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1 Introduction

Often programs behave unexpectedly. This kind of behavior can
be an unexpected result, failure to terminate, or termination due
to some exceptional state within the program. In all these cases,
there is disagreement between the programmer’s mental model of
the program’s behavior and the observed behavior. Depending
on the exact case, one of the first questions a programmer will
ask himself is “Why is this result computed?”, “Why is no result
computed?”, or some such question, in an effort to find out which
to modify: the program or his mental model. A second question
arising as a consequence of the first is “What are the values for
which the function exhibits this unexpected behavior?” or “For
which values will the function fail to terminate?”. These are pre-
cisely the questions the present analysis sets out to answer and
which it will be able to answer in many cases. But our analy-
sis goes much further, since the classes of results, the demands
in the analysis, are not restricted to being data values, but may
represent non-termination as well as higher-order values. Thus we
may indeed formulate an input to the analysis asking: “For which
values is the partial application of + to only its first argument a
function which will not terminate for any value given as its miss-
ing argument?”. Even if such a question seems confusing when
stated verbally, it can be succinctly stated in the demand anal-
ysis framework as plus x ∈ Top

∀→ Bot. Higher-order functions
are nothing special in functional programming, so questions like
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the above will naturally arise and this is one of the most simple
examples involving higher-order functions.

Demand analysis can analyze a wide variety of semantic proper-
ties and thus these properties could be checked, similarly to the
type check in modern functional languages, where a type is in-
ferred and then compared to the programmer’s type annotation.
For example, a programmer could state that a function needs to
evaluate its argument strictly if one of its applications needs to
be evaluated strictly, and be warned if the function’s argument is
inferred to need spine-strict evaluation in this case.

While helping improve agreement between the intended semantics
and the semantics actually implemented is an important appli-
cation for demand analysis, another is the improvement of pro-
gram efficiency. Here the application of optimizations is some-
times guarded by semantic properties, which demand analysis can
automatically check ensuring safety of the optimization.

Demands represent sets of expressions. The demand definition
Inf = 〈Bot, Top:Inf〉 for example describes expressions on which
the length function does not terminate. Finitely structured el-
ements represented by Inf are the expressions evaluating to a
finite spine of :-constructors ending in a non-terminating expres-
sion. The infinite lists come in as least upper bounds of ascending
chains of finite elements.

Demand definitions are constructed as needed. We assume that
initially only one demand definition together with some demand
constants are known. New demand definitions may be added as
the results of analyses and may then be used to form initial con-
straints for new analyses.

Demands can be interpreted as types. However, they do not di-
rectly correspond to the polymorphic types like List a in Haskell
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1.1 Overview

or α list in ML. In the example above the elements of the list
can be taken from any program type, they may even be untyped,
whereas a member of type List a will need to have its elements
taken from the type the variable a is instantiated with. Demands
cannot be parameterized with other demands. However, all the
monomorphic instances of a polymorphic type actually used in a
program can very well be represented as demands. Examples are
ListBool = 〈[], Bool : ListBool〉 for the finite lists containing
boolean values or InfListBool = 〈Bot, ListBool:InfListBool〉
for streams with finite lists of boolean values as elements.
Demand analysis is a backward analysis. Historically, the terms
forward and backward are related to the information flow in the
analysis, where the flow of information from the entire expression
to its sub-expressions is seen as the backward direction and the
flow of information from the sub-expressions to the entire expres-
sion is seen as forward [Hug88].
Applications of demand analysis include strictness analysis, a
more general analysis of evaluation degrees, absence analysis, ex-
ception analysis, and termination analysis. Strictness analysis, for
example, can be performed by analyzing e.g. length xs ∈ Bot re-
sulting in Inf and since the expressions specified by Inf include
those specified by Bot the result implies that length is strict.

1.1 Overview

The main contribution of this dissertation is

· the definition of a highly precise notion of demand based
entirely on operational semantics of the underlying language
and
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· the introduction of successful demand-analysis calculi that
are in some cases able to employ induction and that are in
some cases able to form upper bounds.

The dissertation is structured as follows. Chapter 2 introduces the
language Λ, a λ-calculus extended with constructors and case-
expressions for their distinction. We give Λ a non-strict opera-
tional semantics by defining a normal-order reduction for Λ. Due
to the presence of constructors our notion of WHNF is more di-
verse than that of the λ-calculus. We distinguish between WHNFs
that are completely applied constructor expressions and those that
are either incompletely applied constructor expressions or that are
abstractions. Reductions terminate in WHNFs. Reduction and
normal-order reduction have important properties that distinguish
them as an adequate choice.

1. The result obtained by some reduction sequence can also be
obtained by a reduction sequence in which all normal-order
reduction occurs before reduction not in normal order. We
say reduction sequences can be standardized.

2. Reduction of an expression has no effect on the existence of
a terminating reduction sequence. This property is called
invariance of termination.

As semantics of the Λ-expressions we choose the equivalence
classes of the contextual equivalence. Two expressions are con-
textually equivalent if there is no context, i.e. no expression with
a hole, for which insertion of each of the expressions results in
differently terminating expressions. This equivalence is more gen-
eral than the reflexive, symmetric, and transitive closure of the
reduction relation. Since the definition of contextual order, which

4



1.1 Overview

is used to define contextual equivalence, uses quantification over
all possible contexts, it is often unwieldy for proofs. With the con-
text lemmata we obtain the possibility to narrow our attention to
some specific set of contexts. This aids in shortening the proofs
and in making them more comprehensible.

Following the definition of least upper bounds and the proof of
continuity for arbitrary contexts we state that Turing’s θ is a
least-fixpoint combinator and that θ t is equivalent to the least
upper bound of the ascending chain consisting of i-fold iterated
t’s.

Closing chapter 2 we note how super-combinators can be trans-
lated into Λ and state that Λ does not form a CPO with the
contextual order.

The purpose of our demand analysis calculi is to compute bindings
for free variables of a Λ-expression under which the expression re-
duces to a specified result. We specify sets of such results using
demands which are introduced and investigated in chapter 3. De-
mands stand for sets of Λ-expressions and e.g. provide syntactic
constructs for the representation of union and intersection. They
are assigned meaning in a two-phased process: first the repre-
sentation of a demand is defined using the smallest fixpoint of a
recursive function, and then their concretization is defined as the
closure with respect to forming contextually least upper bounds of
ascending chains from the representation. Representation as well
as concretization are closed with respect to contextual equivalence
and therefore also with respect to reduction. On the other hand,
demands can very precisely specify which Λ-expressions should be
included, e.g. for every constructor normal form there is a demand
representing exactly those Λ-expressions contextually equivalent
to this constructor normal form. In chapter 5 demands are ex-
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tended to provide a similar precision for higher-order expressions.
All the expressions from the representation of a demand can be
found in that demand’s concretization. Additionally, expressions
that may e.g. be evaluated to arbitrary depth are introduced into
a demand’s concretization. Such expressions cannot be members
of the representation of any demand.
Demands have the same expressive power as Turing-machines.
This holds even for a restricted class of demands. The equipotence
proof is in two directions: for one we reduce Turing-machines to
demands, the other amounts to giving an enumeration method for
demands.
Concretizations are closed with respect to forming contextually
least upper bounds of their ascending chains. This is an important
technical result, particularly for the soundness and completeness
proofs, because it will allow to conclude that a statement holds
for the solutions from a concretization if that statement holds for
the solutions from the corresponding representation.
In section 3.6 we interpret demand definitions as monotonous
functions and observe that the concretization of some is the least
fixpoint of that function, for others it is the greatest fixpoint of
that function, and for yet others it is a fixpoint of that function,
but neither the least nor the greatest.
Chapter 3 closes with a section on demand transformations. These
replace syntactically complex demands by (subjectively) simpler
demands while maintaining the concretization.
Chapter 4 presents demand analysis and introduces two calculi for
performing this analysis. Demand analysis receives a constraint
s ∈ D as input in which s is an open Λ-expression and D is
a demand, and tries to compute bindings for the free variables
for which the Λ-expression belongs to D’s concretization. Both

6



1.1 Overview

calculi generate a demand expression in order to specify the set
of solutions and they only differ in their rule set: one, ADE, may
use additional rules not available to the other, CADE. CADE is
sound and complete if it terminates whereas ADE is only sound,
but ADE terminates for more inputs than CADE.

We present the calculi as non-deterministic rule sets transforming
a tree-like data structure into another by appending new leaves
below the leaves in the former. The calculi terminate if this data
structure has a particular form, i.e. if it is closed. In this case a
translation of the computed data structure to a demand expres-
sion, the so-called standard representation, is defined. The solu-
tions of the analysis problem are obtained as a specific subset of
the standard representation’s concretization. An important prop-
erty of the calculi, which is responsible for much of their power,
is the use of global rules. In addition to a set of constraints avail-
able locally at a node the global rules have access to all the nodes
along the path from the root. Such rules enable the calculi to
detect loops and thus to solve constraints that without such rules
would lead to non-termination.

We prove the soundness of ADE and soundness and completeness
for CADE if it terminates.

Extensions and aspects of the implementation are dealt with in
chapter 5. The extensions have all been prototypically imple-
mented. The local rule’s extensions in section 5.2 and the pre-
cision improvement for higher-order expressions have not been
theoretically integrated to the same extent as the base calculi, in
particular the extensions are not considered in the soundness and
completeness proofs where only the base calculi are considered.
From experience with the implementations as well as with the
elaboration of the base calculi we conjecture that these extensions
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could equally be integrated.
In chapter 6 we present different examples motivating some of the
calculi’s rules and hint toward their possible applications.

1.2 Related work

1.2.1 Abstract Interpretation

In the field of analyzing properties of programs for non-strict func-
tional languages one of the most widespread methods may well
be abstract interpretation [BHA85, AH87, Abr90a, Bur91, CC77,
Myc81, Wad87]. Another method not quite as widespread is based
on projections [HW87, Pat96, LPJ96].
Both methods have in common a definition based on the denota-
tional semantics of the language analyzed.
For the denotational semantics domains are used which provide
objects for the values of the language, e.g. Z for the syntactic
constructs {0, -1, 1, -2, 2, . . . }. The mapping from syntactic con-
structs to domain elements is called evaluation.
If the language is of higher order, domains for continuous func-
tions on domains are typically used as the co-domain of the eval-
uation function. Furthermore one defines an evaluation function,
[[·]], mapping language constructs into the domains. If one does
this canonically, the standard interpretation is obtained. By the
choice of evaluation function and domains, different non-standard
interpretations are possible.
In this view a property of a program is a relation between sub-
sets of the domain for the input values and those of the output
values. It is important which domains are used, if there are e.g.
only values for expressions with terminating computations result-
ing in some data value, we cannot associate a (sensible) semantic
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1.2 Related work

value to expressions with non-terminating computations and thus
the evaluation will only be a partial function. For many program
analyses such domains are not an appropriate basis and typically
lifted domains are used in the literature, i.e. domains that con-
tain a value for expressions with non-terminating computations.
Lifted domains are appropriate for many analyses, among them
termination analysis, strictness analysis, absence analysis and de-
mand analysis. Other analyses may need even richer domains,
e.g. domains in which for every value the maximal number of
normal-order reductions necessary to obtain it is attached to the
value, the maximal number of heap accesses necessary in its com-
putation or the maximal number of parallel threads into which
the computation may be partitioned. With such domains and
appropriate evaluation functions one obtains non-standard inter-
pretations. We mention in passing that there are non-standard
interpretations using domains smaller than those of the standard
interpretation.
In order to deduce operational behavior from properties defined
on a standard or non-standard interpretation the operational se-
mantics needs to be related to the denotational semantics, i.e. the
appropriate interpretation. This relation is computational ade-
quacy. For the standard interpretation it amounts to:

· the operational semantics for a program results in a non-
terminating reduction iff the standard interpretation maps
the program to ⊥, and

· the denotation of a program is not changed by reduction.

A great many properties of programs, required by optimizations
and program transformations are undecidable.
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The methods based on abstract interpretation abstract the do-
mains, typically by using complete lattices in which a single value
represents a subset of a domain. Abstract evaluation functions
mapping language constructs to abstract values also need to be
provided. The goal here is to be able to decide an abstraction of
the property to be analyzed and obtain an approximation of the
concrete property. The relation between the abstract interpreta-
tion and the standard or non-standard interpretation is given by
a so called Galois connection [CC94]. The Galois connection con-
sists of two functions, an abstraction and a concretization, where
the abstraction maps concrete properties to abstract ones, i.e. to
relations between abstract values and conversely the concretiza-
tion maps abstract properties to concrete ones. Additionally, a
Galois connection must be compatible with orders, i.e. the ab-
straction of a property must be smaller than an abstract value iff
the concretization of the latter is contained in the property.

We want to relate our calculi, ADE and CADE, to abstract in-
terpretation. The choice of the contextual order correlates to the
choice of the domains for standard or non-standard interpretation.

The way the contextual order was chosen for our work, it is not
feasible for the analysis of properties defined in terms of e.g. the
number of reduction steps [San98a].

Our contextual order matches the standard interpretation.

As an example we consider strictness analysis, or context-analysis
[FB94], based on Wadler’s 4-point domain. Here the complete
lattice ⊥# ≤ ⊥∞ ≤ ⊥∈ ≤ �∈ is used. The concretization maps
⊥# to the expressions (of type list) without WHNF, ⊥∞ to
the set of expressions evaluating to infinite lists or to approxi-
mations thereof, ⊥∈ to the set of expressions evaluating to finite
lists in which at least one element has no WHNF, and finally
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�∈ to the set of expressions evaluating to finite lists in which
all elements have a WHNF. The abstraction is defined accord-
ingly and it is easy to see that we obtain a Galois connection
between the standard interpretation and the abstract interpreta-
tion. The same sets may be represented as demands in ADE.
For this representation some auxiliary demands are used. Bot

stands for the same set as ⊥#. Let Inf = 〈Bot, Top : Inf〉 and
WInf = Top : Inf then WInf and ⊥∞ stand for the same sets. If
Top+ = 〈Fun, cA,i Top . . . Top, . . . 〉 stands for all expressions hav-
ing a WHNF and Fin = 〈[], Top : Fin〉 stands for all finite lists
with arbitrary elements then WBotElem = 〈[], Bot : Fin, Top+ :

WBotElem〉 stands for the same set as ⊥∈. Finally, �∈ corresponds
to WTopElem = 〈[], Top+ :WTopElem〉. It is straightforward to see
that (our) concretization of the demands really does result in the
sets above.

Thus we can connect analyses of ADE with analyses using
abstract interpretation. If e.g. the analysis of length xs ∈
Bot →ADE WInf, then for every value s ∈ γ(WInf) we know
length s ∈ γ(Bot). Due to computational adequacy ∀s ∈
γ(WInf) : [[length s]] = ⊥ which abstracts to α(length) ⊥∞ =
⊥#

Our calculi are obviously more precise than Wadler’s 4-point
domain. As an example consider the function second

def=
λx.head (tail x). If an application of second is evaluated to
WHNF the only evaluation degree for the argument expressible
in the 4-point domain is evaluation to WHNF. Our calculi can
automatically analyse second’s argument to need evaluation to
WHNF, evaluation of the tail of that WHNF to WHNF, and eval-
uation of that tail’s head to WHNF.
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1.2.2 Set-based Analysis

The goal of set-based analysis is to constrain the set of values
which may result from a part of a program. In order to achieve
this the data-flow of the program is approximated. Depending on
the kind of object language the program parts for which the value
set is approximated may be the program variables or the program
sub-expressions, etc.
Set-based analysis is not limited to functional languages, in-
stead it was formulated for a simple imperative language e.g.
in [JM79]. Another example of an analysis for a language with
imperative features can be found in [FF95]. There full Scheme
with assignment and first-class continuations is considered. In
[HJ92, Mis84, GdW94] the approach is applied to logic programs.
Still it seems the majority of research on set-based analysis is
concerned with functional languages [AW93, Bis97, AWL94].
Set-based analysis works in two phases: the first, specification,
computes set-constraints from the program text and the second,
solution, computes a minimal model solving the constraints.
The set-constraints are inclusion relations between pairs of set-
expressions, where the set-expressions are in turn constructed
from some given operations on set-expressions (e.g. union, in-
tersection, complement etc.), set-variables, for which the system
of set-constraints is to be solved, and function symbols, typi-
cally uninterpreted. The choice of operations allowed for the
set-expressions essentially influences the time complexity of the
solution phase.
The set-variables represent a notion of locality in the program
text. This notion will vary with the language analyzed and with
the kind of analysis: for e.g. imperative languages a distinct set-
variable might be chosen for any pair of program statement and
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program variable, as in [HJ94], to constrain the set of values of a
program variable at a particular program position. For functional
languages set-variables may e.g. be chosen for marked subexpres-
sions as in [Bis97] or for heap-locations [FF95] if these are visible
in the syntax of the language and these set-variables will then
constrain the set of values which may appear in corresponding
locations.

For the function symbols the constructors of the object language
may be chosen or as in [FF95] the constructors of heap-values
themselves may be used. These heap-values carry references to
heap-locations, but since in the cited work heap-locations corre-
spond one-to-one with set-variables no problems arise and a tech-
nically simple presentation is achieved.

Depending on the features to be analyzed different definitions of
value are used which also affects the set-based semantics. As
an example [Bis97] uses an additional symbol ⊥⊥ for expressions,
which do not contribute to the result of the program.

The development of a set-based analysis for a semantic feature
starts with an appropriate environment based operational seman-
tics for the feature. In general this is not the standard semantics of
the language, but it can be as e.g. in [FF95]. For many set-based
analyses a natural semantics, i.e. a big-step operational semantics,
is used. Again this is not necessarily so, as [FF95] shows, by using
a small-step operational semantics or as [AWL94, AW93] show by
using a semantics of type inference.

The environment, which maps free variables to values of the se-
mantics will in a next step be converted to a set-environment
having the same domain as the environment, but mapping to sets
of values. This entails the presentation of a set-based seman-
tics for which the values resulting from the original semantics are
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elements of the results of the set-based semantics. The set of
values computed as the result of a program in the minimal safe
set-environment is the set-based approximation of that program.
The actual specification is then performed by a syntax-directed
translation of the program text into a set of set-constraints which
in turn must have a minimal model mapping the program to its
set-based approximation.
There is a wealth of analyses which employ this framework with
object languages ranging from functional via logic to object-
oriented, analyzed features including among others types or ab-
sence of expressions from the computation and set-constraint lan-
guages ranging from very restricted languages that do not allow
arbitrary intersection, union, complement etc. to unrestricted set-
constraint languages that may include these operations, projec-
tion, function-spaces, etc. Accordingly, the running times of the
analyses which are dominated by the specification phase vary from
polynomial time to non-deterministic exponential time.
The essential step which is on the one hand responsible for making
the analyses decidable and which on the other hand forces the
inaccuracy is the translation into the language of set-constraints.
A fundamental difference between ADE and the set-based analyses
found in the literature is therefore that in the computation of a
solution using set-based analyses no reduction is used, but in ADE
this is well used.

ADE as SBA?

We will now set to work on the difference between ADE and SBA.
Obviously, both are methods to formulate various program analy-
ses. The result of ADE is an expression of the demand language,
ΛC , constraining the values possible for variables in the input.
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This most closely corresponds to a system of set-constraints as
it is produced by SBAs in the specification phase. Under these
premises the demand language corresponds to the language of set-
constraints and ADE corresponds to a specification phase. We do
not provide anything which would correspond to a solution phase:
an appropriate algorithm does not exist. This is a consequence of
our result that even simple questions such as emptiness of a de-
mand are undecidable. It follows that arbitrary demands cannot
be encoded as systems of set-constraints, since these properties are
decidable for set-constraints. We will not give a characterization
of the subset of demands which can be so encoded in the present
work. This is left for future work to investigate. A further aspect
which we can compare is the way by which the specification is
obtained. In SBAs a syntax-directed translation is used whereas
ADE may use, among other things, reduction of Λ-expressions and
in the loop rules has access to entire computation paths. Com-
paring ADE to SBA shows that while superficially ADE may be
viewed as the specification phase of an SBA, looking a little closer
reveals great differences opposing an integration of ADE into the
SBA framework.

1.2.3 Other related work

Recently, Dirk Pape classified strictness analyses in his disser-
tation [Pap00]. According to this classification and that in
e.g. [DW90] the calculi we present are backwards analyses. Fur-
thermore, our calculi are closest to the analyses with an infinite
analysis domain, although our demands, ΛC , do not form a se-
mantic domain.
The definition of demands in this dissertation is different from that
used e.g. in [Tre94] or in [Pap00]. In [Pap00] the language for for-
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mulating the demands (as Scott-closed subsets of the appropriate
domain) is not limited whereas in [Tre94] demands are limited to
be graph structures defined through the use of a demand environ-
ment and appropriate bindings. In contrast to [Pap00] we have a
restricted language of demands, ΛC , but in contrast to [Tre94] the
complexity of our demand language equals that of Turing-machine
computations (cf. section 3.4).
Nöcker [Nöc93] uses abstract values with a structural complexity
similar to Tremblay’s demands, but the latter represent only ex-
pressions with a structure of finite depth while the former can also
be used to e.g. represent infinite lists.
The idea behind the global rules in this dissertation is based on
[Nöc93] and on the experience from [Sch94]. There reduction path
analysis is used detecting loops based on the abstract reduction
history of an expression.
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In this chapter we define the language to be analyzed, Λ. Λ is
a λ-calculus to which we add constructors and a case. While we
do not require every expression to be typed in the sense of the
typed λ-calculus, we do intend Λ to be used as a core language
in the compilation of a higher level typed functional language.
Consequently, the constructors will belong to types of the higher
level language which are formed from type constructors. Keeping
the type constructor attached to the constructors as well as to the
case construct will allow us to rule out many expressions as ill-
typed and will match Λ more closely to a higher level functional
language.

2.1 Syntax

2.1.1 Types

The type system of Λ consists of a set A of type constructor
names, A1, . . . , An, each of which stands for a set cA of data
constructor names, cA,1, . . . , cA,|A|. These sets are disjoint for
any two different types. The number of constructors for a type
A is denoted |A|. Every constructor c has an arity α(c), and
an index within cA, such that we can speak of the first, second ,
. . . , |A|th constructor of A. The constructor with index j of A is
denoted cA,j . For every type A ∈ A there is a case-constant caseA
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of arity |A| + 1. Finally, we allow an infinite set of variables. We
assume that all the permitted symbols are different. The only way
to discriminate among the data constructors of a type constructor
A from within a program is by means of caseA.

Definition 2.1 (syntax of Λ). We define Λ to be the language gen-
erated by the grammar G = ({K,V,E,C}, {〈varid〉} ∪ {cA,i|A ∈
A, 1 ≤ i ≤ |A|}, P,E} where P is the set of productions in 2.1.

constructor K → cA,i, A ∈ A, 0 ≤ i ≤ |A|
case C → caseA, A ∈ A

variable V → 〈varid〉
application A → (E E)

abstraction L → (λV.E)

expression E → K | V | A | L | C

Table 2.1: The set P of productions for Λ’s grammar

Whenever there is no risk of confusion we will, for ease of notation,
write e.g. t ∈ E or t ∈ Λ to express the fact that t is an expression
instead of t ∈ L(G) where G = ({K,V,E,C}, {〈varid〉}∪{cA,i|A ∈
A, 1 ≤ i ≤ |A|}, P,E}).

Definition 2.2 (position, level). Formally, a term t may be re-
garded as a total function, mapping elements of a finite set of
sequences of the naturals, the positions, to terminals or strings
of terminals produced by some non-terminal of the grammar
above, i.e. the subexpressions or terms, where the domain is prefix-
closed, finite, and ∀i : s1 . . . sni in the domain of t implies that
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s1 . . . sn(i − 1) is also in this domain. The length of a subexpres-
sion’s position will also be called the level of the subexpression.
At level 0, the subexpression is the entire term. The depth of a
term is the maximal level of its subexpressions, i.e. the maximal
length of a position within the term.

Notation 2.3. We use some notation and conventions throughout
this work to facilitate comprehensibility. These are used where
appropriate and will not need to be specifically mentioned.

1. Letters e, f, g, r, s, . . . , w denote Λ-expressions.

2. Letters x, y, z denote variables.

3. We write e1 . . . en for (. . . (e1 e2) . . . en).

4. We use Barendregt’s variable convention [Bar84].

5. V (s) denotes the set of (all) variables in an expression s.

6. We write λx1, . . . , xn.e for λx1. . . . λxn.e.

7. si t abbreviates s (s . . . (s︸ ︷︷ ︸
i

t) . . . ).

Definition 2.4. For words w, v of a language L over alphabet Σ
we define the structural or syntactic order (or substring relation)
to be

w ≤ v ⇐⇒ ∃α, β ∈ Σ∗ : αwβ = v.

We state without proof that this is a partial order and a precongru-
ence, and we call ≡def=≤ ∩ ≥ syntactic equivalence. Furthermore,
<

def=≤ ∩ �≥.

Notation 2.5. For any relation →⊆ A × A we write +→ for the
transitive, ∗→ for the reflexive transitive closure and n→ for the
n-fold iteration of →.
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2.1.2 Substitutions

Definition 2.6. An occurrence of a variable is free if it is not in the
scope of a λ binder for that variable. The set FV(t) of variables
occurring free in an expression t ∈ Λ is

FV(cA,i)
def= ∅

FV(caseA) def= ∅

FV(v) def= {v}, if v ∈ V

FV(E1 E2)
def= FV(E1) ∪ FV(E2)

FV(λv.E) def= FV(E) \ {v}

FV(·) is canonically extended to sets of Λ expressions.

A term t without free variables, i.e. for which FV(t) = ∅ holds, is
called closed, otherwise t is open. We write Λ0 for the subset of Λ
consisting of all closed expressions.
The notion of substitution is highly important in our work and we
define two equivalent ways of expressing it.

Definition 2.7. A substitution σ maps Λ into Λ by replacing
finitely many free variables with Λ-expressions. We write σ =
{x1 �→ t1, . . . , xn �→ tn} for variables x1, . . . , xn and Λ-expressions
t1, . . . , tn. The domain of σ is defined as dom(σ) def= {xi|xi �= ti}
and cod(σ) def= {ti|xi �= ti} is called σ’s co-domain. If every ele-
ment of the co-domain is closed, σ is ground. The application of
substitution σ to Λ-expression s is defined as follows:

σxi
def= ti

σy
def= y if y /∈ {x1, . . . , xn}
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σ(λy.s′) def= λy.σ′s′, where σ′ = {x �→ t|x �= y}

σ(s1 s2)
def= σs1 σs2

σc
def= c

σcaseA
def= caseA

The substitution mapping every variable to itself is called id .

Definition 2.8. As an alternative notation we define:

s[t1/x1 , . . . , tn/xn ] def= {x1 �→ t1, . . . , xn �→ tn}s.

Definition 2.9. Let ρ, σ be substitutions with ρ = {x1 �→
r1, . . . , xn �→ rn}, then we define

ρσ def= {x1 �→ σr1, . . . , xn �→ σrn}.

Remark 2.10. Let ρ, σ be substitutions, then

1. ∀x ∈ dom(ρ) : ρσx = σρx and

2. dom(σ) ∩ FV(cod(ρ)) = ∅ =⇒ ρσ = ρ.

In the first case ρσxi = σri and σρxi = σri, and in the second
case for all ri : σri = ri.

Definition 2.11. Let σ and ρ be substitutions and let Σ be a set
of substitutions. Suppose s ∈ Λ and S ⊆ Λ. We define

σS
def= {σs|s ∈ S}

Σs
def= {σs|σ ∈ Σ}

ΣS
def=

⋃
σ∈Σ

σS

Σπ
def= {σπ|σ ∈ Σ}.
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The substitution lemma states how the sequence of two substitu-
tions can be reversed to obtain identical terms. One has to take
into account that variables may occur free in the substitutes of the
substitution applied first that are also in the domain of the sub-
stitution applied last. This lemma corresponds to [Bar84, 2.1.16
Substitution Lemma].

Lemma 2.12 (substitution lemma). Let σ, ρ be substitutions with
disjoint domains and let dom(ρ) ∩ FV(t) = ∅ for all t ∈ cod(σ),
then

∀r ∈ Λ : σρr ≡ ρσσr.

Proof. The proof proceeds, similarly to that in [Bar84], by induc-
tion on the structure of r.

r ≡ c : By definition 2.7 ∀σ : σc ≡ c, so both sides are equal.

r ≡ caseA : as above.

r ≡ x ∧ x ∈ dom(ρ) : x /∈ dom(σ) so ρσσx ≡ ρσx ≡ σρx.

r ≡ y ∧ y ∈ dom(σ) : y /∈ dom(ρ) thus both sides equal σy.

r ≡ z ∧ z /∈ dom(ρ) ∪ dom(σ) : Both sides equal z.

r ≡ λy.s : By the variable convention, y is neither in the domain
of the substitutions nor among the free variables of the sub-
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stitutes.

σρ(λy.s)

≡(variable convention + definition 2.7)

λy.σρs

≡(induction hypothesis)

λy.ρσσs

≡(variable convention + definition 2.7)

ρσσ(λy.s)

r ≡ r1 r2 : The statement is implied by the induction hypothesis.

Definition 2.13. Let θ be a function and M ⊆ dom(θ). The
restriction of θ to M , written θ|M , is the function that maps
elements of M to the same values as does θ and is undefined for
values outside M . θ is an extension of σ if there is a set M for
which θ|M = σ.

We abbreviate some combinators used in the rest of this work.
These definitions are not super-combinators, in particular, they
are not recursive, but serve merely as textual replacements.

Definition 2.14.

K
def=λx.λy.x

Km
def=λx0. . . . λxm.x0

D
def=λf.λx.(f (x x))

Y
def=λf.(D f (D f))
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A
def=λz.λx.(x (z z x))

θ
def=A A

id
def=λx.x

bot
def=θ id

proji,j
def=λx1. . . . λxi.xj

botn
def=λx1. . . . λxn.bot

selA,i,j
def=λx.(caseA x bot . . . bot︸ ︷︷ ︸

j−1

projα(cA,i),j
bot . . . bot︸ ︷︷ ︸

|A|−j

)

detA,i
def=λx.(caseA x bot . . . bot︸ ︷︷ ︸

i−1

cA,i bot . . . bot︸ ︷︷ ︸
|A|−i

).

2.2 Reduction

We take a contextual operational view on programming language
semantics in this dissertation, i.e. the means by which we assign
meaning to Λ-expressions involves reduction and programs with
holes, so called contexts.
The operational semantics of Λ is given as a small step reduc-
tion semantics. We define an immediate reduction relation, →B ,
applicable only if the entire term has a specific form. Allowing im-
mediate reduction at any node in an expression’s syntax tree we
obtain the notion of reduction, →. Normal-order reduction, →no,
is obtained by restriction of the contexts to reduction contexts.

2.2.1 Contexts

The notion of contexts presents a means to divide any expression
into an “upper” part, the context, and a “lower” part, the subex-
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pression which is inserted into the context at a specified position.

Definition 2.15 (context). A context is an expression with a sin-
gle occurrence of an additional constant, ·, called hole. If t is an
expression and p is a position in t, we may split t into a context
C[·] and a subexpression s such that C[·] is defined for any posi-
tion q of t’s positions not having p as a prefix. On this domain
t(q) ≡ C[·](q) and C[·](p) ≡ · (also written [·]) and t|p ≡ s so that
t ≡ C[s].

Since we allow variables to be captured by C[·], in general, it is
not possible to allow arbitrary α-renaming for contexts.

Notation 2.16. For a context C[·] we write C[·] ∈ Λ or C[·] ∈ Λ0

if for s ∈ Λ or s ∈ Λ0 : C[s] ∈ Λ or C[s] ∈ Λ0, respectively. We
call [·] the trivial context.

Definition 2.17 (multi-context). A multi-context, C[·1, . . . , ·n] is
an expression with occurrences of n distinct holes, each of which
occurs exactly once. C[t1, . . . , tn] is the expression which results
from inserting the expressions t1, . . . , tn in place of the holes.

For multi-contexts the problem of variable capturing is compli-
cated by the fact that every hole may appear in different scopes.
Contexts which may duplicate holes are also used in the literature
[San98b, Bar84], but for our presentations they are not necessary.
We need to extend the definition of depth to contexts. If, for a
previously unused variable a, the level of all subexpressions of C[a]
differing from a is less than a’s level, n, then the depth of C[·] is
n− 1, otherwise the depth of C[·] is the same as that of C[a]. The
operational semantics uses repeated β-reduction as in the λ-calcu-
lus, and convergence is defined with a stepwise evaluation relation
using reduction contexts [San96, FFK87]. A reduction context is
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a context with a single hole, which stands for the next expression
to be evaluated.
The choice of reduction order forces the definition of reduction
context. Here we want to achieve normal-order reduction and
thus define reduction contexts as in definition 2.19.

Definition 2.18. A context C[·] is below a context D[·] in s if
∃t : s ≡ D[C[t]].

Definition 2.19. A reduction context, R[·], is inductively defined
by the following grammar:

R[·] → [·]
| R[·] e

| caseA R[·] e1 . . . e|A|

The alternative e R[·] would mean that the argument may be eval-
uated before starting the evaluation of the function. While this
might be desired, e.g. for optimization using strictness informa-
tion, or for call-by-value, it deviates from normal-order reduction.
In what follows, unless otherwise stated, the letters Q, R, S and T

will denote reduction contexts.

Lemma 2.20. If s can be written as s ≡ R[t] ≡ R′[t′] then either
R[·] ≡ R′[S[·]] or R′[·] ≡ R[S[·]].

Proof. In no production of the grammar for reduction contexts
does R[·] appear more than once.

Definition 2.21. Let s be an expression. R[·] is called maximal
reduction context for s, if s ≡ R[t] and the only reduction context
below R[·] in s is the trivial reduction context.

Lemma 2.22. R[·] and S[·] are reduction contexts, iff R[S[·]] is a
reduction context.

26



2.2 Reduction

Proof. This follows directly from the definition 2.19 since holes,
being trivial reduction contexts, appear only in positions where
also a non-trivial reduction context could appear.

Lemma 2.23. Let σ be a substitution. σR[·] is a reduction context
if R[·] is a reduction context.

Proof. Using induction on the structure of R[·] it is easy to see
that the substitution will not change this structure.

The converse is not true in general as the following example shows.

Example 2.24. Let C[·] ≡ x [ ] [] (λx.λxs.x : xs) and let σ =
{x �→ caseList}, then C[·] is not a reduction context, but σC[·] ≡
caseList [ ] [] (λx.λxs.x : xs) is a reduction context.

2.2.2 Reduction

Definition 2.25. The reduction relation, →, is the smallest re-
lation on expressions, satisfying the following conditions for all
contexts, C[·]:

C[s] → C[t], if s →B t (2.1)

where

(λx.t) e →B t[e/x] (2.2)

caseA (cA,i 
e) t1 . . . t|A| →B ti e1 . . . eα(cA,i) (2.3)

Notation 2.26. It will be convenient to use vector notation

e to stand for “all the e1, . . . , en” if the intended mean-
ing is clear from the context. So for (2.3) we may write
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caseA (cA,i e1 . . . eα(cA,i)) t1 . . . t|A| →B ti 
e or even
caseA (cA,i 
e) 
t →B ti 
e and for a multi-context C[·1, . . . , ·n]

we may write C[
e] for C[e1, . . . , en]. We will even write s[
−→
t/x]

for the substitution s[t1/x1 , . . . , tn/xn ] if it is evident from the
context which t1, . . . , tn are intended.

Definition 2.27 (redex, contractum). A subexpression s of an
expression t is called redex, if it can be reduced using the →B-re-
lation, i.e. if there is a context, C[·], such that t ≡ C[s]∧ s →B s′.
s′ is called the reduct of s and C[s′] is called the contractum of t.

Definition 2.28 (→no, normal-order reduction). The reduction
is said to be in normal order, if condition (2.1) is satisfied for a
reduction context, i.e. if s ≡ R[s′], t ≡ R[t′] and s′ →B t′. In this
case we write →no instead of →. (This will not be a maximal
reduction context.)

Remark 2.29. The reduction context of a normal-order redex is
the one directly above the maximal reduction context.

A redex which can be reduced in normal order is called the normal-
order redex. We call an expression s a potential redex, if there is
a substitution σ such that σs is a redex in σt.

Lemma 2.30. Let s be a closed Λ-expression. If t is a Λ-expression
for which s → t, then t is closed.

Proof. It suffices to observe that Λ-expressions s′, t′ with s′ →B t′

satisfy FV(s′) ⊇ FV(t′). For s ≡ C[s′], C[·] will bind all the free
variables of s′, so the statement of the lemma is implied.

1. If s′ ≡ (λx.s′′) e, then FV(s′) = FV(s′′) \ {x} ∪ FV(e) and
t′ ≡ s′′[e/x]. By the variable convention x is not among the
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free variables of e and thus not among the free variables of
t′, but the other free variables of s′′ and e are, thus FV(s′) =
FV(t′).

2. If s′ ≡ caseA (cA,i e1 . . . eα(cA,i)) t1 . . . t|A|, then FV(s′) =⋃
i FV(ti) ∪

⋃
i FV(ei) and FV(t′) = FV(ti) ∪

⋃
i FV(ei),

and so obviously FV(s′) ⊇ FV(t′).

Proposition 2.31. The normal-order redex is uniquely defined.

Proof. Let r, r′ ∈ Λ and R[·], R′[·] be reduction contexts. Assume
r has more than one normal-order redex. By lemma 2.20 it suffices
to consider r ≡ R[s] where s ≡ R′[t]. We can reduce

r ≡ R[s] →no R[s′] ≡ r′ by s →B s′

s ≡ R′[t] →no R′[t′] ≡ s′ by t →B t′

R[·] ≡ R[R′[·]], i.e. R′[·] ≡ [·] since R[·] is the reduction context
directly above the maximal reduction context and since there can-
not be a →B-reduction in the hole of a maximal reduction context,
because in every expression being →B-reducible there must be a
non-trivial reduction context.

Lemma 2.32. Let R[·] be a reduction context, s, t ∈ Λ and s
∗→no t,

then

R[s] ∗→no R[t].

Proof. By induction on the length of the normal-order reduction
s

∗→no t observing that the →B-reductions will not affect the
reduction context.

The contextual representation of Λ-expressions is highly expres-
sive, but one needs to be careful not to be misled. Namely, one
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could come to believe C[s] ∗→no R[s] =⇒ C[t] ∗→no R[t], which is
false.

Example 2.33. Let f ∈ Λ be some expression reducing to an
abstraction and let g, h ∈ Λ. Assume f g

∗→no R[g] and that this
is the first time the normal-order redex is within g. If this implied
f h

∗→no R[h] then in particular f g
∗→no S[g v] =⇒ f h

∗→no

S[h v]. But this is false! A simple counter-example is f ≡ λx.(x x)
for which we have f g

∗→no g g and f h
∗→no h h, but in general

g �≡ h.

2.2.3 Stability of reduction

The →B-reduction is stable with respect to arbitrary substitution
of free variables. That is, if some expression can be →B-reduced
and this expression has free variables, then it does not matter
what is substituted for the free variables, the same reduction will
be possible after substitution.
We generalize stability to other properties, i.e. we will speak of
some property being stable with respect to some operation, if
that property is not changed by the operation. The property
to be considered now is →B-reducibility of some redex and the
operation is substitution of free variables.

Lemma 2.34. Let s, t ∈ Λ with FV(s)∪FV(t) = {x1, . . . , xn}. Iff
s →B t then

∀r1, . . . , rn ∈ Λ : s[r1/x1 , . . . , rn/xn ] →B t[r1/x1 , . . . , rn/xn ].

Proof.

=⇒ : We distinguish the two possibilities for the →B-reduction.
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1. If s ≡ (λy.s′) s′′ then as a consequence of the variable
convention y is neither free in s nor in the si and t ≡
s′[s

′′
/y ].

(λy.s′ s′′)[
−−→r/x]

≡(definition 2.7 + variable convention)

(λy.s′[
−−→r/x]) s′′[

−−→r/x]

→B

s′[
−−→r/x][s

′′[
−−→r/x]/y ]

≡(variable convention + lemma 2.12 with

σ = [
−−→r/x] and ρ = {y �→ s′′})

s′[s
′′
/y ][

−−→r/x].

2. If s ≡ caseA (cA,i e1 . . . eα(cA,i)) t1 . . . t|A| then t ≡
ti e1 . . . eα(cA,i).

(caseA (cA,i e1 . . . eα(cA,i)) t1 . . . t|A|)[
−−→r/x]

≡(definition 2.7 iterated)

caseA (cA,i e1[
−−→r/x] . . . eα(cA,i)[

−−→r/x])
−−−→
t[r/x]

→B

ti[
−−→r/x] e1[

−−→r/x] . . . eα(cA,i)[
−−→r/x]

≡(definition 2.7 right-to-left)

(ti e1 . . . eα(cA,i))[
−−→r/x].

⇐= : We can substitute the free variables themselves to obtain
this implication.
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The →-reduction and the →no-reduction inherit the stability with
respect to arbitrary substitution from the →B-reduction.

Proposition 2.35. Lemma 2.34 also holds for → and →no.

Proof. We will argue for →no only, for → the argument is analo-
gous.

=⇒ : Let R[·] be a reduction context with s ≡ R[s′] and t ≡ R[t′]
and s′ →B t′. Due to lemma 2.34 we can apply the same
reduction to an arbitrarily substituted s′ and obtain the
appropriately substituted t′. From lemma 2.23 we know
that the substituted reduction context is also a reduction
context and hence the statement holds.

⇐= : If s[
−−→r/x] →no t[

−−→r/x] holds for any choice of r1, . . . , rn ∈ Λ,
then in particular it will hold for ri ≡ xi.

2.2.4 Weak head normal form

Definition 2.36. An expression is in weak head normal form,
WHNF, if it is in one of the following forms:

· c e1 . . . en where c is a constructor of arity n,

· λx.s or c e1 . . . en where c is a constructor or a caseA con-
stant and the arity of c exceeds n

A WHNF of the first kind is called saturated constructor WHNF,
SCWHNF, and one of the second kind is called function WHNF,
FWHNF.
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WHNFs are the values in our work. This is in accordance with cur-
rent practice in implementing lazy functional programming lan-
guages and e.g. with [Abr90b]. Intuitively, this amounts to re-
garding expressions which after a finite reduction sequence reduce
to a WHNF as convergent. It may seem obvious to view all other
expressions as divergent. Among these, though, there are some
that reduce to a reduction context in which a variable is in the
hole, e.g. R[x]. These are not WHNFs, but some may reduce to
WHNF for appropriate substitution of the variable and some may
not reduce to WHNF no matter what is substituted. In a way, the
R[x] and expressions which reduce to this form are “amorphous”.
We decide not to call expressions of the form R[x] divergent, in-
stead we call only those expressions divergent that have no WHNF
and that do not reduce to an expression of the form above. In the
rare case where we will need a name for the kind of expressions
having the form R[x], we will call them suspended expressions.
We also speak of non-convergent and non-divergent expressions
in case they are divergent or suspended or in case they are con-
vergent or suspended, respectively.
An expression t has a WHNF, if an expression t0 exists such that
t

∗→ t0.

Our definition of WHNF seems to differ from that given in [PJ87].
Effectively, however, the difference is negligible. We distinguish
suspended expressions from WHNFs only for the latter to be sta-
ble with respect to substitutions. In addition to (our) WHNFs
and suspended expressions the definition of [PJ87] allows over-
saturated constructor applications as WHNFs. But this effectively
is no extension, since a well-typed program will not produce such
expressions (cf. 2.4). In work based on the denotational standard
semantics such expressions do not have a denotation since the in-
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terpretation is only defined for well-typed expressions. We take
the stance that nothing relevant is lost by their exclusion.

Notation 2.37. Some notational conventions related to WHNFs
and s, t ∈ Λ:

s⇓t if s has WHNF t

s⇓Sc s1 . . . sα(c), if s has SCWHNF c s1 . . . sα(c)

s⇓S , if ∃t : s⇓St

s⇓F t, if s has FWHNF t

s⇓F , if ∃t : s⇓F t

s�⇓, if s has no WHNF (s is non-convergent)
s⇓, if ∃t : s⇓t (s converges)
s⇑, if s�⇓ ∧ ∀x ∈ V, R[·] : s � ∗→ R[x] (s diverges)

Corollary 2.38. Closed expressions have closed WHNFs, if their
reduction leads to WHNFs at all.

Corollary 2.39. s ∈ Λ is a WHNF iff σs is a WHNF for any
substitution σ.

Proof. This is a corollary of proposition 2.35.

2.2.5 Fixpoint combinators

Where convenient we use the fixpoint combinator θ which goes
back to Turing [Tur37]. The advantage of θ over Y is syntactical:
With θ the original expression reappears as a sub-expression of
the contractum after some reductions, with Y this is not the case.
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Example 2.40.

Y s ≡ (λf.D f (D f)) s

→no D s (D s)

≡ (λf.λx.f (x x)) s (D s)

→no (λx.s (x x)) (D s)

→no s (D s (D s))

compared to

θ s ≡ (λz.λx.x (z z x)) A s

→no (λx.x (A A x)) s

→no s (A A s)

≡ s (θ s)

Anticipating section 2.5.1, we note that while the sub-expression
D s (D s) in s (D s (D s)) is contextually equivalent to Y s, this
equivalence is not syntactical. On the other hand, starting reduc-
tion at θ s, we obviously arrive at an expression containing θ s as
a sub-expression and therefore prefer θ as fixpoint combinator.

Corollary 2.41. Let R[·] be a reduction context.

R[bot] 2→no R[bot].

Example 2.42. θ K x
∗→no K (θ K) x →no θ K.

2.3 Standardization and Invariance

Definition 2.43 (standardized reduction sequence). A reduction
sequence is called standardized, iff all normal-order reductions oc-
cur before reductions not in normal order.
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The following development establishes two essential results:

1. reduction sequences ending in a WHNF can be standardized,
and

2. reduction of an expression does not change its “termination
behavior”, i.e. if an expression has a WHNF then so does
its contractum and vice versa.

The two results replace the Church-Rosser property [Bar84] for
our exposition since all we would use this property for is as a step
on the way to establish results 1 and 2. In [SS99] the same is done
for a slightly different language.
It will come as no surprise that our technique employs adapted
notions from [Bar84], e.g. the 1-reduction.

Definition 2.44 (→1). The 1-reduction is defined as the following
relation on Λ-expressions.

s →1 s

s t →1 s′ t′, if s →1 s′ and t →1 t′

λx.s →1 λx.s′, if s →1 s′

(λx.s) t →1 s′[t
′
/x], if s →1 s′ and t →1 t′

caseA (cA,i 
s) t1 . . . t|A| →1 t′i s′1 . . . s′α(cA,i)
,

if ti →1 t′i and ∀i : si →1 s′i

Remark 2.45. caseA s t1 . . . t|A| →1 caseA s′ t′1 . . . t′|A| can be ob-
tained from definition 2.44 by inserting parentheses and applying
induction on the term structure.

The intuition for the 1-reduction is a simultaneous reduction of
multiple redexes visible in an expression. This is partly justified
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in lemma 2.46. In order to fully justify this intuition we would
additionally have to show that any redex reduced was indeed al-
ready visible in the initial expression (cf. [Bar84]). This is omitted
from our work since we make no use of it.

Lemma 2.46. Let s be a Λ-expression. If s →1 t then s
∗→ t.

Proof. The proof is by induction on the structure of s.
If s ≡ c, s ≡ caseA or s ≡ x, then t ≡ s must hold and so must
the statement.
If s ≡ s1 s2, then there are two possibilities for the 1-reduction.

1. s1 s2 →1 t1 t2 with si →1 ti. The si are proper substructures
of s, i.e. si < s, so by induction hypothesis si

∗→ ti. Then
obviously s

∗→ t.

2. (λx.s1) s2 →1 t1[t2/x] with si →1 ti. Again the si < s, so
si

∗→ ti and thus (λx.s1) s2
∗→ (λx.t1) t2 → t1[t2/x].

If s ≡ λx.s1 then s1 < s and with s1
∗→ t1 we obtain s

∗→ t ≡
λx.t1.
If s ≡ caseA s0 t1 . . . t|A| we have two possibilities.

1. caseA s0 t1 . . . t|A| →1 caseA s′0 t′1 . . . t′|A| with s0 →1 s′0
and ∀i : ti →1 t′i. This case is covered under s ≡ s1 s2.

2. caseA (cA,i s1 . . . sα(cA,i)) t1 . . . t|A| →1 t′i s′1 . . . s′α(cA,i)
. In-

duction gives caseA (
s) 
t
∗→ caseA (cA,i s′1 . . . s′α(cA,i)

) 
t′ →
t′i 
s′.

The 1-reduction is compatible with substitution in the sense that
if an expression r accrues by substituting a variable occurring
free in another expression s by an expression t then an expression
r′ can be obtained by applying the 1-reduction to s and t and
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accordingly substituting. r′ will then also be obtainable by the
1-reduction from r.

Lemma 2.47. Let s, t be Λ-expressions with s →1 s′ and t →1 t′,
then

s[t/x] →1 s′[t
′
/x].

Proof. We show this using induction on the structure of s.

s ≡ c, s ≡ caseA or s ≡ y and y �= x : s[t/x] ≡ s and s′[t
′
/x] ≡

s′.

s ≡ x : s[t/x] ≡ t and s′[t
′
/x] ≡ t′.

s ≡ λy.r : Then s′ ≡ λy.r′ with r →1 r′ and r is a proper sub-
structure of s, thus by the induction hypothesis r[t/x] →1

r′[t
′
/x] and consequently (λy.r)[t/x] →1 (λy.r′)[t

′
/x].

s ≡ r1 r2 : The ri are proper substructures of s and s[t/x] ≡
r1[t/x] r2[t/x]. With the induction hypothesis ri[t/x] →1

r′i[
t′/x].

If s′ ≡ r′1 r′2 the statement holds, since r′1[
t′/x] r′2[

t′/x] ≡
(r′1 r′2)[

t′/x].

If s′ ≡ r′3[
r′2/y ] where r1 ≡ λy.r3 and r3 →1 r′3, then

the statement holds also, since (r′3[
t′/x])[r

′
2[

t′/x]/y ] ≡
(r′3[

r′2/y ])[t
′
/x].

s ≡ caseA (cA,i s1 . . . sα(cA,i)) t1 . . . t|A| →1 t′i s′1 . . . s′α(cA,i)
:

Again we use the induction hypothesis to obtain
si[t/x] →1 s′i[

t′/x] and likewise for the ti. The state-

ment holds, since t′i[
t′/x] s′1[

t′/x] . . . s′α(cA,i)
[t
′
/x] ≡

(t′i s′1 . . . s′α(cA,i)
)[t

′
/x].
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Corollary 2.48. Let t1, . . . , tn be Λ-expressions satisfying ∀i :
ti →1 t′i and let C[·1, . . . , ·n] be a context. Then

C[t1, . . . , tn] →1 C[t′1, . . . , t
′
n].

Proof. With s
def= C[x1, . . . , xn] for fresh variables xi we get

C[t1, . . . , tn] ≡ s[t1/x1 ] . . . [tn/xn ] →1 s[t
′
1/x1 ] . . . [t

′
n/xn ] ≡

C[t′1, . . . , t
′
n].

If we apply a 1-reduction and a normal-order reduction to an
expression, there are two possible situations which may result:

1. The 1-reduction includes the normal-order reduction. In
this case another 1-reduction performing the remaining re-
duction will suffice to yield the initial 1-contractum from the
normal-order contractum.

2. The 1-reduction does not include the normal-order reduc-
tion. In this case we can apply a normal-order reduction
to the 1-contractum and a 1-reduction to the normal-order
contractum to arrive at the same expression.

This situation is depicted in figure 2.1 and formalized in lemma
2.49 and corollary 2.50.

Lemma 2.49. Let s be a Λ-expression. If s →B t and s →1 t′,
then either t →1 t′ or there is an expression u such that t →1 u

and t′ →B u.

Proof. We distinguish the two variants of the →B-reduction.

s ≡ (λx.s1) s2 →B s1[s2/x]: If t′ ≡ (λx.s′1) s′2 for si →1 s′i then

t′ →B s′1[
s′2/x] and due to lemma 2.47 t →1 s′1[

s′2/x].

If on the other hand t′ ≡ s′1[
s′2/x], then with the same

lemma we conclude that s1[s2/x] ≡ t →1 t′.
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Figure 2.1: The two cases of corollary 2.50: The 1-reduction . . .
s

1

��

no �� t

1���������

t′

s

1

��

no �� t

1

��
t′

no �� u

(a) (b)
includes →no-reduction or does not include →no-reduction

s ≡ caseA (cA,i s1 . . . sα(cA,i)) r1 . . . r|A| →B ri s1 . . . sα(cA,i):
If t′ ≡ caseA (cA,i s′1 . . . s′α(cA,i)

) r′1 . . . r′α(cA,i)
, then

t′ →B r′i s′1 . . . s′α(cA,i)
and t →1 r′i s′1 . . . s′α(cA,i)

holds.

If on the other hand t′ ≡ r′i s′1 . . . s′α(cA,i)
then t →1 t′ is

already satisfied.

Corollary 2.50. Let s be a Λ-expression. If s →no t and s →1 t′,
then either t →1 t′ or there is an expression u such that t →1 u

and t′ →no u.

Proof. Lemma 2.49 and corollary 2.48 applied for appropriate re-
duction contexts.

Theorem 2.51. Let s be a Λ-expression. If s
∗→no t and t is a

WHNF and s → s′ then s′ has a WHNF as well and it takes at
most as many →no-reductions from s′ to WHNF as it takes from
s to t.

Proof. It is easily seen that a reduction step can be simulated with
the 1-reduction and thus s →1 t′. We use induction on the length
k of the reduction path to t to prove the statement s

k→no t and

s →1 s′ =⇒ ∃t′ : t →1 t′ and s′
k′
→no t′ with k′ ≤ k.
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If k = 0 then s ≡ t ≡ t′ and s is in WHNF.
If k > 0 then we can apply corollary 2.50 with s →no s1 and
s →1 s′ and either s1 →1 s′ or there is an s′1 with s1 →1 s′1 and
s′ →no s′1. In both cases the induction hypothesis can be applied
for s1

k−1→ no t and s1 →1 s′1 (s′1 may equal s′) to obtain the
statement. The procedure corresponds to appending commuting
diagrams. See figure 2.3.

s

1

��

→no �� s1

1

��

→no �� . . . →no �� t

1

��
s′

→no∪≡�� s′1
→no∪≡�� . . .→no∪≡�� t′

Figure 2.2: Appending commuting reduction diagrams

In the proof of theorem 2.51 an arbitrary →-reduction at the
beginning of a reduction sequence is converted to a 1-reduction
following a normal-order reduction sequence. This 1-reduction
however will in general reduce some redexes among which may be
some normal-order redexes, as we saw in lemma 2.46. In order
to observe this case more closely we introduce the notion of in-
volved normal-order reduction, a 1-reduction, which also reduces
a normal-order redex.

Definition 2.52. Let s be a Λ-expression. The reduction s →1 t

involves normal-order reduction, iff it is either of the form

R[(λx.s1) s2] →1 R′[s′1[
s′2/x]],

for si →1 s′i ∧ R[·] →1 R′[·]
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or of the form

R[caseA (cA,i 
s) 
t] →1 R′[t′i 
s′],

for si →1 s′i, ti →1 t′ ∧ R[·] →1 R′[·]

A 1-reduction is said to be internal, iff it does not involve normal-
order reduction.

In the inductions above we used the structure of an expression
to induce over. In lemma 2.54 this would not work out so easily
since for e.g. s ≡ s1 s2 with si

∗→no ui →1 ti it is not obvious how
to combine the reduction sequences such that all normal-order
reduction occurs before all internal reduction. The measure, φ,
for 1-reductions defined below seems to be more appropriate for
lemma 2.54 and will allow for a concise proof. Intuitively, φ(s, t)
counts the number of →no- and →-reduction steps necessary to
achieve the same reduction as s →1 t if →no-reductions are applied
first.

Definition 2.53. Let p →1 q be a 1-reduction.

φ(p, q) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(s, s′) + φ(t, t′) if p ≡ s t ∧ q ≡ s′ t′

φ(s, s′) if p ≡ λx.s ∧ q ≡ λx.s′

1 + φ(s, s′) if p ≡ (λx.s) t ∧ q ≡ s′[t
′
/x]

+ φ(t, t′) ∗ #xs′ where #xs′ is the number of free

occurrences of x in s′

1 + φ(ti, t′i) if q ≡ t′i s′1 . . . s′α(cA,i)

+
∑

j φ(sj , s
′
j) ∧p ≡ caseA (cA,i s1 . . . sα(cA,i)) 
t

0 otherwise.

With the following lemma we show that the normal-order reduc-
tion involved can be extracted from a 1-reduction.

42



2.3 Standardization and Invariance

Lemma 2.54. Let s be a Λ-expression. If s →1 t then we can find
a Λ-expression u, for which s

∗→no u →1 t such that u →1 t is
internal.

Proof. If the original 1-reduction is internal then this trivially
holds.
Otherwise we consult definition 2.44 and definition 2.52 to see
that s →no u →1 t holds for an original 1-reduction involv-
ing normal-order reduction. We can iterate this process for the
1-reductionu →1 t. So we obtain an induction on φ(s, t).

· If φ(s, t) = 0 the statement trivially holds.

· If φ(s, t) > 0 and s →1 t involves normal-order reduction
then there are two cases.

1. s ≡ R[(λx.s1) s2] →no R[s1[s2/x]] ≡ u →1

R′[s′1[
s′2/x]] ≡ t. φ(u, t) < φ(s, t) and from the in-

duction hypothesis we obtain u
∗→no u′ →1 t where

u′ →1 t is internal.

2. s ≡ R[caseA (cA,i s1 . . . sα(cA,i)) t1 . . . t|A|] →no

R[ti s1 . . . sα(cA,i)] ≡ u →1 R[t′i s′1 . . . s′α(cA,i)
] ≡ t.

Again φ(u, t) < φ(s, t).

Summarizing, we can extract all the normal-order reduction steps
involved in a 1-reduction and apply them first.

Lemma 2.54 allows to split a 1-reduction into normal-order reduc-
tions followed by an internal 1-reduction. Splitting two consecu-
tive 1-reductions in this way may give rise to a situation where
we find normal-order reductions followed by an internal 1-reduc-
tion followed by normal-order reductions and again by an internal
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1-reduction. To achieve standardization we will need to shift all
of the second block of normal-order reductions to the left. Lemma
2.55 shows that this is indeed possible.

Lemma 2.55. Let s be a Λ-expression. If s →1 t →no u then the
normal-order reduction can be shifted to the front of the reduction
sequence, i.e. we can reduce s

+→no t′ →1 u where t′ →1 u is
internal.

Proof. We start by splitting s →1 t →no u into s
∗→no r →1 t →no

u where r →1 t is internal (lemma 2.54). Since the 1-reduction is
internal, we must consider only two cases:

1. r ≡ R[(λx.r1) r2] →1 R′[(λx.r′1) r′2] ≡ t →no R′[r′1[
r′2/x]] ≡

u, where ri →1 r′i and R[·] →1 R′[·]. Now we can
move the normal-order reduction to the front to obtain
r ≡ R[(λx.r1) r2] →no R[r1[r2/x]] ≡ t′ →1 R′[r′1[

r′2/x]] ≡ u.

2. r ≡ R[caseA (cA,i s1 . . . sα(cA,i)) t1 . . . t|A|] →1

R′[caseA (cA,i s′1 . . . s′α(cA,i)
) t′1 . . . t′|A|] ≡ t →no

R′[t′i s′1 . . . s′α(cA,i)
] ≡ u, where ti →1 t′i and ∀i : si →1 s′i

and R[·] →1 R′[·]. Again we can move the normal-
order reduction to the front of the sequence to ob-
tain r ≡ R[caseA (cA,i s1 . . . sα(cA,i)) t1 . . . t|A|] →no

R[ti s1 . . . sα(cA,i)] ≡ t′ →1 R′[t′i s′1 . . . s′α(cA,i)
] ≡ u.

In summary, for both cases, we have s
∗→no r →no t′ →1 u where

the 1-reduction is internal.

Lemma 2.56. Let s be a Λ-expression. A sequence s →1 s1 →1

s2 . . . sn with a WHNF sn can be converted to a reduction sequence
applying only normal-order reductions to arrive at a WHNF,
i.e. s

∗→no s′
∗→1 sn for a WHNF s′.
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Proof. Without loss of generality n is the smallest index for which
sn is a WHNF. It follows that the reduction sn−1 →1 sn in-
volves normal-order reduction and we split it with lemma 2.54
into sn−1

k→no s′n−1 →1 sn where s′n−1 →1 sn is internal and
k ≥ 0. Then s′n−1 is a WHNF. Next we apply lemma 2.55 k times
to shift the k normal-order reductions to the left over the 1-re-
duction sn−2 →1 sn−1, i.e. to convert the sequence s . . . sn−2 →1

sn−1
k→no s′n−1 →1 sn into s . . . sn−2

k′
→no s′n−2 →1 s′n−1 →1 sn

in which the trailing 1-reductions are internal. It may be that
k′ > k, but the number of 1-reductions left of the k′ normal-order
reductions decreases with every one of these steps. Obviously this
measure is well-founded. Furthermore we note, that after the ith
step s′n−i−1 must be a WHNF, since all trailing 1-reductions are
internal. So after finitely many of these steps we obtain the desired
reduction sequence s

∗→no s′
∗→1 sn for a WHNF s′.

Theorem 2.57 (Standardization). Let s, t be Λ-expressions. If
s

∗→ t for a WHNF t, then ∃tW ∈ Λ : tW is a WHNF and s
∗→no

tW
∗→ t.

Proof. We can simulate every →-reduction with a 1-reduction.
From lemma 2.56 we obtain a WHNF tW satisfying s

∗→no tW
∗→1

t. Then with lemma 2.46 we see s
∗→no tW

∗→ t.

Corollary 2.58. Let s ∈ Λ. If there is no WHNF t ∈ Λ such that
s

∗→no t, then s does not have a WHNF.

Theorem 2.59 (Invariance of termination). Let s, t ∈ Λ with
s → t, then s⇓ ⇐⇒ t⇓.

Proof.
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=⇒ : With the standardization theorem we find a WHNF s′

reachable from s with a normal-order reduction sequence
s

∗→no s′. Now we can apply theorem 2.51.

⇐= : A reduction to WHNF of t implies a reduction to WHNF
of s since s → t.

If we reconsider the proofs of lemmata and theorems in this section
we recognize that the property of WHNFs that was actually used
in those proofs is that WHNFs need normal-order reduction to
arise from non-WHNFs and that once WHNF is reached further
reduction does not change this property. We will now present this
observation more formally.

Definition 2.60. A property F of Λ-expressions needs normal-
order reduction if ¬F (s) ∧ F (t) ∧ s →1 t implies that the →1-re-
duction involves normal order.

Definition 2.61. A property F is stable with respect to a relation
R if sRt ∧ F (s) =⇒ F (t).

The only statements using WHNFs are in theorem 2.51, in lemma
2.56 and in theorems 2.57 and 2.59. If we replace the property of
being a WHNF in these with any property satisfying the criteria
in definitions 2.60 and 2.61 then one can easily verify that the
proofs remain valid.
One property of Λ-expressions which satisfies these criteria is, of
course, being a WHNF.

Lemma 2.62. Let s, t ∈ Λ and let s →1 t∧ s is no WHNF but t is
a WHNF, then the →1-reduction involves normal-order reduction.

Proof. The proof is by induction on the structure of s.
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s ≡ c, s ≡ caseA or s ≡ x : s = t must hold, but then s is a
WHNF iff t is a WHNF.

s ≡ λx.s′ : s is a WHNF.

s ≡ s1 s2 :

t ≡ t1 t2 ∧ si →1 ti : Since t1 t2 is a WHNF, t1 is an
FWHNF and thus either t1 ≡ cA,i r1 . . . rn where
n < α(cA,i) or t ≡ caseA r0 r1 . . . rn where n < |A|−1.
Since s1 s2 is not a WHNF neither is s1 and by the
induction hypothesis s1 →1 t1 involves normal-order
reduction. R[·] def= [·] s2 is a reduction context and thus
the normal-order reduction involved in s1 →1 t1 is also
a normal-order reduction involved in s →1 t.

(λx.s′1) s2 →1 t1[t2/x] ∧ s′1 →1 t1 ∧ s2 →1 t2 : Involves
normal-order reduction by definition.

s ≡ caseA s0 t1 . . . t|A| : caseA (cA,i s1 . . . sα(cA,i)) t1 . . . t|A| →1

ti s1 . . . sα(cA,i) involves a normal-order reduction by def-
inition. The other cases with caseA are already covered
above.

Lemma 2.63. Let s, t ∈ Λ and let s →1 t ∧ s is a WHNF, then t

is a WHNF.

Proof. We distinguish two cases.

s ≡ cA,i s1 . . . sn ∧ n ≤ α(cA,i) : Then t ≡ cA,i t1 . . . tn and
sj →1 tj thus t is a WHNF.

s ≡ caseA s0 s1 . . . sn ∧ n ≤ |A| : Then t ≡ caseA t0 t1 . . . tn and
sj →1 tj thus t is a WHNF.
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Lemma 2.64. Further properties of a Λ-expression s satisfying
the criterion in definition 2.60 are (R[·] ranges over reduction
contexts):

1. s has the form R[x] for a variable x,

2. s has the form R[cA,i t1 . . . tn] where n > α(cA,i),

3. s has the form R[caseA t . . .] where t is an FWHNF and

4. s has the form R[caseA (cA′,i . . . ) . . .] where A �= A′.

Proof. Along the lines of the proof of lemma 2.62.

Lemma 2.65. The properties in lemma 2.64 are stable with respect
to →1.

2.4 Type system

Two main motivations steer our decisions with respect to type
systems:

1. We want the type systems compatible with our calculi to be
as diverse as possible, and

2. We want to focus on the rules essential for our analysis with-
out complicating issues with type inference rules.

Together, these two points will hopefully ease implementation
of the calculi for different functional languages, e.g. Haskell
[PHA+99] or Cayenne [Aug98], and make the exposition clearer.
In our effort to abstract from the concrete type system used we
present criteria which a specific type system will have to meet
if the calculi are to be used for corresponding languages. Fur-
thermore the type system should be “rich” enough, i.e. there
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should be enough well-typed expressions. For example, it does
not seem sensible to assume a type system in which no expres-
sion is well-typed: no expression would pass type check and being
strongly typed the language would be utterly useless. We will re-
quire the type systems for the language analyzed to be at least
as strong as the Damas-Hindley-Milner type system, i.e. for the
set of well-typed expressions in the Damas-Hindley-Milner type
system, WTDHM, and the set of well-typed Λ-expressions, WTΛ,
we want WTDHM ⊆ WTΛ. ADE and CADE are presented for
a very general type system with WT as the set of its well-typed
expressions. They may then be used for arbitrary type systems
WTΛ, satisfying WTDHM ⊆ WTΛ ⊆ WT .

2.4.1 Well-typed expressions

First, we define expressions which are directly ill-typed. These
are expressions without a normal-order reduction, but which are
not in WHNF. For example cA,i s1 . . . sn, where n > α(cA,i), or
caseA t s1 . . . smA

, and t is a WHNF, but it does not permit the
top level caseA-reduction. This could e.g. be the case because
t is an FWHNF. Next we define ill-typed expressions as those
for which a normal-order reduction sequence leads to a reduction
context with a directly ill-typed expression in the hole. Subse-
quently, we define the well-typed expressions as the complement
of the ill-typed ones. All the ill-typed expressions will be treated
as diverging.

Definition 2.66 (DIT , directly ill-typed).

DIT def= {t|(t ≡ caseA (cA′ t1 . . . tα(cA′ )) e1 . . . e|A| ∧ A �= A′)

∨(t ≡ caseA e e1 . . . e|A| ∧ e is a FWHNF)

∨(t ≡ c t1 . . . tn ∧ n > α(c) ∧ c ∈ K)}.
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Ill-typed expressions are those for which the normal-order reduc-
tion sequence would have to reduce an expression in DIT .

Definition 2.67. Let s, t be expressions. We define

s crashes to t iff ∃r ∈ DIT , R[·] ∈ Λ : s
∗→no t ∧ t ≡ R[r]

s crashes iff ∃t ∈ Λ : s crashes to t

An expression s which crashes is also called ill-typed and we write
IT for the set of all ill-typed expressions. If s crashes to t, t is
called an ill-typed HNF, ITHNF.

Remark 2.68. An expression remains directly ill-typed under ar-
bitrary substitution of free variables. Consequently, an expres-
sion remains ill-typed under arbitrary substitution of free variables
since the normal-order reduction sequence is stable with respect
to substitution.

Lemma 2.69. If s crashes its ITHNF is uniquely defined.

Proof. This follows from the uniqueness of the normal-order redex.

Remark 2.70. An expression s ∈ DIT cannot be a redex, since
there is no case of the →B -reduction, which would be applicable.

Lemma 2.71. Let R[·] be a reduction context and let x be a vari-
able, then

∃C[·], s ∈ Λ : C[R[x]] ∈ IT ∧ C[s] /∈ IT .

Proof. We distinguish the following cases for R[x].

R[·] ≡ [·] : Let C[·] def= (λx.[·]) (c c) for some 0-ary constructor c.
C[R[x]] ≡ (λx.x) (c c) →no (c c) ∈ DIT .
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R[·] ≡ R′[caseA [·] e1 . . . e|A|] : We can define

C[·] def= (λx.[·]) (λy.y). Then we see
C[R[x]] ≡ (λx.R′[caseA x e1 . . . e|A|]) (λy.y) →no

R′[caseA (λy.y) e1 . . . e|A|] ∈ IT .

R[·] ≡ R′[[·] r] : We define C[·] def= (λx.[·]) c for a 0-ary constructor
c and obtain C[R[x]] ≡ (λx.R′[x r]) c →no R[c r] ∈ IT .

Definition 2.72 (WT , well-typed). An expression, s ∈ Λ, is well-
typed, iff s does not crash, that is iff

∀t, r ∈ Λ : s
∗→no t ∧ t ≡ R[r] =⇒ r /∈ DIT

For the set of well-typed expressions we also write WT .

The set of expressions, Λ, is thus partitioned into the sets WT
and IT .

2.4.2 Properties of WT

Lemma 2.73. s ∈ IT =⇒ s⇑.

Proof. Assume this does not hold, i.e. ∃s : s ∈ IT ∧ s�⇑. From the
definition of IT we obtain s ∈ IT ⇐⇒ ∃t, r : s

∗→no t∧ t ≡ R[r]∧
r ∈ DIT . s cannot normal-order reduce to R′[x] for a variable x,
since neither is x ill-typed nor could there be any further normal-
order reduction to an expression R[r] with r ∈ DIT from R′[x]
nor would there be a reduction context above R′[·] with a directly
ill-typed expression r′ in the hole since r′ �≡ R′′[x] according to
definition 2.66. So s⇓t would have to hold. The standardization
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theorem says that for every WHNF t with s
∗→ t there is a WHNF

t′ with s
∗→no t′. We assume t and t′ to be WHNFs with s

∗→ t and
s

∗→no t′. Due to the uniqueness of the normal-order redex and
since s ∈ IT we conclude s

∗→no t′′ ≡ R[r] ∗→no t′ where r ∈ DIT .
A directly ill-typed expression can never be a normal-order redex,
thus there cannot be such a reduction of R[r] and neither can R[r]
be a WHNF.

Corollary 2.74. s⇓ =⇒ s ∈ WT.

Theorem 2.75 (Invariance of well-typedness). Let s, t ∈ Λ where
s → t, then s ∈ WT ⇐⇒ t ∈ WT .

Proof. Every one of the cases for DIT from definition 2.66 is cov-
ered in lemmata 2.64 and 2.65 so that the proof of theorem 2.59
can be transferred.

There are expressions which are well-typed, but with which no
well-typed applications can be formed, although they do have an
FWHNF.

Lemma 2.76. ∃s ∈ WT : s has an FWHNF ∧∀t ∈ Λ : s t /∈ WT.

Proof. We provide an example. s
def= λx.c s1 . . . sα(c)+1 for some

si ∈ Λ0. s is in FWHNF and thus in particular s ∈ WT . s t →no

c s1 . . . sα(c)+1 ∈ DIT . So for any t : s t /∈ WT .

In the Damas-Hindley-Milner type system there is usually no
caseA-constant defined for every type constructor A. For type
checking purposes in that type system we may conceive of every
caseA as a function (or a constructor) of type (A T1 . . . Tn) →
(T11 → . . . → T1m1 → B) → . . . → (Tr1 → . . . → Trmr

→ B), if
|A| = r and cA,i is of type Ti1 → . . . → Timi

→ (A T1 . . . Tn).
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Theorem 2.77. WTDHM ⊆ WT

Proof. Expressions in WTDHM do not give type errors during
normal-order reduction and that is all we require for membership
in WT . This is an immediate consequence of [Mil78, Theorem
1].

Well-typed expressions have the property that we can replace an
arbitrary subexpression by a fresh variable or by bot and the
resulting expression remains well-typed.

Lemma 2.78. There are v ∈ V , r ∈ Λ, C[·] ∈ Λ with C[r] ∈
WT ∧ C[v] ∈ IT .

Proof. We define C[·] def= caseA ((λv.[·]) (λx.x)) 1 . . . 1︸ ︷︷ ︸
|A|

.

Obviously, for a 0-ary constructor cA,i : C[cA,i] →no

caseA cA,i 1 . . . 1︸ ︷︷ ︸
|A|

→no 1, but C[v] →no caseA (λx.x) 1 . . . 1︸ ︷︷ ︸
|A|

∈

DIT .

Lemma 2.79. Let r, C[·] ∈ Λ, let v ∈ V such that v is not bound
in the hole of C[·], then

C[r] ∈ WT =⇒ C[v] ∈ WT .

Proof. Let C[v] ≡ R1[r1] →no . . . →no Rn[rn] where rn ∈ DIT be
the normal-order reduction of C[v]. Since v in not bound in C[·]
none of the normal-order reductions will bind anything to v. v can
only be duplicated or can disappear. If present at all, v will be
below argument depth 1 in any of the Ri[ri]. C[r] and C[v] do not
differ above argument depth 1 and C[r] ≡ R′1[r′1] →no R′2[r′2] re-
duces the same position as R1[r1] →no R2[r2]. R2[r2] and R′2[r′2]
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do not differ above argument depth 1 since in all the Ri[ri] v

does not occur above argument depth 1. The argument can be
extended to Rn[rn] and R′n[r′n] and since v does not occur above
argument depth 1 in Rn[rn], r′n must also belong to DIT . The
latter can be seen since rn ≡ caseA (cA′ t1 . . . tα(cA′ )) e1 . . . e|A|
with A′ �= A implies r′n ≡ caseA (cA′ t′1 . . . t′α(cA′ )) e′1 . . . e′|A|,
rn ≡ caseA e e1 . . . e|A| with an FWHNF e implies r′n ≡
caseA e′ e′1 . . . e′|A| with an FWHNF e′ and rn ≡ c t1 . . . tn with
n > α(c) implies r′n ≡ c t′1 . . . t′n, if rn and r′n do not differ above
argument depth 1.

Lemma 2.80. Let C[·] ∈ Λ and v ∈ V where v is not bound in
C[·], then

C[v] ∈ WT =⇒ C[bot] ∈ WT .

Proof. In the normal-order reduction of C[bot] →no . . . →no

Rn[rn] with rn ∈ DIT bot will never appear in a reduction con-
text. It suffices to show:

If none of the holes of a context D[. . . ] is in a reduction
context and D[bot, . . . , bot︸ ︷︷ ︸

n

] →no E[bot, . . . , bot︸ ︷︷ ︸
m

], then

D[v, . . . , v︸ ︷︷ ︸
n

] →no E[v, . . . , v︸ ︷︷ ︸
m

].

If none of the holes of D[. . . ] is inside the normal-order redex of
D[bot, . . . , bot] ≡ R[r], then D[v, . . . , v] ≡ R′[r] and obviously the
same reduction can be applied. That R′[·] is indeed a reduction
context can easily be proved by induction.
If one of the holes of D[. . . ] is inside the normal-
order redex of D[bot, . . . , bot] ≡ R[r], then either r ≡
caseA cA,i t1 . . . tα(cA,i) e1 . . . e|A| or r ≡ (λx.s) t. In the first case
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the holes can be in the ti or the ei and it is obvious that D[v, . . . , v]
can be reduced just as D[bot, . . . , bot] to obtain E[v, . . . , v]. In the
second case we can also reduce D[v, . . . , v] just as D[bot, . . . , bot]
and since v is not bound in any of the holes of D[. . . ] we get
D[v, . . . , v] →no E[v, . . . , v].

Corollary 2.81. C[r] ∈ WT =⇒ C[bot] ∈ WT.

Proof. Lemmata 2.80 and 2.79.

With the lemma below we obtain the possibility to replace subex-
pressions in well-typed expressions by other well-typed expressions
reducing to the same WHNF to obtain well-typed expressions.

Lemma 2.82. Let s → t then

D[s] ∈ WT ⇐⇒ D[t] ∈ WT.

Proof. If s → t then D[s] → D[t] and the statement follows from
the invariance of well-typedness.

2.4.3 Undecidability

We will now show that being well-typed is an undecidable prop-
erty. The proof is by reduction of the halting problem for Turing-
machines. We will not present the reduction in its entirety but
only reduce the halting problem for Λ to the type check problem.

Definition 2.83. The halting problem for Λ consists of deciding
for a closed, well-typed Λ-expression t, if t �⇓ or t⇓.

Definition 2.84. The type-check problem consists of deciding for
a Λ-expression t, if t ∈ WT or t ∈ IT .
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We reduce the halting problem for Λ to the type check problem
by creating the expression R[h] for any instance h of the halting
problem. If A = {A1, . . . , Am} are the type-constructors of which
constructors appear in h, we define R[·] def= caseA [·] bot . . . bot︸ ︷︷ ︸

|A|
for some A /∈ A. R[·] is a reduction context and R[h] is an instance
of the type-check problem.

Lemma 2.85. R[h] ∈ IT ⇐⇒ h⇓.

Proof. We show the two directions separately.

⇐= : Assume h⇓. If h converges to an SCWHNF t, t will have
a top level constructor not in A and R[t] ∈ DIT . If h

converges to an FWHNF t, R[t] is in DIT also.

¬ ⇐= ¬ : Assume h �⇓. Either h⇑ and we can continue to reduce
in normal order without ever reaching a WHNF and thus
the condition for R[h] ∈ IT is not satisfied. Further normal-
order reduction will always be possible since otherwise h ∈
IT . Or h

∗→no R[x] and no further reduction is possible, but
x /∈ DIT .

Lemma 2.86. Diverging but well-typed expressions have infinite
normal-order reductions.

Proof. Assume this does not hold. Then there is a diverging but
well-typed expression t, which cannot be further normal-order re-
duced after finitely many normal-order reductions. Since t is well-
typed, we conclude that after finitely many normal-order reduc-
tions we have reached a WHNF and thus t is not diverging, in
contradiction to our assumption.
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2.5 Contextual semantics

The meaning of expressions in the contextual semantics is their
equivalence class of the contextual equivalence. The latter regards
two expressions as equivalent if their insertion as a subexpression
into an arbitrary program yields identical termination behavior
for both (cf. 2.87). In this way the equivalence classes of the
contextual equivalence correspond to the elements of the semantic
domains in denotational semantics.
An important advantage of the contextual semantics is that it is
always fully abstract for the observation of termination if it is
adequate. For denotational semantics this property is difficult to
obtain [Ong95, AMJ94].
We discuss adequacy and full abstraction in section 2.5.5.

2.5.1 Contextual order

Definition 2.87 (≤c, contextual order, contextual approxima-

tion). Let s, t be (possibly open) expressions.

s ≤c t ⇐⇒ ∀C[·] : C[s]⇓ =⇒ C[t]⇓ (2.4)

s ≡c t ⇐⇒ s ≤c t ∧ t ≤c s (2.5)

≤c is called contextual order or contextual approximation and ≡c

is called contextual equivalence.

The contextual order is a definition central to this work. We will
also frequently speak about expressions which are not so related.
From definition 2.87 it follows immediately that this is the case
exactly when there is a context which converges when applied to
one argument and diverges for the other. Thus we arrive at the
definition:
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Definition 2.88. Let s, t ∈ Λ and let C[·] be a context. If C[s]⇓
and C[t]⇑ we say that C[·] exposes the difference between s and t,
C[·] differentiates between s and t or C[·] distinguishes s from t.

Lemma 2.89. ≤c is a pre-order on Λ.

Proof. We need to show that ≤c is reflexive and transitive.

reflexive: obvious.

transitive: Let s ≤c t ≤c u, we show s ≤c u. Let C[·] be an ar-
bitrary context. If C[s]�⇓ the condition is satisfied. If C[s]⇓,
then C[t]⇓ and then C[u]⇓. Thus C[s]⇓ =⇒ C[u]⇓ holds
also.

Lemma 2.90. Every context is monotonous with respect to ≤c on
Λ-expressions.

Proof. Let s, t ∈ Λ. s ≤c t ⇐⇒ ∀C[·] : C[s]⇓ =⇒ C[t]⇓.
Since this must hold for all C[·], it must also hold for arbitrarily
chosen D[E[·]]. Thus ∀D[·], E[·] : D[E[s]]⇓ =⇒ D[E[t]]⇓ and so
E[s] ≤c E[t].

Corollary 2.91. ≤c is a precongruence and ≡c is a congruence.

Corollary 2.92. Let s1, . . . , sn, t1, . . . , tn ∈ Λ with s1 ≤c

t1, . . . , sn ≤c tn and let C[· · · ] be a multi-hole context, then

C[s1, . . . , sn] ≤c C[t1, . . . , tn].

Proof. We can define contexts D1[·] ≡ C[·, s2, . . . , sn], D2[·] ≡
C[t1, ·, s3, . . . , sn], . . . , Dn[·] ≡ C[t1, . . . , tn−1, ·]. The statement
follows from lemma 2.90, because every one of the Di[·] has one
hole and for every 1 ≤ i < n : Di[ti] ≡ Di+1[si+1]. Thus
C[s1, . . . , sn] ≡ D1[s1] ≤c D1[t1] ≡ D2[s2] ≤c . . . ≤c Dn[tn] ≡
C[t1, . . . , tn].
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Contexts can be viewed as challenges, and divergence and con-
vergence are the observables. Consequently, the contextual order
can be seen as a measurement of information content : the more
challenges for which we can observe a value, the more information
the expression contains.
Theorem 2.93 states that reduction does not change information
content.
Intuitively, trivial challenges would be the contexts, that do not
vary with their hole. There are non-trivial challenges, i.e. con-
texts, which do differentiate some expressions, that do not dif-
ferentiate some others although they could be differentiated
(cf. lemma 2.94).

Theorem 2.93. Let s, t ∈ Λ, s → t, then s ≡c t.

Proof. ∀C[·] : C[s] → C[t] and with theorem 2.59 we conclude that
C[s]⇓ ⇐⇒ C[t]⇓.

The converse of lemma 2.90 does not hold, i.e. we cannot con-
clude from the ≤c relation between expressions that their sub-
expressions are so related.

Lemma 2.94. C[u] ≤c C[v] does not imply u ≤c v, not even if
∃s, t : C[s] �≡c C[t].

Proof. As a counter-example we use a type constructor A with
two unary constructors cA,1 and cA,2 to define. C[·] def=
caseA [·] id (K []) Then C[c bot] �≡c C[c []] but C[d []] ≤c

C[d bot] although d [] �≤c d bot.

Intuitively, this is possible since C[·] may maintain the order
among some elements while it smashes the order between others.
We may however prove this property for constructors and λ bind-
ings.

59

2 Language

Lemma 2.95. cA,i s1 . . . sα(cA,i) ≤c cA,i t1 . . . tα(cA,i) ⇐⇒ ∀i :
si ≤c ti.

Proof.

=⇒ : Assume this would not hold. There must be some j

for which sj �≤c tj . For C[·] def= selA,i,j [·] we ob-
tain C[cA,i s1 . . . sα(cA,i)] �≤c C[cA,i t1 . . . tα(cA,i)]. Let D[·]
be the context witnessing sj �≤c tj . D[C[·]] witnesses
cA,i s1 . . . sα(cA,i) �≤c cA,i t1 . . . tα(cA,i) and we have a con-
tradiction. The assumption is false and the claim proved.

⇐= : since ≤c is a precongruence.

Proposition 2.96. Let s, t ∈ Λ, then

s ≤c t ⇐⇒ λx.s ≤c λx.t.

Proof.

=⇒ : Since ≤c is a precongruence.

⇐= : Assume λx.s ≤c λx.t and let C[·] be an arbitrary context
with C[s]⇓. We define the context D[·] def= C[(λx.[·]) x].
Obviously, D[s] → C[s]. The definition of convergence im-
plies D[s]⇓. We apply the precongruence of ≤c and the
premise to substantiate D[t] ≡ C[(λx.t) x]⇓. By theorem
2.59 C[(λx.t) x] → C[t] implies C[t]⇓.

Remark 2.97. s ≤c t =⇒ ((s ∈ WT ∧ s⇓) =⇒ (t ∈ WT ∧ t⇓)).

2.5.2 Context Lemma

In the definition 2.87 the quantification is over all contexts. This
would be unwieldy for many proofs and one would like to re-
strict attention to only some specific contexts. This idea is not
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new: commonly a context lemma is stated in works on operational
semantics of λ-calculi [Mil77, San98a, MS99]. This lemma then
states that it suffices to focus ones attention to reduction contexts
to prove two expressions to be contextually ordered. We provide a
range of results that allow to focus on different kinds of contexts.
The following lemma is a first step in this direction as it allows to
consider closing contexts only.

Lemma 2.98. Let s, t ∈ Λ, then

s ≤c t ⇐⇒ ∀C[·] : C[s] and C[t] are closed ∧C[s]⇓ =⇒ C[t]⇓.

Proof.

=⇒ : obvious.

¬ =⇒ ¬ : We know s �≤c t ⇐⇒ ∃C[·] : C[s]⇓ ∧ C[t]�⇓.

If C[s] and C[t] are closed the statement holds.

Let FV(C[s]) ∪ FV(C[t]) = {x1, . . . , xn}, then we define
D[·] def= (λx1 . . . xn.C[·]) bot . . . bot︸ ︷︷ ︸

n

. Now D[s] and D[t] are

closed. Both D[s]⇓ and D[t]⇑ are proved separately.

D[s]⇓ : We can reduce D[s] ∗→no C[s][
−−−−→
bot/x]. Since reduc-

tion sequences are stable with respect to substitution
of free variables, we can apply the reduction sequence

from C[s] to WHNF to C[s][
−−−−→
bot/x].

D[t]⇑ : Here we also argue with the stability of reduction
sequences with respect to substitution. If C[t] normal-
order reduces infinitely or if C[t] normal-order reduces
to an expression in DIT then so does D[t]. If C[t] re-
duces to R[x] for some reduction context R[·] and some
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variable x, then x is free in C[t] due to lemma 2.30 thus

D[t] ∗→no C[t][
−−−−→
bot/x] ∗→no R′[bot], which diverges.

Conversely, if the reduction relation would not be stable with re-
spect to substitution it would be easy to see that the equivalence
of lemma 2.98 would not hold. As an admittedly contrived exam-
ple consider a hypothetical language in which (x bot) → bot even
if x is free, but substituting a lazy constructor would produce a
WHNF.
If the two expressions are closed it suffices to consider all closed
reduction contexts. This is a result that is commonly found in the
literature using operational techniques in semantics, e.g. [Kut00,
San98a].

Lemma 2.99 (Context Lemma). Let s, t ∈ Λ0, i.e. s and t are
closed Λ-expressions, then

s ≤c t ⇐⇒ ∀R[·] : R[s], R[t] ∈ Λ0 ∧ R[s]⇓ =⇒ R[t]⇓.

Proof. We prove the more general statement:

Let si, ti ∈ Λ0 for which for all reduction contexts
R[·] : R[si], R[ti] ∈ Λ0 ∧ R[si]⇓ =⇒ R[ti]⇓ then
∀C[. . . ] for which C[s1, . . . , sn] and C[t1, . . . , tn] are
closed C[s1, . . . , sn]⇓ =⇒ C[t1, . . . , tn]⇓.

Assume this does not hold, then for every reduction context R[·]
and every i : R[si] and R[ti] are closed and R[si]⇓ implies R[ti]⇓,
but there is a multi-context C[. . . ] : C[
s]⇓ ∧C[
t]�⇓. We choose the
smallest context among these with respect to the lexicographic
order on pairs having as components

1. the number of normal-order steps from C[
s] to WHNF and
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2. the number of holes in C[. . . ].

There are two cases:

1. One of the holes of C[. . . ] is in a reduction con-
text. I.e. ∃j : C[s1, . . . , sj−1, ·, sj+1, . . . , sn] (and thus
C[t1, . . . , tj−1, ·, tj+1, . . . , tn]) is a reduction context. We

define D[·1, . . . , ·n−1]
def= C[·1, . . . , ·j−1, sj , ·j , . . . , ·n−1].

Since the number of holes in D[. . . ] is less than the
number of holes in C[. . . ] and the number of normal-
order reductions for D[s1, . . . , sj−1, sj+1, . . . , sn] ≡ C[
s]
remains unchanged, and since C[. . . ] was chosen to
be minimal, we obtain D[t1, . . . , tj−1, tj+1, . . . , tn] ≡
C[t1, . . . , tj−1, sj , tj+1, . . . , tn]⇓.
C[t1, . . . , tj−1, ·, tj+1, . . . , tn] is a reduction context and
thus the premise implies C[
t]⇓ in contradiction to the
assumption.

2. None of the holes of C[. . . ] is in a reduction context, then
either C[
s] is a WHNF and it follows from proposition 2.35
that C[
t] is a WHNF as well or there is a normal-order re-
duction of C[
s] with a normal-order redex having its root
above the holes. With the same proposition we substantiate
that the identical normal-order reduction can be performed
for C[
t].

Since neither the si nor the ti have variables occurring free
the normal-order reductions cannot substitute anything into
the expressions. We can thus locate the unchanged si and
ti in the respective contractum, possibly duplicated. Hence
C[
s] →no E[si1 , . . . , sim

] where ij ∈ {1, . . . , n} and C[
t] →no

E[ti1 , . . . , tim
]. Since C[. . . ] was chosen to be minimal C[
t]⇓

follows and we have a contradiction to the assumption.
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We have formulated and proved the context lemma for closed
expressions only. With the following lemmata we provide some
means to employ it for open expressions also.

Lemma 2.100. Let s, t ∈ Λ, then

s ≤c t ⇐⇒ ∀σ : σs, σt ∈ Λ0 =⇒ σs ≤c σt.

Proof.

=⇒ : This follows from the precongruence of ≤c and theorem
2.59.

⇐= : Without loss of generality there are variables occurring
free in s or t, otherwise no proof is needed. Suppose
{x1, . . . , xn} = FV(s) ∪ FV(t).

∀σ : σs, σt ∈ Λ0 =⇒ σs ≤c σt

=⇒ (σ is a ground substitution + theorem 2.59)

∀σ : σs, σt ∈ Λ0 =⇒ (λ
x.s) σ
x ≤c (λ
x.t) σ
x

=⇒ (pre-extensionality of ≤c)

∀σ : σs, σt ∈ Λ0 =⇒ λx1 . . . xn.s ≤c λx1 . . . xn.t

=⇒ (proposition 2.96)

s ≤c t.

In conjunction with the context lemma for closed expressions we
can then state the following corollary, which corresponds to the
CIU theorem in [MST96].

Corollary 2.101. Let s, t ∈ Λ, then

s ≤c t ⇐⇒
∀R[·] ∈ Λ0, σ : σs, σt ∈ Λ0 =⇒ (R[σs]⇓ =⇒ R[σt]⇓).

(2.6)
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We may restrict our attention to an even simpler kind of expres-
sions when employing the context lemma for open expressions.

Lemma 2.102. Let s, t ∈ Λ, let x1, . . . , xn be all the variables
occurring free in s or t and let s′

def
= λx1 . . . xn.s and t′

def
=

λx1 . . . xn.t, then

s ≤c t ⇐⇒ ∀R[·] ∈ Λ0 : R[s′]⇓ =⇒ R[t′]⇓.

Proof. From proposition 2.96 we get s ≤c t ⇐⇒ s′ ≤c t′. s′

and t′ are closed. Application of the context lemma proves the
statement.

Intuitively, lemma 2.102 also implies corollary 2.101, since the
quantification over all the reduction contexts in the first also cap-
tures those which apply the hole and thus s′ or t′ to closed argu-
ments.

2.5.3 Normalizing higher-order expressions

It suffices to apply two functions to arbitrary Λ-expressions to see
that they are ≤c-related.

Proposition 2.103 (pre-extensionality). Let f, g ∈ Λ with f⇓F

and g⇓F , then

∀a ∈ Λ : f a ≤c g a ⇐⇒ f ≤c g.

Proof.

⇐= : Since ≤c is a precongruence.

=⇒ : Assume this does not hold then ∀a : f a ≤c g a, but f �≤c g.
Suppose {x1, . . . , xn} = FV(f) ∪ FVg, f ′ def= λx1 . . . xn.f
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and g′
def= λx1 . . . xn.g. With lemma 2.100 we conclude

∀a, σ : σ(f a), σ(g a) ∈ Λ0 =⇒ σ(f a) ≤c σ(g a) (2.7)

and with lemma 2.102 we conclude

∃R[·] ∈ Λ0 : R[f ′]⇓ ∧ R[g′]⇑. (2.8)

R[·] must apply the hole to some expression, because

· R[·] ≡ [·] =⇒ R[g′]⇓ and

· R[·] ≡ S[caseA [·] . . .] =⇒ R[f ′]⇑,

which is both in contradiction to (2.8). Hence R[·] ≡
S1[[·] e1] and thus

R[f ′] →no S1[λx2 . . . xn.f [e1/x1 ] and

R[g′] →no S1[λx2 . . . xn.g[e1/x1 ].

Since R[·] ∈ Λ0 no renaming of variables is necessary for e1

since no name capture can occur. By repeating the argu-
ment above we reach Sn[·] ≡ Sn+1[[·] e] with

R[f ′] ∗→no Sn+1[f [e1/x1 ] . . . [en/xn ] e] and

R[g′] ∗→no Sn+1[g[e1/x1 ] . . . [en/xn ] e].

As before e ∈ Λ0 and we can apply (2.7) and theorem 2.59
to obtain R[f ′]⇓ =⇒ R[g′]⇓ in contradiction to (2.8). The
implication follows.

The statement of proposition 2.103 is not true for arbitrary
Λ-expressions f and g since application to an argument could
produce an ill-typed expression. This is the case even for some
f, g which are ≤c-related.
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Example 2.104. Consider f⇓Sbot : [] and g⇓Sbot : bot, then
∀a ∈ Λ : f a ≤c g a but f �≤c g and g ≤c f .

In our definition 2.36 FWHNFs may be of different kinds: they
can be abstractions and they may be unsaturated constructor- or
caseA-applications. We show now that the FWHNFs are exactly
the expressions contextually equivalent to abstractions.

Lemma 2.105. Let s ∈ Λ with s⇓F , then s ≡c λx.(s x).

Proof. Obviously, λx.(s x) is an FWHNF. If we assume that
s �≡c λx.(s x) then by proposition 2.103 ∃a : s a �≡c (λx.(s x)) a.
According to theorem 2.93 (λx.(s x)) a ≡c s a contradicting the
assumption. This proves the statement.

Corollary 2.106. Let s ∈ Λ with s⇓F , then ∃t ∈ Λ : s ≡c λx.t.

Expressions which do not have an FWHNF are not equivalent to
any abstraction.

Lemma 2.107. Let s ∈ Λ with s � ⇓F , then ∀t ∈ Λ : s �≡c λx.t.

Proof. s�⇓F =⇒ s⇑∨s⇓ScA,i e1 . . . eα(cA,i)∨s
∗→ R[x]. In the first

case [·] distinguishes s from λx.t, in the second caseA [·] 1 . . . 1︸ ︷︷ ︸
|A|

is such a context and in the third for any of the contexts from
lemma 2.71 C[s] ∈ IT but C[λx.t] →no λx.t.

2.5.4 Structure

The contextual order imposes a structure upon Λ which will be
presented in this section.
The divergent expressions are the least expressions in the contex-
tual order. Furthermore all divergent expressions are equivalent
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and from now on we can use bot as a representative of all diverging
expressions.

Proposition 2.108. Let s ∈ Λ, then

∀s : s⇑ ⇐⇒ ∀t : s ≤c t.

Proof.

¬ =⇒ ¬ : If s⇓ then s �≤c bot.

=⇒ : By corollary 2.101 s ≤c t ⇐⇒ ∀R[·] ∈ Λ0, σ : σs, σt ∈
Λ0 =⇒ (R[σs]⇓ =⇒ R[σt]⇓). Let R[·] be an arbitrary
closed reduction context and σ a closing substitution for s

and t. Proposition 2.35 implies σs⇑. Then there cannot be a
reduction to WHNF of R[σs] and the implication is satisfied
for every t.

Corollary 2.109. Let s, t ∈ Λ with s⇑ and t⇑ then s ≡c t.

Lemma 2.110. Let t, ti, t
′
i be Λ-expressions, c, c′ be constructors

and n ≤ α(c),m ≤ α(c′). Then t⇓c t1 . . . tn ∧ t⇓c′ t′1 . . . t′m =⇒
c = c′ and m = n.

Proof. Due to transitivity of ≡c and theorem 2.93 c t1 . . . tn ≡c

c′ t′1 . . . t′m. Assume c �= c′ or m �= n.

1. In the first case ∃A, i : c ≡ cA,i and we use a context

C[·] def= caseA ([·] bot . . . bot︸ ︷︷ ︸
α(c)−n

) bot . . . bot︸ ︷︷ ︸
i−1

1 bot . . . bot︸ ︷︷ ︸
|A|−i

to exhibit the contradiction C[t] ∗→ C[c t1 . . . tn]⇓ and
C[t] ∗→ C[c′ t′1 . . . t′m]⇑.
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2. In the second case we may assume c ≡ c′. Here also do we
easily recognize that C[c t1 . . . tn]⇓ but C[c′ t′1 . . . t′m]⇑ for
either case: m < n and m > n.

If an expression obtained from setting a non-converging expression
into a context converges, then any expression obtained with this
context will converge.

Lemma 2.111. s�⇓ ∧ C[s]⇓ =⇒ C[t]⇓ for any t ∈ Λ.

Proof. ∀t ∈ Λ : s ≤c t and since ≤c is a precongruence ∀C[·] :
C[s]⇓ =⇒ C[t]⇓.

We clarify the relation of some kinds of Λ-expressions, such as
those having a WHNF etc. to obtain the diagram of figure 2.3.

Lemma 2.112. Let s, t, ti ∈ Λ and let x, y be variables, then

1. λx.bot �≤c bot

2. λx.bot ≤c c t1 . . . tα(c)

3. ∀n ≥ 2 : λx1 . . . xn.bot �≤c c t1 . . . tα(c)

4. ∀n : λx1 . . . xn.bot ≤c λx1 . . . xn+1.bot

5. s has an SCWHNF implies s �≤c λx.t

6. s has a WHNF and t
∗→no R[x] =⇒ s �≤c t

7. x �≡ y ∧ s
∗→no R[x] ∧ t

∗→no R′[y] =⇒ s �≤c t

Proof. It will suffice to consider closed reduction contexts and
closing substitutions.

1. Obviously, λx.bot⇓ ∧ bot⇑.
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2. Assume ∃R[·], σ : R[λx.bot]⇓∧R[c σt1 . . . σtα(c)]⇑. We con-
sider a normal-order reduction of R[λx.bot].

R[·] ≡ R′[caseA [·] . . .] : Then R[λx.bot]⇑ would hold

R[·] ≡ R′[[·] r] : We would obtain R[λx.bot] ∗→no R′[bot]⇑

R[·] ≡ [·] : R[c σt1 . . . σtα(c)]
∗→no c σt1 . . . σtα(c)⇓.

All cases contradict the assumption.

3. For the context C[·] def= [·] bot we observe
C[λx1 . . . xn.bot] →no λx2 . . . xn.bot, but C[c t1 . . . tα(c)] =
c t1 . . . tα(c) bot ∈ DIT thus λx1 . . . xn.bot �≤c c t1 . . . tα(c).

4. This is a direct consequence of proposition 2.96 and the fact
that bot ≤c λx.bot.

5. For s⇓ScA,i s1 . . . sα(cA,i) we define C[·] def=
caseA [·] cA,1 . . . cA,|A| and obtain C[s]⇓, but C[λx.t]⇑ so
s �≤c t.

6. We can see this with the trivial context: s⇓ ∧ t �⇓

7. We define C[·] def= (λy.[·]) bot then C[s] ∗→no R[x]⇓, but
C[t] ∗→no R′[bot]⇑.

With these relations we can draw the diagram of figure 2.3.

Lemma 2.113. Let s, t ∈ Λ with s ≤c t then s⇓F ∧ s �≡c

λx.bot =⇒ t⇓F .

Proof. Assume the statement does not hold. s⇓F ∧ s �≡c λx.bot∧
t �⇓F . t �⇓F ⇐⇒ t⇑ ∨ t⇓S ∨ t

∗→no R[x]. Definition 2.87 implies
s⇓ =⇒ t⇓.
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λx1x2x3.bot λx.c1 s1 . . . sα(c1)

�������������
λx.c2 s1 . . . sα(c2)

����������������������������

λx1x2.bot c1 s1 . . . sα(c1)

��������������
c2 s1 . . . sα(c2)

�������������������������������

λx.bot Q[x]

���������������� R[y]

�������������������������������������

bot

Figure 2.3: Diagram of 〈Λ,≤c〉.

1. If s⇓F ∧ t⇓S then for C[·] def= [·] r with r �≡c bot we find
C[s] →no s′ �≡c bot so C[s]⇓, but C[t]⇑ since C[t] ∈ DIT .
This contradicts s ≤c t.

2. If s⇓F ∧ t
∗→no R[x] we apply lemma 2.112 (6) to obtain a

contradiction to s ≤c t.

Thus the assumption is false and the claim proved.

2.5.5 Adequacy and full abstraction

Intuitively, adequacy of a semantics means two properties:

1. execution does not change meaning and

2. the result of this execution corresponds exactly to the se-
mantic value of the program.
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Together the two properties allow to reason about the operational
behavior of a program from semantic observations. For the con-
textual semantics this means

Definition 2.114 (adequacy). The contextual semantics is ade-
quate, iff

∀s, t ∈ Λ :s → t =⇒ s ≡c t (2.9)

∀s ∈ Λ :s⇑ ⇐⇒ s ≡c bot (2.10)

Theorem 2.115. The contextual semantics is adequate.

Proof. Theorem 2.93 proves (2.9) and proposition 2.108 implies
(2.10).

Another important property of semantics is full abstraction with
respect to some observation. Intuitively, this property requires
that the expressions differentiated by the operational observation
are exactly the ones differentiated by the semantics. Since the se-
mantic equivalence for contextual semantics is defined to be pre-
cisely the operational observation of termination after insertion
into a context, this semantics is naturally always fully abstract
with respect to this observation.

2.5.6 Chains

Definition 2.116 (
⊔

, lub). Let s1 ≤c s2 ≤c . . . be an ascending
chain of Λ-expressions. s ∈ Λ is the least upper bound or lub of
the si, s ≡c

⊔
i
si, iff ∀i : si ≤c s and ∀i : si ≤c t =⇒ s ≤c t.

Definition 2.117 (
⊔c

). Let s1 ≤c s2 ≤c . . . be a chain of
Λ-expressions. s ∈ Λ is the contextually least upper bound, pro-
nounced club, of the si, written s ≡c

⊔c

i
si, iff
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∀C[·] :
⊔

i
C[si] ≡c C[s] (2.11)

We also define
⊔c

as an operator on sets

⊔c
M

def= {s ∈ Λ|s ≡c

⊔c

i
si ∧ si ≤c si+1 ∧ si ∈ M}.

It is unknown whether the condition 2.11 is satisfied for every lub
or not. The investigation of this question is outside the scope of
this work. The property is needed in the proof of continuity of
contexts. We do not have a counter-example, i.e. we do not know
of a context C[·] and two ascending chains si ≤c si+1 and ti ≤c

ti+1 having the same lub s, but for which
⊔

i
C[si] �≡c

⊔
i
C[ti]

holds.

Lemma 2.118.
⊔c

is monotone on sets of Λ-expressions.

Proof. If M ⊆ N then any chain from M is contained in N thus⊔c
M ⊆

⊔c
N .

Remark 2.119. bot ≡c

⊔c

i
si ⇐⇒ ∀i : si ≡c bot

Proof. Follows immediately from the definition of club with the
empty context.

The club is unique up to ≡c.

Lemma 2.120. Let s1 ≤c s2 ≤c . . . ,∀i : si ∈ Λ, s, t ∈ Λ and
s ≡c

⊔c

i
si. Then

t ≡c

⊔c

i
si ⇐⇒ t ≡c s.
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Proof. Both implications follow directly from transitivity of ≡c.

Lemma 2.121. Let s1 ≤c s2 ≤c . . . and I ⊆ N with |I| = ∞, then⊔c

i
si exists iff

⊔c

i∈I
si exists and

⊔c

i
si ≡c

⊔c

i∈I
si.

Proof. Since I is infinite
⊔

i∈I
si ≡c

⊔
i
si. We obtain

⊔c

i
si ≡c⊔

i
si ≡c

⊔
i∈I

si ≡c

⊔c

i∈I
si. The last equivalence is due to

the fact that
⊔

i
si already is a club and the club is unique up to

≡c.

The club of a constant chain is this constant value.

Lemma 2.122. Let s, si ∈ Λ with si ≡c si+1 and s ≡c

⊔c

i
si.

Then s ≡c si for any i.

Proof. Every chain element is the lub and our premise implies
that the lub is a club, so the statement is proved.

Definition 2.123 (continuity). A context C[·] is called continuous
iff for all chains s1 ≤c s2 ≤c . . . having a club s ≡c

⊔c

i
si there

is
⊔c

i
C[si] ∈ Λ and C[s] ≡c

⊔c

i
C[si].

Theorem 2.124 (Continuity of contexts). Every context is con-
tinuous.

Proof. We show that for any context C[·] and ascending chain
si ≤c si+1 satisfying s ≡c

⊔c

i
si also C[s] ∈ Λ and C[s] ≡c⊔c

i
C[si] is satisfied.

1. C[s] ∈ Λ trivially holds.

2. From s ≡c

⊔c

i
si we deduce ∀D[·] : D[s] ≡c

⊔
i
D[si]. This

also holds for D[·] ≡ C[·].
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3. Likewise, ∀E : E[C[s]] ≡c

⊔
i
E[C[si]].

2 and 3 together imply C[s] ≡c

⊔c

i
C[si].

There is also a kind of continuity for multi-hole contexts. We
consider contexts with two holes only since the argumentation
straightforwardly generalizes to more than two holes. These ob-
servations will later allow us to lift the club out from contexts in
which there are multiple independent clubs and to consider only
the chain elements with identical indices together. In this sense
we are cutting diagonally through the chains.

Theorem 2.125. Let s1 ≤c s2 ≤c . . . and t1 ≤c t2 ≤c . . . be
ascending chains, then

∀C[·1, ·2] :
⊔c

i
C[si, ti] ≡c C[

⊔c

i
xi,

⊔c

i
yi].

Proof. The proof is in three parts.

upper bound: Defining Di[·] def= C[si, ·] it is easy to see that
∀i : C[si, ti] ≡ Di[ti] ≤c Di[

⊔c

i
ti] ≡ C[si,

⊔c

i
ti] and with

D′[·] = C[·,
⊔c

i
ti] we see ∀i : C[si,

⊔c

i
ti] ≡ D′[si] ≤c

D′[
⊔c

i
si] ≡ C[

⊔c

i
si,

⊔c

i
ti].

least: Let t be an upper bound on C[si, ti]. For every fixed j it
must be that ∀i : C[si, tj ] ≤c t, since with k = max{i, j}
we have C[si, tj ] ≤c C[sk, tk] ≤c t. Consequently, ∀j :
C[

⊔c

i
si, tj ] ≤c t and thus C[

⊔c

i
si,

⊔c

i
ti] ≤c t.

∀C[·1, ·2], D[·] :
⊔

i
D[C[si, ti]] ≡c D[C[

⊔c

i
si,

⊔c

i
ti]]. We can

combine the two contexts and obtain the equivalent state-
ment ∀C[·1, ·2] :

⊔
i
C[si, ti] ≡c C[

⊔c

i
si,

⊔c

i
ti]. But this is
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exactly what we have already shown for being a least upper
bound in the cases above.

Corollary 2.126. Let s1 ≤c s2 ≤c . . . and t1 ≤c t2 ≤c . . . be
ascending chains with s ≡c

⊔c

i
si and t ≡c

⊔c

i
ti. Then

f
⊔c

i
si

⊔c

i
ti ≡c

⊔c

i
f si ti (2.12)

(
⊔c

i
si)

⊔c

i
ti ≡c

⊔c

i
si ti (2.13)

2.5.7 Fixpoint combinators

We will now present a syntactic criterion which will allow to state
the minimal number of normal-order reductions necessary for a
position which differs in two expressions to become visible in a
reduction context. First we define a dual notion to the notion of
reduction contexts.

Definition 2.127 (argument context). An argument context is
defined by the following grammar:

A[·] → e [·], e �≡ caseA

| caseA e e1 . . . ei−1 [·] ei+1 . . . e|A|
| λx.[·]

If not otherwise specified A[·], Y[·] and Z[·] will range over argu-
ment contexts.

Lemma 2.128. Every context C[·] can be represented as the com-
position of reduction contexts R1[·], . . . , Rn[·] and argument con-
texts A1[·], . . . , Am[·] with n > 0,m ≥ 0.

Proof. By induction on the structure of C[·].
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Definition 2.129. Two Λ-expressions s, t differ at argument depth
n, if there is a position ρ in s and t at which their labels differ and
the contexts corresponding to position ρ have exactly n argument
contexts. Thus

n = 0 : s(ρ) �= t(ρ) =⇒ ∃R[·], S[·], u, v ∈ Λ : R[·]ρ ≡ S[·]ρ ≡
[·] ∧ s ≡ R[u] ∧ t ≡ S[v].

n > 0 : s(ρ) �= t(ρ) =⇒ ∃R[·], S[·], A[·], Z[·], u, v ∈ Λ : R[A[·]]ρ ≡
S[Z[·]]ρ ≡ [·] ∧ s ≡ R[A[u]] ∧ t ≡ S[Z[v]] ∧ u and v differ at
argument depth n − 1.

Accordingly, we say that s and t are equal above argument depth
n, if they do not differ for any argument depth m < n.

The argument depth has the desired property of requiring expres-
sions that are equal above argument depth n to be normal-order
reduced at least n times before expressions result that differ in
their respective reduction contexts. The base case for the induc-
tion can be seen directly from definition 2.127. The induction step
is established in the following

Lemma 2.130. Let s, t ∈ Λ be equal above argument depth n > 0
and let s →no s′, t →no t′, then s′ and t′ are equal above argument
depth n − 1.

Proof. If the normal-order redexes of s and t, u and v, differ at all,
then they do not do so above argument depth n, because every
prefix of a corresponding reduction context is itself a reduction
context (and not an argument context). Since n > 0 either u ≡
(λx.u1) u2 and v ≡ (λx.v1) v2, u1 and v1 are equal above argument
depth n−1, and u2 and v2 are equal above argument depth n−1,
or u ≡ caseA a u1 . . . u|A| and v ≡ caseA b v1 . . . v|A|, a and b
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are equal above argument depth n, and ui and vi are equal above
argument depth n − 1.

Case 1 : If the →B-reduction substitutes a free occurrence of x

below an argument context then on the path to differently
labeled positions (if they exist) there are at least n argument
contexts. If it substitutes x in a reduction context then there
are still n − 1 on the path to a possibly existing, differently
labeled position.

Case 2 : a ≡ cA,i a1 . . . aα(cA,i) and b ≡ cA,i b1 . . . bα(cA,i) and
the ai and the bi are equal above argument depth n − 1.
Thus ui a1 . . . aα(cA,i) and vi b1 . . . bα(cA,i) are equal above
argument depth n − 1.

It follows that s′ and t′ are equal above argument depth n−1.

Corollary 2.131. If two expressions are equal above argument
depth n > 0 then the position of their normal-order redex is the
same if it exists and it is reduced by the same alternative of the
→B-reduction.

Proof. Normal-order redexes are found in reduction contexts,
i.e. not below an argument context. Since the reduction context of
a normal-order redex is not maximal, the alternative with which
it is →B-reduced is uniquely determined, because either there is
only one maximal reduction context and there is an abstraction
in its hole or there are two maximal reduction contexts R1[·] and
R2[·], such that the expression reduced can be written R[R1[s1]]
where s1 ≡ caseA or R[caseA R2[s2]]. Even in the latter two
cases though s1 and s2 will not be below an argument context
so that the corresponding positions will be equal above argument
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depth n. It follows that the normal-order redexes →B-reduce with
the same alternative.

We will now approach the presentation of two important proper-
ties, one is that θ is a fixpoint combinator, the other is that the
fixpoint θ t is approximated by the iterations of t and is equivalent
to their club.
In the proof of theorem 2.133 below we employ the following char-
acterization of the club of an ascending chain.

Lemma 2.132. Let s1 ≤c s2 ≤c . . . be an ascending chain and let
s ∈ Λ. If

∀i : si ≤c s, and (2.14)

∀C[·] : C[s]⇓ =⇒ ∃i : C[si]⇓ (2.15)

then

s ≡c

⊔c

i
si.

Proof. We show ∀D[·] : D[s] ≡c

⊔c

i
D[si]. From (2.14) and since

≤c is a precongruence
⊔c

i
D[si] ≤c D[s].

Let D[·] be an arbitrary context and t a Λ-expression which is an
upper bound for the D[si], i.e. for which ∀i : D[si] ≤c t. If for
some context C[·] : C[D[s]]⇓ then with (2.15) we get ∃i : C[D[si]]⇓
and thus C[t]⇓, so now we have C[D[s]]⇓ =⇒ C[t]⇓ for all C[·]
which is equivalent to D[s] ≤c t. Hence D[s] is the least upper
bound, so D[s] ≤c

⊔c

i
D[si].

Theorem 2.133. Let t ∈ Λ, then

θ t ≡c

⊔c

i
ti bot.

79

2 Language

Proof.

ti bot ≤c ti+1 bot : bot ≤c t bot, the rest follows from mono-
tonicity of contexts.

Criterion of lemma 2.132:

ti bot ≤c θ t : bot ≤c θ t and since ≤c is a precongru-
ence ti bot ≤c θ t implies ti+1 bot ≤c t (θ t). Since
θ t

∗→ t (θ t) we apply theorem 2.93 to conclude that
ti+1 bot ≤c t (θ t) implies ti+1 bot ≤c θ t and by
induction we obtain ∀i : ti bot ≤c θ t.

C[θ t]⇓ =⇒ ∃i : C[ti bot]⇓ : Let C[·] be an arbitrary con-
text with C[θ t]⇓ and let i be the number of normal-
order reductions from C[θ t] to WHNF. C[ti+1(θ t)] has
no more than i normal-order reductions to a WHNF.
This follows from θ t

∗→ ti+1 (θ t) and theorem 2.51.
The expressions C[ti+1 (θ t)] and C[ti+1 bot] are equal
above argument depth i + 1. Hence the →no-reduction
sequence to WHNF from C[ti+1 (θ t)] can also be ap-
plied to C[ti+1 bot]. Let s′ and t′ respectively be the
results of these reductions. s′ and t′ are equal above ar-
gument position 1, and in particular t′ is a WHNF.

Theorem 2.134. θ t is the smallest fixpoint of t.

Proof. θ t ≡ (λz.λx.x (z z x)) A t
2→no t (A A t) ≡ t (θ t) and

thus θ t is a fixpoint of t.
To show that this is the least such fixpoint requires to show t f ≡c

f =⇒ θ t ≤c f . Assume the premise, then for all i : ti bot ≤c f

since bot ≤c f and from t (ti bot) ≤c t f we may conclude
ti+1 bot ≤c f . Since by theorem 2.133 above θ t is the least
upper bound of the ti bot we obtain θ t ≤c f .
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2.5.8 Super-combinators

We have defined Λ as a λ-calculus extended with constructors and
case. One could argue that there is quite a difference between
the language of our analysis and the core languages used in the
implementations of functional languages.
In this section we narrow this gap by showing how to integrate
the use and definition of recursive super-combinators into our lan-
guage. For the fundamental considerations in this chapter re-
cursive super-combinators would have been rather obstructive,
e.g. the notion of context would have to be changed to consist
of a set of super-combinator definitions and an expression where
the position of the hole could be inside either of the two.
We will present the addition of recursive super-combinators as a
notational convention by translating them to Λ. We will only
describe how this is done in principle and not give much detail.
As we have already seen θ is a fixpoint combinator computing the
least fixed point θ s for any Λ-expression s. In order to translate
a recursive n-ary super-combinator into a Λ-expression we start
by wrapping the right hand side, e, of the super-combinator’s
definition in n abstractions yielding λx1 . . . xn.e. If e was the right
hand side of a definition for super-combinator H and e uses only
the super-combinator name H then it will be sufficient to abstract
from H in e, i.e. to form λfx1 . . . xn.e[f /H ] and to use the fixpoint
of this expression as the meaning of the super-combinator H.
Since Λ allows the use of constructors this principle is easily ap-
plied to super-combinator definitions referencing more than one
super-combinator, possibly mutually recursively. We introduce a
type with a 0-ary constructor cH for each super-combinator H

of the program and replace any occurrence of a super-combinator
name S in the body of a super-combinator definition with (F cS).
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Let eS be the result of this replacement wrapped in enough ab-
stractions to account for the arity of S. We form the Λ-expression
P

def= λF.λx.caseA x eS1 . . . eSn
. The functionality of super-

combinator S can then be selected with the Λ-expression (θ P ) cS

and we consider this to be the meaning of S.

2.5.9 Approximation

We have characterized the club-operation by demonstrating its
club-closure for primitive sets. A further question to character-
ize the club-operation is to ask for a set of expressions containing
the clubs for arbitrary ascending chains of Λ-expressions. A sug-
gesting candidate for such a set would be Λ itself, i.e. “Is there
an ascending chain of Λ-expressions which cannot have a club in
Λ?” We will answer this question affirmatively by providing an
ascending chain whose club would be a non-computable function,
if it would exist.

Fact 2.135. There are uncountably many infinite strings over
{0, 1}, but only countably many Λ-expressions. Hence there
must be infinite strings over {0, 1} for which there cannot be a
Λ-expression.

We obtain the

Proposition 2.136. There are ascending chains of Λ-expressions
that cannot have a club in Λ.

Proof. Let a1a2a3 . . . be any infinite string over {0, 1}. Its finite
prefixes can be encoded as finite lists of elements from {0, 1} which
end in bot. We define Λ-expressions si

def= a1 : . . . : ai : bot

obviously forming an ascending chain. If a Λ-expression would be
the club of this chain then it would need to be equivalent to the
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2.5 Contextual semantics

infinite list a1 : . . .:ai : . . . . This follows from lemma 2.110. Thus
for some of the infinite strings a1a2a3 . . . there cannot be such a
Λ-expression.

In a large portion of the literature on semantics of programming
languages e.g. [Bur91, Mit96] CPOs are used as the semantic do-
mains for the syntactic language constructs. CPOs can be defined
as in e.g. [DP90]:

Definition 2.137. (P,≤) is a CPO, iff for all directed subsets
D ⊆ P there is

⊔
D. D is directed, if for all finite subsets E ⊆ D

there is a z ∈ D with z ∈ Eu where Eu is the set of largest
elements with respect to ≤.

Since the elements of an ascending chain trivially form a directed
set, proposition 2.136 implies

Proposition 2.138. (Λ,≤c) is not a CPO.
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In this chapter we define demands which are expressions represent-
ing subsets of Λ. These sets have the property of being closed with
respect to ≡c-equivalence. Demand representations are provided
for diverging expressions, for expressions having an FWHNF, and
for expressions having a saturated constructor WHNF. A high
degree of detail is available for the latter, since every construc-
tor from the program has a corresponding demand constructor.
An inductive construction as well as union and intersection of the
represented sets are also provided. Λ-expressions which can be
evaluated to arbitrary depth enter by taking least upper bounds
of ascending chains of elements evaluating to finite depth. Not
every lub of an ascending chain is considered for the semantics
of demands. To ensure continuity of context we allow only those
that satisfy an additional restriction.
We start by presenting the syntax of demands in section 3.1, then
we define the Λ-expressions represented by a demand expression,
followed by the concretization which captures our notion of the
“meaning” of a demand expression.

3.1 Syntax

Definition 3.1. ΛC is the set of demand expressions, which is
generated by the grammar in figure 3.1 with start symbol E′.
The set of closed demand expressions is Λ0

C . We also write Λp
C for
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demand expr E′ → W | S | U ′ | C

| K ′ | N | V ′

where expr W → E′ where T = N

intersection S → E′
1 ∩ · · · ∩ E′

n n ≥ 0

union U ′ → 〈E′
1, . . . , E

′
n〉 n ≥ 0

demand constant C → Bot | Fun
demand name N → 〈demandid〉
demand constructor K ′ → cA,i E′

1 . . . E′
α(cA,i)

1 ≤ i ≤ |A|

demand pattern T → cA,i T1 . . . Tα(cA,i) 1 ≤ i ≤ |A|
| Bot | V ′

demand variable V ′ → 〈varid〉
demand definition D′ → N = E′

primitive demands S′ → cA,i S′
1 . . . S′

α(cA,i)

| Bot | Fun

Figure 3.1: Syntax of ΛC

the set of primitive demands.

Variables in patterns need not be unique.

Notation 3.2. It will often be necessary to speak of specific parts
of demand expressions, therefore we name some of these parts:
the demand term to the left of a where is the contribution of
a where-expression, the equation to its right is the match con-
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sisting of the pattern and the name of the where-expression. The
direct subexpressions of unions, intersections and constructors are
their components, for constructors we will also refer to them as
arguments. Unless otherwise stated we will assume all demand
expressions to be closed except the pattern and contribution of
where-expressions and the notion of substitution is straightfor-
wardly extended to open demand expressions.

3.1.1 Jocs

Our calculi can handle inputs in which more than one variable oc-
curs free. In a solution for all these variables the demands for each
of the constrained variables are typically not independent. As a
means for representing the interdependencies among the variables
we use constructors introduced for this sole purpose. We call such
constructors joint-constructors or jocs since they make it possible
to jointly constrain variables of the input. We assume that jocs
of every required arity are defined and that they do not occur
anywhere in the input program. Consequently, no expression in
the program will evaluate to an SCWHNF using a joc as its top-
level constructor unless purposefully introduced and this is the
only feature distinguishing jocs from constructors in general. Our
notation for jocs are brackets, i.e. [. . . ]. Since we will never take
an interest in the joc by itself, but only in its components, their
number and the fact that they are the arguments of a joc we will
also call expressions with a top-level joc (in Λ as well as in ΛC)
jocs.

Definition 3.3 (joc). An n-ary joc is an n-ary constructor []n ∈
Λ (and also []n ∈ ΛC) which we write in mixfix notation with
its arguments a1, . . . , an, i.e [a1, . . . , an]n. Since its arity will be
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apparent most of the time we will just write [a1, . . . , an].

Example 3.4. Consider, for example, the jocs [x, y] ∈ Λ or
[Bot, []] ∈ ΛC .

It will sometimes be convenient to identify singleton jocs with
their argument. This will be the only exception we make from
representing every n-ary joc exactly as an n-ary constructor.
Jocs frequently occur in relation to where-expressions, where they
have the effect of enforcing a simultaneous binding of the pat-
tern variables. In that context we will also write 
x for the joc
[x1, . . . , xn].

3.2 Semantics

Demands are a representation of particular subsets of Λ. They
have the property that equivalent Λ-expressions belong to the
same demand. Their semantics is given by a two-stage process:
the first stage is inductive and in the second the set obtained from
the first is closed with respect to contextual least upper bounds
of ascending chains.
Demands are a very powerful tool in more than one respect. We
will show that the demand language’s expressive power equals that
of Turing-machines. Furthermore, we will show demands exist
having a fixpoint of a function as their semantics, but for which
the semantics can neither be the least nor the greatest fixpoint of
a function.

3.2.1 Representation

The representation of a demand is the first stage in defining the
semantics of demands. It is obtained as the fixpoint of approxi-
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mations and defines a set of expressions evaluating to finite depth
associated with a demand.

Example 3.5. To motivate the development ahead in this section
we present some examples for the representation, η(·), of demands.
We assume the demands Inf1 and Peano are defined as Inf1 =
〈Bot, 1 : Inf1〉 and Peano = 〈Zero, Succ Peano〉.

η(Bot) = {t|t⇑}
η(〈True, False〉) = {t|t⇓STrue ∨ t⇓SFalse}

η(〈〉) = ∅
η(Peano) = {t|∃i ∈ N0 : t⇓SSucc

i Zero}
η(Inf1) = {t|∃i ∈ N0 : t

∗→ (1:)i r ∧ r⇑}.

We want to infer the existence of the fixed point using the The-
orem of Knaster and Tarski, therefore we need to show that the
approximations are total mappings in a complete lattice and thus
form a complete lattice themselves and that the operation which
improves approximations is monotone.

Definition 3.6. Let C be a set of demand definitions. We define the
set of demand names occurring in C as N(C) = {N |N = C ∈ C}.

Definition 3.7. Let f, g : B → A where (A,≤) is an ordered set
and B an arbitrary set. The point-wise order on B → A is then
f ≤ g ⇐⇒ ∀x ∈ B : (f(x) ≤ g(x)).

Lemma 3.8. P(Λ)N(C) is a complete lattice with the point-wise
order.

Proof. Let M be any set, (P(M),⊆) is a complete lattice, hence
(P(Λ),⊆) is a complete lattice. Furthermore the mapping from
any set into a complete lattice is a complete lattice with the point-
wise order.[DP90]
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0 denotes the function that maps every name to the empty set.
We will overload 0 to have this meaning in the complete lattice
P(M)N(C) for any M .
In case only Bot, Fun and constructors are present in the demand
expression, i.e. if the demand is primitive (cf. figure 3.1), we can
give a direct definition of the primitive terms represented.

Definition 3.9 (primitive terms). Let Λp : Λp
C → Λ be the func-

tion for which the following holds:

Λp(Bot)
def= {t|t⇑} (3.1)

Λp(Fun)
def= {t|t⇓F } (3.2)

Λp(c C1 . . . Cα(c))
def= {t|t⇓Sc t1 . . . tα(c) ∧ ti ∈ Λp(Ci)}

(3.3)

The image of Λp
C under Λp(·) is called the set of primitive ex-

pressions. Λ-expressions which are not primitive will be called
non-primitive expressions. Similarly, non-primitive demands are
those that are not primitive.

Example 3.10.

bot ∈ Λp(Bot)

bot bot ∈ Λp(Bot)

λx.bot ∈ Λp(Fun)

c (λx.bot) 1 ∈ Λp(c Fun 1)

Sometimes we will want to convert Λ-expressions to demands such
that all ≡c-equivalent elements are represented. This can be done
for some Λ-expressions with the following operation.
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Definition 3.11 (ṫ). Let t be a Λ-expression, then ṫ is the demand
defined as:

˙bot def= Bot

ḟ
def= Fun, if f is an FWHNF.

ṫ
def= c ṫ1 . . . ˙tα(c), if t ≡ c t1 . . . tα(c) ∧ c ∈ K

ṫ
def= t, if t ∈ V ∩ V ′

ṫ
def= undefined, otherwise.

If σ = {x �→ t, . . . } substitutes Λ-expressions then σ̇ is defined to
be {ẋ �→ ṫ, . . . }.

This operation will not transform arbitrary Λ-expressions into de-
mands, e.g. abstractions will not be transformed into demands.

Example 3.12. Let t ≡ (λx.c bot . . . bot︸ ︷︷ ︸
α(c)−1

x) bot, then ṫ is unde-

fined, but for t ≡ c bot . . . bot︸ ︷︷ ︸
α(c)

, ṫ ≡ c Bot . . . Bot︸ ︷︷ ︸
α(c)

.

However, the operation is sufficient for transforming into demands
those Λ-expressions which are well-suited for representing the
equivalence classes with respect to ≡c.

Lemma 3.13. If t ∈ Λ consists of constructors, FWHNFs and bot

only, then ṫ is a closed demand expression and t ∈ Λp(ṫ).

Proof. ˙bot ≡ Bot and the statement holds. If f is an FWHNF,
the statement is satisfied for ḟ ≡ Fun. If we have an SCWHNF t ≡
c t1 . . . tα(c), then ṫ ≡ c ṫ1 . . . ˙tα(c). The ti consist of constructors,
FWHNFs and bot only, such that by induction hypothesis the ṫi
are closed demand expressions and ti ∈ Λp(ṫi). Then ṫ is also a
closed demand expression and t ∈ Λp(ṫ).
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Lemma 3.14. If t ∈ Λ consists of constructors, variables and bot

only, then ṫ is a demand pattern.

Proof. Analogous to the proof of lemma 3.13.

Lemma 3.15. If t ∈ Λ consists only of constructors, variables,
FWHNFs and bot and if θt is primitive, then ∃ρ : θt ∈ Λp(ρṫ).

Proof. Let {x1, . . . , xn} be the free variables of t. θxi is primitive
and so by lemma 3.25 there is some Ei satisfying θxi ∈ Λp(Ei).

We define ρ
def= {xi �→ Ei|1 ≤ i ≤ n}. It is easily seen by induction

on the structure of t that θt ∈ Λp(ρṫ).

Lemma 3.16. Let s ∈ Λp(D) for some D where s ≡c

⊔c

i
si. Then

all but finitely many si ∈ Λp(D).

Proof. We distinguish three cases for D.

1. D ≡ Bot: s ≤c bot and thus all si ≤c bot.

2. D ≡ Fun: There must be an i0 : si0 has an FWHNF, oth-
erwise all si ≡c bot and so their club s ≡c bot. Since
FWHNFs are only comparable to FWHNFs and bot (lemma
2.112), all the si with i ≥ i0 must have FWHNFs.

3. D ≡ c D1 . . . Dα(c): As in 2. there must be an i0 : si0 has an
SCWHNF c ti01 . . . ti0α(c). Then, as a consequence of lemma
2.112, for all i ≥ i0 : si⇓Sc ti1 . . . tiα(c). By lemma 2.95 the
ti0j ≤c ti0+1

j ≤c . . . form ascending chains and by theorem

2.125 the chains satisfy
⊔c

i
tij in Λp(Dj). By structural

induction we conclude that for every j all but finitely many
elements tij are in Λp(Dj). Summarizing our claim follows.
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Lemma 3.17. There are s ∈ Λp(D) with s ≡c

⊔c

i
si and ∀i :

si �≡c si+1.

Proof. We present an example. si
def= λx.(x:)i bot. While

si ≤c si+1 we have si+1 �≤c si. Anticipating proposi-
tion 3.52, equation (3.11)

⊔c

i
λx.((x:)i bot) ≡c λx.(repeat x)

and with continuity and C[·] def= λx.[·] we obtain
⊔c

i
si ≡c⊔c

i
C[(x:)i bot] ≡c C[

⊔c

i
(x:)i bot] ≡c C[repeat x] ≡c

λx.(repeat x) ∈ Λp(Fun).

Λp(·) covers only a small subset of the demands, the most remark-
able syntactic features that were not yet covered are recursive use
of demands and bindings using where-expressions. A demand def-
inition, which makes use of the names of demands recursively is
e.g. Inf = 〈Bot, Top : Inf〉. We need to define approximations to
the representation in such a way that they use functions ρ map-
ping demand names to subsets of Λ. The function Δ improves
the mapping of names to subsets of Λ so that eventually we can
define the representation of a demand with the fixed point of Δ.

Definition 3.18. Let ρ : N(C) → P(Λ). We define Σ(T ) def=
{σ|σT is a primitive demand}. Furthermore, we define ηρ : ΛC →
P(Λ) as the function for which:

ηρ(Bot)
def= Λp(Bot) (3.4)

ηρ(Fun)
def= Λp(Fun) (3.5)

ηρ(c C1 . . . Cα(c))
def= {t|t⇓Sc 
t ∧ ∀i : ti ∈ ηρ(Ci)} (3.6)

ηρ(〈C1, . . . , Cn〉) def=
⋃
i

ηρ(Ci) (3.7)

ηρ(C1 ∩ · · · ∩ Cn) def=
⋂
i

ηρ(Ci) (3.8)
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ηρ(N) def= ρ(N), if N ∈ N(C) (3.9)

ηρ(S where T = N) def=
⋃

σ∈Σ(T ):Λp(σT )⊆ρ(N)

ηρ(σS) (3.10)

ηρ is an approximation of the representation for every ρ.

The approximations are improved by Δ.

Definition 3.19.

Δ(ρ) def= ρ′, where ρ′(N) def= ηρ(D), if N = D ∈ C.

Lemma 3.20. Δ maps elements of L
def
= P(Λ)N(C) to elements of

L.

For a demand D the set of terms represented by D, η(D), can
now be defined with the smallest fixpoint of Δ.

Definition 3.21. η(C) def= ηβ(C), where β
def= μx.Δ(x). We call

η(C) the set of expressions represented by C.

If Δ is monotone, it follows from the Theorem of Knaster and
Tarski that this fixed point does indeed exist. We show mono-
tonicity next.

Lemma 3.22. Let ρ1 ≤ ρ2, then

Δ(ρ1) ≤ Δ(ρ2).

Proof. We show ∀(M = D) ∈ C : ηρ1(D) ⊆ ηρ2(D) using in-
duction on pairs (w,D) for every demand D. In these, w is the
number of where-expressions in D and for D we use the structural
order.

D ≡ N : ηρ1(N) = ρ1(N) and the premise states ρ1(N) ⊆
ρ2(N) = ηρ2(N).
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D ∈ {Bot, Fun} : ηρ1(D) = Λp(D) and this is true for arbitrary
ρ1, in particular Λp(D) = ηρ2(D).

D ≡ c D1 . . . Dα(c) :

ηρ1(D)

=(definition 3.18)

{t|t⇓Sc t1 . . . tα(c) ∧ ∀i : ti ∈ ηρ1(Di)}
⊆(induction hypothesis)

{t|t⇓Sc t1 . . . tα(c) ∧ ∀i : ti ∈ ηρ2(Di)}
=(definition 3.18)

ηρ2(D).

D ≡ 〈D1, . . . , Dn〉 : Analogously to D ≡ c D1 . . . Dn.

D ≡ D1 ∩ · · · ∩ Dn : ditto

D ≡ S where T = N :

ηρ1(D)

=(definition 3.18)⋃
σ:Λp(σT )⊆ηρ1 (N)

ηρ1(σS)

⊆(induction hypothesis: σS has one where less than

D + premise)⋃
σ:Λp(σT )⊆ηρ2 (N)

ηρ2(σS)

=(definition 3.18)

ηρ2(D).
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Hence Δ is monotone.

For many proofs it will be helpful to have an iterative characteri-
zation of β. Such a characterization can be obtained by the CPO
Fixpoint Theorem I [DP90]. This theorem requires a monotone
function on a CPO, then if α

def=
⊔

i≥0
Δi(0) is a fixed point, α is

also the least fixed point.
Since we have already shown monotonicity of Δ in lemma 3.22
and since every complete lattice is a CPO, so P(Λ)N(C) is a CPO,
all that remains to be shown is that α is a fixed point of Δ.

Lemma 3.23.
⊔

i≥0
Δi(0) = Δ(

⊔
i≥0

Δi(0)).

Proof. We show the two inequalities separately.

≤: 0 ≤ Δ(0), so monotonicity suffices to show this inequality.

≥: We show ∀x : Δ(
⊔

i≥0
Δi(0))(x) ⊆ (

⊔
i≥0

Δi(0))(x).

Let y ∈ Δ(
⊔

i≥0
Δi(0))(x) then there is a j for which

y ∈ Δ(
⊔

0≤i≤j
Δi(0))(x) = Δ(Δj(0))(x) = Δj+1(0)(x).

The first equality is due to i < j =⇒ Δi(0) ≤ Δj(0). Ob-
viously, Δj+1(0)(x) ⊆

⋃
i≥0(Δ

i(0)(x)) = (
⊔

i≥0
Δi(0))(x)

holds and so y ∈ (
⊔

i≥0
Δi(0))(x).

Since all the requirements are met, we obtain the following lemma
from the CPO Fixpoint Theorem I:

Lemma 3.24. μχ.Δ(χ) =
⊔

i≥0
Δi(0).

For notational convenience we will call ηΔi(0)(D) the ith iteration
of the representation of D.
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As a consequence of lemma 3.24 we will be able to use induction
to prove properties of elements in the representation of demands.
The first such proof is that of the following lemma and we will
hereafter call induction using this particular measure representa-
tional induction.

Lemma 3.25. w ∈ η(D) =⇒ ∃E : w ∈ Λp(E), i.e. expressions
in the representation are primitive.

Proof. The statement is proved by induction on triples, where the
first component is the least i for which w ∈ ηΔi(0)(D), the second
component is the number of wheres in D, written w(D), and the
third component is the demand D.
Here demands are ordered syntactically and the the triples are
ordered lexicographically with the demand in the least significant
position.

D ∈ {Bot, Fun} : by definition ∀i : ηΔi(0)(D) = Λp(D).

D ≡ c D1 . . . Dα(c) : w ∈ ηΔi(0)(D) ⇐⇒ w⇓Sc w1 . . . wα(c) ∧
∀j : wj ∈ ηΔi(0)(Dj). For the wj the first component re-
mains unchanged, the second will not grow and the third will
surely be smaller, thus (i, w(Dj),Dj) < (i, w(D),D). With
the induction hypothesis we conclude that E1, . . . , Eα(c) ex-
ist, with wj ∈ Λp(Ej) so w ∈ Λp(c E1 . . . Eα(c)).

D ≡ 〈D1, . . . , Dn〉 : For at least one of the Dj : w ∈ ηΔi(0)(Dj).
Again the third component definitely decreases and the sec-
ond does not increase. With the induction hypothesis we
conclude that Ej exists with w ∈ Λp(Ej).

D ≡ D1 ∩ · · · ∩ Dn : For every Dj : w ∈ ηΔi(0)(Dj), so the state-
ment follows from the induction hypothesis.
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D ≡ N : We have w ∈ Δi(0)(N) = ηΔi−1(0)(S), if N = S ∈
C. The first component becomes smaller and by induction
hypothesis the statement holds.

D ≡ S where T = N : If w ∈ ηΔi(0)(D), then there is a σ for
which w ∈ ηΔi(0)(σS) and σ does not substitute where-ex-
pressions. w(σS) < w(D) and the first component re-
mains unchanged. The induction hypothesis then implies
our claim.

From the above lemma we know that every expression represented
is a primitive expression since some primitive demand for it exists.
Now we establish the fact that one expression from some primitive
demand’s expressions suffices for all of its primitive expressions to
be included in a single iteration of the representation.

Lemma 3.26. Let D be a demand and let E be a primitive de-
mand, then

η(D) ∩ Λp(E) �= ∅ =⇒ ∃i : Λp(E) ⊆ ηΔi(0)(D).

Proof. The proof uses representational induction as does the
proof of lemma 3.25. In the cases that D ≡ Bot,D ≡ Fun

or D ≡ c D1 . . . Dα(c) we infer that E ≡ Bot, E ≡ Fun or
E ≡ c E1 . . . Eα(c), respectively.

Corollary 3.27. Let D be a demand and let E be a primitive de-
mand, then

Λp(E) �⊆ η(D) =⇒ η(D) ∩ Λp(E) = ∅.
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Proof.

η(D) ∩ Λp(E) �= ∅
=⇒ (lemma 3.26)

∃i : Λp(E) ⊆ ηΔi(0)(D)

=⇒

Λp(E) ⊆
⋃
i

ηΔi(0)(D) = η(D).

Intuitively, either one or all of the primitive terms in a primi-
tive demand are present in the representation of a given demand
(lemma 3.26 and corollary 3.27).
The set of expressions associated with a primitive demand is closed
with respect to ≡c.

Lemma 3.28. Let D be a demand and let s, t ∈ Λ with s ≡c t,
then

s ∈ Λp(D) ⇐⇒ t ∈ Λp(D).

Proof. We use induction on the structure of D and show one im-
plication only, the other one can be obtained by renaming.

D ≡ Bot : Lemma 2.108 implies s⇑ ∧ t⇑, so t ∈ Λp(D).

D ≡ Fun : Assume s⇓F but t � ⇓F . Lemma 2.107 implies ∀r ∈
Λ : t �≡c λx.r, but s ≡c λx.(sx). So we have s �≡c t in
contradiction to our assumption.

D ≡ c D1 . . . Dα(c) : From the induction hypothesis we obtain
si ∈ Λp(Di) ∧ si ≡c t =⇒ ti ∈ Λp(Di). With lemma 2.112
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we conclude s⇓Sc s1 . . . sα(c)∧s ≡c t =⇒ t⇓Sc t1 . . . tα(c)∧
∀i : ti ≡c si. This implies s ∈ Λp(D) ∧ s ≡c t =⇒ t ∈
Λp(D).

The same property can be shown for ηρ if we require all the sets
of Λ-expressions that ρ associates to names to be ≡c-closed.

Lemma 3.29. Let ρ : N(C) → P(Λ) where every element in the
co-domain of ρ is closed with respect to ≡c, let s, t ∈ Λ with s ≡c t

and let D be a demand.

s ∈ ηρ(D) ⇐⇒ t ∈ ηρ(D).

Proof. Use induction on lexicographically ordered pairs having
the number of where-expressions in their first component and the
demand in their second. For the second component the structural
order is assumed. The base case is provided by lemma 3.28.

Corollary 3.30. Let D be a demand and s, t ∈ Λ, s ≡c t, then
∃i : s ∈ ηΔi(0)(D) ⇐⇒ t ∈ ηΔi(0)(D).

Proof. Let s ∈ η(D) ∧ s ≡c t, then by lemma 3.25 there is a
demand E for which s ∈ Λp(E), by lemma 3.28 t ∈ Λp(E) and so
∃i : t ∈ ηΔi(0)(D) ∧ s ∈ ηΔi(0)(D) since by lemma 3.26 Λp(E) ⊆
η(D). The proof also works for the other inclusion.

Corollary 3.31. Let D be a demand and s, t ∈ Λ with s ≡c t, then

s ∈ η(D) ⇐⇒ t ∈ η(D).

Lemma 3.26 implies that either all or none of the primitive terms
of a primitive demand are included in the representation of a de-
mand. Therefore one possibility to state which Λ-expressions are
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included in the representation of a demand D is to provide primi-
tive demands with a representation included in that of D. We will
make frequent use of this possibility and hence define the following
notation.

Definition 3.32 (�i
p, primitively included). Let D be a demand,

and let Dp be a primitive demand. If Λp(Dp) ⊆ ηΔi(0)(D), then
we write Dp �i

p D which is pronounced Dp is primitively included
in iteration i of D. Accordingly we write Dp �p D for Λp(Dp) ⊆
η(D) and say Dp is primitively included in D.

Definition 3.33. C ≤η D ⇐⇒ η(C) ⊆ η(D). We write C = D,
iff C ≤η D and D ≤η C.

As for Λ-expressions we will use contexts for demand expressions.
Demand-contexts will be constructed from demands similarly to
the way Λ-contexts are constructed from Λ-expressions. The same
holds for the other definitions, e.g. depth. Whenever it seems
appropriate for ease of comprehension, we will be explicit and
speak about Λ-contexts and demand-contexts or D-contexts, in
other places we will, if the nature of the context is evident from
the textual context, in favor of readability speak only of contexts.

Lemma 3.34. The ≤η-relation on demands is a precongruence.

Proof. The proof is in three parts:

≤η is reflexive: obvious.

≤η is transitive: obvious.

C ≤η D =⇒ C[C] ≤η C[D] for arbitrary demand contexts C[·] :
For this part we use induction on the depth d of the context
C.
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d = 0 : C[·] ≡ [·] satisfies the hypothesis.

d > 0 : If the hypothesis holds for all depths d < n, then
because of the covariant definition of ηρ it also holds
for depth n.

One problem is immediately apparent: if the demand expressions
are to be extended to provide a function space constructor ∀−→,
due to its contra-variance, monotonicity of Δ is lost. We can
regain monotonicity by requiring the left operand of ∀−→ not to
contain any names. If one wishes to allow names on the left hand
side, the existence of a fixed point for a non-monotone Δ will have
to be proven. This is outside the scope of this work.

Lemma 3.35. Let T and U be patterns without common variables,
then the following holds:

η((S where T = N) where U = M)

= η((S where U = M) where T = N).

Proof.

η((S where T = N) where U = M)

=
⋃

σ∈Σ(U):Λp(σU)⊆η(M)

η(σ(S where T = N))

=
⋃

σ∈Σ(U):Λp(σU)⊆η(M)

( ⋃
ρ∈Σ(σT ):Λp(ρσT )⊆η(N)

η(ρσS)
)

=
⋃

π:∃ρ∈Σ(σT ),σ∈Σ(U)∧ρσ=π
∧Λp(πU)⊆η(M)∧Λp(πT )⊆η(N)

η(πS)

⊆: The last step can be seen as follows: ρ as well as σ can bind
variables from U or T , respectively. But then we may rewrite
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ρσ = ρ′σ′, where σ′ does not bind variables from T and ρ′

does not bind variables from U and ρ′|T = σ|T and σ′
|U = ρ|U .

Since ρ′ and σ′ appear in the unions above and ρ′σ′U =
σU = σ′U and ρ′σ′T = ρσT = ρ′T , we may perform the
last step.

⊇: Given π on the other hand and a disjoint set of variables in
T ∪U , we may write π = ρσ, such that σ does not substitute
variables from T and ρ none from U . Then ρσT ≡ ρT ≡ πT

and σT ≡ T and the statement ensues.

Notation 3.36. As a consequence we may subsequently write and
regard as equivalent:

S where T = N ;U = M and S where U = M ;T = N

if there are no common variables in T and U .

Lemma 3.37. Let c �= c′ be constructors. Then for any demands
D′

i,Di : η(c D1 . . . Dα(c)) ∩ η(c′ D′
1 . . . D′

α(c′)) = ∅.

Proof. Assume this does not hold. Then there is a t ∈ Λ with t ∈
η(c D1 . . . Dα(c)) and t ∈ η(c′ D′

1 . . . D′
α(c′)). Let i and i′ be the

least numbers of iterations satisfying t ∈ ηΔi(0)(c D1 . . . Dα(c))
and t ∈ ηΔi′ (0)(c

′ D′
1 . . . D′

α(c′)). It follows that t⇓c t1 . . . tα(c)

and t⇓c′ t′1 . . . t′α(c′). It is easily seen from the definition of →
that this is impossible.

Some simple properties of η.

Lemma 3.38. Let Ci be demands. η satisfies:

1. η(Bot) = {t|t⇑}

2. η(c C1 . . . Cα(c)) = {t|t⇓c t1 . . . tα(c) ∧ ∀i : ti ∈ η(Ci)}
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3. η(〈C1, C2〉) = η(C1) ∪ η(C2)

4. η(C1 ∩ C2) = η(C1) ∩ η(C2)

5. ∀σ ∈ Σ(T ) : σT �p N =⇒ η(σS) ⊆ η(S where T = N).

Proof.

1. η(Bot) = ηβ(Bot), but ∀ρ : ηρ(Bot) = Λp(Bot) = {t|t⇑}.

2. ⊆: If w ∈ η(c C1 . . . Cα(c)) then ∃i : w ∈
ηΔi(0)(c C1 . . . Cα(c)) = {t|t⇓c t1 . . . tα(c) ∧ ∀j :
tj ∈ ηΔi(0)(Cj)}. With lemma 3.23 it follows that
ηΔi(0)(Cj) ⊆ η(Cj) and thus w ∈ {t|t⇓c t1 . . . tα(c) ∧
∀j : tj ∈ η(Cj)}.

⊇: If w ∈ {t|t⇓c t1 . . . tα(c) ∧ ∀j : tj ∈ η(Cj)} then
w⇓c t1 . . . tα(c) ∧ ∀j∃ij : tj ∈ ηΔij (0)(Cj) and with
lemma 3.23 we obtain for i = maxj ij : ∀j : tj ∈
ηΔi(0)(Cj) implying w ∈ ηΔi(0)(c C1 . . . Cα(c)) ⊆
η(c C1 . . . Cα(c)).

3. ⊆: If w ∈ η(〈C1, C2〉) then ∃i : w ∈ ηΔi(0)(〈C1, C2〉) =
ηΔi(0)(C1) ∪ ηΔi(0)(C2) ⊆ η(C1) ∪ η(C2).

⊇: If w ∈ η(C1) ∪ η(C2) then ∃i : w ∈ ηΔi(0)(C1) ∨ ∃i : w ∈
ηΔi(0)(C2) =⇒ ∃i : w ∈ ηΔi(0)(C1) ∪ ηΔi(0)(C2) =
ηΔi(0)(〈C1, C2〉) ⊆ η(〈C1, C2〉).

4. analogous to 3

5. σT �p N ⇐⇒ Λp(σT ) ⊆ η(N). By lemma
3.26 ∃i : Λp(σT ) ⊆ ηΔi(0)(N) = Δi(0)(N). If w ∈
ηΔj(0)(σS) we choose k = max{i, j} and obtain w ∈⋃

σ∈Σ(T ):σT�k
pN ηΔk(0)(σS) ⊆ η(S where T = N).

104



3.3 Concretization

Notation 3.39. η(〈〉), and as we will later see γ(〈〉), is empty. So
we will also write ∅ for 〈〉, since it captures the intuition.

3.3 Concretization

The next definition introduces the notion of concretization, which
is central to this work. It is the club-closure of η(·).

Definition 3.40 (Concretization). The concretization of a de-
mand expression, C, is

γ(C) def=
⊔c

η(C).

Lemma 3.41. Let D be a demand and let s, t ∈ Λ with s ≡c t,
then s ∈ γ(D) ⇐⇒ t ∈ γ(D).

Primitive expressions in the concretization of a demand are al-
ready present in its representation. The concretization thus does
not add any primitive expressions but only those which cannot be
in the representation of any demand.

Theorem 3.42. Let t be a primitive expression, then t ∈ γ(D) =⇒
t ∈ η(D).

Proof. In lemma 3.72 we have shown that the set of primitive
positions, Π(t), is finite and that at none of the primitive positions
there is an expression reducing to R[x].
Now t ∈ γ(D) and thus there is an ascending chain ti ≤c ti+1 of ex-
pressions in η(D) with t ≡c

⊔c

i
ti. We use continuity of contexts

to obtain the equivalence gt,π t ≡c gt,π (
⊔c

i
ti) ≡c

⊔c

i
(gt,π ti)

for all π ∈ Π(t). Since gt,π t ≡c 1 not all gt,π ti can be
equivalent to bot and for sufficiently large i : π ∈ Π(ti), so
∃i0 : ∀i > i0 : Π(ti) = Π(t).

105

3 Demands

We consider the maximal primitive positions π of t and distinguish
these cases:

t|π⇑ : It must be that ti|π⇑ and therefore t ≤π ti.

t|π⇓F : If for all the ti with i > i0 we had ti|π⇑ then t would not

be equivalent to
⊔c

i
ti, since we could replace the manifest

position π in suitable contracti of t with bot and obtain a
t′ <c t for which t′ ≡c

⊔c

i
ti. It follows that for sufficiently

large i : ti|π⇓F and thus t ≤π ti.

tπ⇓Sc : The argument for t ≤π ti for sufficiently large i is similar
to that for t|π⇓F .

It follows that for sufficiently large i : ∀π ∈ Π(t) : t ≤π ti and
therefore t ≤c ti and t ∈ η(D).

Properties of γ

Some simple properties of this definition follow.

Lemma 3.43.

1. γ(Bot) = {t|t⇑}

2. γ(c C1 . . . Cα(c)) = {t|t⇓Sc t1 . . . tα(c)|ti ∈ γ(Ci)}

3. γ(〈C1, C2〉) = γ(C1) ∪ γ(C2)

4. γ(C1 ∩ C2) ⊆ γ(C1) ∩ γ(C2)

5. In general γ(C1 ∩ C2) �⊇ γ(C1) ∩ γ(C2)

6. ∀σ ∈ Σ(T ) : σT �p N =⇒ γ(σS) ⊆ γ(S where T = N).

Proof.
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1. By corollary 2.109 all expressions in η(Bot) are ≡c-equiva-
lent and so is their club.

2. ⊆: In ascending chains of expressions from η(c C1 . . . Cα(c))
every expression is ≡c-equivalent to an expression
starting with constructor c. This is a consequence of
lemma 2.95. Theorem 2.125 implies that we can per-
form the club operation component-wise and this yields
the statement.

⊇: This inclusion is proved just like the other.

3. ⊇: Without loss of generality t ∈ γ(C1) =
⊔c

η(C1).
From lemma 3.38 we get η(C1) ⊆ η(C1) ∪ η(C2) =
η(〈C1, C2〉). Applying the club results in

⊔c
η(C1) ⊆⊔c

η(〈C1, C2〉) = γ(〈C1, C2〉).

⊆: t ∈ γ(〈C1, C2〉) ⇐⇒ t ≡c

⊔c

i
ti∧∀i : ti ∈ η(〈C1, C2〉) =

η(C1) ∪ η(C2). Infinitely many of the chains elements
come from one of the two representations, without loss
of generality from η(C1). There is I = {i1, i2, . . . }
with |I| = ∞ ∧ ∀i ∈ I : ti ∈ η(C1). By lemma 2.121
we obtain

⊔c

i∈I
ti ≡c t and thus t ∈ γ(C1) ⊆ γ(C1) ∪

γ(C2).

4. t ∈ γ(C1 ∩ C2) ⇐⇒
⊔c

i
ti ≡c t ∧ ∀i : ti ∈ η(C1 ∩ C2) =

η(C1) ∩ η(C2). Then t ∈
⊔c

η(C1) and t ∈
⊔c

η(C2), so
t ∈ γ(C1) ∩ γ(C2).

5. Define Inf1Even
def= 〈Bot, 1 : 1 : Inf1Even〉 and Inf1Odd

def=
〈1 : Bot, 1 : 1 : Inf1Odd〉. A straightforward inductive argu-
ment shows all lists in η(Inf1Even) to have an even num-
ber of 1s and all lists in η(Inf1Odd) to have an odd num-
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ber of 1s, hence η(Inf1Even ∩ Inf1Odd) = ∅ which implies
γ(Inf1Even ∩ Inf1Odd) = ∅. But repeat 1 ∈ γ(Inf1Even)
and repeat 1 ∈ γ(Inf1Odd). A fact that can be seen e.g.
from lemma 2.121 since η(Inf1Even) as well as η(Inf1Odd)
contain infinitely many of the elements of the chain (1:)i bot

which we have shown to have club repeat 1 in proposition
3.52.

6. Due to theorem 3.42 we know Λp(σT ) ⊆ γ(N) ⇐⇒
Λp(σT ) ⊆ η(N). From lemma 3.38 we obtain η(S where

T = N) ⊇ η(σS) and by monotonicity of clubs⊔c
η(S where T = N) ⊇

⊔c
η(σS).

Lemma 3.44. The demand definitions for M and N in the fol-
lowing table have the same concretization.

M N

〈c A X, c A Y 〉 c A 〈X,Y 〉
〈A ∩ X,A ∩ Y 〉 A ∩ 〈X,Y 〉
〈c A X where T = L,

c A Y where T = L〉
c A 〈X,Y 〉 where T = L

〈〈C1, . . . , Cn〉〉 〈C1, . . . , Cn〉

Proof. Because of theorem 2.124 it suffices to show η(N) = η(M).
Recall that ηβ(N) = ηβ(M) ⇐⇒ β(N) = β(M) and β =⊔

i
Δi(0).

We show Δi(0)(N) = Δi(0)(M) for M
def= 〈c A X, c A Y 〉 and

N
def= c A 〈X,Y 〉. The other statements can be proven analo-

gously.

i = 0 : Δ0(0)(N) = {} = Δ0(0)(M)
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i > 0 :

Δi(0)(N)

= ηΔi−1(0)(c A 〈X,Y 〉)
= {t|t⇓Sc t1 t2 ∧ t1 ∈ ηΔi−1(0)(A) ∧ ηΔi−1(0)(〈X,Y 〉)}
= {t|t⇓Sc t1 t2 ∧ t1 ∈ ηΔi−1(0)(A) ∧ ηΔi−1(0)(X) ∪ ηΔi−1(0)(Y )}
= {t|t⇓Sc t1 t2 ∧ t1 ∈ ηΔi−1(0)(A) ∧ ηΔi−1(0)(X)}
∪ {t|t⇓Sc t1 t2 ∧ t1 ∈ ηΔi−1(0)(A) ∧ ηΔi−1(0)(Y )}

= ηΔi−1(0)(c A X) ∪ ηΔi−1(0)(c A Y )

= ηΔi−1(0)(〈c A X, c A Y 〉)
= Δi(0)(M)

From now on we will often assume that unions appear only at the
top level of a demand expression, if that assumption simplifies the
presentation.
We have already mentioned the intuition for demands, namely
that they represent sets of values to which a Λ-expression evalu-
ates.
It is natural to ask whether the concretization of a demand is
contained in that of another. This concept is formalized in the
definition of the ≤γ relation for demands.

Definition 3.45. Let C,D be demands.

C ≤γ D
def⇐⇒ γ(C) ⊆ γ(D).

Lemma 3.46. For demands C,D

C ≤η D ⇐⇒ C ≤γ D.

Proof.
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=⇒ : This follows from monotonicity of clubs.

⇐= : If γ(C) ⊆ γ(D) and t ∈ η(C) then t ∈ γ(D) and by theorem
3.42 we conclude t ∈ η(D).

We define a top element with respect to ≤γ for the demands and
call it Top.

Definition 3.47 (Top). Let {A1, . . . , An} = A.

Top = 〈Bot, Fun, cA1,1 Top . . . Top︸ ︷︷ ︸
α(cA1,1)

, . . . , cAn,|An| Top . . . Top︸ ︷︷ ︸
α(cAn,|An|)

〉.

Proposition 3.48. Top is a greatest element in ΛC with respect to
≤γ .

Proof. D ≤γ Top ⇐⇒ D ≤η Top according to lemma 3.46.
∀D ∈ ΛC : w ∈ η(D) =⇒ w ∈ η(Top) can then be proved by
representational induction.

We say a demand is bot-closed, if in every expression in its con-
cretization an arbitrary subexpression can be replaced by bot re-
sulting in an expression which also is in the concretization. In-
tuitively, this means that the concretization “contains bot at any
depth”.
Obviously, this property is undecidable, since e.g. Bot ≤γ D could
be reduced to it.
Later, we formulate rules for the calculi using such undecidable
properties of demands, particularly in (loopdecomp), (loopred)
and (noloop). Implementations will need to provide decidable
approximations, which, however, will not be detailed here.

Definition 3.49. Let C be a demand. C is called bot-closed, iff:

∀C[·], s : C[s] ∈ γ(C) =⇒ C[bot] ∈ γ(C).
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The demand 〈〉 is trivially bot-closed, since its concretization is
empty.
It may look as if concretizations of bot-closed demands are down-
sets, i.e. that for these concretizations, γ(D) we have ∀s ∈ Λ :
t ∈ γ(D) ∧ s ≤c t =⇒ s ∈ γ(D). This is not the case: while
concretizations being down-sets are bot-closed, the converse is
generally not true.

Lemma 3.50. Let D be a demand, then

γ(D) is a down-set =⇒ D is bot-closed.

Proof. bot ≤c s for all s and since ≤c is a precongruence
C[bot] ≤c C[s] and thus γ(D) must contain C[bot] for every C[s]
so D is bot-closed.

The following example shows that, in general, the converse impli-
cation does not hold.

Example 3.51. D
def= 〈Bot, 1〉 is bot-closed but γ(D) is not down-

closed.
λx.bot ≤c 1 according to lemma 2.112 yet λx.bot /∈ γ(D).
D is indeed bot-closed. Let C[s] be an arbitrary expression in
γ(D).

C[s]⇑ : C[bot]⇑ since ≤c is a precongruence and bot ≤c s.

C[s]⇓S1 : We iterate the following distinction along the normal-
order reduction sequence to 1.

If C[s] and C[bot] already differ at argument depth 0, C[·]
must be a reduction context and thus C[bot]⇑, so C[bot] ∈
γ(D).
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If C[s] and C[bot] are equal above argument depth n > 0,
then we can reduce the same position in C[bot] that was re-
duced in the normal-order reduction of C[s] and this position
will be the normal-order reduction redex.

It follows that: either C[bot]⇓S1 or C[bot]⇑, so C[bot] ∈
γ(D).

The definition of γ is necessary in the sense that there are terms
t in Λ for which there is a demand D such that t ∈ γ(D), but for
which there is no D such that t ∈ η(D).

Proposition 3.52. repeat 1 is not primitive.

Proof. repeat 1 ≡ θ(1 :). Consequently,

repeat 1 ≡c

⊔c

i
(1 :)i bot (3.11)

by theorem 2.133.
∀i : repeat 1 �≤c (1 :)i bot and so repeat 1 /∈ η(Inf1) for the
demand definition Inf1 = 〈Bot, 1:Inf1〉 since for all s ∈ η(Inf1)
there is an i ≥ 0 with s ≤c (1 :)i bot. The latter can easily be
proved by induction of the least number j of iterations of Δ neces-
sary for s ∈ ηΔi(0)(Inf1). But due to (3.11) repeat 1 ∈ γ(Inf1).
If repeat 1 were primitive it would have to be in η(Inf1) accord-
ing to theorem 3.42.

3.4 Expressibility of ΛC

We will show that the complexity of demands equals that of
Turing-machines. Two separate directions show demands to be
at least as complex as Turing-machines and Turing-machines to
be at least as complex as demands. The former follows from re-
duction of Turing-machines to demands where the tape alphabet
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is encoded in constructors such that one demand is primitively
included in another iff the corresponding word is accepted by the
Turing-machine. The presentation of an enumeration method for
the demands primitively included in a given demand proves the
latter direction. Primitive inclusion is appropriate, because ei-
ther all or none of the primitive terms of a primitive demand are
represented by a given demand (lemma 3.26 and corollary 3.27).
Demands and Turing-machines are equipotent. Consequently,
even simple questions are undecidable for demands, e.g. empti-
ness or inclusion.
Note that demands with linear patterns, i.e. for which every vari-
able in the pattern occurs exactly once, suffice for the reduction
of Turing-machines to demands. So there is no change in the
expressive power of demands if we restrict patterns to be linear.
The definition of Turing-machine is as in [HU79].

Definition 3.53. A Turing-machine M is defined as

M
def= (Q,Σ,Γ, δ, q0, B, F )

where

· Q is a finite set of states

· Γ is a finite set of tape symbols

· B ∈ Γ is the blank symbol

· Σ ⊆ Γ is the set of input symbols not containing the blank

· δ is the state transition function mapping Q×Γ to Q×Γ×
{L,R}

· q0 is the start state
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· F ⊆ Q is the set of final states.

A configuration of a Turing-machine M is written αqβ, where
q ∈ Q is the state of M in this configuration and αβ is the rele-
vant tape content with the head reading the next symbol to the
right of α. This will be the leftmost symbol of β or a blank
if β is empty. The relevant tape content extends right up to
the first blank symbol or up to the head position if that posi-
tion is further right. In the latter case the blank which is read
by the head is not noted in the configuration. A configuration
X1 . . . Xi−2pXi−1Y Xi+1 . . . Xn results from another configuration
X1 . . . Xi−1qXi . . . Xn by a move of M , written

X1 . . . Xi−1qXi . . . Xn �M X1 . . . Xi−2pXi−1Y Xi+1 . . . Xn

if δ(q,Xi) = (p, Y, L), and

X1 . . . Xi−1qXi . . . Xn �M X1 . . . Xi−1Y pXi+1 . . . Xn

if δ(q,Xi) = (p, Y,R), where Xi = B if i − 1 = n.
A computation of a Turing-machine M is then a sequence of con-
figurations in which successive configurations are �M -related. A
start configuration of M for some input w is a configuration in
which the head is positioned on the leftmost tape cell, the tape
contains only w starting at the left and M is in state q0. Every
configuration in which M is in a state q ∈ F is a final config-
uration. M accepts an input w if there is a computation of M

beginning in the start configuration for w and ending in a final
configuration. The language accepted by M , written L(M), is
then the set of inputs accepted by M .

Next we encode computations of Turing-machines as demands. To
represent a computation the original input, the state reached and
the relevant tape content left and right of the head suffice:
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· for every state q ∈ Q we use a 3-ary constructor cq,

· for every tape symbol g ∈ Γ we use a 1-ary constructor cg

and

· we introduce a 0-ary constructor cε to terminate sequences
of 1-ary constructors, i.e. representations of tape contents.

Using these constructors we are able to encode the tape content
by representing a symbol followed by a possibly empty string of
symbols as the application of an appropriate 1-ary constructor to
the encoding of the remaining string of symbols. The empty string
is encoded with the constructor cε.
Computations are represented by the 3-ary constructors cq for
q ∈ Q, i.e. the current state is represented by the appropriate con-
structor. The first argument represents the original input, and the
second and third argument represent the tape content produced.
The second argument encodes the string to the left of the head in
reverse, i.e. the symbol closest to the head is represented by the
outermost constructor.
This intuition is formalized in the definitions and lemmata below.
Our first step is to provide a demand representing the words over
an alphabet Σ.
In order to increase readability we leave out confusing parentheses.
In particular, we leave out the parentheses around the argument
of a 1-ary constructor encoding symbols from the tape alphabet
and only put successive applications of such constructors in paren-
theses if that is needed to delimit an argument in an application
of one of the 3-ary constructors.

Definition and Lemma 3.54. Let Σ = {s1, . . . , sn} be an alphabet.
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We define the demand

DΣ∗
def
= 〈cε, cs1 DΣ∗ , . . . , csn

DΣ∗〉

Then t �p DΣ∗ ⇐⇒ t ≡ cr1 . . . crm
cε ∧ r1 . . . rm ∈ Σ∗.

Proof.

=⇒ : From lemma 3.24 and lemma 3.26 we obtain ∃i : Dp �i
p

DΣ∗ . Without loss of generality let i be the least number
of iterations for which this holds. If i = 1 then t �0

p cε

and so t ≡ cε. If i > 1 then Λp(t) ⊆ ηΔi−1(0)(cr1 DΣ∗) =
{t|t⇓cr1 t′ ∧ t′ ∈ ηΔi−1(0)(DΣ∗)}. With the induction hy-
pothesis we conclude the statement.

⇐= : It is easily seen, also by induction, that t ≡ cr1 . . . crm
cε ∧

r1 . . . rm ∈ Σ∗ =⇒ t �m+1
p DΣ∗ .

We define a demand Dq0 encoding the start configurations of M ,
i.e. we define a demand primitively including the encoding of the
start configuration of the Turing-machine M for some input word.

Definition and Lemma 3.55. Let M = (Q,Σ,Γ, δ, q0, B, F ) be a
Turing-machine. We define

Dq0

def
= cq0 x cε x where x = DΣ∗ .

Then cq0 (cr1 . . . crn
cε) cε (cs1 . . . csm

cε) �p Dq0 ⇐⇒
r1 . . . rn = s1 . . . sm ∈ Σ∗.

Proof.

⇐= : If r1 . . . rn = s1 . . . sm ∈ Σ∗, then we know from the
proof of lemma 3.54, that there is a least i ≥ 1 for which
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Λp(cr1 . . . crn
cε) ⊆ ηΔi(0)(DΣ∗) = Δi(0)(DΣ∗). It follows

that

Λp(cq0 (cr1 . . . crn
cε) cε (cs1 . . . csm

cε))

⊆ηΔi(0)(cq0 (cr1 . . . crn
cε) cε (cs1 . . . csm

cε))

⊆
⋃

σ∈Σ(x):σx�i
pDΣ∗

ηΔi(0)(σ(cq0 x cε x))

=ηΔi(0)(cq0 x cε x where x = DΣ∗)

=ηΔi+1(0)(Dq0)

⇐⇒ cq0 (cr1 . . . crn
cε) cε (cs1 . . . csm

cε) �i+1
p Dq0

¬ ⇐= ¬ : If r1 . . . rn �= s1 . . . sm, then n �= m or ∃i : ri �= si.
In both cases we can find a position at which cr1 . . . crn

cε

and cs1 . . . csm
cε differ. For m < n this is e.g. crm+1 �= cε.

From lemma 3.37 we see with induction that there cannot
be a primitive demand C for which cr1 . . . crn

cε ∈ η(C) as
well as cs1 . . . csm

cε ∈ η(C). This implies for all i:

ηΔi(0)(cq0 (cr1 . . . crn
cε) cε (cs1 . . . csm

cε))

∩
⋃

σ∈Σ(x):σx�i
pDΣ∗

ηΔi(0)(σ(cq0 x cε x)) = ∅

But since by definition 3.18 ∀ρ :
Λp(cq0 (cr1 . . . crn

cε) cε (cs1 . . . csm
cε)) ⊆

ηρ(cq0 (cr1 . . . crn
cε) cε (cs1 . . . csm

cε)) our claim
must hold.

We proceed to define the demand D�M
, the demand containing

exactly the normal forms encoding computations of M .
The parameterized demands D�M

(δ(q, s) = (p, g, L)) and
D�M

(δ(q, s) = (p, g,R)) (cf. definition 3.56) are defined using mu-
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tual recursion via D�M
to produce expressions expanding the en-

coding of a computation by applying the move δ(q, s) = (p, g, L)
or δ(q, s) = (p, g,R), respectively.
As an example, consider the definition of D�M

(δ(q, s) = (p, g, L))
in definition 3.56. There the pattern is used to match exactly the
encodings representing computations starting with some input x

and leading to a state q with the symbol s under M ’s head. We
use the different demands for the constructors cr1 , . . . , crn

moving
a particular constructor from the front of the second argument to
the front of the third argument to represent M ’s head movement
to the left.

Definition 3.56. Let M = (Q,Σ,Γ, δ, q0, B, F ), Γ =
{B, r1, . . . , rn} and let δ be defined by δ(q1, s1) =
(p1, g1,M1), . . . , δ(qm, sm) = (pm, gm,Mm) where the Mi

are head movements from {L,R}.

D�M
(δ(q, s) = (p, g, L))

def= 〈cp x y (cr1 cg z) where cq x (cr1 y) (cs z) = D�M
,

. . . , cp x y (crn
cg z) where cq x (crn

y) (cs z) = D�M
〉

D�M
(δ(q, s) = (p, g,R))

def= 〈cp x (cg y) z where cq x y (cs z) = D�M
,

cp x (cg y) (cB cε) where cq x y (cs cε) = D�M
〉

We can use this to define

D�M

def= 〈Dq0 ,D�M
(δ(q1, s1) = (p1, g1,M1)),

. . . , D�M
(δ(qm, sm) = (pm, gm,Mm))〉.
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The following lemma states that D�M
does indeed encode the

computations of M . More precisely, it states that M reaches a
state where the head is within the relevant tape content iff an
appropriate encoding with the relevant tape content to the right
of the head is represented by D�M

, and that M reaches a state in
which the head is to the right of the relevant tape content iff an
appropriate encoding with a single blank to the right of the head
is represented by D�M

.

Lemma 3.57. Let x = x1 . . . xn, y = y1 . . . ym.

cp (cx1 . . . cxn
cε) (cyi−1 cyi−2 . . . cy1 cε) (cyi

. . . cym
cε)

∈ η(D�M
)

⇐⇒ q0x �∗
M y1 . . . yi−1pyi . . . ym ∧ m ≥ i

and

cp (cx1 . . . cxn
cε) (cym

cym−1 . . . cy1 cε) (cB cε) ∈ η(D�M
)

⇐⇒ q0x �∗
M y1 . . . ymp

Proof. The proof is by induction on the length of M ’s com-
putation. Lemma 3.55 contributes the base case. If q0x �∗

M

y1 . . . yi−1pyi . . . ym, m ≥ i − 1 is a computation of length n > 0,
then there are different possibilities for the last move in this com-
putation.

1. The head is positioned to the right of the relevant tape con-
tent in the configuration before the last move. This move is
either

a) a move to the left, y1 . . . yip
′ �M y1 . . . yi−1pyi . . . ym

where m = i − 1 if y − i = B and a B is written, or
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b) a move to the right, y1 . . . yi−2p
′ �M y1 . . . yi−1p.

From the induction hypothesis we obtain for the first case

q0x �∗
M y1 . . . yi−1p

′

⇐⇒ cp′ (cx1 . . . cxn
cε) (cyi

. . . cy1 cε) cε ∈ η(D�M
)

⇐⇒ ∃j : cp′ (cx1 . . . cxn
cε) (cyi

. . . cy1 cε) cε

∈ ηΔj(0)(D�M
)

and for the second

q0x �∗
M y1 . . . yi−2p

′

⇐⇒ cp′ (cx1 . . . cxn
cε) (cyi−2 . . . cy1 cε) (cB cε)

∈ η(D�M
)

⇐⇒ ∃j : cp′ (cx1 . . . cxn
cε) (cyi−2 . . . cy1 cε) (cB cε)

∈ ηΔj(0)(D�M
) (3.12)

In the latter case δ(p′, B) = (q, yi−1, R) must hold.
With the substitution σ = {x �→ cx1 . . . cxn

cε, y �→
cyi−2 . . . cy1 cε} and a j satisfying (3.12) we find
that σ(cp′ x y (cB cε)) �j

p D�M
and by defi-

nition of D�M
(δ(p′, B) = (p, yi−1, R)) we see that

σ(cp x (cyi−1 y) (cB cε)) ∈ ηΔj+1(0)(D�M
(δ(p′, B) =

(p, yi−1, R))) ⊆ ηΔj+2(0)(D�M
).

Conversely, if σ(cp x (cyi−1 y) (cB c)) ∈
ηΔj+1(0)(D�M

(δ(p′, B) = (p, yi−1, R))) ⊆ ηΔj+2(0)(D�M
)

with σ(cp′ x y (cB cε)) �j
p D�M

then this implies
y1 . . . yi−2p

′ �M y1 . . . yi−1p.

The argument for the first case proceeds along the same
lines.
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2. The head’s position before the last move is at least one sym-
bol to the left of the end of the relevant tape content. Again,
the move is either

a) a move to the left, y1 . . . yip
′syi+2 . . . ym �M

y1 . . . yi−1pyi . . . ym, or

b) a move to the right, y1 . . . yi−2p
′syi . . . ym �M

y1 . . . yi−1pyi . . . ym.

Here also do we employ the induction hypothesis to obtain

q0x �∗
M y1 . . . yip

′syi+2 . . . ym

⇐⇒ cp′ (cx1 . . . cxn
cε) (cyi

. . . cy1 cε)

(cs cyi+2 . . . cym
cε) ∈ η(D�M

)

⇐⇒ ∃j : cp′ (cx1 . . . cxn
cε) (cyi

. . . cy1 cε)

(cs cyi+2 . . . cym
cε) ∈ ηΔj(0)(D�M

)

and appropriately

q0x �∗
M y1 . . . yi−2p

′syi . . . ym

⇐⇒ cp′ (cx1 . . . cxn
cε) (cyi−2 . . . cy1 cε)

(cs cyi
. . . cym

cε) ∈ η(D�M
)

⇐⇒ ∃j : cp′ (cx1 . . . cxn
cε) (cyi−2 . . . cy1 cε)

(cs cyi
. . . cym

cε) ∈ ηΔj(0)(D�M
)

in both cases the rest of the proof proceeds as for the two
implications for the last move in 1.

Thus we have a demand D�M
for which the primitively included

demands encode exactly the computations of a Turing-machine
M . Accordingly, the next step in our presentation will be to con-
struct a demand for L(M), which is achieved by “cutting out” the
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input component from expressions encoding accepting computa-
tions.

Definition 3.58. Let M be a Turing-machine with accepting states
F = {q1, . . . , qn}. We define the demand

AM
def= 〈x where cq1 x y z = D�M

, . . . , x where cqn
x y z = D�M

〉.

Theorem 3.59. Let x = x1 . . . xm, M be a Turing-machine with
M = (Q,Σ,Γ, δ, q0, B, F ), then cx1 . . . cxm

cε �p AM ⇐⇒
q0x �∗

M αpβ and p ∈ F .

Proof. The proof is similar to the proofs of lemma 3.57, lemma
3.55 and lemma 3.54.

With the reduction of Turing-machines to demands we have shown
that representations of demands can express at least as much
structure as computations of Turing-machines. Now we want to
show that their expressibility is indeed equivalent. This is done
by presenting a method for enumerating the demands primitively
included in an arbitrary demand. To this end we define a map-
ping, ξ(·), similar to η(·) (cf. definition 3.21), but yielding a set of
primitive demands instead of the primitive sets, which η(·) yields.
Essentially, this amounts to replacing the base cases of the recur-
sive definition 3.18.

Definition 3.60. Let ρ : N(C) → P(ΛC) and let P be the set of
patterns. We define ξρ : ΛC �→ P(ΛC) as

ξρ(Bot)
def= {Bot}

ξρ(Fun)
def= {Fun}

ξρ(c C1 . . . Cα(c))
def= {c t1 . . . tα(c)|ti ∈ ξρ(Ci)}
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ξρ(〈C1, . . . , Cn〉) def=
⋃
i

ξρ(Ci)

ξρ(C1 ∩ · · · ∩ Cn) def=
⋂
i

ξρ(Ci)

ξρ(N) def= ρ(N), if N ∈ N(C)

ξρ(S where T = N) def=
⋃

σ∈Σ(T ):σT∈ρ(N)

ξρ(σS).

The improvement of an approximation is obtained just as for ηρ.

Definition 3.61. Δ′(ρ) def= ρ′, where ρ′(N) = ξρ(D) if N = D ∈ C.

The proof of the prerequisites for applying the theorem of Knaster
and Tarski works just as for Δ, so that we can define ξ(C) with
the least fixpoint of Δ′.

Definition 3.62. For C ∈ ΛC : ξ(C) def= ξβ(C) where β =
μx.Δ′(x).

It is equally straightforward to see that the requirements for ap-
plying the CPO Fixpoint Theorem I [DP90] are met which proves
the

Lemma 3.63. μx.Δ′(x) =
⋃

i≥0 Δ′i(0).

Now we can formulate the desired relation between η and ξ.

Proposition 3.64. Let Dp be a primitive demand and let D be a
demand, then

Dp �i
p D ⇐⇒ Dp ∈ ξΔ′i(0)(D).

Proof. Both implications are proved separately and we use induc-
tion on lexicographically ordered triples where the first component
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is the least number of iterations for which the requirement holds,
the second is the number of wheres in the demand D and the third
is D itself. For the third component we use the structural order.

base case (0, 0,D) where D ≡ Bot, D ≡ Fun or D ≡ c for a 0-ary
constructor c. In these cases Dp ≡ D.

step Let (i, w,D) be the measure for the demand D and assume
for all smaller (j, v, E) we know Dp �j

p D =⇒ Dp ∈
ξΔ′j(0)(E). The following cases may occur.

D ≡ c D1 . . . Dα(c) : Everyone of the triples (i, wj ,Dj) for
1 ≤ j ≤ α(c) is smaller than (i, w,D). Dp �i

p D

implies Dp ≡ c Dp
1 . . . Dp

α(c) and ∀j : Dp
j �i

p Dj .
With the induction hypothesis we obtain ∀j : Dp

j ∈
ξΔ′i(0)(Dj) which in turn implies Dp ∈ ξΔ′i(0)(D).

D ≡ 〈D1, . . . , Dn〉 : Similar to D ≡ c D1 . . . Dα(c).

D ≡ D1 ∩ · · · ∩ Dn : Similar to D ≡ c D1 . . . Dα(c).

D ≡ N : ηΔi(0)(N) = Δi(0)(N) = ηΔi−1(0)(E) if N = E ∈
C and accordingly for ξΔ′i(0). Since (i − 1, v, E) <

(i, w,D) the induction hypothesis yields Dp �i−1
p

E =⇒ Dp ∈ ξΔi−1(0)(E) and thus Dp �i
p D =⇒

Dp ∈ ξΔi(0)(D).

D ≡ S where T = N : ηΔi(0)(S where T = N) =⋃
σ∈Σ(T ):σT�i

pN ηΔi(0)(σS) and due to lemma 3.26

there is a σ ∈ Σ(T ) : σT �i
p N ∧ Dp �i

p σS. We can
employ the induction hypothesis since (i, w − 1, σS) <

(i, w,D). Additionally, Δi(0)(N) = ηΔi−1(0)(E) if
N = E ∈ C and thus σT �i

p N ⇐⇒ σT �i−1
p E and

again we can apply the induction hypothesis. We ob-
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tain for some σ : σT ∈ ξΔ′i−1(0)(E) ∧ Dp ∈ ξΔ′i(0)(σS)
and thus Dp ∈

⋃
σ∈Σ(T ):σT∈Δ′i(0)(N) ξΔ′i(0)(σS).

The remaining implication is proved analogously.

The same induction proves the

Lemma 3.65. Let D ∈ ΛC , then ξΔ′i(0)(D) is finite for every i.

The procedure for enumerating all of the demands primitively
included in a given demand D then amounts to enumerating the
finitely many primitive demands for each of the iterations of Δ′,
i.e. ξΔ′i(0)(D), in order of increasing i.
Emphasizing the result of this section, we state the

Theorem 3.66. Demands and Turing-machines have the same ex-
pressibility.

A consequence of the equivalence of Turing-machines and de-
mands is that there cannot be a procedure to compute a demand
representing the complement of a given demand. If there would be
such a procedure we could decide the halting problem by encoding
a Turing-machine’s accepted language as a demand, complement-
ing and enumerating the encoding demand as well as its comple-
ment. Other undecidable properties are accordingly transferred
to demands.

Theorem 3.67. Undecidable properties are:
membership w �p D

consistency C �= ∅
inclusion C ≤γ D.
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3.5 Closure of club

We will now show that club is a closure operator. One motivation
to do this is that γ is defined with an application of the club
operator and that we want to conclude e.g. from C[η(D)] ⊆ γ(E)
that C[γ(D)] ⊆ γ(E).
Thus we will not need closure of the club operator for arbitrary
sets and we will show this property only for particular sets, the
primitive sets. The representation of demands as well as their
concretization are primitive sets.
It is possible that club-closure could be proved for more general
sets, i.e. sets which are not primitive sets. In the proofs below
we do make use of the properties of primitive sets, in such a way
that a proof of the club-closure of non-primitive sets would need
a different proof method.
Subsequently, we will construct from a so called double chain
sij (cf. definition 3.76) with

⊔c

i

⊔c

j
sij ≡c t a chain si with⊔c

i
si ≡c t. The construction proceeds by choosing appropri-

ate chain elements from the sij and, in case of sub-terms with
FWHNFs, replacing sub-terms of the sij with appropriate sub-
terms of t. Diagonalization alone is not sufficient in our setting,
instead it is necessary to replace the sub-terms with FWHNFs.
The reason for this will shortly become clear. The diagram of
figure 3.2 illustrates the construction.
Here the mapping from e.g. s11 �→ s1 represents the possible re-
placement of a sub-term with FWHNF. Intuitively, the edges from
si to si+1 indicate that si+1 is greater than si at all positions where
si differs from t. We will now formally introduce the notions “po-
sition”, “greater”, etc.
Our objective to show that club is a closure operator needs no
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t1 t2 t3 t4 . . .

⊔c

�� t

...

⊔c
��

...

⊔c
��

...

⊔c
��

...

⊔c
��

s14 s24 s34 �→ s3

������������
s44

s13 s23 �→ s2

����������
s33 s43

s12 s22 s32 s42

s11 �→ s1

�����������������
s21 s31 s41

Figure 3.2: Construction of a chain from a double chain

proof if t or all the ti are primitive. Non-primitive expressions t

will reduce to an expression with unbounded constructor nesting.

Definition 3.68 (primitive position). Let s be a Λ-expression.
The primitive positions of s, Π(s), are defined as the set satisfying

1. the empty word, λ, is a primitive position of s, and

2. if s⇓Sc s1 . . . sα(c), ı ∈ {1, . . . , α(c)} and π is a primitive
position of sı, then c · ı · π is a primitive position of s.
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For a primitive position π of s we define

s|π
def= s, if π = λ and

s|π
def= sı|ρ, if s⇓Sc s1 . . . sα(c) and π = c · ı · ρ

Analogously, we define

s[π �→ t] def= t, if π = λ and

s[π �→ t] def= s|ı[ρ �→ t], if s⇓Sc s1 . . . sα(c) and π = c · ı · ρ

A primitive position π of s is called maximal primitive position of
s, iff the only primitive position of s|π is λ.

The notion of primitive position should not be confused with that
of position, apart from the constructor label the primitive position
refers to a position in the SCWHNF that expression reduces to
whereas a position of an expression only refers to the syntax of
an expression and does not involve any reduction. If we want to
emphasize the difference between positions and primitive positions
we use the term manifest position for the former.

Remark 3.69. Any primitive position can be regarded as a posi-
tion in a sufficiently reduced expression by ignoring the construc-
tors in it.

With definition 3.68 we can characterize the primitive expressions
as those having finitely many primitive positions. As a tool used
in this characterization we introduce a partial order on sets of
primitive positions on which we can base inductions, if these sets
are finite.

Definition 3.70. Let Ψ and Π be possibly infinite sets of primitive
positions of some Λ-expressions s and t, respectively. Ψ ≤ Π iff
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there is a primitive position π, such that π · Ψ ⊆ Π. As usual we
write Ψ < Π if Ψ ≤ Π, but Ψ �≡ Π.

Lemma 3.71. ≤ on sets of primitive positions is a partial order.

Proof. Obviously, Ψ ≤ Ψ, Ψ ≤ Π ∧ Π ≤ Ψ ⇐⇒ Ψ = Π and
Ψ ≤ Π ∧ Π ≤ Φ =⇒ Ψ ≤ Φ.

Lemma 3.72. An expression s ∈ Λ is primitive iff Π(s) is finite
and ∀π ∈ Π(s) : s|π � ∗→ R[x].

Proof.

⇐= : We use induction on Π(s) with the partial order from def-
inition 3.70.

Π(s) = {λ} : One of s⇑ or s⇓F must hold. In the first case
s ∈ η(Bot), in the second s ∈ η(Fun).

Π(s) ⊃ {λ} : s⇓Sc s1 . . . sα(c) must hold. Then c ·ı·Π(sı) ⊆
Π(s) and thus Π(sı) < Π(s). From the induction hy-
pothesis we conclude that the constructor arguments
are primitive and thus s is primitive.

=⇒ : If s is primitive then there is a demand D with s ∈ Λp(D).
D has finite depth and consists of constructors, Bot and Fun.
It is easily seen that s can only have finitely many primitive
positions.

Corollary 3.73. A closed expression s ∈ Λ is primitive iff Π(s) is
finite.

Corollary 3.74. A closed expression s ∈ Λ is non-primitive iff s

has arbitrarily long primitive positions.
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The sets for which we will show that the club operation does not
add anything to their club will have to satisfy some conditions:
they will need to be primitive sets.

Definition 3.75 (primitive set). Let A ⊆ Λ. A is called primitive
set, iff A is the union of the ≡c-equivalence classes of some closed
primitive expressions s ∈ Λp, and A satisfies ∀s ∈ A ∩ Λp, π ∈
Π(s) : s|π⇓F =⇒ (∀t ∈ Λ : t⇓F =⇒ s[π �→ t] ∈ A).

Thus the primitive sets must be closed with respect to ≡c and
with respect to replacing subexpressions having an FWHNF with
other FWHNFs.
Obviously, speaking of subexpression is a slight abuse of definition,
but since the ≡c-equivalence classes are closed with respect to → it
suffices to speak about subexpressions and have other appropriate
expressions included into the primitive set by the ≡c-closure.

Definition 3.76 (double chain). sij ∈ Λ, i, j ∈ N0 is called a
double chain for t, iff

(∀i, j : sij ≤c sij+1)

∧(∀i∃ti ∈ Λ :
⊔c

j
sij ≡c ti)

∧(∀i : ti ≤c ti+1) ∧
⊔c

i
ti ≡c t.

Our aim is to construct an ascending chain si from the double
chain with the same club, t, by choosing appropriate elements
among the sij and substituting some subexpressions of these ex-
pressions. For this choice it is not sufficient to ensure that the si

are contextually ordered. Intuitively, the reason for this insuffi-
ciency is that, although contextually ordered, the si may “grow
in one dimension only” whereas the sij could “grow in more than
one dimension”. The following example will illustrate this.
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3.5 Closure of club

Example 3.77. t ≡c repeat (repeat 1), ti ≡c

repeat ((1 :)i bot) and sij ≡c (((1 :)i bot) :)j bot.

We define sk def= skn, for some n, and satisfy si <c si+1, but⊔c

i
si ≡c ((repeat 1) :)n bot �≡c t. Intuitively, the sij grow

along two “dimensions”, but sk grows only along one (see figure
3.3).

: ��

��

:

��

�� : ��

��

bot

1 :		

��

1 :		

��

1 :		

��
1 :		

��

1 :		

��

1 :		

��
1 :		

��

1 :		

��

1 :		

��
bot bot bot

︷ ︸︸ ︷j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
i

Figure 3.3: Double chain for repeat (repeat 1)

This diagram represents the elements of the double chain sij . The
root of the graph is in the upper left corner. Every node labeled :

represents an application of the :-constructor. The two arguments
of this constructor are connected to such a node by outgoing edges
counterclockwise from left to right.

We see that the strict contextual order is not a sufficient criterion
for the chosen chain to have the intended club. Instead we need
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to ensure that progress is made along all the dimensions along
which the sij grow, and we form the notion of “point-wise” con-
textual order and the related notion of differing positions. Our
need to ensure growth along all dimensions is also the reason for
replacing subexpressions having an FWHNF with the appropriate
subexpression of t. Otherwise we would need entirely different def-
initions for primitive positions, ≤π etc. to state that applications
of these FWHNFs would grow along all of their “dimensions”.
Later we will see that if our chain si grows along all the differing
positions then it does indeed have the intended club.

Definition 3.78 (≤π). Let s, t be Λ-expressions and π ∈ Π(s).
s ≤π t iff

π ∈ Π(t) (3.13)

and s|π ≤c t|π. (3.14)

Definition 3.79 (differing position). Let s, t be Λ-expressions,
s ≤c t and let π ∈ Π(s). π is a differing position of s and t, iff
s <π t.

Differing positions need not be maximal primitive positions, so
prefixes of differing positions will be differing positions and differ-
ing positions may also be prefixes of primitive positions that are
not differing.
For every Λ-expression s and every primitive position we define
the function fs,π, such that the application of fs,π to s selects the
subexpression of s at the primitive position π. If the argument of
fs,π does not have the primitive position π, then the application
has no WHNF. Furthermore fs,π s ≤c fs,π t iff s ≤π t provided
π ∈ Π(t). (The identity of the subscript s and the argument s on
the left of ≤c intended.)
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Definition 3.80 (fs,π). Let s be a Λ-expression.

fs,λ
def=λx.x

fs,cA,k·ı·π
def=λx.fsı,π (case x

k−1︷ ︸︸ ︷
bot . . . bot (λx1 . . . xm.xı)

bot . . . bot︸ ︷︷ ︸
k−1

), if s⇓ScA,k s1 . . . sm.

In lemma 3.81 we prove that fs,π is strict. This will
make inductive arguments easier, since it will allow to fo-
cus on the result of fsı,π’s argument in applications such as
fsı,π (caseA t bot . . . bot︸ ︷︷ ︸

k−1

(λx1 . . . xm.xı) bot . . . bot).

Lemma 3.81. Let s be a Λ-expression and π ∈ Π(s). Then fs,π

is strict.

Proof. We use induction on π.

π = λ : From t⇑ we see that fs,λ t⇑, since fs,λ t = (λx.x) t →no t.

π = cA,k · ı · ρ : fs,cA,k·ı·ρ t
∗→no

fsı,ρ(caseA t bot . . . bot︸ ︷︷ ︸
k−1

(λ
x.xı) bot . . . bot) and by

induction hypothesis fsı,ρ is strict. Since case is strict in
its first argument t⇑ =⇒ fs,π t⇑ and fs,π is strict.

Lemma 3.82. Let s, t be Λ-expressions and let π be a primitive
position of s.

1. If t has the primitive position π, then fs,π t
∗→no t|π.

2. If t does not have the primitive position π, then fs,π t has
no WHNF
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Proof. We show both statements by induction on the primitive
position π.

1.

π = λ : fs,λ t = (λx.x) t →no t and t = t|λ.

π = cA,k · ı · ρ : fs,π s
∗→no

fsı,ρ (caseA t bot . . . bot︸ ︷︷ ︸
k−1

(λ
x.xı) bot . . . bot). Since

t has the primitive position π, t⇓ScA,k t1 . . . tα(cA,k).
Because fsı,ρ is strict, the argument will defi-
nitely be evaluated in an evaluation to WHNF and
caseA t bot . . . bot︸ ︷︷ ︸

k−1

(λx1 . . . xm.xı) bot . . . bot
∗→no tı.

The induction hypothesis implies that fsı,ρ tı reduces
to tı|ρ. Then fs,π t reduces to t|π.

2.

π = λ : Since every expression t has the primitive position
λ, the statement holds.

π = cA,k · ı · ρ : fs,π t →no

fsı,ρ (caseA t bot . . . bot︸ ︷︷ ︸
k−1

(λ
x.xı) bot . . . bot). t

does not have the primitive position cA,k · ı · ρ, if
t does not have the primitive position cA,k · ı or t

has a subexpression t′ at primitive position cA,k · ı,
but ρ is not a primitive position in t′. In the first
case t �⇓ScA,k t1 . . . tm. So t⇑, t⇓F , t

∗→ R[x] or
t⇓ScB,j t′1 . . . t′m′ with A �= B or i �= j. In all these
cases it is easily seen that

(caseA t bot . . . bot︸ ︷︷ ︸
k−1

(λx1 . . . xm.xı) bot . . . bot)⇑
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and thus

fsı,ρ (caseA t bot . . . bot︸ ︷︷ ︸
k−1

(λx1 . . . xm.xı) bot . . . bot)⇑

or that

caseA R[x] bot . . . bot︸ ︷︷ ︸
k−1

(λx1 . . . xm.xı) bot . . . bot �→no

and thus

fsı,ρ (. . . )�⇓.

In the second case we also deduce from the induction
hypothesis that fsı,ρ t′⇑.

Lemma 3.83. Let s, t be Λ-expressions.

s ≤c t =⇒ Π(s) ⊆ Π(t).

Proof. Assume this is false. Then there are s, t satisfying

s ≤c t ∧ ∃π ∈ Π(s) : π /∈ Π(t) (3.15)

π = λ obviously cannot satisfy (3.15). Assuming π to be the
smallest primitive position satisfying (3.15) now implies π = c ·ı·ρ
and s⇓Sc s1 . . . sm. From lemma 2.112 we obtain t⇓Sc t1 . . . tm
and lemma 2.95 implies ∀1 ≤ ı ≤ α(c) : sı ≤c tı. With the
induction hypothesis we obtain the statement.

Lemma 3.84. Let s, t be Λ-expressions and π1 · π2 be a primitive
position of s with s|π1·π2 �≡c bot. Then fs,π1 s ≤π2 fs,π1 t iff
s ≤π1·π2 t.

Proof. We use induction on π1.
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π1 = λ :

fs,π1 s ≤π2 fs,π1 t

⇐⇒ (fs,π1 s = (λx.x) s →no s and fs,π1 t →no t)

s ≤π2 t

⇐⇒ (π1 · π2 = π2)

s ≤π1·π2 t

π1 = cA,k · ı · ρ :

fs,π1 s ≤π2 fs,π1 t

⇐⇒ (definition 3.80 + ∗→no)

fsı,ρ (caseA s bot . . . bot︸ ︷︷ ︸
k−1

(λx1 . . . xm.xı) 
bot)

≤π2 fsı,ρ (caseA t . . .)

⇐⇒ (s⇓ScA,k s1 . . . sα(cA,k) and t⇓ScA,k t1 . . . tα(cA,k)

since π1 · π2 ∈ Π(s) ∧ s|π1·π2 �≡c bot+
∗→no)

fsı,ρ sı ≤π2 fsı,ρ tı

⇐⇒ (induction hypothesis)

sı ≤ρ·π2 tı

⇐⇒ (induction hypothesis)

s ≤cA,k·ı·ρ·π2 t

⇐⇒
s ≤π1·π2 t

Corollary 3.85. Let s, t be Λ-expressions and π ∈ Π(s) ∩ Π(t).
Then

fs,π s ≤c fs,π t ⇐⇒ s ≤π t.
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Proof.

fs,π s ≤c fs,π t

⇐⇒ (every expression has the primitive position λ,

λ has no proper prefix)

fs,π s ≤λ fs,π t

⇐⇒ (lemma 3.84)

s ≤π·λ t

⇐⇒
s ≤π t.

The following lemma proves the ≤π relation to be a refinement
of the ≤c relation. This will later be quite useful in contradiction
proofs, since assuming s �≤c t allows us to focus on a primitive
position π for which s ≤π t

Lemma 3.86. Let s, t be Λ-expressions.

s ≤c t ⇐⇒ ∀π ∈ Π(s) : s ≤π t.

Proof.

=⇒ : With lemma 3.83 we obtain Π(s) ⊆ Π(t), satisfying (3.13).

Assume s ≤c t and ∃π ∈ Π(s) : s|π �≤c t|π. Then there

is a context C[·] with C[s|π]⇓, but C[t|π]�⇓. With D[·] def=
fs,π [·] we obtain C[D[s]]⇓ and C[D[t]]�⇓ which implies s �≤c t

contradicting the assumption, so (3.14) will hold.

⇐= : ∀π ∈ Π(s) : s ≤π t =⇒ s ≤λ t =⇒ s ≤c t.

Corollary 3.87. Let s, t be Λ-expressions.

(∃Ψ ⊆ Π(s)∀ρ ∈ Ψ : s ≡ρ t∧∀π ∈ Π(s)\Ψ : s <π t) ⇐⇒ s ≤c t.
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In other words the primitive positions of contextually ordered ex-
pressions can be partitioned into those being ≡c-equivalent and
those being different but related.
We cannot use the function fs,π as a context to distinguish be-
tween an expression not having the primitive position π and one
which has the the primitive position, but in that position has a di-
vergent expression. We define a function gs,π, which will converge
when applied to an expression t if π ∈ Π(t) and which will diverge
otherwise. For obvious reasons this definition is very similar to
that of fs,π.

Definition 3.88. Let s be a Λ-expression.

gs,λ
def= K 1 (3.16)

gs,cA,k·ı·π
def=λx.gsı,π (case x

k−1︷ ︸︸ ︷
bot . . . bot (λx1 . . . xm.xı)

bot . . . bot︸ ︷︷ ︸
k−1

), if s⇓ScA,k s1 . . . sm.

(3.17)

Lemma 3.89. Let s ∈ Λ, π ∈ Π(s), then

(gs,π t)⇓ ⇐⇒ π ∈ Π(t).

Proof. Analogous to the proof of lemma 3.82.

Definition 3.90 (ŝ, primitive head). Let s be a Λ-expression. c

is the primitive head of s, ŝ
def= c, iff s⇓Sc . . . , otherwise s has no

primitive head.

Lemma 3.91. Let si be an ascending chain satisfying
⊔c

i
si ≡c s

and let π be a primitive position of s.

1.
⊔c

i
fs,π si ≡c fs,π s ≡c s|π
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2. There is an index i0, such that for all indices i > i0 : π ∈
Π(si) and either f̂s,π s ≡ f̂s,π si or fs,π s and fs,π si have
no primitive head.

Proof.

1. The statement follows from the continuity of contexts and
from lemma 3.82

2. Using continuity of contexts we see
⊔c

i
gs,π si ≡c gs,π s.

Lemma 3.89 yields (gs,π s)⇓, we may conclude that ∃i′0 :
∀i > i′0 : (gs,π si)⇓. Applying lemma 3.89 in the other
direction we get ∀j > i′0 : π ∈ Π(sj).

If fs,π s ≡c bot, then ∀j > i′0 : fs,π sj ≡c bot and neither
fs,π s nor fs,π sj have a primitive head.

If (fs,π s)⇓F , then due to lemma 3.91 (1) and lemma 2.112
we obtain ∃i0 : ∀j > i0 : (fs,π sj)⇓F . Thus neither fs,π s

nor fs,π sj have a primitive head.

Analogously for fs,π s
∗→no R[x].

If (fs,π s)⇓Sc . . . then due to lemma 3.91 (1) and
lemma 2.112 we obtain ∃i0 : ∀j > i′0 : (fs,π sj)⇓Sc . . . .
Thus f̂s,π s ≡ f̂s,π sj .

Informally, the following technical lemma states that between a
primitive and a non-primitive expression, ≤c-related, we can fit
a double chain approximating the latter. This double chain is
strictly above the primitive expression wherever that is possible,
i.e. where the primitive and the non-primitive expression differ
and ≡c-equivalent elsewhere.

Lemma 3.92. Let A be a primitive set (cf. definition 3.75), let
sij ∈ A be a double chain for t,

⊔c

j
sij ≡c ti,

⊔c

i
ti ≡c t, let t be
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non-primitive, let s be a primitive Λ-expression with s ≤c t and
let Ψ be the set of differing positions of s and t, then

· s <c t,

· there is a double chain s′ij ∈ A for t, ∀π ∈ Ψ : s <π s′ij and

· ∀π ∈ Π(s) \ Ψ : s ≡π s′ij.

Proof. Since t is non-primitive, we must have s �≡c t. From
lemma 3.86 we know ∀π ∈ Π(s) : s ≤π t.
Since ∀π ∈ Π(s) : π is a primitive position in t, we apply
lemma 3.91 to conceive that all but finitely many of the ti have
the primitive positions Π(s). The same argument shows for every
one of the remaining ti that all but finitely many of the sij have
the primitive positions Π(s). Let us call these rij .
The rij form a double chain, such that for every primitive position
π ∈ Π(s) and every i, j : π is a primitive position in rij .
For every one of the maximal primitive positions π among the
Π(s) we iteratively modify the rij to obtain r′ij , which become
the rij for the next iteration according to the following 4 steps.

1. If t|π ≡c bot, then rij|π ≡c bot, since rij ≤c t. Conse-
quently, we use r′ij = rij .

2. If t|π
∗→ R[x], then for all i, j : rij|π

∗→ R[x] and we use
r′ij = rij .

3. If t|π⇓F , we reduce the rij to gij , such that gij has sufficient
depth to actually have position π not only as a primitive
position. This position of the gij can then be replaced by
ft,π t. The gij become the r′ij . The r′ij are primitive and⊔c

i

⊔c

j
ft,π r′ij ≡c t|π and since A is a primitive set r′ij ∈ A.
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4. If t|π⇓Sc . . . , then either s⇓Sc . . . and α(c) = 0, s|π ≡c

bot or s|π ≡c λx.bot. In all of these cases we can apply
lemma 3.91 twice to choose a double chain r′ij for which
r′ij|π⇓Sc . . . .

If π is a differing position of s and t then there is also a differing
position ρ of s and t having π as a prefix and which is a maximal
primitive position of s. For ρ we cannot have chosen case 1 since
s ≤ρ t must hold and if t|ρ ≡c bot then s|ρ ≡c bot and ρ is not a
differing position. If case 2 was chosen then s|ρ ≡c bot. Otherwise
ρ would not be a differing position and we have s <ρ r′ij . The same
holds if for ρ case 3 was chosen. If case 4 was chosen we must have
s|ρ ≡c bot or s|ρ ≡c λx.bot and hence s <ρ r′ij . Accordingly, one
sees that for primitive positions π which are not differing positions
s ≡π r′ij .
The selection of the candidates among the sij removes finitely
many of the ti and for each of the remaining ti removes finitely
many of the sij . Lemma 2.121 ensures that these selections do
not change the respective club. For every one of the finitely many
positions in Π(s) we perform the steps 1 – 4. The candidates are
not changed by steps 1 and 2. Step 4 selects all but finitely many
of the candidates which we already know will not change the clubs.
That leaves step 3. Here the candidates are changed, but such that
for the inspected primitive position π after the change r′ij ≡π t

holds. Due to lemma 3.86 this entails
⊔c

i

⊔c

j
r′ij ≡c t.

Theorem 3.93. Let A be a primitive set. Then⊔c ⊔c
A =

⊔c
A.

Proof.
⊔c

A ⊆
⊔c ⊔c

A is an immediate consequence of the
monotonicity of clubs.
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We want to show
⊔c ⊔c

A ⊆
⊔c

A.

The elements t ∈
⊔c ⊔c

A are obtained from double chains sij ∈
A with

⊔c

j
sij ≡c ti and

⊔c

i
ti ≡c t. If t or all of the ti are

primitive, membership of t in
⊔c

i
A is evident. We consider the

case where neither t nor the ti are primitive.
Let Π be the differing positions of s11 and t. Applying lemma 3.92
we construct a double chain s1

ij for s11 satisfying ∀π ∈ Π : s11 <π

s1
ij . We form a chain s11 ≤c s1

11 ≤c s2
11 . . . by applying the lemma

repeatedly to s11, s
1
11, s

2
11, . . . and the remaining sk

ij . For this chain
if π is a differing position of si

11 and t, then si
11 <π si+1

11 .
It remains to show that t ≡c

⊔c

i
si
11, which would be a conse-

quence of t ≡c

⊔
i
si
11.

For all i : si
11 ≤c t and thus

⊔
i
si
11 ≤c t.

Assume there is a t′ with t′ ≡c

⊔
i
si
11, but t′ <c t. From

lemma 3.86 we obtain a primitive position π : t′ <π t. With-
out loss of generality π is a maximal primitive position. Since t

has this primitive position, all but finitely many of the si
11 have

it as well. This follows from lemma 3.91.
If none of the si

11 satisfy si
11 ≤π t′,

⊔
i
si
11 ≤c t′ cannot be satisfied

either.
If there is an si

11 ≤π t′ <π t, we distinguish the following cases.

t′|π⇑ : Since t|π⇓ we see from the construction of the si
11 that

si+1
11 �≤π t′, implying si+1

11 �≤c t′ and hence
⊔

i
si
11 �≤c t′.

t′⇓λx.bot : If t|π⇓S the argument proceeds as before. Otherwise
t|π⇓F λx.f with bot <c f . Again the construction of the si

11

ensures si+1
11 �≤π t′.
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As an important tool for soundness and completeness proofs we
provide the following theorem. It will allow the formulation of
the proofs for primitive solutions and to obtain the appropriate
statement for the entire concretization. We use the notation C[M ]
for {C[m]|m ∈ M}.

Theorem 3.94. Let D,E be demands.

C[η(D)] ⊆ γ(E) ⇐⇒ C[γ(D)] ⊆ γ(E).

Proof.

=⇒ : Monotonicity of clubs implies
⊔c

C[η(D)] ⊆
⊔c

γ(E). By

theorem 3.93 γ(E) =
⊔c

γ(E). Continuity of contexts (the-

orem 2.124) implies
⊔c

C[η(D)] = C[
⊔c

η(D)] = C[γ(D)].
Summarizing, the statement holds.

⇐= : Since η(D) ⊆ γ(D).

We will apply this theorem for soundness proofs and will thus
only be required to show that the elements of the representation
are indeed solutions and for completeness proofs we will only be
required to show that there are no primitive solutions outside the
representation of the appropriate demand.

3.6 Demands and Fixpoints

In this section we investigate the relation of concretizations to
least and greatest fixpoints of functions. For some demands their
definition can be directly translated to a function having a least
fixpoint. This is no surprise since η(·) is inductively defined and
for some demands D : η(D) = γ(D). For others the same di-
rect translation leads to a function for which the greatest fixpoint
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equals the concretization. For yet others the direct translation
results in a function with a fixpoint equal to the concretization,
but this fixpoint is neither the least nor the greatest.
Superficially, it looks as if the concretization of Top is all of Λ. This
however is false and we present the following counter-example.

Example 3.95. Let R[·] be a reduction context and let x be a
variable, then R[x] /∈ γ(Top). Any expression in γ(Top) either
converges or diverges, but R[x] does neither one nor the other.

On the other hand though, there are Λ-expressions with free vari-
ables in γ(Top), so γ(Top) �= Λ0 as the following example wit-
nesses.

Example 3.96. K 1 x ∈ γ(Top), since K 1 x⇓S1.

It is natural to ask which Λ-expressions are indeed in γ(Top).
γ(Top) can be co-inductively characterized. We use notation from
[Gor94] in the following theorem and prove that γ(Top) is the
greatest fixpoint of an obviously monotonous operator on sets.

Theorem 3.97. Let

F (X)
def
= {t|t⇑∨ t⇓F ∨∃c ∈ K : t⇓Sc t1 . . . tα(c) ∧∀i : ti ∈ X}

then

νX.F (X) = γ(Top).

Proof. We start by showing that γ(Top) is F -dense, i.e. γ(Top) ⊆
F (γ(Top)).

dense: Let s ∈ γ(Top), then one of the following cases will occur:

s⇑ : We have ∀X : s ∈ F (X) and in particular s ∈
F (γ(Top)).
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s⇓F : Similar to s⇑.

s⇓Sc t1 . . . tα(c) : With lemma 3.43 we conclude ∀i : ti ∈
γ(Top) and obtain s ∈ F (γ(Top)).

least: It remains to show that νX.F (X) ⊆ γ(Top). We proceed
as follows: For every t ∈ νX.F (X)

1. we construct an ascending chain s0 ≤c s1 ≤c . . . ,

2. we show that every chain element is in η(Top) and

3. we show that
⊔c

i
si ≡c t.

It will then follow that t ∈ γ(Top) and the statement is
proved.

1. We define

s0
t

def= bot

si
t

def=

⎧⎪⎪⎨⎪⎪⎩
bot if t⇑,

t if t⇓F and

c si−1
t1 . . . si−1

tα(c)
if t⇓Sc t1 . . . tα(c).

and use induction to show that the si
t form an ascending

chain for any t.

i = 0 : s0
t ≡ bot and ∀r ∈ Λ : bot ≤c r.

i > 0 :

si
t⇑ : si

t ≤c si+1
t holds.

si
t⇓F : si

t ≡ si+1
t holds and implies si

t ≤c si+1
t .

si
t⇓Sc si−1

t1 . . . si−1
tα(c)

: t⇓Sc t1 . . . tα(c) and
thus si+1

t ≡ c si
t1 . . . si

tα(c)
. From

the induction hypothesis we conclude
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∀1 ≤ j ≤ α(c) : si−1
tj

≤c si
tj

and with
lemma 2.95 we get si

t ≤c si+1
t .

2. That every chain element is a member of η(Top) can
similarly be proved by induction.

3. Obviously, ∀i : si
t ≤c t. If t is primitive we can show by

induction that t ∈ η(Top), so in what follows we assume
a non-primitive t. In order to apply the criterion of
lemma 2.132 it remains to show ∀C[·] : C[t]⇓ =⇒ ∃i :
C[si

t]⇓. For every si
t we can reduce t to some ti, i.e.

t
∗→ ti, such that si

t and t do not differ above argument
depth i. Applying theorem 2.59 we conclude C[t]⇓ =⇒
C[ti]⇓ and we denote the length of the normal-order
reduction of C[t] to WHNF with n. From C[ti] there
are at most n normal-order reductions to WHNF, this
follows from theorem 2.51. Since tn+1 and sn+1

t do not
differ above argument depth n + 1, we can apply the
same (at most n) normal-order reductions to C[tn+1]
and to C[sn+1

t ]. From C[tn+1] we reach a WHNF tW
and from C[sn+1

t ] we arrive at sW . Since tW and sW

do not differ above argument depth 1, sW will also be
a WHNF. Thus

⊔c

i
si

t ≡c t.

As a corollary we obtain the

Proposition 3.98. s ∈ Λ0 =⇒ s ∈ γ(Top).

Proof. s ∈ Λ0 =⇒ s⇑∨s⇓F ∨∃c ∈ K : s⇓Sc s1 . . . sα(c)∧∀i : si ∈
Λ0. Then for F (·) from theorem 3.97 s ∈ F (Λ0). Since γ(Top) is
the greatest fixpoint of F (·), s ∈ γ(Top).

The definition of the function F (·) from theorem 3.97 matches
the definition of Top very closely. Without presenting a formal
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defintion of the notion we say that F (·) is a direct translation of
the demand defintion for Top. It will not be this easy to arrive at
a co-inductive characterization for a demand in some cases.

Example 3.99. Let Fin def= 〈Nil, Top : Fin〉 and let

F (X) def= {t|t⇓SNil ∨ t⇓St1 : t2 ∧ t1 ∈ γ(Top) ∧ t2 ∈ X}

then

νX.F (X) �= γ(Fin).

This stems from the fact that there are Λ-expressions in νX.F (X)
that can be evaluated to arbitrary depth, but these are not in
γ(Fin).
On the other hand with G(X) def= {t|t⇓SNil ∨ t⇓St1 : t2 ∧ t1 ∈
γ(Top) ∧ t2 ∈ X ∧ t2 is primitive} we can satisfy νX.G(X) =
μX.F (X) = γ(Fin).

The concretization of Fin can however be easily characterized as
a least fixpoint although its demand definition uses Top.

Lemma 3.100. Let F (X)
def
= {t|t⇓SNil∨ t⇓St1 : t2∧ t1 ∈ γ(Top)∧

t2 ∈ X}, then

μX.F (X) = γ(Fin).

Proof.

γ(Fin) ⊆ μX.F (X) : It is easily shown that ∃si, ti ∈ η(Top) : s ≡c

s1 : s2 : . . . : sn : []∧ t ≡c t1 : t2 : . . . : tn : []∧∀i : si ≤c ti
if s, t ∈ η(Fin) and s ≤c t. Thus for every r ∈ γ(Fin) there
is an n and ri ∈ γ(Top) satisfying r ≡c r1 : r2 : . . . : rn : [].
That every such r is in μX.F (X) can be shown by induction
on the number n.
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γ(Fin) = F (γ(Fin)) : This is easily shown.

The lemmata and propositions in this section give rise to the hope
that we could straightforwardly translate demand definitions into
monotonous functions, and to find some property of the demand
definitions for the decision whether to use the greatest or the least
fixpoint of this function to obtain the demands concretization. Al-
ternatively, but equivalently, we could use this property to decide
whether to constrain expression parts to be primitive or not. How-
ever, the following observation seems to contradict this possibility.

Example 3.101. Suppose the following demand definitions are
given.

FT
def= 〈Lf, Br FT IT〉

IT
def= 〈Bot, Br FT IT〉

It seems that due to the mutually recursive definition of the de-
mands a fixpoint for a monotonous function for both of them
would need to be formed. The method with which mutually re-
cursive supercombinators are translated to Λ-expressions would
be one possibility for forming such a function. We say “seems”,
since we do not know of any other methods nor if any could exist
in principle. We can, however, observe that the concretization of
FT and IT may be represented as g(FT) and g(IT) with a fixpoint
g of the function

F (f) def= λx.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{r|r⇓SLf ∨ r⇓SBr s t ∧ s ∈ f(FT) ∧ t ∈ f(IT)}

if x ≡ FT,

{r|r⇑ ∨ r⇓SBr s t ∧ s ∈ f(FT) ∧ t ∈ f(IT)}
if x ≡ IT.
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Similar to lemma 3.8 we can show that the set L
def= P(Λ){FT,IT} is

a complete lattice with the point-wise order. F has fixed points
since F is monotonous with respect to this order.
We define

g
def= λx.

{
γ(FT) if x ≡ FT and

γ(IT) if x ≡ IT.

Lemma 3.102. g is a fixpoint of F .

Proof.

⊆: Let r ∈ g(FT) then either r⇓SLf or r⇓SBr s t ∧ s ∈ γ(FT) ∧
t ∈ γ(IT). In the former case obviously r ∈ F (g)(FT), and
in the latter case this holds, because γ(FT) = g(FT) and
γ(IT) = g(IT). For r ∈ g(IT) the proof is almost identical.

⊇: analogous to ⊆.

This fixpoint is neither a least nor a greatest fixpoint. Intuitively,
the least fixpoint would not include expressions, which can be
evaluated infinitely to the right, and the greatest fixpoint would
contain expressions that can be evaluated infinitely to the left.
The former would lack expressions present in the concretizations
and the latter would add expressions not present in the concretiza-
tions. Here, constraining f(FT) or f(IT) to be primitive is insuffi-
cient and we would have to come up with entirely new definitions
matching the structure of the expressions in the concretizations.
We do not go into more detail, but formulate the following con-
jecture for sensible definitions of direct translation.

Conjecture 3.103. There are demands for which the concretiza-
tion is neither the least nor the greatest fixpoint of their direct
translation to a monotonous function.
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3.7 Demand transformations

Demands produced by our calculi may become quite complicated.
In this section we present transformations that can be used to sim-
plify demands while retaining the original demand’s concretiza-
tion. Particularly, these transformations address the simplifica-
tion of demands defined with where-expressions.
This section was motivated by the goal to simplify some demands
that actually resulted from demand analyses. For a concrete ex-
ample the reader is referred to 3.116. Consequently, the trans-
formations are arbitrarily and intentionally chosen and are not
complete in any way.
Our first transformation will be applicable in case there is more
than one component not directly referring to the name of the result
present in the union. We can observe that any of a Λ-expression’s
approximations in the representation may use an arbitrary num-
ber of iterations of the where-expressions, but as soon as one of
the demand expressions without a where-expression is chosen no
further iteration is possible. That is to say, that only one of the
“base cases” can be used. This observation is expressed more
precisely in the following lemma.

Lemma 3.104. Let D
def
= 〈C1, . . . , Cr,D1 where T1 =

D, . . . ,Ds where Ts = D〉 where the Ci may contain where-ex-
pressions, but none that directly reference the name D. Let

E
def
= 〈E1, . . . , Er〉 where

Ei
def
= 〈Ci,D1 where T1 = Ei, . . . , Ds where Ts = Ei〉

then

D ≡γ E.
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Proof. We will show η(D) = η(E). Applying the club to both
sides we obtain γ(D) = γ(E). The two inclusions will be shown
separately.

⊆: Let t ∈ η(D). There is an i for which t ∈ ηΔi(0)(D). We
prove ∀t : t ∈ η(D) =⇒ ∃j : t ∈ η(Ej) by contradiction.
This then together with lemma 3.38 implies the inclusion.
Assume this does not hold, then

∃t, i : t ∈ ηΔi(0)(D) ∧ ∀j : t /∈ η(Ej).

Among the expressions for which this holds we choose one,
say u, with minimal number i of iterations of Δ. Then

∀k < i : v ∈ ηΔk(0)(D) =⇒ ∃j,m : v ∈ ηΔm(0)(Ej). (3.18)

u ∈ ηΔi(0)(D)

=⇒ (definition 3.18)

u ∈ ηΔi−1(0)(〈C1, . . . , Cr,D1 where T1 = D,

. . . ,Ds where Ts = D〉)
=⇒ (lemma 3.38)

∃k : u ∈ ηΔi−1(0)(Ck)

∨ ∃l, ρ : u ∈ ηΔi−1(0)(ρDl) ∧ ρTl �i−1
p D

=⇒ (lemma 3.26 + (3.18) =⇒ ∃j,m : ρTl �m
p Ej)

∃k : u ∈ ηΔi−1(0)(Ck)

∨ ∃l, ρ, j,m : u ∈ ηΔi−1(0)(ρDl) ∧ ρTl �m
p Ej

=⇒ (Monotonicity of Δ

+ without loss of generality m ≥ i.)

151

3 Demands

∃k : u ∈ ηΔm(0)(Ck)

∨ ∃l, ρ, j : u ∈ ηΔm(0)(ρDl) ∧ ρTl �m
p Ej

=⇒ (Lemma 3.38)

∃k : u ∈ ηΔm+1(0)(Ek)

∨ ∃j : u ∈
⋃
l

ηΔm(0)(Dl where Tl = Ej)

=⇒
∃k : u ∈ η(Ek) ∨ ∃j : u ∈ η(Ej)

in contradiction to the assumption.

⊇: Due to lemma 3.38 it suffices to show ∀j : t ∈ η(Ej) =⇒ t ∈
η(D). The rest of the proof proceeds similar to the other
inclusion.

In the following lemmata we find the possibility to narrow the
scope of a where-expression to the expressions in the contribution,
which actually depend on the variables in the pattern. The next
lemma starts by stating that a component without variables is not
influenced by the where.

Lemma 3.105. Let C be a closed demand and let

B
def
= [C,E1, . . . , En] where [T1, . . . , Tm] = D,

then [u0, . . . , un] ∈ η(B) ⇐⇒ u0 ∈ η(C) ∧ [u1, . . . , un] ∈
η([E1, . . . , En] where [T1, . . . , Tm] = D).

Proof. T abbreviates the pattern [T1, . . . , Tm] in the following
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proof. For some i

[u0, . . . , un] ∈ ηΔi(0)([C,E1, . . . , En] where T = D)

⇐⇒

[u0, . . . , un] ∈
⋃

σ∈Σ(T ):σT�i
pD

ηΔi(0)(σ[C,E1, . . . , En])

⇐⇒ (σC ≡ C)

u0 ∈ ηΔi(0)(C)

∧ [u1, . . . , un] ∈
⋃

σ∈Σ(T ):σT�i
pD

ηΔi(0)(σ[E1, . . . , En])

⇐⇒
u0 ∈ ηΔi(0)(C)

∧ [u1, . . . , un] ∈ ηΔi(0)([E1, . . . , En] where T = D).

Corollary 3.106. Let C be a closed demand and let

B
def
= [C,E1, . . . , En] where [T1, . . . , Tm] = D,

then [u0, . . . , un] ∈ γ(B) ⇐⇒ u0 ∈ γ(C) ∧ [u1, . . . , un] ∈
γ([E1, . . . , En] where [T1, . . . , Tm] = D).

If all expressions from one demand are simply passed through,
i.e. the contribution and the pattern are the same and each is
a joc having only variables as arguments then we can use the
demand itself.

Lemma 3.107. Let v1, . . . , vn be demand variables and let D be a
demand, then

ηΔi(0)([v1, . . . , vn] where [v1, . . . , vn] = D) = ηΔi(0)(D).
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Proof.

t ∈ ηΔi(0)([v1, . . . , vn] where [v1, . . . , vn] = D)

⇐⇒

t ∈
⋃

σ∈Σ([v1,...,vn]):σ[v1,...,vn]�i
pD

ηΔi(0)(σ[v1, . . . , vn])

⇐⇒ (Lemma 3.25 + lemma 3.38)

t ∈ Δi(0)(D) = ηΔi(0)(D).

In the following lemma we split a where-expression into two
where-expressions: one merely passes expressions to their posi-
tions in the original where-expression, the other builds all the
demands that use variables from the pattern.

Lemma 3.108. Let

B
def
= 〈C, [A,E2, . . . , En] where [T1, . . . , Tm] = D〉

where A is a closed demand and let v2, . . . , vn be demand variables
and

B′ def
= 〈C, [A, v2, . . . , vn] where [v2, . . . , vn] = D′〉

D′ def
= [E2, . . . , En] where [T1, . . . , Tm] = D,

then

B ≡γ B′.

Proof. We prove both inclusions separately and it suffices to prove
them for η.
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⊆: T abbreviates the pattern [T1, . . . , Tm], v abbreviates
[v1, . . . , vn] and likewise E2,n, u2,n and v2,n abbreviate
[E2, . . . , En], [u2, . . . , un] and [v2, . . . , vn], respectively.

u ∈ ηΔi(0)(B)

=⇒
u ∈ ηΔi(0)(〈C, [A,E2, . . . , En] where T = D〉)

=⇒
u ∈ ηΔi(0)(C)

∨ u ∈
⋃

σ∈Σ(T ):σT�i−1
p D

ηΔi−1(0)(σ[A,E2, . . . , En])

=⇒ (Lemma 3.105)

u ∈ ηΔi(0)(C) ∨ (u = [u1, . . . , un] ∧ u1 ∈ ηΔi(0)(A)

∧ u2,n ∈
⋃

σ∈Σ(T ):σT�i−1
p D

ηΔi−1(0)(σE2,n))

=⇒ (Premise) (3.19)

u ∈ ηΔi(0)(C) ∨ (u = [u1, . . . , un] ∧ u1 ∈ ηΔi(0)(A)

∧ u2,n ∈ ηΔi(0)(D′)

=⇒ (Monotonicity of Δ and lemma 3.105)

u ∈ ηΔi(0)(C) (3.20)

∨ u ∈ ηΔi(0)([A, v2, . . . , vn] where v2,n = D′)

=⇒
u ∈ ηΔi+1(0)(B′).

⊇: The proof is analogous to the proof of the inclusion above.

In some cases a mutual recursion among two demands can be
transformed into a recursion over only one demand.
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Lemma 3.109. Let v2, . . . , vn be demand variables and

B
def
= [A, v2, . . . , vn] where [v2, . . . , vn] = D

D
def
= 〈C, [E2, . . . , En] where [T1, . . . , Tn] = B〉

where ∃σ : σT1 �p A and the Ei do not use variables from T1,
then for

B′ def
= [A, v2, . . . , vn] where [v2, . . . , vn] = D′

D′ def
= 〈C, [E2, . . . , En] where [T2, . . . , Tn] = D′〉

B ≡γ B′.

Proof. We prove both inclusions separately and it suffices to show
η(D) = η(D′).

⊆: If this would not hold we could choose a u with a least i such
that

u ∈ ηΔi(0)(D) ∧ u /∈ η(D′)

∧ (∀k < i : v ∈ ηΔk(0)(D) =⇒ v ∈ η(D′)).

Again, T abbreviates [T1, . . . , Tn], furthermore, T2,n,
E2,n and v2,n abbreviate [T2, . . . , Tn], [E2, . . . , En] and
[v2, . . . , vn], respectively.

u ∈ ηΔi−1(0)(〈C,E2,n where T = B〉)
=⇒ (Definition 3.18)
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u ∈ ηΔi−1(0)(C) ∪
⋃

σ∈Σ(T ):σT�i−1
p B

ηΔi−1(0)(σE2,n)

=⇒ (Variables occur only once in the Ti,

∃σ : σT1 �p A and no variable from T1 appears

in the Ei + lemma 3.105)

u ∈ ηΔi−1(0)(C)

∪
⋃

σ∈Σ(T2,n),ρ∈Σ(T1):Λp(σT2,n)
⊆ηΔi−2(0)(v2,nwherev2,n=D)

∧ρT1�i−2
p A

ηΔi−1(0)(σE2,n)

=⇒ (Lemma 3.107, premise)

u ∈ ηΔi−1(0)(C)

∪
⋃

σ∈Σ(T2,n):σT2,n�i−2
p D

ηΔi−1(0)(σE2,n)

=⇒ (Hypothesis, monotonicity of Δ)

∃j : u ∈ ηΔi−1(0)(C)

∪ ηΔj(0)(E2,n where T2,n = D′)

=⇒
∃j : u ∈ ηΔj(0)(B′).

⊇: This inclusion is proved analogously to the one above.

Remark 3.110. If in lemma 3.109 the condition ∃σ : σT1 �p A en-
sures that expressions from the where-expression in D need to be
considered at all. If this were not the case that where-expression
could be entirely ignored.

Lemma 3.111. Let v2, . . . , vn be demand variables and let A be a
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demand. Furthermore let

B
def
= 〈C, [A,E2, . . . , En] where [T1, . . . , Tn] = B〉

B′ def
= 〈C, [A, v2, . . . , vn] where [v1, . . . , vn] = D′〉

D′ def
= [E2, . . . , En] where [T1, . . . , Tm] = B′,

then

B ≡γ B′.

Proof. A proof similar to lemma 3.108 is not sufficient here, but
it will suffice to use induction on the number of iterations of Δ.
The base case is easy to see. For the induction step we need only
change step (3.19) in the proof of lemma 3.108 to employ the
induction hypothesis.

We may shift the “base case”, B, from a union consisting of a
where-expression, W , and B to the demand referenced by W if
one component of the contribution is closed and B has the same
component. Again, we require some very specific forms of de-
mands.

Lemma 3.112. Let v2, . . . , vn be demand variables and let the Ci

be closed demands. For

B
def
= 〈[C1, . . . , Cn], [C1, v2, . . . , vn] where [v2, . . . , vn] = D〉

D
def
= [E2, . . . , En] where [T1, . . . , Tm] = E

and

B′ def
= [C1, v2, . . . , vn] where [v2, . . . , vn] = D′

D′ def
= 〈[C2, . . . , Cn], [E2, . . . , En] where [T1, . . . , Tm] = E〉
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we have

B ≡γ B′.

Proof. Analogous to lemma 3.108.

In the same way as the proof of lemma 3.111 refers to the proof
of lemma 3.108 the proof of lemma 3.113 refers to the proof of
lemma 3.112.

Lemma 3.113. Let v2, . . . , vn be demand variables, Ci closed de-
mands and

B
def
= 〈[C1, . . . , Cn], [C1, v2, . . . , vn] where [v2, . . . , vn] = D〉

D
def
= [E2, . . . , En] where [T1, . . . , Tm] = B

B′ def
= [C1, v2, . . . , vn] where [v2, . . . , vn] = D

D′ def
= 〈[C2, . . . , Cn], [E2, . . . , En] where [T1, . . . , Tm] = B′〉,

then

B ≡γ B′.

Lemma 3.114. T abbreviates [T1, . . . , Tn]. Let C
def
=

〈[D1, . . . , Dn], [E1, . . . , En] where T = C〉 and let E1 ≡ T1 be
a demand variable. Let

C ′ def
= 〈[D1, . . . , Dn], [D1, E2, . . . , En] where T = C ′〉

then

C ≡γ C ′.
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Proof. In the same way as for the other induction proofs for de-
mand transformations.

Now we have set the stage for proving the

Proposition 3.115. Let v2, . . . , vn be demand variables,

C
def
= 〈[D1, . . . , Dn], [E1, . . . , En] where [T1, . . . , Tn] = C〉

where E1 ≡ T1 is a demand variable not present in the remaining
Ei

C ′ def
= [D1, v2, . . . , vn] where [v2, . . . , vn] = D′

D′ def
= 〈[D2, . . . , Dn], [E2, . . . , En] where [T2, . . . , Tn] = D′〉

then

C ≡γ C ′.

Proof. From lemma 3.114 we obtain C ≡γ C1 where C1
def=

〈[D1, . . . , Dn], [D1, E2, . . . , En] where [T1, . . . , Tn] = C〉.
With lemma 3.111 it follows that C1 ≡γ C2 where C2

def=

〈[D1, . . . , Dn], [D1, v2, . . . , vn] where [v2, . . . , vn] = C ′
2〉 and C ′

2
def=

[E2, . . . , En] where [T1, . . . , Tn] = C2.
With lemma 3.113 we get C2 ≡γ C3 where C3

def=

[D1, v2, . . . , vn] where [v2, . . . , vn] = C ′
3 and C ′

3
def=

〈[D2, . . . , Dn], [E2, . . . , En] where [T1, . . . , Tn] = C3〉.
Finally, by lemma 3.109 we have C3 ≡γ C4 where

C4
def= [D1, v2, . . . , vn] where [v2, . . . , vn] = C ′

4 and C ′
4

def=
〈[D2, . . . , Dn], [E2, . . . , En] where [T1, . . . , Tn] = C ′

4〉.
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Example 3.116. As an example for applying demand transfor-
mations we present the result of analyzing append xs ys ∈ Inf,
i.e.

D
def= 〈[Bot, Top], [[], Inf], [Top : zs, ys] where [zs, ys] = D〉.

This result will now be simplified. Lemma 3.104 yields E ≡γ D

for

E
def= 〈E1, E2〉

E1
def= 〈[Bot, Top], [Top : zs, ys] where [zs, ys] = E1〉

E2
def= 〈[[], Inf], [Top : zs, ys] where [zs, ys] = E2〉.

We apply proposition 3.115 to E1 and E2 and obtain E′ ≡γ E

with

E′ def= 〈E′
1, E

′
2〉

E′
1

def= [v, Top] where v = F1

F1
def= 〈Bot, Top : zs where zs = F1〉

E′
2

def= [v, Inf] where v = F2

F2
def= 〈[], Top : zs where zs = F2〉.

Remember that F1 ≡γ Inf and F2 ≡γ Fin. With lemma 3.105
and lemma 3.107 we can obtain E′′ ≡γ E′ where

E′′ def= 〈E′′
1 , E′′

2 〉

E′′
1

def= [Inf, Top]

E′′
2

def= [Fin, Inf].

The result of analyzing append xs ys ∈ Inf is thus ≡γ-equivalent
to 〈[Inf, Top], [Fin, Inf]〉.
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4 Demand-Analysis

In this chapter we define demand-analysis and present two
tableau-based calculi for its partial computation.
The goal of demand-analysis is to find substitutions σ for a given
Λ-expression s and a given demand D that send s to an expression
in D, i.e. for which σs ∈ γ(D). The analysis’ result is a demand
containing these substitutions.
Demand-analysis is a backwards analysis using demands to rep-
resent sets of Λ-expressions and determining which Λ-expressions
are admissible as sub-expressions of an entire Λ-expression in or-
der to make it a member of a given demand [Hug88, HL92, Wra85].
In contrast to these works we do not use an abstract domain, but
sets of Λ-expressions.
Demand-analysis is also an inverse computation [GS96, Sør96]
since for the Λ-expressions s in the demand for the entire expres-
sion, bindings for the inputs are computed such that the resulting
expression is equivalent to s.

4.1 Tableaux

In this chapter we present two calculi for demand analysis: one
(ADE) is sound and in general incomplete and one (CADE) is
sound and complete (if it terminates). Each is a tableau cal-
culus and as such uses a tree as its data structure and applies
expansion rules to this tree. Each expansion rule can only be
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applied under specific conditions. If these hold, its application
attaches new leaves to a leaf of the tree. This process continues
non-deterministically until either all the leaves are in a sufficiently
simple form, i.e. are closed, or the resources are exhausted.
An important concept in this dissertation is that of tableau cal-
culi. A tableau calculus can be distinguished by applications of
expansion rules, which consider only one leaf to attach new leaves.
Successive application of expansion rules may produce an infinite
tableau. In a subsequent phase rules are applied which take into
account the entire path from the root to a node. These rules can be
used to find loops, i.e. repeating sub-tableaux and thereby allow us
to work with only a finite portion of an infinite tableau. We will
use tableau calculi to present the demand analysis (cf. 4.1.1) itself,
which is at the heart of this work, but they are also used e.g. in
the implementation to approximate the property bot-closed. For
these similar problems they seem a natural choice.

4.1.1 Demand tableaux

The data structure we choose for stating our calculi are demand-
tableaux. These consist of three components: one representing
the information to conveniently apply rules, one compressing the
information into a single demand-expression for programmer feed-
back or optimizer access and one collecting the free variables in the
input. Only the information in the first component is essential,
the information in the other two could be obtained by projections
of the first.

Definition 4.1 (demand-tableaux). A demand-tableau T consists
of a tree representation (or simply tree) TT , a standard representa-
tion TN and the root variables TV = (x1, . . . , xn). TT is a labeled
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tree, in which nodes are labeled with sets of constraints. The con-
straints have the form s ∈ D, where s ∈ Λ and D ∈ ΛC . A con-
straint with a left hand side consisting of a single variable is called
variable constraint (or VC for short). Additionally, a node may
have at most one of the labels “no!” or “loop! S where T = N”.
The edges of TT are labeled with substitutions having substitutes
formed with constructors, variables and bot. These substitutions
may either be id or else the variables in their substitutes must be
fresh, i.e. they must not occur anywhere else in TT . The substitu-
tion along a path P in TT is then {xi �→ πm . . . π1xi|i ∈ {1, . . . , n}}
where the πi are the edge labels along P with π1 being closest to
the root. TN is a demand definition assigning a unique name N

to the analysis result. In general the demand thus assigned will
be the union of demand expressions that may reference N .

Remark 4.2. Since the variables in the (non-trivial) substitutes
of the edge labels must be fresh, the substitution along a path in
a tableau will be idempotent.

Notation 4.3. With TV = (x1, . . . , xn) we can conceive of ev-
ery n-tuple (s1, . . . , sn) as a substitution {x1 �→ s1, . . . , xn �→
sn}. We write (s1, . . . , sn)(x1,...,xn) or (s1, . . . , sn)TV in this case.
Conversely, we can conceive of every substitution σ = {x1 �→
s1, . . . , xn �→ sn} as an n-tuple (s1, . . . , sn) = σTV .

Notation 4.4. Simplifying our presentation we will frequently
identify the nodes with their labels. Furthermore we write (s ∈
D) ∈ N for a node N and a constraint s ∈ D to indicate that
{s ∈ D, . . . } is the label of node N . Edges labeled σ from a
node M to a node N are treated similarly and we say that N is
reachable from M via σ. We drop edge labels if they are id .
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Notation 4.5. Demands have no free variables, hence we use
FV(N) for a node N to mean

⋃
(s∈D)∈N FV(s).

Standard representation

Expansion rules are applied to the tree-representation, but the
standard representation is much more concise and is thus preferred
if defined. The standard representation is only defined for distin-
guished tableaux, namely closed tableaux and only represents the
result of applying one of our calculi, but no intermediate steps. In-
tuitively, closed tableaux are sufficiently simplified for a result to
be concisely stated. In closed tableaux no further “simplification”
is necessary, either because the leaf does not have any solution at
all and this is detected rendering all attempts for further simpli-
fication unnecessary, or because rules in the sub-tableau could be
repeated over and over below the leaf, or because the constraints
are solved in the sense that only single variables appear in their
left hand sides. In all of these cases we can concisely represent
the substitutions solving the root constraints as a single demand.
Formally, we define a closed tableau below.

Definition 4.6 (closed tableau). A tableau is called closed, if all
leaves in its tree are either

1. labeled no!, or

2. labeled loop! S where T = N , or

3. consist of 0 or more VCs only.

For a closed tableau the standard representation consists of con-
tributions from 2. and 3. and the following definition specifies how
these leaves contribute to the standard representation.
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Definition 4.7 (contribution to the standard representation).

Leaves from 2. and 3. in definition 4.6 contribute one component
each to the standard representation. Recall that the standard rep-
resentation, TN , is a demand definition for a name N . Its right
hand side consists of a union to which leaves from 2. contribute
precisely S where T = N . Leaves, R, from 3. contribute �σRσTV ,
where � is the substitution mapping every variable to Top, σR is
the substitution which substitutes the demand C for every VC
x ∈ C in R and σ is the substitution along the path from the root
to the leaf.

It is important to note, that the standard representation is de-
fined based on the set of open variables TV at the root, i.e. that
root variables occurring free more than once will use only one
component of the standard representation.

Root variables

As mentioned before the goal of ADE and CADE is to find closed
substitutions substituting values for the free variables of the in-
put expression which make the resulting expressions members of
their appropriate concretization, so obviously identical variables
will receive the same value. Some of our expansion rules will make
assumptions about the structure of the free variables in the con-
strained Λ-expansion, i.e. they will partially specify the value of
the variable. These assumptions are recorded in the edge labels
and are applied to all the constraints in the descendant with fresh
variables in place of any possible sub-structure. Consequently, the
goal changes from finding substitutions sending the root expres-
sions to their appropriate concretization to finding such substitu-
tions for the free variables in the substitutes of the substitution
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along the path, i.e. the constrained variables.

Definition 4.8 (constrained variables). Let T be a tableau, let N

be a node in TT and let σ be the substitution along the path from
the root to N . The constrained variables of the node N , CV(N),
are the free variables of images of the root variables under σ,
i.e. CV(N) def= FV(σTV).

Constrained variables of a node N may be absent from all the
constraints of N .

Example 4.9. Let T be a tableau for the input K x y ∈ Bot, in
which the root has the successor N labeled x ∈ Bot. The variable
y is constrained at node N since {x, y} = FV(σTV), but it does
not appear there anymore.

Graphs of tableaux tend to quickly become large, so while we
will try to be explicit about every expansion rule applied, if it
serves comprehensibility we will compress the tableau by present-
ing some steps as a big step. In this case we will connect two
adjacently drawn nodes by a dashed line, possibly annotated with
the sequence of rules applied written left to right.
The variables occurring free in expressions essentially differ from
those which occur free in a deeper sub-expression, but are bound
further up. The root variables, TV , stand for positions in the in-
put expression for which there are no assumptions, but at which
concrete sub-expressions from Λ0 are placed just that nothing yet
is known about their structure. The same is true for the free vari-
ables of expressions in the constraints deeper on the tableau. Al-
ternatively, we could formulate the expressions in the constraints
as elements of Λ0 with a set of associated positions, each of which
specifying that nothing is assumed about the structure of the sub-
expression below it. One disadvantage of this alternative is that
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the implicit equality of sub-expressions can not be captured as
obviously as with variables of the same name. Yet another way
to view the expressions in the constraints is as multi-contexts in
which holes may be used more than once.

Rules

Rules define how to transform tableaux. If a rules premises are
met it can be applied to generate a new tree from a given tree
by attaching new leaves below a leaf found in the given tree. We
distinguish rules according to the scope needed for their premises:
those which only consider the constraints of the predecessor are
termed local rules and those which consider an entire path from
the root to some node are termed loop rules, since the only such
rules we present are for finding potential loops in the tableau.
While it would be possible to include other rules having a scope
larger than a leaf in the calculi we have not found a motivation
to do so from our experiments.

Definition 4.10 (rule). A rule consists of its premises and its
consequents. Usually, we write rules as in a Gentzen calculus: the
premise above a horizontal line and the consequents below that
line separated by “|”. It may however be necessary to additionally
relate parts of the premise with parts of a consequent. Such rela-
tions are written to the right of the sequent if space permits and
are otherwise relegated to the surrounding text. Unless otherwise
noted the edge label id is associated with a rule.
A rule is applicable if all its premises are met.
The application of a rule generates a new tableau T ′ from a given
tableau T by appending new leaves Ni to a leaf N in TT with edges
marked according to the edge label associated with the rule.
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The notion of a narrow path provides a collection of all those
rules on the path from the root to a node, which contributed in
the formation of some constraint r ∈ D in N .

Definition 4.11 (narrow path). Let M,N be nodes in the tree TT

of a tableau, let σ be a substitution along the path from M to N

and let r ∈ D be one of the constraints at M . There is a narrow
path from r ∈ D in M to r′ ∈ D′ in N , if

1. N is the immediate successor of M and

a) the rule applied does not replace r ∈ D and r ≡ r′ and
D ≡ D′ or

b) the rule replaces r ∈ D by r1 ∈ D1, . . . , rn ∈ Dn and
∃i : ri ≡ r′ and Di ≡ D′ or

2. there is some L and a narrow path from r ∈ D in M to
r1 ∈ D1 in L and from r1 ∈ D1 in L to r′ ∈ D′ in N .

See figure 4.1.

ADE and CADE

Definition 4.12 (ADE, CADE). CADE and ADE are tableau
calculi expanding demand tableaux using expansion rules until
the tableau is closed (or until resources are exhausted). Both
calculi use different sets of rules (cf. sections 4.4 and 4.5):

CADE uses: (red), (decomp), (redtop), (wc), (jocdec), (redbot),
(nobot), (redfun), (nofun), (union), (is), (casep), (c-loop),
(loopdecomp), (loopred), (noloop)

ADE uses: the same rules as CADE, but instead of (c-loop) ADE
uses (loop) and additionally (type) and (reuse).
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�
�
�

{r ∈ D . . . }

rule replacing r∈D with the ri∈Di�
�
�

(M)

{r1 ∈ D1, . . . , rn ∈ Dn . . . }

narrow path from r1∈D1 to r′∈D′
�
�
�

(L)

{. . . , r′ ∈ D′, . . . } (N)

Figure 4.1: A narrow path from r ∈ D in M to r′ ∈ D′ in N

We will later prove that while ADE and CADE are both sound,
CADE is also complete but ADE generally is not.

4.2 Solutions

4.2.1 Deeply well-typed

We assume the high-level language analyzed to be statically and
strongly typed. From this assumption we deduce that programs
will not have run-time type errors. This assumption is motivated
by our goal to make demand-analysis independent of a specific
type-system on the one hand while allowing our calculi to ex-
ploit the fact that programs will not have run-time type errors.
While expressions which are ill-typed are contextually equivalent
to bot, we allow the omission of ill-typed solutions since we as-
sume a statically typed language and otherwise the analysis result
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of e.g. length xs ∈ Bot would need to include many solutions
which only confuse the user and distract from the interesting so-
lutions. In the example, the solution {xs �→ True} would also
need to be included among many others.

Example 4.13. For the analysis of length xs ∈ Bot we obtain
the result Inf = 〈Bot, Top : Inf〉 with our calculi. If we would
not restrict the calculi to satisfy some typing constraint for the
results, a complete solution would have to substitute FWHNFs as
well as expressions having SCWHNFs with top level constructors
not suitable for constructing lists. Obviously, such a result would
contribute less to the programmer’s understanding of the program
at hand than the “type-cleaned” result. What’s more, these solu-
tions would lead to expressions that would not have passed type
check. To make matters worse, such a result would not be well
suited for further automatic analysis and optimization, since the
increase in result size increases the branching degree in tableaus
using the result, case-branches would need a branch for every con-
structor in the program instead of a branch for every constructor
of the appropriate type-constructor.

While for some analyses it suffices to try evaluation of the
Λ-expression in a constraint to WHNF, e.g. for s ∈ Bot or
s ∈ Top : Top, others may need normal-order reduction of a con-
structor argument e.g. s:t ∈ Top:Top:Top or s:t ∈ Top:[]. For
analyses proceeding to constructor arguments we would then have
the same problem discussed above: case-branches for every con-
structor in the program would need to be provided otherwise even
simple analyses would be incomplete. We decide to define com-
pleteness for a subset of the solutions making the root expression
deeply well-typed.
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Definition 4.14 (deeply well-typed).

WT 0
def= Λ

WTn
def= {t|t⇓Sc t1 . . . tα(c) ∧ ti ∈ WTn−1}
∪ {t|t⇓F }
∪ {t|t⇑ ∧ t ∈ WT}

We define WT⇓
def=

⋂
i WT i and call the expressions in WT⇓

deeply well-typed.

There is no problem in defining WT i and WT⇓ in this way: us-
ing techniques we have demonstrated elsewhere (section 3.6 and
chapter 3) it is straightforward to define a monotonous operator
W (·) on sets of Λ-expressions, and to deduce the existence of a
greatest fixpoint with the Theorem of Knaster and Tarski and the
iterative characterization with the CPO Fixpoint Theorem I.
We chose the co-inductive definition in order to include non-
primitive solutions, e.g. {x �→ repeat 1}.
Some properties of WT⇓ will be considered next.

Theorem 4.15 (Invariance of WT⇓). Let s, t ∈ Λ and let s → t,
then

s ∈ WT⇓ ⇐⇒ t ∈ WT⇓.

Proof. We show: for all s, t ∈ Λ with s → t and all i : s ∈
WT i ⇐⇒ t ∈ WT i.

=⇒ : Assume this does not hold, then there is a smallest j for
which s and t exist satisfying s → t and s ∈ WT j∧t /∈ WT j ,
but for all smaller k : s → t ∧ s ∈ WT k =⇒ t ∈ WT k. We
distinguish the following cases for s:
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s⇓Sc s1 . . . sα(c) ∧ ∀i : si ∈ WT j−1 : We know
t⇓Sc t1 . . . tα(c) and si

∗→ t, this in a consequence of
the standardization theorem. Thus ti ∈ WT j−1 which
implies t ∈ WT j contradicting the assumption.

s�⇓ ∧ s ∈ WT : By theorems 2.59 and 2.75 both properties
are invariant with respect to reduction so t ∈ WT and
t �⇓.

s⇓F : As for s�⇓ ∧ s ∈ WT .

⇐= : The argument is as for the other implication.

Obviously, the above implies s ∈ WT⇓ ⇐⇒ t ∈ WT⇓.

Remark 4.16. Diverging well-typed Λ-expressions are deeply well-
typed and so are Λ-expressions with an FWHNF.

Lemma 4.17. c s1 . . . sα(c) ∈ WT⇓, iff ∀i : si ∈ WT⇓.

Proof.

=⇒ : Assume this does not hold. There must be an i, for which
si /∈ WT⇓, but c s1 . . . sα(c) ∈ WT⇓. Then there has to
be a j with si /∈ WT j . By definition of WT j+1 we obtain
c s1 . . . sα(c) /∈ WT j+1. This contradicts the assumption
and the statement holds.

⇐= : WT⇓ is a fixpoint and c s1 . . . sα(c) ∈ W (X) if all si ∈ X,
so c s1 . . . sα(c) ∈ WT⇓ if ∀i : si ∈ WT⇓.

Lemma 4.18. WT⇓ ⊆ WT.

Proof. Assume this is false, i.e. ∃t ∈ WT⇓ : t ∈ IT . From the
definition of IT (2.67) it follows that there is a t′ ∈ Λ for which
t

∗→no t′ ≡ R[s] ∧ s ∈ DIT holds.
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Here R[·] cannot be the trivial reduction context, since then s ≡ t

and because of t ∈ WT⇓ it would be that s ≡ cA,i t1 . . . tα(cA,i),
i.e. s /∈ DIT .
Since t′ ≡ R[s] due to definition 2.25 t′ cannot normal-order reduce
any further and since R is non-trivial t′ cannot be of the form
cA,i t1 . . . tα(cA,i), because then s ≡ cA,i ∧ R[·] ≡ [·] t1 . . . tα(cA,i)

would have to hold, but cA,i /∈ DIT .

A Λ-expression cannot be deeply well-typed if an ill-typed expres-
sion can be found at any of its primitive positions (cf. definition
3.68).

Lemma 4.19. Let s ∈ Λ, then

∀π ∈ Π(s) : s|π ∈ IT =⇒ s /∈ WT⇓.

Proof. The proof is by induction on π.

π = λ : In this case s ∈ IT . By lemma 2.73 we obtain s⇑. It must
be that s /∈ WT⇓, because s ∈ WT⇓ ∧ s⇑ =⇒ s ∈ WT .

π = c · ı · ρ : Obviously, s⇓Sc s1 . . . sα(c) and sı|π ∈ IT . With
the induction hypothesis we conclude sı /∈ WT⇓ and with
lemma 4.17 we obtain the statement.

Lemma 4.20. If D[s] ∈ WT⇓, then D[bot] ∈ WT⇓.

Proof.

D[s]⇑ : Due to lemma 2.90 D[bot]⇑. In this case D[s] ∈ WT⇓
amounts to D[s] ∈ WT and we conclude with corollary 2.81
that D[bot] ∈ WT and therefore D[bot] ∈ WT⇓.

D[s]⇓ : We use induction on i to show D[s] ∈ WT i =⇒ D[bot] ∈
WT i.
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i = 0 : WT 0 = Λ, thus the statement trivially holds.

i > 0 : There is a normal-order reduction sequence from D[s]
to WHNF. If D[s] and D[bot] already differ at argument
depth 0 then D[·] is a reduction context and D[bot]⇑.
According to corollary 2.81 D[bot] ∈ WT and thus
D[bot] ∈ WT i. If, on the other hand, D[s] and D[bot]
are equivalent above some argument depth n > 0 their
normal-order redex is at the same position and has to
be reduced by the same alternative of the →B-reduc-
tion. We iterate this distinction until either the former
situation eventuates or until all the normal-order re-
ductions of D[s]’s sequence have been applied to D[bot]
and the contracti are still equivalent above some argu-
ment depth m > 0, whichever comes first. In the latter
case the contractum of D[bot] is also a WHNF. If both
contracti are FWHNFs, the statement is proved. Oth-
erwise, both will be SCWHNFs using the same con-
structor. Assuming D[s] ∈ WT i, we can apply the
induction hypothesis for the constructor arguments to
conclude the statement.

4.2.2 Solution

We split the definition of solutions into the definition of solution,
which satisfies the constraint at a node including the implicit con-
straints and the definition of c-solution which additionally makes
the root expression deeply well-typed. For completeness the set
of c-solutions will be considered.

Definition 4.21 (U(·), solution). A node M in some tableau T
labeled with the additional label no! has no solution at all. If M
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has no additional label and its constraints are {s1 ∈ C1, . . . , sn ∈
Cn} then a ground substitution θ is a solution of the node M ,
iff ∀i : θsi ∈ γ(Ci), ∀x ∈ CV(M) \ FV(M) : θx ∈ γ(Top) and
dom(θ) = CV(M). If N will be the demand name used by the
standard representation and an additional label loop! S where

T = N is present θ will also need to be a member of γ(S where

T = N)TV to be a solution of M .
The set of solutions of R is written U(R).

Definition 4.22 (U c
T (·), c-solution). Let T be a tableau with root

constraint {s1 ∈ D1, . . . , sm ∈ Dm} and let σ be the (idempotent)
substitution along the path to a node, L, having solution θ. θ is
a c-solution of L, iff θσsi ∈ WT⇓.
The set of c-solutions of L is written U c

T (L).

For the proofs of soundness and completeness it will be advan-
tageous to define primitive solutions, i.e. solutions which can be
seen to belong to the concretization without resorting to the use
of clubs.

Definition 4.23 (Uη(·), primitive solution). Let everything be as
in definition 4.22 with the only difference, that

∃D ∈ ΛC : θTV ∈ η(D)

where TV are the root variables of the tableau then θ is called a
primitive solution of L.
For the set of all such solutions of L we write Uη(L).

Primitive solutions are required to substitute primitive terms, but
the expressions resulting from substitution do not need to be prim-
itive. In contrast, the latter is required for very primitive solu-
tions.
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Definition 4.24 (U†(·), very primitive solutions). Let everything
be as in definition 4.21 with the only difference, that

∀i : θsi ∈ η(Ci)

then θ is called a very primitive solution of the node.
For the set of all such solutions of a node we write U†(R).

Lemma 4.25. θ ∈ U(R) =⇒ Uη(R) �= ∅.

Proof. Let R be a node labeled {s1 ∈ D1, . . . , sn ∈ Dn}. θ ∈
U(R) =⇒ θsi ∈ γ(Di). If θsi is primitive, then θsi ∈ η(Di)
and there is a θ′ with θ′si ≡c θsi and θ′ ∈ Uη(R). If θ
x is non-
primitive, where 
x are the free variables in R, then there is an
ascending chain of expressions θ1
x ≤c θ2
x ≤c . . . for which θ
x ≡c⊔c

i
θi
x. The θi are primitive with θisj ∈ η(Dj). Thus θi ∈

Uη(R).

Lemma 4.26. There are sets of constraints R, such that U(R) �=
∅ ∧ U†(R) = ∅.

Proof. An example is the constraint R
def= repeat x ∈ Inf. For

θ = {x �→ 1} we obtain θ ∈ U(R) but ∀θ : θ(repeat x) /∈ η(Inf).

The definition of the semantics of the standard representation re-
quires that its members make the root deeply well-typed. In the
proof of external completeness we will argue, that the substitution
we construct is indeed in the semantics of the standard represen-
tation, i.e. makes the root deeply well-typed. In this proof (theo-
rem 4.63), it will be sufficient if we use a solution of a node which
makes all the expressions in that node deeply well-typed. The deep
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well-typedness of that lower node will follow from the deep well-
typedness of the root and the requirement that only rules are on
the path to that node, which propagate the deep well-typedness.

Definition 4.27. Let R be a rule, N and M nodes, where N is a
direct successor of M when R is applied to M . Let n1, . . . , nk be
the expressions in N and m1, . . . ml be the expressions in M and
let π be the edge connecting M and N . Furthermore, let θπ be a
solution for N and θ one for M . R is said to propagate WT⇓ iff
∀i : θπmi ∈ WT⇓ =⇒ ∀j : θnj ∈ WT⇓.

A tableau’s tree is a data structure for the calculi to operate on.
It is also a representation of its roots solutions. A more concise
representation for the solutions is the standard representation. To
justify the alternative representation it will be necessary to show
that every solution represented by the standard representation is
indeed a solution for the tableau’s root. Furthermore, it will be
desirable that every solution represented by the tableau is rep-
resented in the standard representation as well. We will later
prove this property (external completeness) for the part of the
concretization of the standard representation of a closed tableau
making the root deeply well-typed.
We could define the standard representation as:

The semantics of a standard representation N = S

is that part of its concretization which is deeply well-
typed, i.e. γ(N) ∩ WT⇓.

But we do not define it this way, because this definition would
require substitutions for root variables to be deeply well-typed,
even if these variables are projected away. This would, in our
opinion, make the definition to strict.
An example will illustrate this:
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Example 4.28. The constraint K x y ∈ Bot becomes solved with
the standard representation N = [Bot, Top], i.e. θ ∈ γ(N)TV =⇒
θ(K x y) ∈ γ(Bot) = η(Bot). To spell it out θ ∈ γ(N)TV =⇒ θx ∈
γ(Bot) and θy ∈ γ(Top) according to lemma 3.43. We can observe
that any θ ∈ γ(N)TV =⇒ θx ∈ γ(Bot) for which θx ∈ WT⇓,
but possibly θy /∈ WT⇓ satisfies θ(K x y) ∈ WT⇓ by invariance
of WT⇓ (since K x y

∗→no x). So requiring θ ∈ γ(N)TV to satisfy
θy ∈ WT⇓ is not necessary to satisfy θ(K x y) ∈ WT⇓ which
would allow a θ with θy /∈ WT⇓.

Instead, we relate the standard representation to the root of a
tableau and only the substitutions from its concretization which
map the root to an element of WT⇓ are counted as belonging
to its semantics. To put it another way: the semantics of the
standard representation forms a set included in its concretization.

Definition 4.29 (γWT⇓(·), semantics of the standard represen-

tation). The semantics of a standard representation N = S with
respect to a tableau having root R = {r1 ∈ C1, . . . , rn ∈ Cn} is
that part of its concretization which makes R deeply well-typed,
i.e. γWT⇓(N) def= {s ∈ γ(N)|sTV ri ∈ WT⇓}.

Definition and Corollary 4.30. Let T be a tableau with standard
representation TN . We say the semantics of N is bot-closed, or
alternatively, N is c-bot-closed, iff

∀C[·], s ∈ Λ : C[s] ∈ γWT⇓(N) =⇒ C[bot] ∈ γWT⇓(N).

If N is bot-closed then N is c-bot-closed.

Proof. This is a corollary of lemma 4.20.

Definition 4.31 (internally sound tableau, internally complete

tableau). A tableau is internally sound, if for every internal
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node N with successors N1, . . . , Nn reachable by edges labeled
π1, . . . , πn, respectively, the inclusion U(Ni)πi ⊆ U(N) holds, it
is internally complete, if U c

T (N) ⊆
⋃

i U c
T (Ni)πi.

If we can prove the condition for completeness for all solutions
including the ones making the root expression ill-typed, that will
of course imply completeness.

Lemma 4.32. U(N) ⊆
⋃

i U(Ni) =⇒ U c
T (N) ⊆

⋃
i U c

T (Ni).

Definition 4.33 (sound rule, complete rule). Rules transforming
a sound tableau to a sound tableau are termed sound rules and
those transforming a complete tableau to a complete tableau are
termed complete rules.

Lemma 4.34. Some very basic criteria for sound and complete
rules are:

1. Every rule which only removes constraints is complete.

2. Every rule which only adds constraints is sound.

3. Every rule adding only a leaf labeled no! is sound.

Proof. We only show the first of these criteria, the other proofs
are similar.
Assume the rule adds N below M connected by edge π. Iden-
tifying N with its label, we can write M = {s1 ∈ C1, . . . , sn ∈
Cn} ∪ N . Any solution θ ∈ U c

T (M) will also satisfy θ ∈ U c
T (N),

since both nodes relate to the same root.

We have to relate the result of the calculi to its inputs. In order
to differentiate this relation from the relation of a node and its
direct descendants, we use the attribute external for the former
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and internal for the latter. For external soundness we need to
show that every substitution contained in the result is indeed a
solution of the input. For external completeness we need to show
analogously that every c-solution of the input is indeed contained
in the result of the calculus.
We begin by formalizing the notions of external soundness and
external completeness.

Definition 4.35 (externally sound, externally complete). A cal-
culus is externally (extensionally or globally) sound, if for any
tableau, T , closed with the calculus and having root R =
{C[x1, . . . , xn] ∈ D} and standard representation TN : γ(N)TV ⊆
U(R). The calculus is externally (extensionally or globally) com-
plete, if γWT⇓(N)TV ⊇ U c

T (R).

It is important enough to reiterate that soundness as well as com-
pleteness are defined with respect to a closed tableau and are
undefined for tableaus which are not closed.
We introduce some notation for the function of the calculi.

Definition 4.36 (→ADE, →CADE). Let T be a demand tableau
closed with ADE, having root R = {t1 ∈ C1, . . . , tn ∈ Cn},
standard representation TN and root variables TV then we say
{t1 ∈ C1, . . . , tn ∈ Cn} demands TV ∈ N and write

{t1 ∈ C1, . . . , tn ∈ Cn} →ADE N.

If T was closed with CADE we say demands only and write
→CADE instead of demands and →ADE, respectively.

Remark 4.37. Obviously, →CADE ⊆ →ADE.
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4.3 Rules

4.4 Local Rules

Lemma 4.38. A rule with premises implying s ≡c t and CV(s) =
CV(t) and

{s ∈ C} ∪ R

{t ∈ C} ∪ R
(4.1)

is sound and complete.

Proof. Lemma 2.100 implies s ≡c t ⇐⇒ ∀σ : σs, σt ∈ Λ0 =⇒
σs ≤c σt. Thus for every substitution θ with θt ∈ γ(C) the ≡c-
closure of γ(C) implies θt ∈ γ(C) and vice versa. This implies
soundness and completeness.

Likewise, every rule which replaces a demand with a ≡γ-equivalent
demand is sound and complete. Examples of such rules are moving
unions up towards the root of the demand expression or replacing
the name of a demand with its definition. We give a name to the
latter since it is quite commonly used.

{s ∈ N} ∪ R

{s ∈ D} ∪ R
, if N = D is a demand definition (name)

4.4.1 Redundant Top

If the right hand side in a constraint is Top, we may remove that
constraint.

{s ∈ Top} ∪ R

R
(redtop)
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Theorem 4.39. The rule for removing redundant Top is sound
and complete.

Proof.

sound: Let T 1 be a sound tableau with a leaf M = {s ∈ Top}∪R

and let T 2 be the tableau resulting from application of
(redtop) to this leaf. For T 2 to be a sound tableau for
every successor N (that is only the node R in this case)
U(N)π ⊆ U(M) must hold where π labels the edge from M

to N (in this case π = id). Every solution θ ∈ U(N) must
substitute all constrained variables with ground expressions,
in particular all variables occurring free in s. With propo-
sition 3.98 and θs ∈ Λ0 we obtain θs ∈ γ(Top). Obviously,
θ solves the remaining constraints R, so that θ is also a
solution for M .

complete: We need to show U c
T (M) ⊆ U c

T (N). Whatever θ ∈
U c
T (M) substitutes for the free variables in s it will be in

γ(Top) and will furthermore make the root deeply well-
typed, so it will be a c-solution for N .

4.4.2 Reduction

In every constraint the left hand side is a Λ-expression. The
tableau may be extended by applying normal-order reduction to
this left hand side of a constraint.

{s ∈ A} ∪ R

{t ∈ A} ∪ R
, if s →no t (red)

Theorem 4.40. The normal-order reduction rule is sound and
complete.
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Proof. Theorem 2.93 and the absence of an edge label provide the
prerequisites for applying lemma 4.38 which directly implies the
statement.

4.4.3 Constructors and Jocs

If the Λ-expression in a constraint has constructor c as its top
most symbol and if the demand in that constraint is of the form
c C1 . . . Cα(c) the analysis can proceed to the arguments of c.

{c t1 . . . tα(c) ∈ c C1 . . . Cα(c)} ∪ R

{t1 ∈ C1, . . . , tα(c) ∈ Cα(c)} ∪ R
(decomp)

Theorem 4.41. Constructor decomposition is sound and complete.

Proof. The set of solutions for both nodes (predecessor and de-
scendant) remains unchanged. This suffices for soundness. For
completeness we remark that both nodes relate to the same root,
so the set of c-solutions is the same.

If there are no Λ-expressions represented by some constraints de-
mand, which start with the same constructor as that constraints
Λ-expression we add an additional label no!.

{c t1 . . . tα(c) ∈ A} ∪ R

no! {c t1 . . . tα(c) ∈ A} ∪ R
, if γ(A)∩γ(c Top . . . Top) = ∅ (wc)

Theorem 4.42. The rule for mismatched constructors is sound
and complete.

Proof. Soundness is a direct consequence of lemma 4.34. γ(A) ∩
γ(c Top . . . Top) = ∅ implies that for any substitution θ :
θ(c Top . . . Top) /∈ γ(A) which entails completeness.
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While the rule for mismatched constructors is sound and com-
plete it is also undecidable to test whether it is applicable. An
implementation will use some decidable conditions for emptiness
of γ(A) ∩ γ(c Top . . . Top), such as A ≡ c′ A1 . . . Aα(c′) where
c �= c′, A ≡ Fun or A ≡ Bot.

Joc

Decomposition

The rule for joc decomposition is in fact an instance of the rule
for constructor decomposition:

{[t1, . . . , tn] ∈ [C1, . . . , Cn]} ∪ R

{t1 ∈ C1, . . . , tn ∈ Cn} ∪ R
(jocdec)

Soundness and completeness follows from soundness and com-
pleteness of constructor decomposition.

4.4.4 Rules for bot

If bot is encountered in a reduction context R[·] we can identify
the entire expression with bot.

{R[bot] ∈ C} ∪ R

{bot ∈ C} ∪ R
(absred)

Theorem 4.43. The (absred) is sound and complete.

Proof. The criterion of lemma 4.38 is satisfied.

The expression bot is a representative of Bot in Λ. Therefore
bot ∈ Bot holds.
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{bot ∈ Bot} ∪ R

R
(redbot)

Theorem 4.44. The rule for redundant bot is sound and complete.

Proof.

complete: One constraint is removed thus by lemma 4.34 this rule
is complete.

sound: θbot ∈ γ(Bot) holds for every substitution θ, therefore ev-
ery solution is a solution of bot ∈ Bot. Hence every solution
of R is a solution of {bot ∈ Bot} ∪ R.

Since bot is not a member of every representation of a demand
some of the constraints with bot do not have any solution.

{bot ∈ A} ∪ R

no! {bot ∈ A} ∪ R
, if Bot �≤γ A (nobot)

Theorem 4.45. The rule for mismatched bot is sound and com-
plete.

Proof.

complete: There cannot be any substitution θ for which θbot ∈
γ(A), because otherwise for any diverging t : t ∈ γ(A) would
have to hold, but this would imply γ(Bot) ⊆ γ(A).

sound: By lemma 4.34 every rule adding no! is sound.
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4.4.5 Abstraction

Redundant Fun

{s ∈ Fun} ∪ R

R
, if s is an FWHNF (redfun)

Theorem 4.46. The rule (redfun) is sound and complete.

Proof.

sound: Since WHNFs and in particular FWHNFs are stable with
respect to arbitrary substitution, every substitution θ that
solves R solves {s ∈ Fun} ∪ R.

complete: We can apply lemma 4.34.

Conflicting Fun

Some Λ-expressions are easily seen not to belong to Fun.

{s ∈ Fun} ∪ R

no! {s ∈ Fun} ∪ R
, if s ≡ bot ∨ s ≡ c s1 . . . sα(c) (nofun)

Theorem 4.47. The rule (nofun) is sound and complete.

Proof.

sound: Soundness is an immediate consequence of lemma 4.34.

complete: From proposition 2.35 we conclude that under no sub-
stitution bot or c s1 . . . sα(c) become expressions having
an FWHNF. Thus there is no substitution θ with θs ∈
γ(Fun).
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4.4.6 Type error

By hypothesis Λ is well-typed. We only need solutions making
the root deeply well-typed, thus we can extend a tree with a leaf
containing an ill-typed expression with a leaf without any solution.

{s ∈ A} ∪ R

no! {s ∈ A} ∪ R
, if s ∈ IT (type)

Theorem 4.48. The rule for type errors is sound.

Proof. Follows immediately from lemma 4.34.

In general, (type) is incomplete. We will postpone the discussion
of this fact until all local rules have been presented (cf. lemma
4.59), since (type)s incompleteness depends on the presence of
other local rules on the path from the root to the leaf.

4.4.7 Union and intersection

If an expression is constrained by a union we can compose the
solution for this constraint from the solutions of the constraints
made with the union’s components.

{s ∈ 〈C1, . . . , Cn〉} ∪ R

{s ∈ C1} ∪ R | . . . | {s ∈ Cn} ∪ R
(union)

Theorem 4.49. The rule decomposing unions is sound and com-
plete.

Proof. The set of solutions remains the same, since by lemma 3.43
we have θs ∈ γ(〈C1, . . . , Cn〉) ⇐⇒ θs ∈

⋃
i γ(Ci).
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If a single Λ-expression has to satisfy multiple constraints we may
combine these.

{s ∈ C, s ∈ D} ∪ R

{s ∈ C ∩ D} ∪ R
(is)

Theorem 4.50. The rule (is) is sound but not necessarily com-
plete.

Proof.

sound: From lemma 3.43 we know that γ(C ∩ D) ⊆ γ(C) ∩ γ(D)
implying that any solution of the descendant is a solution of
the predecessor.

incomplete: In the same lemma we present an example showing
γ(C) ∩ γ(D) /∈ γ(C ∩ D).

Turning (is) around we could decompose an intersection into mul-
tiple constraints for the same expression. But since this rule would
not even be sound, we do not provide it in the calculi.

4.4.8 Case

We have already covered the case where a caseA is applied to an
expression in CWHNF with the reduction rule.
Here we give a rule which can be applied provided that the caseA

expression is a potential redex. In that case we can insert the
constructor expressions for the variable. Note that substitutions
might substitute the left hand side of VCs and thus transform
VCs back into general constraints.
The ρi substitute the ith constructor of A and ρ0 substitutes
bot for the cased variable, x, i.e. let xi,j be fresh variables and
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let ρ0 = {x �→ bot}, ρi = {x �→ cA,i xi,1 . . . xi,α(cA,i)}, Li =
ρi({R[caseA x e1 . . . e|A|] ∈ C}∪R) and R = {si ∈ Ci|1 ≤ i ≤ n}.
We extend a tableau with

{R[caseA x e1 . . . e|A|] ∈ C} ∪ R

L0 | . . . | L|A|
(casep)

if the caseA x . . . expression is a potential redex, i.e. if its first ar-
gument is a variable. Every edge is labeled with the corresponding
ρi.

Theorem 4.51. The caseA rule for potential redexes is sound and
complete.

Proof.

sound: Let θ be a solution for one of the Li. Then
θR[caseA (cA,i xi,1 . . . xi,α(cA,i)) e1 . . . e|A|] ∈ γ(C) ∧ θ ∈
U(ρiR) which is equivalent to θρiR[caseA x e1 . . . e|A|] ∈
γ(C) ∧ θρi ∈ U(R) and soundness holds.

complete: A c-solution θ of L = {R[caseA x e1 . . . e|A|]}∪R satis-
fies θR[caseA x e1 . . . e|A|] ∈ γ(C), θ ∈ U c

T (R) and with the
substitution π along the path from the root to L the sub-
stitution θπ must make the root deeply well-typed and thus
must substitute x since x cannot be bound by R[·]. Due to
definition 4.22 θ must substitute x with an expression having
a saturated constructor WHNF with top level constructor
cA,i or with bot, otherwise the substituted root would not be
in WT⇓ and θ would not be a c-solution. As a consequence
θ can be written as θ = θiρi, thus Uη(L)ρi ⊆

⋃
i Uη(Li)

holds implying completeness of the rule.
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4.4.9 Reuse

A prerequisite of the soundness proof which we give for the entire
calculi in section 4.6 is that the higher node for an application of
the loop rule is the root of the tree. In practice this would be a
serious limitation, resulting in many cases for which the tableau
could not be closed and would grow infinitely.
In many of these cases there is a “sub-analysis”, which could have
been performed independently and, if it had, would have been
closed by the loop rule. This is the motivation for the reuse rule,
which uses results computed in a prior analysis in the present
analysis.
Let T t be a closed tableau with root t ∈ C, standard representa-
tion T t

N and root variables T t
V . Let τ be a substitution satisfying

τt ≡ s. We may extend the tableau by the reuse rule:

{s ∈ C} ∪ R

{τT t
V ∈ N} ∪ R

(reuse)

Theorem 4.52. Reuse is sound.

Proof. We will suppose the result of analyzing t ∈ C to be sound.
Consider a solution θ of τT t

V ∈ N . By definition θτT t
V ∈ γ(N)

and it follows that θτT t
VT t

V
t ≡ θτt ≡ θs ∈ γ(C).

It seems that (reuse) is incomplete, because even if the analysis
reused, t ∈ C, is itself complete, this completeness refers to the
subset of the result, N , making t deeply well-typed. This last
restriction however is lost by the (reuse) rule. It seems possible
for solutions of t ∈ C not making t deeply well-typed to be missing
from γ(N). It might also be possible to argue in favor of (reuse)’s
completeness considering the deep well-typedness of the root for
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the reusing tableau. We do not investigate this here, but leave it
to future work.

4.4.10 Local rule properties

We will present some properties of the local rules, which will later
be used in the proofs of external soundness and external complete-
ness.
The first observation concerns the variables which may appear in
VCs. A variable may either appear in a VC or there is a substi-
tution for it along the path from the root to the node, but not
both.
Obviously, variables can occur freely in the input constraint or
they can be introduced by the rule (casep).

Lemma 4.53. Let σ be the substitution along the path from the
root to a node N . Either xi ∈ CV(N) or σxi �= xi.

Proof. The (partial) substitutions along the path are introduced
on behalf of the rule (casep). They are applied to the entire node
and introduce fresh variables only. So if a variable is substituted
it will no longer be constrained and as long as it is constrained it
cannot have been substituted.

Lemma 4.54. Rules along a narrow path except reuse propagate
WT⇓.

Proof. Let P be the narrow path from constraint r ∈ A in M to
constraint s ∈ B in N . We consider each of the different rules
which may appear on P.

(casep) The case to which the rule is applied may be within r

or may be in some other constraint. In both cases deep
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well-typedness is propagated: since the variable being cased,
say x, will occur free in M but not in N , we can write
any solution τ ∈ U(M) as θ{x �→ . . . } and if ∀i : θ{x �→
. . . }mi ∈ WT⇓ then ∀i : θni ∈ WT⇓ since {x �→ . . . }mi ≡
ni.

(red) The constraint in the upper node is r ∈ A and r →no t. If
θr has a WHNF r′, then due to invariance of termination
there is a t′ which is a WHNF of θr and θt. Since θ is a
ground substitution for all free variables in r and t, t′ is a
closed WHNF. t′ may be an SCWHNF or an FWHNF. In
both cases t ∈ WT⇓, since r and thus t′ are deeply well-
typed. If θr has no WHNF, θr ∈ WT⇓ implies θr ∈ WT .
Thus we cannot reach an expression in DIT by normal-order
reduction and θt ∈ WT and also in WT⇓.

(decomp) From lemma 4.17 we know that θ makes the constructor
arguments deeply well-typed.

(jocdec) as for decomp.

(reuse) The reuse rule may not propagate WT⇓. A node with the
constraint K x y ∈ Bot may get a successor with [x, y] ∈ N ,
where N = [Bot, Top] is the result of analyzing K x y ∈ Bot.
Replacing N we obtain [x, y] ∈ [Bot, Top]. But θ(K x y) ∈
WT⇓ does not imply θy ∈ WT⇓.

For discussions involving tableaus using the (reuse) rule it will be
helpful to know that externally sound and complete analyses cast
the bot-closedness of their demand to the analysis result.

Lemma 4.55. Let T be a closed tableau for input C[
x] ∈ D, let T
be externally sound and complete with standard representation TN ,
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and let D be bot-closed and deeply well-typed, then the semantics
of N is also bot-closed.

Proof. ∀D[·], s : D[s] ∈ γWT⇓(N) ⇐⇒ C[D[s]] ∈ γ(D) ∩ WT⇓
since N is a sound and complete solution.
Assume N ’s semantics is not bot-closed. We can find D[s] with
D[s] ∈ γWT⇓(N) but D[bot] /∈ γWT⇓(N). It follows that C[D[s]] ∈
γ(D)∩WT⇓ but C[D[bot]] /∈ γ(D)∩WT⇓ in contradiction to the
bot-closedness of D. We conclude that N ’s semantics must be
bot-closed.

Remark 4.56. The premises in lemma 4.55 are not sufficient to
conclude that N is bot-closed. An analysis of C[x] ∈ D could
completely demand x ∈ 〈Bot, c1 Bot, c2 Fun〉. Yet, it could be
that ∀s ∈ γ(Fun) : C[c2 s] /∈ WT⇓, so N would not be bot-closed
but it would be c-bot-closed.

Remark 4.57. Let C[
x] ∈ D →CADE N and let Bot ≤γ D, then
Bot ≤γ N is not necessarily true.

Proof. We provide an example.
Let C[·] ≡ True : [·], and let D = 〈Bot, Top : Top : Bot〉 be D’s
demand definition. The analysis results in N = Top : Bot and is
sound and complete, but Bot �≤ N .

Lemma 4.58. Let TT be a tableau’s tree and let P be a path in
this tree from a node M to a node N . Furthermore let σ be the
substitution along P and let −→s and

−→
t be Λ-expressions at M and

N respectively. If on a narrow path Q from the constraint si ∈ Di

to the constraint tj ∈ Cj there is no (reuse) rule, then

∃π ∈ Π(σsi) : (σsi)|π ≡c tj .
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Proof. The only rules along P which can change the Λ-expression
si are (casep), (decomp), (absred) and (red) rules along Q.
We prove the statement with induction on the sequence of the
rules along Q. Let q be the sequence consisting of the (casep),
(decomp), (absred) and (red) rules along Q.

q = ε : Since (casep) is the only rule introducing a non-trivial edge
σsi ≡ si and since no rule except the above affects si we get
si ≡ tj and the statement is proved.

q = (q1, q2, . . . , qn) : We distinguish the different cases for q1.

q1 = (red) : si →no s′i and we can apply the induction hy-
pothesis to (q2, . . . , qn). It follows that ∃π ∈ Π(σs′i) :
(σs′i)|π ≡c tj . But si and s′i have exactly the same
primitive positions (they are ≡c-equivalent) and thus
∃π ∈ Π(σsi) : (σsi)|π ≡c tj .

q1 = (decomp) : si ≡ c r1 . . . rα(c) and P goes to the suc-
cessor using the kth argument, i.e. to the node {rk ∈
Dk

i } ∪ R. From the induction hypothesis we obtain
∃π ∈ Π(σrk) : (σrk)|π ≡c tj . Then obviously ∃π ∈
Π(σsi) : (σsi)|π ≡c tj holds.

q1 = (casep) : Here we may have two cases.

q1 ∈ Q : si ≡ caseA x −→e and P goes to the succes-
sor along the edge ρ = {x �→ r}. This node is
labeled {caseA r ρ−→e ∈ Di} ∪ ρR. We may write
σ = σ′ρ. Again we can apply the induction hy-
pothesis and obtain ∃π ∈ Π(σ′(caseA r ρ
e)) :
(σ′(caseA r ρ
e))|π ≡c tj , but σ′(caseA r ρ
e) ≡
σsi.
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q1 /∈ Q : P goes to the successor along ρ = {x �→ r}.
There the expression in place of si is ρsi. We write
σ = σ′ρ and apply the induction hypothesis to
obtain ∃π ∈ Π(σ′(ρsi)) : (σ′(ρsi))|π ≡c tj , but
σ′(ρsi) ≡ σsi.

q1 = (absred) : si ≡ R[bot] and (absred) replaces si with
bot. R[bot] ≡c bot so the statement holds with π = λ.
In this case the induction hypothesis provides for tj ≡
bot.

Proposition 4.59. The (type) rule may be incomplete, if a (reuse)
rule is present on the narrow path from the root to the node.

Proof. We provide an example. Assume we had already anal-
ysed K x y ∈ Bot and had obtained [Bot, Top] as result. If
we analyse K bot (Nil z) ∈ Bot the following tree can be
produced: But since K bot (Nil z) →no bot for any substi-

K bot ([] z) ∈ Bot

(reuse)

[Bot, ([] z)] ∈ [Bot, Top]

(decomp)

bot ∈ Bot, [] z ∈ Top

(type)

. . .no!

Figure 4.2: Incomplete application of (reuse)
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tution θ : θ(K bot (Nil z)) ∈ γ(Bot) is satisfied and so is
K bot (Nil z) ∈ WT⇓. Thus (type) is incomplete.

Intuitively, the reason is that the definition of WT⇓ uses only
needed positions of an expression and recursively of its SCWHNF’s
arguments. (type) might be extended allowing its application be-
low (reuse) if the constraint to which it is applied stems from a
needed position of the (reuse) rule, but we do not investigate this
any further.

4.5 Global rules

Global rules have a wider scope than local rules: in order to deter-
mine their applicability the immediate predecessor is not sufficient
and their prerequisites require conditions further up in the path
from the root to hold.
In an analysis we might arrive at a leaf which is similar to a
leaf we have seen earlier in that analysis. Here the labels are
considered similar if the root’s expression is equivalent to a multi-
context C[· · · ] with the root variables TV in the holes and every
Λ-expression in the leaf’s label can be formed by inserting some
expressions into C[· · · ]’s holes. We call this situation a potential
loop, because it might be possible to similarly repeat all of the
tableau below this leaf.
The solutions to the tableau will then depend on some observa-
tions on the path from the root to the leaf.
We can distinguish the following cases:

1. The Λ-expressions in the leaf in place of the root variables
have become smaller than what was assumed of the root
variables structure along the path. Then, if our metric is
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well founded, we will obtain a finite tableau for any finite
input formed by repeating this structure. This amounts to
a particular induction proof.

2. The expressions in place of the root variables are exactly the
same as what was assumed of these variables on the path to
the leaf.

a) If a constructor decomposition has occurred on the
path from the root, and if we know that we will need to
compute the Λ-expression to arbitrary precision, thus
being able to repeat that same constructor decomposi-
tion again and again, the constraint will not contribute
to the solution, because, intuitively, this process may
continue forever and all the finite solutions are already
solutions of the tableau above the leaf. So the con-
straint is dropped from the leaf.

b) If no constructor decomposition has occurred but at
least one abstract reduction, which was called for by a
Bot present in the demand, we have an analogous case
to 2a: the process on the constraint may go on infinitely
without resulting in solutions not already present in
the tableau above the leaf. As in 2a the constraint is
dropped from the leaf.

c) If the situation is as for 2b but the reduction was not
called for by a Bot in the demand, we have detected
an infinite computation for the input assumed on this
path, but only finite computations were demanded,
thus there are no solutions to the leaf and we mark
the leaf no!.
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Equipped with the intuition above we now present the global rules
more formally. A potential loop is always detected between a leaf
and the root. The rule for loop detection seems to be severely
restricted by the requirement, that the top node must always be
the root. In conjunction with (reuse) the effect is much softer and
merely causes all loops in sub-tableaux to use the same top node.
This, admittedly, is still a restriction not all tableaux will meet,
but it is far less severe than it at first seems. Further investigation
of just how severe this restriction is will be left to future research.
Let size be a real-valued, well-founded measure on patterns com-
patible with the term structure. The size of a substitution is the
sum of the sizes of the substituted expressions.
Let C[·1, . . . , ·n] be n-ary context, where {C[x1, . . . , xn] ∈ D} is
the label at the root. Let {C[t11, . . . , t

1
n] ∈ D, . . . , C[tm1 , . . . , tmn ] ∈

D} ∪R be the label at the leaf. Furthermore, let R be a VC. Let
P be the path from the root to the leaf, σ be the substitution
along P and σR be the substitution which for each xi ∈ Ci in
R substitutes xi �→ xi ∩ Ci and let � be the substitution which
substitutes Top for all the constrained variables not occurring free
in R nor in any 
tj . We consider five different global rules:
Assume the following conditions are satisfied:

· the expressions tji consist only of variables, constructors and
bot.

· ∀j : FV(
tj) ∩ {x|(x ∈ D) ∈ R} = ∅

{C[t11, . . . , t
1
n] ∈ D, . . . , C[tm1 , . . . , tmn ] ∈ D} ∪ R

loop! �σRσ
x where [[t11, . . . , t1n], . . . , [tm1 , . . . , tmn ]] = [N, . . . , N ]︸ ︷︷ ︸
m
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(loop)

where TN is the standard representation for the current tableau.
(c-loop) only differs from (loop) in the additional requirements

· for all j: size(σ
x) > size(
t)

· no (reuse) is used on the narrow path from C[
x] ∈ D at the
root to any of the C[
ti] ∈ D at the leaf

· the free variables are used at least as often in σ
x as in 
tj

{C[t11, . . . , t
1
n] ∈ D, . . . , C[tm1 , . . . , tmn ] ∈ D} ∪ R

loop! �σRσ
x where [[t11, . . . , t1n], . . . , [tm1 , . . . , tmn ]] = [N, . . . , N ]︸ ︷︷ ︸
m

(c-loop)

Immediate unions offer a decidable criterion for bot, SCWHNFs
or FWHNFs selecting at most one component of the union that
could contain the expression in its concretization.

Definition 4.60 (immediate union). A union D ≡ 〈D1, . . . , Dn〉
is called immediate, if there is a decidable criterion, ∈̃, such that

bot ∈̃ Di =⇒ bot ∈ γ(D) ∧ ∀j �= i : bot /∈ γ(Dj) and

λx.t ∈̃ Di =⇒ λx.t ∈ γ(Di) ∧ ∀t′, j �= i : λx.t′ /∈ γ(Dj) and

c 
s ∈̃ Di =⇒ c 
s ∈ γ(Di) ∧ ∀
s′, j �= i : c 
s′ /∈ γ(Dj).

An example of an immediate union would be a union in which
each component starts with a different constructor, possibly below
a where-expression, or is equivalent to Bot or Fun.
Assume that for all j : σ
x ≡ 
tj . Since ∀i, j : C[
ti] ≡ C[
tj ] and
since we use sets of constraints we can assume the leaf to be labeled
{C[
t1] ∈ D} ∪R without loss of generality. There are three cases:
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1. Let Q be the narrow path from C[
x] ∈ D in the root to
C[
t1] ∈ D at the leaf and let Qi be the narrow paths from
C[
x] at the root to the components in R at the leaf.

· If the demand D is bot-closed,

· if R is a VC,

· and if there is a constructor decomposition along P,

· if no (reuse) rule occurs on Q,

· if any union decomposition occurring on Q decomposes
an immediate union demand

· and if the (reuse) rules possible along the Qi are only
applied with bot-closed demands, then

{C[t11, . . . , t
1
n] ∈ D} ∪ R

R
(loopdecomp)

2. If there is no decomposition of a constructor, but Bot ≤γ D

there is at least one (red) along P,

{C[t11, . . . , t
1
n] ∈ D} ∪ R

R
(loopred)

3. If there is no decomposition of a constructor on top level,
but at least one (red) rule along P and Bot �≤γ D,

{C[t11, . . . , t
1
n] ∈ D} ∪ R

no! {C[t11, . . . , t1n] ∈ D} ∪ R
(noloop)
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Example 4.61. It is necessary that the demand used with the rule
(loopdecomp) is bot-closed. Otherwise, we can close a tableau
with root repeat x ∈ Fin, in which we arrive at a node labeled
repeat x ∈ Fin with rule (loopdecomp). This is not sound since
it would represent a solution to repeat x ∈ Fin which does not
exist. Fin, however, is not bot-closed since e.g. bot /∈ γ(Fin) and
therefore (loopdecomp) is not applicable in this situation.

4.6 External soundness and completeness

Theorem 4.62. ADE is externally sound.

Proof. Let T be a closed tableau with standard representation TN

defining N = S.
We show: if θ is an arbitrary ground substitution of the root
variables which is contained in the concretization of the standard
representation, then θ is also a solution of the root. In order to
be a solution of the root θ has to satisfy θC[
x] ∈ γ(D). Applying
theorem 3.94 it will suffice to show that θ
x ∈ η(N) implies that θ

solves the root, i.e.

θ
x ∈ η(N) =⇒ θC[
x] ∈ γ(D) (4.2)

We proceed by assuming a minimal (with respect to an appro-
priate measure) counter-example and showing, that there would
be a smaller counter-example thus falsifying the assumption and
proving our claim.
Assume (4.2) would not hold then ∃θ : θ
x ∈ η(N)∧ θC[
x] /∈ γ(D).
We choose θ to be minimal with respect to the the lexicographic
order of the triples consisting of

1. the smallest i, for which θ
x ∈ ηΔi(0)(S),
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2. the number n of normal-order reductions sufficient to reach
a WHNF, or ∞ if the expression diverges and

3. the least index k, for which rk /∈ η(D) where the ri ≤c ri+1

form an ascending chain, each of the ri consists of construc-
tors and bot only, their depth increases by exactly one from
one to the next and

⊔c

i
ri ≡c θC[
x], or ∞ if no such chain

exists.

The first component is the least significant for the order.
Due to the way the standard representation is generated from T ,
we can identify the sources of the components that represent θ.
I.e. if S ≡ 〈S1, . . . , Su〉 and θ
x ∈ η(Sj) then there is a leaf in TT

which contributes the jth component to the standard representa-
tion. For this leaf we find the following possibilities.

· The leaf is solved without application of the loop rules. The
leaf, R, will consist of VCs only and will contribute �σ̇Rσ̇TV
to the standard representation, so that θ = θ′σRσ, where σ

is the substitution along the path to the leaf, σR solves R

and � maps every variable in CV(R) to Top. Due to internal
soundness of the tableau θ′σRσ has to be a solution of the
root.

· The leaf was closed with the rule (loop). In this case the
proof proceeds as follows. Based on the shape of the stan-
dard representation component, Sj , we choose an appropri-
ate substitution of smaller measure than θ represented by
N . According to the choice of θ this substitution will then
be a solution at the root. Furthermore, we show that a sub-
stitution exists, which is a solution of the leaf and which
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when composed with the substitution along the path gives
θ. It follows that θ is a solution at the root.

The component Sj has the form �σRσ
x where [
t1, . . . , 
tm] =
[N, . . . , N︸ ︷︷ ︸

m

]. The constraints at the leaf are {C[
t1] ∈

D, . . . , C[
tm] ∈ D} ∪ R and the constraint at the root is
C[
x] ∈ D.

We have chosen θ satisfying θ ∈ ηΔi(0)(S)TV .

By definition of η, this implies:

θ ∈ ηΔi(0)(σRσ
x where [
t1, . . . , 
tm] = [N, . . . , N ])TV

=
⋃

ρ∈Σ(�tj):∀j:ρ�tj)�i
pN

ηΔi(0)(ρσRσ
x)TV

Since Δi(0)(N) = ηΔi−1(0)(S)

=
⋃

ρ∈Σ(�tj):∀j:ρ�tj�i−1
p S

ηΔi(0)(ρσRσ
x)TV

We can thus write θ as θ = ρ′ρRσ where ρR solves the VCs
R = {y1 ∈ D1, . . . , yn ∈ Dn}, i.e. ρR does not substitute
anything but the yj and ρRσyj ∈ ηΔi(0)(Dj). Because σ

is idempotent it will not affect the yi. For ρ′ we demand
∀j : ρ′
tj ∈ ηΔi−1(0)(S). Here we employ the premise that
free variables in the 
tj and in the VCs are disjoint. Since
i − 1 < i the first component of the measure and thus the
measure itself is smaller for ρ′
tj than for θ. It follows that
∀j : ρ′
tjTV C[
x] ∈ γ(D). Since furthermore ∀j : ρ′ρR


tj ≡ ρ′
tj

it follows that ∀j : ρ′ρR

tjTV C[
x] ∈ γ(D). ρ′ρR is a solution

of the leaf, since ∀j : ρ′ρRC[
tj ] ≡ ρ′ρR

tjTV C[
x] ∈ γ(D).
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Since we arrive at the leaf along a path labeled σ, it follows
that θ = ρ′ρRσ solves the root.

· The leaf was closed with the rule (loopred). Hence there is
no constructor decomposition on the path, but a normal-
order reduction and Bot ≤γ D.

The component of the standard representation contributed
by the leaf has the form �σ̇Rσ̇
x, i.e. we can write θ as θ =
θ′σRσ where σ̇ is obtained from σ by substituting bot in σ’s
co-domain with Bot (cf. definition 3.11) and where σRσyj ∈
η(Dj) for all the VCs yj ∈ Dj present in the leaf. The
VCs at the leaf are R = {y1 ∈ D1, . . . , yn ∈ Dn}. In the
node above the leaf the constraint C[
t1] ∈ D is additionally
present.

We know that θ ∈ η(N)TV , but θC[
x] /∈ γ(D). From
Bot ≤ D and our assumption we infer in particular θC[
x] /∈
γ(Bot) = η(Bot). So θC[
x] has a WHNF. The second com-
ponent of the measure is finite, say n. n normal-order reduc-
tions will suffice to obtain a WHNF from θC[
x] ≡ θ′ρRρC[
x].
The normal-order reductions along the path cannot reduce
anything substituted by θ and there is at least one normal-
order reduction along the path, hence

θ′ρRρC[
x] +→no θ′ρRρC[
t1] ≡ θ′ρRρC[
x]

Thus n − 1 normal-order reductions suffice to reach the
WHNF of θC[
x]. Consider the other components of the mea-
sure: since we do not change the substitution, but merely
show that for the same substitution fewer normal-order re-
ductions are sufficient, the first and last components of the
measure remain unchanged. This, however, contradicts θ’s
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minimality and hence, in this case, there is no such counter-
example.

· The leaf was closed with the rule (loopdecomp). Hence D is
bot-closed and there is a constructor decomposition on the
path from the root.

As above the component of the standard representation con-
tributed by the leaf has the form �σ̇Rσ̇TV and we can thus
write θ = θ′σRσ.

The substituted root may be non-primitive and so may
have infinitely long primitive positions allowing for infinitely
many constructor decompositions. Therefore the argument
uses the elements of an ascending chain approximating the
substituted root expression.

We want to contradict the assumption θC[
x] /∈ γ(D). Con-
sider an ascending chain r1 ≤c r2 ≤c . . . of expressions con-
sisting of constructors and bot only with

⊔c

i
ri ≡c θC[
x].

If all the ri ∈ η(D) then θC[
x] ∈ γ(D), thus there must be a
smallest index j for which ∀j ≤ i : ri /∈ η(D). This holds for
all larger indices, because η(D) is bot-closed. θ’s minimal-
ity implies that for any substitution ρ with a similar chain
approximating ρC[
x] the first element not in η(D) has index
at least k.

For this contradiction the condition rk /∈ η(D) is succes-
sively transformed according to the expansion rules. We
annotate the immediate successors of a node in TT with
conditions which, given applicability of the rule, are implied
by the conditions at the node. With this implication chain
we arrive at a condition r′k /∈ η(D) for a smaller r′k.
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At the root we have only one constraint, C[
x] ∈ D, and the
condition rk /∈ η(D), but constructor decomposition might
introduce nodes with more than one constraint. In this case
we will have multiple condition parts. For a set of con-
straints {t1 ∈ D1, . . . , tn ∈ Dn} we will have the condition
r1 /∈ η(D1)∨· · ·∨rn /∈ η(Dn). Furthermore a direct successor
will satisfy rm ≤c θ
tm if that was satisfied at its predecessor.
Quite obviously, we could use additional indices to differen-
tiate the conditions from the transformed conditions as well
as to relate the transformed conditions to the conditions at
the root, but we feel that this would not help but rather
confuse the reader.

Before presenting the transformations associated with the
expansion rules we narrow down the rules possible on the
narrow path, Q from C[
x] ∈ D at the root to C[
t] ∈ D at
the leaf. Q may not contain some of the rules:

(reuse): This rule is excluded as a precondition for applying
rule (loopdecomp).

closing rules: Q would end too early and would not reach
the leaf.

rules removing constraints: Again, there would be no such
path.

Q will consist of the rules (casep), (union), (red), (absred)
and (decomp).

We consider each of these rules in turn.

(red): We have a node with the constraints {t1 ∈
D1, . . . , tn ∈ Dn} and tm →no t′m. We do not change
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the conditions for the successors. The implication from
the node to its successor is trivially satisfied. By theo-
rem 2.93 we conclude rm ≤c θtm =⇒ rm ≤c t′m.

(union): The mth constraint is tm ∈ 〈D1
m, . . . , Dnm

m 〉. From
rm /∈ η(Dm) we conclude

∧
i rm /∈ η(Di

m). Thus we
obtain the condition that for every successor its condi-
tion part must be satisfied. We change the mth part
of the annotation to rm /∈ η(Di

m) for successor i.

(decomp): The mth constraint is tm ∈ Dm where tm ≡
c t1m . . . t

α(c)
m and Dm ≡ c D1

m . . . D
α(c)
m . Since

rm ≤c tm there are two cases: rm ≡ bot and rm ≡
c rm,1 . . . rm,α(c). In the first case rm /∈ η(Dm). In
the second case rm /∈ η(Dm) implies that at least
for one argument rm,i /∈ η(Di

m) needs to hold. So
in this case we replace the mth condition part with
rm,1 /∈ η(D1

m)∨ · · · ∨ rm,α(c) /∈ η(Dα(c)
m ). Since rm and

tm start with the same constructor, we use lemma 2.95
and obtain ∀i : rm,i ≤c θtim.

(absred): The mth constraint is R[bot] ∈ Dm and since
θR[bot] ≡c θbot ≡c bot the only possibility for rm

is rm ≡ bot and we keep the condition rm /∈ η(Dm).

(casep): The mth constraint is tm ∈ Dm with θtm ≡
caseA (cA,i t1m . . . t

α(c)
m ) e1 . . . e|A|. The condition is

passed to the successors without change.

Next we need to show that rk must exhibit enough structure
to allow for the transformations along Q to be applied. We
show that for rl which are too shallow rl ∈ η(D) must hold.

ri �≡c rj , if i �= j is a consequence of ri ≤c ri+1 and ri+1 be-
ing exactly one level deeper than ri and being formed from
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constructors and bot only. It follows that ∃C[·], cA,j : ri ≡
C[bot] ∧ ri+1 ≡ C[cA,j r1

i+1 . . . r
α(cA,j)
i+1 ]. If we assume we

would have to leave Q with rl or that we could only follow it
partially, but not to C[
t] ∈ D, then there is a first union de-
composition along Q, for which rm has been reduced to bot

and for which, due to the immediate union representation,
only the successor with demand cA,j D1

m . . . D
α(cA,j)
m may

lie on Q. Since the union Dm is bot-closed we can assume
a successor of the union decomposition having tm ∈ Bot as
its constraint. For this successor then, rm ∈ η(Bot) holds
and thus rl ∈ η(D) holds as well. We conclude that we can
transform the condition rk /∈ η(D) according to the decom-
positions along Q. For the (casep), the (absred) and the
(red) rules there is no transformation of the condition and
for the union decomposition we only transform the demand,
but not the expression. It follows that rk has enough struc-
ture to allow for all the transformations along Q, and that a
condition r′k /∈ η(D) is derived for the constraint C[
t] ∈ D.
r′k has depth strictly smaller than rk, because at least one
(decomp) rule is on Q. This contradicts the choice of θ.

It remains to show that the condition parts corresponding to
the VCs {x1 ∈ D1, . . . , xn ∈ Dn} cannot be satisfied either.

Along the narrow paths P1, . . . ,Pn from the root to {x1 ∈
D1, . . . , xn ∈ Dn} respectively, applications of the (reuse)
rule are also allowed. An argument as for P shows that
rj must exhibit enough structure to allow for the decom-
positions along the Pi. If the (reuse) rule is applied on
a path one can argue accordingly for the 
rm since the de-
mand N introduced by the (reuse) rule is bot-closed accord-
ing to lemma 4.55. At the leaf ri ≤c θxi holds, but since
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θ = θ′σRσ, and so θxi ≡ θ′σRxi ∈ η(Di), since the ri are
primitive, and since the Di are bot-closed below the top
constructor (or even bot-closed if bot ∈ γ(Di)) it follows
that ri ∈ η(Di).

Thus there cannot be such an rk /∈ η(D), so θC[
x] ∈ γ(D)
i.e. θ solves the root.

Theorem 4.63. CADE is externally complete.

Proof. To be shown: if θ is a c-solution for the root, C[
x] ∈ D,
then it is contained in the semantics of the standard representa-
tion, TN , i.e.

θC[
x] ∈ γ(D) ∩ WT⇓ =⇒ θ
x ∈ γ(N) ∧ θC[
x] ∈ WT⇓.

We will show for a primitive substitution θ, that

θC[
x] ∈ γ(D) ∩ WT⇓ =⇒ θ
x ∈ η(N).

With theorem 3.94 we can then deduce for non-primitive θ that

θC[
x] ∈ γ(D) ∩ WT⇓ =⇒ θ
x ∈ γ(N).

Assume there is a counter-example, i.e. there exists a smallest
primitive ground substitution θ : θC[
x] ∈ γ(D) ∩ WT⇓, but θ
x /∈
η(N) for {x1, . . . , xn} = TV .
There may be some paths, Pi, leading to leaves Li with nodes Ni

directly above Li, such that for primitive c-solutions θi of Ni :
θiσi = θ where σi is the substitution along Pi. Due to the local
completeness of the rules there is at least one such path. There
may be more than one, because branches may be introduced by
union decomposition along such paths.
Next we treat the different cases for closing path Pi arriving at a
contradiction to our assumption in every one of them.
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· Li is solved. Li contributes a component �σ̇Rσ̇i
x to the
standard representation. Since θi is a primitive c-solution
of Ni, in particular θixj ∈ η(Dj) will hold for all (xj ∈
Dj) ∈ R. Thus θiσi
x is in the semantics of the standard
representation in contradiction to the assumption.

· Pi is closed with the (c-loop) rule. Hence Ni = {C[
t1] ∈
D, . . . , C[ 
tm] ∈ D} ∪ R with size(σi
x) > size(
tj) and
therefore size(θiσi
x) = size(θ
x) > size(θi


tj). We define
θj
x

def= θi

tj . 
tj consists of constructors, variables and bot

and so θj has smaller primitive substitutes than θ. From
lemma 4.54 we know that θiC[
tj ] ≡ θi


tjTV C[
x] ∈ WT⇓ and
thus θj is a c-solution for the root.

By our choice of θ it must be that θj
x ∈ η(N) and so ∀j :
∃kj : θj
x ∈ ηΔkj (0)(N). Let k be the maximum of the kj .

Then ∀j : θi

tj ∈ ηΔk(0)(N). Since θi


tj is primitive and since

tj consists of constructors, variables and bot only, there is

a ρ with ∀j : ρ ∈ Σ(
̇tj) ∧ θi

tj ∈ Λp(ρ
̇tj). Using the fact that

θi is a c-solution of R, because it c-solves Ni, and that the
free variables in the 
ti and the variables in R are disjoint,
we conclude

θiσi
x = θ′iσR,iσi
x

∈
⋃

ρ∈Σ(
˙


tj):∀j:ρ
˙


tj�k+1
p N

ηΔk+1(0)(ρσ̇R,iσ̇i
x)

= ηΔk+1(0)(�σ̇R,iσ̇i
x where [ 
̇t1, . . . , 
̇tm] = [N, . . . , N ])

So in this case we also find a contradiction to the assump-
tion. Recall that � substitutes only those demand variables
that remain unbound by the where-expression.
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· Pi was closed with the rule (noloop). Hence there is a
normal-order reduction on the narrow path to C[
tj ] ∈ D,
but no constructor decomposition. Without loss of gener-
ality, the node Ni has constraint set {C[
t] ∈ D} ∪ R, since
σi
x ≡ 
tj for all j. We know that θ c-solves the root and that
θC[
x] ≡ θi
t�xC[
x] ≡ θiC[
t]. Then, obviously, θiC[
t] ∈ WT⇓.

Among the rules which may appear on the narrow path, only
(decomp), (reuse), (absred) and (red) can change the expres-
sion, but we do not allow (reuse), and (decomp) is excluded
by assumption, so the only change the expression may have
experienced is by (red) or (absred). Then σC[
x] +→no C[
t] ≡
σC[
x]. Since normal-order reduction is possible at all, σC[
x]
cannot be a WHNF. But then σC[
x]⇑ must hold, and there
cannot be a θi satisfying θiσiC[
x] ∈ η(D), since Bot �≤γ D.
Again we found a contradiction to the choice of θ.

· In the remaining two cases, i.e. if P was closed either with
the rule (loopdecomp) or with the rule (loopred), θi solves
Ni and with lemma 4.34 we deduce that θi solves Li as well.
An argument similar to the one for solved leaves shows that
θ
x ∈ η(N) in contradiction to the assumption.
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5 Extensions and Implementation

While the base calculi have been theoretically investigated and
in particular have been proved sound and complete, this chap-
ter introduces extensions of the calculi and discusses some of the
implementation’s aspects. The emphasis in this chapter is on vari-
ety rather than on full integration of the extensions with the base
calculi.

5.1 Multiply occurring variables

We have restricted the calculi to inputs in which each root variable
occurs exactly once. In this section we will motivate the decision
and show how analysis results for constraints with multiply oc-
curring root variables can be computed from results for similar
constraints using unique variables. We show that the result thus
computed is externally sound and complete whenever the result
used for the computation is externally sound and complete, re-
spectively.

5.1.1 Problem

It is not possible to directly solve every input constraint in which
a variable occurs more than once with our calculi.

Example 5.1. An example will illustrate this. The constraint
append xs xs ∈ Fin can lead to the tableau in figure 5.1.
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append xs xs ∈ Fin

(red)

case xs id λy.λys.(y : (append ys (y : ys))) ∈ Fin

xs �→bot

	 	 	 	 	 	 	
xs �→z:zs

�
�
�

xs �→[]











bot ∈ Fin
no!

z : (append zs (z : zs)) ∈ Fin

(name)
�
�
� [] ∈ Fin

z : (append zs (z : zs)) ∈ 〈[], Top : Fin〉

(union).1
													

(union).2

















z : (append zs (z : zs)) ∈ []
no!

z : (append zs (z : zs)) ∈ Top : Fin

(decomp)(redtop)
�
�
�

append zs (z : zs) ∈ Fin

Figure 5.1: Open tableau with multiply occurring variables

It is easily seen, that this tree could grow infinitely, at a node
append zsi (z:z1: . . .:zi:zsi) ∈ Fin assuming zsi �→ zi+1:zsi+1

and arriving after application of (name), (union).2, (decomp),
(redtop) at the constraint append zsi+1 (z:z1:. . .:zi+1:zsi+1) ∈
Fin. No global rule can be applied since there is no substitution
σ mapping σxs to zsi+1 and σxs to z : z1 : . . . : zi+1 : zsi+1.

5.1.2 Solution

If on the other hand we have analysis results for an input con-
straint using only distinct variables, we can construct solutions
for all similar constraints that differ only by having multiple oc-
currences of variables from the former. To construct the solution
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for the latter we simply intersect the components in the former
where the latter names the same variable.

Example 5.2. We can analyze append xs ys ∈ Fin and obtain
the result append xs ys ∈ Fin →CADE N for a standard repre-
sentation N = 〈[[], Fin], [Top : zs, ys] where [zs, ys] = N〉. Using
demand transformations it is easy to see that N ≡γ [Fin, Fin].
Hence a solution for append xs xs ∈ Fin is xs∩ys where [xs, ys] =
N , which is ≡γ-equivalent to Fin.

This construction only depends on the root constraints and the
standard representation and is completely independent of the ex-
pansion rules and the tree representation. Thus it is no restriction
to limit the calculi to inputs in which the variables are distinct.
We generalize the example and then prove that the construc-
tion leads to an externally sound tableau if the tableau it is
based on is externally sound. Let T be a closed tableau for root
R = {r1 ∈ C1, . . . , rk ∈ Ck} and root variables TV = (x1, . . . , xn)
(each occurring exactly once in R) and let TN be its standard
representation: N = 〈e1, . . . , es〉. Let R′ be the root of the tree
T ′

T and let R′ = {r′1 ∈ C1, . . . , r
′
k ∈ Ck} be obtained from R by

consistently renaming some variables in the ri. I.e. there is a sub-
stitution σ : TV → TV with R′ ≡ σR and we can partition the root
variables into sets Ii1 , . . . , Iim

⊆ TV where the ij differ pairwise
such that σ = {x �→ xij

|1 ≤ j ≤ m ∧ x ∈ Iij
}. We can regard the

following as the standard representation T ′
N ′ for T ′:

N ′ = [
⋂

i∈Ii1

xi, . . . ,
⋂

i∈Iim

xi] where [x1, . . . , xn] = N.

Theorem 5.3. The construction for multiply occurring variables
obtains an externally sound tableau from such a tableau.
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Proof. We need to show that θ[xi1 , . . . , xim
] ≡ θT ′

V ∈ η(N ′) im-
plies θr′i ∈ γ(Ci) for all i provided that θTV ∈ η(N) =⇒ ∀i :
θri ∈ γ(Ci).

θT ′
V ∈ ηΔi(0)(N ′)

=⇒

θT ′
V ∈

⋃
ρ̇∈Σ(TV):ρ̇TV�i

pN

ηΔi(0)(ρ̇[
⋂

i∈Ii1

xi, . . . ,
⋂

i∈Iim

xi])

=⇒

∃ρ̇ ∈ Σ(TV)∀j : θxij
∈ ηΔi(0)(

⋂
i∈Ii1

ρ̇xi) ∧ ρ̇TV �i
p N

In particular such a ρ is a primitive solution of R, thus ∀i : ρri ∈
γ(Ci) and since ri and r′i differ only by identification of some
variable names we conclude θr′i ∈ γ(Ci).

In general, γ(C)∩ γ(D) �⊆ γ(C ∩D), and thus external complete-
ness will require additional conditions.

Example 5.4. Assume InfEven = 〈Bot, Top : Top : InfEven〉
and InfOdd = 〈Top : Bot, Top : Top : InfOdd〉. A tableau T
for input c x y ∈ c InfEven InfOdd can be closed obtaining
N = 〈InfEven, InfOdd〉 as its standard representation TN . With
the above construction we obtain N ′ = x ∩ y where [x, y] =
N with N ′ ≡γ ∅ as the standard representation of c x x ∈
c InfEven InfOdd. However, θ = {x �→ repeat 1} c-solves this
root and thus the construction is not complete.

This incompleteness is much less a problem than it seems, because
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often γ(C) ∩ γ(D) ⊆ γ(C ∩ D). It should suffice if all but one of
the demands in an intersection are either finite or bot-closed.

Conjecture 5.5. Let D1, . . . , Dn ∈ ΛC . If for at most one i : Di

is neither bot-closed nor η(Di) �= γ(Di) then

γ(D1) ∩ · · · ∩ γ(Dn) = γ(D1 ∩ · · · ∩ Dn).

The criterion which the demands will have to meet for this
construction to be complete will not be provided here, and
consequently, neither will the statement of the construction’s
completeness. We conjecture that it suffices if for any of the
ij : γ(

⋂
i∈Iij

xi where [x1, . . . , xn] = N) =
⋂

i∈Iij
γ(xi where

[x1, . . . , xn] = N). (Intersection taking precedence over
where-binding.)

5.2 Local rules

5.2.1 Case

We can apply the (casep) rule if the first argument of the caseA-
expression is a variable. A generalization of this rule allows ap-
plication of this strategy to caseA-expressions in which the first
argument is not a WHNF. We could try the following generaliza-
tion:
Let Mi = {R[caseA (cA,i xi,1 . . . xi,α(cA,i)) e1 . . . e|A|] ∈ C, t ∈
cA,i Top . . . Top} ∪R and M0 = {R[caseA bot e1 . . . e|A|] ∈ C, t ∈
Bot} ∪ R

{R[caseA t e1 . . . e|A|] ∈ C} ∪ R

M0 | M1 | . . . | M|A|
(caseexp1)

But (caseexp1) is not sound.

219

5 Extensions and Implementation

Example 5.6. Let f
def= 1 : [] and let C ≡ 2 : [], then

caseList f x ( : )
∗→no 1 : [] so there cannot be a solution for

caseList f x ( : ) ∈ 2 : []. But as we see in figure 5.2 the calculi
would find solutions.

case f x (:) ∈ 2:[]

�������������

�������������

case bot x (:) ∈ 2:[],

f ∈ Bot

(absred)

case [] x (:) ∈ 2:[],

f ∈ []

(red)(red)
�
�
�

bot ∈ 2:[], f ∈ Bot

(nobot)

case (z : zs) x (:) ∈ 2:[],

f ∈ Top : Top

(red)(red)
�
�
�

x ∈ 2:[], 1:[] ∈ []

(wc)

no! . . . z : zs ∈ 2:[], 1:[] ∈ Top : Top

(decomp)(decomp)(redtop)(redtop)
�
�
� no! . . .

z ∈ 2, zs ∈ []

Figure 5.2: Unsound tableau using (caseexp1)

The analysis would thus erroneously produce Top as the result for
this input. In order to solve this problem we could e.g. use the
(reuse) rule to perform the analysis in two steps. In the first step
we analyse R[caseA x0 e1 . . . e|A|] ∈ C for a new variable x0 to
obtain a result N . In the second step we apply the (reuse) with
the result from the first, so if x0, x1, . . . , xn are the free variables in
R[caseA x0 e1 . . . e|A|] we add a successor [t, x1, . . . , xn] ∈ N,R.
This approach will cover many cases, but has the disadvantage
that completeness is lost due to the incompleteness of (reuse) and
some expansion rules are excluded for the remaining analysis if
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global rules are to be applied.
Alternatively, we could also use the fresh variables
ẋi,1, . . . , ẋi,α(cA,i) as demand variables in the demand con-
straining t instead of the Tops. As a consequence the rule (casep)
needs to appropriately substitute the demand as well as the
Λ-expression in a constraint. Additionally, the proof of external
soundness needs to be modified. Furthermore, the (reuse) rule
will need modification to reuse results for analyses involving
demand variables. The case considering a leaf closed with the
(loopred) rule will need to provide for this (caseexp) rule. This
latter approach is the one we have taken for the implementation,
thus the (caseexp) rule in the implementation is:
Let Mi = {R[caseA (cA,i xi,1 . . . xi,α(cA,i)) e1 . . . e|A|] ∈ C, t ∈
cA,i ẋi,1 . . . ẋi,α(cA,i)} ∪ R and M0 = {R[caseA bot e1 . . . e|A|] ∈
C, t ∈ Bot} ∪ R

{R[caseA t e1 . . . e|A|] ∈ C} ∪ R

M0 | M1 | . . . | M|A|
(caseexp)

5.2.2 Redundant where

There are circumstances under which we can simplify constraints
using where-expressions to not use where-expressions. This is de-
sirable because constraints without where-expressions are usually
much more easily employed in other analyses and are more com-
prehensible for the programmer.
If a contribution consists only of variables from the pattern of a
where-expression then we can replace that where-expression by
substituting the expressions into the pattern.
Let Ṫ be a demand pattern and let FV(T ) = {v1, . . . , vn}
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{[t1, . . . , tn] ∈ [v1, . . . , vn] where Ṫ = N} ∪ R

{{v1 �→ t1, . . . , vn �→ tn}T ∈ N} ∪ R
(redwhere)

Theorem 5.7. The (redwhere) rule is sound and complete.

Proof. Let τ = {v1 �→ t1, . . . , vn �→ tn}.

sound: Let θτT ∈ γ(N), then there is an ascending chain s1 ≤c

s2 ≤c . . . in η(N) with θτT ≡c

⊔c

i
si. Since T consists of

constructors, variables and bot only, by lemma 3.91 there is
some i0 such that for all i > i0 : ∃σi : si ≡c σiT . The substi-
tutes of the σi are all primitive and so by lemma 3.25 there
is a primitive demand for every one of them. We can con-
vert each σi to a substitution σ̇i which substitutes primitive
demands only and for which si ∈ Λp(σ̇iṪ ) for sufficiently
large i. All the si are in η(N) and with lemma 3.26 we
conclude σ̇iṪ �p N . So for all but finitely many of the
si : σi[v1, . . . , vn] ∈

⋃
σ∈Σ(Ṫ ):σṪ�pN η(σ[v1, . . . , vn]). From

continuity of contexts we conclude
⊔c

i
σi[v1, . . . , vn] ≡c

θτ [v1, . . . , vn] and hence θ[t1, . . . , tn] ∈ γ([v1, . . . , vn] where
Ṫ = N).

The constrained variables of the node and its predecessor M

are identical making θ a solution of M .

complete: Let θ[t1, . . . , tn] ∈ γ([v1, . . . , vn] where Ṫ = N),
then there is an ascending chain s1 ≤c s2 ≤c

. . . in η([v1, . . . , vn] where Ṫ = N) satisfy-
ing

⊔c

i
si ≡c θ[t1, . . . , tn] ≡ θτ [v1, . . . , vn]. By

lemma 3.38 η([v1, . . . , vn] where Ṫ = N) =⋃
σ∈Σ(Ṫ ):σṪ�pN η(σ[v1, . . . , vn]) and for every i there is
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5.2 Local rules

some σ̇i : σ̇iṪ �p N ∧ si ∈ η(σ̇i[v1, . . . , vn]). Furthermore,

we obtain
⊔c

i
σi[v1, . . . , vn] ≡c θτ [v1, . . . , vn] and thus

θτT ∈ γ(N). We have proved the more general case not
requiring θ to satisfy the WT⇓ condition at the root. This
implies the restricted case where θ meets this condition.

5.2.3 Focus

We can lift those components from under a where-expression
which do not have any free variables since the appropriate de-
mands cannot be affected by any substitution.
Let FV(D1) = ∅

{[s1, . . . , sn] ∈ [D1, . . . , Dn] where T = N} ∪ R

{s1 ∈ D1, [s2, . . . , sn] ∈ [D2, . . . , Dn] where T = N} ∪ R
(focus)

Theorem 5.8. The rule (focus) is sound and complete.

Proof.

sound: Let θ be a solution of the successor, so θs1 ∈ γ(D1) ∧
θ[s2, . . . , sn] ∈ γ([D2, . . . , Dn] where T = N).

There are ascending chains r1 ≤c r2 ≤c . . . in η(D1) as well
as t1 ≤c t2 ≤c . . . in η([D2, . . . , Dn] where T = N) such
that

⊔c

i
ri ≡c θs1 and

⊔c

i
ti ≡c θ[s2, . . . , sn]. The ti each

have an SCWHNF [t2i , . . . , t
n
i ]. From continuity of clubs and

theorem 2.125 it follows that [
⊔c

i
ri,

⊔c

i
t2i , . . . ,

⊔c

i
tni ] ≡c⊔c

i
[ri, t

2
i , . . . , t

n
i ] ≡c θ[s1, . . . , sn].

Since η([D2, . . . , Dn] where T = N) =⋃
σ∈Σ(T ):σT�pN η(σ[D2, . . . , Dn]) and FV(D1) = ∅ we know

that ∀i : [ri, t
2
i , . . . , t

n
i ] ∈ η([D1, . . . , Dn] where T = N), and
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since the same variables occur free in the predecessor and
in the successor, θ will be a solution of the predecessor.

complete: The reasoning is quite similar to the above. Again the
reasoning succeeds in the general case without resorting to
the WT⇓ condition and implies the more restricted case.

Example 5.9. Suggesting applications of the (focus) rule are
e.g. lifting Top, Fun or Bot out from the contribution of a
where-expression. In this way a tableau with a leaf [bot, s, t] ∈
[Bot, Top, x] where x = Inf can be expanded with bot ∈ Bot, s ∈
Top, t ∈ x where x = Inf and by application of other rules (cf. sec-
tion 3.7) with t ∈ Inf.

5.2.4 Local rules below where

The local rules from the base calculi can be applied below a
where-expression. We obtain the following rules:

{[s1, . . . , sn] ∈ [D1, . . . , Dn] where T = N} ∪ R

{[t1, s2, . . . , sn] ∈ [D1, . . . , Dn] where T = N} ∪ R
if s1 →no t1

(redw)

{[c t1 . . . tα(c), . . . ] ∈ [c C1 . . . Cα(c), . . . ] where T = N} ∪ R

{[t1, . . . , tα(c), . . . ] ∈ [C1, . . . , Cα(c), . . . ] where T = N} ∪ R

(decompw)

If there is no substitution σ such that γ(σD1) and γ(c Top . . . Top)
have elements in common, we can apply the rule:
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{[c . . . , . . . ] ∈ [D1, . . . , Dn] where T = N} ∪ R

no! {[c . . . , . . . ] ∈ [D1, . . . , Dn] where T = N} ∪ R
(wcw)

{[R[bot], . . . ] ∈ [D1, . . . , Dn] where T = N} ∪ R

{[bot, . . . ] ∈ [D1, . . . , Dn] where T = N} ∪ R
(absredw)

In the following rule let Ei
def= [Ci,D2, . . . , Dn] where T = N .

{[s1, . . . , sn] ∈ [〈C1, . . . , Cm〉,D2, . . . , Dn] where T = N} ∪ R

{[s1, . . . , sn] ∈ E1} ∪ R| . . . |{[s1, . . . , sn] ∈ Em} ∪ R

(unionw)

{[s1, s1, s3, . . . , sn] ∈ [D1, . . . , Dn] where T = N} ∪ R

{[s1, s3, . . . , sn] ∈ [D1 ∩ D2, . . . , Dn] where T = N} ∪ R
(isw)

And if the (casep) rule could be applied to a leaf {R[caseA x 
e]}∪
R attaching new leaves with edges labeled ρi, 1 ≤ i ≤ |A| we
define Li

def= ρi({[R[caseA x 
e], s2, . . . , sn] ∈ [D1, . . . , Dn] where
T = N} ∪ R).

{[R[caseA x 
e], s2, . . . , sn] ∈ [D1, . . . , Dn] where T = N} ∪ R

L0| . . . |L|A|

(casepw)

It would not make sense to define a similar rule for the (reuse) rule,
since a demand which could be used for this rule does not have
any free variables but then (focus) could be applied. We leave it
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to future research to determine a general criterion for local rules
to be applicable below where-expressions and to prove that any
local rule meeting this criterion leads to a sound or complete rule
if this original rule was sound or complete, respectively.

5.2.5 Closure

The local rules below where-expressions can lead to a joc having
only variables as arguments, constrained by a where-expression.
If this happens we can capture the information encoded in the
constraint by an additional label “loop! . . . ”.

{[y1, . . . , ym] ∈ [C1, . . . , Cm] where T = N} ∪ R

loop! τσRσ̇[x1, . . . , xn] where T = N
(jocclose)

where σ is the substitution along the path from the root to the
node with substitutes converted to demands, all the yi are vari-
ables and τ = {ẏi �→ Ci|1 ≤ i ≤ m}.

5.3 Higher-order

The treatment of higher-order expressions in the calculi as pre-
sented in sections 4.4 and 4.5 is comparatively coarse. For expres-
sions that are saturated constructor WHNFs demands are avail-
able precisely differencing each constructor, but all functions or
unsaturated CWHNFs are represented in one demand: Fun. In
this section we will see extensions allowing demands for FWHNFs
with a level of detail similar to that of demands for SCWHNFs.
In his master’s thesis, Dirk Rehberger [Reh99] elaborated these
extensions and their relation to the base calculi. Full theoretical
integration of these extensions into the base calculi remains future
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work. They will be presented here and we will discuss what is
necessary for full integration.
If we have a constraint f ∈ C and f is an application of a variable
to one or more arguments, all the rules from the base calculi can
do is either remove the constraint completely or operate on the
demand side. No rule of the base calculi will allow us to decompose
or reduce f . Recall from definition 2.36 that f may become an
FWHNF by appropriate substitution, but it may also become an
SCWHNF. We employ the extension to ∀→-demands, which we
will show to be able to handle this case.

5.3.1 Demands

Up to now the only possibility to represent higher-order
Λ-expressions was by the demand Fun. We will now introduce
demands allowing a more precise analysis of constraints involving
higher-order expressions.
The syntax of demand expressions in definition 3.1 is extended by
the productions

demand expr E′ → F

∀ − demand F → E′
1

∀→ E′
2

Example 5.10. This is quite an expressive extension, for which
there are some intuitive examples.

1. A function, f , which maps the (data) value T ∈ Λ consist-
ing of constructors, bot and FWHNFs into γ(C), is in the
concretization of the demand Ṫ

∀→ C.

2. Demands containing higher-order functions in their con-
cretization can be built as A

∀→ B if A or B contain
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∀-demands themselves. The former case will, however,
be precluded due to the already mentioned reasons: we
want to define η→(·) with a least fixpoint, and if Δ→(·)
is monotonous we can be sure of that fixpoint’s existence. If
its existence could be ensured without requiring Δ→(·) to be
monotonous, ∀-demands nested in the left of such demands
could be reconsidered.

Next we will present a conservative extension, η→
ρ , of the func-

tion ηρ, which will also map the ∀-demands to sets of primitive
expressions, according to the intuition above.

Definition 5.11 (η→
ρ ). The definition of η→

ρ is identical to that of
ηρ, where every occurrence of ηρ is replaced by η→

ρ . Additionally,
we define

η→
ρ (C1

∀→ C2)
def= {t|∀u ∈ η(C1) : (t u) ∈ η→

ρ (C2)} (5.1)

We have to use η for C1 in this definition in order to ensure that
our choice for proving the existence of the fixpoint works. If we
would allow ∀-demands here by using η→

ρ (·), we would lose mono-
tonicity of Δ→(·) and would consequently have to prove the exis-
tence of a fixpoint for a non-monotonous operator.
We state without proof the following lemma.

Lemma 5.12. Lemma 3.38 remains valid if η(·) is replaced by
η→(·).

5.3.2 Splitting applications

The most simple rule for the higher-order extensions splits an
application of a variable to some expressions into two constraints,
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one for the last argument and one for the higher-order expression
resulting from removing that last argument of the application.

{g t ∈ C} ∪ R

{t ∈ y, g ∈ y
∀→ C} ∪ R

, y is a fresh demand variable (split)

An intuitive interpretation of the resulting leaf is that t may be
constrained by any demand, but whatever that demand may be,
g needs to map any element in the concretization of that demand
to an element of the concretization of the original demand.

Demand variables

The rule for splitting applications introduces demand variables
into the constraints in order to relate the constraints for g and t.
It is easy to see that this forces us to allow any node including the
root of the tableau to use such demand variables. We will have
to modify the definition of solution. This will be a conservative
extension, i.e. if no demand variables are present the new and old
definitions coincide.

Definition 5.13 (solution in the presence of demand variables).

Let T be a tableau, let θ be a ground substitution and let σ

be the (idempotent) substitution along the path to a node M =
{s1 ∈ C1, . . . , sn ∈ Cn}. Furthermore, let y1, . . . , yr be all the
demand variables appearing in M . θ is a solution of the node M ,
iff θ[s1, . . . , sn] ∈ γ([C1, . . . , Cn] where y1 = Top; . . . ; yr = Top),
and dom(θ) ⊇ CV(M).

Binding the demand variables in the where-expression serves the
purpose of ensuring that each use of a variable will be substituted
with the same primitive demand expression.

229

5 Extensions and Implementation

Remark 5.14. Demand variables are introduced in pairs by the
(split) rule. If a demand variable is initially introduced two con-
straints will use it. The same demand variable will not be intro-
duced into any other constraint, since whenever a demand variable
is introduced it will be a fresh one. Lastly, whenever a demand
variable is substituted, all its occurrences are substituted.

Theorem 5.15. The rule (split) is internally sound.

Proof. We need to show that every substitution solving the new
leaf also solves the old one. So let θ be a solution of {t ∈ y, g ∈
y

∀→ C, s1 ∈ C1, . . . , sn ∈ Cn}, then θ[t, g, s1, . . . , sn] ∈ γ([y, y
∀→

C,C1, . . . , Cn] where y = Top; . . . ). (Here the ellipses stand for
other potentially present variables.)
As in the other soundness proofs, we show soundness with re-
spect to primitive solutions and obtain soundness for the rule by
continuity arguments.
So let

θ[t, g, s1, . . . , sn]

∈ η→([y, y
∀→ C,C1, . . . , Cn] where y = Top; . . . )

=⇒ (lemma 5.12)

∃σ ∈ Σp : θ[t, g, s1, . . . , sn]

∈ η→(σ[y, y
∀→ C,C1, . . . , Cn] where . . . )

=⇒ (definition 5.11)

∃σ ∈ Σp : θ[g t, s1, . . . , sn]

∈ η→(σ[C,C1, . . . , Cn] where . . . )
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6 Examples and Applications

This chapter is a collection of various examples and applications.
Among the examples are a motivation for a heuristic keeping the
tableau size down in an implementation, a demonstration of the
advantages of the (reuse) rule, one demonstrating the ability of the
base calculi to handle higher-order expressions in specific cases, ex-
amples exhibiting the limitations of the calculi, and a larger exam-
ple analyzing an encoding of the signed Peano numbers with hy-
perstrict arithmetic operations. The applications include a safety
analysis, i.e. a search for an answer to “Can this program crash
due to a software defect?”. Some pre- and post-conditions from
the calculi of Hoare, Dijkstra and Baber can be expressed as de-
mands and thus for some post-conditions an application of the
calculi is finding a pre-condition. Furthermore, absence and need
are among the analyses to which the calculi are applied as well as
checking the requirements for the safety of an optimization.

6.1 Examples

6.1.1 Reuse

Example 6.1. An analysis which would not lead to a closed
tableau without the (reuse) rule is the analysis of concat xs ∈
Inf, for which we obtain the tableau in figure 6.1.
In the nodes labeled foldr (++) [] zs ∈ Inf and
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concat xs ∈ Inf

(red)

foldr (++) [] xs ∈ Inf

(red)

case xs []

λz.λzs.(z ++ (foldr (++) [] zs)) ∈ Inf

x �→ bot

� � � � � � � �

x �→ z : zs�
�
�

x �→ []











bot ∈ Inf z ++ (foldr (++) [] zs) ∈ Inf

(red)

no! [] ∈ Inf

case z foldr (++) [] zs

λz1.λzs1.(z1 : (zs1 ++ (foldr (++) [] zs))) ∈ Inf

z �→ bot

� � � � � � � �

z �→ z1 : zs1�
�
�

z �→ []

��������

bot ∈ Inf
z1 : (zs1 ++

(foldr (++) [] zs)) ∈ Inf

� � � � � � � � �
(name)(union).2(decomp)(redtop)

�
�
�

foldr (++) [] zs ∈ Inf

. . . zs1 ++ (foldr (++) [] zs) ∈ Inf

Figure 6.1: Open tableau for concat xs ∈ Inf

zs1 ++ (foldr (++) [] zs) ∈ Inf we cannot apply global
rules because the top node of the loop would need to be one from
below the tableau’s root. The one directly below the root for
the former, and the one directly below the first case branch for
the latter. If we analyze generalizations of the two constraints
separately, i.e. if we analyze foldr (++) [] zs ∈ Inf and
xs ++ ys ∈ Inf we can apply global rules in both cases. We will
present the analysis of xs ++ ys ∈ Inf in figure 6.2.

Collecting the result from this tableau, T , we obtain N =
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xs ++ ys ∈ Inf

(red)

case xs ys

(λz.λzs.z : (zs ++ ys)) ∈ Inf

xs �→ bot
�����������

xs �→ z : zs

xs �→ []
�����������

case bot ys

(λz.λzs.z : (zs ++ ys)) ∈ Inf

(absred)

case [] ys

(λz.λzs.z : (zs ++ ys)) ∈ Inf

(red)

bot ∈ Inf

(union).1

case (z : zs) ys

(λz.λzs.z : (zs ++ ys)) ∈ Inf

(red)

ys ∈ Inf

bot ∈ Bot z : (zs ++ ys) ∈ Inf

(name)

z : (zs ++ ys) ∈ 〈Top : Inf, Bot〉

(union).1 (union).2
������������

z : (zs ++ ys) ∈ Top : Inf

(decomp)

z : (zs ++ ys) ∈ Bot
no!

z ∈ Top, zs ++ ys ∈ Inf

(redtop) (loop)

zs ++ ys ∈ Inf
loop! [z : zs, ys] where [zs, ys] = N

Figure 6.2: Closed tableau for xs ++ ys ∈ Inf
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〈[Bot, Top], [[], Inf], [Top : zs, ys] where [zs, ys] = N〉 as its stan-
dard representation TN .

Note that CADE’s rules suffice to close this tableau and hence it
is externally sound and complete.

In order to use this result in the remaining analysis, we
will simplify it according to example 3.116. So N ≡γ

〈[Inf, Top], [Fin, Inf]〉.
Now we have set everything up for the analysis of
foldr (++) [] zs ∈ Inf presented in figure 6.3.

foldr (++) [] xs ∈ Inf

(red)

case xs []

(λy.λys.y ++ (foldr (++) [] ys)) ∈ Inf

xs �→ bot

� � � � � � �

xs �→ y : ys�
�
�

xs �→ []

������

bot ∈ Inf

. . .(redbot)
�
�
� y ++ (foldr (++) [] ys) ∈ Inf

(reuse)

[] ∈ Inf

. . .
�
�
�

∅ [y, foldr (++) [] ys] ∈ NappInf

(name)

[] ∈ Inf
no!

[y, foldr (++) [] ys] ∈ 〈[Inf, Top], [Fin, Inf]〉

[y, foldr (++) [] ys] ∈ [Inf, Top]

(union).1
���������

(decomp)(redtop)
�
�
� [y, foldr (++) [] ys] ∈ [Fin, Inf]

(union).2
���������

(decomp)(loop)
�
�
�

y ∈ Inf
y ∈ Fin, foldr (++) [] ys ∈ Inf

loop! Fin : ys where ys = N

Figure 6.3: Closed tableau for foldr (++) [] xs ∈ Inf
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From the tableau in figure 6.3, T ′, we collect the standard repre-
sentation T ′

N ′ defining N ′ = 〈Bot, Inf : Top, Fin : ys where ys =
N ′〉.

The (reuse) rule is necessary in the sense that without it or similar
rules this tableau could not have been closed.

6.1.2 Expanding demand names late

This section addresses one of many possible heuristics that affect
an implementation’s efficiency. Much more work in this direction
is needed to arrive at a production quality implementation of ADE
and CADE.
It seems to be beneficial to the size of the tableau to delay demand
name expansion.
A good example where the benefits can be seen is the analysis of
f x y ∈ Fin where Fin = 〈[], Top:Fin〉 and f is defined as
follows:

f x y = case x y (f’ y)

f’ x n y = f x y

The analysis proceeds as shown in figure 6.4.
Expanding the demand name, Inf, early and decomposing the
union, gives a tableau with essentially twice as many nodes.

6.1.3 Simple higher-order

There are some higher-order constraints which our calculi will an-
alyze without even applying the higher-order rules from section
5.3. This is possible because due to the “analyze-by-need” char-
acter of the calculi an intermediate higher-order expression may
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f x y ∈ Fin

(red)

case x y (f’ y) ∈ Fin

x �→ []

x �→ z : zs
��������������������

x �→ bot

��������������������

case [] y (f’ y) ∈ Fin

(red)

case bot y (f’ y) ∈ Fin

(absred)(name)
�
�
� y ∈ Fin case (z : zs) y (f’ y) ∈ Fin

(red)

bot ∈ 〈[], Top : Fin〉

(union).2
�
�
�

(union).1

������� f’ y z zs ∈ Fin

(red)(c-loop)
�
�
�

bot ∈ Top : Fin
no!

bot ∈ []
no!

f y zs ∈ Fin
loop! [z : zs, y] where [y, zs] = N

Figure 6.4: Late name expansion to keep tableau small

e.g. be constrained by Top and can in this case be eliminated by
the (redtop) rule. An example analysis can be found in figure 6.5.

6.1.4 Negative Examples

In this section we will discuss some examples on which our im-
plementation fails to produce the complete result. The first is
one that might indeed be remedied by formulating the initial con-
straint differently.

Flattening Trees

Let a data type with two constructors for trees be given: one for
the empty tree and one for a binary branch node containing data.
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map f xs ∈ Inf

(red)

case xs []

λz.λzs.(f z : map f zs) ∈ Inf

xs �→ z : zs�
�
�

xs �→ []

� � � � � �

xs �→ bot

�������

[] ∈ Inf
no!

f z : map f zs ∈ Inf

(name)

bot ∈ Inf

f z : map f zs ∈ 〈Bot, Top : Inf〉

f z : map f zs ∈ Top : Inf

(union).2

(decomp)

f z : map f zs ∈ Bot

(union).1
��������������

(nobot)

f z ∈ Top, map f zs ∈ Inf

(redtop)(c-loop)
�
�
�

f z : map f zs ∈ Bot
no!

map f zs ∈ Inf

loop! [f, Top : zs] where [f, zs] = NmapInf

≡ Top : zs where zs = NmapInf

bot ∈ Top : Inf
no!

(name)
(union).2

�
�
�

bot ∈ Bot

(name)
(union).1

�
�

�
�

�

(redbot)

∅

Figure 6.5: Simple higher-order handled by base calculi

The function flatten maps such trees to the list of their data
corresponding to an in-order traversal of the tree.

flatten ts = caseTree ts [] flatc

flatc x t1 t2

= caseTree t1 (x : (flatten t2)) (flatc’ x t2)
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flatc’ x t2 y t’1 t’2

= flatten (Br y t’1 (Br x t’2 t2))

An open tableau from this analysis is shown in figure 6.6.

flatten ts ∈ Bot

(red)

caseTree ts [] flatc ∈ Bot

ts �→ Leaf
� � � � � � � �

ts �→ Br x t1 t2�
�
�

ts �→ bot










[] ∈ Bot
no!

flatc x t1 t2 ∈ Bot

(red)

bot ∈ Bot

(redbot)

caseTree t1 (x : (flatten t2))

(flatc’ x t2) ∈ Bot

t1 �→ bot

� � � � � � � �

t1 �→ Br y t′1 t′2�
�
�

t1 �→ Leaf
�������

∅

bot ∈ Bot

(redbot)

flatc’ x t2 y t′1 t′2 ∈ Bot

(red)

x : flatten t2 ∈ Bot
no!

∅ flatten (Br y t′1 (Br x t′2 t2)) ∈ Bot

Figure 6.6: Open tableau for flatten ts ∈ Bot

No loop rule can be applied: the condition size(σ
x) > size(
t) is
violated and so is σ
x ≡ 
t.
Formulated as above, flatten is one of the simplest examples for
which a simple order of expression sizes is insufficient to close the
tableau and for which the size of different arguments will need
to be weighed differently, e.g. giving the first weight two and the
second weight one. In our prototypical implementation we use
one simple built-in size function, but this could be replaced by
expression orders specifically tailored for individual analyses. This
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approach has successfully been explored for termination analysis
of non-strict functional programming languages in [Pan97] and for
termination analysis of strict functional languages in e.g. [Gie95].
But flatten may also be formulated as below.

flatten ts = caseTree ts [] flatc

flatc x t1 t2 = (flatten t1) ++ ([x] ++ (flatten t2))

In the analysis of flatten ts ∈ Bot we will need the results of the
analysis for append xs ys ∈ Bot. Refer to figure 6.7 for a closed
tableau from this analysis.

xs ++ ys ∈ Bot

(red)

case xs ys

(λz.λzs.z : (zs ++ ys)) ∈ Bot

xs �→ bot
�����������

xs �→ z : zs

xs �→ []
�����������

case bot ys

(λz.λzs.z : (zs ++ ys)) ∈ Bot

(absred)

case [] ys

(λz.λzs.z : (zs ++ ys)) ∈ Bot

(red)

bot ∈ Bot

(redbot)

case (z : zs) ys

(λz.λzs.z : (zs ++ ys)) ∈ Bot

(red)

ys ∈ Bot

∅ z : (zs ++ ys) ∈ Bot

(wc)

z : (zs ++ ys) ∈ Bot
no!

Figure 6.7: Closed tableau for append xs ys ∈ Bot

The standard representation of this tableau is NappBot =

239

6 Examples and Applications

〈[Bot, Top], [[], Bot]〉.
Now we are prepared for the analysis of flatten ts ∈ Bot as
presented in figure 6.8.

flatten ts ∈ Bot

(red)

casetree ts [] flatc ∈ Bot

ts �→ Leaf

� � � � � � � �

ts �→ Br x t1 t2�
�
�

ts �→ bot












[] ∈ Bot
no!

flatc x t1 t2 ∈ Bot

(red)

bot ∈ Bot

(redbot)

(flatten t1)

++ ([x] ++ (flatten t2)) ∈ Bot

(reuse)(name)
�
�
�

∅

[flatten t1,

[x] ++ (flatten t2)] ∈ 〈[[], Bot], [Bot, Top]〉

flatten t1 ∈ [],

[x] ++ (flatten t2) ∈ Bot

(union).1(decomp) ���

(reuse)

flatten t1 ∈ Bot,

[x] ++ (flatten t2) ∈ Top

(union).2(decomp)� � �

(redbot)(c-loop)

. . . , [[x], flatten t2] ∈ NappBot

(name)

flatten t1 ∈ Bot
loop! Br x t1 t2 where t1 = N

. . . , [[x], flatten t2] ∈ 〈[Bot, Top], [[], Top]〉

. . . , [x] ∈ Bot, flatten t2 ∈ Top
no!

(union).1(decomp)

�
�
�

. . . , [x] ∈ [], flatten t2 ∈ Top
no!

(union).2(decomp)
� � � � � � � �

Figure 6.8: Closed tableau for flatten ts ∈ Bot
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The result of this analysis is flatten ts ∈ Bot →ADE N where
N = 〈Bot, Br x t1 t2 where t1 = N〉. This result could be short-
ened to FL = 〈Bot, Br Top FL Top〉 provided the demand name
FL is previously unused.

Missing rules

We present a tableau which one might hope to obtain for an anal-
ysis involving copy. The calculi are missing a rule to produce this
tableau and we give the intuition for this missing rule.
The function copy can be defined as below

copy n x = take n (repeat x)

take n x = case n [] (take’ x)

take’ x m = case x [] (take’’ m)

take’’ m x y = x:(take m y)

We want to analyze copy n x ∈ Inf so we will analyze
take n xs ∈ Inf first and present closed tableau of the latter
analysis in figure 6.9.
The result is

NtakeInf = 〈[Bot, Top], [Succ Top, Bot],

[Succ r, ys ] where [r, ys ] = NtakeInf〉.

We use this result in the hypothetical tableau for copy n x ∈ Inf

shown in figure 6.10.
There it can be seen that we would have needed to start with root
[n, repeat x] ∈ NtakeInf in order to close loops with the root.
Obviously, this would be easy to fix. Much harder, though surely
not impossible to fix, is the missing rule above the (redwhere)
rule. Intuitively, this rule would need to “commit” a free variable
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take n xs ∈ Inf)

(red)

case n [] (take’ xs) ∈ Inf

n �→ Succ m

n �→ Zero

�������������

n �→ bot

�������������

case bot [] (take’ xs) ∈ Inf

(absred). . .
�
�
� case Zero [] (take’ xs) ∈ Inf

(red). . .
�
�
�

bot ∈ Bot

(redbot)

case (Succ m) [] (take’ xs) ∈ Inf

(red)

[] ∈ Inf
no!

∅ take’ xs m ∈ Inf

(red)

case xs [] (take’’ m) ∈ Inf

xs �→ bot

� � � � � � �

xs �→ z : zs�
�
�

xs �→ []










bot ∈ Inf

(name). . .
�
�
� take’’ m z zs ∈ Inf

(red)

[] ∈ Inf
no!

∅ z : (take m zs) ∈ Inf

z : (take m zs) ∈ Bot
no!

(name)(union).1
�

�
�

�
z : (take m zs) ∈ Top : Inf

(name)(union).2
�

�
�

�

(decomp)(c-loop)
�
�
�

take m zs ∈ Inf
loop!

[Succ m, z : zs] where [m, zs] = NtakeInf

Figure 6.9: Closed tableau for take n xs ∈ Inf
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in the expression of a constraint to be formed with a particular
constructor, much as the (casep) does for the variable being cased.
Here, the first component of any expression in the concretization
of [Succ r, ys ] where [r, ys ] = NtakeInf will be formed with the
Succ-constructor so the variable n can be committed to have Succ
as its top level constructor.

6.2 Primitives

This section considers a larger example demonstrating analyses
that can be performed by our calculi as well as some that go
beyond their limits. This example will be the integers, Z, and
their arithmetic operations. Commonly, integers are provided as
a primitive data type in programming languages. The arithmetic
operations are usually hyper-strict and the primitive data type
covers only an interval of the integers.
This example uses the syntax of our prototypical implementation,
which is different from the syntax of Λ. In particular, it uses
super-combinators. It is very similar to the syntax of [Sch94,
PJL91]. As was noted in section 2.5.8, super-combinators can
straightforwardly be transformed into Λ-expressions.
The integers are encoded as signed Peano numbers. Figure 6.11
shows the definitions for Peano numbers.
Based on these definitions we define the functions for the signed
Peano numbers in figure 6.12.
The calculi are able to analyse e.g. addI x y ∈ 2 where 2 is a
shorthand notation for Pos (Succ (Succ Zero)). In this anal-
ysis some analysis results from other analyses need to be reused.
These other analyses are: subPI x y ∈ 2 and addP x y ∈
Succ (Succ Zero). The analysis of the latter furthermore reuses
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copy n x ∈ Inf)

(red)

take n (repeat x) ∈ Inf

(reuse)

[n, repeat x] ∈ NtakeInf

(name)

[n, repeat x] ∈ 〈[Bot, Top], [Succ Top, Bot],

[Succ r, ys] where [r, ys] = NtakeInf〉

(union).1

												

(union).3

(union).2














[n, repeat x] ∈ [Bot, Top]

(decomp)

[n, repeat x] ∈ [Succ Top, Bot]

(decomp)

n ∈ Bot,

repeat x ∈ Top

(redtop)

[n, repeat x] ∈ [Succ r, ys] where

[r, ys] = NtakeInf

(?)

n ∈ Succ Top,

repeat x ∈ Bot

(red)(wc)
�
�
�
�

n ∈ Bot
[r, repeat x] ∈ [r, ys] where

[r, ys] = NtakeInf

(redwhere)

no! . . .

[r, repeat x] ∈ NtakeInf

Figure 6.10: Missing rule in tableau for copy n x ∈ Inf

the result of addP x y ∈ Succ Zero. For this last analysis we do
not provide a closed tableau, but state its result NaddPSuccZero =
〈[Zero, Succ Zero], [Succ Zero, Zero]〉. A closed tableau for the
analysis of addP x y ∈ Succ (Succ Zero) is shown in figure 6.13,
one for subPI x y ∈ 2 in figure 6.14, and one for addI x y ∈ 2 in
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Zero = Cons{1,0};
Succ = Cons{2,1};

strictPeano f x

= case x of

<1> -> f Zero;

<2> y -> f (Succ y);

hsPeano x

= case x of

<1> -> Zero;

<2> y -> strictPeano Succ (hsPeano y);

addP x y

= case x of

<1> -> y;

<2> z -> Succ (addP z y);

Figure 6.11: Peano numbers and their operations

figure 6.15.
It seems natural to analyze add x y ∈ 2 and figure 6.16 shows an
open tableau from this analysis.
The bottom leaf in this figure is {hsPeano r ∈
Succ ż, hsPeano s ∈ Succ ȧ, [z, a] ∈ [. . . ] where . . . }.
Even with all extensions from chapter 5 a tableau for
e.g. hsPeano r ∈ Succ ż cannot be closed as is shown in
figure 6.17.
At first it may seem that only the presence of the demand variable
prevents closing the paths and that if this variable would be bound
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Neg = Cons{3,1};
Pos = Cons{4,1};

subPI x y

= case x of

<1> -> (case y of

<1> -> Pos Zero;

<2> s -> Neg y);

<2> r -> case y of

<1> -> Pos x;

<2> s -> subPI r s;

addI x y

= case x of

<3> r -> (case y of

<3> s -> Neg (addP r s);

<4> s -> subPI s r);

<4> r -> case y of

<3> s -> subPI r s;

<4> s -> Pos (addP r s);

subI x y

= case y of

<3> s -> addI x (Pos s);

<4> s -> case x of

<3> r -> Neg (addP r s);

<4> r -> subPI r s;

hsIntP x

= case x of

<3> r -> strictPeano Neg (hsPeano r);

<4> r -> strictPeano Pos (hsPeano r);

add x y

= addI (hsIntP x) (hsIntP y);

sub x y

= subI (hsIntP x) (hsIntP y);

Figure 6.12: Operations on signed Peano numbers
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add x y ∈ Succ (Succ Zero)

(red)

case x of

Zero -> y

Succ z -> Succ (addP z y) ∈ Succ (Succ Zero)

x �→ bot

� � � � � �

x �→ Succ z�
�
�
�
�
�
�

x �→ Zero

������

bot ∈ Succ (Succ Zero)
no!

y ∈ Succ (Succ Zero)

Succ (addP z y) ∈ Succ (Succ Zero)

(decomp)

addP z y ∈ Succ Zero

(reuse)

[z, y] ∈ NaddPSuccZero

Figure 6.13: Closed tableau for addP x y ∈ Succ (Succ Zero).

to an appropriate constructor expression a result for the analysis
could be obtained. But the two nodes {y ∈ Zero, Zero ∈ ċ}
and {hsPeano y ∈ Succ ż, Succ z ∈ ċ} would require different
bindings for the demand variable ċ and it is not at all obvious
how to obtain solutions for the root constraint in this situation.
How to proceed in this situation will need to be clarified by future
work.

Alternatively, one could try to analyse the root constraints
{hsPeano r ∈ Succ ż, hsPeano s ∈ Succ ȧ, [z, a] ∈ NsubPI2} and
in this analysis a (commit) rule as intuitively motivated in sec-
tion 6.1.4 would be needed to arrive at a node {hsPeano rr ∈
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Figure 6.14: Closed tableau for subPI x y ∈ 2.
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Figure 6.15: Closed tableau for addI x y ∈ 2.
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add x y ∈ 2

(red)(reuse)
�
�
�

[hsIntP x, hsIntP y] ∈ NaddI2

� � � � � � � � � �














(name)(union)�
�
�

[hsIntP x, hsIntP y] ∈ [0, 2]

(decomp)(reuse)2

�
�
�
�

[hsIntP x, hsIntP y] ∈
[1+r, 1+s] where [r, s] = NsubPI2

(redw)

. . .

[x, y] ∈ [0, 2]

[case x of

Neg r -> strictPeano Neg (hsPeano r)

Pos r -> strictPeano Pos (hsPeano r), hsIntP y] ∈ . . .

x �→ Pos r
�
�
�

��������

[strictPeano Pos (hsPeano r), hsIntP y] ∈ . . .

(redw)

. . .

[case (hsPeano r) of

Zero -> Pos Zero

Succ z -> Pos (Succ z), hsIntP y] ∈ . . .

(caseexpw)(redw)
�
�
�

��������

hsPeano r ∈ Succ ż, [Pos (Succ z), hsIntP y] ∈ . . .

�
�
�

�����������
. . .

hsPeano r ∈ Succ ż,

hsPeano s ∈ Succ ȧ,

[z, a] ∈ [r, s] where [r, s] = NsubPI2

(redwhere)(name)(union)
�
�
�

���������

. . .

hsPeano r ∈ Succ ż,

hsPeano s ∈ Succ ȧ,

[z, a] ∈ [Succ r, Succ s] where [r, s] = NsubPI2

. . .

Figure 6.16: Open tableau for add x y ∈ 2.
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hsPeano x ∈ Succ ċ

(red)

case x of

Zero -> Zero

Succ y -> strictPeano Succ (hsPeano y) ∈ Succ ċ

x �→ Succ y

�
�
�

x �→ bot

� � � � � �
x �→ Zero

������

bot ∈ Succ ċ
no!

strictPeano Succ (hsPeano y) ∈ Succ ċ

(red)

Zero ∈ Succ ċ
no!

case (hsPeano y) of

Zero -> Succ Zero

Succ z -> Succ (Succ z) ∈ Succ ċ

(caseexp)
�
�
�

� � � � � � �

������

bot ∈ Succ ċ
no!

hsPeano y ∈ Succ ż,

Succ (Succ Zero) ∈ Succ ċ

(decomp)

hsPeano y ∈ Zero,

Succ Zero ∈ Succ ċ

(reuse)
(decomp)�

�
�

hsPeano y ∈ Succ ż, Succ Zero ∈ ċ y ∈ Zero, Zero ∈ ċ

Figure 6.17: Open tableau for hsPeano x ∈ Succ ċ.

Succ żz , hsPeano ss ∈ Succ ȧa, [zz , aa] ∈ NsubPI2}. Here also,
future work will be necessary, since currently global rules are ap-
plicable only if the root is a single constraint.

6.3 Applications

Demand analysis is a versatile tool. A variety of analyses can be
performed by encoding into an appropriate constraint for demand
analysis.

251

6 Examples and Applications

6.3.1 Evaluation degree

Some demands can be interpreted as a degree of evaluation and
then ADE and CADE determine the evaluation transformers of a
given Λ-expression. There are two essentially differing possibilities
for this interpretation.
We can interpret a demand as the degree of evaluation neces-
sary to determine that a closed Λ-expression is a member of the
demand’s concretization. Then e.g. 〈True, False〉 stands for an
evaluation to WHNF if {True, False} = Bool ∈ A. We might
be tempted to force evaluation to WHNF if we find the demand
for an argument of an application to be 〈True, False〉. However,
ADE is externally sound but not always externally complete and
the complete demand for the argument might be Top and no eval-
uation would be necessary, i.e. the semantics of the program might
be changed based on this result. Thus this interpretation is safe
only for CADE, but not for ADE.
The dual interpretation, i.e. that a demand stands for the degree
of evaluation necessary to determine that a closed Λ-expression
is not a member of the demand’s concretization, is safe both for
ADE and for CADE. Then Bot stands for evaluation to WHNF,
Top stands for no evaluation at all since all closed Λ-expressions
are members of its concretization, and Inf = 〈Bot, Top : Inf〉
stands for evaluation to WHNF as well as evaluation to the same
degree as the original expression for the tail if that WHNF uses
the :-constructor, i.e. spine-strict evaluation. With this inter-
pretation demands such as True do not correspond to evaluation
degrees since none of the expressions ≡c-equivalent to bot is in the
concretization of True and no amount of evaluation can be sure
to recognize all non-terminating computations. Furthermore, this
allows interpretation of demands such as Bot : Top as a “delayed
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evaluation degree”: while no evaluation degree can be associated
with the entire demand, as soon as an expression has been evalu-
ated to s1 : s2 its head needs to be evaluated to WHNF. Not all
approaches to strictness analysis are able to represent this kind of
strictness, cf. [BHA85, Pat96].

Example 6.2. In section 6.1.1 we analyzed foldr (++) [] zs ∈
Inf to obtain the standard representation T ′

N ′ defining N ′ =
〈Bot, Inf : Top, Fin : ys where ys = N ′〉.
How can we interpret this result with respect to the degrees of
evaluation of the expressions?
We have already interpreted Inf as spine-strict evaluation. N ′

can be interpreted as evaluation to WHNF, and, if a :-constructor
results, spine-strict evaluation of its head without evaluation of its
tail. As soon as the spine-strict evaluation of this head terminates
due to a []-constructor in the head’s spine the tail of the entire
expression needs to be evaluated just as this entire expression was
evaluated. Intuitively, it is clear that all the lists contained in
the outer list can be evaluated spine-strictly (possibly in parallel)
since every single one of them needs to be finite for the spine-strict
evaluation of the entire application to terminate.

Example 6.3. As an example involving jocs consider the
analysis of append xs ys ∈ Inf which demands N =
〈[Bot, Top], [[], Inf], [Top : zs, ys] where [zs, ys] = N〉 com-
pletely. We have already shown this to be ≡γ-equivalent to
〈[Inf, Top], [Fin, Inf]〉 in example 3.116.
How can we conclude that both arguments can be evaluated spine-
strictly from this analysis result? Since Top is present as the
right component of a joc having Inf as its left component, we can
conclude that no evaluation of ys needs to be performed as long
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as xs can be evaluated spine strictly to :-constructors and this
evaluation continues. As soon as [] is encountered as the tail, xs
is in Fin and ys needs to be evaluated spine-strictly.

6.3.2 Runtime errors

There are different ways to conceive of runtime errors as in the
definition of

head = λxs.caseList xs (error "head of empty list") K.

One can either identify program errors with bot or one can iden-
tify a program error as data. Each possibility reflects a different
perspective from which to view the program.
In the former case one would define

error x = bot

or

head xs = caseList xs bot K.

This reflects the intuition, that an error message and program
abort does not provide any, at least not any desired, information.
For the latter case one would transform the program so that an
application of error evaluated to some unique data value. This
can be achieved by adding a constructor cA,error for every type
constructor A, and reflects the intuition, that an error message
and program abort do in fact provide more information than a
program which loops and of which we do not know if it will even-
tually terminate.
From both perspectives we can derive sensible information even
from a simple constraint such as f x ∈ Bot, which we will now
show how to interpret.
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We may distinguish some cases for the result of the analysis. It
may be that for the result, C, we have either C ≡γ ∅, C ≡γ

Bot, C �≡γ Bot but Bot ≤γ C, or Bot �≤γ C and C �≡γ ∅. If we
identify runtime errors with bot and obtain ∅ from a complete
analysis, we know that neither runtime error nor non-termination
will be encountered no matter what the input is. I.e. the function
is total and its argument is absent. Obtaining C ≡ Bot from the
analysis, we can conclude that a runtime error or non-termination
in the evaluation of the argument will result in a runtime error
or non-termination of the application. If this result is complete,
no runtime error or non-termination will occur unless it occurs in
the evaluation of the argument. This then means the programmed
function is total (and strict).
Only the two results C ≡γ ∅ and C ≡γ Bot from a complete
analysis of the above constraint are acceptable. In other words:
If, for example, our analysis obtains a complete result for which
0 ≤γ C then there is a defect in the function being analyzed,
because there are data values for which this function introduces
non-termination or a runtime error.
While surely only very simple defects can be detected by such
analyses, these simple defects do have farreaching effects. We cite
the incident of the USS Yorktown here only to demonstrate just
how farreaching these effects can be. We do not, however, want
to imply that the incident would have been avoided by the use of
one of our analyses, but merely state that an analysis could have
helped detect this particular defect. The example is arbitrarily
chosen, there would have been a number of other well documented
similar incidents to choose from e.g. [Kor, LLF+96, Bab97].

Example 6.4. The USS Yorktown represents one of the first so-
called smart ships, on which information technology is intensively
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employed in order to reduce crew. Obviously, in such an envi-
ronment warranting optimal functionality of the entire system re-
quires all components to maintain functionality.
It is much less obvious that a failure in one component may cause
the entire network to crash.
In the case of the Yorktown there are different accounts of what
happened. All agree that a 0 was entered manually (as opposed
to being read by a sensor) in order to correct a valve’s state rep-
resented as open in the system when in reality it was closed. The
accounts are quite vague about what happened as a consequence,
Vice Adm. Henry Giffin stated that “the Yorktown lost control
of its propulsion system, because its computers were unable to
divide by the number zero [. . . ] That caused the database to over-
flow and crash all LAN consoles and miniature remote terminal
units [workstations, the author]” according to [Sla98].
In principle we have the same problem here as for head: for some
particular value of the argument the program exhibits a runtime
error and aborts. If we have identified runtime errors and bot our
calculi will find the result head x ∈ Bot →ADE 〈Bot, []〉. As will
be clear by now, this says that head will either not terminate or
terminate with an error on an argument evaluating to []. From
this analysis result to the insight that in the consequence of an
input of 0 or [] respectively, the entire system will cease to work
there are many steps. In many of them analysis results like the
above will help.

If we obtain a result C which is not bot-closed then the function
being analyzed may introduce a runtime error or non-termination
even if such behavior is not present in the argument.
If on the other hand we decide not to identify a runtime error
with bot, we have a slightly different picture. For the case in
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which C is not bot-closed, but is a complete analysis result, we
know that there are cases in which for data values as arguments
the application does not have a WHNF. Such cases are quite
likely programming errors. If we have added constructors to stand
for runtime errors we can also analyze, say head xs ∈ cList,error
and find the result []. This approach is more precise since non-
termination and runtime errors can be distinguished.

6.3.3 Hoare/Dijkstra/Baber

We will now relate our approach to the approaches to Hoare
[Hoa69] and Dijkstra [Dij76]. We will follow [Bab87] in our no-
tation. Both approaches use so-called Hoare-triples {P} S {Q},
which can be interpreted as the statement that the set of inputs
{P} and the set of outputs {Q} are related by statement S. A
forward view would be that inputs satisfying {P} to program S

result in outputs satisfying {Q}. This view may of course be re-
versed and be interpreted as saying that in order to obtain output
satisfying {Q} from program S the input will have to satisfy {P}.
Hoare’s original perspective was that a program transforms an in-
put condition (a pre-condition) into an output condition (a post-
condition), while Dijkstra’s perspective was that in order to satisfy
a post-condition there is a pre-condition to a program which will
have to be satisfied.
Pre- and post-condition may also be seen as the sets of values
which satisfy them.
It is quite obvious that we cannot represent arbitrary pre- or post-
conditions as demands, but there are quite some which we can
represent, in fact any such condition that a Turing-machine could
check (cf. section 3.4). Obviously, some pre- or post-conditions
will be more conveniently represented as demands than others,
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but any characterization of this convenience will be left for future
work.

Example 6.5. A demand representing all the finite lists with even
elements can easily be expressed, e.g.

EvenPeanos = 〈EvenPeano : EvenPeanos, []〉
EvenPeano = 〈Zero, Succ (Succ EvenPeano)〉.

6.3.4 n-Packs

Often data structures are not consumed in single units, but by
considering whole blocks of values in a way where it is not known
beforehand whether more data needs to be consumed, but if more
is consumed then an entire block will be consumed in a particular
way. This way of evaluating is a generalization of head-strictness
in which every block consists of exactly one list element. Obvi-
ously, we may consider some parts of data structures other than
lists as blocks as well, e.g. we may consider subtrees of binary
trees of a fixed height as blocks.
n-packs can be obtained, as Norbert Klose describes in his mas-
ter’s thesis [Klo97], by replacing the data type to be packed with
a new type which in addition to the constructors present in the
original type provides a constructor for a pack of n elements of
the original type.

Example 6.6. For lists we would start out with the constructors
: and [] and replace successive : by :n of arity n.

Obviously this method is partially subsumed by deforestation,
which attempts to obtain treelessness. However, the n-pack trans-
formation is possible in cases in which the conditions required by
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deforestation are not met. It would surely be interesting to com-
pare the methods further, in particular empirically analyzing how
frequently the case occurs in large programs that deforestation is
not applicable but the n-pack transformation using analysis re-
sults is applicable. This will not be subject of the present work.

The program text of a function is possibly transformed into sev-
eral functions, each of which trying to produce a densely packed
return value provided some conditions are met. These conditions
stem from case constructs, which are “in the way” for packing
to proceed. An example for this would be the transformation
of append into a function !append both consuming and produc-
ing lists, which in addition to the constructors [] and : use a
3-ary constructor Pack whose first and second argument are list
elements and whose third argument is the tail following these ele-
ments. The difference between the two functions is that !append is
obtained by unfolding the recursive application in append’s body,
then lifting the case up from below the : constructor and using the
Pack constructor where appropriate. !append is shown in figure
6.18.

!append is more strict than the original append straightfor-
wardly extended to nLists. This can e.g. be verified with
our calculi: append xs ys ∈ Bot →CADE 〈[Bot, Top], [[], Bot]〉
and !append xs ys ∈ Bot →CADE 〈[Bot, Top], [[], Bot], [Top :

Bot, Top]〉. This is the only difference in the behavior of append
and !append, in particular if application of !append to some argu-
ment has a WHNF application of append yields the same WHNF.
In order to maintain the semantics of the original program, we
may only replace this new function for the original if the demand
on the entire application is sufficient for the demands on the argu-
ments to be the same before and after the replacement. Actually,
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!append xs ys =
casenList xs

ys
(λz.λzs.casenList zs

(z : ys)
(λv.λvs.Pack z v (!append vs ys))
(λv.λv′.λvs.

Pack z v (!append (v′ : vs) ys)))
(λz.λz′.λzs.Pack z z′ (!append zs ys))

Figure 6.18: Definition of !append

for a safe replacement it will suffice if the demand on the entire
application is sufficient for the demands after replacement to be
at most as strong as before. The demand Bot is not sufficient,
since

append xs ys ∈ Bot →CADE 〈[Bot, Top], [[], Bot]〉
!append xs ys ∈ Bot →CADE 〈[Bot, Top], [[], Bot],

[Top : Bot, Top]〉

We use abstract reduction [Sch94, Nöc93] to see

append (Top : Bot) Top →# Top : Bot.
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The demand M
def= 〈Bot, Top : Bot〉 is sufficient:

append xs ys ∈ M →CADE 〈[Bot, Top], [[], Bot],
[[], Top : Bot], [[Top], Bot],

[Top : Bot, Top]〉
!append xs ys ∈ M →CADE 〈[Bot, Top], [[], Bot],

[[], Top : Bot], [[Top], Bot],

[Top : Bot, Top]〉

We can replace append by !append if the entire application’s de-
mand is at least 〈Bot, Top : Bot〉.

6.3.5 Absence

The analysis can also be used to analyze absence of an argument
in a computation. We call an argument absent in the computation
or absent for short if the result of the computation is constant for
any value supplied as this argument [Bis97].

Definition 6.7. The argument of f is absent, iff ∀x, y : f x ≡c f y.

In order to analyze this property with our calculi, we need to de-
fine a demand expression Top+ which stands for all Λ-expressions
having a WHNF.

Definition 6.8. Let A = {A1, . . . , Am}

Top+ = 〈Fun, cA1,1 Top . . . Top︸ ︷︷ ︸
α(cA1,1)

, . . . , cAm,|Am| Top . . . Top︸ ︷︷ ︸
α(cAm,|Am|)

〉.

Now we can distinguish two cases:

1. ∀x : (f x)⇓
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2. ∀x : (f x)⇑

In order to analyze case 1, we formulate as input to the calculi:
f x ∈ Top+. If the analysis proves f x ∈ Top+ →ADE C where
Bot ≤γ C, case 1 applies. This is a consequence of monotonicity of
f with respect to ≤c. From theorem 3.67 we know that Bot ≤γ C

is undecidable, yet in practice it is typically quite easy to see, since
many results are of the form 〈Bot, . . . 〉.
In order to analyze case 2, we would like to input f x ∈ Bot to
the calculi and test if f x ∈ Bot →ADE Top. Since we will not
simply obtain Top, but a demand C, we would have to test if C

is equivalent to Top. Top ≤γ C is typically much more difficult
to see than Bot ≤γ C, because not many results C ≡ Top. We
prefer a different approach: we analyze f x ∈ Top+. If f x ∈
Top+ →CADE ∅, then case 2 applies, since then θ ∈ γ(∅) ⇐⇒
θ(f x) ∈ γ(Top+).
The case 2 could also have been checked with a forward analysis,
e.g. with abstract reduction [Sch94], if f Top →# Bot this case
applies.

6.3.6 Neededness

A closed function f needs its argument if its value differs for some
arguments, i.e. if the argument is not absent.

Definition 6.9. The argument of a function f ∈ Λ0 is needed iff
∃s, t ∈ Λ0 : f s �≡c f t.

Lemma 6.10. Neededness implies strictness.

Proof. Assume this does not hold, then there are s, t ∈ Λ0 and a
closed function f with f s �≡c f t and f bot �≡c bot. Without loss
of generality ∃R[·] : R[f s]⇓ ∧ R[f t]⇑. For all s ∈ Λ0 : bot ≤c s
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and thus f bot �≡c bot requires f bot �≤c bot. On the other hand,
monotonicity of contexts implies ∀s : R[f s] �≤c R[bot], but this
contradicts the choice of f since R[bot] ≡c bot.

Theorem 6.11. A function f ∈ Λ needs its argument iff f is strict
and for some s : f s �≤c bot.

Proof.

=⇒ : Definition 6.9 directly implies that f s cannot diverge for
all s and lemma 6.10 proved the implication of strictness.

⇐= : f ’s strictness implies f bot ≡c bot, but there is an s ∈ Λ :
f s �≡c bot. bot and such an s satisfy definition 6.9.

This theorem suggests how to analyze neededness. We analyze
strictness of f in its argument and also f x ∈ Top+. If ADE
obtains C �≡γ ∅ for the latter analysis, then there are bindings for
x under which f x does not diverge. While undecidable, there
still are many practically relevant cases for which this is easily
checked, e.g. C ≡ 〈[], . . . 〉 or C ≡ 〈Fun, . . . 〉.
With respect to the evaluation of an expression the difference
between strictness and neededness is that a strict argument in
an application being evaluated can safely be evaluated whereas a
needed argument will surely be evaluated.
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7 Conclusion and future work

7.1 Conclusion

In chapter 3 we introduced demands which can specify particular
sets of Λ-expressions. There we saw that demands are equally well
suited for the specification of data values returned by programs
as they are for the specification of non-terminating or undefined
computations. Also, more complex structures such as infinite lists
or Peano numbers can conveniently be specified by demands. We
have investigated the expressive power of demands and have found
it to be equivalent to that of Turing-machines and we have related
concretizations of demands to fixpoints of functions. Furthermore,
we investigated how the syntactic representation of some demands
can be simplified without changing their concretization. Demand
analysis and the two calculi ADE and CADE were treated in chap-
ter 4. First a suitable data structure was introduced for the rules
of the calculi to operate on. Then these rules were presented and
each one was investigated with respect to its soundness and com-
pleteness. Finally, the soundness and completeness of the calculi
as a whole was proved. Chapter 5 extended the base, laid out
in chapters 2, 3 and 4, such that for example the same preci-
sion is available for demands specifying higher-order expressions
as for those specifying saturated constructor applications and non-
terminating expressions. Chapter 6 showed both examples moti-
vating rules and those exhibiting the limitations of the calculi, and
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presented different problems to which our calculi can be applied.

7.2 Future work

7.2.1 Local rules below where

Currently, the proof of soundness and completeness for applying a
local rule below a where-expression needs to be done for every rule
thus applied. Quite likely, a common criterion can be stated for
the rules to allow this construction. This criterion would present
some conditions a local rule needs to satisfy in order for its ap-
plication below a where-expression to be sound and complete,
respectively.

7.2.2 Heuristics

ADE and CADE were presented in chapter 4 as non-deterministic
sets of rules. It would be interesting to investigate the effect of
the choice of heuristic for rule application on space and time re-
quirements.

7.2.3 Interplay of optimizations

While not strictly tied to demand analysis, the interplay of dif-
ferent optimizations would need further investigation, in particu-
lar, as an indication of the practical effect of optimizations. This
would allow to measure the advantage of optimizations using se-
mantic analyses over optimizations without such analyses. Con-
sider the n-pack transformation from section 6.3.4. This transfor-
mation competes with deforestation, which, in its simplest formu-
lation, requires a syntactic criterion, i.e. treelessness, for its ap-
plication [Wad90]. Deforestation competes with the n-pack trans-
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formation since intermediate data structures that are already re-
moved by deforestation can no longer be optimized by the n-pack
transformation. For a statement relating the practical effective-
ness of optimizations, and those using semantic analyses in partic-
ular, it is therefore insufficient to consider the optimizations sep-
arately, instead their cumulative effect needs investigation. This
would also allow judging the overlap between competing optimiza-
tions. Competition is only one side of the “interplay” coin, the
other is cooperation, i.e. to what extent does the application of
one optimization introduce additional opportunities for the ap-
plication of another. Further work in this direction will allow to
better judge the contribution of the semantic analyses presented
in this dissertation to optimization from a practical perspective.

7.2.4 Compiler integration

The prototypical implementation of the calculi is currently geared
towards interactive use, and not towards automatic use as would
be required should the analysis be integrated into a compiler.
There are several issues involved: sensible resource bounds will
need to be imposed on the individual analysis or on the entire
analysis phase. Obvious candidates for such resources would be
running time or tableau size, but others might be better suited.
An automated choice is needed to determine which analyses might
be reused. In the prototype this is the user’s choice: an analy-
sis may be performed and its result marked reusable and such
results may be stored and loaded to be available across sessions.
Simplification of demands will likely become more important as
complexity of the analyses increases, so experience is needed to
identify the situations in which individual simplifications are ben-
eficial.
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L(M), 114
N(C), 89
Q, 113
S where T = N , 86
S where T = N , 93
→B , 27
Δ, 94, 94
FV(·), 20
Γ, 113
DIT , 49
IT , 50
WT , 51
Λ, 17
Λ0

C , 85
Λp

C , 85
Λp, 90
λx.s, 60
R, 26
A, 23
Bot, 85, 93
D, 23
Fun, 85, 93
K, 23
Km, 23
Top, 110
Y, 23

detA,i, 23
id, 23
omega, 23
proji,j , 23
selA,i,j , 23
θ, 23
αqβ, 114
0, 90
⊥, 23
∩ · · · ∩, 93
≤c, 57
≤γ , 109
c C1 . . . Cα(c), 93
dom(·), 20
ṫ, 91
→, 27
η, 94
ηρ, 93
botn, 23
γ, 105
〈. . . 〉, 85
〈. . . 〉, 93
≤, 19
≤π, 132
�M , 114
→no, 28
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→1, 36
φ(p, q), 42
�i

p, 101
≤η, 101
ρσ, 21
σ, 20

e, 27
ŝ, 138
fs,π, 133
gs,π, 138
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λ-calculus, 17, 25
Λ-expression, 85
bot-closed, 110
where-expression, 86
where-expression, 86

abstraction, 18, 67, 81, 82,
see also λx.s

accept, 114
application, 18, 52, 66, 67,

115, 126, 131–133,
228, 229, 254, 255,
257, see also rule
application

approximation, 10, 88, 89,
93, 94, 123, 150

set-based, 14
argument, 87
argument context, 76, 76, 77,

78

blank symbol, 113, 114

case, 18
co-domain, 20, 100, 206
combinator, 23

fixpoint, 34, 35, 79, 81

complete, 163, 171, 177, 181
externally, 182, 193–195
internally, 181

complete lattice, 10, 89, 90,
96

component, 62, 87, 87, 97,
98, 100, 107, 122–
124, 150, 152, 164,
167, 204–206, 212,
217, 223, 256

- of a union, 189, 201
computation, 8, 9, 14, 15,

114, 114, 115, 117–
119, 121, 122, 261

accepting, 122
infinite, 199

concretization, 10, 11, 85,
105, 105, 108, 109,
126, 143, 144, 147,
167, 177, 179, 180,
227, 229

configuration, 114, 114, 119
final, 114, 114
start, 114, 114, 116

constructor, 17, 18, 18, 32,
50–53, 56, 59, 67,
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68, 81, 87, 88, 91,
92, 103, 107, 115,
118, 124, 127–129,
131, 165, 172, 185,
190, 191, 194, 200,
202, 204, 207, 209,
211, 212, 222, 258

lazy, 62

context, 24–28, 39, 54, 57,
58, 60–62, 67–70,
73–77, 79–81, 101,
105, 137, 139, 143,
see also argument
context

closing, 61

continuous, 74, 74

demand, 101, 101

distinguishing, 58, 138

multi, 25, 25, 28, 62, 75,
169, 200

reduction, 25, 26, 26,
27–29, 32, 33, 35,
40, 47, 48, 50, 54,
56, 61–63, 65, 68,
69, 76–78, 144, 175,
186

maximal, 26

context lemma, 61, 62, 64–
66, 68

contextual least upper
bound, 88

contextual order, see order,
contextual

contextually least upper
bound, 72, see also
club

continuity, 73
continuous, 8
contractum, 28, 34, 36, 63

1-, 39
normal-order, 39

contribution, 86, 87, 224
CPO, see order, complete

partial
CWHNF, 226

data constructor, see con-
structor

demand, 85, 85, 86–88,
90, 91, 94, 97–101,
103, 257, 258, 261,
262, see also de-
mand expression

closed, 85, 91
constant, 85
constructor, 86
definition, 86
expressive power, 88
intersection, 86
name, 86
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pattern, 86
primitive, 98
primitive-, 86, 90, 93,

98–101, 113, 117,
122, 123, 125

representation, 85, 93,
97, 101

semantics, 88
syntax, 85
union, 86
variable, 86

demand definition, 93
demand expression, 85, 90,

91, 102, see also de-
mand

demand name, 93
demand names

set of, 89
demand pattern, 92
domain, 20
double chain, 130

expression, 18
non-primitive-, 90, 127,

129, 139, 140
primitive-, 90, 90, 92,

97–100, 105, 112,
127–130, 139, 140,
142, 146

proof-, 129

final state, 114
fixpoint, 88

existence, 89, 94
greatest, 88, 144
least, 80, 81

function
extension, 23
restriction, 23
state transition, 113
total, 89

FWHNF, 32, 34, 47–49, 52,
54, 56, 67, 91, 92,
126, 130, 132, 172,
174, 176, 188, 194,
201, 226, 227

grammar, 85

head position, 114

ill-typed, 17, 50, 50, 51, 66,
171, 189, see also
well-typed

directly, 49, 52
improvement, 89, 94, 94, see

also approximation
input symbol, 113
intersection, 87

joc, 87, 186
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joint-constructors, see also
constructors, see
jocs

language, see also λ-
calculus, see also
Λ, see also ΛC

accepted, 114, 125
accepted -, see also

L(M)
least upper bound, 72, 75,

76, 79, 80, 85, see
also contextually
least upper bound

match, 86
monotone, 89, 94
move, 114

name, 87
non-primitive set, 126

order
complete partial, 83, 96
contextual, 57
point-wise, 89, 89
syntactic, 19

order, complete partial, 83,
96, 123

pattern, 87
position

differing, 132
maximal primitive-,

128, 132
primitive-, 105, 106,

127, 128, 129, 132–
135, 137, 138, 140–
142

primitive head, 138, 139
primitive set, 126, 130, 130,

139, 141
primitive solution, 143
primitive term, 90
primitively included, 101,

113, 116, 121, 122,
125

property
stable, 46

redex, 28
reduct, 28
reduction, 27

1-, 36
- sequence, see also

standardized re-
duction sequence

internal, 42
involves normal-order,

41
normal-order, 26, 28, 35

reduction order, 26
relevant tape content, 114
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representation, 88, 94
rule

- application, 164, 184,
192, 204, 210, 216,
224

(c-loop) -, 170, 201, 212
(caseexp1) -, 219
(caseexp) -, 221
(casep) -, 170, 193, 196,

208, 210, 219, 221,
225, 243

(decomp) -, 170, 196,
208, 210, 213, 216

(focus) -, 223–225
(is) -, 170, 190
(jocdec) -, 170
(loopdecomp) -, 170,

203, 207, 208, 213
(loopred) -, 170, 206,

213, 221
(loop) -, 170, 201, 204
(name) -, 216
(nobot) -, 170
(nofun) -, 170, 188
(noloop) -, 170, 213
(redbot) -, 170
(redfun) -, 170, 188
(redtop) -, 170, 216, 236
(redwhere) -, 222, 241

(red) -, 170, 196, 202,
208, 210, 213

(reuse) -, 170, 192, 194,
195, 197, 198, 200–
202, 210, 213, 220,
221, 225, 231, 235

(type) -, 170, 189, 197,
198

(union) -, 170, 202, 208–
211, 216, 235

(wc) -, 170
complete -, 181, 181,

183–191
constructor decomposi-

tion -, 185, 186,
199, 202, 206–208,
213

joc decomposition -, 186
mismatched constructor

-, 185
sound -, 181, 181, 183–

192
union decomposition -,

189, 202, 210

SCWHNF, 32, 34, 56, 69,
87, 91, 92, 128, 172,
176, 194, 201, 223,
226, 227

set-variable, 12, 13
sound, 163, 171, 177, 181
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externally, 182, 192–
195, 203

internally, 180, 204
standardized reduction se-

quence, 35
start state, 113
state, 113, 114
substitution, 20

alternative notation, 21
application, 20
ground, 20

super-combinator, 23, 81, 82
definition, 81

supercombinator, see also
combinator

tape symbol, 113
theorem

Knaster and Tarski, 89,
94

Turing-machine, 88, 113, 114
type

- check, 52
- constructor, 17, 18, 52,

56
- error, 53
- system, 17, 48, 49, 52

union, 5, 12, 14, 85, 87, 103,
109, 130, 150, 158,

165, 167, 183, 189,
210, 235

immediate -, 201, 201,
202, 210

variable, 3, 14, 18, 18, 19–21,
25, 33, 39, 48, 50,
51, 53, 62, 66, 69,
87, 165–169, 179,
190, 191, 193, 194,
199, 200, 204, 212,
215–222, 224, 226–
229, see also set-
variable, see also
VC

- constraint, 165
- convention, 19, 22, 23,

28, 31
constrained -, 87, 168,

184, 200, 222
demand -, 212, 229, 230
free -, 5, 6, 13, 20, 20,

22, 28–31, 37, 50,
61, 63–65, 166–168,
178, 184, 194, 201,
205, 212, 220, 223,
225

pattern -, 88
program -, 12, 13
root -, 164, 167, 168,

177, 179, 182, 192,
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198, 199, 203, 215,
217

weak head normal form, see
WHNF

well-typed, 49, 51, 52, 53, 55,
56, see also WT ,
see also ill-typed

WHNF, 4, 10, 11, 32, 32, 33,
34, 36, 40, 41, 44–
47, 49, 52, 55, 56,
61–63, 68, 69, 80,
85, 132–134, 146,
172, 176, 188, 191,
194, 204, 206, 213,
219, 226, 252, 253,
257, 259, 261

function -, 32, see also
FWHNF

saturated constructor
-, 32, see also
SCWHNF
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