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Abstract

In this paper we derive a formula for the energy loss due to elastic N to N particle scattering

in models with extra dimensions that are compactified on a radius R. In contrast to a previous

derivation we also calculate additional terms that are suppressed by factors of frequency over

compactification radius. In the limit of a large compactification radius R those terms vanish and

the standard result for the non compactified case is recovered.
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I. MOTIVATION

Finding a unified theory of gravity and of the standard model of particle physics remains

an elusive goal in quantum field theory. A crucial ingredient of superstringtheory is that

it needs more than 3 spatial dimensions for their consistency. Also supergravity which is

recognised as the low energy effective description of an 3+d=10 dimensional M-theory [1, 2].

On the one hand there are several attempts to incorporate extra dimensions into low energy

field theory [3, 4, 5, 6, 7]. Most of these models have in common, that only gravity is allowed

to propagate into the extra dimensions.

On the other hand, classical gravitational waves are being looked for since a long

time and in the forthcoming years one finally expects to detect this important probe for

general relativity [8]. Therefore also classical gravitational waves within models with extra

dimensions do provide a good framework to study new physics.
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In the following chapters we derive the cross section for gravitational radiation in models

with an even number of extra dimensions. Although all equations are formulated for asymp-

totically flat space, we keep in mind that some spatial dimensions might be compactified.

Therefore we do not immediately drop terms that are suppressed by higher powers of the ob-

server distance, as this distance is limited in some directions by the chosen compactification

radius R.

Then we show that only in the limit of large compactification radius (or no compactifi-

cation at all) certain terms of this cross section can be neglected, which leads to the cross

section which was already given [9].

II. EINSTEIN’S EQUATIONS WITH MORE DIMENSIONS

Einstein’s field equations with 3 + d spatial dimensions are a straight forward generalisa-

tion of the 3 dimensional case, however all the indices N,M run from 0 . . . 3 + d instead of

0 . . . 3, i.e.

RMN − 1

2
gMNR = −8πGTMN . (1)

The trace of this gives the Ricci scalar R

R(1 − 4 + d

2
) = −8πGT N

N . (2)

From this one finds the (3 + d) dimensional Ricci-tensor RMN as

RMN = −8πG(TMN − 1

2 + d
gMNTL

L ), (3)

and therefore the 3 + d dimensional gravitational source term SMN is defined as

SNM := (TNM − 1

2 + d
gMNTL

L ). (4)
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A. Gravitational waves in 3 + d spatial dimensions

Assuming small perturbations from the 3 + d dimensional Minkowski metric ηNM with

the signature (+,−,−,−,−, ...) we take the following ansatz for the metric tensor

gNM = ηMN + hMN . (5)

Inserting this ansatz into equation (3), Einstein’s field equations to first order in the

perturbation h read

∂L∂LhMN − ∂L∂NhL
M − ∂L∂MhL

N + ∂M∂NhL
L = −8πGSMN . (6)

Here the definition of the (3 + d) dimensional Riemann tensor

RMNOP = 1
2
[∂N∂P gMO − ∂M∂P gNO − ∂N∂OgMP + ∂M∂OgNP ] + gAB

[

ΓA
OMΓB

NP − ΓA
PMΓB

N0

]

:= 1
2
[∂N∂P gMO − ∂M∂P gNO − ∂N∂OgMP + ∂M∂OgNP ] + XMNOP

(7)

is used. Notice that XMN contributes only with quadratic or higher order terms in h.

Now we make use of the gauge invariance of Einstein’s field equations. We choose the so

called harmonic coordinate system, for which

gKLΓN
KL = 0. (8)

Remembering the definition of the Christoffel symbol

ΓA
BC =

1

2
gAD [∂CgBD + ∂BgCD − ∂DgBC ] (9)

and expanding (8) to first order in h gives

∂LhL
N =

1

2
∂LhN

N . (10)

Using (10) in (6) we find

∂L∂LhMN = −16πGSMN . (11)
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The retarded (τ = t − t0 − |x − y| > 0) solution for (11) can be found with the 3 + d

dimensional Greens function G(3+d)(|x − y|)

hMN(t, x) = N

∫

dt0

∫

d3+dyG
(3+d)
ret (t − t0, |x − y|)SMN(t0, y), (12)

where N is a normalisation factor given by

N = −16πG. (13)

The 3 + d-dimensional retarded Greens function [9, 10, 11] is

G3+d
ret (t, x) = − 1

(2π)4+d

∫

d3+dkeikx

∫

dk0
e−ik0(t−T0)

k2
0 − k2 . (14)

For an even number of flat extra dimensions this can be integrated to [11]

G3+d
ret (t, x) =

1

4π

[ −1

2πr

∂

∂r

]d/2 [

δ((t − t0) − r)

r

]

, d even. (15)

As the cases with an even number of extra dimensions are easier to discuss, we will

postpone the cases with an odd number of extra dimensions. It is convenient to bring all

derivatives in (15) to the right hand side. Therefore we define the commutator brackets

[

∂r,
1
r

]

−1
:= 1,

[

∂r,
1
r

]

0
:= 1

r
,

[

∂r,
1
r

]

1
:= −1

r2 ,

...
[

∂r,
1
r

]

n
:= (−1)nn! 1

rn+1 .

(16)

Now we decompose (∂r
1
r
)nδ into a number (A(k, n)) times the kth derivative of δ with

respect to its argument.

(∂r
1

r
)nδ :=

n
∑

k=0

A(k, n)δ(k) (17)

Using the definitions (16, 17) we find a recursive formula for (15). Knowing the Greens
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function for d − 2 extra dimensions the Greens function for d extra dimensions is given by

G3+d
ret (t, x) = 1

4πr
( 1

2π
)d/2

∑d/2
i=0

(

∑d/2−i
l=0

∣

∣

[

∂r,
1
r

]

l

∣

∣ A(l + i − 1, d/2 − 1) (l+i)!
l!i!

)

δ(i)((t − t0) − r)

:= 1
4πr

( 1
2π

)d/2
∑d/2

i=0 K(r, i)δ(i)((t − t0) − r).

(18)

For the cases of d = 0, 2, 4, 6 the Greens functions are:

G3
ret(t, x) = δ((t−t0)−r)

4πr
,

G3+2
ret (t, x) = (δ((t−t0)−r)+rδ(1)((t−t0)−r))

8π2r3 ,

G3+4
ret (t, x) = δ(2)((t−t0)−r)r2+3δ(1)((t−t0)−r)r+3δ((t−t0)−r)

16π3r5 ,

G3+6
ret (t, x) = δ(3)r3+6δ(2)((t−t0)−r)r2+15δ(1)((t−t0)−r)r+15δ((t−t0)−r)

32π4r7 .

(19)

Lets assume that the observer (|x|) is sitting far away in comparison with the extension

of the source (
∣

∣y
∣

∣). This means for |x| ≫ |y| that

τ = t − t0 − |x − y| ≈ t − t0 − |x| + y
x

|x| . (20)

Keeping this in mind (12) gives

hMN(x) = N
∫

dt0
∫

d3y‖d
dy⊥G

(3+d)
ret (t − t0, |x − y|)SMN(t0, y)

=
∫

dt0
∫

d3y‖d
dy⊥

N
4π|x−y|(

1
2π

)d/2
∑d/2

i=0 K(|x − y|, i)δ(i)(t − t0 − |x − y|)SMN(t0, y).

(21)

Partial integration with respect to t0 shuffles the derivatives from the δ function to the

source S

hMN(x) =
∫

dt0
∫

d3y‖d
dy⊥

N
4π|x−y|(

1
2π

)d/2
∑d/2

i=0 K(|x − y|, i)δ(t − t0 − |x − y|)( ∂
∂t0

)iSMN(t0, y).
(22)

The delta function tells us at which time we have to evaluate SMN(t0, y). The source

term S is positive definite and can be expressed by its Fourier integral

SMN(τ, y) =
1√
2π

∫ ∞

0

dωSMN(ω, y)e−iωτ + c.c. (23)
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Every derivative with respect to the time brings down a factor −iω from (23). After

using (20) and integrating out the δ functions this leads to

hMN (x) = N 1√
2π4π

1
(2π)d/2

∫

dω exp (−iω(t − |x|))
∑d/2

j=0 K(|x − y|, j)
∫

d3y‖d
dy⊥

1
|x|(iω)jSMN(ω, y) exp (−iωy x

|x|)
(24)

The mono pole part of this gravitational wave is found by taking
|y|
|x| ≪ 1 and therefore

to lowest order 1
|x−y|j ≈ 1

|x|j and K(|x − y|, j) ≈ K(|x|, j).

h
(0)
MN(x) = N 1√

2π4π
1

(2π)d/2

∫

dω exp (−iω(t − |x|))
∑d/2

j=0 K(|x|, j)
∫

d3y‖d
dy⊥

1
|x|(iω)jSMN(ω, y) exp (−iωy x

|x|)

=
∫

dω exp (−iω(t − |x|))eMN(x, ω).

(25)

This looks like a plane wave solution. As the final result of this section it is shown that

the polarisation tensor of the induced gravitational wave is given by

eMN(x, ω) = N 1
4π

1
(2π)d/2

√
2π

∑d/2
j=0 K(|x|, j) 1

|x|(iω)j
∫

d3y‖d
dy⊥SMN(ω, y) exp (−iωy x

|x|) + c.c.

= N 1
4π

1
(2π)d/2

√
2π

∑d/2
j=0 K(|x|, j) 1

|x|(iω)jŜMN (ω) + c.c.

(26)

The charge conjugated part is not shown explicitly, to keep the formula to a readable

size, but of course it contributes to the polarisation tensor as well.

In section (III) we will explicitly calculate the source term SMN(ω, y). When doing so it

is useful to remember that the ”time” coordinate corresponding to ω is τ from equation

(20) and not t. One would also get this result by doing two more Fourier transformations

on S and then performing a stationary phase analysis on the exponential functions in the

integrand.

B. The energy and momentum of a gravitational wave

In this subsection we derive the energy momentum tensor tMN of the gravitational wave

given in (25). When we derived (6) we just took the first order of h in RMN . Considering

the approximate solution (12) in the complete field equations (1) we will find the energy

momentum tensor tMN of the gravitational wave (12). Expanding and rearranging (1) with
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R
(1)
MN − 1

2
ηMNR(1) gives

R
(1)
MN − 1

2
ηMNR(1) = −8πG

[

TMN +
1

8πG
(RMN − 1

2
ηMNR − R

(1)
MN

1

2
ηMNR(1))

]

. (27)

Now we can define the energy momentum tensor of (21)

tMN :=
1

8πG
(RMN − 1

2
ηMNR − R

(1)
MN

1

2
ηMNR(1)) (28)

and the total energy momentum tensor

τMN = TMN + tMN (29)

of the gravitational wave. The total energy momentum tensor in (29) has now two parts,

the energy momentum tensor of the source TMN and the energy momentum tensor tMN

of the propagating wave itself. In order to calculate (28) we need to expand the (3 + d)

dimensional Riemann tensor (7) to 2nd order in h. Therefore we note

RAB = R
(1)
AB + R

(2)
AB + O(h),

R = gABRAB

= ηABR
(1)
AB + ηABR

(2)
AB + hABR

(1)
AB + O(h),

R
A(1)
A = ηABR

(1)
AB.

(30)

Using these relations, (28) takes the form

tMN =
1

8πG

[

R
(2)
MN − 1

2
hMNR(1) − 1

2
ηMNηABR

(2)
AB − 1

2
ηMNhCDR

(1)
CD

]

+ O(h). (31)

For the freely propagating gravitational wave, the metric gMN = ηMN + hMN satisfies

the first-order Einstein equation R
(1)
MN = 0. The first order terms in (31) drop out and (31)

simplifies to

tMN =
1

8πG

[

R
(2)
MN − 1

2
ηMNηABR

(2)
AB

]

+ O(h). (32)

The challenge is now to derive the h dependence of R
(2)
MN . First we check the h2 depen-

dence of XMN in (7). As the Christoffel symbols (Γ) in XMN (see (7)) contain derivatives
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of the metric GMN and XMN is proportional to Γ2, the second order part of XMN contains

only terms of the form (∂h)(∂h) in particular

X
(2)
MN = 1

4

[

(2∂LhL
S − ∂ShL̀

L̀
)(∂MhS

P + ∂MhS
P − ∂ShMN)

−(∂NhL
S + ∂LhNP − ∂ShL

N)(∂MhS
L + ∂LhS

M − ∂ShML)
]

(33)

The first part of (7) contributes terms proportional to h times second derivatives of h, in

particular

R
(2)
MN

∣

∣

∣

first part
= hLSR

(1)
MLSN

= 1
2
hLS(∂M∂NhLS − ∂L∂MhNS − ∂S∂NhML + ∂L∂ShMN)

(34)

Putting (33) and (34) together we find the second order of R in h

R
(2)
MN = R

(2)
MN

∣

∣

∣

first part
+ X

(2)
MN

= 1
2
hLS(∂M∂NhLS − ∂L∂MhNS − ∂S∂NhML + ∂L∂ShMN)+

[

(2∂LhL
S − ∂ShL̀

L̀
)(∂MhS

P + ∂MhS
P − ∂ShMN)

−(∂NhL
S + ∂LhNP − ∂ShL

N )(∂MhS
L + ∂LhS

M − ∂ShML)
]

.

(35)

Now we can use the plane wave solution (24) and plug it respectively into (35) and (32).

The result will be quite lengthy and depends on some phase factors from (32). By averaging

over a spatial region, large compared to 1/|k| we can integrate out these phase factors and

simplify the result. The average is indicated by the 〈〉 brackets. If we also remember that

kLkL = 0 and that we are free to choose the harmonic coordinate system condition (10) we

find that the trace part of (32) vanishes. Finally, we obtain the averaged energy momentum

tensor of a plane gravitational wave

〈tMN〉 = 〈R(2)
MN〉

= kMkN

16πG
(〈eSL∗(x, τ)eSL(x, τ)〉 − 1

2
|〈eL

L〉|2),
(36)

in dependence of the polarisation tensor eMN . This polarisation tensor again depends on

the energy momentum tensor of a given source. Such a source tensor for elastic collisions is

derived in the next section.
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III. ENERGY MOMENTUM TENSOR OF AN ELASTIC COLLISION

In this section we focus on the energy momentum tensor of colliding standard model

particles. This tensor is needed, because it enters the source term for the gravitational wave

(23). In the ADD model [12] all standard model particles are confined to the brane and

the total energy momentum tensor for one of these particles can be defined using a delta

function [13, 14]

TMN(x) = ηµ
Mην

NTµν(x)δd(x⊥). (37)

In other models like those with universal extra dimensions [15, 16] this delta function

restriction is not needed, but the discussion made in this section is easily translated to

models of this type as well. One can decompose the energy momentum tensor into an

incoming and outgoing part

TMN = T
(in)
MN + T

(out)
MN . (38)

The incoming and outgoing energy momentum tensors are given in terms of the 4 mo-

menta of C colliding particles

T
(in)
MN = δ(d)(x⊥)ηMµηNν

C
∑

j=1

P µ
(j)

P ν
(j)

P 0
(j)

δ(3)(x‖ − v(j)‖t)θ(−t)

=: δ(d)(x⊥)ηMµηNνT
µν
(in)

T
(out)
MN = δ(d)(x⊥)ηMµηNν

C
∑

j=1

P µ
(j)

P ν
(j)

P 0
(j)

δ(3)(x‖ − v(j)‖t)θ(t)

=: δ(d)(x⊥)ηMµηNνT
µν
(out).

(39)

The source term (4) for incoming states gives

S
(in)
MN(t, x) = T

(in)
MN − 1

2+d
ηMNT

(in)L
L

= δ(d)(x⊥)(ηMµηNν − 1
2+d

ηMNηµν)T
µν
(in)(t, x‖).

(40)

The incoming and the outgoing SMN will now be the used as a source term for the induced

gravitational wave (25). In order to know the polarisation tensor of the wave (25) we have

to perform this 3 + d dimensional y integral

ŜMN(ω) =
∫

d3y‖d
dy⊥SMN(ω, y) exp (−iωy x

|x|)

= 1√
2π

∫

dt̃
∫

d3y‖d
dy⊥SMN(t̃, y) exp (−iω(t̃ + y x

|x|)).
(41)

10



For the incoming particles (as well as for the outgoing particles) the delta function in

(40) helps us to do this integral and the last part of (41) reads

∫

d3y‖d
dy⊥ SMN(t̃, y) exp (−iωy x

|x|) =
∫

d3y‖d
dy⊥S

(in)
MN(τ, y) exp (−iωy x

|x|)

= (ηMµηNν − 1
2+d

ηMNηµν)
C
∑

j=1

P µ
(j)

P ν
(j)

P 0
(j)

∫

d3y‖δ
(3)((y‖ − v(j)‖τ )θ(−τ)) exp (−iωy x

|x|)

=: (ηMµηNν − 1
2+d

ηMNηµν)
C
∑

j=1

P µ
(j)

P ν
(j)

P 0
(j)

J (in).

(42)

After some transformations, J (in) can be brought to a form compatible with the Fourier

decomposition of hMN :

J (in) =
∫

d3y‖δ
(3)((y‖ − v(j)‖τ)θ(−τ)) exp (−iωy x

|x|)

=
∫

d3y‖
∫ d3k‖

(2π)3
exp (ik‖(y‖ − v(j)τ))

∫

dω0

−2πi
e−iω0τ e

−iωy
x
|x|

ω0−iǫ

=
∫

d3y‖
∫ d3k‖

(2π)3
exp (ik‖(y‖))

∫

dω0

−2πi
e
−i(ω0+v(j)k‖)τ

e
−iωy

x
|x|

ω0−iǫ

=
∫

d3y‖
∫ d3k‖

(2π)3
exp (ik‖(y‖))

∫

dω̃
−2πi

e−i(ω̃)τ e
−iωy

x
|x|

ω̃−k‖v(j)−iǫ

=
∫

dω̃e−iω̃τ
∫ d3k‖

−i(2π)4

∫

d3y‖
e
ik‖y‖e

−iωy
x
|x|

ω̃−k‖v(j)−iǫ
.

(43)

Here, first the Fourier transform of the δ and θ function is used, then the terms under

the integrals are rearranged and the substitution ω̃ := ω0 + k‖v(j) is made. Now the Fourier

definition of the δ function is used in order to get rid of the two three dimensional integrals

J (in) =
∫

dω̃e−iω̃τ
∫ d3k‖

−i(2π)4
1

ω̃−k‖v(j)−iǫ

∫

d3y‖ exp (−i(ω
x‖

|x‖| − k‖)y‖)

=
∫

dω̃e−iω̃τ 1
−i2π

1
ω̃−kv(j)−iǫ

.
(44)

From kv(j) = k‖v(j) we see that k‖ can be replaced by k. For outgoing particles the

procedure is the same, one just has to use the Fourier transform of θ(−t)

J (out) = −
∫

dω̃e−iω̃τ 1

−i2π

1

ω̃ − kv(j) + iǫ
. (45)

We see that the difference between the incoming and outgoing J can be expressed by

a change of the sign of J and ǫ. These results can be plugged back into (42). For high

energetic particles the denominator is P 0
(j)(ω − kv(j)) = k · P(j). As this is > 0 we can drop

11



the ǫ. Using (41, 42, 44, 45) one sees that the source terms are given by:

Ŝ
(in)
MN(ω) =: (T̂

(in)
MN − ηMN T̂

(in)L
L ) = (ηMµηNν −

1

2 + d
ηMNηµν)

C
∑

j=1

P µ
(j)P

ν
(j)

P(j)k
(46)

For the outgoing particles this reads

Ŝ
(out)
MN (ω) =: (T̂

(out)
MN − ηMN T̂

(out)L
L ) = −(ηMµηNν −

1

2 + d
ηMNηµν)

C
∑

j=1

P µ
(j)P

ν
(j)

P(j)k
. (47)

IV. GRAVITATIONAL RADIATION FROM ELASTIC SCATTERING

Based on the discussion in (II) and (III) we will now calculate the classically radiated

energy into gravitational waves from an elastic scattering.

A. Radiated energy and the energy momentum tensor

The momentum P i of an extended object is defined as the volume integral over the density

of the t0i component of the energy momentum tensor. In 3 + d dimensions this is

P i =

∫

V

d3+dxt0i. (48)

The energy change in time dE
dτ

of a system can be rewritten by using the conservation of

the energy momentum tensor

dE

dτ
=

∫

V

d3+dx ∂0t
00 =

∫

V

d3+dx ∂it
0i = ∂iP

i. (49)

Applying Gauss law to ∂iP
i and using (48) gives

∂iP
i =

∫

V

d3+dx ∂iP
i =

∫

O(V )

dS nit
0i =

∫

O(VE)

dΩ |x|2+dnit
0i. (50)

By differentiating (49) after dΩ, averaging over the space and integrating over dτ we get

from (50) the average energy radiated into the space-segment dΩ

d〈E〉
dΩ

=

∫

dτ
〈∂iP

i〉
dΩ

=

∫

dτ |x|2+dni〈t0i〉. (51)
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B. Radiated gravitational energy

Using the general relation between radiated energy and the energy momentum tensor

tMN (see (IVA)) we will now quantify how much energy is radiated away by a gravitational

wave. Therefore one has to plug the energy momentum tensor of this wave (36) into equation

(51). In the Fourier formulation of (51) we use (36) and k2
0 = k2

i = ω

dE
dΩ

= 1
2π

∫ ∫ ∫

dτdω̃dω|x|2+d ω̃ω
16πG

(〈eSL∗(x, ω)eSL(x, ω̃)〉 − 1
2
〈eL∗

L (x, ω)〉〈eL
L(x, ω̃〉)eiτ(ω̃−ω)

=
∫

dω|x|2+d ω2

16πG
(〈eSL∗(x, ω)eSL(x, ω)〉 − 1

2
|〈eL

L(x, ω)〉|2).
(52)

Now we can bring the dω to the left side and get

dE
dΩdω

= |x|2+dni〈t0i〉
= |x|2+d ω2

16π
(〈eSL∗(x, ω)eSL(x, ω)〉 − 1

2
|〈eL

L〉|2).
(53)

We use the relation ω = |k0| = |nik
i|. From (26 we get the polarisation tensors eMN of

the radiated gravitational wave,

〈eMN(x, ω)〉 = N 1
4π

1
(2π)d/2

√
2π

ŜMN(ω)〈
∑d/2

j=0 K(|x|, j) 1
|x|(iω)j〉. (54)

Here we define ŜMN(ω) := (T̂MN(ω) − 1
2+d

ηMN T̂L
L (ω)), which is the Fourier transform

of the (ŜMN(τ)(in) + ŜMN(τ)(out)) we know from equation (42). Let us first calculate the

eMNe∗MN part of (53) by using (54)

eSL∗(x, ω)eSL(x, ω) = N2

32π(2π)d

d/2
∑

j,k=0

〈K(|x|, j)K(|x|, k) 1
|x|2 (iω)j+k〉 ŜSL(ω)Ŝ∗

SL(ω)

= 8G2

π(2π)d

d/2
∑

j,k=0

〈K(|x|, j)K(|x|, k) 1
|x|2 (iω)j+k〉

(T̂ SL(ω)T̂ ∗
SL(ω) − d

(2+d)2
|TK

K |2).

(55)

Proceeding the same way with |eL
L|2 we find

|eL
L|2 = 8G2

π(2π)d

d/2
∑

j,k=0

〈K(|x|, j)K(|x|, k) 1
|x|2 (iω)j+k〉 ŜN

N ŜL∗
L

= 8G2

π(2π)d

d/2
∑

j,k=0

〈K(|x|, j)K(|x|, k) 1
|x|2 (iω)j+k〉 |TL

L |2( 2
2+d

)2.

(56)
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Evaluating the T terms in (56, 55) separately leads to

T̂ SLT̂ ∗
SL = (T̂ (in)SL + T̂ (out)SL)(T̂

(in)∗
SL + T̂

(out)∗
SL ). (57)

In the notation of (46, 47) this will be rather lengthy. But we can take Sums (
∑

I ..) over

all involved states instead of initial and final states separately (
∑

i .. +
∑

j ..) and use that

every outgoing state brings one − sign. After defining

ηI =







+1 I in initial state

−1 I in final state,
(58)

we have

T̂MN = (ηMµηNν
∑

I

P(I)µP(I)νηI

kP(I)

). (59)

In this notation we find that

T̂ SLT̂ ∗
SL =

∑

I,J

(P µ
(I)P(J)µ)2ηIηJ

(P(I)k)(P(J)k)
, (60)

and that

T̂L
L T̂ S∗

S =
∑

I,J

P 2
(I) P 2

(J)ηIηJ

(P(I)k)(P(J)k)
. (61)

The last two equations can be put into (55 and 53) to derive the energy carried away by

induced gravitational radiation

dE
dΩdω

=
G|x2+d|
2π2(2π)d

d/2
∑

j,k=0

〈K(|x|, j)K(|x|, k) 1
|x|2 (iω)j+k〉

∑

I,J

ηIηJ

(P(I)k)(P(J)k)

[

(P µ
(I)P(J)µ)2 − 1

2+d
P 2

(I) P 2
(J)

]
. (62)

In the second step all the simplifying definitions (56, 55, 18) are used . The (3 + d)

dimensional gravitational constant G has a (d) dependent mass dimension. This becomes

more obvious by the definition of the coupling G through a mass scale Mf

G =
1

M2+d
f

. (63)
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In the case of d = 0 this gives G = 1
M2

f
= 1

M2
P

which is the definition of the Planck mass.

For the cases with even extra dimensions d = 0, 2, 4, 6 equation (62) gives

dE(d = 0)

dΩdω
=

1

M2
P

1

2π2
ω2

∑

I,J

ηIηJ

(P(I)k)(P(J)k)

[

(P µ
(I)P(J)µ)2 − 1

2
P 2

(I) P 2
(J)

]

dE(d = 2)

dΩdω
=

1

M4
f

1

8π4

(

ω4 + 2
ω3

|x| +
ω2

|x|2
)

∑

I,J

ηIηJ

(P(I)k)(P(J)k)

[

(P µ
(I)P(J)µ)2 − 1

4
P 2

(I) P 2
(J)

]

dE(d = 4)

dΩdω
=

1

M6
f

1

32π6

(

ω6 + 6
ω5

|x| + 15
ω4

|x|2 + 18
ω3

|x|3 + 9
ω2

|x|4
)

(64)

∑

I,J

ηIηJ

(P(I)k)(P(J)k)

[

(P µ
(I)P(J)µ)2 − 1

6
P 2

(I) P 2
(J)

]

dE(d = 6)

dΩdω
=

1

M8
f

1

128π8

(

ω8 + 12
ω7

|x| + 66
ω6

|x|2 + 210
ω5

|x|3 + 405
ω4

|x|4 + 450
ω3

|x|5 + 225
ω2

|x|6
)

∑

I,J

ηIηJ

[

(P µ
(I)P(J)µ)2 − 1

8
P 2

(I) P 2
(J)

]

(P(I)k)(P(J)k)
.

C. Interpretation and physical relevance of the obtained cross sections

In the limit of no extra dimensions, (64) agrees with [17]. For d 6= 0 there are several

terms contributing: There is always one with a ωd+2 dependence and there are terms with

the same mass-dimension, but containing a conspicuous looking |x| dependence ωd+2−i

|x|i . For

a uncompactified 4+d dimensional space-time for a distant observer those terms vanish and

only the ω2+d term survives.

For compactified Large Extra Dimensions we start from the following setup: The collision

region for massive particles or black holes is smaller than the compactification radius R. For

x < R equation (64) holds and the |x| terms get weaker and weaker with distance. But

when the distance |x| reaches R, the attenuation of those terms stops as the world starts to

look again four dimensional. So for a given frequency ω they can be replaced by ωd+2−i

Ri . In

the ADD model [12] the radius is related to the Planck-mass MP and the new fundamental

mass scale Mf by

M2
P = M2+d

f Rd. (65)

Using this relation we can estimate for which kind of scenarios the new terms become
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relevant. As the radiated energy is increasing rapidly with ω some cut off has to be used to

estimate the amount of gravitationally radiated energy. In a 2 to 2 particle process emitting

gravitational radiation this cut is at least reached as soon as the gravitational radiation takes

away the invariant energy
√

s/2 of one of the participants. Strongest suppression of the 1/R

terms is reached when we take this extreme value for ω. Limits on the compactification

radius down to the µm range (depending on d) have been derived from a large number of

physical observations [18, 19, 20, 21]. Under the condition of

ω ≫ 1

R
or

√
s ≫ 2Mf

(

Mf

MP

)2/d

, (66)

equation (64) gives the original result from [9]. This shows that the additional terms only

play a role for small
√

s or very large Mf . On the one hand for particle scattering with

invariant energy in the TeV range, Mf would have to be up to 1000 TeV, for the new terms

to be relevant. On the other hand the whole cross-section is suppressed by a factor 1/M2+d
f

and would be negligible then. Summarising one can say that for elastic high energy N to N

particle collisions in models with large extra dimensions the energy loss into gravitational

radiation stays as described in [9]

dE

dΩdω
= 1

M2+d
f

ω2+d

2(π)2(2π)d

∑

I,J
ηIηJ

(P(I)k)(P(J)k)

[

(P µ
(I)P(J)µ)2 − 1

2+d
P 2

(I) P 2
(J)

]

. (67)

This result is valid for elastic N→N particle scattering with high particle velocities so that

the interaction can be approximated to be instantaneous. Equation (64) was derived from

classical general relativity and gives an quantitative idea for the gravitationally radiated

energy. A quantum calculation for example in the ADD model was not yet performed, but

is considered to be the next step to do.
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V. SUMMARY

The main concern of this paper was to derive the general energy loss formula due to

gravitational radiation in models with extra dimensions that are compactified on a radius R

dE(d=0)
dΩdω

= 1
M2

P

1
2π2 ω

2
∑

I,J
ηIηJ

(P(I)k)(P(J)k)

[

(P µ
(I)P(J)µ)2 − 1

2
P 2

(I) P 2
(J)

]

dE(d=2)
dΩdω

= 1
M4

f

1
8π4

(

ω4 + 2 ω3

|R| + ω2

|R|2

)

∑

I,J
ηIηJ

(P(I)k)(P(J)k)

[

(P µ
(I)P(J)µ)2 − 1

4
P 2

(I) P 2
(J)

]

dE(d=4)
dΩdω

= 1
M6

f

1
32π6

(

ω6 + 6 ω5

|R| + 15 ω4

|R|2 + 18 ω3

|R|3 + 9 ω2

|R|4

)

∑

I,J
ηIηJ

(P(I)k)(P(J)k)

[

(P µ
(I)P(J)µ)2 − 1

6
P 2

(I) P 2
(J)

]

dE(d=6)
dΩdω

= 1
M8

f

1
128π8

(

ω8 + 12 ω7

|R| + 66 ω6

|R|2 + 210 ω5

|R|3 + 405 ω4

|R|4 + 450 ω3

|R|5 + 225 ω2

|R|6

)

∑

I,J

ηIηJ

[

(P µ
(I)

P(J)µ)2− 1
8
P 2

(I)
P 2

(J)

]

(P(I)k)(P(J)k)
.

(68)

Then we showed that for models with large compactification radii (compared to the wave

length of the gravitational radiation) this goes into

dE
dΩdω

= 1

M2+d
f

ω2+d

2(π)2(2π)d

∑

I,J
ηIηJ

(P(I)k)(P(J)k)

[

(P µ
(I)P(J)µ)2 − 1

2+d
P 2

(I) P 2
(J)

]

, (69)

in line with Ref. [9]. For small compactification radii (and therefore large Mf ) the overall

1

M2+d
f

factor strongly suppresses all terms.

Acknowledgments

The authors thank S. Hofmann, U. Harbach and S. Hossenfelder for fruitful discussions

and the Frankfurt International Graduate School of Science (FIGSS) for financial support

through a PhD fellowship.

[1] E. Witten, Nucl. Phys. B443, 85 (1995), hep-th/9503124.

[2] P. Horava and E. Witten, Nucl. Phys. B460, 506 (1996), hep-th/9510209.

[3] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999), hep-th/9906064.

[4] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999), hep-ph/9905221.

[5] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Rev. D59, 086004 (1999), hep-

ph/9807344.

17



[6] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B436, 257

(1998), hep-ph/9804398.

[7] H. Kodama and K. Uzawa (2005), hep-th/0512104.

[8] A. Abramovici et al., Science 256, 325 (1992).

[9] V. Cardoso, O. J. C. Dias, and J. P. S. Lemos, Phys. Rev. D67, 064026 (2003), hep-

th/0212168.

[10] S. Hassani, Springer-Verlag, New York (1972).

[11] D. V. Galtsov, Phys. Rev. D66, 025016 (2002), hep-th/0112110.

[12] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B429, 263 (1998), hep-

ph/9803315.

[13] G. F. Giudice, R. Rattazzi, and J. D. Wells, Nucl. Phys. B544, 3 (1999), hep-ph/9811291.

[14] T. Han, J. D. Lykken, and R.-J. Zhang, Phys. Rev. D59, 105006 (1999), hep-ph/9811350.

[15] I. Antoniadis, Phys. Lett. B246, 377 (1990).

[16] J. D. Lykken, Phys. Rev. D54, 3693 (1996), hep-th/9603133.

[17] S. Weinberg, ISBN 0-471-92567-5 (1972).

[18] L. Anchordoqui, T. Paul, S. Reucroft, and J. Swain, Int. J. Mod. Phys. A18, 2229 (2003),

hep-ph/0206072.

[19] S. Hannestad and G. G. Raffelt, Phys. Rev. Lett. 88, 071301 (2002), hep-ph/0110067.

[20] J. D. Barrow, Phys. Rev. D35, 1805 (1987).

[21] S. Hossenfelder et al., Phys. Lett. B575, 85 (2003), hep-th/0305262.

18


	Contents
	Motivation
	Einstein's equations with more dimensions
	Gravitational waves in 3+d spatial dimensions
	The energy and momentum of a gravitational wave

	Energy momentum tensor of an elastic collision
	Gravitational radiation from elastic scattering
	Radiated energy and the energy momentum tensor
	Radiated gravitational energy
	Interpretation and physical relevance of the obtained cross sections

	Summary
	Acknowledgments
	References

