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Figure 1: Left: order of the quark hadron transition as a function of quark masses at µ = 0. Middle: for finite
µ the critical lines turn into surfaces. The curvature is such that the chiral and deconfinement transitions are
weakened. Right: nature of the Z(3)-transition endpoint at µ/T = iπ/3.

1. Introduction

Due to the sign problem prohibiting lattice simulations at finite baryon density, the QCD phase
diagram in the space of temperature T and chemical potential for baryon number µB is largely
unknown. Employing indirect methods like reweighting, Taylor expansions about µB = 0 or sim-
ulations at imaginary chemical potentials µ = iµi,µi ∈ R, followed by analytic continuation, con-
trolled calculations are only feasible as long as the quark chemical potential µ = µB/3<∼T [1].
Using the latter two methods we previously calculated the curvatures of the chiral and deconfine-
ment critical surfaces, which bound the mass regions that exhibit first order chiral or deconfinement
transitions [2–5]. In both cases the curvature is such that the first order region shrinks, i.e. the chiral
and deconfinement phase transitions weaken with real chemical potential, as shown schematically
in Fig. 1 (left and middle).

In this contribution we propose to study the phase diagram at imaginary chemical potential,
without continuing the numerical results directly to real µ . Since the fermion determinant is real
for imaginary chemical potentials, there is no sign problem and simulations are feasible without
additional systematic errors besides finite volume and cutoff effects, and at no additional computa-
tional cost compared to simulations at µ = 0. For specific critical values of the imaginary chemical
potential, there are rich critical structures like first order triple points, critical points with 3d Ising
universality as well as tricritical points. We then argue that useful information for the phase dia-
gram at real µ can be inferred from the results. In particular, we demonstrate that the weakening
of the deconfinement transition in the heavy quark region is dictated by the tricritical scaling of the
deconfinement critical surface at imaginary chemical potentials, with a similar weakening expected
for the chiral transition.

2. The QCD phase diagram at imaginary chemical potential

The QCD partition function exhibits two important exact symmetries, reflection symmetry in
µ and Z(3)-periodicity in µi, which hold for quarks of any mass [6],

Z(µ) = Z(−µ), Z
(

µ

T

)
= Z

(
µ

T
+ i

2πn
3

)
, (2.1)
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Figure 2: Left: phase diagram for imaginary µ . Vertical lines are first order transitions between Z(3)-
sectors, arrows show the phase of the Polyakov loop. The µ =0 chiral/deconfinement transition continues to
imaginary µ , its order depends on N f and the quark masses. Right: phase diagram for N f = 3 at µ = iπT .
Solid lines are lines of triple points ending in tricritical points, connected by a Z(2) critical line.

for general complex values of µ . Let us now consider imaginary chemical potential, µ = iµi. The
symmetries imply transitions between adjacent centre sectors of the theory at fixed µc

i = (2n +
1)πT/3,n = 0,±1,±2, . . .. The Z(3)-sectors are distinguished by the Polyakov loop

L(x) =
1
3

Tr
Nτ

∏
τ=1

U0(x,τ) = |L|e−iϕ , (2.2)

whose phase ϕ cycles through 〈ϕ〉= n(2π/3),n = 0,1,2, . . . as the different sectors are traversed.
Moreover, the above also implies reflection symmetry about the Z(3) phase boundaries, Z(µc

i +
µi) = Z(µc

i −µi).

Transitions in µi between neighbouring sectors are of first order for high T and analytic
crossovers for low T [6–8], as shown in Fig. 2 (left). Correspondingly, for fixed µi = µc

i , there
are transitions in T between an ordered phase with two-state coexistence at high T and a disor-
dered phase at low T . An order parameter to distinguish these phases is the shifted phase of the
Polyakov loop, φ = ϕ − µi/T [9]. At high temperature it fluctuates about 〈φ〉 = ±π/3 on the
respective sides of µc

i . The thermodynamic limit picks one of those states, thus spontaneously
breaking the reflection symmetry about µc

i . At low temperatures φ fluctuates smoothly between
those values, with the symmetric ground state 〈φ〉= 0.

Away from µi = µc
i , there is a chiral or deconfinement transition line separating high and low

temperature regions. This line represents the analytic continuation of the chiral or deconfinement
transition at real µ . Its nature (1st, 2nd order or crossover) depends on the number of quark flavours
and masses. It has long been believed that this line meets the Z(3) transition at its endpoint, and
early evidence [7, 8] is consistent with this. While a lot of numerical work at imaginary chemical
potential was devoted to determining the chiral or deconfinement transition and continue it about
µ = 0, here we are interested in the nature of the endpoint of the Z(3) transition line as a function
of quark masses. Similar investigations have been carried out for N f = 4 [10] and more recently
for N f = 2 [11]. We thus fix the chemical potential to an imaginary critical value, µi = πT , and
investigate the order of the transition by scanning vertically in T for various masses.
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Figure 3: Finite size scaling of B4 for small and intermediate quark masses, fitted to Eq. (3.2). Insets show
data rescaled with fixed ν = 0.33,0.63, corresponding to a first/second order transition, respectively.

3. Numerical results for N f = 3

In this investigation we consider N f = 3 QCD, using the standard staggered action and the
RHMC algorithm. In order to identify the order of the transition, we study the finite size scaling of
the Binder cumulant constructed from the imaginary part of the Polyakov loop,

B4(Im(L))≡ 〈[Im(L)−〈Im(L)〉]4〉/〈[Im(L)−〈Im(L)〉]2〉2 = 〈(Im(L))4〉/〈(Im(L))2〉2 . (3.1)

For µ/T = iπ , every β -value represents a point on the phase boundary and thus is pseudo-critical.
In the thermodynamic limit, B4(β )=3,1.5,1.604,2 for crossover, first order triple point, 3d Ising
and tricritical transitions, respectively. On finite L3 volumes the steps between these values are
smeared out to continuous functions whose gradients increase with volume. The critical coupling
βc for the endpoint is obtained as the intersection of curves from different volumes. In the scaling
region around βc, B4 is a function of x = (β −βc)L1/ν alone and can be expanded

B4(β ,L) = B4(βc,∞)+a1x+a2x2 + . . . , (3.2)

up to corrections to scaling, with the critical exponent ν characterising the approach to the ther-
modynamic limit. The relevant values for us are ν = 1/3,0.63,1/2 for a first order, 3d Ising or
tricritical transition, respectively.

For each quark mass, we simulated lattices of sizes L = 8,12,16 (20 in a few cases), at typi-
cally 8-14 different β -values, calculated B4(Im(L)) and filled in additional points by Ferrenberg-
Swendsen reweighting [12]. Fig. 3 shows examples for quark masses am = 0.04,0.3. B4 moves
from large values (crossover) at small β (i.e. low T ) towards 1 (first order transition) at large β

(i.e. high T ). In the neighbourhood of the intersection point, we then fit all curves simultaneously
to Eq. (3.2), thus extracting βc,B4(βc,∞),ν ,a1,a2. We observe that the value of the Binder cumu-
lant at the intersection can be far from the expected universal values in the thermodynamic limit.
This is a common situation: large finite-size corrections are observed in simpler spin models even
when the transition is strongly first-order [13]. Moreover, in our case, logarithmic scaling correc-
tions will occur near a tricritical point since d = 3 is the upper critical dimension in this case [14].
Fortunately, the critical exponent ν , which determines the approach to the thermodynamic limit, is
less sensitive to finite-size corrections and in Fig. 3 consistent with ν = 0.33,0.63, its values for
first and second order transitions, respectively. A check is to fix ν to one of the universal values
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Figure 4: Left: Critical exponent ν at µ/T = iπ . Right: Im(L) distribution at the Z(3) transition endpoint.

and see whether the curves collapse under the appropriate rescaling, as in Fig. 3 insets. Note that
the critical coupling determined from the intersection of the B4 curves in Fig. 3 is consistent with
the one extracted from the peak of the specific heat or the chiral susceptibility.

We have investigated quark mass values ranging from the chiral to the pure gauge regime. The
exponents ν pertaining to each of them are shown in Fig. 4 (left). There is unambiguous evidence
for a change from first order scaling to 3d Ising scaling, and back to first order scaling. Note that,
in the infinite volume limit, the curve would be replaced by a non-analytic step function, whereas
the smoothed-out rise and fall in Fig. 4 (left) corresponds to finite volume corrections.

The results from the finite size scaling of B4 can be sharpened by the probability distribution
of Im(L) at the critical couplings βc, corresponding to the crossing points. This is shown in Fig. 4
(right) for masses am = 0.05,0.1,0.2,0.3 for L = 16. The lightest mass displays a clear three-peak
structure, indicating coexistence of three states at the coupling βc, which therefore corresponds to
a triple point. The same observation holds for heavy masses. For am = 0.1,0.2 the central peak
is disappearing and for am = 0.3 we are left with the two peaks characteristic for the magnetic
direction of 3d Ising universality. We have checked the expected volume-scaling of all distributions.

Hence, for small and large masses, we have unambiguous evidence that the boundary point
between a first order Z(3) transition and a crossover at µ = iπT corresponds to a triple point.
This implies that two additional first order lines branch off the Z(3)-transition line as in Fig. 2
(left), which are to be identified as the chiral (for light quarks) or deconfinement (for heavy quarks)
transition at imaginary chemical potential. This is expected on theoretical grounds: for m = 0 or
+∞, these transitions are first-order for any chemical potential. The fact that the endpoint of the
Z(3) transition line changes its nature from a triple point at low and high masses to second order
for intermediate masses implies the existence of two tricritical points.

We are thus ready to discuss the (T,m) phase diagram of N f = 3 QCD at fixed imaginary
chemical potential, µ = i(2n + 1)πT/3. The qualitative situation is shown in Fig. 2 (right). For
high temperatures, we have a two-phase coexistence with the phase of the Polyakov loop flipping
between two possible values. At low temperatures, instead, we observe phase averaging over the
possible phases of the Polyakov loop. Since the transition between these regimes is associated with
a breaking of a global symmetry, it is always non-analytic.

An important question concerns cut-off effects. These strongly affect quark masses, and in
particular the tricritical points. However, universality implies that critical behaviour is insensitive

5
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Figure 5: Critical line mc(µ2) in the 3-state Potts model [4] (left) and for QCD in a strong coupling expan-
sion [5] (middle). Right: deconfinement critical surface determined by tricritical scaling.

to the cut-off, as long as the global symmetries of the theory are not changed. Our calculation is
therefore sufficient to establish the qualitative picture Fig. 2 (right) in the continuum. The change
from first order to 3d Ising behaviour for low and intermediate masses has been observed earlier
for N f = 2 [11] and we expect the corresponding (T,m)-diagram to look the same.

4. N f = 2+1 and connection to real µ

Combining our knowledge of N f = 2,3, the nature of the Z(3) transition endpoint can be
characterised as a function of quark masses as in Fig. 1 (right), in complete analogy to the corre-
sponding plot at µ = 0 (left). Schematically, we have a first order region of triple points for both
heavy and light masses, which are separated from a region of second order points by a chiral and
deconfinement tricritical line, respectively. This entire diagram is computable by standard Monte
Carlo methods and constitutes a useful benchmark for model studies of the QCD phase diagram.

How is this diagram connected to the one at µ = 0? Generally, a tricritical point represents
the confluence of two ordinary critical points. In the heavy mass region the critical endpoints
of the deconfinement transition, representing the deconfinement critical surface, merge with the
endpoints of the Z(3) transition. Thus, the deconfinement tricritical line is the boundary of the
deconfinement critical surface at µ = iπT/3. This can be explicitly demonstrated by simulations
of the 3d three-state Potts model. It is well know that this model is in the same universality class
as QCD with heavy quarks and can therefore be used in the neighbourhood of the deconfinement
critical line. In particular, it has been used to calculate, for a fixed number of flavours, the change of
the critical mass with chemical potential, since the sign problem is mild and manageable there [4].
The results, including a tricritical point, are shown in Fig. 5 (left), together with a QCD strong
coupling expansion result (right) [5]. The deviation from the symmetry plane, ((µ/T )2 +(π/3)2),
is analogous to an external field in a spin model, and the way a critical line leaves a tricritical point
in such a field is again universal [14],

mc

T
(µ

2) =
mtric

T
+K

[(
π

3

)2
+

(
µ

T

)2
]2/5

. (4.1)

Fig. 5 shows that the data from [4, 5] excellently fit this form, far into the real chemical potential
region. Thus for heavy quark masses, the form of the critical surface of the deconfinement transition
is determined by tricritical scaling of the Z(3) transition at imaginary µ = iπT/3.

It is clear that the chiral critical surface will likewise terminate on the chiral tricritical line at
µ = iπT/3. Unfortunately, for this surface no suitable effective model is available and we presently
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do not know to which extent it is shaped by tricritical scaling. Estimating amtric1 ∼ 0.1 and using
amc(0)≈ 0.0265 [3], K is fixed and expansion of Eq. (4.1) predicts a negative curvature c1 ≈−10
for the chiral critical surface, as compared to the directly calculated c1 =−3.3(3) (in the notation
of [3]). Tricritical scaling thus predicts a weakening also of the chiral phase transition with real
chemical potential, independently confirming the findings in [2, 3, 7].

5. Conclusions

We have clarified the nature of the endpoint of the Roberge-Weiss or Z(N) transition at imagi-
nary chemical potentials as a function of quark masses and firmly established that it connects with
the (pseudo-) critical lines of the chiral or deconfinement transition. For light and heavy quark
masses, the latter are of first order and the junction is a triple point, while it is a critical endpoint
in the 3d universality class otherwise. We have generalised this result to arbitrary quark mass com-
binations and sketched a “Columbia plot” for µ = iπT/3. The plot features two tricritical lines
bounding areas of triple points, which represent the boundaries of the chiral and deconfinement
critical surfaces, respectively. We further demonstrated that the curvature of the deconfinement
critical surface is determined by the associated tricritical scaling and argued the same to hold qual-
itatively for the negative curvature of the chiral critical surface.
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