling factor20

for decomposition rate constants of SOM) around the value 0.035 (correlation between
EFFAC/DRF = 0.25). At the same time smaller values of FTRANS (factor regulating
microbial nitrate immobilisation and direct re-mineralisation to NH4), FNO3 U, KRCR
(decomposition constant for recalcitrant litter pool) and KMM DOC (Michaelis-Menten
constant regulating growth of microbes in dependency of DOC substrate) become more25

likely, whereas for other parameters like MICRRESP (factor regulating CO2 production
during microbial metabolism in dependency of microbial C/N ratio), FRC (factor regu-
lating microbial death depending on the availability of very labile and labile carbon) and
KN2O (loss rate of N2O during nitrification) higher values occur more often, thus get
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more likely. That also shows that restricting some parameters to a range of their most
likely values can narrow the range of likely values of other parameters.

The heat map in Fig. 3, shows the relationship between KRCL and KMDC N. While
the correlation between the two parameters is low (= −0.03), one can see that lower
values of KRCL restrict the range of KMDC N to lower values. To capture all depen-5

dencies (compare Fig. 9) when estimating the distribution of model simulations, it is
straightforward to use samples of the joined posterior parameter distribution, as the
whole structure of parameter dependence is fully included.

5.2 Uncertainty quantification of soil atmosphere gas emissions at Höglwald
forest (1994 to 1997, 2002 to 2003 and 2004 to 2007)10

5.2.1 Calibration-set

In general, most of measured trace gas emissions of N2O, NO and CO2 are within
or close to the range of the simulated 99 % credible interval (cf. Gilks et al., 1996)
(see for example Fig. 5. RMSE values for each year and each soil-atmosphere flux are
presented in Table 4). Based on the evaluation criteria, LandscapeDNDC was able to15

correctly simulate cumulative N2O and NO emissions in five and four out of six years,
respectively (see Table 3). In two out of three years, cumulative CO2 observations
were located within the simulated CO2 ranges. Comparatively high NO emissions (>
60gNha−1 d−1) measured in the summers of 1996 and 2003, however, could not be
reproduced by LandscapeDNDC (model simulations underestimated fluxes in summer20

periods by at least 29 % and 32 %, respectively).
Seasonal dynamics of NO measurements were reproduced for the years 1994,

1997 and partly for 2002, which resulted in low RMSE values for the credible inter-
val (RMSE(CI): 2.46 to 3.18 gNha−1 d−1) and when using the maximum posterior pa-
rameter vector θMAP (RMSE(θMAP): 6.66 to 9.20 gNha−1 d−1). Although in most of the25

remaining years the magnitude of measurements and simulations is similar, the tem-
poral dynamic could not always be clearly reproduced.
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N2O simulations especially suffer from the inability of the used model to simu-
late freeze-thaw pulse emissions (Papen and Butterbach-Bahl, 1999; Butterbach-Bahl
et al., 2002; Wolf et al., 2010) in 1995, 1996, 1997 and 2003 (RMSE(CI): up to
16.54 gNha−1 d−1). Therefore, following simulation to measurement comparisons of
N2O were restricted to periods being unaffected by freeze thaw events. Nevertheless,5

cumulative statistics and RMSE statistics can be compared with or without freeze thaw
events in Tables 3 and 4. One can see that the RMSE is strongly reduced when ne-
glecting frost-thaw emissions (e.g. RMSE(CI) reduced from 16.54 to 8.16 in 1996 and
from 2.91 to 0.39 in 1997). Peak emissions of N2O (> 10gNha−1 d−1) in August 2002
could also not be reproduced by the model, although the model could comprehend the10

general increase of N2O emissions in the beginning of August (up to 7 gNha−1 d−1).
CO2 emissions were underestimated by at least 22 % and 10 % during August to

November in 1995 and 1996. From May to June 1997, they were overestimated by at
least 31 %. Note that only 1004 CO2 observations were used for calibration, compared
to 1890 and 2075 values for NO and N2O. Thus, CO2 emissions were underweighted15

by a factor of approx. 0.5 in the calibration process.

5.2.2 Validation-set

To independently validate the behaviour of the parameterisation, we simulated soil at-
mosphere trace gas emissions in Höglwald for 2004 until 2007, i.e. to a time period,
which has not been used for calibration of LandscapeDNDC. The parameterisation of20

the model includes the same posterior-samples that have been used to simulate the
emissions of the calibration set (1994 to 1997, 2002 to 2003) and to visualise model
uncertainty.

For the validation set, LandscapeDNDC produced comparable results as for the cal-
ibration set. Cumulative NO emissions were covered by the 99 % credible interval in25

three out of four simulated years but only in one year with regard to simulated N2O
emissions. Soil CO2 emissions could be reproduced for all four years. Very low N2O
observations in 2004 were overestimated by at least 20 %, whereas measurements
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were underestimated by 23 % in 2005 and 4 % in 2006 (excluding freeze-thaw events,
which occurred in 2005 and 2006). Nevertheless, the averaged RMSE values of the
validation set (1.31 gNha−1 d−1) are not higher than the averaged RMSE values of the
calibration set (1.89 gNha−1 d−1).

The large discrepancy between soil NO simulations and measurements taken in5

2006 (RMSE = 21.31gNha−1 d−1) is the result of underestimated emissions from April
to October (by at least 42 %).

Soil CO2 fluxes were mainly overestimated during the periods May to July in 2005 (by
53 %), June to August in 2006 (by 62 %) and April to August in 2007 (by 85 %). Model
shortcomings with regard to accurately simulate soil CO2 fluxes during wintertime are10

obvious in 2005 and 2006 (see Fig. 6).

6 Discussion

Our work shows that the Bayesian calibration approach can successfully be imple-
mented to estimate the posterior parameter distribution of a complex biogeochemical
model used for simulating soil N2O, NO and CO2 fluxes at a spruce site of the Höglwald15

Forest, Germany. The applicability of the illustrated method to complex ecological mod-
els was also demonstrated in previous studies (e.g., van Oijen et al., 2005; Svensson
et al., 2008; Klemedtsson et al., 2008; Lehuger et al., 2009).

Bayesian calibration reduced the prior uncertainty (by up to 77 %) of 16 out of 26
parameters for simulating soil-atmosphere fluxes of the mentioned trace gases. For20

the remaining 10 parameters the calibration process achieved no significant reduction
in parameter uncertainty. The flat shape of the distribution of these 10 parameters
occurred because different parameter constellations can lead to similar model output.
The underlying reasons for that cannot be further specified, as the parameter space is
26-dimensional and small changes in high-sensitive parameters may be compensated25

by changes of (many or all) remaining parameters.
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Additionally, by simultaneously calibrating soil N2O, NO and CO2 emissions, we use
a multi-objective (here three objectives) framework, so that a worsening of CO2 esti-
mation can be compensated by an improvement in NO or N2O estimation. Gathering
additional data (e.g. from different forests sites) may help to reduce uncertainty for
these parameters. However, multiple parameter solutions do not affect the process of5

uncertainty estimation of soil-atmosphere gas fluxes modelled by LandscapeDNDC,
as the posterior parameter solution is used (including all parameter constellations) to
generate the distribution of simulated emissions.

The large number of parameters chosen, the complexity of the LandscapeDNDC
model (simulating the entire C, N and water fluxes of terrestrial ecosystems), as well10

as a narrow shaped posterior distribution as a result of a detailed data-set (Arhon-
ditsis et al., 2008; Rahn et al., 2011; Clark, 2005; van Oijen et al., 2011), reduces
the acceptance-rate. Consequently, slow convergence rates of the chains were ob-
served. The bimodal parameter EFFAC, which describes the partitioning of CO2 and
DOC production during microbial decomposition of organic matter, additionally ham-15

pers the algorithm to converge, as the parameter values have to pass a region of low
probability to reach the other mode (cf. Vrugt et al., 2009). Therefore it took 31 656
samples until the chains converged and the additional 50 000 steps per chain required
in total approximately three months computation time.

We could use the strength of an objective convergence check by using four inde-20

pendent chains. Thus, we are more secured of false conclusions using samples that
were not (yet) drawn from the posterior distribution. The plot of the bimodal parameter
EFFAC, however, shows that an overreliance on the value of the Gelman/Rubin statis-
tic may also not be sufficient. Although the value of the statistic R̂ < 1.2 is indicating
convergence of chains, the marginal distributions of each chain do not exactly follow25

the same shape. Nevertheless, as two chains show the bimodal shape and the other
two sampled from one mode or the other mode, respectively, we can be convinced that
the distribution including all 200 000 parameter values estimated the correct marginal
posterior distribution also for this parameter.
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The knowledge of all complex parameter dependencies helps to understand and
improve the reliability of future model simulations and additionally to quantify the un-
certainty of the simulated gas fluxes (N2O, NO, CO2) associated with model parameter
uncertainty. As we use samples from the joined posterior distribution, we achieve more
reliable uncertainty approximations of soil GHG exchange than by simply using sam-5

ples of each marginal parameter distribution.
As we simultaneously calibrated the model parameters with data for three soil trace

gas fluxes (N2O, NO and CO2) spanning six observation years, the parameter cali-
bration results are a compromise for all years and the respective gas fluxes. Hence,
better model simulation results are very likely to be obtained if single years or only10

one out of the three trace gases would have been chosen. Since the model is just
an expert representation of the “real world” one cannot expect that simulation results
and flux observations for all years and all gases are in perfect agreement. However,
the results show that the LandscapeDNDC model is able to follow most of the dy-
namics as observed in field measurements and to approximate annual total emissions15

(see Table 3) with a certain accuracy (RMSE NO: 2.5 to 21.3 gNha−1 d−1, N2O: 0.2 to
21.4 gNha−1 d−1, CO2: 5.8 to 12.6 kgCha−1 d−1, Table 4) not only for the years which
were used for model calibration but also for independent observation years.

Lowest agreement between measured and simulated fluxes was obtained for N2O.
Most of the discrepancy is due to the inability of LandscapeDNDC to simulate freeze-20

thaw N2O pulse emission events. Since up to now no frost-thaw process descriptions
were implemented into LandscapeDNDC, the calibration procedure was not able to
fit the model to these fluxes sufficiently. At the Höglwald spruce site as well as in
other temperate ecosystems exposed to severe winter freezing periods, freeze-thaw
N2O fluxes may dominate annual N2O fluxes (Papen and Butterbach-Bahl, 1999; Wolf25

et al., 2010), so that a failure to simulate N2O fluxes during freeze-thaw periods must
lead to incorrect annual flux estimates. However, the comparison of N2O data for the
non-freeze-thaw periods shows, that simulations of N2O fluxes by LandscapeDNDC
are generally in the same range as the measurements for the calibration and at least
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close to measurements of the validation set. Nevertheless, due to the importance of
freeze-thaw emissions for the annual N2O budget there is an urgent need to further de-
velop and implement model algorithms describing underlying processes of freeze-thaw
based N2O production and emission in/from soils (e.g., Wolf et al., 2011).

Also with regard to soil NO and CO2 fluxes we identified short-comes of the used5

LandscapeDNDC. E.g. higher NO emissions in the summer period in 1995 and 1996
were systematically underestimated, while soil CO2 emissions tended to be overesti-
mated in the end of spring and beginning of summer and underestimated in subse-
quent summer days. This points either towards insufficient process descriptions, which
have already been suggested earlier (Stange et al., 2000), or to problems with model10

initialisation. We limited the calibration procedure to a subset of 26 most influential
parameters describing C and N turnover and production, consumption and emission
processes of N2O, NO and CO2 in soils. To allow a more time efficient calibration, we
excluded parameters describing soil water and vegetation dynamics. Nevertheless, the
above-mentioned failures to accurately describe soil NO and CO2 fluxes for all seasons15

point towards the necessity to recheck simulated soil water and vegetation dynamics
in LandscapeDNDC.

However, in total the measurements of the calibration and the validation set were cov-
ered reasonably well (RMSE NO: 2.5 to 21.3 gNha−1 d−1, N2O: 0.2 to 21.4 gNha−1 d−1,
CO2: 5.8 to 12.6 kgCha−1 d−1, Table 4), in particular if we consider that we did not in-20

clude all sources of errors (i.e. structural model error, input data error). In order to
achieve improved approximations of the uncertainty of N2O, NO and CO2 emissions,
a stochastic error term could be included in future research, e.g. by setting up a hi-
erarchical Bayesian framework, to account for model miss-specifications (Rahn et al.,
2011; Arhonditsis et al., 2008).25
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7 Conclusions

Following the identification of the 26 most sensitive parameters out of a total of 67
model parameters describing soil emission of N2O, NO and CO2 in the biogeochem-
ical model LandscapeDNDC, we successfully implemented a Bayesian calibration to
estimate the joined posterior distribution of the most influential model parameters. To5

ensure that the posterior distribution of parameters was assessed, we used a multi-
chain approach and tested for convergence of the Markov chain by the objective criteria
developed by Gelman et al. (2003). In contrast to the a priori assumption of a uniform
distribution of parameter values over a given range the posterior parameter distribu-
tion showed a more distinct pattern, including all complex parameter dependencies.10

Bayesian calibration reduced the prior uncertainty (by up to 77 %) of 16 out of 26
parameters. This knowledge of the posterior probability distribution is of outstanding
importance to guide future model development, e.g. to inform experimentalists which
parameters need further investigation.

A comparison of simulated soil N2O, NO and CO2 emissions to measured flux data15

over the six observation years used in the calibration process showed high agreement.
The same is true for independent validation data, including observations of four other
years. Hence, we were able to quantify the parameter-induced uncertainty of the total
simulated N2O, NO and CO2 emission. Furthermore, other uncertainty sources such
as a model error need to be considered in order to estimate the total uncertainty of20

simulated soil fluxes of N2O, NO and CO2.
In our study freeze-thaw events could not be reproduced, as underlying processes

are not included in the LandscapeDNDC version used in this study. Since these events
can potentially have a strong impact on the total annual soil N2O emission, future model
development and implementation of freeze-thaw algorithms is foreseen.25
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Table 1. Selected parameters being most influential for simulating soil-atmosphere trace gas
fluxes (N2O, NO and CO2) with LandscapeDNDC.

Parameter Description

D N2O effective N2O diffusion constant [m2 h−1]
D NO effective NO diffusion constant [m2 h−1]
DRF scaling factor for decomposition rate constants of SOM
EFFAC partitioning of CO2 and DOC production during microbial decomposition of organic

matter
FNO3 U fraction of microbial N-uptake as (NO3)
FRC factor regulating microbial death depending on the availability of very labile and

labile carbon
FTRANS factor regulating microbial nitrate immobilisation and direct re-mineralisation to NH4
KCRB L decomposition constant of labile dead microbial biomass
KHDC L decomposition constant of labile humads
KHDC R decomposition constant of recalcitrant humads
KM O2 factor regulating splitting of DOC and CO2 during decomposition of SOM depending

on O2 concentration
KMDC DOC factor for half optimum content of doc in soil solution for denitrifier activity [kgCha−1]
KMDC N factor for half optimum content of nitrogen in soil solution for denitrifier activity

[kgNha−1]
KMM DOC factor regulating growth of microbes in dependency of DOC substrate
KMNO2 factor regulating NO2 to NO3 conversion depending on NO2 concentration during ni-

trification
KN2O loss rate of N2O during nitrification
KNO loss rate of NO during nitrification
KRCL decomposition constant for labile litter pool
KRCR decomposition constant for recalcitrant litter pool
MICRRESP factor regulating CO2 production during microbial metabolism in dependency of mi-

crobial C/N ratio
NH4 DENIMAX maximum fraction of NH4 available for auto- and heterotrophic nitrification
PERTL fraction of labile litter, which can be reallocated into deeper soil layers
PERTR fraction of recalcitrant litter, which can be reallocated into deeper soil layers
PERTVL fraction of very labile litter, which can be reallocated into deeper soil layers
PSL SC depth dependent factor for reallocation of organic matter into deeper soil layers
SRB fraction of labile dead microbial biomass
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Table 2. Summary of marginal parameter distribution. Posterior SD and skewness were esti-
mated whereas the prior SD was analytically calculated.

Parameter θMAP 95 % cred. interval description SDprior SDpost
SDpost

SDprior
skewness

D N2O 3.34e-03 [0.001, 0.114] right skew. 0.043 0.027 0.62 2.78
D NO 4.84e-02 [0.018, 0.146] flat 0.04 0.039 0.95 0.17
DRF 5.49e-02 [0.024, 0.055] left skew. 0.016 0.009 0.55 −0.64
EFFAC 8.31e-01 [0.290, 0.925] bimodal 0.192 0.205 1.00* −0.21
FNO3 U 9.23e-01 [0.428, 0.993] left skew. 0.18 0.153 0.85 −1.77
FRC 2.74e-02 [0.015, 0.381] right skew. 0.113 0.106 0.94 0.43
FTRANS 3.53e-02 [6.69e-04, 0.048] right skew. 0.014 0.015 1.00* 0.35
KCRB L 3.22e+00 [1.54, 3.92] right skew. 0.722 0.704 0.98 0.33
KHDC L 2.89e-02 [0.002, 0.029] flat 0.008 0.008 0.98 −0.07
KHDC R 2.20e-03 [0.001, 0.015] flat 0.004 0.004 1.00* −0.05
KM O2 1.13e-01 [0.105, 0.950] right skew. 0.257 0.265 1.00* 0.54
KMDC DOC 8.25e-04 [0.001, 0.025] right skew. 0.007 0.007 0.98 0.14
KMDC N 5.53e-02 [0.017, 0.230] right skew. 0.07 0.058 0.83 0.67
KMM DOC 8.23e-03 [3.17e-04, 0.009] flat 0.003 0.003 1.00* 0.10
KMNO2 4.13e-02 [0.015, 0.069] right skew. 0.021 0.014 0.65 0.93
KN2O 1.01e-02 [8.98e-04, 0.024] right skew. 0.026 0.006 0.23 1.71
KNO 9.53e-03 [0.001, 0.024] flat 0.007 0.007 1.00* −0.10
KRCL 2.20e-01 [0.128, 0.888] left skew. 0.257 0.217 0.84 −0.46
KRCR 2.65e-01 [0.070, 0.298] left skew. 0.072 0.065 0.90 −1.04
MICRRESP 5.06e-02 [0.042, 0.118] flat 0.023 0.023 1.00* −0.02
NH4 DENIMAX 8.21e-01 [0.704, 0.966] right skew. 0.081 0.077 0.95 0.45
PERTL 6.38e-04 [2.63e-04, 7.39e-04] flat 1.4e-04 1.4e-04 0.99 −0.09
PERTR 8.53e-05 [4.36e-05, 1.96e-04] flat 4.6e-05 4.7e-05 1.00 0.15
PERTVL 9.16e-03 [8.15e-04, 0.015] flat 0.004 0.004 0.99 0.09
PSL SC 1.21e-02 [0.006, 0.029] right skew. 0.008 0.007 0.81 0.22
SRB 5.43e-01 [0.512, 0.977] flat 0.141 0.14 0.99 0.04

* capped to 1.0.
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Table 3. Summary of cumulated measured and simulated emissions of NO, N2O and CO2. Sim-
ulated fluxes were only cumulated if corresponding periods with observations were available.
Values in Brackets are calculated after freeze-thaw events.

Soil flux 1994 1995 1996 1997 2002 2003 Total 2004 2005 2006 2007 Total

NO No of days 357 341 350 359 275 208 1890 162 322 263 263 1010
[kgNha−1] Minimum 5.02 4.47 3.97 4.91 3.85 2.87 1.78 3.88 2.88 3.61

Q0.005 5.95 5.33 4.79 5.71 4.52 3.34 2.04 4.60 3.43 4.24
Mean 7.31 6.55 5.94 7.12 5.50 4.39 2.67 5.69 4.55 5.20
St. dev 0.54 0.49 0.48 0.55 0.40 0.40 0.27 0.44 0.44 0.39
Q0.995 8.75 7.87 7.30 8.56 6.55 5.40 3.41 6.89 5.68 6.23
Maximum 9.52 8.52 7.95 9.42 7.09 5.83 3.86 7.61 6.35 6.82
Best 7.05 6.42 5.91 6.75 5.50 4.23 35.85 2.46 5.49 4.25 4.95 17.16
Measured 6.23 8.16 8.69 6.98 4.24 6.73 41.03 3.62 5.46 8.64 4.38 22.11

N2O No. of days 345 358 343 346 343 340 2075 296 343 264 294 1197
[kgNha−1] Minimum 0.33 0.30 0.23 0.29 0.28 0.23 0.20 0.26 0.23 0.23

Q0.005 0.38 0.37 0.30 0.35 0.34 0.29 0.25 0.32 0.28 0.27
Mean 0.52 0.53 0.47 0.48 0.49 0.42 0.36 0.45 0.38 0.38
St. dev 0.06 0.06 0.07 0.05 0.06 0.06 0.05 0.05 0.04 0.04
Q0.995 0.67 0.69 0.67 0.62 0.64 0.57 0.50 0.60 0.51 0.49
Maximum 0.76 0.83 0.78 0.72 0.75 0.69 0.57 0.73 0.62 0.56
Best 0.51 0.55(0.51) 0.55(0.38) 0.48(0.40) 0.54 0.41(0.34) 3.02(2.68) 0.37 0.45(0.37) 0.39(0.3) 0.39 1.60(1.43)
Measured 0.39 0.80(0.75) 2.90(0.89) 0.61(0.25) 0.65 0.36(0.21) 5.72(3.29) 0.16 0.97(0.74) 2.14(0.51) 0.47 3.74(1.88)

CO2 No. of days 287 355 362 1004 299 334 331 228 1192
[kgCha−1] Minimum 5584 4746 6404 4607 5478 5434 3805

Q0.005 6464 5590 7327 5216 6314 6231 4387
Mean 7992 7074 9055 6401 7844 7688 5436
St. dev 622 612 710 498 625 600 436
Q0.995 9591 8683 10 918 7706 9491 9265 6591
Maximum 10 262 9354 11 721 8267 10 176 9937 7081
Best 8133 7250 9282 24 665 6570 8036 7852 5576 28 035
Measured 10 673 8813 7740 27 226 5294 7332 7556 3913 24 095
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Table 4. Residual mean squared error (RMSE) per year and soil-atmosphere gas-flux for the
best simulation (RMSE(θMAP)) and the distribution of the gas-flux simulations. The minimal
distance to the 99 % credible intervals was used to calculate the RMSE of the distribution
(RMSE(CI)). Values in brackets are calculated using simulated emissions after freeze-thaw
events.

Soil flux 1994 1995 1996 1997 2002 2003 2004 2005 2006 2007

NO No of days 357 341 350 359 275 208 162 322 263 263
[gNha−1 d−1] RMSE(CI) 2.46 5.93 11.11 3.18 3.09 16.99 8.75 9.06 21.31 6.59

RMSE(θMAP) 6.66 11.68 15.92 9.20 7.94 22.66 12.46 14.45 28.32 11.57

N2O No of days 345 358 343 346 343 340 296 343 264 294
[gNha−1 d−1] RMSE(CI) 0.17 1.40(1.37) 16.54(8.16) 2.91(0.39) 0.96 0.85(0.28) 0.37 3.82(1.51) 21.45(2.9) 0.45

RMSE(θMAP) 0.53 1.82(1.77) 17.01(8.22) 3.12(0.77) 1.45 1.09(0.67) 0.83 4.19(2.17) 21.80(3.1) 1.06

CO2 No of days 287 355 362 299 334 331 228
[gCha−1 d−1] RMSE(CI) 10 680 6694 5804 8991 10 311 12 483 12 644

RMSE(θMAP) 15 344 9986 8989 11 623 13 106 15 806 16 446

5277

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Model Input

LandscapeDNDC Model Output

Observations
Markov Chain

Monte Carlo (MCMC)

relational

Database

- Control var. (simulation years, site, ... )

- Boundary conditions (climate, soil, 

  vegetation, ... )

Parameters 

(prior distribution)

Model Input

20,000 Parameters

LandscapeDNDC Model Output

Uncertainty Quantification 

of GHG emissions

Bayesian

Calibration

Method of Morris67 Parameters 26 Parameters

Sensitivity Analysis

Parameters 

(posterior distribution)

Fig. 1. Schematic view of the workflow for assessing the uncertainty of simulated soil GHG
emissions while using LandscapeDNDC. After reduction to influential parameters by means of
a sensitivity analysis, the distribution of the model parameters was estimated using a Bayesian
calibration. Subsequently, an uncertainty quantification of simulated emissions was carried out
using 20 000 samples out of the 200 000 post burn-in realisations of the parameter distribution
stored in a relational database.
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Fig. 2. A: Heat-map of 2-dimensional marginal distribution of EFFAC and DRF (decomposition
rate factor), the brighter the polygons, the higher the posterior value. B: histogram of DRF using
all values and histogram of DRF using only values of DRF, where EFFAC < 0.5.
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Fig. 3. Heat-map of 2-dimensional marginal distribution of KRCL (decomposition constant for
labile litter pool) and KMDC N (factor for half optimum content of nitrogen in soil solution for
denitrifier activity). Higher values of KRCL lead to a wider range of KMDC N.
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Fig. 4. Four typical histograms of marginal parameter distributions. The coloured density lines
of a right-skewed (KN2O: loss rate of N2O during nitrification), bi-modal (EFFAC: describing
the partitioning of CO2 and DOC production during microbial decomposition of organic matter),
flat (KHDC L: decomposition constant of labile humads pool) and a left-skewed distribution
(KRCL: decomposition constant of labile litter pool) were done by post burn-in samples of each
individual chain, whereas the histograms are plotted using post burn-in samples of all chains.
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Fig. 5. Simulated fluxes (calibration set) versus measurements of NO, N2O and CO2 fluxes at
the spruce site of the Höglwald Forest in the year 1997. The grey box highlights pulse emissions
of N2O during soil freeze-thaw events.
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Fig. 6. Simulated fluxes (validation set) versus measurements of NO, N2O and CO2 fluxes at
the spruce site of the Höglwald Forest in the year 2006. The grey box highlights pulse emissions
of N2O during soil freeze-thaw events.
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Fig. 7. Simulated fluxes (validation set) versus measurements of NO, N2O and CO2 fluxes at
the spruce site of the Höglwald Forest in the year 2007.
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Fig. 8. Correlations of all 200 000 post burn-in parameter samples.
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Fig. 9. Heat-maps of pair-wise marginal distributions; brighter polygons show higher posterior
values.
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