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Since most anticancer therapies including immunotherapy trigger programmed cell death
in cancer cells, defective cell death programs can lead to treatment resistance and tumor
immune escape. Therefore, evasion of programmed cell death may provide one possible
explanation as to why cancer immunotherapy has so far only shown modest clinical
benefits for children with cancer. A better understanding of the molecular mechanisms
that regulate sensitivity and resistance to programmed cell death is expected to open new
perspectives for the development of novel experimental treatment strategies to enhance
the efficacy of cancer immunotherapy in the future.
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INTRODUCTION
Programmed cell death is an intrinsic cellular program that is
present in every cell of the body and involved in the regula-
tion of various physiological and pathophysiological processes
(Lockshin and Zakeri, 2007). Also, programmed cell death is
evolutionary highly conserved underlining its critical role in the
regulation of tissue homeostasis, a subtle balance in the mainte-
nance of cell death and proliferation signals (Lockshin and Zakeri,
2007). In addition, the antitumor activity of most anticancer ther-
apies, including immunotherapy, critically relies on the induction
of programmed cell death in cancer cells. However, cell death
programs are typically blocked in human cancers, since the eva-
sion of cell death provides a survival advantage to the tumor
(Fulda, 2009b). This implies that the efficacy of antitumor ther-
apies, e.g., immunotherapy, is impaired by the inactivation of
cell death pathways in tumor cells. Therefore, one strategy to
enhance the efficacy of cancer immunotherapy resides in the reac-
tivation of cell death pathways in tumor cells. By lowering the
threshold to trigger cell death in cancer cells, it is anticipated
that immunotherapies will be more effective in killing their tar-
get cells. This concept implies that a better understanding of the
molecular mechanisms that regulate cell death programs in can-
cer cells will likely yield novel targets for therapeutic intervention
that can be used to augment immunotherapy-based anticancer
strategies. This approach may open new perspectives to improve
the antitumor activity of immunotherapies.

PROGRAMMED CELL DEATH
The first description of programmed cell death dates back to
the mid-1960s (Kerr, 1965; Lockshin and Williams, 1965). Since
then several forms of programmed cell death have been identi-
fied, including apoptosis, necroptosis, or autophagic cell death

(Galluzzi et al., 2012). Apoptosis represents one of the best char-
acterized modes of cell death that is highly conserved throughout
evolution and involved in the regulation of various physiological
conditions. In addition, there is a huge body of evidence demon-
strating that deregulation of apoptosis contributes to various
human diseases (Lockshin and Zakeri, 2007). For example, too
little apoptosis can promote tumor formation and progression
and also plays a critical role in conferring treatment resistance
(Fulda, 2009b). Necroptosis has recently been identified as a reg-
ulated, caspase-independent mode of cell death (Vandenabeele
et al., 2010). In contrast to necrosis that represents an acciden-
tal form of cell death, necroptosis is classified as a programmed
form of necrosis that is often engaged under conditions of insuf-
ficient caspase activation (Vandenabeele et al., 2010). Recently,
necroptosis has been reported as an alternative cell death pro-
gram that is triggered in apoptosis-resistant acute leukemia cells
that lack FADD or caspase-8 (Laukens et al., 2011), indicat-
ing that necroptosis may provide a new approach to overcome
apoptosis resistance. Autophagic cell death is characterized by
the dependence on autophagy genes for its execution along with
typical morphological features such as cytoplasmic vacuolization
(Galluzzi et al., 2012). The current review focuses on apoptosis,
since its implication in the regulation of immunotherapy-induced
cell death has most extensively been studied.

DEATH RECEPTORS
Death receptors are part of the superfamily of tumor necro-
sis factor (TNF) receptors, a large family of transmembrane
receptors that exhibit a broad spectrum of biological activities,
including the control of programmed cell death and immune
functions (Ashkenazi, 2008). The unifying structural feature of
the death receptor family resides in a cytoplasmic domain, i.e.,
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the “death domain” (Ashkenazi, 2008). This protein stretch of
about 80 amino acids mediates protein–protein interactions and
is critically required for the transduction of the lethal signal
from the outside to the interior of the cell (Ashkenazi, 2008).
As far as the induction of cell death is concerned, two death
receptor systems have been best characterized, i.e., the CD95
(APO-1/Fas) system and the TNF-related apoptosis-inducing lig-
and (TRAIL) receptor system. Both receptor systems comprise
transmembrane cell surface receptors that harbor the intracellu-
lar death domain and a cysteine-rich extracellular domain that
serves for binding of cognate ligands (Ashkenazi, 2008). While
one CD95 receptor is known, four distinct membrane-based
TRAIL receptors (TRAIL-Rs) have been identified in the mam-
malian system (Ashkenazi, 2008). Two of these TRAIL-Rs signal
to cell death, i.e., TRAIL-R1 and TRAIL-R2, whereas TRAIL-R3
and TRAIL-R4 represent antagonistic receptors that do not sig-
nal to cell death, although they are able to bind TRAIL as the
corresponding ligand (Ashkenazi, 2008). This higher level of
complexity in the TRAIL-R/ligand system has resulted in the gen-
eration of specific monoclonal antibodies that specifically target
the agonistic TRAIL-Rs TRAIL-R1 and TRAIL-R2. The CD95
receptor/CD95 ligand system plays an important role in the regu-
lation of immune function (Ehrenschwender and Wajant, 2009).
For example, the CD95 system contributes to the control of the
adaptive immune response by mediating activation-induced cell
death (AICD) of T cells. This implies that the regulation of CD95
signaling may have an impact on tumor formation and progres-
sion. In addition to CD95/CD95 ligand, also TRAIL is expressed
by various cells of the immune system, including natural killer
(NK) cells, T cells, dendritic cells, and macrophages (Falschlehner
et al., 2009). TRAIL has been shown to be involved in the regula-
tion of immunoregulatory functions and immune surveillance of
tumors and metastasis. Results derived from studies using TRAIL
knockout mice have shown that TRAIL exerts a crucial role in
tumor immune surveillance (Smyth et al., 2001, 2003; Takeda
et al., 2001; Cretney et al., 2002; Finnberg et al., 2008; Grosse-
Wilde et al., 2008). Of note, lack of TRAIL or its receptors was
shown to be associated with increased susceptibility to tumor
metastasis compared to wild-type animals (Cretney et al., 2002;
Finnberg et al., 2008; Grosse-Wilde et al., 2008). Furthermore,
TRAIL expression on NK cells was reported to restrain metastatic
spread of tumor cells (Smyth et al., 2001; Takeda et al., 2001). In
addition, the TRAIL system has been implicated in the regulation
of carcinogenesis. To this end, it was shown that carcinogenesis-
triggered cancer formation was increased in mice lacking the
TRAIL-R or in the presence of antagonistic TRAIL-R antibod-
ies (Takeda et al., 2001; Finnberg et al., 2008). These studies
imply that the TRAIL-R/ligand system plays an important role in
the regulation of tumor immune surveillance during both tumor
formation and progression. Thus, resistance to TRAIL-induced
apoptosis may favor tumor immune escape.

APOPTOSIS SIGNALING PATHWAYS
Two principal signal transduction pathways leading to the
induction of apoptosis have been delineated, i.e., the receptor
(extrinsic) pathway and the mitochondrial (intrinsic) pathway of
apoptosis (Fulda and Debatin, 2006b) (Figure 1). Engaging the

FIGURE 1 | Core apoptosis signaling pathways. See text for more
details.

apoptotic machinery via either of these two routes results eventu-
ally in the activation of caspases, a family of cysteine proteases that
function as death effector molecules in various forms of apop-
tosis by proteolytic cleavage of multiple cytoplasmic or nuclear
substrates (Degterev et al., 2003). This proteolytic breakdown of
intracellular material including cytoskeletal proteins and nuclear
DNA eventually results in the organized breakdown of the cell,
typically without any spillage of the intracellular content into the
environment.

As far as the death receptor (extrinsic) pathway of apoptosis
is concerned, this cascade is typically engaged by the binding of
death receptor ligands to their cognate death receptor on the cell
surface (Ashkenazi, 2008). This leads to the oligomerization of
death receptors into aggregates and subsequent recruitment of
adapter and signaling molecules to activated death receptors to
form the so-called death-inducing signaling complex (DISC). The
assembly of this multi-protein complex facilitates the activation
of the initiator caspase-8 via induced proximity. Once activated,
caspase-8 can trigger the activation of effector caspases and apop-
tosis either directly or indirectly. In a direct manner, caspase-8
cleaves caspase-3 as one of the effector caspases which in turn
results in proteolytic processing of substrates that mediate the
dismantling of the cell and nuclear fragmentation. In an indi-
rect manner, caspase-8 can engage the mitochondrial pathway of
apoptosis by proteolytic cleavage of Bid into its activated form,
i.e., truncated Bid (tBid) (Adams and Cory, 2007). Bid is one of
the proapoptotic proteins of the Bcl-2 family of proteins that is
characterized by only one BH3 domain (Adams and Cory, 2007).
Once cleaved, tBid translocates from an intracellular cytoplasmic
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pool to mitochondrial membranes where it promotes the perme-
abilization of the outer mitochondrial membrane. Thereby, tBid
engages the mitochondrial pathway of apoptosis which cumu-
lates in the release of mitochondrial intermembrane proteins
into the cytosol, including cytochrome c and second mitochon-
drial activator of caspases (Smac) (Fulda et al., 2010). In the
cytosol, cytochrome c assembles together with apoptotic protease
activating factor (Apaf)-1 and caspase-9 in a multimeric pro-
tein complex called the apoptosome that facilitates activation of
caspase-9 and subsequently caspase-3. Smac promotes apoptosis
by binding and neutralizing Inhibitor of Apoptosis (IAP) pro-
teins, a family of proteins that negatively regulate apoptosis (Fulda
and Vucic, 2012).

It is important to know that cell death signaling pathways to
apoptosis are tightly controlled in normal and malignant cells,
given the fact that accidental activation of cell death pathways
might have a detrimental effect on cell survival (Fulda, 2009b).
Thus, there are various proteins that positively or negatively reg-
ulate signal transduction to apoptosis at various stages of the
signal transduction cascade. Importantly, these inbuilt regulatory
mechanisms to control programmed cell death are typically dys-
regulated in human cancers in such a way that the ratio of pro-
and antiapoptotic signals is tilted toward factors that block signal
transduction to cell death (Fulda, 2009b).

DEFECTS IN CELL DEATH PATHWAYS IN HUMAN CANCERS
A hallmark of human cancers is their tendency to evade pro-
grammed cell death, since the ability to resist the induction of cell
death provides a survival advantage to malignant cells (Hanahan
and Weinberg, 2011). On theoretical grounds, resistance to pro-
grammed cell death can be caused by loss of expression or
function of proapoptotic molecules and/or by aberrantly high
expression levels of proteins that inhibit programmed cell death
(Fulda, 2009b).

MECHANISMS OF RESISTANCE TO CELL DEATH
Death receptor-induced apoptosis may be blocked by downregu-
lation of surface expression levels of death receptors, including
CD95 and TRAIL-Rs (Friesen et al., 1997; Fulda et al., 1998).
Also, mutational inactivation of death receptors can contribute to
the resistance to death receptor-mediated apoptosis. For example,
mutations of CD95 have been detected in both B cell and T cell
acute lymphoblastic leukemia (ALL) (Beltinger et al., 1998a,b).
In addition, the chromosomal region on chromosome 8p which
harbors the genetic localization of both agonistic TRAIL-Rs is
frequently inactivated in human cancers via loss of heterozygoc-
ity (LOH) (Emi et al., 1992; Wistuba et al., 1999). In addition
to mutational inactivation of death receptors, epigenetic events
can also contribute to silencing of death receptor expression lev-
els. CD95 as well as TRAIL-Rs have been reported to be among
the targets of epigenetic silencing via hypermethylation of CpG-
island-rich regions of the promoters of CD95 or TRAIL-Rs (Van
Noesel et al., 2002; Petak et al., 2003).

Besides death receptors, also the initiator caspase caspase-8
is often epigenetically inactivated in human cancers, which sim-
ilarly confers resistance to receptor-mediated apoptosis (Teitz
et al., 2000; Fulda et al., 2001; Hopkins-Donaldson et al., 2003).

Furthermore, death receptor-mediated apoptosis can be impaired
by a splice variant of caspase-8, i.e., caspase-8L. This caspase-
8 variant is produced via alternative splicing and blocks death
receptor-induced apoptosis in a dominant-negative manner
(Mohr et al., 2005; Miller et al., 2006).

Death receptor-triggered programmed cell death can also be
blocked via aberrant upregulation of antiapoptotic proteins. In
principle, negative regulation of signal transduction along the
death receptor pathway can be interrupted at distinct levels of the
signaling cascade. For example, cellular FLICE-inhibitory pro-
tein (cFLIP) prevents death receptor signaling by interfering with
caspase-8 activation at the level of the DISC (Micheau, 2003;
Fulda, 2013). Furthermore, the balance between pro- and anti-
apoptotic proteins of the Bcl-2 family is typically disturbed in
human cancers. Bcl-2 proteins comprise both proapoptotic as
well as antiapoptotic family members (Adams and Cory, 2007).
Overexpression of the antiapoptotic Bcl-2 proteins such as Bcl-2,
Bcl-XL, and Mcl-1 frequently occurs in human malignancies,
whereas the proapoptotic family members are downregulated or
inactivated (Adams and Cory, 2007). For example, somatic muta-
tions of the Bax gene have been reported in colon carcinoma or
hematological malignancies (Rampino et al., 1997; Kitada et al.,
2002).

IAP proteins represent another family of antiapoptotic pro-
teins that negatively regulate signal transduction to programmed
cell death (Fulda and Vucic, 2012). IAP proteins are expressed
at high levels in various human cancers and have been corre-
lated with resistance to cell death and poor prognosis (Fulda and
Vucic, 2012). Among the IAP proteins, it is in particular X-linked
inhibitor of apoptosis protein (XIAP) that blocks signaling to pro-
grammed cell death by binding to and inhibiting caspases such
as caspase-3, -7, and -9 (Eckelman et al., 2006; Fulda and Vucic,
2012).

EXPERIMENTAL APPROACHES TO RESTORE CELL DEATH
SIGNALING PATHWAYS IN HUMAN CANCERS
In light of the fact that cell death pathways are frequently dis-
turbed in human cancers, which has been linked to treatment
resistance including resistance to immunotherapies, there have
been major efforts to develop experimental strategies to restore
cell death signaling pathways in human cancers. In principle, this
can be achieved by upregulation of expression levels of proapop-
totic molecules and/or neutralization of antiapoptotic proteins
that are aberrantly expressed.

Since death receptors such as CD95 and TRAIL-Rs are under
the control of the tumor suppressor gene p53, one approach
to upregulate surface expression of death receptors resides in
the use of DNA-damaging agents that activate p53. To this end,
concomitant administration of anticancer drugs or ionizing radi-
ation together with death receptor ligands resulted in cooperative
induction of cell death via increased surface expression of death
receptors (Gliniak and Le, 1999; Chinnaiyan et al., 2000; Nagane
et al., 2000).

Since caspase-8 represents a key component of the death
receptor pathway which is frequently silenced in human can-
cers, restoration of caspase-8 expression provides an alternative
approach to restore defective cell death programs (Fulda, 2009a).
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To this end, demethylating agents such as 5-axa-2-deoxycytidine
have been demonstrated to cause demethylation of the regula-
tory region of caspase-8 and increased caspase-8 expression levels,
which in turn resulted in restoration of sensitivity toward death
receptor-mediated cell death (Hopkins-Donaldson et al., 2000;
Teitz et al., 2000; Fulda et al., 2001). In addition, interferon-γ
has been identified as a cytokine that is involved in the regu-
lation of caspase-8 expression levels, as the caspase-8 promoter
harbors interferon-γ activation sites (Fulda and Debatin, 2002;
Casciano et al., 2004; Fulda and Debatin, 2006a; Hacker et al.,
2009).

An alternative strategy to restore cell death signaling path-
ways is the therapeutic targeting of antiapoptotic Bcl-2 proteins.
To this end, several small-molecule inhibitors directed against
antiapoptotic Bcl-2 family proteins have been developed (Fulda
et al., 2010). One of the most prominent examples is ABT-
737 and its derivative, a small-molecule inhibitor that binds to
Bcl-2, Bcl-XL, and Bcl-w (Oltersdorf et al., 2005). Besides small-
molecule inhibitors of antiapoptotic Bcl-2 proteins, also BH3
peptides have been designed similarly to the structure of BH3-
only domain proteins (Ni Chonghaile and Letai, 2008). Also,
antisense oligonucleotides directed against Bcl-2 were shown to
downregulate Bcl-2 mRNA expression and to enhance sensitivity
to cell death in response to chemotherapeutic treatment (Tolcher
et al., 2005).

Another strategy to enhance sensitivity to cell death resides in
the therapeutic neutralization of IAP proteins (Fulda and Vucic,
2012). To this end, antisense strategies directed against XIAP have
been developed which proved to enhance cell death induction
either alone or in combination therapies (Lacasse et al., 2005;
Lacasse, 2012). In addition, small-molecule IAP inhibitors such

as Smac mimetics were shown to either directly trigger cell death
or to sensitize cancer cells for death receptor-mediated apoptosis
(Fulda et al., 2002; Fakler et al., 2009; Vogler et al., 2009; Abhari
et al., 2012; Basit et al., 2012).

CONCLUSIONS
Programmed cell death is an intrinsic cellular program that reg-
ulates various physiological processes and is typically disturbed
in human cancers. Since the efficacy of current cancer therapies
critically relies on the engagement of this cell intrinsic program,
defects in programmed cell death form the basis for treat-
ment resistance. This implies that defective cell death signaling
pathways can dampen the efficacy of cancer immunotherapies.
Therefore, further insights into the regulation of programmed
cell death in cancer cells are expected to pave new avenues for
the development of more effective treatment approaches based
on the modulation of the immune systems in cancer patients.
One example is the combination of cellular immunotherapy
approaches together with molecular strategies. Thus, incorpo-
ration of the advances in cell death research in the concepts of
cancer immunotherapies will likely boost this important field in
the near future.
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