Chemische Bindung in festen Elementen: Bindungslänge und Bindungsgrad

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften

vorgelegt beim Fachbereich Chemie der Johann Wolfgang Goethe - Universität in Frankfurt am Main

> von Sven Hübner aus Darmstadt

> Frankfurt 2000 (DF1)

vom Fachbereich Chemie der Johann Wolfgang Goethe - Universität als Dissertation angenommen.

Dekan: Prof. Dr. T. Prisner

Gutachter: Prof. Dr. M. Trömel, Prof. Dr. W. Aßmus

Datum der Disputation: 24.11.2000

Diese Arbeit entstand zwischen Juli 1996 und Juli 2000 unter Anleitung von Prof. Dr. Martin Trömel am Institut für Anorganische Chemie der Johann Wolfgang Goethe-Universität in Frankfurt am Main.

Besonders möchte ich Herrn Prof. Dr. Martin Trömel danken für die wertvollen Anregungen und seine ständige Diskussionsbereitschaft sowie sein bemerkenswertes Engagement.

Herrn Dr. Lothar Fink danke ich für seine Unterstützung bei der Lösung von Soft- und Hardware-Problemen, ohne die die Durchführung dieser Arbeit so nicht möglich gewesen wäre.

Danke auch an Bärbel, Fariba und Christoph sowie an alle Mitglieder des Arbeitskreises für ihr fachliches und persöhnliches Interesse während unserer gemeinsamen Zeit.

Mein persöhnlicher Dank gilt außerdem meinen Eltern sowie Kerstin, Wolfram und Ariane.

Inhaltsverzeichnis

1	Einl	eitung			1						
	1.1	Aufgabenstellung			. 1						
	1.2	Bindungswertigkeit in Elementen			. 1						
	1.3	Bindungsgrad und Bindungslänge			. 2						
	1.4	Koordinationszahl und Wirkungsbereich eines Atoms			. 2						
	1.5	Volumenregel und Volumenfaktor									
	1.6	Ermittlung des Volumenfaktors			. 5						
		1.6.1 Einleitung			. 5						
		1.6.2 Voraussetzungen			. 5						
		1.6.3 Herleitung			. 5						
		1.6.4 Zusammenhang zwischen a_{fcc} , V_X und f_X			. 6						
		1.6.5 Zusammenhang zwischen b, V_X und f_X			. 7						
		1.6.6 Bestimmung von f_X			. 8						
	1.7	Bestimmung der BG-Parameter			. 8						
		1.7.1 Bestimmung von b			. 8						
		1.7.2 Bestimmung von R_1			. 8						
		1.7.3 Bestimmung des Bindungsgrads s			. 9						
		1.7.4 Berechnung des Volumens V_D eines Elements aus einen	n Bindı	mgs-							
		abstand			. 9						
		1.7.5 Dichte einer Elementmodifikation			. 10						
	1.8	Zur Durchführung			. 10						
		1.8.1 Pearson-Symbole			. 11						
		1.8.2 Einfachbindungsabstand			. 11						
2	Met	alletrukturon									
	2.1	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cE4)	enzentri	erter	12 12						
	2.1 2.2	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	enzentri 	erter	12 . 12 .13						
	2.1 2.2 2.3	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	nzentri 	erter • • • •	12 . 12 . 13 . 14						
	2.1 2.2 2.3 2.4	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	enzentri 	erter • • • • • •	12 . 12 . 13 . 14 . 15						
	2.1 2.2 2.3 2.4 2.5	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	enzentri 	erter 	$\begin{array}{ccc} 12 \\ . & 12 \\ . & 13 \\ . & 14 \\ . & 15 \\ 16 \end{array}$						
	2.1 2.2 2.3 2.4 2.5	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	enzentri	erter • • • • • • • • • • • •	12 . 12 . 13 . 14 . 15 . 16 . 17						
	2.1 2.2 2.3 2.4 2.5 2.6	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	mzentri	erter 	12 . 12 . 13 . 14 . 15 . 16 . 17 . 18						
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	mzentri	erter • • • • • • • • • • • • • • • •	12 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 21						
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	mzentri	erter 	12 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 21 . 21						
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	enzentri	erter 	12 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 21 . 21 . 22						
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	mzentri	erter 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	enzentri	erter 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	mzentri	erter 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	enzentri	erter 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	mzentri	erter 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	enzentri 	erter 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	mzentri	erter 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	mzentri 	erter 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	$\begin{array}{c} 2.1 \\ 2.2 \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.6 \\ 2.7 \\ 2.8 \\ 2.9 \\ 2.10 \\ 2.11 \\ 2.12 \\ 2.13 \\ 2.14 \end{array}$	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	mzentri 	erter 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	$\begin{array}{c} 2.1 \\ 2.2 \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.6 \\ 2.7 \\ 2.8 \\ 2.9 \\ 2.10 \\ 2.11 \\ 2.12 \\ 2.13 \\ 2.14 \\ 2.15 \end{array}$	Elemente mit kubisch innenzentrierter W- oder kubisch fläche Cu-Struktur (cI2, cF4)	mzentri 	erter 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

3	Nic	Nichtmetallstrukturen						
	3.1	Bor .						
		3.1.1	α -rhomboedrisches Bor (hR36)	34				
		3.1.2	" α - tetragonales Bor"	35				
		3.1.3	BG-Parameter des Bors	35				
	3.2	Kohler	nstoff	35				
		3.2.1	Diamant (cF8) und Lonsdaleit (hP4)	35				
		3.2.2	α -Graphit (hP4) und β -Graphit (hR2)	36				
		3.2.3	Buckminsterfulleren	36				
		3.2.4	"Supercuban" oder Kohlenstoff mit γ -Siliciumstruktur?	37				
		325	BG-Parameter des Kohlenstoffs	38				
	33	Siliciu	m					
	3.4	Germa	anium					
	3.5	Stickst	toff	40				
	3.6	Phosn	hor	· · · 40				
	0.0	361	Weißer Phospher	40				
		369	Hittorfschor Phoephor (mP84)	40				
		3.0.2	Schwarzen Phogphon (αC_{8})	41				
		3.0.3	BC Parameter des Phogehorg	41				
	97	J .0.4	DG-Farameter des Filosphors $\dots \dots \dots \dots \dots \dots$	41				
	ა. (ე ი	Arsen,	, Antimon, Bismut (nRo)	41				
	ა.ბ 2 ი	Sauers	\mathfrak{ston}	43				
	3.9 2.10	Schwei		44				
	3.10	Selen		40				
	3.11	Tellur		40				
	3.12	wasse	rston und Halogene	41				
4	Wei	iterfüh	rende Betrachtungen	51				
	4.1	Verhäl	Itnisse unter hohen Drucken	51				
		4.1.1	Zinn	52				
		4.1.2	Silicium	54				
		4.1.3	Phospor	56				
		4.1.4	Tellur	58				
	4.2	Verbin	ndungen	60				
		4 2 1	Metall-Metall-Bindungen in nichtmetallischen Festkörpern	60				
		422	Gallium(II)-Chalkogenide	00 60				
		423	Intermetallische Phasen	63				
		424	γ -Phase	63 64				
		1.2.1	Die Ni As-Struktur	66				
		1.2.0		00				
5	\mathbf{Disl}	kussior	n	69				
	5.1	Dichte	e Strukturen	69				
	5.2	Reduz	ierte Volumina von Hauptgruppenelementen	69				
	5.3	Druck	abhängigkeit des Volumenfaktors	73				
	5.4	Tempe	eraturabhängigkeit des Volumenfaktors	75				
	5.5	Metall	- und Nichtmetallstrukturen	75				
	5.6	Vergle	ch mit quantenmechanischen Ergebnissen	75				
	_	_						
6	\mathbf{Zus}	ammer	nfassung	77				

INHALTSVERZEICHNIS

7	Literatur	78
8	Publikationen	88
9	Anhang	89
	9.1 Abkürzungen	89
	9.2 Tabellen und Abbildungen	90
	9.3 Software	100
	9.4 Zwischenergebnisse	101
10) Lebenslauf	174

1 Einleitung

1.1 Aufgabenstellung

Die vorliegende Arbeit untersucht, ob und inwieweit das Konzept der Beziehung zwischen Bindungslänge und Bindungsstärke (Bindungslängen-Modell) eine adäquate Beschreibung für die chemische Bindung in Elementen darstellt. Die hier vorgestellte Beziehung für Elementbindungen ist aus der "bond valence" Methode nach Brown [1981] abgeleitet. Da es sich aber bei "bond valence" (Bindungsvalenz) um die Stärke der Bindung zwischen zwei Atomen mit unterschiedlichem Vorzeichen in ihreren Oxidationszahlen handelt [Brown, 1998], wurde im Rahmen dieser Arbeit der Begriff Bindungsgrad¹ gewählt, der sich in Analogie zur Bindungsvalenz folgendermaßen definiert: **Der Bindungsgrad ist der Beitrag einer einzelnen Bindung zur Bindungswertigkeit** (siehe Kapitel 1.2) **eines Elements**. Für Elektronenpaarbindungen kann die Definition des Bindungsgrades folgendermaßen formuliert werden: **Der Bindungsgrad ist die Zahl der Elektronenpaare, die die Bindung zwischen zwei Atomen ausbilden**. Die für die Bindung zu bestimmenden Parameter werden hier als *Bindungsgradparameter* (BG-Parameter) bezeichnet und sind analog zu den Bindungsvalenzparametern definiert (siehe Kapitel 1.3).

Für eine große Anzahl von Elementen existieren jedoch nicht ausreichend viele unterschiedliche Elementstrukturen, um analog zur Bindungsvalenzanalyse die BG-Parameter empirisch zu bestimmen. Im Rahmen dieser Arbeit wurde ein Verfahren entwickelt, das es ermöglicht, auch für Elemente, die nur in einer Modifikation vorliegen, BG-Parameter abzuschätzen.

1.2 Bindungswertigkeit in Elementen

Die Bindungswertigkeit [Seel, 1954] ist die Anzahl der an den chemischen Bindungen beteiligten Elektronen pro Atom. Für die Hauptgruppenelemente wird von allen im weiteren genannten Autoren die Oktettregel² zugrunde gelegt. Die Bestimmung der Bindungswertigkeit der d-Elemente (Gruppenummer 3 - 12) ist auf verschiedene Weise versucht worden:

1. aus Korrelationen zwischen der Bindungswertigkeit und verschiedenen physikalischen Eigenschaften der Festkörper, insbesondere der Sättigungsmagnetisierung [Pauling, 1938, 1964]

2. durch die Betrachtung der Valenzelektronenkonzentration (VEC) in intermetallischen Verbindungen (vgl. Kapitel 4.2.3) [Hume-Rothery, Raynor, 1962]

3. aus einer angenommenen Korrelation zwischen Bindungswertigkeit und Atomisierungsenergie bzw. Kohäsionsenergie [Brewer, 1981]

4. aus Beziehungen zwischen Bindungswertigkeit und Schmelztemperatur bzw. Atomvolumen [Trömel, 2000]

Für die Nebengruppenelemente der Gruppe 3 bis 6 geben die oben genannten Autoren bis auf die Elemente Titan, Zirkon und Hafnium die maximale Oxidationszahl dieser Elemente als Bindungswertigkeit an. Für die Elemente der Gruppe 7 bis 12 ergeben sich

¹Pauling [1964] unterscheidet zwischen Bindungsordnung (bond order) und Bindungsgrad (bond number). Die Bindungsordnung wird gegenüber der dem Bindungsgrad durch mögliche zusätzliche Resonanzenergie (Beispiel: Graphit) erhöht. Für ganzzahlige Bindungsordnungen ist die Bindungsordnung gleich dem Bindungsgrad.

²Für Elemente mit der Gruppennummer G zwischen 13 und 18 berechnet sich die Bindungswertigkeit als 18-G. Für die Elemente mit der Gruppennummer 1 und 2 entspricht die Bindungswertigkeit der Gruppennummer.

jedoch extreme Unterschiede in den Abschätzungen, so dass für die Betrachtung dieser Elemente zunächst eine "normierte" Bindungswertigkeit (vgl. Kapitel 1.7.3) angenommen wird. Für die Bestimmung der BG-Parameter der Elemente (siehe Kapitel 1.7) sind Bindungswertigkeiten nach Methode 4 zugrunde gelegt.

Gehören zu einer Struktur eines Elementes kristallographisch verschiedene Atome, so müssen diese nicht die gleiche Bindungswertigkeit besitzen. Somit muss zwischen der Bindungswertigkeit W des Elements und der Bindungswertigkeit W_i des i-ten Atoms in der Struktur dieses Elementes unterschieden werden. Der Zusammenhang kann durch folgende Gleichung beschrieben werden

$$W = \frac{\sum_{i} m_i W_i}{\sum_{i} m_i} \tag{1}$$

wobei m_i Multiplizität des i-ten Atoms in der Kristallstruktur bezeichnet.

1.3 Bindungsgrad und Bindungslänge

Für den Zusammenhang von Bindungsgrad s und Bindungslänge r wurde von Pauling [1947] eine Funktion vorgeschlagen, die hier nach Brown und Altermatt [1985] in der Form

$$s(r) = \exp\left(\frac{R_1 - r}{b}\right) \tag{2}$$

verwandt wird. Die Funktion (2) enthält zwei empirisch zu bestimmende Parameter. R_1 entspricht der Länge einer Bindung des Bindungsgrades bzw. der Bindungsordnung s = 1. Die Summe der Bindungsgrade um ein Zentralatom ist gleich seiner Bindungswertigkeit:

$$W = \sum_{j}^{K} s_j \tag{3}$$

mit: K = Koordinationszahl (zur Definition der Koordinationszahl siehe Kapitel 1.4)

1.4 Koordinationszahl und Wirkungsbereich eines Atoms

Jeder Teil des Raumes, in den ein Punktgitter eingebettet ist, wird dem nächstliegenden Gitterpunkt zugeordnet. Die Vereinigung aller dieser Raumteile wird als *Wirkungsbereich* des Gitterpunktes [Niggli, 1927] bezeichnet. Die Wirkungsbereiche bilden konvexe Polyeder, die den Raum lückenlos ausfüllen. Wirkungsbereiche werden als *benachbart* definiert, wenn sie aneinander grenzen bzw. gemeinsame Punkte haben. Überträgt man die Begriffe Gitterpunkt und Nachbarschaft auf Atom und Koordination, so ergibt sich eine eindeutige Definition der *Koordinationszahl* von Atomen in Kristallen [Frank, Kasper, 1958]. Die Zahl benachbarter Wirkungsbereiche³ eines Atoms ist seine Koordinationszahl, die im weiteren als *geometrische* Koordinationszahl *GK* [Alig, Trömel, 1992] bezeichnet wird. Nach dieser Definition ergibt sich eine Koordinationszahl, die zum Teil erheblich höher ist als die Anzahl der nächsten Nachbarn oder der primären Bindungen (vgl. Alcock

³Der Wirkungsbereichs entspricht der Frank-Kasper-Domäne bzw. der Wigner-Seitz-Zelle (vgl. Mott und Jones [1936]).

[1972]). Die zusätzlichen Bindungen werden im weiteren als sekundäre⁴ Bindungen bezeichnet. Für den Vergleich unterschiedlicher Modifikationen von Elementen mit starken primären Bindungen (z.B.: Kohlenstoff, Phosphor) werden die mit der Multiplizität gewichteten Summen der Bindungsgrade der primären Bindung W_{prim} und der sekundären Bindung W_{sek} (Gleichung (4)) diskutiert. Es gilt:

$$W_{prim} = \frac{\sum_{i} \left(m_{i} \sum_{j} s_{j,prim} \right)}{\sum_{i} m_{i}}; W_{sek} = W - W_{prim}$$

$$\tag{4}$$

mit m_i Multiplizität des i-ten Atoms; $s_{j,prim} = j$ -ter primärer Bindungsgrad des i-ten Atoms; W = Bindungswertigkeit des Elements

1.5 Volumenregel und Volumenfaktor

Phasenübergänge zwischen Elementmodifikationen mit dichtesten Kugelpackungen der Atome (fcc oder hcp) verlaufen im allgemeinen ohne Änderung des Atomvolumens. Das gilt in der Regel auch für den Übergang eines Elements von einer dichtest gepackten Struktur nach der kubisch innenzentrierten Struktur⁵ (bcc) (vgl. Pearson [1972]; Tabelle 1; Ausnahme: Beryllium) mit:

$$\Delta V/V \leq 0.010$$

Da Dichte als Teilchenzahl pro Volumeneinheit zu verstehen ist, muss auch die kubisch innenzentrierte Struktur als dicht bezeichnet werden. Daraus kann folgende *Volumenregel* abgeleitet werden [Hübner, Trömel, 1998]:

Phasenübergänge zwischen dichten Strukturen verlaufen in erster Näherung ohne Änderung des Atomvolumens.

⁴Diese Definition ist eine Erweiterung der Definition nach Alcock [1972].

⁵Beschreibt man diesen Übergang unter der Annahme starrer Atomkugeln [Goldschmidt, 1928], so sollte der Atomradius des Elements um 2.8% abnehmen [Westgren, Almin, 1929].

Elemente	T [K]	bcc-Struktur	fcc-Struktur	hcp-Struktur			
$\mathrm{Am}^{a)}$	RT	-	29.304	29.268^{xxx}			
$\mathrm{Be}^{b)}$	1527	8.305	-	8.618^{x}			
$\mathrm{Co}^{a)}$	RT	-	11.129	11.074			
$\mathrm{Co}^{b)}$	673	-	11.308	$11.273^{x)}$			
$\mathrm{Dy}^{a)}$	RT	31.522	-	31.522			
$\mathrm{Er}^{a)}$	RT	30.582	-	30.642			
$\mathrm{Fe}^{e)}$	1189	12.249	12.125	_			
	1661	12.529	12.596	-			
$\mathrm{Gd}^{a)}$	RT	33.215	-	33.103			
$\mathrm{Ho}^{a)}$	RT	31.050	-	31.119			
$\mathrm{Li}^{d)}$	20	21.045	-	21.065^{xx}			
$\mathrm{Li}^{e)}$	78	21.273	-	21.344			
$Lu^{a)}$	RT	29.660	-	29.496			
$Na^{b)}$	20	37.613	-	37.736^{xx}			
$\mathrm{Nd}^{b)}$	1156	35.222	-	$35.347^{x),xxx}$			
$\Pr^{b)}$	1094	35.222	-	$35.347^{x),xxx}$			
$\operatorname{Ti}^{f)}$	1153	18.119	-	$18.175^{x)}$			
$\mathrm{Tl}^{a)}$	RT	-	28.539	28.575			
$\mathrm{Zr}^{a)}$	1252	23.640	-	23.645^{x}			
x) Durch Ext	rapolation	auf angegebene Tem	peratur bestimmt (s	iehe Abb.51-53).			
xx) Sm-Struk	tur						
xxx) La-Struktur							
$^{a)}$ [Landolt-Börnstein, 1971]							
b) [Pearson's Handbook, 1997]							
^{c)} [Basinski, Hume-Rothery, Sutton, 1955]							
$^{(d)}[\mathrm{Barret, 1956}]$							
e [Berliner et al., 1989]							
$f)_{[\text{Schmitz-Pr}]}$	anghe, Dür	nner, 1968]					
RT = Raumte	mperatur						

Tabelle 1.Atomvolumina [Å³] dichter Strukturen unter gleichen Bedingungen
[Trömel, Hübner, 2000]

Eine Struktur kann demnach als *dicht* bezeichnet werden, wenn sich beim Phasenübergang zu einer dichten Struktur das Atomvolumen nicht ändert bzw. die Volumenänderung kleiner als 1% ist. Das Atomvolumen eines Elements mit einer nach dieser Regel dichten Struktur wird mit V_D bezeichnet. Nach der Definition von V_D folgt: $V_X \ge V_D$ [Hübner, Trömel, 1998], wenn V_X das Atomvolumen eines Elements mit beliebiger Struktur X ist. Nach dieser Ungleichung kann der Volumenfaktor f_X definiert werden als:

$$f_X = \frac{V_X}{V_D} \ge 1 \tag{5}$$

Demnach ist eine Struktur im Rahmen dieser Näherung nicht-dicht, wenn $f_X > 1.010$.

1.6 Ermittlung des Volumenfaktors

1.6.1 Einleitung

Im folgenden Kapitel wird die Möglichkeit aufgezeigt, den Volumenfaktor direkt aus einer bekannten Elementstruktur zu berechnen und daraus das Atomvolumen der hypothetischen dichten Struktur dieses Elementes abzuschätzen.

1.6.2 Voraussetzungen

Um den Volumenfaktor f_X direkt aus einer gegebenen Struktur X berechnen zu können, werden folgende Annahmen gemacht:

• Die Volumenregel gilt für alle Elemente, d.h. auch für die, bei denen dies nicht empirisch geprüft werden kann.

• Die Geometrische Koordinationszahl GK beschreibt die Zahl der chemisch gebunden Atome.

 \bullet Der Bindungsgrad s hängt mit dem Bindungsabstand r nach

$$s(r) = \exp\left(\frac{R_1 - r}{b}\right)$$

zusammen (siehe Kapitel 1.3).

Im folgenden werden nur Fälle behandelt, in denen die Bindungswertigkeit in verschiedenen Phasen (Modifikationen) eines Elements gleich bleibt.

$$W(fcc) = W_D = W(\mathbf{X}) \tag{6}$$

Die fcc-Struktur (mit Index D) repräsentiert die Menge der dichten Strukturen eines Elements.

1.6.3 Herleitung

Die Bindungswertgkeit eines Elements mit der Struktur X kann nach Gleichung (1), (2) und (3) folgendermaßen beschrieben werden:

$$W(\mathbf{X}) = \frac{\sum_{i} m_{i} W_{i}}{\sum_{i} m_{i}} = \frac{\sum_{i} \left[m_{i} \sum_{j(i)} \exp\left(\frac{R_{1} - r_{j(i)}}{b}\right) \right]}{\sum_{i} m_{i}}$$
(7)

mit: m_i = Multiplizität des i-ten Atoms, j(i) = geometrische Koordinationszahl des i-ten Atoms, $r_{j(i)}$ = Abstand eines zum i-ten Atom koordinierten Atom und W_i = Bindungswertigkeit des i-ten Atoms

Für die fcc-Struktur⁶ als Repräsentant der dichten Strukturen eines Elements bestimmt sich W(fcc) nach Gleichung (7). Die geometrische Koordinationszahl eines Atoms mit

⁶Bemerkung: da für die fcc-Struktur i = 1 ist, fällt m_i ganz aus der Gleichung heraus.

Abbildung 1: Wirkungsbereich und koordinierte Atome für Elemente mit Cu-Struktur

fcc-Struktur ist 12+6 [Alig, 1993] (vgl. Strukturbericht I [Ewald, Hermann, 1931]; siehe Abbildung 1) mit den Abständen⁷ $a_{fcc}/\sqrt{2}$ und a_{fcc} . Somit ergibt sich:

$$W(fcc) = 12 \exp\left(\frac{R_1 - a_{fcc} / \sqrt{2}}{b}\right) + 6 \exp\left(\frac{R_1 - a_{fcc}}{b}\right)$$
(8)

Setzt man dies in Gleichung (6) ein, so erhält man den allgemeinen Zusammenhang zwischen einer dichten Struktur und einer beliebigen Struktur X.

$$12 \exp\left(\frac{R_1 - a_{fcc} / \sqrt{2}}{b}\right) + 6 \exp\left(\frac{R_1 - a_{fcc}}{b}\right) = \frac{\sum_i \left[m_i \sum_{j(i)} \exp\left(\frac{R_1 - r_{j(i)}}{b}\right)\right]}{\sum_i m_i} \tag{9}$$

Teilt man Gleichung (9) noch durch $\exp\left(\frac{R_1}{b}\right)$, so kann R_1 eliminiert werden:

$$12\exp\left(-\frac{a_{fcc}}{b\sqrt{2}}\right) + 6\exp\left(-\frac{a_{fcc}}{b}\right) = \frac{\sum_{i} \left[m_{i}\sum_{j(i)} \exp\left(\frac{-r_{j(i)}}{b}\right)\right]}{\sum_{i} m_{i}}$$
(10)

1.6.4 Zusammenhang zwischen $a_{f\alpha}$, V_X und f_X

Die Multiplizität eines Atoms in der fcc-Struktur ist 4. Somit ergibt sich für das Volumen der Elementarzelle $a_{fcc}^3 = 4V_D$ und für die Gitterkonstante unter Berücksichtigung von Gleichung (5):

 $^{^{7}}a_{fcc} = \text{Gitterkonstante der fcc-Struktur}$

Abbildung 2: Wirkungsbereich und koordinierte Atome für Elemente mit W-Struktur

$$a_{fcc} = \sqrt[3]{4\frac{V_X}{f_X}} \tag{11}$$

1.6.5 Zusammenhang zwischen b, V_X und f_X

Ist die Gitterkonstante eines Elements für die fcc-Struktur bekannt, so kann nach der Volumenregel eine hypothetische Gitterkonstante für die bcc-Struktur dieses Elementes bestimmt werden: Setzt man $V_{fcc} = V_{bcc}$, so erhält man für die Gitterkonstante der bcc-Struktur $a_{bcc} = a_{fcc}/\sqrt[3]{2}$. Die Koordination eines Atoms in der bcc-Struktur umfasst 8 Atome im Abstand $(\sqrt{3}/2) a_{bcc} = [\sqrt{3}/(2\sqrt[3]{2})] a_{fcc}$ und 6 Atome mit dem Abstand $a_{bcc} = a_{fcc}/\sqrt[3]{2}$ [Alig, 1993] (vgl. Strukturbericht I [Ewald, Hermann, 1931]; siehe Abbildung 2). Mit W(fcc) = W(bcc) folgt:

$$12\exp\left(\frac{R_1 - a_{fcc}/\sqrt{2}}{b}\right) + 6\exp\left(\frac{R_1 - a_{fcc}}{b}\right) = 8\exp\left(\frac{R_1 - \left(\sqrt{3}a_{fcc}\right)/2\sqrt[3]{2}}{b}\right) + 6\exp\left(\frac{R_1 - a_{fcc}/\sqrt[3]{2}}{b}\right)$$

Teilt man wieder durch $\exp\left(\frac{R_1}{b}\right)$, so erhält man folgende Gleichung,

$$12\exp\left(-\frac{a_{fcc}/\sqrt{2}}{b}\right) + 6\exp\left(-\frac{a_{fcc}}{b}\right) = 8\exp\left[-\frac{\left(\sqrt{3}a_{fcc}\right)/2\sqrt[3]{2}}{b}\right] + 6\exp\left(-\frac{a_{fcc}/\sqrt[3]{2}}{b}\right)$$

die numerisch⁸ nach b aufgelöst werden kann:

$$b = 0.14750 \cdot \sqrt[3]{V_X/f_X} \tag{12}$$

⁸Hier wurde das Newton-Verfahren angewendet.

1.6.6 Bestimmung von f_X

Ersetzt man in Gleichung (10) den Parameter b durch Gleichung (12) und die Gitterkonstante a_{fcc} durch Gleichung (11), so ergibt sich:

$$12 \exp\left(-\frac{\sqrt[3]{V_X/f_X}/\sqrt{2}}{0.14750 \cdot \sqrt[3]{V_X/f_X}}\right) + 6 \exp\left(-\frac{\sqrt[3]{V_X/f_X}}{0.14750 \cdot \sqrt[3]{V_X/f_X}}\right) = \frac{\sum\limits_{i} \left|m_i \sum\limits_{j(i)} \exp\left(-\frac{r_{j(i)}}{0.14750 \cdot \sqrt[3]{V_X/f_X}}\right)\right|}{\sum\limits_{i} m_i}$$

Kürzt man nun noch $\sqrt[3]{V_X/f_X}$ in den beiden Exponenten auf der linken Seite, so erhält man die Konstante 6.0717 · 10⁻³. Die resultierende Gleichung wird im weiteren als Volumenfaktorgleichung bezeichnet:

$$6.0717 \cdot 10^{-3} = \frac{\sum_{i} \left[m_{i} \sum_{j(i)} \exp\left(-\frac{r_{j(i)}}{0.14750 \cdot \sqrt[3]{V_X/f_X}}\right) \right]}{\sum_{i} m_{i}}$$
(13)

Sind $m_i, r_{j(i)}$ und V_X für eine beliebige Struktur X bekannt, dann kann der Volumenfaktor f_X der Struktur X numerisch bestimmt werden.

Aus der Volumenfaktorgleichung ergibt sich direkt, dass der Volumenfaktor nur eine Funktion der geometrischen Parameter einer beliebigen Struktur X ist. **Der Volumenfaktor ist somit volumenunabhängig**.

1.7 Bestimmung der BG-Parameter

1.7.1 Bestimmung von b

Ist der Volumenfaktor f_X für eine Struktur bekannt, so kann nach Gleichung (12) der Parameter *b* berechnet werden [Trömel, Hübner, 1998]. Er ist unabhängig von der Bindungswertigkeit des jeweiligen Elementes.

1.7.2 Bestimmung von R_1

Für die Berechnung von f_X und b war Gleichung (6) eine ausreichende Bedingung. Für die Bestimmung von R_1 muss die Bindungswertigkeit des zu betrachtenden Elements bekannt sein. Im folgenden wird gezeigt, dass R_1 eine Funktion von V_D und W ist [Trömel, Hübner, 1998].

Als Repräsentant der Menge der dichten Strukturen dient wieder die fcc-Struktur. Man erhält für die Bindungswertigkeit

$$W(fcc) = 12 \exp\left(\frac{R_1 - a_{fcc}}{b}\right) + 6 \exp\left(\frac{R_1 - a_{fcc}}{b}\right)$$

Nach Gleichung (11) und (12) können der Parameter b und die Gitterkonstante $a_{f\alpha}$ durch V_D ersetzt werden:

$$W(fcc) = 12 \exp\left(\frac{R_1 - \sqrt[3]{4V_D}/\sqrt{2}}{0.14750 \cdot \sqrt[3]{4V_D}}\right) + 6 \exp\left(\frac{R_1 - \sqrt[3]{4V_D}}{0.14750 \cdot \sqrt[3]{4V_D}}\right)$$

Numerisch erhält man:

$$R_1 = (5.1042 + \ln W) \cdot 0.14750 \sqrt[3]{V_D} = (5.1042 + \ln W) \cdot b \tag{14}$$

Bei bekanntem V_D und W können die Bindungsgradparameter unter den oben gemachten Annahmen immer berechnet werden.

1.7.3 Bestimmung des Bindungsgrads s

Wie der Volumenfaktor ist auch der Bindungsgrad s für Elemente mit fcc- bzw. bcc-Struktur volumenunabhängig. Durch Normierung des Bindungsgrads mit der Bindungswertigkeit des zu betrachtenden Elements erhält man den *normierten Bindungsgrad* σ . Ausgehend von Gleichung (3) wird σ folgendermaßen definiert:

$$1 = \frac{\sum_{j=1}^{K} s_j}{W} = \sum_{j=1}^{K} \frac{s_j}{W} = \sum_{j=1}^{K} \sigma_j$$

Der normierte Bindungsgrad hängt somit wie der Volumenfaktor nur noch von der gegebenen Struktur ab. In Tabelle 2 sind die σ -Werte für die fcc- und bcc-Struktur angegeben:

Tabelle 2. Normierte Bindungsgrade der fcc- und bcc-Struktur

	fcc	bcc
$\sigma(k\ddot{u}rzesterAbstand)$	0.0816	0.1009
$\sigma(zweitk \ddot{u}rzesterAbstand)$	0.0035	0.0323

1.7.4 Berechnung des Volumens V_D eines Elements aus einem Bindungsabstand

Sind für ein Element der Einfachbindungsabstand R_1 und die Bindungswertigkeit W bekannt, so kann nach Gleichung (14) das dichte Volumen dieses Elements folgendermaßen berechnet werden:

$$V_D = \frac{R_1}{(5.1042 + \ln W) \cdot 0.14750} \bigg]^3 \tag{15}$$

Gleichung (15) kann noch in allgemeinerer Form geschrieben werden. In Gleichung (16) muss nur der Bindungsgrad eines beliebigen Bindungsabstands bekannt sein:

$$V_D = \left[\frac{r_s}{\left(5.1042 + \ln\frac{W}{s}\right) \cdot 0.14750}\right]^3$$
(16)

1.7.5 Dichte einer Elementmodifikation

Der Zusammenhang zwischen den Dichten unterschiedlicher Modifikationen eines Elements und den zugehörigen Volumenfaktoren ist durch folgende Gleichung gegeben:

$$\rho_x = \frac{f_y}{f_x} \rho_y \tag{17}$$

Dieser Zusammenhang gilt genau dann, wenn für alle Modifikationen eines Elements genau ein Volumen V_D existiert. Gleichung (17) verbindet somit eine makroskopische Größe, zu deren Bestimmung die Struktur nicht bekannt sein muss, mit einer Größe, die rein strukturabhängig ist. Gleichung (17) kann aber auch dazu benutzt werden, bei bekannter Dichte und Struktur einer Modifikation y die Dichte einer anderen Modifikation x mit bekannter Struktur direkt abzuschätzen:

$$\rho_{x,calc} = \frac{f_y}{f_x} \rho_{y,obs} \tag{18}$$

Für die Elemente Schwefel und Selen, die in mehreren Elementmodifikationen vorkommen, kann dieser lineare Zusammenhang zwischen der reziproken Dichte und dem Volumenfaktor überprüft werden. (siehe Abbildung 22 auf Seite 46 und Abbildung 23 auf Seite 47).

1.8 Zur Durchführung

Für jedes Element des periodischen Systems außer Edelgasen mit bekannter Struktur (Strukturen) wird das Volumen V_D seiner dichten Modifikationen (im weiteren als *reduziertes Volumen* bezeichnet) und der Bindungsgradparameter *b* bestimmt. Ist für das Element die Bindungswertigkeit bekannt, so kann auch der Einfachbindungsabstand R_1 der Elementbindung berechnet werden. Existieren für ein Element unter Normalbedingungen mehrere Modifikationen, so werden diese Bestimmungen für alle einzeln durchgeführt. Für einige Elemente werden auch unter Normaldruck stabile Hoch- bzw. Tieftemperaturmodifikationen in die Betrachtungen mit einbezogen. Sie sind jeweils im Text gekennzeichnet. Hochdruckmodifikationen werden im Kapitel 4.1 gesondert untersucht.

Durch Mittelwertbildung erhält man Bindungsgradparameter für jedes Element⁹. Signifikante Abweichungen einzelner Elementstrukturen vom Mittelwert werden einzeln diskutiert. Zur Prüfung des Ansatzes über den funktionalen Zusammenhang von Bindungsgrad und Bindungslänge dient die Übereinstimmung der Volumina V_D aus verschiedenen Strukturen eines Elements. Für einige Elemente sind in der Literatur quantenmechanisch abgeschätzte Volumina verschiedener Modifikationen angegeben. Aus diesen werden quantenmechanische Volumenfaktoren mehrerer Strukturen berechnet und mit den strukturabhängigen Volumenfaktoren dieser Arbeit verglichen. Exemplarisch werden im weiteren noch binäre intermetallische bzw. oxidische Verbindungen untersucht.

Die in Pearson's Handbook [1997] verwendeten Bezeichnungen der Strukturtypen werden in dieser Arbeit übernommen: fcc \rightarrow Cu; bcc \rightarrow W und hcp \rightarrow Mg bzw. La bzw. Sm. Die Diamantstruktur wird als Si-Struktur bezeichnet.

Grundsätzlich wurden keine Strukturen mit Fehlordnung in die Betrachtungen einbezogen. Zu der im Rahmen dieser Arbeit genutzten Software siehe Kapitel 9.3.

 $^{^{9}}$ Gehen nur zwei Werte in die Mittelwertbildung ein, ist die Abweichung vom Mittelwert in *geschweiften* Klammern {} angegeben.

1.8.1 Pearson-Symbole

Einige Elementstrukturen sind durch einfache Gruppe-Untergruppe-Beziehungen kristallographisch miteinander verwandt. Im weiteren wird das Pearson-Symbol (P-Symbol) zur Charakterisierung von Elementstrukturen genutzt. Es ist folgendermaßen aufgebaut: allgemeines P-Symbol: bCZ. Darin bedeutet:

- b: a: triklin, m: monoklin, o: orthorhombisch, t: tetragonal, h: hexagonal, c: kubisch
- C: F: flächenzentriert, I: innenzentriert, P: primitiv, R: rhomboedrisch, S: seitenzentriert
- Z: Anzahl der Atome pro Elementarzelle

Die Kombination von b und C gibt den Bravaistyp der jeweiligen Struktur an. Obwohl das Bravaisgitter unterschiedliche lokale Atomumgebungen zulässt, ist das P-Symbol besonders für die Beschreibung einfacherer Elementstrukturen geeignet.

1.8.2 Einfachbindungsabstand

Für einige Elemente sind die Einfachbindungsabstände der Elementbindung experimentell zugänglich. Diese können direkt mit dem BG-Parameter R_1 verglichen werden.

2 Metallstrukturen

In den folgenden Unterkapiteln werden die Elementstrukturen der Metalle betrachtet und bei bekannter Bindungswertigkeit die BG-Parameter bestimmt. Germanium, Tellur, Antimon und Bismut werden im Kapitel Nichtmetallstrukturen behandelt.

2.1 Elemente mit kubisch innenzentrierter W- oder kubisch flächenzentrierter Cu-Struktur (cI2, cF4)

In Tabelle 3 sind die BG-Parameter für die Elemente angegeben, die unter Normalbedingungen (außer Caesium) in der Cu- oder W-Struktur kristallisieren.

	Struktur	$W^{**)}$	V_D [Å ³]	R_1 [Å]	b [Å]	
Li	W	1	21.622	2.097	0.411	[Keller, Kanda, King, 1958]
Na	W	1	39.256	2.559	0.501	[Aruja, Perlitz, 1939]
Κ	\mathbf{W}	1	75.810	3.186	0.624	*)
Rb	W	1	92.597	3.406	0.667	[Landolt-Börnstein, 1971]
Cs(263 K)	W	1	115.74	3.669	0.719	[Landolt-Börnstein, 1971]
Ca	Cu	2	43.632	3.010	0.519	*)
Sr	Cu	2	56.189	3.275	0.565	*)
Ba	W	2	63.556	3.412	0.589	*)
V	W	5	13.921	2.382	0.355	*)
Nb	\mathbf{W}	5	17.969	2.594	0.386	*)
Ta	\mathbf{W}	5	18.000	2.595	0.387	*)
Cr	W	6	11.999	2.329	0.338	[Kugler, Knorr, Prandl, 1983]
Mo	\mathbf{W}	6	15.555	2.539	0.368	*)
W	\mathbf{W}	6	15.850	2.555	0.371	*)
Fe	W	4	11.777	2.178	0.336	[Kohlhaas, Dünner, Schmitz-Pranghe, 1967]
Rh	Cu	4.85	13.753	2.359	0.353	*)
Ir	Cu	5	14.139	2.395	0.357	*)
Ni	Cu	4	10.937	2.125	0.327	*)
Pd	Cu	4	14.716	2.346	0.361	*)
Pt	Cu	4	15.094	2.366	0.365	*)
Cu	Cu	3	11.740	2.079	0.335	*)
Ag	Cu	3	17.058	2.355	0.380	*)
Au	Cu	3	16.880	2.347	0.378	*)
Al	Cu	3	16.603	2.334	0.376	*)
Pb	Cu	4	30.141	2.979	0.459	[Owen, Yates, 1939]
Ce	Cu	-	34.371	-	0.480	[Spedding, Daane, Hermann, 1956]
Eu	W	-	48.130	-	0.537	[Takemura, Syassen, 1985]
Yb	Cu	-	41.254	-	0.510	*)
Th	Cu	-	32.892	2.931	0.473	*)
*) [Pearson's H	andbook, 1997];	**) Bind	ungswertigkeit	bei Raumt	emperatur	(RT) [Trömel 2000]

Tabelle 3. Atomvolumen und BG-Parameter der Elemente mit W- oder Cu-Struktur

2.2 Elemente mit hexagonal dichten Packungen (hP2, hP4, hR3)

Die verschiedenen dichtesten Kugelpackungen unterscheiden sich in der Abfolge ihrer hexagonalen Schichten. Die Cu-Struktur hat die Stapelfolge ABCABC, die man nach Jagodzinski (vgl. Müller [1996]) mit dem Symbol c beschreibt. Für die einfachste hexagonal dichteste Kugelpackung erhält man eine Stapelfolge ABAB (Jagodzinski-Symbol: h). Bei einem Achsenverhältnis $c/a = \sqrt{8/3}$ für eine hexagonal dichteste Packung ergeben sich trotz unterschiedlicher Koordinationsgeometrie gleiche *relative Abstände*¹⁰ wie im kubisch dichtesten Fall. Dies gilt mit speziellen Achsenverhältnissen c/a auch für andere Stapelfolgen (Tabelle 4).

Tabelle	e 4.	Ideale	Achsenve	rhältnisse	e der	hexagonal	dichten	Packungen
---------	------	--------	----------	------------	-------	-----------	---------	-----------

Stapelfolge	Vertreter	P-Symbol	ideales Achsenverhältnis c/a	Raumgruppe			
c	Cu	cF4	-	$Fm\overline{3}m~(225)^{*)}$			
h	Mg	hP2	$\sqrt{8/3}$	$P6_3/mmc$ (194)			
hc	La	hP4	$2\sqrt{8/3}$	$P6_3/mmc$ (194)			
hhc Sm hR3 $4.5\sqrt{8/3}$ $R\overline{3}m$ (166)							
*) _{Raumgruppennummer}							

Im Fall eines nichtidealen Achsenverhältnisses ändert sich für alle hexagonalen Packungen die geometrische Koordinationszahl von 12+6 nach 6+6+6. In Abbildung 3 auf Seite 15 ist der Verlauf des Volumenfaktors mit dem Achsenverhältnis c/a für die Mg-Struktur aufgetragen. Es ergeben sich die folgenden Intervalle der Achsenverhältnisse c/a für den Bereich dichter Strukturen für hexagonalen Packungen:

Tabelle 5. Untere und obere Werte des Achsenverhältnisses c/a für hexagonale Packungen mit $f_X \leq 1.010$

Strukturtyp	c/a_{\min}	$c/a_{\rm max}$
Mg	1.438	1.826
La	2.876	3.652
Sm	6.471	8.217

Außer bei Zink und Cadmium (Tabelle 6) liegt der Volumenfaktor für alle Elemente mit hexagonalen Packungen im Bereich $f_X \leq 1.010$ (siehe Abbildung 3 auf Seite 15). Diese haben demnach dichte Strukturen.

Tabelle 6. Achsenverhältnisse c/a und Volumenfaktoren von Zink und Cadmium

	c/a	f_{Mg}			
$Zn^{*)}$	1.8563	1.013			
$Cd^{*)}$ 1.8855 1.017					
^{*)} [Lynch, Drickamer 1965]					

¹⁰Relativer Abstand: Das Verhältnis des Abstandes vom Zentralatom zum kürzesten Abstand.

	Struktur	$W^{**)}$	c/a	V_D [Å ³]	R_1 [Å]	b [Å]	
Be	Mg	2	1.565	8.225	1.726	0.298	*)
Mg	Mg	2	1.624	23.244	2.440	0.421	[Raynor, 1940]
Sc	Mg	3	1.592	24.974	2.674	0.431	*)
Υ	Mg	3	1.571	33.012	2.935	0.473	*)
Ti	Mg	3.51	1.587	17.643	2.441	0.384	*)
Zr	Mg	3.59	1.593	23.284	2.689	0.421	*)
Hf	Mg	3.75	1.585	23.130	2.701	0.420	*)
Tc	Mg	4.90	1.605	14.305	2.397	0.358	*)
Re	Mg	6	1.614	14.716	2.493	0.361	*)
Ru	Mg	6	1.590	13.919	2.447	0.355	*)
Os	Mg	6	1.579	13.968	2.450	0.355	*)
Co	Mg	4	1.624	11.065	2.133	0.329	*)
Zn	Mg	2	1.856	15.214	2.119	0.365	*)
Cd	Mg	2	1.886	21.585	2.381	0.411	*)
Tl	Mg	3	1.615	28.864	2.806	0.452	*)
La	La	-	$2 \cdot 1.613$	37.415	-	0.493	*)
\mathbf{Pr}	La	-	$2 \cdot 1.611$	34.526	-	0.480	*)
Nd	La	-	$2 \cdot 1.614$	34.168	-	0.479	*)
Sm	Sm	-	$4.5 \cdot 1.611$	33.119	-	0.474	*)
Gd	Mg	-	1.589	32.999	-	0.473	*)
Tb	Mg	-	1.578	32.132	-	0.469	*)
Dy	Mg	-	1.573	31.522	-	0.466	[Spedding, Daane, Hermann, 1956]
Ho	Mg	-	1.570	31.091	-	0.464	*)
Er	Mg	-	1.571	30.564	-	0.461	*)
Tm	Mg	-	1.577	30.139	-	0.459	*)
Lu	Mg	3	1.586	29.900	2.840	0.458	*)
Cm	La	-	$2 \cdot 1.616$	30.057	-	0.459	*)
*) [Pea	arson's Handbo	ok, 1997];	**) Bindungsw	ertigkeit bei I	RT [Trömel 2	2000]	

Tabelle 7.Atomvolumen und BG-Parameter der dichten Formen
der Elemente mit hexagonalen Packungen

2.3 Polonium mit kubisch primitiver Struktur (cP1)

Die kubisch primitive α -Po-Struktur hat mit der kubischen Gitterkonstante nur einen freien Strukturparameter. Damit ist der Volumenfaktor konstant für jedes Element, das in diesem Strukturtyp kristallisiert. Er beträgt: $f_{\alpha-Po} = 1.104$ mit den normierten Bindungsgraden:

Tabelle 8. Normierte Bindungsgrade der α -Po-Struktur

	Abstände	$\#(r_n)$	$\sigma(r_n)$				
r_1	a	6	0.1491				
r_2	$\sqrt{2}a$	12	0.0082				
$r_3 = \sqrt{3}a = 8 = 0.0009$							
$\#(r_i)$	$\#(r_n) = $ Anzahl der Abstände r_n						

Abbildung 3: f_X als Funktion des Achsenverhältnisses c/a für hexagonal dichte Packungen

Polonium ist das einzige Element, das unter Normaldruck in der kubisch primitiven Struktur kristallisiert (Raumgruppe $Pm\overline{3}m$ (221)). Im Temperaturbereich von 291 bis 327 K bildet es die rhomboedrische β -Modifikation (hR1), die man als verzerrte α -Po-Struktur auffassen kann (vgl. Kapitel 2.5).

Tabelle 9. Reduziertes Atomvolumen und BG-Parameter des Poloniums

	V_X [Å ³]	f_X	V_D [Å ³]	R_1 [Å]	b [Å]
$\alpha - \mathrm{Po}^{*}$ (RT)	37.899	1.104	34.332	2.779	0.479
$\beta - \mathrm{Po}^{*}$ (RT)	36.893	1.070	34.483	2.783	0.480
Mittelwert			$34.41\{7\}$	$2.781\{2\}$	$0.480\{1\}$
*)[DeSando, Lange,	1966]; $RT =$	Raumtemp	peratur		

2.4 Elemente mit tetragonal innenzentrierter Struktur (tI2)

Wie schon angedeutet, kann die Verwandschaft einfacher Elementstrukturen mit Hilfe der Pearson-Symbolik gut beschrieben werden. Das gilt für die Elementstrukturen mit gleichem wie mit unterschiedlichem P-Symbol, wenn die Raumgruppen dieser Elementstrukturen in einer Gruppe-Untergruppe-Beziehung stehen. Die Elementstrukturen mit dem P-Symbol tI2 kristallisieren in der Raumgruppe I4/mmm (139) mit den Atomen in der Lage (2a). Da diese Raumgruppe maximale translationsgleiche Untergruppe von $Fm\overline{3}m$ (225) und $Im\overline{3}m$ (229) ist, ergeben sich für spezielle Achsenverhältnisse c/a die kubischen Strukturen mit dem P-Symbol cI2 (W-Typ) für c/a = 1 bzw. cF4 (Cu-Typ) für $c/a = \sqrt{2}$. Man erhält somit in Abhängigkeit vom Achsenverhältnis c/a in der Raumgruppe I4/mmm (139) (Tabelle 10) drei tetragonale und zwei kubische Strukturtypen. Die Variation des Achsenverhältnisses c/a entspricht einer Streckung entlang der 4-zähligen

2 METALLSTRUKTUREN

Achse. Bei einem Achsenverhältnis $c/a = \sqrt{2}/\sqrt{3} \approx 0.816$ liegt eine spezielle Koordinationsgeometrie mit der Koordinationszahl 10 + 4 vor. Dieser Wert liegt nahe bei dem gemessenen Achsenverhältnis von Protactinium ($\frac{c}{a} = 0.823$). Diese Struktur wird im weiteren als Pa^{*}-Typ bezeichnet.

Tabelle 10. Achsenverhältnis c/a und Koordination für Strukturtypen in der Raumgruppe I4/mmm mit Atomen in der Atomlage (2a)

Strukturtyp	P-Symbol	c/a	GK
Pa	tI2	< 1	8 + 2 + 4
W(bcc)	cI2	1	8 + 6
γ^* -Mn	tI2	$1 < \frac{c}{a} \le \sqrt{2}$	8 + 4 + 2
Cu (fcc)	cF4	$\sqrt{2}$	12 + 6
In	tI2	$>\sqrt{2}$	4 + 8 + 4

Für den Bereich 0.791 < c/a < 1.715 ist $f_X \leq 1.010$ (siehe Abbildung 4 auf Seite 17), entsprechend der Bedingung für dichte Strukturen. Indium und Protactinium kristallisieren somit unter Normalbedingungen in dichten Strukturen.

 Tabelle 11.
 Reduziertes Atomvolumen und BG-Parameter von Indium und Protactinium

	W	c/a	V_D [Å ³]	R_1 [Å]	b [Å]	Strukturbestimmung
In	3	1.5203	26.167	2.717	0.438	[Smith, Schneider, 1964]
Pa	-	0.8235	24.942	-	0.431	[Zachariasen, 1959]

Das in Tabelle 10 und in Abbildung 4 auf Seite 17 aufgeführte γ^* -Mangan [de Wolff, 1965] ist eine abgeschreckte unter Normalbedingungen instabile Form des Mangans und liegt als einzige in der Literatur bisher bekannte Elementmodifikation im c/a-Bereich zwischen der W- und der Cu-Struktur. Für hypothetische Strukturen im Bereich 1.15 $< c/a < \sqrt{2}$ berechnet sich ein Volumenfaktor $f_X < 1$. Der Grund liegt in der Definition der Koordinationszahl. Beim Übergang zur Cu-Struktur kommt es zu einer sprunghaften Änderung der Koordinationszahl von 14 nach 18 (siehe Abbildung 54 auf Seite 99). Da für die Cu-Struktur der Volumenfaktor gleich eins gesetzt wurde, muss dann kurz vor dem Übergang der Volumenfaktor kleiner eins sein. Der Minimalwert des Volumenfaktors liegt im Übergangsbereich bei $f_X = 0.997$. Insgesamt ist festzustellen:

Der Übergang zwischen der W- und der Cu-Struktur durch Streckung entlang der 4-zähligen Achse verläuft ohne wesentliche Änderung des Atomvolumens.

2.5 Elemente mit rhomboedrischer Struktur (hR1)

Die Elemente mit dem P-Symbol hR1 kristallisieren in der Raumgruppe $R\overline{3}m$ (166) mit den Atomen in der Lage (3a) bei hexagonaler Aufstellung. Diese Raumgruppe ist maximale translationsgleiche Untergruppe von $Fm\overline{3}m$ (225), $Im\overline{3}m$ (229) und $Pm\overline{3}m$ (221). Für spezielle Achsenverhältnisse c/a bei hexagonaler Aufstellung der Raumgruppe $R\overline{3}m$ (166) erhält man die in Tabelle 12 angegeben Strukturtypen. Im Gegensatz zum Übergang der W- in die Cu-Struktur durch Streckung entlang der 4-zähligen Achse nimmt bei Streckung entlang der 3-zähligen Achse das Atomvolumen zu und erreicht sein Maximum bei der α -Po-Struktur (Abbildung 5 auf Seite 18). Wegen der diskontinuierlichen

Abbildung 4: f_X als Funktion des Achsenverhältnisses c/a für Strukturen der Raumgruppe I4/mmm

Änderung der geometrischen Koordinationszahl (siehe Abbildung 55 auf Seite 99) ist die Volumenfaktorkurve unstetig.

Tabelle 12.Achsenverhältnis c/a und Koordination für Strukturen in der
Raumgruppe $R\overline{3}m$ mit Atomen in der Atomlage (3a)

Strukturtyp	P-Symbol	c/a	GK
W	cI2	$\frac{\sqrt{3}}{2\sqrt{2}}$	8+6
β –Po	hR1	$\frac{\sqrt{3}}{2\sqrt{2}} < c/a < \frac{\sqrt{3}}{\sqrt{2}}$	6 + 2 + 6 bzw. $6 + 6 + 2$
α -Po	cP1	$\frac{\sqrt{3}}{\sqrt{2}}$	6 + 12 + 8
Hg	hR1	$\frac{\sqrt{3}}{\sqrt{2}} < c/a < \frac{2\sqrt{3}}{\sqrt{2}}$	6 + 6 + 6
Cu	cF4	$\frac{2\sqrt{3}}{\sqrt{2}}$	12 + 6

2.5.1 Quecksilber

Unterhalb von 78 K ist kristallisiert die β -Modifikation des Quecksilbers mit Pa-Struktur (vgl. Kapitel 2.4). Die im Temperaturbereich von 78 K bis zum Schmelzpunkt stabile Hochtemperaturform des Quecksilbers kristallisiert in der hier beschriebenen rhomboedrischen Struktur. Mit der Bindungswertigkeit W = 1.55 ergeben sich folgende BG-Parameter:

Abbildung 5: f_X als Funktion des Achsenverhältnisses c/a für Strukturen der Raumgruppe $R\overline{3}m$

 Tabelle 13.
 Reduziertes Atomvolumen und BG-Parameter des Quecksilbers bei verschiedenen Temperaturen

	Struktur	c/a	V_X [Å ³]	f_X	V_D [Å ³]	R_1 [Å]	b [Å]
$\alpha - {\rm Hg} \ (83 {\rm ~K})^{*)}$	$_{\mathrm{Hg}}$	1.933	23.073	1.029	22.412	2.305	0.416
$\beta - \text{Hg} (77 \text{ K})^{**}$	Pa	0.707	22.544	1.036	21.752	2.282	0.412
Mittelwert					$22.1\{3\}$	$2.29\{1\}$	$0.414\{2\}$
$\alpha - \text{Hg} (227 \text{ K})^{***}$	Hg	1.937	23.161	1.029	22.83	2.308	0.416
*) [Amand, Giessen, 1978]							
**) [Atoji, Schirber, Swens	son, 1959]						
***) [Pearson's Handbook	, 1997]						

2.6 Elemente mit Cr₃Si-Struktur (cP8)

Die Verbindung Cr_3Si^{11} kristallisiert in der Raumgruppe $Pm\overline{3}n$ (223). Silicium besetzt die Lage (2a) und Chrom die Lage (6c). Beide Atomlagen sind parameterfrei. Die Anordnung der Si-Atome ergibt ein bcc-Teilgitter. Die Cr-Atome bilden unbegrenzte Ketten mit kurzen Metall-Metall-Abständen, wobei die Ketten senkrecht zueinander verlaufen. In diesen Verbindungen der allgemeinen Formel A₃B ist A ein Element der 4., 5. oder 6. Gruppe. Für Chrom und Wolfram sind diese Strukturen als Cr_3Cr [Doherty, Poate, Voorhoeve, 1977] bzw. W₃W [Tang, Hess, 1984] beschrieben (zur Existenz von W₃W vgl. Leyendecker et al. [1997]). Für das Atom A erhält man eine (2 + 4 + 8)-Koordination (siehe Tabelle 15), wobei die kurzen Bindungen der Kette den Sechseckflächen des Wirkungsbereichs in Abbildung 6 entsprechen.

 $^{^{11}\}textsc{Diese}$ Struktur wird auch als
 $\beta-\textsc{W-}$ bzw. A15-Struktur (Strukturbericht) beschrieben

Abbildung 6: Wirkungsbereich und koordinierte Atome für Cr in (6c) in der Cr₃Si-Struktur

Das Atom B ist ikosaedrisch von 12 Atomen in gleichem Abstand (siehe Abbildung 7) umgeben. Daraus folgt, dass der Bindungsgrad für Chrom und Wolfram in dieser Lage $s = \frac{W}{12} = 0.5$ beträgt. Der Volumenfaktor für Elemente mit Cr₃Si-Struktur beträgt:

$$f_{Cr_3Si} = 1.013$$

In Tabelle 14 sind die für die Elemente Chrom und Wolfram berechneten Bindungsgradparameter aufgeführt. Aus beiden Strukturen ergeben sich für beide Elemente sehr gut übereinstimmende Parameter.

	C	hrom	Wolfram			
	W-Struktur	Cr_3Si -Struktur	W-Struktur	Cr_3Si -Struktur		
V_X [Å ³]	-	12.17	-	16.00		
V_D [Å ³]	12.00	12.01	15.85	15.80		
R_1 [Å]	2.329	2.331	2.555	2.565		
b [Å]	0.338	0.338	0.371	0.372		

 Tabelle 14.
 Reduziertes Atomvolumen und BG-Parameter

 von Chrom und Wolfram

Mit Bindungswertigkeiten von 6 für Chrom und Wolfram müssen auch die Atome auf den beiden verschiedenen kristallographischen Lagen eine Bindungswertigkeit von $W_i =$ 6 haben, da eine höhere Bindungswertigkeit aufgrund der Elektronenkonfiguration des Chroms ausgeschlossen erscheint. In Tabelle 15 sind die berechneten Bindungsgrade und ihre Summen angeben. Wie erwartet liegen die einzelnen Bindungswertigkeiten in guter Näherung bei $W_i = 6$ und $s \approx 0.5$ für die Cr-Cr-Bindung bei ikosaedrischer Koordination.

Abbildung 7: Wirkungsbereich und koordinierte Atome für Si in (2a) in der Cr₃Si-Struktur

Tabelle 15.	Abstandsklassen	und	Bindungsgrade	$\det A$	Atome in	der	Cr_3S	i-St	ruktı	ır
-------------	-----------------	-----	---------------	----------	----------	----------------------	---------	------	-------	----

	Atome i	n (6c)			Atome in	n (2a)	
	Abstände	$\#(r_n)$	$s(r_n)$		Abstände	$\#(r_n)$	$s(r_n)$
r_1	a/2	2	1.092				
r_2	$\sqrt{5}a/4$	4	0.489	r_1	$\sqrt{5a/4}$	12	0.489
r_3	$\sqrt{6}a/4$	8	0.236				
$\sum s$			6.03	$\sum s$			5.87
a = ku	bische Gitterkon	stante der (Cr ₃ Si-Stru	ktur			

Auffällig ist der hohe Bindungsgrad der kurzen Cr-Cr-Bindung. Für die Elemente W und Cr setzt sich die Cr₃Si-Struktur näherungsweise aus Ketten mit Einfachbindungen zusammen. Für diese kürzeste Bindung beträgt der normierte Bindungsgrad: $\sigma_{\text{max}} = 0.182$.

Die Gitterkonstante und damit der Volumenfaktor der Cr₃Si-Struktur sind in der Literatur mehrfach theoretisch berechnet worden ([Geller 1956], [Pauling 1957], [Simon 1983]). In allen Fällen erscheint der Abstand zwischen den Atomen A in (6c) und B in (2a) bestimmend für das Zellvolumen, obwohl der kürzeste Abstand der Atome A untereinander um 12% kürzer ist. Kugelförmig gedachte A-Atome müssen sich demnach im Abstand d = a/2 gegenseitig durchdringen. In Tabelle 16 sind die Funktionen für die Berechnung der kubischen Gitterkonstante a von Legierungen mit Cr₃Si-Struktur angeben.

Tabelle 16.Ansätze zur Berechnung der kubischen Gitterkonstanten afür intermetallische Verbindungen mit Cr_3Si -Struktur

Geller:	$a = \frac{4}{\sqrt{5}} \left(r_A + r_B \right)$
Pauling:	$a = \frac{\sqrt{4}}{\sqrt{5}} \left(\frac{3}{2} r'_A + \frac{1}{2} r'_B \right)$
Simon:	$a = 0.8929(3.01r_{12}(A) + r_{12}(B))$
$\boldsymbol{r}_{\!\boldsymbol{A},\boldsymbol{B}},\boldsymbol{r}_{\!\boldsymbol{A},\boldsymbol{B}}'=$	Radien für Elemente mit Cr ₃ Si-Struktur
$r_{12} = \text{Radien}$	für Elemente mit Cu-Struktur

2 METALLSTRUKTUREN

Die von Pauling für diese Struktur bestimmten Radien (siehe Tabelle 59 auf Seite 91) weichen im Mittel nur um 0.02 Å von den von ihm bestimmten Metallradien für die Koordinationszahl 12 (r_{12}) ab [Pauling, 1947]. Für die weiteren Betrachtungen gilt als Näherung $r_{12}(El) \approx r_{El}$ und $r_{12}(El) \approx r'_{El}$. Mit den Ansätzen von Pauling und Geller ergibt sich für die Cr₃Si-Struktur:

$$f_{Cr_3Si,PG} = 1.012$$

und entsprechend mit dem Ansatz von Simon:

$$f_{Cr_3Si,S} = 1.015$$

2.7 Mangan

Im Gegensatz zu seinen Nachbarelementen mit typischen Metallstrukturen tritt Mangan in zwei komplizierten kubischen Strukturen auf: α -Mn mit 58 und β -Mn mit 20 Atomen pro Elementarzelle. Neben diesen beiden Strukturen existiert Mangan in der metastabilen tetragonalen γ^* -Mn-Form (tI2; vgl. Kapitel 2.4). Diese dichte Modifikation ergibt mit der Bindungswertigkeit W = 3 folgende BG-Parameter: $\mathbf{b} = \mathbf{0.344}$ Å und $\mathbf{R}_1 = \mathbf{2.136}$ Å. Ein Vergleich der reduzierten Volumina der drei Modifikationen des Mangans zeigt Änderungen der Bindungswertigkeit beim Übergang zwischen den verschiedenen Modifikationen an [Trömel, Hübner, 1998]. Oberhalb von 1370 K kristallisiert Mn in dichten Strukturen.

2.7.1 Die α -Mn-Struktur (cI58)

Das unter Normalbedingungen stabile α -Mangan kristallisiert in der Raumgruppe $I\overline{43}m$ (217). Die vier kristallographisch verschiedenen Atome besetzen folgende Lagen mit den Koordinationszahlen¹²:

Tabelle 17. Geometrische Koordinationszahlen der kristallographisch verschiedenen Atome in α -Mangan

Atom	Lage	GK
Mn1	(2a)	16
Mn2	(8c)	16
Mn3	(24g)	14
Mn4	(24g)	12

Berechnet man mit Hilfe der Volumenfaktorgleichung die normierten Bindungsgrade und deren Summen, fällt zweierlei auf:

1. Die normierte Bindungswertigkeit der einzelnen Atome, die sich aus der Summe der normierten Bindungsgrade ergibt, ist für die einzelnen Lagen verschieden (siehe Tabelle 18). Das Ergebnis entspricht der von Nesper [1995] beschriebenen merklichen "Ladungsdisproportionierung" zwischen den einzelnen Positionen. Dies zeigt sich auch in Verbindungen aus Hauptgruppenelemente mit α -Mn-Struktur: In der intermetallischen Verbindung Li_xMg_{17-x}Al₁₂ besetzen die Li-Atome und Mg-Atome die Positionen von Mn1

¹²Im Strukturbericht [Ewald, Hermann, 1931] und bei [Wells, 1984] ist für Mn3 fälschlich eine Koordinationszahl von 13 angegeben.

und Mn2, Mg-Atome die Position von Mn3 und Al-Atome die Position von Mn4. Diese Verteilung auf die unterschiedlichen Lagen läßt sich als Folge der Bindungswertigkeit dieser drei Elemente gut verstehen.

2. Der höchste normierte Bindungsgrad ist mit $\sigma_{\text{max}} = 0.216$ mehr als doppelt so groß wie in der W-Struktur. In der α -Mn-Struktur können somit höhere Bindungsgrade als in einer der typischen Metallstrukturen verwirklicht werden. Der Volumenfaktor des α -Mangans (298 K) ergibt sich nach der Strukturbestimmung von Gazzara et al. [1967] zu $f_{\alpha-Mn} = 1.012$ und kommt damit dem einer dichten Struktur sehr nahe.

Er lässt sich auch durch quantenmechanische Rechnungen abschätzen [Mehl, Papaconstantopoulus, 1995]. Danach beträgt der quantenmechanische Volumenfaktor: $\overline{f_{\alpha-Mn,TB}} =$ 1.014(7) (vgl. Tabelle 56 auf Seite 76).

2.7.2 Die β -Mn-Struktur (cP20)

Im Temperaturbereich von 1000 K bis 1370 K ist unter Normaldruck β -Mn die thermodynamisch stabile Phase. Nach der Strukturbestimmung von Shoemaker et al. [1978] kristallisiert β -Mn bei Raumtemperatur in der Raumgruppe $P4_132$ (213). Die Mn-Atome besetzen die Lagen (8c) (Mn1) und (12d) (Mn2) mit den geometrischen Koordinationszahlen 12 und 16. Es ergibt sich als Volumenfaktor $f_{\beta-Mn} = 1.014$. Wieder findet man verschiedene normierte Bindungswertigkeiten der einzelnen Atome (Tabelle 18).

Eine weitere Bestätigung für den berechneten Volumenfaktor ergeben wie im Fall des α -Mangans die quantenmechanischen Rechnungen: $\overline{f_{\beta-Mn,TB}} = 1.016(9)$ (vgl. Tabelle 56 auf Seite 76).

Tabelle 18. Summe der normierten Bindungsgrade der Mn-Atome in α - und β -Mn

Struktur	Atom	$\sum \sigma$
α -Mn	Mn1	0.727
	Mn2	0.798
	Mn3	0.976
	Mn4	1.118
β –Mn	Mn1	1.164
	Mn2	0.893

Neben Mangan kristallisiert auch Cobalt in der β -Mn-Struktur [Dinega, Moungi, 1999]. Für diese metastabile ε -Cobalt-Phase wurden von den Autoren die Atomkoordinaten des β -Mangans übernommen. Daher ist der Volumenfaktor $f_{\varepsilon-Co} = 1.014$. Aus den Gitterkonstanten erhält man den folgenden Faktor:

$$f_X = \frac{V_{\varepsilon - Co,obs}}{V_{hcp}} = \frac{11.332}{11.104} = 1.021$$

der mit dem theoretischen befriedigend übereinstimmt. Die Ursache für die Abweichung gegenüber dem theoretischen Wert sind vermutlich die zugrundegelegten Ortsparameter.

2.8 Gallium

Gallium tritt unter Normaldruck in drei Modifikationen auf, wobei die thermodynamisch stabile Form α -Gallium ist.

Abbildung 8: Kristallstruktur von α -Gallium

2.8.1 α -Gallium (oC8)

 α -Gallium kristallisiert in der Raumgruppe Cmca (64) mit den Atomen in der Lage (8f). Die Struktur des α -Galliums ähnelt der des Iods. Sie enthält Pseudomoleküle der Form Ga₂ mit einem Abstand von 2.483 Å [Sharma, Donohue, 1962], deren Schwerpunkte ein orthorhombisch flächenzentriertes Gitter bilden (siehe Abbildung 8). Der Volumenfaktor dieser Struktur berechnet sich zu $f_X = 1.157$. Bei einer Bindungswertigkeit von 3 für Gallium erhält man für den Bindungsgrad zwischen den Atomen in der Ga₂-Einheit s =0.703. Dies entspricht einer normierten Bindungsvalenz von $\sigma = 0.234$, die im Vergleich zu den dichten Strukturen sehr hoch ist. Neben der α -Ga-Struktur gibt es noch weitere zum Teil komplizierte Modifikationen des Galliums, die hier nicht einzeln besprochen werden.

Tabelle 19. Reduziertes Atomvolumen und BG-Parameter des Galliu

	P-Symbol	V_X [Å ³]	f_X	$V_D [\mathrm{\AA}^3]$	R_1 [Å]	b [Å]
α−Ga	oC8	19.588	1.157	16.933	2.349	0.379
$\delta - Ga^{1),*)}$ (191 K)	hR22	18.441	1.047	17.610	2.380	0.384
$\beta - Ga^{2}$ (248 K)	mC4	18.543	1.041	17.813	2.389	0.385
$\gamma - \mathrm{Ga}^{3)}$ (RT)	oC40	18.633	1.060	17.576	2.379	0.383
				$17.7\{1\}$	$2.38444\}$	$0.384\{1\}$
¹⁾ [Bosio et al., 1973]						
²⁾ [Bosio, Defrain, 1969]						
³⁾ [Bosio et al., 1972]						

 $^{*)}\delta$ –Ga wurde als Tieftemperaturmodifikation nicht in die Mittelwertbildung mit einbezogen

Der Vergleich der berechneten BG-Parameter zeigt eine gute Übereinstimmung für $\beta -$, $\gamma -$ und $\delta -$ Gallium.

Bei 2.8 GPa kristallisiert Gallium in der dichten In-Struktur [Bosio, 1978] mit c/a = 1.583. Das Atomvolumen beträgt 17.614 Å³ und liegt somit im Bereich des reduzierten Volumens $V_D = 17.7\{1\}$.

2.9 Zinn

Unter Normaldruck kristallisiert Zinn oberhalb von 291 K in der metallischen β – Modifikation, unterhalb 291 K in der nicht metallischen α –Modifikation mit Si-Struktur (vgl. Kapitel 3.2).

2.9.1 β -Zinn (tI4)

Die metallische Form des Zinns kristallisiert in der Raumgruppe $I4_1/amd$ (141) mit Atomen in der Lage (4a). Diese Raumgruppe ist maximale translationsgleiche Untergruppe der Raumgruppe $Fd\overline{3}m$ (227), in der auch α -Zinn kristallisiert. Beschreibt man beide Modifikationen in der Raumgruppe $I4_1/amd$ (141) mit Atomen in der Lage (4a), so ergeben sich folgende Koordinationsverhältnisse:

Tabelle 20. Achsenverhältnis c/a und Koordination für Zinn

	c/a	GK
α	$\sqrt{2}$	4 + 12 + 12
β	0.5455	4 + 2 + 4 + 8
β^*	$2/\sqrt{15} \approx 0.5164$	6 + 4 + 8

Man kann somit die β -Sn-Struktur als stark verzerrte Si-Struktur auffassen. Bei Variation des Achsenverhältnisses c/a ändert sich die Anzahl der nächsten Nachbarn von 4 (Si-Struktur) über 4 + 2 auf 6 (β^* -Struktur). In Abbildung 9 ist die stetige Abnahme des Volumenfaktors im Übergang von der α - zur β -Modifikation als Funktion des Achsenverhältnisses c/a dargestellt. Im Maximum dieser Volumenfaktorkurve liegt α -Zinn.

Die β^* -Struktur wird vom Strukturbericht als "Idealfall" der β -Sn-Struktur beschrieben. Tatsächlich tritt aber das genannte Achsenverhältnis weder bei Elementen noch bei Mischkristallen mit β -Sn-Struktur auf. Der Mittelwert der Achsenverhältnisse nach Tabelle 60 auf Seite 92 beträgt c/a = 0.541(14). Dieser Wert liegt nahe bei dem Achsenverhältnis c/a = 0.533 im Minimum der Volumenfaktorkurve.

Tabelle 21. Reduziertes Atomvolumen und BG-Parameter des Zinns

	V_X [Å ³]	f_X	$V_D [Å^3]$	R_1 [Å]	b [Å]
$\alpha - \operatorname{Sn}^{*)}$	34.157	1.385	24.662	2.787	0.429
β -Sn**)	27.047	1.062	25.468	2.817	0.434
			$25.1\{4\}$	$2.80\{2\}$	$0.432\{2\}$
*) [Lee, Ray	mor 1954 (a)]				
**) [Lee, Ra	ynor 1954 (b)]			

2.10 Die Hochdruckmodifikation α -Cer (mC4)

Die Hochdruckmodifikation α -Ce¹³ kristallisiert in der Raumgruppe C2/m (12) mit den Atomen in der Lage (4i) [Zachariasen, 1978]. Vergleicht man den Wirkungsbereich der Atome dieser Hochdruckmodifikation des Cers (siehe Abbildung 11) mit dem Wirkungsbereich in der Cu-Struktur (siehe Abbildung 1 auf Seite 6), so erkennt man die Verwandschaft beider Strukturen. Die zwölf kürzesten Bindungen liegen in einem Bereich von 2.988 Å bis

¹³Unterhalb von 96 K und bei Normaldruck kristallisiert Cer mit Cu-Struktur. Die Hochdruckmodifikation wird auch als $\alpha^{''}$ -Ce-Phase bezeichnet.

Abbildung 9: Volumenfaktor von Zinn als Funktion von c/a

Abbildung 10: Verlauf des Volumenfaktors der β -Sn-Struktur in der Nähe des Minimums

Abbildung 11: Wirkungsbereich und koordinierte Atome des Cers in der monoklinen Hochdruckmodifikation

3.360 Å mit normierten Bindungsgraden σ von 0.141 bis 0.059. Der Volumenfaktor dieser Struktur beträgt $f_{\alpha-Ce} = 1.004$. Die Hochdruckmodifikation des α -Ce ist somit dicht.

2.11 Uran

Uran tritt in Abhändigkeit von der Temperatur in drei Modifikationen auf. Die unter Normalbedingung stabile Modifikation ist α -Uran (oC4) [Lander, Mueller, 1970], das in der Raumgruppe *Cmcm* (63) kristallisiert. Man kann diese Struktur als stark deformierte Mg-Struktur auffassen. Die Verwandschaft beider Strukturen wird deutlich, wenn man die Atomparameter des idealen Mg-Typs in der Raumgruppe *Cmcm*¹⁴ mit denen des α -Urans vergleicht (siehe Tabelle 22).

Tabelle 22. Strukturparameter für Mg und α - U in der Raumgruppe *Cmcm* mit Atomen auf der Atomlage (4c)

Struktur	b/a	c/a	Lage	x	y	z
Mg (ideal)	$\sqrt{3} \approx 1.732$	$\sqrt{8/3} \approx 1.633$	(4c)	0	2/3	1/4
α -Uran	2.057	1.736	(4c)	0	0.6025	1/4

Durch die Deformation ist die Koordination verändert, wobei die nächsten 12 Nachbarn in fünf Abstandsklassen aufspalten (siehe Tabelle S. 108). Der Volumenfaktor ist mit $f_{\alpha-U} = 1.030$ erhöht. Auffällig sind vier kurze Bindungen mit normierten Bindungsgraden von $\sigma = 0.172$ und $\sigma' = 0.134$, im Vergleich zu $\sigma_{\max,Mg} = 0.0816$ für eine ideale hexagonal dichte Packung.

Im Temperaturbereich von 935 K bis 1045 K [Lawson et al., 1988] ist die tetragonale β -Form (tP30) stabil. Sie kristallisiert in der Raumgruppe $P4_2/mnm$ (136). Wie im Fall von α - bzw. β -Mn (vgl. Kapitel 2.7.1 bzw. Kapitel 2.7.2) kommt es auch bei der β -U Struktur zu einer Ladungsdisproportionierung.

¹⁴Die Raumgruppe Cmcm ist translationsgleiche Untergruppe von $P6_3/mmc$, in der Mg kristallisiert.

Atom	Lage	$\Sigma \sigma$
U1	(2a)	1.096
U2	(4f)	0.874
U3	(8i)	1.060
U4	(8i)	0.955
U5	(8f)	1.025

Tabelle 23. Summe der normierten Bindungsgrade der U-Atome in β -U

Während für die Uranatome auf den 8-zähligen Lagen $\Sigma \sigma \approx 1$ ist, weichen die Uranatome in den 2- und 4-zähligen Atomlagen stärker ab. Der Volumenfaktor dieser komplizierten Elementstruktur liegt mit $f_{\beta-U} = 1.009$ im Bereich der dichten Strukturen. Oberhalb von 1045 K kristallisiert Uran in der ebenfalls dichten W-Struktur.

2.12 Plutonium

Von Plutonium sind acht feste Phasen bekannt [Young, 1991]. Die unterhalb von 395 K stabile Modifikation α -Pu (mP16) [Zachariasen, Ellinger, 1963 (a)] kristallisiert in der Raumgruppe $P2_1/m$ (11) mit Atomen in acht kristallographisch verschiedenen Lagen. Es ergeben sich folgende Summen der normierten Bindungsgrade:

Tabelle 24. Summe der normierten Bindungsgrade der Pu-Atome in α -Pu

Atom	Lage	$\Sigma \sigma$
Pu1	(2e)	1.150
Pu2	(2e)	1.055
Pu3	(2e)	1.060
Pu4	(2e)	1.029
Pu5	(2e)	1.016
Pu6	(2e)	0.937
Pu7	(2e)	1.007
Pu8	(2e)	0.747

Der Volumenfaktor beträgt $f_{\alpha-Pu} = 1.075$.

Im Temperaturbereich von 395 bis 479 K ist β -Pu (mC34) [Zachariasen, Ellinger, 1963 (b)] die stabile Modifikation. β -Pu kristallisiert in der Raumgruppe C2/m (12). Die Lagen der kristallographisch verschiedenen Atome sowie die Summe der normierten Bindungsgrade sind in Tabelle 25 aufgeführt. Der Volumenfaktor berechnet sich zu $f_{\beta-Pu} = 1.023$.

Tabelle 25. Summe der normierten Bindungsgrade der Pu-Atome in β -Pu

Atom	Lage	$\Sigma \sigma$
Pu1	(2a)	1.209
Pu2	(4h)	1.062
Pu3	(4i)	0.802
Pu4	(4i)	1.074
Pu5	(4i)	0.965
Pu6	(8j)	0.888
Pu7	(8j)	1.155

Abbildung 12: Wirkungsbereich und koordinierte Atome für γ -Pu

 γ -Pu (oF8) [Zachariasen, Ellinger, 1955] kristallisiert in der Raumgruppe Fddd (10). Diese ist translationsgleiche Untergruppe der Raumgruppe $I4_1/amd$ (141), in der auch die β -Sn- und die Si-Struktur beschrieben werden können (vgl. Kapitel 2.9.1). Bei dieser Beschreibung befinden sich die Atome in der Lage (8a). Für die drei Strukturen ergeben sich folgende orthorhombische Achsenverhältnisse:

Tabelle 26. Achsenverhältnisse der Strukturen β -Sn, Si und γ -Pu in der Raumgruppe Fddd mit Atomen auf der Atomlage (8a)

	c/a	c/b
β –Sn	0.546	0.546
Si	$\sqrt{2}$	$\sqrt{2}$
$\gamma-\mathrm{Pu}$	3.217	1.762

Der Volumenfaktor der γ -Pu-Struktur ist $f_{\gamma-Pu} = 1.008$. Die γ -Pu-Struktur ist somit dicht.

Oberhalb von 592 K kristallisiert Pu in weiteren dichten Strukturen.

2.13 Neptunium

Die unterhalb von 551 K stabile Modifikation α -Np (oP8) [Zachariasen, 1952] kristallisiert in der Raumgruppe *Pmna* (62) mit zwei kristallographisch verschiedenen Atomen in der Lage (4c). Die α -Np-Struktur kann als deformierte W-Struktur aufgefasst werden (vgl. Donohue [1974]). In Tabelle 27 sind die Strukturparameter für α -Neptunium und die W-Struktur in der Raumgruppe *Pmna* (62) aufgeführt.

Tabelle 27. Strukturparameter für α - Np und W in der Raumgruppe Pmna mit Atomen in der Atomlage (4c)

Struktur	b/a	c/a	x_{Np1}	y	z_{Np1}	x_{Np2}	z_{Np2}
W	$1/\sqrt{2} \approx 0.7071$	1	0	1/4	1/4	1/4	3/4
α – Np	0.7088	1.0347	0.036	1/4	0.208	0.319	0.842

Der Volumenfaktor beträgt: $f_{\alpha-Np} = 1.076$.

Zwischen 551 K und 843 K kristallisiert Neptunium in der β -Modifikation (tP4) [Zachariasen, 1952] mit der Raumgruppe $P42_12$ (90) und Atomen in den Lagen (2a) und (2c). Wie die α -Form des Neptuniums kann auch die β -Np-Struktur als deformierte W-Struktur aufgefasst werden (vgl. Donohue [1974] und Tabelle 28). Der Volumenfaktor beträgt: $f_{\beta-Np} = 1.034$.

Tabelle 28. Strukturparameter für β - Np und W in der Raumgruppe $P42_12$ mit Atomen in den Atomlagen (2a) und (2c)

Struktur	c/a	z
W	$1/\sqrt{2} \approx 0.7071$	1/2
β –Np	0.6940	0.375
(2a) (000)	und (2c) $(01/2z)$	

Oberhalb von 843 K kristallisiert Neptunium mit W-Struktur (γ -Np).

2.14 ω -Titan (hP3)

Bei 4 GPa und 298 K kristallisiert Titan als einziges in der Literatur bekanntes Element mit AlB₂-Struktur [Chebotareva, Nuzhdina 1973] in der Raumgruppe P6/mmm (191). Dabei besetzen die Al-Atome die Lage (1a) und die B-Atome die Lage (2d), wobei die B-Atome hexagonale Schichten bilden. Das beobachtete Achsenverhältnis c/a = 0.61von ω -Ti liegt sehr nahe beim Minimum der Volumenfaktorkurve der AlB₂-Struktur (siehe Abbildung 13). Das aus der Volumenfaktorkurve bestimmte Minimum liegt bei c/a = 0.600 mit $f_{\omega-Ti} = 1.010$ auf der Grenze zu einer dichten Struktur.

Tabelle 29. Summe der normierten Bindungsgrade der Ti-Atome in ω -Ti

Atom	Lage	$\Sigma \sigma$
Ti1	(1a)	0.913
Ti2	(2a)	1.043

2.15 Elemente mit hexagonal primitiver Struktur (hP1)

Die hexagonal primitive Struktur¹⁵ tritt als Hochdruckmodifikation des Siliciums auf (Raumgruppe: P6/mmm (191)). Außerdem kristallisieren einige Mischkristalle in diesem Strukturtyp. Die maximale Anzahl an nächsten Nachbarn hat ein Atom in dieser

¹⁵Die hexagonal primitive Struktur wird nach einer intermetallischen Verbindung mit statistischer Verteilung der beiden Atomarten als BiIn-Struktur bezeichnet. Allerdings wird diese Bezeichnung auch für eine weitere tetragonale Struktur benutzt.

Abbildung 13: Verlauf des Volumenfaktors der AlB₂-Struktur

Abbildung 14: Wirkungsbereich und koordinierte Atome für Ti
 in (1a) in der AlB₂-Struktur

Abbildung 15: Wirkungsbereich und koordinierte Atome für Ti in (2d) in der AlB₂-Struktur

Struktur bei einem Achsenverhältnis c/a = 1 (GK = 8 + 12), wobei zwei dieser acht Nachbarn über Sechseckflächen und sechs über Vierecksflächen des Wirkungsbereichs koordiniert sind (siehe Abbildung 17). Die beobachteten Achsenverhältnisse (siehe Tabelle 61 auf Seite 93) ergeben einen Mittelwert von $c/a = 0.931(7)^{16}$, der dem Minimum der Volumenfaktorkurve (c/a = 0.949, siehe Abbildung 16) nahekommt (GK = 2 + 6 + 12).

2.16 Die hypothetische tetragonal dichte Kugelpackung

Die tetragonal dichte Kugelpackung ist eine hypothetische Struktur [Müller, 1996], die als Elementstruktur nicht bekannt ist. Sie leitet sich von der SnO₂-Struktur¹⁷ ab, bei der das Anionenteilgitter eine annähernd tetragonal dichte Kugelpackung bildet. Im Idealfall der tetragonalen Packung mit 11 nächsten Nachbarn¹⁸ ergeben sich folgende Atomparameter in der Raumgruppe $P4_2/mnm$ (136): Atom X in der Lage (4f) mit dem freien Ortsparameter $x = 1 - \sqrt{2}/2$ bei einem Achsenverhältnis von $c/a = 2 - \sqrt{2}$. Die geometrische Koordinationszahl der idealen Packung ist 14 mit folgenden Abständen und normierten Bindungsgraden:

Tabelle 30. Abstandsklassen für Atome in der tetragonal dichten Struktur

	Abstände	$\#(r_n)$	$\sigma(r_n)$
r_1	c	11	0.0881
r_2	$\left(\sqrt{3}/\sqrt{2}\right)c$	2	0.0139
r_3	$\sqrt{2}c$	1	0.0029

Für die tetragonale Kugelpackung ergibt sich ein Volumenfaktor von $f_X = 1.002$. Die Struktur ist demnach dicht.

 $^{^{16}}$ Mo₃Tc₇ wurde nicht in die Mittelwertbildung einbezogen.

¹⁷Die SnO₂-Struktur wird auch als Rutil-Struktur bezeichnet.

¹⁸Bei Abweichung von den idealen Gitterparametern spalten die 11 nächsten Nachbarn in drei unterschiedliche Abstandsklassen mit acht, zwei und einem Atom auf.

Abbildung 16: Verlauf des Volumenfaktors der hexagonal primitiven Struktur

Abbildung 17: Wirkungsbereich und koordinierte Atome eines Elements mit hexagonal primitiver Struktur

Abbildung 18: Wirkungsbereich und koordinierte Atome eines Atoms in der tetragonal dichten Packung

3 Nichtmetallstrukturen

3.1 Bor

Bor kristallisiert in verschiedenen Strukturen, von denen vier¹⁹ aufgeklärt sind. Alle enthalten als charakteristische Baugruppen B₁₂–Ikosaeder, die untereinander durch starke kovalente Bindungen verknüpft sind. β -rhomboedrisches Bor und β -tetragonales Bor (*II*-tetragonales Bor) haben jedoch fehlgeordnete Strukturen und können deshalb in die folgenden Betrachtungen nicht einbezogen werden.

3.1.1 α -rhomboedrisches Bor (hR36)

Im α -rhomboedrischen Bor liegen die Schwerpunkte der B₁₂-Ikosaeder auf den Ecken einer rhomboedrischen Zelle. Mit dem Rhomboederwinkel von 58.2° [Switendick, Morosin, 1991] sind die Ikosaeder nahezu kubisch flächenzentriert²⁰ angeordnet. Das α -rhomboedrische Bor kristallisiert in der Raumgruppe $R\overline{3}m$ (166) mit zwei kristallographisch verschiedenen Atomen jeweils in der Lage (18h) (in hexagonaler Aufstellung). Die Verknüpfung der Ikosaeder erfolgt über das Atom B1 entlang der rhomboedrischen Achsen. Für die Summe der Bindungsgrade ergibt sich sich für B1: $\Sigma s = 3.248$ und B2: $\Sigma s = 2.752$. Aufgrund der Elektronenkonfiguration des Bors ist aber eine Bindungswertigkeit über 3 ausgeschlossen. Deshalb wurden die Ortsparameter des α -rhomboedrischen Bors in einer "trial and error"-Prozedur so variiert, dass die Summe der Bindungsgrade um beide Boratome gerade ihre Bindungswertigkeit ergibt (Tabelle 31). Die berechnete Struktur wird im weiteren als α -rhomb. B_{calc} bezeichnet.

Tabelle 31. Beobachtete und berechnete Ortsparameter für α -rhomboedrischen Bor

	Ortskoordin	aten für B1	Ortskoordin	naten für B2
Lage $(18h)$	x	z	x	z
α -rhomb. B _{obs}	0.11892(3)	0.89122(2)	0.19686(3)	0.02428(2)
α -rhomb. B _{calc}	0.1218	0.8943	0.1914	0.0212
Δ	0.0029	0.0031	0.0055	0.0031

Allerdings ist die Differenz zwischen den beobachteten und berechneten Ortsparametern um zwei Zehnerpotenzen größer ist als der von den Autoren angegebene Fehler der Positionen. Interessant ist die Verteilung der Bindungsgrade auf die Bindungen innerhalb des Ikosaeders und zwischen ihnen. (Die in Klammern angegebenen Werte sind jeweils die Ergebnisse für α -rhomb. B_{calc}.) Die Summen der Bindungsgrade innerhalb des Ikosaeders betragen: Atom B1: $\Sigma s_{iko}(B1) = 2.432(2.367)$; Atom B2: $\Sigma s_{iko}(B2) = 2.314(2.689)$. Man erhält somit für die Gesamtsumme der Bindungsgrade 28.48 (30.34). Das entspricht in guter Näherung dreißig Elektronen für die Bindungen innerhalb des Ikosaeders und sechs für die Bindungen zwischen den Ikosaedern (vgl. [Paetzold, 1975]). Die sechs Elektronen verteilen sich aber nicht nur auf die Bindungen zwischen den Atomen B1 entlang der rhomboedrischen Achsen mit einer Bindungslänge von 1.667 Å und s = 0.759 (1.711 Å und s = 0.589). Vielmehr liegen noch weitere Bindungen zwischen den Atomen B2 vor mit r = 2.023 Å und s = 0.192 (2.090 Å und s = 0.133).

¹⁹Von einer weiteren kubischen Modifikation mit 1708 Boratomen pro Elementarzelle und einer hexagonalen (?) Bormodifikation berichten Sullenger et al. [1969].

²⁰Der Rhomboederwinkel für die fcc-Struktur beträgt 60°.

3.1.2 " α - tetragonales Bor"

Hoard, Hughes und Sands [1958] berichteten von einer Bormodifikation (α -tetragonales Bor bzw. I-tetragonales Bor), die in der Raumgruppe $P4_2/nnm$ (134) mit der Zusammensetzung (B_{12})₄ B_2 mit B-Atomen in den Lagen (2b), zweimal (8m) und zweimal (16n) kristallisieren soll. Das entspricht vier B_{12} -Ikosaedern und zwei jeweils vier Ikosaeder verbrückenden Boratomen in der Lage (2b) pro Elementarzelle. Für die verbrückenden Boratome berechnet sich eine Bindungswertigkeit von $\Sigma s = 4.010$ mit je einer Einfachbindung zu jedem der vier Ikosaeder. Will und Ploog [1974] haben gezeigt, dass sich in (2b) kein B-Atom befindet. Vielmehr handelt es sich bei " α -tetragonalem Bor" um eine Verbindung der Form (B_{12})₄ B_2C_2 oder (B_{12})₄ B_2N_2 mit Kohlenstoff oder Stickstoff in (2b) und einem weiterem Boratom in der Lage (2a).

3.1.3 BG-Parameter des Bors

Auffällig ist die gute Übereinstimmung der BG-Parameter der ausgewerteten Borstrukturen (Tabelle 32). Der Grund liegt in der großen Überzahl der Boratome in den B_{12} -Ikosaedern, die bei der Parameterbestimmung stark überwiegen. Somit ist es trotz der besprochenen Probleme in den Einzelstrukturen möglich, BG-Parameter des Bors anzugeben:

 $V_D = 5.32\{2\}$ Å³, $R_1 = 1.60$ Å und b = 0.26 Å

Tabelle 32. Reduziertes Atomvolumen und BG-Parameter des Bors

	V_X [Å ³]	f_X	V_D [Å ³]	R_1 [Å]	b [Å]
α -rhomb. B _{calc}	7.276	1.425	5.105	1.575	0.254
α -rhomb. B _{obs}	7.276	1.374	5.296	1.595	0.257
" α - tetragonales Bor"	7.748	1.451	5.338	1.599	0.258

3.2 Kohlenstoff

Die Strukturen des Kohlenstoffs reichen von der Raumnetzstruktur des Diamanten über die Schichtstruktur des Graphits bis zu den Molekülstrukturen der Fullerene.

3.2.1 Diamant (cF8) und Lonsdaleit (hP4)

Die stabile Hochdruckmodifikation des Kohlenstoffs ist der Diamant (Si-Struktur). Die Atome verteilen sich auf drei Abstandsklassen mit den Abständen:

Tabelle 33. Abstandsklassen für Kohlenstoff in der Si-Struktur

	Abstände	$\#(r_n)$	$s(r_n)$			
r_1	$a\sqrt{3}/4 = 1.544$	4	0.948			
r_2	$a\sqrt{2}/2 = 2.522$	12	0.015			
r_3	$a\sqrt{11}/4 = 2.957$	12	0.002			
mit: $a = 3.567$ [Straumanis, Aka, 1951]						

Wie erwartet liegt der Bindungsgrad für die kürzeste Bindung im Diamant sehr nahe bei eins. Für die Einfachbindung ergibt sich $R_1 = 1.532$ Å, was mit der mittleren Bindungslänge $\overline{r} = 1.530(15)$ Å [Allen et al., 1987] in Molekülverbindungen mit sp^3 -

3 NICHTMETALLSTRUKTUREN

hybridisiertem Kohlenstoff und C- oder H-Atomen als weiteren Bindungspartnern übereinstimmt. Für die sekundären Bindungen ergibt sich als Summe $W_{sek} = 0.208$. Dieser Wert entspricht 5.2% der Bindungswertigkeit des Kohlenstoffs. Der Volumenfaktor beträgt $f_{\rm Si} = 1.385$, in guter Übereinstimmung mit dem quantenmechanische Volumenfaktor: $\overline{f_{\rm Si,TB}} = 1.40(5)$ (vgl. Tabelle 56 auf Seite 76). V_D berechnet sich zu 4.093 Å³.

Der hexagonale Diamant ist im Gegensatz zum kubischen Diamant aus Sechsringen in der Boot-Konformation in der ac- und bc-Ebene und aus Sechsringen in der Sessel-Konformation in der ab-Ebene aufgebaut. Die ideal tetraedrische Umgebung eines Kohlenstoffatoms ergibt sich in der Raumgruppe $P6_3/mmc$ (194) mit der Lage (4f) bei einem Achsenverhältnis $c/a = \sqrt{8/3}$ und dem freien Atomparameter z = 1/16. Das gemessene Achsenverhältnis c/a = 1.63(1) [Bundy, Kasper, 1967] entspricht dem idealen Wert. Für den Strukturvorschlag wurde z = 1/16 zugrundegelegt. Damit entsprechen die Abstandsklassen denen im kubischen Diamant.

3.2.2 α -Graphit (hP4) und β -Graphit (hR2)

Die unter Normalbedingungen stabile Form des Kohlenstoffs ist der α -Graphit mit der hexagonalen Stapelfolge (ABAB). Er kristallisiert in der Raumgruppe $P6_3/mmc$ (194) mit Atomen in den Lagen (2b) und (2c). Die Bindungsgrad der kürzesten Bindung kommt mit s(1.423 Å) = 1.322 einer 4/3-Bindung nahe. Der berechnete Einfachbindungsabstand sowie das Volumen V_D weichen jedoch mit $R_1 = 1.487$ Å und $V_D = 3.747$ Å³ signifikant von den aus der Si-Struktur berechnet Werten für Kohlenstoff ab. Berechnet man für verschiedene Gitterkonstanten c ($c_{obs} = 6.711$ Å [Trucano, Chen, 1975]) die zugehörigen Einfachbindungsabstände R_1 , so laufen diese asymptotisch gegen den Wert $R_1 = 1.487$ Å (siehe Abbildung 19 auf Seite 37). Die BG-Parameter sind für Gitterkonstanten von c > 5Å nahezu unabhängig vom Schichtabstand c/2, und es ist nicht möglich, durch Variation des Schichtabstandes den R_1 -Wert zu erreichen, der sich für Diamant errechnet.

Für Graphit und Diamant kann somit kein gemeinsamer Satz von BG-Parametern bestimmt werden.

Legt man den Volumenfaktor des Kohlenstoffs mit Si-Struktur zugrunde, so kann man aus den bekannten Atomvolumina beider Modifikationen den Volumenfaktor des α -Graphits abschätzen:

$$f'_{\alpha-Graphit} = f_{\mathrm{Si}} \frac{V_{\alpha-Graphit}}{V_{\mathrm{Si}}} = 2.155$$

Nach dieser Abschätzung müsste die a-Gitterkonstante $a_{calc} = 2.542$ Å statt $a_{obs} = 2.464$ Å [Trucano, Chen, 1975] betragen.

Der rhomboedrische Graphit hat die Stapelfolge (ABCABC) mit den Gitterkonstanten $a_{\beta-Graphit} = a_{\alpha-Graphit}$ und $c_{\beta-Graphit} = 3/2c_{\alpha-Graphit}$. Da die Schichten in beiden Graphit-Modifikationen gleich sind, ergeben sich dieselben BG-Parameter.

3.2.3 Buckminsterfulleren

Eine sehr ungewöhnliche Form des Kohlenstoffs ist das 1985 entdeckte Buckminsterfulleren, das aus C₆₀-Molekülen aufgebaut ist. Nach der Strukturarbeit von Dorset und McCourt [1994], die eine geordnete Struktur der Raumgruppe $Fm\overline{3}$ (202) für die Raumtemperaturmodifikation von C₆₀ zugrunde legen, berechnet sich ein Volumenfaktor von $f_{C_{60}(RT)} = 2.948$. Die Tieftemperaturmodifikation [David et al., 1991] kristallisiert in der Raumgruppe $Pa\overline{3}$ (205), ebenfalls mit vollständig geordneter Struktur. Der Volumenfaktor $f_{C_{60}(5K)} = 3.046$ liegt nahe bei dem der Raumtemperaturmodifikation.

Abbildung 19: Berechnete Anderung des Einfachbindungsabstandes mit der Gitterkonstante c für Graphit

Die weiteren Fullerene mit mehr als 60 Kohlenstoffatomen pro Molekül kristallisieren mit fehlgeordneten Strukturen.

3.2.4 "Supercuban" oder Kohlenstoff mit γ -Siliciumstruktur?

Eine weitere unter Normalbedingungen metastabile Form des Kohlenstoffs beschreiben Natyushenko, Strel'nitsky und Gusev [1981] in Kohlenstofffilmen, die durch Plasmaabscheidung gewonnen wurden. Nach ihrem Strukturvorschlag sind C₈–Würfel kubisch innenzentriert angeordnet. Diese Struktur wird auch als Supercuban bezeichnet, in Anlehnung an das würfelförmige Kohlenstoffgerüst im Cuban C₈H₈. Allerdings weichen die C-C-Bindungenlängen innerhalb der Würfel zwischen dem Molekül C₈H₈ mit 1.55 Å und dem "Supercuban" mit 1.42 Å wesentlich voneinander ab. Die Bindungslänge zwischen den Würfeln ist mit 1.24 Å deutlich kürzer als eine Doppelbindung zwischen Kohlenstoffatomen [Allen et al., 1987]. Der berechnete Volumenfaktor von $f_{Supercuban} = 1.743$ führt mit 2.79 g/cm^3 auf eine erheblich geringere Dichte als für den Diamanten ($3.514g/cm^3$). Tatsächlich geben die Autoren eine um 15% höhere Dichte an ($4.10g/cm^3$). Auch der Einfachbindungsabstand $R_1 = 1.351$ Å stimmt nicht mit dem Wert aus der Diamantstruktur überein ($R_1 = 1.532$ Å).

Die ungewöhnlichen Bindungslängen und Bindungswinkel führten Johnston und Hoffman [1989] dazu, eine andere Struktur vorzuschlagen: Die γ -Si-Struktur (cI16), Raumgruppe Ia3, mit Kohlenstoffatomen in der Lage (16c) (siehe Abbildung 20 auf Seite 38). Johnston und Hoffman berechnen quantenmechanisch für diese Struktur mit einem Atomparameter von x = 0.1036 und einer Gitterkonstante a = 4.239 Å eine größere Stabilität als für Supercuban. Es ergibt sich eine Dichte von $4.03g/cm^3$. Der nach diesen Struktur-

Abbildung 20: Kristallstruktur von γ -Silicium

angaben berechnete Volumenfaktor $f_{\gamma-Si} = 1.238$ zeigt ebenfalls eine höhere Dichte als im Diamant an. Mit dessen Dichte als Referenzwert ergibt sich nach Gleichung (17):

$$\rho_{\gamma-Si,calc} = 3.93g/cm^3$$

3.2.5 BG-Parameter des Kohlenstoffs

Die BG-Parameter des Kohlenstoffs in den Formen mit Si- und C_{60} -Struktur stimmen hervorragend überein. Da der Ortsparameter in der Modifikation γ -Si unsicher ist, sind die BG-Parameter aus dieser Modifikation nicht in die Mittelung einbezogen.

	R_1 [Å]	b [Å]	$V_D [Å^3]$	$ ho_{x,obs} \ [g/cm^3]$	$\rho_{x,calc} \left[g/cm^3\right]$		
Graphit	1.487	0.229	3.747	2.23	2.04		
$\gamma-\mathrm{Si}$	1.519	0.234	3.995	4.03	3.93		
Supercuban	1.351	0.208	2.812	4.10	2.79		
Diamant	1.532	0.236	4.096	$3.514^{*)}$	-		
$C_{60}(RT)$	1.532	0.236	4.100	1.65	1.65		
Mittelwert	$1.532\{0\}$	$0.236\{0\}$	$4.098{2}$				
*) Die Dichte von Diamant wurde zur Berechnung der anderen Dichten nach Gl.17 zugrundegelegt.							

Tabelle 34. Reduziertes Atomvolumen, BG-Parameter und Dichten des Kohlenstoffs

3.3 Silicium

Im Gegensatz zu Kohlenstoff kristallisiert Silicium unter Normalbedingungen in der Si-Struktur (α -Si) mit a = 5.431 Å. Damit ergeben sich analog zu den Berechnungen für

3 NICHTMETALLSTRUKTUREN

den Diamanten die BG-Parameter $R_1 = 2.333$ Å und b = 0.359 sowie $V_D = 14.445$ Å³. Wie im Fall des Kohlenstoffs existiert eine metastabile hexagonale Form des Siliciums [Jennings, Richman, 1976], deren Abstandsklassen dem von α -Silicium entsprechen sollen. Zusätzlich tritt die Hochdruckmodifikation γ -Silicium²¹ auf [Wentorf, Kasper, 1963] (vgl. Kapitel 3.2.4), die unter Normaldruck instabil ist. Der kleinere Volumenfaktor $f_{\gamma-Si} = 1.254$ gegenüber dem α -Silicium wie auch die höhere Summe der Bindungsgrade der sekundären Bindungen $W_{sek} = 0.328$ (8.2% der Bindungswertigkeit des Siliciums) sind in Einklang mit der beobachteten höheren Dichte dieser Modifikation.

Tabelle 35. Reduziertes Atomvolumen, BG-Parameter und Dichten des Siliciums

	R_1 [Å]	b [Å]	$V_D [\mathrm{\AA}^3]$	$ ho_{x,obs}[g/cm^3]$	$\rho_{x,calc}[g/cm^3]$			
$\alpha - \mathrm{Si}^{a}$	2.333	0.359	14.445	$2.330^{*)}$	-			
$\gamma - \mathrm{Si}$	2.348	0.360	14.565	2.55	2.58			
Mittelwert	$2.341\{8\}$	$0.360\{1\}$	$14.51\{7\}$					
a)[Straumanis, Aka, 1952]								
*) _{Die Dichte vor}	*) Die Dichte von α -Si wurde zur Berechnung der anderen Dichte nach Gl.17 zugrundegelegt							

3.4 Germanium

Unter Normalbedingungen kristallisiert Germanium mit Si-Struktur (α -Ge). Daneben treten zwei unter Normalbedingungen instabile Hochdruckmodifikationen auf. γ -Ge (GeIII) kristallisiert in der Raumgruppe $P4_{3}2_{1}2$ (96) mit Atomen in den Lagen (4a) und (8b). Der Volumenfaktor $f_{\gamma-Ge} = 1.229$ ergibt eine um 11.3% höhere Dichte als für α -Germanium, in guter Übereinstimmung mit dem beobachteten Dichteunterschied von 10.5% [Bates, Dachille, Roy, 1965]. Die höhere Dichte gegenüber α -Ge ist wieder verknüpft mit einer höheren Summe der Bindungsgrade der sekundären Bindungen $W_{sek} = 0.399$ (10% der Bindungswertigkeit des Germaniums).

Die Existenz von δ -Ge (GeIV) mit γ -Si-Struktur ist nicht gesichert [Bates, Dachille und Roy, 1965] und [Johnston und Hoffmann, 1989]. Legt man jedoch den Volumenfaktor des Siliciums in dieser Struktur zugrunde (und somit gleiche Ortsparameter), so berechnet sich eine Dichtezunahme gegenüber der Diamantstruktur von 9.5%. Dieser Wert entspricht gerade der Dichtezunahme, die Bates, Dachille und Roy [1965] angegeben haben.

	R_1 [Å]	b [Å]	V_D [Å ³]	$ ho_{x,obs}[g/cm^3]$	$\rho_{x,calc}[g/cm^3]$			
$\alpha - \mathrm{Ge}^{a}$	2.430	0.374	16.335	$5.323^{*)}$	-			
$\gamma - \text{Ge}$	2.444	0.377	16.641	5.89	6.00			
$\delta - \text{Ge}$	2.438	0.376	16.508	5.82	5.88			
Mittelwert	Mittelwert $2.437(7)$ $0.376(2)$ $16.5(2)$							
a) _[Straumanis, Aka, 1952]								
*) Die Dichte vor	*) Die Dichte von α -Ge wurde zur Berechnung der anderen Dichte nach Gl.17 zugrundegelegt							

Tabelle 36. Reduziertes Atomvolumen, BG-Parameter und Dichten des Germaniums

 $^{^{21}\}gamma$ – Silicium bildet sich durch Dekompression der Hochdruckmodifikation SiIII mit β -Sn-Struktur [Wentorf, Kasper, 1963].

3.5 Stickstoff

Molekularer Stickstoff kristallisiert bei Normaldruck in zwei Modifikationen. Während die oberhalb von 35.6 K stabile β -Form des Stickstoffs fehlgeordnet ist [Jordan et al., 1964], kristallisiert α -N₂ mit geordneter Struktur. In der Literatur sind zwei kubische Raumgruppen für α -N₂ vorgeschlagen. In einem Fall ist die Struktur in der zentrosymmetrischen Raumgruppe $Pa\overline{3}$ (205) beschrieben [Donohue, 1961], [Venables, English, 1974], wobei die Schwerpunkte der N₂-Moleküle jeweils in Symmetriezentren liegen. Im anderen Fall sind die Schwerpunkte unter Verlust der Zentrosymmetrie aus dem Ursprung heraus verschoben. Dies läßt sich in der maximalen Untergruppe $P2_13$ (198) von Pa3 beschreiben [Jordan et al., 1964], [La Place, Hamilton, 1972]. Für beide Strukturvorschläge ergibt sich ein Bindungsgrad der intramolekularen Bindung von s = 3.000 trotz weiterer koordinierter Atome (deren Bindungsgrad damit formal kleiner als 10^{-3} ist). Somit ist das reduzierte Volumen nur noch eine Funktion des kürzesten Abstands und kann nach Gleichung (16) berechnet werden. Allerdings variieren die intramolekularen Bindungslängen d_{intra} nach der Literatur im Bereich von $d_{intra} = 1.039$ Å [Donohue, 1961] bis 1.099 Å [Jordan et al., 1964]. Die BG-Parameter und das reduzierte Volumen bei Raumtemperatur sind nach Gleichung (16) aus der Bindungslänge des N₂-Moleküls in der Gasphase bestimmt.

 Tabelle 37.
 Reduzierte Atomvolumina und BG-Parameter des Stickstoffs bei verschiedenen Temperaturen

	d_{intra}	V_X [Å ³]	f_X	V_D [Å ³]	R_1 [Å]	b [Å]		
$\alpha - N_2^{a)}$ (20K)	1.039	22.667	8.627	2.629	1.263	0.204		
$\alpha - N_2^{b}$ (25 K)	1.099	22.545	7.247	3.111	1.336	0.215		
Molekül (RT)	1.0977^{c}	_	_	3.10	1.334	0.215		
a) [Donohue, 1961]								
b)[Jordan et al., 1964]								
$^{(c)}$ Bindungslänge im N ₂ (Gasphase) [CRC Handbook of Chemistry and Physics, 1994]								

Die mittlere N-N-Bindungslänge $\overline{r} = 1.425(27)$ Å in organischen Distickstoffverbindungen der Form (C)(C,H)-N-N-(C,H)(C) [Allen et al., 1987] stimmt nicht mit dem berechneten Einfachbindungsabstand bei Raumtemperatur überein.

3.6 Phosphor

Phosphor tritt unter Normaldruck in drei Modifikationen auf, in denen die Phosphoratome jeweils drei nächste Nachbarn haben.

3.6.1 Weißer Phosphor

Der aus tetraedrischen P₄– Molekülen aufgebaute weiße Phosphor existiert in zwei Modifikationen. Die oberhalb von 196.6 K stabile α –Form kristallisiert mit fehlgeordneter Struktur. Diese Modifikation ist somit im Rahmen dieser Arbeit nicht auswertbar.

Die Tieftemperaturmform des weißen Phosphers (aP24) kristallisiert in der Raumgruppe $P\overline{1}$ (2) und enthält drei unabhängige P₄-Moleküle [Simon, Borrmann, Craubner, 1987]. Diese Modifikation kann von der γ -Pu-Struktur (vgl. Kapitel 2.12) abgeleitet werden, wenn man die Pu-Atome durch P₄- Tetraeder ersetzt. Es ergibt sich der für eine Molekülstruktur zu erwartende hohe Volumenfaktor von $f_{P_4} = 2.013$. Die Bindungsgrade innerhalb des P₄–Tetraeders (primäre Bindungen) liegen im Bereich einer Einfachbindung mit $d_{prim} = 2.157$ Å – 2.179 Å und $s(d_{prim}) = 1.007 - 0.945$. Im Gegensatz dazu ergibt sich für die stärkste intermolekulare Bindung (sekundäre Bindung) ein Bindungsgrad von $d_{sek} \leq 0.016$. Für die Summe der primären Bindungen erhält man $W_{prim} = 2.928$ und damit für die sekundären Bindungen $W_{sek} = 0.072$.

3.6.2 Hittorfscher Phosphor (mP84)

Hittorfscher Phosphor kristallisiert in der monoklinen Raumgruppe P2/c (13). Jedes der 21 kristallographisch verschiedenen P-Atome bildet drei primäre Bindungen mit Längen von 2.178Å bis 2.229Å [Thurn, Krebs, 1969] entsprechend Bindungsgraden zwischen s = 1.024 und s = 0.727 aus. Der Unterschied zu einer typischen Molekülstruktur wie P₄ zeigt sich sowohl im kleineren Volumenfaktor $f_{Hittorf} = 1.596$ wie in der größeren Summe der Bindungsgrade der sekundären Bindungen mit $W_{sek} = 0.264$.

3.6.3 Schwarzer Phosphor (oC8)

Schwarzer Phosphor kristallisiert in der orthorhombischen Raumgruppe Cmca (64) mit Atomen in der Lage (8f) [Brown, Rundquist, 1965]. Die Struktur ist aus gewellten Doppelschichten aufgebaut. Zu den drei primären Bindungen innerhalb einer Schicht kommen noch 14 sekundäre Bindungen, wobei vier der sekundären Bindungen zur nächsten Schicht führen (vgl. Alig [1993]). Die größere Summe der Bindungsgrade der sekundären Bindungen ($W_{sek} = 0.335$) sowie der geringere Volumenfaktor ($f_{P_{black}} = 1.387$) im Vergleich zu den beiden anderen Phosphormodifikationen stehen im Einklang mit der zunehmenden Metallähnlichkeit in der Reihenfolge: weißer Phosphor \rightarrow Hittorfscher Phosphor \rightarrow schwarzer Phosphor.

3.6.4 BG-Parameter des Phosphors

Aus schwarzem und Hittorfschem Phosphor ergeben sich übereinstimmende BG-Parameter. Für das reduzierte Volumen und die BG-Parameter des weißen Phosphors berechnen sich niedrigere Werte (Tabelle 38). Da weißer Phosphor eine Tieftemperaturmodifikation ist (Messtemperatur: 158 K), werden die für ihn bestimmten BG-Parameter nicht in die Mittelwertbildung mit einbezogen.

	R_1 [Å]	b [Å]	V_D [Å ³]	$\rho_{x,obs}[g/cm^3]$	$\rho_{x,calc}[g/cm^3]$		
P_4 (158 K)	2.159	0.348	13.150	1.94	1.88		
$\mathbf{P}_{Hittorf}$	2.186	0.353	13.651	2.36	2.36		
P _{black}	2.189	0.353	13.694	$2.707^{*)}$	-		
*) Die Dichte von schwarzem Phosphor wurde zur Berechnung der anderen Dichten nach Gl.17 zugrundegelegt							

Tabelle 38. BG-Parameter, reduziertes Atomvolumen und Dichten des Phosphors

3.7 Arsen, Antimon, Bismut (hR6)

Arsen, Antimon und Bismut kristallisieren unter Normalbedingungen in der α -As-Struktur, Raumgruppe $R\overline{3}m$ (166), mit Atomen in der Lage (6c) (hexagonale Aufstellung). Man

Abbildung 21: Vergleich der α -As-Struktur (a) mit der α -Po-Struktur (b, rhomboedrische Elementarzelle)

kann diese Struktur als rhomboedrisch verzerrte α -Po-Struktur auffassen (siehe Abbildung 21). Die Parameter zur Beschreibung der α -Po-Struktur entsprechend der α -Arsen-Struktur sind in Tabelle 39 aufgeführt.

Wie in den beschriebenen Phosphormodifikationen bilden auch die Elemente mit α -Arsen-Struktur drei (im Fall der α -As-Struktur gleichlange) primäre Bindungen aus (siehe Abbildung 21). Die drei kürzesten sekundären Bindungen bilden mit den drei primären Bindungen eine stark deformierte oktaedrische Umgebung (zum Verhältnis der beiden Abstandsklassen siehe Tabelle 39), die im Fall von α -Polonium in eine ideal oktaedrische Umgebung übergeht. Die Summe der Bindungsgrade eines Atoms mit den koordinierten Atomen dieses Oktaeders (Tabelle 39; Spalte W_{3+3}) liegt für Arsen, Antimon und Bismut bei etwa 90% der Bindungswertigkeit. Dagegen unterscheiden sich die Summen der Bindungsgrade der primären Bindungen (W_{prim}) der drei Elemente stark. Die Abnahme von W_{prim} korrespondiert mit der Zunahme an metallischen Eigenschaften innerhalb der Gruppe.

	f_X	c/a	z	W_{prim}	$W_{3+3}^{(*)}$	$(d_2/d_1)^{**)}$		
As^{a}	1.183	2.805	0.2271	2.256	2.733	1.331		
$\mathrm{Sb}^{a)}$	1.139	2.617	0.2335	1.995	2.718	1.154		
$\operatorname{Bi}^{a)}$	1.137	2.609	0.234	1.977	2.715	1.149		
$(Bi^*)^{***})$	1.104	$\sqrt{6} \approx 2.449$	1/4	-	2.682	1		
a) [Pearson's Handbook, 1997]								
*)Summe der Bindungsgrade der nächsten 6 Atome								
**) $d_n =$ Bindungslänge zur n-ten Abstandstandsklasse								
***) _{hypothe}	***) _{hypothetisches} Bi mit α –Po-Struktur							

Tabelle 39.Strukturparameter und Volumenfaktoren für Elemente mit
 α -As-Struktur im Vergleich mit der α -Po-Struktur

Arsen kristallisiert daneben in einer Modifikation mit der Struktur des schwarzen Phosphors. Diese auch als ϵ -Arsen bezeichnete (unter Normalbedingungen instabile) Modifikation kommt auch als Mineral Arsenolamprit vor. Die geringere Dichte des ϵ -Arsens

3 NICHTMETALLSTRUKTUREN

(Tabelle 40) entspricht dem höheren Volumenfaktor von $f_{\epsilon-As} = 1.228$ gegenüber der α -Modifikation: $f_{\alpha-As} = 1.183$.

	R_1 [Å]	b [Å]	V_D [Å ³]	$\rho_{x,obs} \left[g/cm^3\right]$	$\rho_{x,calc} \left[g/cm^3\right]$			
$\alpha - As$	2.406	0.388	18.196	$5.778^{*)}$	-			
$\epsilon - As^{a)}$	2.409	0.388	18.265	5.54	5.57			
Mittelwert	$2.408\{2\}$	$0.388\{0\}$	$18.23\{3\}$					
Sb	2.728	0.440	26.52					
Bi	Bi 2.878 0.464 31.12							
a) [Smith, Leadbetter, Apling, 1974]								
*) Die Dichte von α -Arsen wurde zur Berechnung der anderen Dichten nach Gl.17 zugrundegelegt								

Tabelle 40.BG-Parameter, reduzierte Atomvolumina und Dichten
von Arsen, Antimon und Bismut

3.8 Sauerstoff

Unter Normaldruck bildet molekularer Sauerstoff drei kristalline Phasen. Unterhalb von 23.7 K kristallisiert er (α -O₂ (mC4)) monoklin in der Raumgruppe C2/m (12) mit Atomen in der Lage (4i), wobei die Sauerstoffmoleküle senkrecht zur monoklinen Ebene angeordnet sind [Barrett, Meyer, Wasserman, 1967]. Im Gegensatz zu den Halogenen (vgl. Kapitel 3.12) unterscheidet sich die Länge der kürzesten Bindung im Festkörper mit 1.150 Å (s = 1.998) deutlich von der im Sauerstoffmolekül in der Gasphase bei Raumtemperatur mit 1.2074 Å [CRC Handbook of Chemistry and Physics, 1994].

Im Temperaturbereich von 23.7 bis 43.8 K kristallisiert Sauerstoff in Raumgruppe $R\overline{3}m$ (166) mit Atomen in der Lage (6c) (hexagonale Aufstellung) (hR6). Die Struktur dieser als β -O₂ bezeichneten Modifikation kann als deformierte Cu-Struktur aufgefasst werden, wobei die Schwerpunkte der O₂-Hanteln die Positionen der Cu-Atome einnehmen. In dem Strukturvorschlag von Hörl [1962] wurde der Ortsparameter z = 0.0536 aufgrund der Bindungslänge in der Gasphase bei Raumtemperatur festgelegt. Die für diesen Strukturvorschlag berechneten BG-Parameter sind somit nicht mit den BG-Parametern des α -O₂ vergleichbar.

Die BG-Parameter und das reduzierte Volumen bei Raumtemperatur sind nach Gleichung (16) aus der Bindungslänge des O₂-Moleküls in der Gasphase bestimmt (Tabelle 41).

Oberhalb von 43.8 K kristallisiert Sauerstoff mit fehlgeordneter Struktur.

 Tabelle 41.
 Reduzierte Atomvolumina und BG-Parameter des Sauerstoffs bei verschiedenen Temperaturen

	f_X	V_D [Å ³]	R_1 [Å]	b [Å]
$\alpha - O_2 (23 \text{ K})$	4.873	3.562	1.306	0.225
Molekül (RT)	-	4.13	1.374	0.237

Der aus dem Molekül bei Raumtemperatur abgeschätzte Einfachbindungsabstand stimmt nicht mit dem mittleren Abstand $\overline{r} = 1.469(12)$ Å [Allen et al., 1987] in organischen Peroxoverbindungen der Form C^{*}-O-O-C^{*22} überein.

 $^{^{22}}C^* = sp^3 - hybridisierter Kohlenstoff mit C- oder H-Atomen als weiteren Bindungspartnern.$

3.9 Schwefel

Schwefel kristallisiert in zahlreichen Formen, die sich durch die Molekülgröße unterscheiden.

 S_6 [Steidel, Pickardt, Steudel, 1978] kristallisiert in der rhomboedrischen Raumgruppe $R\overline{3}$ (148) und ist aus cyclo- S_6 -Molekülen (in Sesselkonformation) aufgebaut. Die effiziente Packung der Moleküle und die kleineren Lücken in der Mitte der Moleküle (vgl. Donohue [1974]) lassen aus rein geometrischen Gründen die hohe Dichte (Tabelle 42) dieser Modifikation verstehen. Dies steht im Einklang mit dem niedrigsten Volumenfaktor $f_{S_6} = 1.740$ aller Schwefelmodifikationen.

Von S₇ sind vier verschiedene kristalline Modifikationen bekannt (α -S₇, β -S₇, γ -S₇, δ -S₇), wobei die Kristallstrukturen der Modifikationen γ -S₇ und δ -S₇ gelöst sind [Steudel et al., 1980]. Beide sind aus sesselförmigen cyclo-S₇-Molekülen aufgebaut und unterscheiden sich durch die Packung der Moleküle.

 S_8 kommt in drei²³ weiteren Modifikationen vor, die aus cyclo- S_8 -Einheiten mit Kronenstruktur aufgebaut sind. Die Ringvergrößerung führt zu einer weiteren Dichteerniedrigung ($\rho(\beta - S_8) = 1.94 - 2.01$) gegenüber den S_6 - und S_7 -Modifikationen. Die unter Normalbedingungen stabile Modifikation des Schwefels ist das orthorhombische $\alpha - S_8$ [Rettig, Trotter, 1983]. Die in der [111]-Richtung übereinanderliegenden S_8 -Kronen bilden Stapel, die an eine Kurbelwelle erinnern [Donohue, 1974]. Die Stapel bilden ihrerseits Schichten, die senkrecht zueinander stehen. Das metastabile monokline $\gamma - S_8$ [Gallacher, Pinkerton, 1993] ist ähnlich komplex gepackt wie $\alpha - S_8$.

Die Ergebnisse für die weiteren Schwefelstrukturen sind in Tabelle 42 aufgeführt. Trotz zum Teil komplizierter Ringstrukturen der Moleküle und daraus folgend komplizierten Molekülpackungen lassen sich mit den berechneten Volumenfaktoren die Dichten der verschiedenen Formen nach Gleichung (17) gut abschätzen.

Der Zusammenhang zwischen Volumenfaktor und Dichte (vgl. Kapitel 1.7.5) ist in Abbildung 22 aufgetragen. Ein Wert weicht stark von der Regressionsgerade ab. Es handelt sich hierbei um den Volumenfaktor von $\beta - S_{18}$. Ein Grund für die Abweichung könnte in der Strukturbestimmung liegen, was der hohe *R*-Wert (R = 0.143 [Debaerdemaeker, Kutoglu, 1974]) anzeigt. Deshalb wird $\beta - S_{18}$ nicht in die Mittelung zur Bestimmung der BG-Parameter mit einbezogen.

Außer S₆ haben alle kristallinen Formen des Schwefels kristallographisch verschiedene Atome, deren Zahl zwischen 4 für S₈ und 26 für S₁₃ liegt. Betrachtet man die Standardabweichung $\sigma(W)$ der nach Gleichung (7) bestimmten Bindungswertigkeiten, so zeigt sich, dass die Summe der Bindungsgrade um der kristallographisch verschiedenen Atome nur gering um die Bindungswertigkeit des Elements streut (Tabelle 42; stärkere Streuung bei den S₇-Modifikationen). Das bedeutet, dass für jedes Schwefelatom *i* in der Kristallstruktur die Bindungswertigkeit $W_i = 2$ ist.

 $^{^{23}\}beta - \mathrm{S}_8$ kristallisiert mit fehlgeordneter Struktur.

	R_1 [Å]	<i>b</i> [Å]	V_D [Å ³]	$\rho_{r beo} \left[q/cm^3 \right]$	$\rho_{r, calc} \left[q/cm^3 \right]$	f_X	$\sigma(W)$				
S_6	2.038	0.352	13.542	2.26	$\frac{72.31}{2.31}$	1.740	_				
$\gamma - S_7$	2.036	0.351	13.498	2.19	2.23	1.801	0.08				
$\delta - S_7$	2.045	0.353	13.672	2.18	2.25	1.785	0.13				
$\alpha - S_8$	2.027	0.350	13.322	$2.070^{*)}$	-	1.933	0.02				
$\gamma - S_8$	2.027	0.350	13.315	2.03	2.03	1.969	0.03				
$S_{10}^{1)}$	2.035	0.351	13.472	2.10	2.14	1.879	0.03				
$S_{11}^{2)}$	2.033	0.351	13.449	2.08	2.11	1.899	0.05				
$\mathrm{S}_{12}^{\overline{3)}}$	2.032	0.350	13.419	2.04	2.07	1.941	0.02				
$S_{13}^{4)}$	2.026	0.350	13.308	2.10	2.10	1.909	0.07				
$S_{18}^{(5)}$	2.035	0.351	13.485	2.09	2.13	1.890	0.03				
$S_{20}^{5)}$	2.025	0.349	13.274	2.02	2.03	1.983	0.04				
	2.033(6)	0.351(1)	13.4(1)								
$\beta - S_{18}^{6)}$	2.057	0.355	13.925	2.01	2.11	1.903	0.06				
*) _{Die Dic}	nte von α -S ₈ w	urde zur Berechi	nung der ander	en Dichten nach Gl.1	7 zugrundegelegt						
$^{1)}$ [Steudel	, Steidel, Reinha	ardt, 1983]									
2) _{[Steidel,}	Steudel, 1982]										
³⁾ [Steidel,	3) [Steidel, Steudel, Kutoglu, 1981]										
$^{4)}$ [Steudel	, Steidel, Sando	w, 1986]									
⁵⁾ [Schmid	t et al., 1974]										
6) _{[Debaer}	demæker, Kutog	glu, 1974]									

 Tabelle 42.
 BG-Parameter, reduziertes Atomvolumen, Dichten und Volumenfaktoren des Schwefels

3.10 Selen

Selen tritt unter Normaldruck in mehreren Formen auf, wobei die Existenz dreier kubischer Phasen nicht gesichert ist [Donohue, 1974]. Die unter Normalbedingungen stabile Modifikation ist das hexagonale (graue) α -Selen, das aus schraubenförmigen unendlichen Ketten parallel zur c-Achse aufgebaut ist. α -Selen kristallisiert in der Raumgruppe $P3_121$ mit Atomen in der Lage (4a). Man kann die α -Se-Struktur auch als verzerrte α -Po-Struktur auffassen (siehe Abbildung 24 auf Seite 48 und Tabelle 44), wobei die Abstände der sechs nächsten Nachbarn in der α -Po-Struktur in eine (2+4)-Koordination aufspalten (siehe auch 3.11).

Neben dieser Modifikation existieren drei weitere, aus cyclo-Se₈-Molekülen aufgebaute Formen, die sich durch die Packung der Moleküle unterscheiden.

Wie im Fall des Schwefels zeigt sich auch für die Selenmodifiktionen der lineare Zusammenhang zwischen dem berechneten Volumenfaktor und den beobachteten Dichten (siehe Abbildung 23 auf Seite 47).

Abbildung 22: Zusammenhang zwischen der reziproken Dichte und dem Volumenfaktor der Schwefelmodifikationen

 Tabelle 43.
 BG-Parameter, reduziertes Atomvolumen, Dichten und Volumenfaktoren des Selens

	R_1 [Å]	b [Å]	V_D [Å ³]	$ ho_{x,obs} \left[g/cm^3\right]$	$\rho_{x,calc} \left[g/cm^3\right]$	f_X	$\sigma(W)$			
$\alpha - \mathrm{Se}^{1}$	2.301	0.397	19.498	$4.809^{*)}$	-	1.398	-			
$\alpha - \mathrm{Se}_8^{(2)}$	2.291	0.395	19.237	4.40	4.34	1.550	0.02			
$\beta - \mathrm{Se}_8^{3)}$	2.291	0.395	19.230	4.35	4.30	1.566	0.04			
$\gamma - \mathrm{Se}_8^{(4)}$	2.288	0.395	19.155	4.32	4.25	1.581	0.03			
	2.293(6)	0.396(1)	19.3(2)							
*) _{Die Dicht}	se von α -Se wurd	le zur Berechnur	ng der anderen	Dichten nach Gl.17 z	$\operatorname{sugrundegelegt}$					
$^{1)}$ [Cherin, U	Unger, 1967]									
$^{2)}$ [Cherin, 1	²⁾ [Cherin, Unger, 1972]									
³⁾ _{[Marsh, F}	³⁾ [Marsh, Pauling, 1953]									
4) _{[Foss, Jar}	nickis, 1980]									

3.11 Tellur

Die einzige unter Normaldruck stabile Elementmodifikation ist die zu α -Selen isostrukturelle α -Phase des Tellurs. Die Abnahme des Volumenfaktors von Polonium über Selen bis zu Tellur (Tabelle 44) beschreibt die zunehmende Metallähnlichkeit innerhalb der Gruppe. Überraschend ist allerdings der Verlauf des Achsenverhältnisses c/a. Beschreibt man α -Po hexagonal wie die anderen Elemente, so erhält man die Abfolge: $c/a(\alpha$ -Se) $< c/a(\alpha$ -Po) $< c/a(\alpha$ -Te). Es ergibt sich eine vergleichbare Situation wie bei den Strukturtypen Pa, W und In (vgl. Kapitel 2.4) mit der Abfolge: c/a(Pa) < c/a(W) < c/a(In).

Abbildung 23: Zusammenhang zwischen der reziproken Dichte und dem Volumenfaktor der Se-Modifikationen

Auch wegen der verschiedenen Koordinationszahlen [Alig, 1993] ist es sinnvoll, im Fall von α -Se (GK = 20) und α -Te (GK = 16) von zwei verschiedenen Strukturtypen zu sprechen.

Die BG-Parameter berechnen sich zu: $\mathbf{R}_1 = \mathbf{2.632}$ Å, $\mathbf{b} = \mathbf{0.454}$ Å und $\mathbf{V}_D = \mathbf{29.15}$ Å³.

Tabelle 44.Strukturparameter und Volumenfaktoren für Elemente mit
 α -Se-Struktur im Vergleich mit der α -Po-Struktur

	f_X	c/a	x	W_{prim}	$W_{2+4}^{*)}$	$(d_2/d_1)^{**)}$			
Se	1.398	1.135	0.2254(10)	1.670	1.898	1.448			
$\mathrm{Te}^{a)}$	1.164	1.329	0.2636(1)	1.278	1.882	1.231			
$\alpha - \mathrm{Po}^{***}$	1.104	$\sqrt{3/2} \approx 1.225$	1/3	-	1.788	1			
a) [Adenis, La	anger, Lind	lquist, 1989]							
*) Summe der	Bindungs	grade der nächsten 6 A	Atome						
**) $d_n = \text{Bind}$	**) $d_n =$ Bindungslänge zur n-ten Abstandstandsklasse								
***) hier mit	W = 2 ger	echnet							

3.12 Wasserstoff und Halogene

Unterhalb des Schmelzpunkts von 13.8 K [CRC Handbook of Chemistry and Physics, 1994] kristallisiert Wasserstoff in der Mg-Struktur mit frei rotierenden H₂-Molekülen [Young 1991]. Für Wasserstoff ergibt sich aus dem Einfachbindungsabstand von $R_{1,G}$ =

Abbildung 24: (a) α -Se, (b) α -Te und (c) α -Po mit hexagonaler Elementarzelle

0.7414 Å des H₂-Moleküls in der Gasphase bei Raumtemperatur [CRC Handbook of Chemistry and Physics, 1994] ein reduziertes Volumen nach Gleichung (15) von $V_{D,G} = 0.995$ Å³. Mit dem Atomvolumen in der Molekülpackung $V_X = 19.16$ Å³ bei 4.2 K [Barrett, Meyer, Wasserman, 1966] und dem für Raumtemperatur reduziertem Volumen berechnet sich ein Volumenfaktor von $f_X \approx 19.3$. Wasserstoff müsste nach dieser groben Schätzung auf 1/19 seines Volumens komprimiert werden, um in eine dichte Struktur überführt zu werden.

Fluor kristallisiert in Abhängigkeit von der Temperatur in zwei Modifikationen: Unterhalb von 45.6 K in einer monoklinen α -Form (mc8) mit 4 F₂-Molekülen pro Elementarzelle, deren Struktur noch nicht geklärt ist. Die Raumgruppe ist entweder C2/m (12) mit Atomen in der Lage (4i) [Meyer, Barrett, Greer, 1968] oder C2/c (15) mit Atomen in der Lage (8f) [Pauling, Keaveny, Robinson, 1970]²⁴. Meyer, Barrett und Greer [1968] legen in ihrem Strukturvorschlag den kürzesten Bindungsabstand mit 1.440 Å fest Dieser wurde deshalb nicht in die BG-Parameterbestimmung mit einbezogen. In der oberhalb von 45.6 K stabilen β -Form (cP16) rotieren die F₂-Hanteln nahezu frei im Raum [Jordan, Streib, Lipscomb, 1964] und bilden mit ihren Schwerpunkten die Cr₃Si-Struktur (vgl. Kapitel 2.6).

Chlor, Brom und Iod kristallisieren unter Normaldruck in der orthorhombischen Iodstruktur (oC8) die eng verwandt mit der α -Galliumstruktur ist (vgl. Kapitel 2.8).

Die intramolekularen Atomabstände der Halogene in der Gasphase und im Festkörper sind nur wenig verschieden. Man sollte deshalb für alle Halogene eine Bindungsgrad $s \approx 1$ für die kürzeste Bindung im Festkörper erwarten. Tatsächlich nimmt aber der Bindungsgrad der intramolekularen Bindungen zugunsten der intermolekularen Bindungen von Fluor bis Iod stark ab. Zugleich steigt die Abweichung der berechneten R_1 -Werte gegenüber den gemessenen Einfachbindungsabständen in der Gasphase $R_{1,G}$ bei Raumtemperatur. Eine Besonderheit der intramolekularen Bindungen bei Chlor, Brom [Powell, Heal, Torrie, 1984] und Iod [Ibberson, Moze, Petrillo, 1992] zeigt sich auch in ihrer Temperaturabhängigkeit. Während das Zellvolumen bei Temperaturerhöhung steigt, verringert sich die intramolekulare Bindungslänge bzw. bleibt bei Iod nahezu gleich. Da die Berechnung der Bindungsgrade unabhängig vom Zellvolumen und damit von der temperaturbedingten Volumenzunahme ist, zeigt sich dieser Effekt in den Bindungsgraden noch stärker als in den Bindungslängen: s(1.994) = 0.861 bei 20 K, s(1.980) = 0.888 bei 160 K für Chlor und s(2.718) = 0.557 bei 5 K, s(2.714) = 0.573 bei 150 K für Iod.

Neben der Bestimmung des dichten Volumens durch die Auswertung der Struktur kann nach Gleichung (15) das Atomvolumen des Elements in einer dichten Modifikation direkt aus Einfachbindungslänge und Bindungswertigkeit abgeschätzt werden. Legt man für die Halogene die Bindungslänge im Molekül in der Gasphase bei Raumtemperatur zugrunde, so ergeben sich die in Tabelle 45 aufgeführten Volumina $V_{D,G}$. Diese weichen z.T. erheblich von den V_D -Werten ab. Für Iod ergibt sich ein physikalisch sinnloses Ergebnis ($V_{D,G} > V_X$).

²⁴Beiden Untersuchungen lagen die Pulverdaten von Meyer, Barrett und Greer [1968] zugrunde.

3 NICHTMETALLSTRUKTUREN

Tabelle 45.Reduzierte Atomvolumina, Volumenfaktoren und BG-Parameter von
Wasserstoff und den Halogenen bei verschiedenen Temperaturen

	V_X [Å ³]	V_D [Å ³]	f_X	R_1 [Å]	b [Å]	$R_{1,G}^{a)}$ [Å]	$V_{D,G}$ [Å ³]
H_2	19.16 (4.2 K)	-	(19.3)	-	-	0.7414	1.00
$\alpha - F_2$	16.047 (23 K)	7.51	2.137	1.474	0.289	1.4119	6.57
Cl_2	29.122 (160 K)	16.98	1.715	1.935	0.379	1.9878	18.41
Br_2	33.988 (260 K)	24.02	1.415	2.172	0.426	2.2811	27.82
I_2	41.473 (150 K)	34.33	1.208	2.447	0.479	2.6663	44.42
a)[CRC H	Iandbook of Chemistry	and Physics,	1994]				

4 Weiterführende Betrachtungen

4.1 Verhältnisse unter hohen Drucken

Betrachtet man für ein Element die reduzierten Volumina V_D in Abhängigkeit vom Druck p, so sollte ein stetig monoton fallender Zusammenhang bestehen. Die im Rahmen dieser Arbeit untersuchten Elemente zeigen unter Druck diesen Verlauf. Für die Beschreibung der Druck-Volumen-Kurve wurde in allen Fällen die folgende Exponentialfunktion gewählt:

$$V_D(p) \ [Å^3] = P_1 + P_2 \exp(-p/P_3) \tag{19}$$

 P_1 bis P_3 sind für das jeweilige System zu bestimmende Parameter. Kann ein solcher Zusammenhang für gemessene wie berechnete Volumina dichter Formen gefunden werden, so untermauert dieser die Gültigkeit der Volumenfaktorgleichung (13).

Auch die BG-Parameter R_1 und b erfüllen jeder für sich, aber mit jeweils anderen Parametern, Gleichung (19).

Da Druck im allgemeinem zu höherer Dichte führt, muss der Volumenfaktor bei Phasenübergangen, die durch Druck bewirkt werden, abnehmen. An den Beispielen Zinn, Silicium, Phosphor und Tellur kann das überprüft werden.

4.1.1 Zinn

Ab 11.8 GPa [Liu, Liu, 1986] bzw. 10 GPa [Barnett, Bean, Hall, 1966] kristallisiert Zinn in dichten Strukturen. Im Bereich von 11.8 - 41.8 GPa wird die dichte Pa-Struktur gebildet [Liu, Liu, 1986]. Oberhalb von 41.8 GPa kristallisiert Zinn in der W-Struktur [Liu, Liu, 1986].

Die folgenden Gleichungen beschreiben den Verlauf des reduzierten Volumens und der BG-Parameter des Zinns unter Druck:

 $V_D(p) = [14.93 + 10.17 \exp(-p/40.78)] \text{ Å}^3$

 $R_1(p) = [2.34 + 0.46 \exp(-p/47.96)]$ Å

$$b(p) = [0.36 + 0.07 \exp(-p/45.61)]$$
 Å

Abbildung 25: V_X und V_D für Zinn als Funktion des Drucks

Abbildung 26: Verlauf der BG-Parameter des Zinns unter Druck

4.1.2 Silicium

Neben α - und γ -Silicium treten unter Druck zwei nicht-dichte Modifikationen des Siliciums auf. Oberhalb von 13 GPa kristallisiert Silicium mit β -Sn-Struktur [Jamieson, 1963 (a)] (vgl. Kapitel 2.9.1) und zwischen 16 und 35 GPa in der Biln-Struktur [Olijnyk, Sikka, Holzapfel, 1984] (vgl. Kapitel 2.15). Ab 35 GPa kristallisiert Silicium mit Mg-Struktur [Olijnyk, Sikka, Holzapfel, 1984] und oberhalb von 79 GPa mit Cu-Struktur [Duclos, Vohra, Ruoff, 1990]. Für die Druckabhängigkeit des reduzierten Volumens (siehe Abbildung 27) und der BG-Parameter (siehe Abbildung 28) des Siliciums ergeben sich folgende funktionale Zusammenhänge:

> $V_D(p) = [7.96 + 6.60 \exp(-p/52.49)] \text{ Å}^3$ $R_1(p) = [1.91 + 0.43 \exp(-p/58.01)] \text{ Å}$

 $b(p) = [0.29 + 0.07 \exp(-p/60.56)]$ Å

Abbildung 27: V_X und V_D für Silicium als Funktion des Drucks

Abbildung 28: Verlauf der BG-Parameter des Siliciums unter Druck

4.1.3 Phospor

Neben den unter Normaldruck existierenden drei kristallinen Phasen des Phosphors (vgl. Kapitel 3.6) sind zwei Hochdruckmodifikationen des Phosphors bekannt. Oberhalb von 5 GPa kristallisiert Phosphor mit α -As-Struktur [Jamieson, 1963 (b)]. Bei 11.1 GPa [Jamieson, 1963 (b)] bzw. 10 GPa [Kikegawa, Iwasaki, 1983] geht die α -As-Struktur in die α -Po-Struktur über. Der Übergang in eine dichte Modifikation wurde bisher nicht beobachtet. Modellrechnungen (vgl. Young [1991]) lassen einen Phasenübergang in die W-Struktur bei ca. 135 GPa erwarten.

Für den Verlauf der Druck-BG–Parameterkurven (siehe Abbildung 30 auf Seite 57) und der Druck-Volumenkurve (siehe Abbildung 29) ergeben sich folgende Zusammenhänge²⁵:

$$V_D(p) = [6.66 + 7.15 \exp(-p/53.67)] \text{ Å}^3$$

 $R_1(p) = [1.65 + 0.54 \exp(-p/76.92)]$ Å

 $b(p) = [0.26 + 0.09 \exp(-p/76.92)]$ Å

 $^{^{25}}$ Der aus weißem Phosphor bestimmte Volumenwert V_D ist nicht in die Anpassung der Parameter mit einbezogen worden, da er sich nicht auf Raumtemperatur bezieht.

Abbildung 29: V_X und V_D für Phosphor als Funktion des Drucks

Abbildung 30: Verlauf der BG-Parameter des Phosphors unter Druck

4 WEITERFÜHRENDE BETRACHTUNGEN

4.1.4 Tellur

Unterhalb von 4 GPa kristallisiert Tellur mit der Struktur von α -Selen [Keller, Holzapfel, Schulz, 1977]. Für die zwei nächsten im höheren Druckbereich auftretenden Phasen sind nur die Gitterparameter bekannt. Das monokline TeII kristallisiert im Druckbereich von 4 bis 6.6 GPa. Da das Volumen der dichten Modifikation innerhalb dieses Druckbereichs approximiert werden kann, berechnet sich als Volumenfaktor für die TeII-Struktur $f_{TeII} \approx$ 1.07. Oberhalb von 6.6 GPa kristallisiert Tellur (TeIII) mit orthorhombischer Struktur. Analog zur Bestimmung des Volumenfaktors von TeII berechnet sich für TeIII $f_{TeIII} \approx$ 1.05. Zwischen 10.6 und 27 GPa kristallisiert Tellur mit β -Po-Struktur [Parthasarathy, Holzapfel, 1988]. In diesem Druckbereich ändert sich der Volumenfaktor von $f_{\beta-Po,p} =$ 1.037 bei 10.8 GPa bis zu $f_{\beta-Po,p} = 1.019$ bei 26.4 GPa. Oberhalb von 27 GPa kristallisiert Tellur mit dichter Struktur. Die Daten zur Bestimmung des Volumenfaktors der Phasen TeII, TeIII und TeV (W-Struktur) wurden aus den Abbildungen der Arbeit von Parthasarathy und Holzapfel [1988] entnommen.

Die Druckabhänigkeit des reduzierten Volumens und der BG-Parameter für Tellur sind durch folgende Gleichungen gegeben:

 $V_D(p) = [19.40 + 9.38 \exp(-p/17.59)] \text{ Å}^3$

 $R_1(p) = [2.29 + 0.33 \exp(-p/19.96)]$ Å

 $b(p) = [0.35 + 0.06 \exp(-p/19.96)]$ Å

Abbildung 31: V_X und V_D für Tellur als Funktion des Drucks

Abbildung 32: Verlauf der BG-Parameter des Tellurs unter Druck

4.2 Verbindungen

4.2.1 Metall-Metall-Bindungen in nichtmetallischen Festkörpern

Für binäre Oxide konnte Schmieding [1997] auf Grund der hier bestimmten BG-Parameter zeigen, dass in vielen Metalloxiden neben den Metall-Sauerstoff-Bindungen noch Metall-Metall-Bindungen wirksam sind. In Tabelle 46 sind einige Ergebnisse für Nebengruppenmetalloxide nach Trömel et al. [1999] (überarbeitete Version) aufgeführt, wobei die Wertigkeit W als Summe der Oxidationszahl OZ des Metalls und der Summe der Bindungsgrade der Metall-Metall-Bindungen ($\sum s_{Me-Me}$) definiert ist.

Tabelle 46. Summe der Bindungsgrade der Metall-Metall-Bindungen einiger Metalloxide

	OZ	n	$\sum s_{Me-Me}$	W
Cu_2O	1	12	0.74	1.74
Ag ₂ O	1	12	0.87	1.87
MnO	2	12	0.56	2.56
FeO	2	12	0.97	$2.97 \approx 3$
CoO	2	12	1.00	2.86
NiO	2	12	0.95	$2.95 \approx 3$
PdO	2	12	0.71	2.71
NbO	2	10	2.99	$4.99 \approx 5$
Fe_2O_3	3	1	0.13	3.13
Cr_2O_3	3	1	0.39	3.39
Ti_2O_3	3	1	0.80	3.80
MoO_2	4	1	1.09	$5.09 \approx 5$
n: Anzahl	der Me	tall-Me	etall-Kontakte	

Die berechnete Wertigkeit überschreitet in keinem der ausgewerteten Fälle die Bindungswertigkeit in festen Metallen.

4.2.2 Gallium(II)-Chalkogenide

Ausgehend von einer Bindungswertigkeit des Ga von W = 3 lassen die Ga(II)-Verbindungen zusätzliche Ga-Ga-Bindungen erwarten, deren Bindungsgrade sich auf (maximal) eins summieren sollten:

$$W_{Ga} = 2 + \sum s_{Ga-Ga} \tag{20}$$

Diese Betrachtung wurde für folgende Ga(II)-Verbindungen²⁶ durchgeführt:

 $^{^{26}{\}rm F"ur}$ weitere Ga-Se-Verbindungen sind die Strukturbestimmungen wegen zu hoher Fehler der Ortsparameter im Rahmen dieser Arbeit unbrauchbar.

Abbildung 33: Kristallstruktur von β -GaSe

Tabelle 47.	Summe der Bindungsgrade der Ga-Ga-Bindungen
	in Gallium (II)-Chalkogeniden

Verbindung	Zentralatom	$\sum s_{Ga-Ga}$
$GaS^{1)}$	Ga 1	1.106
β -GaSe ²⁾	Ga 1	1.023
$GaTe^{3)}$	Ga 1	0.984
	Ga 2	0.978
	Ga 3	0.940
¹⁾ [Kuhn, Bourdo:	n, Rigoult, Rimsky,	1982]
²⁾ [Benazeth, Dur	ng, Guittard, Laruell	e, 1988]
3) _{[Julien-Pouzol,}	Jaulmes, Guittard,	Alapini, 1979]

Es zeigt sich, dass bei den betrachteten Gallium(II)-Chalkogeniden die Summe der Ga-Ga-Bindungsgrade und der Oxidationszahl in guter Näherung der Bindungswertigkeit des Galliums W = 3 entspricht.

Besonders interessant ist dabei der Vergleich von GaS und β -GaSe. Beide Verbindungen haben die gleiche hexagonale Schichtstruktur (siehe Abbildung 33). Da β -GaSe aufgrund des größeren Anions ein größeres Elementarzellvolumen haben muss, würde bei gleichen relativen Positionen der Atome und konstantem Verhältnis der Gitterkonstanten die Summe der Bindungsordung der Ga-Ga-Bindungen sinken. Setzt man die Summe der Ga-Ga-Bindungsgrade für beide Verbindungen als konstant eins an, so kann das nur durch Änderung mindestens eines freien Parameters geschehen.

Ein Vergleich der Strukturparameter in Tabelle 48 zeigt, dass der freie Ortsparameter z des Galliums entscheidend für den Unterschied beider Verbindungen ist. Die relative Position des Anions und das Verhältnis der Gitterkonstanten bleiben annähernd konstant.

	Gitterkonstante	c/a	Atom	Lage	x	y	z
GaS	a = 3.592(1)	4.305	Ga	(4f)	1/3	2/3	0.17082(1)
	c = 15.465(3)		S	(4f)	1/3	2/3	0.60191(2)
GaSe	a = 3.750(4)	4.265	Ga	(4f)	1/3	2/3	0.1736(1)
	c = 15.995(7)		Se	(4f)	1/3	2/3	0.60151(9)

Tabelle 48. Strukturparameter der Verbindungen GaS und GaSe

4.2.3 Intermetallische Phasen

In Anlehnung an die Theorie von Hume-Rothery (vgl. Hume-Rothery und Raynor [1962]) werden im folgenden Mischkristalle und intermetallische Verbindungen als Phasen mit mittleren Atomeigenschaften betrachtet. Auf dieser Grundlage kann der Volumenfaktor von Mischkristallen bzw. intermetallischen Verbindungen analog zu dem der Elemente bestimmt werden.

In einigen Fällen ändern sich beim Ersatz verschiedener Atomarten durch eine (mittlere) Atomart Strukturtyp und Raumgruppe (Tabelle 49).

Verbindung	Raumgruppe	Strukturtyp	Raumgruppe	f_X
oder Phase				
α -Phase	$Fm\overline{3}m$	Cu	$Fm\overline{3}m$	1.000
δ -Phase	$Fm\overline{3}m$	Cu		1.000
Cu_3Au	$Pm\overline{3}m$	Cu		1.000
β -Phase	$Im\overline{3}m$	W	$Im\overline{3}m$	1.000
β' -Phase (CsCl)	$Pm\overline{3}m$	W		1.000
NaTl	$Fd\overline{3}m$	W		1.000
ζ -Phase	$P6_3/mmc$	Mg	$P6_3/mmc$	<1.010
ε -Phase	$P6_3/mmc$	Mg		<1.010
γ -Phase (Ag ₅ Zn ₈)	$I\overline{4}3m$	$\mathrm{Cu}_5\mathrm{Zn}_8$	$I\overline{4}3m$	1.008
η -Phase (Zn)	$P6_3/mmc$	Mg		1.013
μ -Phase	$P4_{1}32$	β –Mn	$P4_{1}32$	≈ 1.014
η -Phase (Cd)	$P6_3/mmc$	Mg		1.017
γ -Phase (Fe ₃ Zn ₁₀)	$I\overline{4}3m$	$\mathrm{Cu}_5\mathrm{Zn}_8$		1.020
γ -Phase (Cu ₅ Cd ₈)	$I\overline{4}3m$	$\mathrm{Cu}_5\mathrm{Zn}_8$		1.045
NaCl	$Fm\overline{3}m$	α –Po	$Pm\overline{3}m$	1.104
Zinkblende	$F\overline{4}3m$	Si	$Fd\overline{3}m$	1.385
Wurtzit	$P6_3/mc$	hex. Diamant	$P6_3/mmc$	1.385

Tabelle 49.Volumenfaktoren von Mischphasen und
Verbindungen in aufsteigender Reihenfolge

Bei Mischbarkeit zweier Komponenten mit dichter Struktur kann das Volumen V_D der dichten Strukturen als Funktion der Zusammensetzung dargestellt werden. Jeder Mischkristall und jede intermetallische Verbindung mit beliebiger Struktur, dessen mittleres Atomvolumen auf dieser Kurve liegt, ist ebenfalls dicht.

Für die Metalle innerhalb einer Periode kann das Volumen der Mischkristalle und intermetallischen Verbindungen mit dichter Struktur für *benachbarte* Elemente als Funktion der *mittleren* Gruppennummer \overline{G} durch zwei Exponentialfunktionen approximiert werden (Abbildungen²⁷ 41, 42 und 43 auf Seiten 71 bis 72): aufsteigend (bis $\overline{G} = 12$):

$$V_{D,\exp}$$
 [Å³] = $P_1 + P_2 \exp\left[(\overline{G} - 12)/P_3\right]$ (21)

abfallend (ab $\overline{G} = 2$):

$$V_{D,\exp} [Å^3] = P_1 + P_2 \exp\left[-(\overline{G} - 2)/P_3\right]$$
 (22)

²⁷Alle in den Abbildungen 41, 42, 43 und 34 gegebenen Volumenwerte sind nach den Gitterkonstanten in Landolt-Börnstein [1971] berechnet.

4 WEITERFÜHRENDE BETRACHTUNGEN

Die Parameter dieser Funktionen sind in Tabelle 50 angegeben. In der dritten Periode zeigen Mangan, Eisen und Cobalt eine Volumenanomalie. Diese Elemente sind nicht in die Parameterbestimmung mit einbezogen worden (Abbildung 41).

3. Periode			
Bereich		Ca-Cr	Ni-Zn ^{*)}
		Gleichung (22)	Gleichung (21)
mit den Parametern:	P_1	11.000	10.631
	P_2	32.492	4.355
	P_3	1.251	0.793
4. Periode			
Bereich		Sr-Ru	$\operatorname{Rh-Cd}^{*)}$
		Gleichung (22)	Gleichung (21)
mit den Parametern:	P_1	13.237	13.035
	P_2	42.883	8.248
	P_3	1.378	1.300
5. Periode			
Bereich		Lu-Os	Ir-Hg ^{*)}
		Gleichung (22)	Gleichung (21)
mit den Parametern:	\overline{P}_1	13.066	13.888
	P_2	29.537	8.537
	P_3	1.712	0.961
$^{*)}$ γ –Phasen wurden bei der H	Param	eterbestimmung nicht mit	einbezogen (siehe Kapitel 4.2.4).

Tabelle 50. Parameter der Gleichungen (21) bzw. (22) für verschiedene Systeme

4.2.4 γ -Phase

Die γ -Phase tritt als geordnete Verbindung mit Cu₅Zn₈-Struktur auf. Diese Verbindung kristallisiert in der Raumgruppe $I\overline{4}3m$ mit Cu in (8c) und (12c) sowie Zn in (8c) und (24g). Diese Struktur kann von einer $3 \times 3 \times 3$ -Überstruktur der W-Struktur abgeleitet werden, aus deren Zelle 2 Atome entfernt (γ^* -Zelle) und die übrigen 52 geringfügig verschoben sind (vgl. Hume-Rothery und Raynor [1962]). Die Phasen mit Cu₅Zn₈-Struktur sind im Rahmen der Bestimmungsgenauigkeit dicht, mit Ausnahme von Cu₅Cd₈ und Fe₃Zn₁₀ (Tabelle 51).

Abbildung 34: Verlauf des Volumens V_D in den Systemen Ni-Cu und Cu-Zn

		Cu	$_5\mathrm{Zn}_8^{1)}$			Ag	$_5\mathrm{Zn}_8^{2)}$			γ^*	
Lage		x	y	z		x	y	z	x	y	z
(8c)	Zn1	0.1089	0.1089	0.1089	Zn1	0.1120	0.1120	0.1120	1/6	1/6	1/6
(8c)	Cu1	0.8280	0.8280	0.8280	Ag1	0.8240	0.8240	0.8240	5/6	5/6	5/6
(12e)	Cu2	0.3558	0	0	Ag2	0.3551	0	0	1/3	0	0
(24g)	Zn2	0.3128	0.3128	0.0366	Zn2	0.3130	0.3130	0.0331	1/3	1/3	0
f_X		1.	.010			1.	.008		1	.023	
		Cu	$_5\mathrm{Cd}_8^{1)}$			$\mathrm{Fe_3Zn}_{10}^{1)}$					
Lage		x	y	z		x	y	z			
(8c)	Cu1	0.0940	0.0940	0.0940	M1	0.1028	0.1028	0.1028			
(8c)	Cu2	0.8393	0.8393	0.8393	Fe1	0.8327	0.8327	0.8327			
(12e)	M1	0.3514	0	0	Zn1	0.3538	0	0			
(24g)	M2	0.2974	0.2974	0.0569	Zn2	0.3045	0.3045	0.491			
f_X		1.	.045			1.	.020				
$(1)_{[Bran]}$	don et a	al., 1974]									
2) _[Mars]	h, 1954]									

Tabelle 51. Strukturparameter für γ -Phasen in der Raumgruppe $I\overline{4}3m$

In Abbildung 34 sind die Atomvolumina von Nickel, Kupfer und Zink sowie die mittleren Atomvolumina der Mischkristalle und intermetallischen Verbindungen dieser Systeme gegen die mittlere Gruppennummer \overline{G} aufgetragen. Für Cu₅Zn₈ berechnet sich bei einer mittleren Gruppennummer von 11.615 nach Gleichung (21) ein Volumen $V_{D,exp} = 13.285$ Å³, das mit dem nach Volumenfaktorgleichung (13) bestimmten Volumen $V_D = 13.327$ Å³ gut übereinstimmt.

Abbildung 35: Volumenfaktor der NiAs-Struktur

4.2.5 Die NiAs-Struktur

Die NiAs-Struktur tritt als 1:1-Verbindung in über 50 AB-Systemen auf [Pearson's Handbook, 1997], wobei die Spanne der Verbindungen von den Sulfiden der Elemente Vanadium, Eisen, Cobalt und Nickel bis zu den typischen intermetallischen Verbindungen wie AuSn und PtSn (siehe Tabelle 52) reicht. NiAs kristallisiert in der Raumgruppe P63/mmc (194) mit Ni-Atomen in (2a) und As-Atomen in (2c). Der einzige freie Parameter dieses Strukturtyps ist das Achsenverhältnis c/a. Bei beobachteten Achsenverhältnissen 1.2 < c/a < 1.7 [Pearsons' Handbook, 1997] sind intermetallische Verbindungen mit NiAs-Struktur nicht dicht (Abbildung 35: schraffierter Bereich; vgl. Trömel et al. [1997]). Bei einem viel größeren Achsenverhältnis von $c/a = 2\sqrt{8/3} \approx 3.266$ und völlig veränderten Koordinationsverhältnissen geht die NiAs-Struktur in die La-Struktur über (Abbildung 35).

Am Beispiel der Systeme Au-Sn und Pt-Sn zeigt sich, dass der für die Hume-Rothery-Phasen durchgeführte Ansatz auch für die NiAs-Struktur und weitere intermetallische Verbindungen gilt. Für beide Systeme wurde die Kurve der reduzierten Volumina nur aus den Mischkristallen mit Cu-Struktur und dem Volumen V_D des Zinns bestimmt. In beiden Fällen beschreiben die folgenden Gleichungen diese Verhältnisse: AuSn:

$$V_{D, \exp} = \left\{ 11.634 + 5.320 \exp\left[\left(\overline{G} - 11\right)/3.201
ight] \right\} \,\, \mathrm{\AA}^3$$

PtSn:

 $V_{D,\exp} = \{13.968 + 1.216 \exp\left[\left(\overline{G} - 10\right)/1.793\right]\} \text{ Å}^3$

Die hieraus berechneten Volumina $V_{D,exp}$ stimmen mit den nach der Volumenfaktorgleichung berechneten Werten außer für AuSn gut überein (Tabelle 52; siehe Abbildungen 36 und 37).

Abbildung 36: Verlauf des Volumens V_D als Funktion der mittleren Gruppennummer im System Au-Sn

Tabelle 52.	Volumenfaktoren und reduzierte Volumina von intermetallischen
	Phasen der Systeme Au-Sn und Pt-Sn

Verbindung	\overline{G}	Strukturtyp	P-Symbol	f_X	V_D [Å ³]	$V_{D,exp}$ [Å ³]		
$Au_5Sn^{1)}$	11.5	${ m Au}_5{ m Sn}$	hR6	0.995	17.88	17.87		
$AuSn^{2)}$	12.5	NiAs	hP4	1.125	19.85	20.14		
$AuSn_2^{(3)}$	13	AuSn_2	oP24	1.149	20.79	21.60		
$AuSn_4^{4)}$	13.4	$PtSn_4$	oC20	1.082	22.96	22.86		
$Pt_3Sn^{5)}$	11	$AuCu_3$	cP4	1.000	16.21	16.02		
$PtSn^{5)}$	12	NiAs	hP4	1.121	17.67	17.57		
$\mathrm{Pt}_2\mathrm{Sn}_3^{6)}$	12.4	Pt_2Sn_3	hP19	1.131	18.53	18.51		
$\mathrm{PtSn}_2^{7)}$	$12.\overline{6}$	CaF_2	cF12	1.138	19.50	19.26		
$\mathrm{PtSn}_4^{8)}$	13.2	$PtSn_4$	oC20	1.106	21.06	21.18		
¹⁾ [Osada, Yamag	uchi, Hira	abayashi, 1974]						
$^{2)}$ [Jan et al., 196]	3]							
³⁾ [Schubert, Brei	mer, Goh	ıle, 1959]						
⁴⁾ [Kubiak, Wolcy	rrz, 1984]							
⁵⁾ [Shelton, Merewether, Skinner, 1981]								
⁶⁾ [Schubert, Pfisterer, 1949]								
⁷⁾ [Charlton, Cordey-Hayes, Harris, 1970]								
⁸⁾ [Schubert, Rösl	er, 1950]							

Abbildung 37: Verlauf des Volumens V_D als Funktion der mittleren Gruppennummer im System Pt-Sn

5 Diskussion

5.1 Dichte Strukturen

Neben den Strukturen, die sich in guter Näherung ohne Volumenänderung ineinander umwandeln (W-Typ und dichteste Kugelpackungen), erweisen sich folgende Strukturen als dicht mit Volumenfaktoren von $f_X < 1.010$: In, Pa, α -Ce, γ -Pu, β -U sowie die hypothetische tetragonal dichte Kugelpackung. Für keine der untersuchten Strukturen wurde ein Volumenfaktor von $f_X < 0.990$ berechnet. Die Strukturen mit $f_X \approx 1$ sind daher die dichtesten, die tatsächlich vorkommen.

Zwei Schlussfolgerungen können gezogen werden:

Der dichte Zustand erscheint als ein Grenzzustand der kondensierten Materie, der durch unterschiedliche Strukturen verwirklicht werden kann.

Das Atomvolumen eines Elements setzt sich aus dem reduziertem Volumen und dem Volumenfaktor f_X zusammen, der die Packungsdichte charakterisiert.

5.2 Reduzierte Volumina von Hauptgruppenelementen

Die reduzierten Volumina der Hauptgruppenelemente sind von besonderer Bedeutung, da nur für die Elemente der ersten und zweiten Hauptgruppe, Aluminium und einige schwerere Hauptgruppenelemente die dichten Formen bekannt sind. Gerade diese Elemente kristallisieren in zum Teil zahlreichen Modifikationen, so dass die Gültigkeit der Volumenfaktorgleichung (13) und der in Kapitel 1.6.2 gemachten Annahmen überprüft werden kann. In Tabelle 53 sind die V_D -Werte dieser Elemente noch einmal zusammengefasst:

Tabelle 53. Reduzierte Volumina $[{\rm \AA}^3]$ der Hauptgruppenelementen bei Raumtemperatur

								Η	$1.00^{*)}$
В	$5.32\{2\}$	\mathbf{C}	$4.098\{2\}$	Ν	$3.10^{*)}$	0	$4.13^{*)}$	F	$6.57^{*)}$
Al	16.608	Si	$14.51\{7\}$	Р	$13.67\{2\}$	S	13.4(1)	Cl	$18.41^{*)}$
Ga	$17.7\{1\}$	Ge	16.5(2)	As	$18.23\{3\}$	Se	19.3(2)	Br	$27.82^{*)}$
In	26.167	Sn	$25.1\{4\}$	Sb	26.52	Te	29.15	Ι	(44.42^{*})
Tl	28.864	Pb	30.141	Bi	31.12	Po	$34.41\{7\}$		
) Ab	^{)} Abschätzung aus Bindungslängen in Molekülen in der Gasphase bei Raumtemperatur								
$\{\}$: mittlere Abweichung der V_D zweier Modifikationen									
(): S	Standardabwei	ichung							

Die V_D -Werte der s- und p-Elemente der zweiten und dritten Reihe (Abbildungen 38 und 39) sowie die p-Elemente der höheren Reihen (Abbildung 40) zeigen einen periodischen Verlauf ähnlich dem der d-Elemente (Abbildung 41, 42 und 43). Der periodische Verlauf der V_D -Werte der Hauptgruppenelemente scheint wie im Fall der d-Elemente (vgl. Trömel [2000]) die Elektronenkonfiguration und damit die Bindungswertigkeit zu repräsentieren. Das Atomvolumen eines Elements resultiert somit aus dem Volumenfaktor und und seiner Elektronenkonfiguration.

5 DISKUSSION

Abbildung 38: Atomvolumina der Hauptgruppenelemente der 2. Periode

Abbildung 39: Atomvolumina der Hauptgruppenelemente der 3. Periode

5 DISKUSSION

Abbildung 40: V_D der Hauptgruppenelemente der 2. bis 6. Periode

Abbildung 41: Verlauf des Atomvolumens der Elemente Ca-Zn

Abbildung 42: Verlauf des Atomvolumens der Elemente Sr bis Cd

Abbildung 43: Verlauf des Atomvolumens der Elemente Lu bis Hg

Abbildung 44: Volumenfaktor der Hochdruckmodifikationen des Phosphors

5.3 Druckabhängigkeit des Volumenfaktors

In allen bisher gefundenen Fällen (siehe Kapitel 4.1.1 - 4.1.4) gelten folgende Zusammenhänge für die Druckabhängigkeit des Volumenfaktors:

Für Strukturen mit freien Parametern nimmt der Volumenfaktor mit dem Druck ab.

Bei Phasenübergängen, an denen nicht-dichte Phasen beteiligt sind, nimmt der Volumenfaktor mit dem Druck ab (vgl.Kapitel 4.1).

Die Abbildungen 44 und 45 illustrieren am Beispiel der Hochdruckmodifikationen des Phosphors und des Tellurs die beiden Regeln.

Abbildung 45: Volumenfaktor der Hochdruckmodifikationen des Tellurs

5.4 Temperaturabhängigkeit des Volumenfaktors

Während bei Temperaturzunahme das Volumen allgemein zunimmt, nimmt der Volumenfaktor bei Phasenübergängen mit steigender Temperatur ab (hier am Beispiel von Plutonium, Neptunium und Uran; entsprechendes gilt auch für die $\alpha - \beta$ -Umwandlung des Zinns).

-	-								
		$395~{ m K}$		$479~{\rm K}$		$592~{ m K}$		$759~{ m K}$	
	α -Pu	\rightarrow	β -Pu	\rightarrow	γ -Pu	\rightarrow	δ -Pu (Cu)	\rightarrow	ϵ -Pu (W)
f_X	1.075		1.023		1.008		1.000		1.000
		$551~{ m K}$		$843~{ m K}$					
	α -Np	\rightarrow	β -Np	\rightarrow	γ -Pu (W)				
f_X	1.076		1.034		1.000				
		$935~{ m K}$		$1045~{\rm K}$					
	α -U	\rightarrow	β -U	\rightarrow	γ -U (W)				
f_X	1.030		1.009		1.000				
():	(): Strukturtyp der jeweiligen Modifikation								

Tabelle 54.Volumenfaktoren der Hochtemperaturmodifikationen
von Plutonium, Neptunium und Uran

Entsprechend dem Le Chatelier-Prinzip gilt die Regel:

Der temperaturbedingten Volumenzunahme wirkt das System durch Verkleinerung des Volumenfaktors entgegen.

5.5 Metall- und Nichtmetallstrukturen

Für die Elemente innerhalb einer Gruppe des periodischen Systems nimmt der Wert des Volumenfaktors mit steigender Gruppennummer ab oder bleibt maximal gleich. Dies spiegelt die Zunahme metallischer Eigenschaften innerhalb einer Gruppe wieder.

Der Übergang von Metall zu Nichtmetall lässt sich nicht an einer bestimmten Grenze des Volumenfaktors festmachen (Tabelle 58 auf Seite 90). Allgemein gilt jedoch:

Alle Elemente mit dichten Strukturen sind Metalle, aber nicht alle Metalle haben dichte Strukturen.

5.6 Vergleich mit quantenmechanischen Ergebnissen

Mit Hilfe der Tight-Binding Methode wird quantentheoretisch die Gesamtenergie eines Elements in einer vorgegebenen Struktur berechnet. Das Gleichgewichtsvolumen V_0 ist dann das Atomvolumen bei minimaler Gesamtenergie. Für Mangan, Technetium und Kupfer haben Mehl und Papaconstantopoulos [1995] solche Rechnungen mit den Strukturtypen in Tabelle 56 durchgeführt. Die Absolutwerte V_0 weichen dabei stark von den beobachteten Atomvolumina ab (Tabelle 55).

5 DISKUSSION

	V_0 [Å ³]	V_{obs} [Å ³]				
$\alpha - Mn$	10.27	12.21				
β –Mn	10.31	12.60				
Tc (Mg-Struktur)	13.87	14.31				
Cu (Cu-Struktur)	10.91	11.74				
In der Arbeit von Mehl und Papaconstantopoulos [1995]						
sind die V_0 -Werte in atomaren Einheiten angegeben.						

Tabelle 55.Gleichgewichtsvolumina und beobachtete Atomvolumina der
Elemente Mangan, Technetium und Kupfer

Aufgrund der berechneten Atomvolumina V_0 kann für jeden Strukturtyp ein quantenmechanischer Volumenfaktor nach folgender Gleichung bestimmt werden:

$$f_{X,TB} = \frac{V_{0,X}}{V_{0,fcc}}$$
(23)

Tabelle 56.Gleichgewichtsvolumina und quantenmechanische
Volumenfaktoren nach Gleichung (23)

	Strukturtyp	Cu	W	Mg	α –Po	Si	$\alpha - Mn$	β –Mn
Mn	V_0 [Å ³]	10.18	10.18	10.14	10.97	14.34	10.27	10.31
	$f_{X,TB}$	-	1.000	0.996	1.077	1.409	1.009	1.013
Tc	V_0 [Å ³]	13.96	14.14	13.87	15.19	18.85	14.09	14.09
	$f_{X,TB}$	-	1.013	0.994	1.088	1.350	1.010	1.010
Cu	V_0 [Å ³]	10.91	10.95	10.94	12.24	15.78	11.14	11.19
	$f_{X,TB}$	-	1.004	1.003	1.122	1.447	1.022	1.026
	$f_{X,TB}$	-	1.006(7)	0.998(5)	1.10(2)	1.40(5)	1.014(7)	1.016(9)
	f_X (diese Arbeit)	1	1	1	1.104	1.385	1.012	1.014

Die quantenmechanisch ermittelten Volumenfaktoren sind für die verschiedenen Elemente innerhalb eines Strukturtyps nahezu gleich, hängen also in guter Näherung nicht von der Elektronenkonfiguration des jeweiligen Elements ab. Sie stimmen mit den Volumenfaktoren f_X aus dieser Arbeit innerhalb der Fehlergrenzen überein. Die Pauling-Funktion (2) (Seite 2) und die übrigen Annahmen (Seite 5) ermöglichen es daher, die Volumenverhältnisse ohne Lösung der Schrödingergleichung mit einem Bruchteil des Rechenaufwandes zu ermitteln.

6 Zusammenfassung

Metalle, die mit kubisch innenzentrierter Struktur oder in dichtesten Kugelpackungen kristallisieren, wandeln sich in guter Näherung ohne Volumenänderung ineinander um. Dieser bereits von Pearson 1972 beschriebene Sachverhalt wird hier als Volumenregel formuliert. Elemente in den genannten Strukturen haben die gleiche Dichte.

Mit der für die Abhängigkeit des Bindungsgrades s vom Atomabstand r von Pauling 1947 angegebenen Funktion

$$s(r) = \exp\left(\frac{R_1 - r}{b}\right)$$

wird aus den Kristallstrukturen der festen Elemente das Atomvolumen berechnet, das das jeweilige Element bei gleicher Bindungswertigkeit in einer dieser Strukturen hat. Dabei werden Strukturen mit höherer Dichte als die kubisch innenzentrierte Struktur oder die dichtesten Kugelpackungen nicht gefunden. Diese und einige weitere Strukturen gleicher Dichte ($\pm 1\%$) werden hier als dichte Strukturen bezeichnet.

Außer den Edelgasen sind alle Elemente, die mit dichten Strukturen kristallisieren, Metalle, doch haben eine Reihe von Metallen (Mangan, Zink, Cadmium, Quecksilber, Gallium und Zinn) nichtdichte Strukturen. Für diese und für die nichtmetallischen Elemente wird das Atomvolumen ihrer dichten Formen berechnet, d.h. das Volumen, das sie unter Normalbedingungen im dichten (metallischen) Zustand einehmen würden. Ist für ein Element der Bindungsgrad für eine Bindungslänge bekannt, so kann aus diesem das Atomvolumen im dichten Zustand abgeschätzt werden.

Aus verschiedenen Strukturen von Nichtmetallen (Phosphor und Schwefel etc.) berechnet sich jeweils in guter Näherung das gleiche Atomvolumen für den dichten Zustand V_D . Dies bestätigt die Gültigkeit der Pauling-Funktion. Eine weitere Bestätigung liegt darin, dass für Mangan, Kupfer und Technetium in verschiedenen Strukturen quantenmechanisch berechnete Volumenverhältnisse nach den hier abgeleiteten Beziehungen ebenfalls erhalten werden.

Der dichte Zustand der Elemente erscheint hier als ein von der Kristallstruktur unabhängiger Grenzzustand der kondensierten Materie.

Bei bekannter Bindungswertigkeit eines Elements können die Parameter R_1 und b der Paulingfunktion (Bindungsgrad-Parameter) und damit die Abstandsabhängigkeit des Bindungsgrades berechnet werden. Dies wird für alle s-, p- und d-Elemente durchgeführt. Dabei ergeben sich für die Länge der Einfachbindung R_1 Werte, die zum Teil erheblich von den Literaturdaten abweichen. Der Parameter b ist im Gegensatz zu den Literaturangaben nicht konstant, sondern der dritten Wurzel aus V_D proportional.

Aufgrund der Bindungsgrad-Parameter kann der Beitrag von Metall-Metall-Bindungen zur Wertigkeit in Verbindungen bestimmt werden.

Die Volumenverhältnisse von intermetallischen Phasen sowie Hochdruckformen der Elemente werden aufgrund der hier abgeleiteten Beziehungen diskutiert.

7 LITERATUR

7 Literatur

Adenis, C., Langer, V., Lindquist, O.: Reinvestigation of the Structure of Tellurium. Acta Crystallogr. A45 (1989) 941-942.

Alcock, N.W.: Secondary Bonding to Nonmetallic Elements. Adv. Inorg. Radiochem. 15 (1972) 1-58.

Alig, H. Geometrische und chemische Koordination. Dissertation Universität Frankfurt/M. 1993.

Alig, H., Trömel, M.: Geometrische und chemische Koordination. Z. Kristallogr. 201 (1992) 213-222.

Allen, H.A., Kennard, O., Watson D.G., Brammer, L., Orpen, A.G. Taylor, R.: Tables of Bond Lengths determined by X-Ray and Neutron Diffraction. Part1. Bond Lengths in Organic Compounds. J. Chem. Soc., Perkin Trans. 2 (1987) S1-S19.

Amand, R.S., Giessen B.C.: On the Metastable System Mercury-Thallium. J. Less-Common Met. 27 (1974) 213-216.

Aruja, E., Perlitz, H.: Neubestimmung der Gitterkonstante von Natrium. Z. Kristallogr. 100 (1939) 195-200.

Atoji, M., Schirber, J.E., Swenson, C.A.: Crystal Structure of β -Hg. J. Chem. Phys. 31 (1959) 1628-1629.

Barnett, J.D., Bean, V.E., Hall, H.T.: X-Ray Diffraction Studies on Tin to 100 Kilobars. J. Appl. Phys. **37** (1966) 875-877.

Barrett, C.S.: X-Ray Study of Alkali Metals at Low Temperatures. Acta Crystallogr. 9 (1956) 671-677.

Barrett, C.S., Meyer, L., Wasserman, J.: Crystal Structures of Solid Hydrogen and Deuterium, and of Neon-Hydrogen and Neon-Deuterium Mixtures. J. Chem. Phys. 45 (1966) 834-837.

Barrett, C.S., Meyer, L., Wasserman, J.: Antiferromagnetic and Crystal Structures of α -Oxygen. J. Chem. Phys. 47 (1967) 592-597.

Basinski, Z.S., Hume-Rothery, W., Sutton, A.L.: The Lattice Expansion of Iron. Proc. Roy. Soc. A229 (1955) 459-467.

Bates, C.H., Dachille F., Rustum R.: High-Pressure Transition of Germanium and a New High-Pressure Form of Germanium. Science 147 (1965) 860-862.

Benazeth S, Dung, N.H., Guittard, M., Laruelle, P.: Affinement sur Monocristal de la Structure du Polytype 2H du Seleniure de Gallium Ga Se Forme beta. Acta Crystallogr. C44 (1988) 234-236. Berliner, R., Fajen, O., Smith, H.G., Hitterman, R.L.: Neutron Powder-Diffraction Studies of Lithium, Sodium and Potassium Metal. Phys. Rev. B40 (1989) 12086-12097.

Bosio L.: Crystal Structure of Ga(II) and Ga(III). J. Chem. Phys. 68 (1978) 1221-1223.

Bosio L., Curien H., Dupont M., Rimsky A.: Structure cristalline de Ga gamma. Acta Crystallogr. B28 (1972) 1974-1975.

Bosio L., Curien H., Dupont M., Rimsky A.: Structure cristalline de gallium delta. Acta Crystallogr. B29 (1973) 367-368.

Bosio L., Defrain A.: Structure cristalline du gallium beta. Acta Crystallogr. 25B (1969) 995.

Brandon, J.K., Brizard, R.Y., Chieh, P.C., McMillan, R.K., Pearson W.B.: New Refinements of the γ -Brass Type Structure Cu₅Zn₈, Cu₅Cd₈, Fe₃Zn₁₀. Acta Crystallogr. B30 (1974) 1412-1417.

Brese, N.E., O'Keefe, M.: Bond-Valence Parameters for Solids. Acta Crystallogr. B47 (1991) 192-197.

Brewer, L.: The Role and Significance of Empirical and Semiempirical Correlation, Structure and Bonding in Crystals Vol. I, S. 155-174, Academic Press 1981.

Brown, A. Rundqvist. S.: Refinement of the Crystal Structure of Black Phosphorus. Acta Crystallogr. **19** (1965) 684-685.

Brown, I.D.: The Bond Valence Method.: An Empirical Approach to Chemical Structure and Bonding. In: *Structure and bonding in crystals* (Eds. M. O'Keeffe, A. Navrotsky), Vol.II, p. 1-30. New York, London, Toronto, Sydney, San Francisco: Academic Press 1981.

Brown, I.D.: private Mitteilung 1998

Brown, I.D., Altermatt, D.: Bond-Valence Parameters Obtained from a Sytematic Analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. B41 (1985) 244-247.

Bundy, F.P., Kasper, J.S.: Hexagonal Diamond - A New Form of Carbon. J. Chem. Phys. 46 (1967) 3437-3446.

Cartz, L., Srinivasa S. R., Riedner R. J., Jorgensen J. D., Worlton T. G.: Bonding in Black Phosphorus. J. Chem. Phys. **71** (1979) 1718-1721.

Charlton, J.S., Cordey-Hayes, M., Harris, I.R.: A Study of the 199Sn Mossbauer Isomer Shifts in some Platinum-Tin and Gold-Tin Alloys. J. Less-Common Met. 20 (1970) 105-112.

Chebotareva, Ye.S., Nuzhdina, S.G.: Observation of ω -Titanium in a Composite Hard Facing Alloy Based on Fine-Grain Diamonds. Physics of Metals and Metallography (translated from fizika metallov, metallovedenie) **36** (1973) 200-202.

Cherin, P., Unger, P.: The Crystal Structure of Trigonal Selenium. Inorg. Chem. 6 (1967) 1589-1591.

Cherin, P., Unger, P.: Refinement of the Crystal Structure of α -Monoclinic Se. Acta Crystallogr. **B28** (1972) 313-317.

David, W.I.F., Ibberson, R.M., Matthewman, J.C., Prassides, K., Dennis, T.J.S., Hare, J.P., Kroto, H.W., Taylor, R., Walton, D.R.M.: Crystal Structure and Bonding of Ordered C₆₀. Nature. **353** (1991) 147-149.

Debaerdemaeker, T., Kutoglu, A.: Cyclooctadecasulfur, S18 (beta). Cryst. Struct. Commun. 3 (1974) 611-613.

DeSando, R.J., Lange, R.C.: The Structure of Polonium and its Compounds. 1. alpha and beta Polonium Metal. J. Inorg. Nucl. Chem. **28** (1966) 1837-1846.

Dinega, D.P., Bawendi, M.G.: Eine aus der Lösung zugängliche neue Kristallstruktur von Cobalt. Angew. Chem. 111 (1999) 1906-1909.

Doherty, C.J., Poate, J.M., Voorhoeve, R.J.H.: Vacuum-Evaporated Films of Chromium with the A15 Structure. J. Appl. Phys. 48 (1977) 2050-2054.

Donohue, J.: A Refinement of the Positional Parameter in α -Nitrogen. Acta Crystallogr. **14** (1961) 11-19.

Donohue, J.: The Structures of Elements. John Wiley & Sons. New York, London, Sydney, Toronto 1974.

Dorset, D.L., McCourt M.P.: Disorder and the Molecular Packing of C_{60} Buck-minsterfullerene: a Direct Electron-Crystallographic Analysis. Acta Crystallogr. A50 (1994) 344-351.

Duclos, S.J., Vohra, Y.K., Ruoff, A.L.:Experimental Study of the Crystal Stability and Equation of State of Si to 248 GPa. Phys. Rev. B41 (1990) 12021-12028.

Ewald, P.P., Hermann, C.: Strukturbericht 1913 - 1928. Akademische Verlagsgesellschaft m.b.H. / Leipzig 1931.

Foss, O., Janickis, V.: Crystal Structure of γ -monoclinic Selenium. J. Chem. Soc., Dalton Trans. (1980) 624-627.

Frank, F.C., Kasper, J.S.: Complex Alloy Structures Regarded as Sphere Packings, I. Definitions and Basic Principles. Acta Crystallogr. **11** (1958) 184-190.

Gallacher, A.C., Pinkerton, A.A.: A Redetermination of Monoclinic γ -Sulfur. Acta Crystallogr. C49 (1993) 125-126.

Gazzara, C.P., Middleton, R.M., Weiss, R.J., Hall, E.O.: A Refinement of the Parameters of alpha Manganese. Acta Crystallogr. 22 (1967) 859-862.

CRC Handbook of Chemistry and Physics 1994-1995. 75th Ed. (ed. D.R. Lide). CRC Press Boca Raton, Ann Arbor, London, Tokyo 1994.

Geller, S.: A Set of Effective Coordination Number (12) Radii for β -Wolfram Structure Elements. Acta Crystallogr. **9** (1956) 885-889.

Goldschmidt, V.M.: Über Atomabstände in Metallen. Z. Phys. Chem. A133 (1928) 397-419.

Hoard, J.L., Hughes, R.E., Sands, D.E.: The Structure of Tetragonal Boron. J. Amer. Chem. Soc. 80 (1958) 4507-4515.

Hörl, E.M.: Structure and Structure Imperfections of Solid β -Oxygen. Acta Crystallogr. 15 (1962) 845-850.

Hübner, S., Trömel, M.: Atomic Volume and Crystal Structure of Elements. Bulletin of the Czech and Slovak Crystallographic Association B5 (1998) 380.

Hume-Rothery W., Raynor G.V.: The Structure of Metals and Alloys. Institute of Metals Monograph and Report Series No. 1. London 1962.

Ibberson, R.M., Moze, O., Petrillo, C.: High Resolution Neutron Powder Diffraction Studies of the Low Temperature Crystal Structure of Molecular Iodine (I₂). Mol. Phys. **76** (1992) 395-403.

(a) **Jamieson J. C.:** Crystal Struktures at High Pressures of Metallic Modifications of Silicon and Germanium. Science **139** (1963) 762-764.

(b) **Jamieson J. C.:** Crystal Structure Adopted by Black Phosphorus at High Pressure. Science **139** (1963) 1291-1292.

Jan, J.-P., Pearson, W.B., Kjekshus, A., Woods, S.B.: On the Structural, Thermal, Electrical, and Magnetical Properities of AuSn. Can. J. Phys. 41 (1963) 2252-2266.

Jennings, H.M., Richman, M.H.: A Hexagonal (Wurtzite) Form of Silicon. Sience 193 (1976) 1242-1243.

Johnston, R.L., Hoffman R.: Superdense Carbon, C₈: Supercubane or Analoque of γ -Si? J. Am. Chem. Soc. 111 (1989) 810-819.

Jordan, T.H., Smith H.W., Streib, W.E. , Lipscomb W.M.: Single-Crystal X-Ray Diffraction Studies of α -N₂ and β -N₂. J. Chem. Phys. **41** (1964) 756-759.

Jordan T.H., Streib W.E., Lipscomb W.N.: Single-Crystal X-Ray Diffraction Study of β -Flourine. J. Chem. Phys. 41 (1964) 760-764.

Julien-Pouzol, M., Jaulmes, S., Guittard, M., Alapini, F.: Monotellure de gallium, GaTe. Acta Crystallogr. B35 (1979) 2848-2851.

Keller, R., Holzapfel, W.B., Schulz, H.: Effect of Pressure on the Atomic Positions in Se and Te. Phys. Rev. B16 (1977) 4404-4412.

Keller, D.V., Kanda, F.A., King, A.J.: Barium-Lithium Equilibrium System. J. Phys. Chem. 62 (1958) 732-733.

Kikegawa T., Iwasaki H.: An X-ray Diffraction Study of Lattice Compression and Phasetransition of Crystalline Phosphorus. Acta Crystallogr. **B39** (1983) 158-164.

Kohlhaas, R., Dünner, P., Schmitz-Pranghe, N.: Über die Temperaturabhängigkeit der Gitterparameter von Eisen, Kobalt und Nickel im Bereich hoher Temperaturen. Z. angew. Phys. **23** (1967) 245-249.

Kraus, W., Nolze, G.: PowderCell for Windows V. 2.0 beta 1998.

Kubiak, R., Wolcyrz, M.: Refinement of the Crystal Structures of AuSn₄ and PdSn₄. J. Less-Common Met. **97** (1984) 265-259.

Kugler, W., Knorr, K., Prandl, W.: Röntgenbeugungsuntersuchung an der magnetostriktiven Verzerrungswelle in Chrom: Amplitude und Temperaturabhängigkeit. Z. Kristallogr. 162 (1983) 151-153.

Landolt-Börnstein. Zahlenwerte und Gleichungen aus Naturwissenschaften und Technik, Neue Serie, K.-H. Hellwege (Hrsg.), Gruppe III: Kristall- und Festkörperphysik, Bd. 6. Springer, Berlin 1971.

Kuhn, A., Bourdon, A., Rigoult, J., Rimsky, A.: Charge-Density Analysis of GaS. Phys. Rev. **B25** (1982) 4081-4088.

La Placa, S.J., Hamilton, W.C.: Refinement of the Crystal Structure of α -N₂. Acta Crystallogr. B28 (1972) 984-985.

Lawson, A.C., Olsen, C.E., Richardson Jr., J.W., Mueller, M.H., Lander, G.H.: Structure of β -Uranium. Acta Crystallogr. B44 (1988) 89-96.

Lander, G.H., Mueller, M.H.: Neutron Diffraction Study of α -Uranium at Low Temperatures. Acta Crystallogr. **B26** (1970) 129-136.

(a) Lee, J.A., Raynor, G.V.: Thermal Expansion of Gray Tin. Nature 174 (1954) 1011.

(b) Lee, J.A., Raynor, G.V.: The Lattice Spacings of Tin-Rich Alloys. Proc. Phys. Soc. 67 (1954) 737-747.

Leyendecker, J., Gahn, A., Frey, F., Boysen, H., Lehnert, H., Schneider, J.: β -Wolfram. Z. Kristallogr. Suppl. **12** (1997) 243.

Liu, M., Liu, L.-G.: Compressions and Phase Transitions of Tin to Half a Megabar. High Temp. High Pressure 18 (1986) 79-85.

Lynch, R.W., Drickamer, H.G.: The Effect off Pressure on the Resistance and Lattice Parameters of Cadmium and Zinc. J. Phys. Chem. Solids **26** (1965) 63-68.

Marsh, R.E.: Interatomic Distances in the γ -Phase Compound Ag₅Zn₈. Acta Crystallogr. 7 (1954) 379.

Marsh, R. E., Pauling, L.: The Crystal Structure of beta Selenium. Acta Crystallogr. 6 (1953) 71-75.

Mehl, M.J., Papaconstantopoulos, D.A.: Application of a New Tight-Binding Method for Transition Metals: Manganese. Europhysics Lett. **31** (1995) 537-541.

Meyer, L., Barrett, C.S., Greer, S.C.: Crystal Structure of α -Flourine. J. Chem. Phys. 49 (1968) 1902-1907.

Mott, N.F., Jones, H.: The Theory of the Properties of Metals and Alloys. Clarendon Press, Oxford 1936.

Müller, U.: Anorganische Strukturchemie. B.G. Teubner Stuttgart 1996.

Natyushenko, N.N., Strel'nitsky V.E., Gusev V.A.: An Electron-Diffraction Investigation of the Structure of the Crystalline Phase of Carbon C8. Kristallografiya 26 (1981) 484-487.

Nesper, R.: Chemische Bindung - intermetalische Bindung. Angew. Chem. 103 (1991) 805-834.

Niggli, P.: XXIV. Die topologische Strukturanalyse I. Z. Kristallogr. 65 (1927) 391-415.

O'Keeffe, M., Brese, N.E.: Atom Size and Bond Lengths in Molecules and Crystals. J. Am. Chem. Soc. 113 (1991) 3226-3229.

Olijnyk, H., Sikka, S.K., Holzapfel, W.B.: Structural Phase Transition in Si and Ge under Pressures up to 50 GPa. Phys. Lett. A103 (1984) 137-140.

Osada, K., Yamaguchi, S., Hirabayashi, M.: An Ordered Structure of Au₅Sn. Transaction of the japan institute of metals. **15** (1974) 256-260.

Owen, E.A., Yates, E.L.: Precision Measurements of Crystal Parameters. Philos. Mag. 15 (1939) 472-487.

7 LITERATUR

Pearson's Handbook. Desktop Edition. Crystallographic Data for Intermetallic Phases. Vol. 1-2. (Ed. P. Villars). ASM International. 1997.

Pearson, W.B.: The Crystal Chemistry and Physics of Metals and Alloys. Wiley - Interscience, New York, London, Sydney, Toronto 1972.

Paetzold, P.: Neues vom Bor und seinen Verbindungen. Chemie in unserer Zeit **9** (1975) 67-78.

Parthasarathy, G., Holzapfel, W.B.: High-Pressure Structural Phase Transition in Tellurium. Phys. Rev. B37 (1998) 8499-8501.

Pauling, L.: The Nature of the Interatomic Forces in Metals. Phys. Rev. **54** (1938) 899-904.

Pauling, L.: Atomic Radii and Interatomic Distances in Metals. J. Am. Chem. Soc. **69** (1947) 542-533.

Pauling, L.: A Set of Effective Metallic Radii for Use in Compounds with the β -Wolfram Structure. Acta Crystallogr. **10** (1957) 374-375.

Pauling, L.: Die Natur der chemischen Bindung, Verlag Chemie Weinheim 1964.

Pauling L., Keaveny, I., Robinson A.B.: The Crystal Structure of α -Flourine. J. Solid State Chem. 2 (1970) 225-227.

Powell, B.M., Heal, K.M., Torrie, B.H.: The Temperature Depence of the Crystal Structures of the Solid Halogens, Bromine and Chlorine. Mol. Phys. 53 (1984) 929-939.

Raynor G.V.: The Lattice Spacings of the Primary Solid Solution of Silver, Cadmium and Indium in Magnesium. Proc. Roy. Soc. **A174** (1940) 457-471.

Rettig, S.J., Trotter, J.: Refinement of the Structure of Orthorhombic Sulfur, α -S8. Acta Crystallogr. C43 (1987) 2260-2262.

Seel, F.: Valenztheoretische Begriffe. Angew. Chem. 19 (1954) 581-586.

Schiferl, D., Cromer, D.T., Jamieson, J.C.: Structure Determination on Sb up to 85×10^2 MPa. Acta. Crystallogr. B37 (1981) 807-810.

Schmidt, M., Wilhelm, E., Debaerdemaeker, T., Hellner, E., Kutoglu, A.: Darstellung und Kristallstruktur von Cyclooktadekaschwefel S18, und Cycloikosaschwefel, S20. Z. anorg. allg. Chem. **405** (1974) 153-162.

Schmieding B.: Metall-Metall-Bindungen in binären Oxiden. Staatsexamensarbeit Frankfurt a.M. 1997.

Schmitz-Pranghe, N., Dünner, P.: Gitterstruktur und thermische Ausdehnung der

7 LITERATUR

Übergangsmetalle Scandium, Titan, Vanadin und Mangan. Z. Metallkunde. **59** (1968) 377-382.

Schubert, K., Breimer, H., Gohle, R.: Zum Aufbau der Systeme Gold-Indium, Gold-Zinn, Gold-Indium-Zinn, und Gold-Zinn-Antimon. Z. Metallkunde. **50** (1959) 146-153.

Schubert, K., Pfisterer, H.: Kristallstruktur von Pt_2Sn_3 . Z. Metallkunde. 40 (1949) 405-411.

Schubert, K., Rösler, U.: Die Kristallstruktur von PtSn₄. Z. Metallkunde. 41 (1950) 298-300.

Sharma, B.D., Donohue, J.: A Refinement of the Crystal Structure of Gallium. Z. Kristallogr. 117 (1962) 293-300.

Shelton, K.L., Merewether, P.A., Skinner, B.J.: Phase and Phase Relations in the System Pd-Pt-Sn. Canadian Mineralogist **19** (1981) 599-605.

Shoemaker, C.B., Shoemaker, D.P., Hopkins, T.E., Yindepit, S.: Refinement of the Structure of beta-Manganese and of Related Phase in the Mn-Ni-Si Sytem. Acta Crystallogr. **B34** (1978) 3573-3576.

Simon A.: Intermetallische Verbindungen und die Verwendung von Atomradien zu ihrer Beschreibung. Angew. Chem. **95** (1983) 94-113.

Simon A., Borrmann H., Craubner H.: Crystal Structure of Orderd White Phosohorus (β -P). Phosphorus and Sulfur **30** (1987) 507-510.

Smith, J.F., Schneider, V.L.: Anisotropic Thermal Expansion of Indium. J. Less-Common Met. 7 (1964) 17-22.

Smith, P.M., Leadbetter, A.J., Apling, A.J.: The Structures of Orthorhombic and Vitrous Arsenic. Philos. Mag. **31** (1974) 57-64.

Spedding, F.H., Daane, A.H., Herrmann, K.W.: The Crystal Structures and Lattice Parameters of the High-Purity Scandium, Yttrium and the Rare Earth Metals. Acta Crystallogr. 9 (1956) 559-563.

Steidel, J., Pickardt, J., Steudel, R.: Redetermination of the Crystal and Molecular Structure of Cyclohexasulfur, S6. Z. Naturforsch. B33 (1978) 1554-1555.

Steidel, J., Steudel, R.: Molecular and Crystal Structure of cyclo-Undecasulphur, S11. J. Chem. Soc., Chem. Comm. (1982) 1312-1313.

Steidel, J., Steudel, R., Kutoglu, A.: Roentgenstrukturanalysen von Cyclododecaschwefel (S12) und Cyclododecaschwefel-1-Kohlendisulfid ((S12) * (C S2)). Z. anorg. allg. Chem..476 (1981) 171-178. Steudel, R., Steidel, J., Pickardt, J., Schuster, F., Reinhardt, R.: X-Ray Structure Analyses of Two Allotropes of Cycloheptasulfur. Z. Naturforsch. **B35** (1980) 1378-1383.

Steudel, R., Steidel, J., Reinhardt, R.: X-ray Structural Analyses of Cyclodecasulfur S10 and of Cyclohexasulfur-Cyclodecasulfur Molecular Addition Compound S6 S10. Z. Naturforsch. B38 (1983) 1548-1556.

Steudel, R., Steidel, J., Sandow, T.: Darstellung, Kristallstruktur und Schwingungsspektren von cyclo-Undecaschwefel (S11) und von cyclo-Tridecaschwefel (S13). Z. Naturforsch. B41 (1986) 958-970.

Straumanis, M. E., Aka, E.Z.: Precision Determination of Lattice Parameter, Coefficient of Thermal Expansion and Atomic Weight of Carbon in Diamond. J. Amer. Chem. Soc. **73** (1951) 5643-5646.

Straumanis, M. E., Aka, E.Z.: Lattice Parameters, Coefficients of Thermal Expansion, and Atomic Weights of Purest Silicon and Germanium. J. Appl. Phys. 23 (1952) 330-334.

Sullenger, D.B., Phipps, K.D., Seabaugh P.W., Hudgens C.R.: Boron Modifications Produces in an Induction-Coupled Argon Plasma. Science 163 (1969) 935-937.

Switendick, A.C., Morosin, B.: Electronic Charge Density and Bonding in α -Boron: An Experimental-Theoretical Comparison. AIP Conference, Proceedings **231** (1991) 205-211.

Takemura, K., Syassen, K.: Pressure-Volume Relation and Polymorphism of Europium and Yterbium to 30 GPa. J. Phys. F: Metal Physics F15 (1985) 543-559.

Tang, C.C., Hess, D.W.: Plasma-Enhanced Chemical Vapor Deposition of β -Tungsten, a Metastable Phase. Appl. Phys. Lett. 45 (1984) 633-635.

Thurn H., Krebs, H.: Über die Struktur der Halbmetalle. XXII. Die Kristallstruktur des Hittorf'schen Phosphors. Acta Crystallogr. **B25** (1969) 125-135.

Trömel, M.: Metallradien, Ionenradien und Wertigkeiten fester metallischer Elemente. Z. Naturforsch. **B55** (2000) 243-247.

Trömel, M., Hübner, S.: Kristallchemie der Elemente: Metalle mit dichten Strukturen. Z. Kristallogr. Suppl. 15 (1998) 92.

Trömel M., Hübner, S.: Metallradien und Ionenradien. Z. Kristallogr. **215** (2000) 429-432.

Trömel, M., Schmieding, B., Hübner, S., Fink, L.: Metall-Metall-Bindungen in binären Oxiden und Halogeniden. Z. Kristallogr. Suppl. 16 (1999) 100.

Trucano, P., Chen, R.: Structure of Graphite by Neutron Diffraction. Nature 258

7 LITERATUR

(1975) 136-137.

Venables, J.A., English, C.A.: Electron Diffraction and the Structure of α -N₂. Acta Crystallogr. B30 (1974) 929-935.

Wells, A.F.: Structural Inorganic Chemistry. 5th Edition. Clarion Press Oxford 1984.

Wentdorf Jr., R.H., Kasper, J.S.: Two New Forms of Silicon. Sience 139 (1963) 338-339.

Westrgren, A., Almin, A.: Über die Raumerfüllung der Atome in Legierungen. Z. Phys. Chem. B5 (1929) 14-28.

Will, G., Ploog, K.: Crystal Structure of I-Tetragonal Boron. Nature 251 (1974) 406-408.

de Wolff, P.: Powder Diffraction File 17-910 (1965). International Centre for Diffraction Data, Newtown Square, Pa., USA.

Young, D.A.: Phase Diagrams of the Elements. University of California Press. Berkly, Los Angeles, Oxford 1991.

Zachariasen, W.H.: Crystal Chemical Studies of the 5f-Series of Elements. 17. The Crystal Structure of Neptunium Metal. Acta Crystallogr. **5** (1952) 660-664.

Zachariasen, W.H.: On the Crystal Structure of Protactinium Metal. Acta Crystallogr. 12 (1959) 698-700.

Zachariasen, W.H.: Crystal Structures of the Alpha-Cerium Phases. Proc. Nat. Acad. Sci. USA 75 (1978) 1066-1067.

Zachariasen, W.H., Ellinger, F.H.: The Crystal Structure of Alpha Plutonium Metal. Acta Crystallogr. 16 (1963) 777-783.

Zachariasen, W.H., Ellinger, F.H.: The Crystal Structure of Beta Plutonium Metal. Acta Crystallogr. 16 (1963) 369-375.

Zachariasen, W.H., Ellinger, F.H.: Crystal Chemical Studies of the 5f-Series of Elements. The Crystal Structure and Thermal Expansion of gamma Plutonium. Acta Crystallogr. 8 (1955) 431-433.

8 PUBLIKATIONEN

8 Publikationen

Hübner, S., Winkel, A., Trömel, M.: Bindungsvalenzanalyse von Metallen: Schmelztemperatur, Atomvolumina und Wertigkeiten in intermetallischen Phasen der Systeme Cu-Zn, Ag-Cd und Au-Hg. Z. Kristallogr. Suppl. **9** (1995) 215.

Trömel, M., Hübner, S.: Atomvolumina und Bindungsvalenzanalyse von metallischen Elementen und Mischkristallen. Z. Kristallogr. Suppl. **12** (1997) 158.

Trömel, M., Alig, H., Hübner, S., Fink, L.: Koordination und Valenz in Verbindungen mit NiAs-Struktur. Z. Kristallogr. Suppl. 12 (1997) 157.

Trömel, M., Hübner, S.: Kristallchemie der Elemente: Metalle mit dichten Strukturen. Z. Kristallogr. Suppl. 15 (1998) 92.

Trömel, M., Hübner, S.: Kristallchemie der Elemente: Elemente mit nicht-dichten Strukturen. Z. Kristallogr. Suppl. 15 (1998) 85.

Hübner, S., Trömel, M.: Atomic Volume and Crystal Structure of Elements. Bulletin of the Czech and Slovak Crystallographic Association **5B** (1998) 380.

Trömel, M., Hübner, S.: Kristallchemie der Elemente: Übergänge zwischen dichten Strukturen. Z. Kristallogr. Suppl. 16 (1999) 99.

Trömel, M., Schmieding, B., Hübner, S., Fink L.: Metall-Metall-Bindungen in binären Oxiden und Halogeniden. Z. Kristallogr. Suppl. 16 (1999) 100.

Hübner, S., Trömel, M., Fink L.: Atomvolumina der dichten (metallischen) Formen von Hauptgruppenelementen. Z. Kristallogr. Suppl. 17 (2000) 162.

Trömel, M., Hübner, S.: Metallradien und Ionenradien. Z. Kristallogr. **215** (2000) 429-432.

9 Anhang

9.1 Abkürzungen

Tabelle 57. Abkürzungen

Abkürzung	Bedeutung	Bemerkung
#()	Anzahl von	-
b	freier BG-Parameter	siehe Kapitel 1.3
bcc	kubisch innenzentriert	W-Struktur
BG-Parameter	Bindungsgrad-Parameter	siehe Kapitel 1.3
fcc	kubisch flächenzentriert	Cu-Struktur
f_X	Volumenfaktor der Struktur X	siehe Kapitel 1.5
$f_{X,TB}$	(quantenmechanischer) Volumenfaktor der Struktur ${\bf X}$	siehe Kapitel 5.6
GK	geometrische Koordinationszahl	siehe Kapitel 1.4
hcp	hexagonal dicht gepackt	Mg-Struktur
K	Koordinationszahl	siehe Kapitel 1.4
m_i	Multiplizität der i-ten Lage	siehe Kapitel 1.2
P-Symbol	Pearson-Symbol	siehe Kapitel 1.8.1
R_1	Einfachbindungsabstand	siehe Kapitel 1.3
RT	Raumtemperatur	-
s	Bindungsgrad	siehe Kapitel 1.3
σ	normierte Bindungsgrad	siehe Kapitel 1.7.3
sc	kubisch primitiv	α –Po-Struktur
V_D	reduziertes Volumen	siehe Kapitel 1.5
V_i	Volumen des Wirkungsbereich des Atoms i	siehe Kapitel 1.4
V_X	Atomvolumen eines Elements mit Struktur X	siehe Kapitel 1.5
W	Bindungswertigkeit eines Elements	siehe Kapitel 1.2
W_i	Bindungswertigkeit des i-ten Atoms	siehe Kapitel 1.2
W_{prim}	Summe der Bindungsgrade der primären Bindungen	siehe Kapitel 1.4
Wsek	Summe der Bindungsgrade der sekudären Bindungen	siehe Kapitel 1.4

9.2 Tabellen und Abbildungen

Tabelle 58. Volumenfaktoren von Elementen in aufsteigender Reihenfolge

f_X	Element	Struktur	f_X	Element	Struktur
1.000	Cu	Cu	1.076	Np	$\alpha - Np$
1.000	W	W	1.104	Po	α -Po
1.000	Mg	Mg (ideal)	1.137	Bi	$\alpha - As$
1.001	In	In	1.139	\mathbf{Sb}	$\alpha - As$
1.002	tetragonal die	chte KP	1.157	Ga	α –Ga
1.004	Ce	α –Ce	1.164	Те	$\alpha - Se$
1.005	Pa	Pa	1.183	As	$\alpha - As$
1.008	Pu	γ –Pu	1.208	I_2	I_2
1.009	U	$\beta - U$	1.228	As	$\varepsilon - As$
1.010	Ti	ω -Ti	1.229	Ge	$\gamma - \text{Ge}$
1.012	Mn	α –Mn	1.254	Si, (Ge)	$\gamma - \mathrm{Si}$
1.013	Cr, W	Cr_3Si	1.374	В	$\alpha - \text{rhombB}$
1.013	Zn	Mg	1.385	C, Si, Ge, Sn	α -Si
1.014	Mn	β –Mn	1.387	Р	\mathbf{P}_{black}
1.017	Cd	Mg	1.398	\mathbf{Se}	$\alpha - Se$
1.023	Pu	β –Pu	1.415	Br	I_2
1.029	Hg	α –Hg	1.550 - 1.581	Se	(Se_8)
1.030	U	$\alpha - U$	1.596	Р	$\mathbf{P}_{Hittorf}$
1.034	Np	β –Np	1.715	Cl	I_2
1.036	Hg	β –Hg	1.740 - 1.983	S	(\mathbf{S}_x)
1.041	Ga	β –Ga	2.013	Р	P_4
1.047	Ga	$\delta-\mathrm{Ga}$	2.137	\mathbf{F}	$\alpha - F_2$
1.056	Si (20 GPa)	BiIn	2.354	\mathbf{C}	Graphit
1.060	Ga	$\gamma-{\rm Ga}$	2.948	С	C_{60}
1.062	Sn	β –Sn	4.873	0	$\alpha - O_2$
1.070	Ро	β –Po	7.247; 8.627	Ν	$\alpha - N_2$
1.075	Pu	α –Pu	(19.3)	Η	-

Metall	r [Å]	$r_{12} [{ m \AA}]$	Metall	r [Å]	r_{12} [Å]				
V	1.332	1.338	Ru	1.360	1.336				
Nb	1.459	1.456	Rh	1.336	1.342				
Ta	1.453	1.457	Co	1.234	1.252				
Cr	1.292	1.267	Ni	1.272	1.244				
Mo	1.401	1.386	Au	1.456	1.439				
Ti	1.414	1.467	Hg	1.560	1.570				
Zr	1.551	1.597	Si	1.260	1.316				
Os	1.352	1.350	Ge	1.314	1.366				
Ir	1.354	1.355	Sn	1.536	1.542				
\mathbf{Pt}	1.388	1.385	As	1.314	1.391				
r = Radien für Elemente mit Cr ₃ Si-Struktur									
$r_{12} = \text{Rad}$	$r_{12} = $ Radien für Elemente mit Cu-Struktur								

Tabelle 59. Metallradien nach Pauling [1957]

	c/a	Bem
AlSb	0.538	12.5 GPa
AsIn	0.522	21.6 GPa
${ m Bi}_4{ m In}$	0.536	instabile Phase
$\mathrm{Bi}_{13}\mathrm{In}_2$	0.536	$83~{ m K}$
BiSn	0.536	instabile Phase
${ m BiSn_{19}}$	0.545	
$Cd_{13}Mn_7Te_{20}$	0.506	15.1 GPa
$CdSb_2Sn_{17}$	0.540	
$CdSn_{99}$	0.545	$449~{\rm K}$
CdTe	0.520	12.1 GPa
GaSb	0.558	90 K
GaSb	0.550	23.3 GPa
$GaSn_{13}$	0.548	
Ge	0.554	12 GPa
HgTe	0.538	$17 \mathrm{GPa}$
InP	0.518	18.9 GPa
InSb	0.540	4.3 GPa
$InSn_{19}$	0.546	
$\mathrm{Pb}_3\mathrm{Sn}_7$	0.574	
$PbSn_{66}$	0.545	
$\mathrm{Sb}_2\mathrm{Sn}_{23}$	0.544	
Si	0.552	$13 \mathrm{GPa}$
Sn	0.546	

Tabelle 60. Achsenverhältnis in Elementen und Mischkristallen mit β -Sn-Struktur (tI4)

	c/a	Bem
BiIn	0.939	instabile Phase
$\operatorname{Bi}_7\operatorname{In}_3$	0.935	instabile Phase
CdSb	0.924	instabile Phase
CdSn_{19}	0.929	$449 \mathrm{K}$
GaSb	0.912	56.6 GPa
HgSn_{6}	0.931	
HgSn_9	0.931	
HgSn_{12}	0.928	
HgSn_{13}	0.931	
InSb	0.927	17.5 GPa
In_2Sn_9	0.932	
$InSn_4$	0.934	
Mo_3Tc_7	1.185	
Si	0.939	20 GPa
$\mathrm{Sn}_9\mathrm{Tl}$	0.937	instabile Phase

Tabelle 61. Achsenverhältnis in Elementen und Mischkristallen mit BiIn-Struktur (hP1)

Abbildung 46: Wirkungsbereich und koordinierte Atome für U
 in (2a) in der $\beta-U\text{-}$ Struktur

Abbildung 47: Wirkungsbereich und koordinierte Atome für U in (4f) in der $\beta-U\text{-}$ Struktur

Abbildung 48: Wirkungsbereich und koordinierte Atome für U in (8i) in der β -U-Struktur

Abbildung 49: Wirkungsbereich und koordinierte Atome für U in (8i) in der β -U-Struktur

Abbildung 50: Wirkungsbereich und koordinierte Atome für U in (8f) in der $\beta-U\text{-}$ Struktur

Abbildung 51: Verlauf des Atomvolumens von Be

Abbildung 52: Verlauf des Atomvolumens von Nd

Abbildung 53: Verlauf des Atomvolumens von Pr

Abbildung 54: Änderung der relativen Abstände und der Koordination mit dem Achsenverhältnis c/a in der Raumgruppe I4/mmm

Abbildung 55: Änderung der relativen Abstände und der Koordination mit dem Achsenverhältnis c/a in der Raumgruppe $R\overline{3}m$

9.3 Software

Zur Berechnung der geometrischen Koordinationszahlen wurde eine modifizierte Version des Computerprogramms KOPOL [Alig, 1993] genutzt. Im Rahmen dieser Arbeit wurde das Programm durch Testroutinen sowie durch neue Ausgabedateien, darunter einer Ausgabedatei zur graphischen Darstellung von Wirkungsbereichen im POV-Format, ergänzt. Die Wirkunsbereiche dichter Strukturen sind in den entsprechenden Kapiteln abgebildet. Mit dem Ray Tracing-Programm Persistance of Vision Ray Tracer (POV-Ray) Version 3.1 for Windows wurden die Wirkungsbereiche sowie die Darstellung von Elementarzellen in graphische Formate überführt.

Zur Überprüfung der Gruppe-Untergruppe-Beziehung und zur Ausgabe von Elementarzellen im POV-Format wurde das Programm PowderCell [Kraus, Nolze, 1998] genutzt. Im Rahmen dieser Arbeit wurde das Fortran90-Programm VOL entwickelt, das den Volumenfaktor unter Anwendung des Newton-Verfahrens berechnet.

9.4 Zwischenergebnisse

Element	α-Po		[DeSando, Lange	, 1966]	
	W	2.00			
	V_X	37.899 Å^3			
	\mathbf{f}_X	1.104			
	V_D	34.332 Å^3			
BG-Parameter	b	0.479			
	R_1	$2.779 { m \ \AA}$			
Atom Po 1	V_{WB}	37.899 Å^3			
	Zähligkeit	1			
	$\sum s$	2.000			
Abstand [Å]/s	3.359/0.298	3.359/0.298	3.359/0.298	3.359/0.298	3.359/0.298
	3.359/0.298	4.750/0.016	4.750/0.016	4.750/0.016	4.750/0.016
	4.750/0.016	4.750/0.016	4.750/0.016	4.750/0.016	4.750/0.016
	4.750/0.016	4.750/0.016	4.750/0.016	5.818/0.002	5.818/0.002
	5.818/0.002	5.818/0.002	5.818/0.002	5.818/0.002	5.818/0.002
	5.818/0.002				

Element	β –Po		[DeSando, Lange	, 1966]	
	W	2.00			
	V_X	36.893 Å^3			
	f_X	1.070			
	V_D	34.483 Å^3			
BG-Parameter	b	0.480			
	R_1	$2.783~{\rm \AA}$			
Atom Po 1	V_{WB}	36.893 Å^3			
	Zähligkeit	3			
	$\sum s$	2.000			
Abstand [Å]/s	3.368/0.296	3.368/0.296	3.368/0.296	3.368/0.296	3.368/0.296
	3.368/0.296	4.409/0.034	4.409/0.034	4.409/0.034	4.409/0.034
	4.409/0.034	4.409/0.034	4.927/0.011	4.927/0.011	

Element	α -Hg	(83 K)	[Amand, Giessen	, 1978]	
	W	1.55			
	V_X	23.073 Å^3			
	f_X	1.029			
	V_D	22.412 Å^3			
BO-Parameter	b	0.416			
	R_1	$2.305~{\rm \AA}$			
Atom Hg 1	V _{WB}	23.073 Å^3			
	Zähligkeit	3			
	$\sum s$	1.550			
Abstand $[Å]/s$	2.992/0.192	2.992/0.192	2.992/0.192	2.992/0.192	2.992/0.192
	2.992/0.192	3.458/0.062	3.458/0.062	3.458/0.062	3.458/0.062
	3.458/0.062	3.458/0.062	4.572/0.004	4.572/0.004	4.572/0.004
	4.572/0.004	4.572/0.004	4.572/0.004	,	,

Element	β –Hg	(77 K)	[Atoji, Schirber,	Swenson, 1959]	
	W	1.55			
	V_X	22.544 Å^3			
	f_X	1.036			
	V_D	21.752 Å^3			
BO-Parameter	b	0.412			
	R_1	$2.282~{\rm \AA}$			
Atom Hg 1	V_{WB}	22.544\AA^{3}			
	Zähligkeit	2			
	$\sum s$	1.550			
Abstand [Å]/s	2.825/0.267	2.825/0.267	3.158/0.119	3.158/0.119	3.158/0.119
	3.158/0.119	3.158/0.119	3.158/0.119	3.158/0.119	3.158/0.119
	3.995/0.016	3.995/0.016	3.995/0.016	3.995/0.016	

Element	α -Hg [Pearson's Handbook, 1997]				
	W	1.55			
	V_X	23.161 Å^3			
	f_X	1.029			
	V_D	22.504 Å^3			
BO-Parameter	b	0.416			
	R_1	$2.308~{\rm \AA}$			
Atom Hg 1	V_{WB}	23.161 Å^3			
	Zähligkeit	3			
	$\sum s$	1.550			
Abstand [Å]/s	2.997/0.191	2.997/0.191	2.997/0.191	2.997/0.191	2.997/0.191
	2.997/0.191	3.460/0.063	3.460/0.063	3.460/0.063	3.460/0.063
	3.460/0.063	3.460/0.063	4.577/0.004	4.577/0.004	4.577/0.004
	4.577/0.004	4.577/0.004	4.577/0.004		
Element	α -Mn		[Gazzara et al., 1	.967]	
-----------------------	-----------------	-----------------------	--------------------	-------------	-------------
	V_X	12.206 Å^3			
	f_X	1.012			
	V_D	12.053 Å^3			
BG-Parameter	b	0.338			
Atom Mn 1	V _{WB}	13.786 Å ³			
	Zähligkeit	2			
	$\sum \sigma$	0.726			
Abstand [Å]/ σ	2.752/0.048	2.752/0.048	2.752/0.048	2.752/0.048	2.752/0.048
	2.752/0.048	2.752/0.048	2.752/0.048	2.752/0.048	2.752/0.048
	2.752/0.048	2.752/0.048	2.840/0.037	2.840/0.037	2.840/0.037
	2.840/0.037				
Atom Mn 2	V _{WB}	13.358 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	0.797			
Abstand [Å]/ σ	2.563/0.084	2.563/0.084	2.563/0.084	2.720/0.053	2.720/0.053
	2.720/0.053	2.720/0.053	2.720/0.053	2.720/0.053	2.840/0.037
	2.877/0.033	2.877/0.033	2.877/0.033	2.911/0.030	2.911/0.030
	2.911/0.030				
Atom Mn 3	V _{WB}	12.262 Å^3			
	Zähligkeit	24			
	$\sum \sigma$	0.975			
Abstand [Å]/ σ	2.351/0.158	2.518/0.096	2.518/0.096	2.563/0.084	2.637/0.068
	2.637/0.068	2.655/0.064	2.655/0.064	2.655/0.064	2.655/0.064
	2.691/0.058	2.691/0.058	2.911/0.030	3.630/0.004	
Atom Mn 4	V _{WB}	11.634 Å ³			
	Zähligkeit	24			
	$\sum \sigma$	1.116			
Abstand [Å]/ σ	2.244/0.216	2.351/0.158	2.433/0.124	2.433/0.124	2.518/0.096
	2.518/0.096	2.691/0.058	2.691/0.058	2.720/0.053	2.720/0.053
	2.752/0.048	2.877/0.033			

Element	β –Mn		[Shoemaker et al	., 1978]	
	V_X	12.592 Å^3			
	f_X	1.014			
	V_D	12.406 Å^3			
BG-Parameter	b	0.341			
Atom Mn 1	V_{WB}	11.607 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	1.163			
Abstand [Å]/ σ	2.363/0.163	2.363/0.163	2.363/0.163	2.576/0.087	2.576/0.087
	2.576/0.087	2.634/0.074	2.634/0.074	2.634/0.074	2.680/0.064
	2.680/0.064	2.680/0.064			
Atom Mn 2	V_{WB}	13.249 Å^3			
	Zähligkeit	12			
	$\sum \sigma$	0.892			
Abstand [Å]/ σ	2.576/0.087	2.576/0.087	2.634/0.074	2.634/0.074	2.646/0.071
	2.646/0.071	2.646/0.071	2.646/0.071	2.672/0.066	2.672/0.066
	2.680/0.064	2.680/0.064	3.271/0.011	3.271/0.011	3.900/0.002
	3.900/0.002				

Element	α –Ga		[Sharma, Donohu	ie, 1962]	
	W	3.00			
	V_X	19.588 Å^3			
	f_X	1.157			
	V_D	16.933 Å^3			
BG-Parameter	b	0.379			
	R_1	2.349 Å			
Atom Ga 1	V_{WB}	19.588 Å^3			
	Zähligkeit	8			
	$\sum s$	3.000			
Abstand [Å]/s	2.483/0.703	2.692/0.405	2.692/0.405	2.729/0.367	2.729/0.367
	2.787/0.315	2.787/0.315	3.753/0.025	3.753/0.025	3.982/0.013
	3.982/0.013	3.982/0.013	3.982/0.013	4.124/0.009	4.124/0.009
	4.474/0.004				

Element	β –Ga		[Bosio, Defrain, 1	.969]	
	W	3.00			
	V_X	18.543 Å^3			
	f_X	1.041			
	V_D	17.813 Å^3			
BG-Parameter	b	0.385			
	R_1	$2.389~{\rm \AA}$			
Atom Ga 1	V_{WB}	18.543 Å^3			
	Zähligkeit	4			
	$\sum s$	3.000			
Abstand [Å]/s	2.688/0.460	2.688/0.460	2.766/0.376	2.766/0.376	2.863/0.292
	2.863/0.292	2.920/0.252	2.920/0.252	3.332/0.087	3.332/0.087
	3.815/0.025	3.815/0.025	4.254/0.008	4.254/0.008	

Element	γ –Ga		[Bosio et al., 197	2]	
	W	3.00			
	V_X	18.633 Å^3			
	f_X	1.060			
	V_D	17.576 Å^3			
BG-Parameter	b	0.383			
	R_1	2.379 Å			
Atom Ga 1	V_{WB}	20.175 Å^3			
	Zähligkeit	4			
	$\sum s$	2.585			
Abstand [Å]/s	2.602/0.559	2.602/0.559	2.916/0.246	3.034/0.181	3.034/0.181
	3.068/0.166	3.068/0.166	3.079/0.161	3.079/0.161	3.889/0.019
	3.889/0.019	4.001/0.015	4.001/0.015	4.001/0.015	4.001/0.015
	4.011/0.014	4.011/0.014	4.011/0.014	4.011/0.014	4.047/0.013
	4.047/0.013	4.047/0.013	4.047/0.013		
Atom Ga 2	V_{WB}	18.327 Å^3			
	Zähligkeit	8			
	$\sum s$	3.066			
Abstand [Å]/s	2.615/0.540	2.663/0.476	2.776/0.355	2.776/0.355	2.914/0.248
	2.914/0.248	2.937/0.233	2.937/0.233	3.034/0.181	3.404/0.069
	3.404/0.069	3.943/0.017	4.001/0.015	4.001/0.015	4.314/0.006
	4.314/0.006				
Atom Ga 3	V_{WB}	18.010 Å^3			
	Zähligkeit	8			
	$\sum s$	3.175			
Abstand [Å]/s	2.602/0.559	2.602/0.559	2.760/0.370	2.776/0.355	2.776/0.355
	2.848/0.294	3.156/0.132	3.156/0.132	3.192/0.120	3.192/0.120
	3.404/0.069	3.404/0.069	3.857/0.021	3.857/0.021	
Atom Ga 4	V_{WB}	18.883 Å^3			
	Zähligkeit	8			
	$\sum s$	2.940			
Abstand [Å]/s	2.606/0.553	2.661/0.479	2.663/0.476	2.924/0.241	2.924/0.241
	2.963/0.218	2.963/0.218	3.079/0.161	3.156/0.132	3.156/0.132
	3.888/0.020	3.888/0.020	4.047/0.013	4.047/0.013	4.108/0.011
	4.314/0.006	4.314/0.006			
Atom Ga 5	V_{WB}	18.575 Å^3			
	Zähligkeit	8			
	$\sum s$	2.982			
Abstand [Å]/s	2.606/0.553	2.615/0.540	2.626/0.525	2.914/0.248	2.914/0.248
	2.963/0.218	2.963/0.218	3.068/0.166	3.192/0.120	3.192/0.120
	4.011/0.014	4.011/0.014			
Atom Ga 6	V_{WB}	18.568 Å^3			
	Zähligkeit	4			
	$\sum s$	3.095			
Abstand $[Å]/s$	2.626/0.525	$2.62\overline{6/0.525}$	2.760/0.370	$2.76\overline{0/0.370}$	$2.91\overline{6/0.246}$
	2.924/0.241	2.924/0.241	2.924/0.241	2.924/0.241	3.889/0.019
	3.889/0.019	3.944/0.017	3.944/0.017	4.108/0.011	4.108/0.011

Element	δ–Ga		[Bosio et al., 197	3]	
	W	3.00			
	V_X	18.441 Å^3			
	f_X	1.047			
	V_D	17.601 Å^3			
BG-Parameter	b	0.384			
	R_1	$2.380~{\rm \AA}$			
Atom Ga 1	V_{WB}	18.917 Å^3			
	Zähligkeit	18			
	$\sum s$	2.704			
Abstand [Å]/s	2.740/0.392	2.849/0.295	2.850/0.294	2.850/0.294	2.890/0.265
	2.890/0.265	2.929/0.239	2.929/0.239	3.270/0.098	3.270/0.098
	3.322/0.086	3.322/0.086	3.510/0.053		
Atom Ga 2	V _{WB}	18.478 Å^3	·		
	Zähligkeit	18			
	$\sum s$	3.060			
Abstand [Å]/s	2.547/0.647	2.753/0.378	2.753/0.378	2.850/0.294	2.850/0.294
	2.853/0.292	2.929/0.239	2.929/0.239	3.372/0.075	3.372/0.075
	3.408/0.069	3.674/0.034	3.674/0.034	4.477/0.004	4.477/0.004
	5.256/0.001	,	,	,	,
Atom Ga 3	V _{WB}	18.217 Å^3			
	Zähligkeit	18			
	$\sum s$	3.179			
Abstand [Å]/s	2.547/0.647	2.751/0.380	2.751/0.380	2.753/0.378	2.753/0.378
	2.849/0.295	3.065/0.168	3.065/0.168	3.270/0.098	3.270/0.098
	3.372/0.075	3.372/0.075	3.962/0.016	4.120/0.011	4.477/0.004
	4.477/0.004	5.256/0.001			
Atom Ga 4	V_{WB}	18.905 Å^3			
	Zähligkeit	3			
	$\sum s$	2.858			
Abstand [Å]/s	2.740/0.392	2.740/0.392	2.740/0.392	2.740/0.392	2.740/0.392
	2.740/0.392	3.408/0.069	3.408/0.069	3.408/0.069	3.408/0.069
	3.408/0.069	3.408/0.069	3.962/0.016	3.962/0.016	3.962/0.016
	3.962/0.016	3.962/0.016	3.962/0.016		
Atom Ga 5	$\overline{\mathrm{V}_{WB}}$	$1\overline{7.709}$ Å ³			
	Zähligkeit	9			
	$\sum s$	3.165			
Abstand $[Å]/s$	2.751/0.380	2.751/0.380	2.751/0.380	2.751/0.380	2.853/0.292
	2.853/0.292	2.890/0.265	2.890/0.265	2.890/0.265	2.890/0.265

Element	α -Sn		[Lee, Raynor 195	4 (a)]	
	W	4.00			
	V_X	34.157 Å^3			
	f_X	1.385			
	V_D	24.662 Å^3			
BG-Parameter	b	0.429			
	R_1	$2.787~{\rm \AA}$			
Atom Sn 1	V_{WB}	34.157 Å^3			
	Zähligkeit	8			
	$\sum s$	4.000			
Abstand $[Å]/s$	2.810/0.948	2.810/0.948	2.810/0.948	2.810/0.948	4.589/0.015
	4.589/0.015	4.589/0.015	4.589/0.015	4.589/0.015	4.589/0.015
	4.589/0.015	4.589/0.015	4.589/0.015	4.589/0.015	4.589/0.015
	4.589/0.015	5.381/0.002	5.381/0.002	5.381/0.002	5.381/0.002
	5.381/0.002	5.381/0.002	5.381/0.002	5.381/0.002	5.381/0.002
	5.381/0.002	5.381/0.002	5.381/0.002		

Element	β –Sn		[Lee, Raynor 195	4 (b)]	
	W	4.00			
	V_X	27.047 Å^3			
	f_X	1.062			
	V_D	25.472 Å^3			
BG-Parameter	b	0.434			
	R_1	$2.817~{\rm \AA}$			
Atom Sn 1	V_{WB}	27.047 Å^3			
	Zähligkeit	4			
	$\sum s$	4.000			
Abstand [Å]/s	3.022/0.623	3.022/0.623	3.022/0.623	3.022/0.623	3.182/0.431
	3.182/0.431	3.768/0.112	3.768/0.112	3.768/0.112	3.768/0.112
	4.419/0.025	4.419/0.025	4.419/0.025	4.419/0.025	4.419/0.025
	4.419/0.025	4.419/0.025	4.419/0.025		

Element	β^*-Sn				
	f_X	1.063			
Atom Sn 1	Zähligkeit	4			
	$\sum \sigma$	1.000			
rel Abstand/ σ	1.000/0.140	1.000/0.140	1.000/0.140	1.000/0.140	1.000/0.140
	1.000/0.140	1.225/0.029	1.225/0.029	1.225/0.029	1.225/0.029
	1.458/0.006	1.458/0.006	1.458/0.006	1.458/0.006	1.458/0.006
	1.458/0.006	1.458/0.006	1.458/0.006		

Element	α –Ce		[Zachariasen, 197	[8]	
	V_X	23.701 Å^3			
	f_X	1.004			
	V_D	23.602 Å^3			
BG-Parameter	b	0.423			
Atom Ce 1	V_{WB}	23.701 Å^3			
	Zähligkeit	4			
	$\sum \sigma$	1.000			
Abstand [Å]/ σ	2.988/0.141	3.126/0.102	3.126/0.102	3.148/0.097	3.148/0.097
	3.305/0.067	3.305/0.067	3.305/0.067	3.305/0.067	3.346/0.061
	3.346/0.061	3.360/0.059	4.340/0.006	4.340/0.006	4.494/0.004

Element	$\alpha - U$		[Lander, Mueller	1970]	
	V_X	21.812 Å^3			
	f_X	1.009			
	V_D	21.612 Å^3			
BG-Parameter	b	0.411			
Atom U 1	V_{WB}	20.568 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	1.096			
Abstand [Å]/ σ	2.946/0.127	2.946/0.127	2.946/0.127	2.946/0.127	3.113/0.084
	3.113/0.084	3.113/0.084	3.113/0.084	3.232/0.063	3.232/0.063
	3.232/0.063	3.232/0.063			
Atom U 2	V_{WB}	23.237 Å^3			
	Zähligkeit	4			
	$\sum \sigma$	0.874			
Abstand [Å]/ σ	2.907/0.139	2.907/0.139	3.134/0.080	3.232/0.063	3.232/0.063
	3.348/0.048	3.348/0.048	3.348/0.048	3.348/0.048	3.459/0.036
	3.459/0.036	3.459/0.036	3.459/0.036	3.587/0.027	3.587/0.027
Atom U 3	V_{WB}	20.826 Å^3			
	Zähligkeit	8			
0	$\sum \sigma$	1.060			
Abstand [Å]/ σ	2.946/0.127	3.012/0.108	3.032/0.103	3.035/0.102	3.038/0.101
	3.038/0.101	3.102/0.087	3.102/0.087	3.162/0.075	3.162/0.075
	3.348/0.048	3.348/0.048			
Atom U 4	V_{WB}	22.341 A^3			
	Zähligkeit	8			
	$\sum \sigma$	0.955			
Abstand [A]/ σ	2.907/0.139	3.012/0.108	3.014/0.107	3.032/0.103	3.038/0.101
	3.038/0.101	3.376/0.044	3.376/0.044	3.385/0.043	3.385/0.043
	3.540/0.030	3.540/0.030	3.540/0.030	3.540/0.030	
Atom U 5	V_{WB}	21.869 A^{3}			
	Zähligkeit	8			
A	$\sum \sigma$	1.025	0.100/0.007	2 102 /2 225	0.110/0.001
Abstand $[A]/\sigma$	2.763/0.198	2.890/0.145	3.102/0.087	3.102/0.087	3.113/0.084
	3.162/0.075	3.162/0.075	3.376/0.044	3.376/0.044	3.385/0.043
	3.385/0.043	3.459/0.036	3.459/0.036	3.587/0.027	

Element	β –U		[Lawson et al., 19	988]	
	V_X	20.753 Å^3			
	f_X	1.030			
	V_D	20.150 Å^3			
BG-Parameter	b	0.401			
Atom U 1	V_{WB}	20.753 Å^3			
	Zähligkeit	4			
	$\sum \sigma$	1.000			
Abstand [Å]/ σ	2.754/0.172	2.754/0.172	2.854/0.134	2.854/0.134	3.264/0.048
	3.264/0.048	3.264/0.048	3.264/0.048	3.343/0.040	3.343/0.040
	3.343/0.040	3.343/0.040	3.966/0.008	3.966/0.008	3.966/0.008
	3.966/0.008				

Element	<i>α</i> −Pu		[Zachariasen, Elli	inger,1963 (a)]	
	V_X	19.997 Å^3			
	f_X	1.075			
	V_D	18.601 Å^3			
BG-Parameter	b	0.391			
Atom Pu 1	V_{WB}	18.554 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	1.150			
Abstand [Å]/ σ	2.568/0.231	2.584/0.221	2.597/0.214	2.758/0.142	2.758/0.142
	3.203/0.045	3.203/0.045	3.410/0.027	3.410/0.027	3.410/0.027
	3.588/0.017	3.709/0.012			
Atom Pu 2	V _{WB}	19.874 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	1.055			
Abstand $[Å]/\sigma$	2.597/0.214	2.611/0.207	2.641/0.191	2.641/0.191	3.193/0.047
	3.374/0.029	3.385/0.029	3.426/0.026	3.426/0.026	3.459/0.024
	3.459/0.024	3.588/0.017	3.613/0.016	3.613/0.016	
Atom Pu 3	V_{WB}	19.547 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	1.060			
Abstand [Å]/ σ	2.584/0.221	2.611/0.207	2.664/0.180	2.664/0.180	3.239/0.041
	3.260/0.039	3.365/0.030	3.365/0.030	3.414/0.026	3.439/0.025
	3.439/0.025	3.523/0.020	3.523/0.020	3.651/0.014	
Atom Pu 4	V_{WB}	19.622 Å^3			
	Zähligkeit	2			
0	$\sum \sigma$	1.029			
Abstand [Å]/ σ	2.579/0.224	2.629/0.197	2.742/0.148	2.742/0.148	3.260/0.039
	3.319/0.034	3.319/0.034	3.350/0.031	3.350/0.031	3.365/0.030
	3.365/0.030	3.374/0.029	3.410/0.027	3.414/0.026	
Atom Pu 5	V_{WB}	19.864 Å^3			
	Zähligkeit	2			
0	$\sum \sigma$	1.016			
Abstand [Å]/ σ	2.579/0.224	2.664/0.180	2.664/0.180	2.718/0.157	3.239/0.041
	3.319/0.034	3.319/0.034	3.358/0.031	3.426/0.026	3.426/0.026
	3.504/0.021	3.504/0.021	3.511/0.021	3.512/0.021	
Atom Pu 6	V_{WB}	20.130 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	0.937			
Abstand [Å]/ σ	2.629/0.197	2.718/0.157	2.742/0.148	2.742/0.148	3.203/0.045
	3.203/0.045	3.214/0.044	3.295/0.036	3.439/0.025	3.439/0.025
	3.512/0.021	3.613/0.016	3.613/0.016	3.651/0.014	

Atom Pu 7	V_{WB}	20.060 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	1.007			
Abstand [Å]/ σ	2.568/0.231	2.641/0.191	2.641/0.191	2.787/0.132	3.295/0.036
	3.385/0.029	3.400/0.027	3.400/0.027	3.410/0.027	3.410/0.027
	3.434/0.025	3.489/0.022	3.489/0.022	3.511/0.021	
Atom Pu 8	V_{WB}	22.322 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	0.747			
Abstand [Å]/ σ	2.758/0.142	2.758/0.142	2.787/0.132	3.193/0.047	3.214/0.044
	3.358/0.031	3.434/0.025	3.459/0.024	3.459/0.024	3.489/0.022
	3.489/0.022	3.507/0.021	3.507/0.021	3.523/0.020	3.523/0.020
	3.709/0.012				

Element	β –Pu		[Zachariasen, Elli	inger,1963 (b)]	
	V_X	22.162 Å^3			
	\mathbf{f}_X	1.023			
	V_D	21.668 Å^3			
BG-Parameter	b	0.411			
Atom Pu 1	V_{WB}	21.110 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	1.029			
Abstand [Å]/ σ	2.971/0.120	2.971/0.120	2.971/0.120	2.971/0.120	3.147/0.078
	3.147/0.078	3.201/0.069	3.201/0.069	3.201/0.069	3.201/0.069
	3.259/0.060	3.259/0.060			
Atom Pu 2	V_{WB}	22.041 Å^3			
	Zähligkeit	4			
	$\sum \sigma$	1.062			
Abstand [A]/ σ	2.805/0.180	2.805/0.180	2.836/0.166	2.836/0.166	3.356/0.047
	3.356/0.047	3.402/0.042	3.402/0.042	3.455/0.037	3.455/0.037
	3.479/0.035	3.479/0.035	3.631/0.024	3.631/0.024	
Atom Pu 3	V_{WB}	23.806 A^3			
	Zähligkeit	4			
- 9	$\sum \sigma$	0.802			
Abstand [A]/ σ	3.028/0.104	3.097/0.088	3.097/0.088	3.259/0.060	3.262/0.059
	3.262/0.059	3.287/0.056	3.356/0.047	3.356/0.047	3.392/0.043
	3.423/0.040	3.423/0.040	3.550/0.029	3.550/0.029	3.923/0.012
Atom Pu 4	V_{WB}	21.354 A^3			
	Zähligkeit	4			
	$\sum \sigma$	1.074	0.000 /0.100	2 2 2 2 1 2 1 2 1	
Abstand $[A]/\sigma$	2.794/0.184	2.836/0.166	2.836/0.166	3.028/0.104	3.147/0.078
	3.322/0.051	3.325/0.051	3.325/0.051	3.344/0.048	3.344/0.048
	3.368/0.046	3.428/0.039	3.428/0.039		
Atom Pu 5	V_{WB}	22.566 A^3			
	Zähligkeit	4			
	$\sum \sigma$	0.965	2 011 /0 100	2 011 /0 100	2 1 62 /0 075
Abstand [A]/ σ	2.794/0.184	3.003/0.111	3.011/0.109	3.011/0.109	3.103/0.075
	3.103/0.075	3.320/0.031	3.320/0.051	3.308/0.040	3.392/0.043
	3.479/0.035	3.479/0.035	3.820/0.015	3.820/0.015	3.923/0.012
Atom Pu 6	V_{WB}	22.891 A ^o			
	$\sum -$	0 000			
Abstand [Å]/-	$\sum_{n=1}^{n} \frac{2}{n} \frac{0}{n} \frac{1}{n} $	0.000	2 007 /0 000	2 101 /0 097	2 162 /0 075
Abstand $[A]/o$	2.907/0.140 2 201/0.060	3.034/0.098	3.097/0.000	3.101/0.007 2.257/0.047	3.103/0.073 2 402/0.042
	3.201/0.009 3.428/0.020	3.325/0.031 3.455/0.037	3.320/0.031 3.486/0.034	3.337/0.047 3.550/0.020	3.402/0.042
Atom Du 7	J.420/0.039	0.400/0.007	3.400/0.034	3.330/0.029	
Atom Fu 7		21.130 A ^o			
	$\sum \sigma$	0 1 155			
Abstand [Å]/~	2 502 /0 201	2 805 /0 190	2 071 /0 120	3 011 /0 100	3 054 /0 000
Abstand $[A]/\sigma$	2.030/0.001	2.000/0.100 3.262/0.050	2.311/0.120	3.011/0.109	3.034/0.098 3.492/0.040
	3.133/0.080	3.202/0.009 3.621 /0.004	3.344/0.048 3.896/0.01¤	9.997/0.047	J.42J/0.040
	9.400/0.094	J.UJ1/U.U24	J. 020/0.013		

Element	$\gamma - Pu$	u [Zachariasen, Ellinger,1955]				
	V_X	23.144 Å^3				
	f_X	1.008				
	V_D	22.953 Å^3				
BG-Parameter	b	0.419				
Atom Pu 1	V_{WB}	23.144 Å^3				
	Zähligkeit	8				
	$\sum \sigma$	1.000				
Abstand [Å]/ σ	3.026/0.121	3.026/0.121	3.026/0.121	3.026/0.121	3.159/0.088	
	3.159/0.088	3.288/0.065	3.288/0.065	3.288/0.065	3.288/0.065	
	3.761/0.021	3.761/0.021	3.761/0.021	3.761/0.021		

Element	α –Np		[Zachariasen, 195	2]	
	V_X	19.224 Å^3			
	f_X	1.076			
	V_D	17.870 Å^3			
BG-Parameter	b	0.386			
Atom Np 1	V_{WB}	18.797 Å^3			
	Zähligkeit	4			
	$\sum \sigma$	1.006			
Abstand [Å]/ σ	2.599/0.195	2.632/0.179	2.634/0.178	2.634/0.178	3.052/0.060
	3.153/0.046	3.153/0.046	3.351/0.028	3.351/0.028	3.357/0.027
	3.357/0.027	3.627/0.014			
Atom Np 2	V_{WB}	19.650 Å^3			
	Zähligkeit	4			
	$\sum \sigma$	0.995			
Abstand [Å]/ σ	2.599/0.195	2.632/0.179	2.634/0.178	2.634/0.178	3.052/0.060
	3.351/0.028	3.351/0.028	3.451/0.021	3.451/0.021	3.520/0.018
	3.520/0.018	3.520/0.018	3.520/0.018	3.627/0.014	3.712/0.011
	3.712/0.011				

Element	β – Np		[Zachariasen, 195	,2]	
	V _X	20.312 Å ³			
	f_X	1.034			
	V _D	19.645 Å^3			
BG-Parameter	<i>b</i>	0.398			
Atom Np 1	V _{WB}	20.226 Å ³			
	Zähligkeit	2			
	$\sum \sigma$	1.013			
Abstand [Å]/ σ	2.758/0.161	2.758/0.161	2.759/0.161	2.759/0.161	3.237/0.048
	3.237/0.048	3.237/0.048	3.237/0.048	3.388/0.033	3.388/0.033
	3.463/0.027	3.463/0.027	3.463/0.027	3.463/0.027	
Atom Np 2	V _{WB}	20.397 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	0.988			
Abstand [Å]/ σ	2.758/0.161	2.758/0.161	2.759/0.161	2.759/0.161	3.237/0.048
	3.237/0.048	3.237/0.048	3.237/0.048	3.388/0.033	3.388/0.033
	3.565/0.021	3.565/0.021	3.565/0.021	3.565/0.021	

Element	ω -Ti		[Chebotareva, Nu	ızhdina 1973]	
	W	3.51			
	V_X	17.226 Å^3			
	f_X	1.010			
	V_D	17.051 Å^3			
BG-Parameter	b	0.380			
	R_1	$2.413~{\rm \AA}$			
Atom Ti 1	V_{WB}	17.682 Å^3			
	Zähligkeit	1			
	$\sum s$	3.197			
Abstand [Å]/s	2.820/0.343	2.820/0.343	3.007/0.209	3.007/0.209	3.007/0.209
	3.007/0.209	3.007/0.209	3.007/0.209	3.007/0.209	3.007/0.209
	3.007/0.209	3.007/0.209	3.007/0.209	3.007/0.209	
Atom Ti 2	V_{WB}	16.997 Å^3			
	Zähligkeit	2			
	$\sum s$	3.652			
Abstand [Å]/s	2.656/0.528	2.656/0.528	2.656/0.528	2.820/0.343	2.820/0.343
	3.007/0.209	3.007/0.209	3.007/0.209	3.007/0.209	3.007/0.209
	3.007/0.209	3.874/0.021	3.874/0.021	3.874/0.021	3.874/0.021
	3.874/0.021	3.874/0.021	·	·	·

Element	α -rhomb.	B (beo)	[Switendick, Mor	osin, 1991]	
	W	3.00			
	V_X	7.276 Å^3			
	\mathbf{f}_X	1.374			
	V_D	5.296 Å^3			
BG-Parameter	b	0.257			
	R_1	$1.595 { m ~\AA}$			
Atom B 1	V_{WB}	7.231 Å^3			
	Zähligkeit	18			
	$\sum s$	3.248			
Abstand [Å]/s	1.665/0.761	1.751/0.544	1.751/0.544	1.798/0.453	1.805/0.441
	1.805/0.441	2.881/0.007	2.881/0.007	2.881/0.007	2.881/0.007
	2.913/0.006	2.913/0.006	3.066/0.003	3.066/0.003	3.094/0.003
	3.094/0.003	3.098/0.003	3.098/0.003	3.157/0.002	3.157/0.002
	3.399/0.001	3.594/0.000	3.594/0.000		
Atom B 2	V_{WB}	7.322 Å^3			
	Zähligkeit	18			
	$\sum s$	2.752			
Abstand [Å]/s	1.781/0.484	1.781/0.484	1.798/0.453	1.805/0.441	1.805/0.441
	2.009/0.200	2.009/0.200	2.685/0.014	2.685/0.014	3.066/0.003
	3.066/0.003	3.094/0.003	3.094/0.003	3.098/0.003	3.098/0.003
	3.594/0.000	3.594/0.000	3.760/0.000	3.760/0.000	4.263/0.000

Element	α -rhomb.	B (calc)			
	W	3.00			
	V_X	7.276 Å^3			
	f_X	1.425			
	V_D	5.105 Å^3			
BO-Parameter	b	0.254			
	R_1	$1.575 { m ~\AA}$			
Atom B 1	V_{WB}	7.369 Å^3			
	Zähligkeit	18			
	$\sum s$	2.994			
Abstand [Å]/s	1.700/0.612	1.711/0.586	1.778/0.450	1.778/0.450	1.793/0.424
	1.793/0.424	2.866/0.006	2.917/0.005	2.917/0.005	2.917/0.005
	2.917/0.005	3.066/0.003	3.066/0.003	3.109/0.002	3.109/0.002
	3.111/0.002	3.111/0.002	3.114/0.002	3.114/0.002	3.664/0.000
	3.664/0.000				
Atom B 2	V_{WB}	7.183 Å^3			
	Zähligkeit	18			
	$\sum s$	3.006			
Abstand [Å]/s	1.700/0.612	1.712/0.584	1.712/0.584	1.778/0.450	1.778/0.450
	2.090/0.132	2.090/0.132	2.701/0.012	2.701/0.012	2.818/0.007
	2.818/0.007	2.866/0.006	3.066/0.003	3.066/0.003	3.109/0.002
	3.109/0.002	3.111/0.002	3.111/0.002	3.297/0.001	3.664/0.000
	3.664/0.000	3.848/0.000	3.848/0.000	4.379/0.000	

Element	α -tetr. B		[Hoard, Hughes,	Sands, 1958]	
	W	3.00			
	V_X	7.748 Å^3			
	f_X	1.451			
	V_D	5.338 Å^3			
BG-Parameter	b	0.258			
	R_1	$1.599 { m ~\AA}$			
Atom B 1	V_{WB}	8.467 Å^3			
	Zähligkeit	16			
	$\sum s$	2.579			
Abstand [Å]/s	1.790/0.477	1.798/0.462	1.814/0.434	1.824/0.418	1.844/0.386
	1.856/0.369	2.798/0.010	2.915/0.006	2.986/0.005	2.990/0.005
	3.077/0.003	3.225/0.002	3.426/0.001	3.476/0.001	3.503/0.001
	3.503/0.001	3.585/0.000	3.714/0.000		
Atom B 2	V_{WB}	7.530 Å^3			
	Zähligkeit	16			
	$\sum s$	3.138			
Abstand [Å]/s	1.659/0.792	1.783/0.490	1.786/0.484	1.798/0.462	1.814/0.434
	1.815/0.432	2.881/0.007	2.898/0.006	2.915/0.006	2.925/0.006
	2.971/0.005	2.990/0.005	3.109/0.003	3.109/0.003	3.291/0.001
	3.360/0.001	3.641/0.000	3.800/0.000	3.808/0.000	4.071/0.000
	4.218/0.000				
Atom B 3	V_{WB}	6.990 Å^3			
	Zähligkeit	8			
	$\sum s$	3.307			
Abstand $[Å]/s$	1.602/0.988	1.783/0.490	1.783/0.490	1.824/0.418	1.824/0.418
	1.838/0.396	2.429/0.040	2.429/0.040	2.798/0.010	2.798/0.010
	2.957/0.005	3.352/0.001	3.352/0.001	3.360/0.001	3.360/0.001
	3.800/0.000	3.800/0.000			
Atom B 4	V_{WB}	7.495 Å^3			
	Zähligkeit	8			
- 0	$\sum s$	3.007			
Abstand $[A]/s$	1.715/0.637	1.786/0.484	1.786/0.484	1.790/0.477	1.790/0.477
	1.838/0.396	2.881/0.007	2.881/0.007	2.925/0.006	2.925/0.006
	2.986/0.005	2.986/0.005	3.029/0.004	3.077/0.003	3.077/0.003
	3.291/0.001	3.291/0.001	3.352/0.001	3.352/0.001	3.360/0.001
	3.476/0.001	3.476/0.001			
Atom B 5	V_{WB}	7.783 A^3			
	Zähligkeit	2			
	$\sum s$	4.010			
Abstand $[A]/s$	1.602/0.988	1.602/0.988	1.602/0.988	1.602/0.988	2.971/0.005
	2.971/0.005	2.971/0.005	2.971/0.005	2.971/0.005	2.971/0.005
	2.971/0.005	2.971/0.005	3.029/0.004	3.029/0.004	3.029/0.004
	3.029/0.004	3.641/0.000	3.641/0.000	3.641/0.000	3.641/0.000
	3.641/0.000	3.641/0.000	3.641/0.000	3.641/0.000	

Element	Graphit		[Trucano, Chen,	1975]	
	W	4.00			
	V_X	8.821 Å^3			
	f_X	2.354			
	V_D	3.747 Å^3			
BG-Parameter	b	0.229			
	R_1	$1.487 { m \ \AA}$			
Atom C 1	V_{WB}	8.821 Å^3			
	Zähligkeit	2			
	$\sum s$	4.000			
Abstand [Å]/s	1.423/1.322	1.423/1.322	1.423/1.322	2.464/0.014	2.464/0.014
	2.845/0.003	2.845/0.003	3.355/0.000	3.355/0.000	3.645/0.000
	3.645/0.000	3.645/0.000	3.645/0.000	3.645/0.000	3.645/0.000
Atom C 2	V_{WB}	8.821 Å^3			
	Zähligkeit	2			
	$\sum s$	4.000			
Abstand [Å]/s	1.423/1.322	1.423/1.322	1.423/1.322	2.464/0.014	2.464/0.014
	2.845/0.003	2.845/0.003	3.645/0.000	3.645/0.000	3.645/0.000
	3.645/0.000	3.645/0.000	3.645/0.000	3.645/0.000	3.645/0.000
	3.645/0.000	3.645/0.000	3.645/0.000	3.645/0.000	

Element	Supercuban		[Natyushenko, St	rel'nitsky, Gusev, I	1981]
	W	4.00			
	V_X	4.900 Å^3			
	f_X	1.743			
	V_D	2.812 Å^3			
BG-Parameter	b	0.208			
	R_1	$1.351~{\rm \AA}$			
Atom C 1	V_{WB}	4.900 Å^3			
	Zähligkeit	16			
	$\sum s$	4.000			
Abstand [Å]/s	1.236/1.739	1.427/0.695	1.427/0.695	1.427/0.695	2.018/0.041
	2.018/0.041	2.018/0.041	2.366/0.008	2.366/0.008	2.366/0.008
	2.366/0.008	2.366/0.008	2.366/0.008	2.471/0.005	2.853/0.001
	2.853/0.001	2.853/0.001	3.109/0.000	3.109/0.000	3.109/0.000
	3.109/0.000	3.109/0.000	3.109/0.000	3.190/0.000	3.190/0.000
	3.190/0.000	3.190/0.000	3.190/0.000	3.190/0.000	3.495/0.000
	3.495/0.000	3.495/0.000			

Element	C γ –Si		[Johnston, Hoffm	an, 1989]	
	W	4.00			
	V_X	4.945 Å^3			
	f_X	1.238			
	V_D	$3.995 \ { m \AA}^3$			
BG-Parameter	b	0.234			
	R_1	$1.519 { m ~\AA}$			
Atom C 1	V_{WB}	4.945 Å^3			
	Zähligkeit	16			
	$\sum s$	4.000			
Abstand [Å]/s	1.540/0.914	1.540/0.914	1.540/0.914	1.541/0.910	2.177/0.060
	2.324/0.032	2.324/0.032	2.324/0.032	2.324/0.032	2.324/0.032
	2.324/0.032	2.487/0.016	2.487/0.016	2.487/0.016	2.487/0.016
	2.487/0.016	2.487/0.016			

Element	C60 Pa3		[David et al., 199	1]	
	W	4.00			
	V_X	11.534 Å^3			
	f_X	3.046			
	V _D	3.787 Å^3			
BG-Parameter	b	0.230			
	R_1	1.492 Å			
Atom C 1	Zähligkeit	24			
	$\sum s$	3.935			
Abstand $[Å]/s$	1.388/1.573	1.456/1.170	1.462/1.140	2.431/0.017	2.438/0.016
	2.467/0.014	2.810/0.003	3.265/0.000	3.698/0.000	3.757/0.000
	4.004/0.000	4.206/0.000	4.732/0.000	5.265/0.000	
Atom C 2	Zähligkeit	24			
	$\sum s$	4.152			
Abstand [Å]/s	1.388/1.573	1.420/1.369	1.459/1.155	2.334/0.026	2.464/0.015
	2.468/0.014	3.757/0.000	3.882/0.000	4.538/0.000	4.538/0.000
	4.540/0.000	4.684/0.000	5.116/0.000	5.194/0.000	5.204/0.000
	5.686/0.000	5.686/0.000	7.275/0.000		
Atom C 3	Zähligkeit	24			
	$\sum s$	4.128			
Abstand [Å]/s	1.367/1.724	1.456/1.170	1.467/1.116	2.351/0.024	2.355/0.023
	2.437/0.016	2.437/0.016	2.437/0.016	2.464/0.015	2.827/0.003
	2.833/0.003	3.417/0.000	3.463/0.000	3.568/0.000	3.581/0.000
	3.691/0.000	3.796/0.000	3.882/0.000	4.097/0.000	4.114/0.000
	4.165/0.000	4.206/0.000	4.254/0.000	4.498/0.000	4.499/0.000
	4.691/0.000	4.818/0.000	6.630/0.000	6.630/0.000	7.063/0.000
Atom C 4	Zähligkeit	24	· · · · · · · · · · · · · · · · · · ·	· · · · ·	
	$\sum s$	3.937			
Abstand [Å]/s	1.413/1.411	1.437/1.271	1.459/1.155	2.327/0.026	2.330/0.026
	2.462/0.015	2.467/0.014	2.470/0.014	2.850/0.003	3.265/0.000
	3.363/0.000	3.463/0.000	3.613/0.000	3.691/0.000	4.400/0.000
	4.498/0.000	4.818/0.000			
Atom C 5	Zähligkeit	24			
	$\sum s$	3.756			
Abstand $[Å]/s$	1.405/1.461	1.462/1.140	1.482/1.045	2.351/0.024	2.365/0.022
	2.462/0.015	2.464/0.015	2.468/0.014	2.485/0.013	2.850/0.003
	2.853/0.003	3.363/0.000	3.611/0.000	3.760/0.000	4.165/0.000
	4.313/0.000	4.313/0.000	4.500/0.000	4.522/0.000	4.962/0.000
Atom C 6	Zähligkeit	24			
	$\sum s$	3.911			
Abstand $[Å]/s$	1.387/1.580	1.445/1.228	1.482/1.045	2.355/0.023	2.437/0.016
	2.465/0.015	2.810/0.003	3.257/0.000	3.613/0.000	3.616/0.000
	4.209/0.000	4.209/0.000	4.235/0.000	4.500/0.000	4.522/0.000
	4.792/0.000		·		·

Atom C 7	Zähligkeit	24			
	$\sum s$	4.144			
Abstand [Å]/s	1.387/1.580	1.420/1.369	1.463/1.135	2.330/0.026	2.431/0.017
	2.485/0.013	2.827/0.003	3.568/0.000	3.616/0.000	3.836/0.000
	4.331/0.000	4.331/0.000	4.691/0.000	4.792/0.000	5.116/0.000
	5.194/0.000	5.204/0.000	5.265/0.000		
Atom C 8	Zähligkeit	24			
	$\sum s$	4.138			
Abstand [Å]/s	1.367/1.724	1.445/1.228	1.467/1.116	2.365/0.022	2.438/0.016
	2.471/0.014	2.471/0.014	2.833/0.003	3.116/0.001	3.556/0.000
	3.836/0.000	4.400/0.000	4.540/0.000	4.599/0.000	4.684/0.000
	4.732/0.000	5.040/0.000			
	1	/			
Atom C 9	Zähligkeit	24			
Atom C 9	Zähligkeit $\sum s$	24 3.892			
Atom C 9 Abstand [Å]/s	Zähligkeit $\sum s$ 1.413/1.411	24 3.892 1.439/1.260	1.463/1.135	2.327/0.026	2.334/0.026
Atom C 9 Abstand [Å]/s	Zähligkeit $\sum s$ 1.413/1.411 2.464/0.015	24 3.892 1.439/1.260 2.465/0.015	1.463/1.135 2.853/0.003	2.327/0.026 3.116/0.001	2.334/0.026 3.257/0.000
Atom C 9 Abstand [Å]/s	Zähligkeit $\sum s$ 1.413/1.411 2.464/0.015 3.417/0.000	24 3.892 1.439/1.260 2.465/0.015 3.611/0.000	1.463/1.135 2.853/0.003 3.698/0.000	2.327/0.026 3.116/0.001 4.097/0.000	2.334/0.026 3.257/0.000 4.114/0.000
Atom C 9 Abstand [Å]/s	Zähligkeit $\sum s$ 1.413/1.411 2.464/0.015 3.417/0.000 4.499/0.000	24 3.892 1.439/1.260 2.465/0.015 3.611/0.000	1.463/1.135 2.853/0.003 3.698/0.000	2.327/0.026 3.116/0.001 4.097/0.000	2.334/0.026 3.257/0.000 4.114/0.000
Atom C 9 Abstand [Å]/s Atom C 10	Zähligkeit $\sum s$ 1.413/1.411 2.464/0.015 3.417/0.000 4.499/0.000 Zähligkeit	24 3.892 1.439/1.260 2.465/0.015 3.611/0.000 24	1.463/1.135 2.853/0.003 3.698/0.000	2.327/0.026 3.116/0.001 4.097/0.000	2.334/0.026 3.257/0.000 4.114/0.000
Atom C 9 Abstand [Å]/s Atom C 10	Zähligkeit $\sum s$ 1.413/1.411 2.464/0.015 3.417/0.000 4.499/0.000 Zähligkeit $\sum s$	24 3.892 1.439/1.260 2.465/0.015 3.611/0.000 24 4.007	1.463/1.135 2.853/0.003 3.698/0.000	2.327/0.026 3.116/0.001 4.097/0.000	2.334/0.026 3.257/0.000 4.114/0.000
Atom C 9 Abstand [Å]/s Atom C 10 Abstand [Å]/s	Zähligkeit $\sum s$ 1.413/1.411 2.464/0.015 3.417/0.000 4.499/0.000 Zähligkeit $\sum s$ 1.405/1.461	24 3.892 1.439/1.260 2.465/0.015 3.611/0.000 24 4.007 1.437/1.271	1.463/1.135 2.853/0.003 3.698/0.000 1.439/1.260	2.327/0.026 3.116/0.001 4.097/0.000 2.470/0.014	2.334/0.026 3.257/0.000 4.114/0.000 3.556/0.000
Atom C 9 Abstand [Å]/s Atom C 10 Abstand [Å]/s	Zähligkeit $\sum s$ 1.413/1.411 2.464/0.015 3.417/0.000 4.499/0.000 Zähligkeit $\sum s$ 1.405/1.461 3.581/0.000	24 3.892 1.439/1.260 2.465/0.015 3.611/0.000 24 4.007 1.437/1.271 3.760/0.000	1.463/1.135 2.853/0.003 3.698/0.000 1.439/1.260 3.796/0.000	2.327/0.026 3.116/0.001 4.097/0.000 2.470/0.014 4.004/0.000	2.334/0.026 3.257/0.000 4.114/0.000 3.556/0.000 4.235/0.000
Atom C 9 Abstand [Å]/s Atom C 10 Abstand [Å]/s	Zähligkeit $\sum s$ 1.413/1.411 2.464/0.015 3.417/0.000 4.499/0.000 Zähligkeit $\sum s$ 1.405/1.461 3.581/0.000 4.254/0.000	24 3.892 1.439/1.260 2.465/0.015 3.611/0.000 24 4.007 1.437/1.271 3.760/0.000 4.552/0.000	1.463/1.135 2.853/0.003 3.698/0.000 1.439/1.260 3.796/0.000 4.552/0.000	2.327/0.026 3.116/0.001 4.097/0.000 2.470/0.014 4.004/0.000 4.599/0.000	2.334/0.026 3.257/0.000 4.114/0.000 3.556/0.000 4.235/0.000 4.962/0.000

Element	C60		[Dorset, McCourt	t, 1994]	
	W	4.00			
	V_X	12.082 Å^3			
	f_X	2.947			
	V_D	4.100 Å^3			
BG-Parameter	b	0.236			
	R_1	1.532 Å			
Atom C 1	Zähligkeit	48			
	$\sum s$	3.771			
Abstand [Å]/s	1.483/1.231	1.487/1.211	1.487/1.211	2.363/0.030	2.363/0.030
	2.524/0.015	2.524/0.015	2.579/0.012	2.579/0.012	2.927/0.003
	2.927/0.003	4.015/0.000	4.015/0.000	4.291/0.000	4.291/0.000
	4.528/0.000	4.528/0.000	4.627/0.000	4.627/0.000	4.627/0.000
	4.627/0.000	5.660/0.000	5.660/0.000	5.660/0.000	5.660/0.000
	7.159/0.000				
Atom C 2	Zähligkeit	96			
	$\sum s$	4.038			
Abstand [Å]/s	1.457/1.375	1.462/1.346	1.487/1.211	2.394/0.026	2.424/0.023
	2.545/0.014	2.545/0.014	2.562/0.013	2.579/0.012	2.916/0.003
	2.995/0.002	3.446/0.000	3.747/0.000	3.747/0.000	3.934/0.000
	4.223/0.000	4.291/0.000	4.528/0.000	4.783/0.000	5.429/0.000
	5.429/0.000	5.474/0.000	5.474/0.000	6.265/0.000	
Atom C 3	Zähligkeit	96			
	$\sum s$	4.076			
Abstand [Å]/s	1.457/1.375	1.462/1.346	1.483/1.231	2.363/0.030	2.394/0.026
	2.505/0.016	2.505/0.016	2.524/0.015	2.562/0.013	2.916/0.003
	2.927/0.003	3.052/0.002	3.393/0.000	3.446/0.000	3.641/0.000
	3.641/0.000	3.755/0.000	3.755/0.000	3.934/0.000	4.015/0.000
	4.591/0.000	4.591/0.000	4.706/0.000	4.934/0.000	5.276/0.000
	5.481/0.000	5.577/0.000	5.577/0.000	6.171/0.000	6.171/0.000
	6.239/0.000	6.239/0.000	6.775/0.000	6.775/0.000	7.070/0.000
	7.224/0.000				

Element	$\gamma-\mathrm{Si}$		[Wentorf, Kasper	, 1963]	
	W	4.00			
	V_X	18.264 Å^3			
	f_X	1.254			
	V_D	14.565 Å^3			
BG-Parameter	b	0.360			
	R_1	$2.338~{\rm \AA}$			
Atom Si 1	V_{WB}	18.264 Å^3			
	Zähligkeit	16			
	$\sum s$	4.000			
Abstand [Å]/s	2.306/1.092	2.392/0.860	2.392/0.860	2.392/0.860	3.441/0.047
	3.575/0.032	3.575/0.032	3.575/0.032	3.575/0.032	3.575/0.032
	3.575/0.032	3.867/0.014	3.867/0.014	3.867/0.014	3.867/0.014
	3.867/0.014	3.867/0.014	·	·	

Element	γ –Ge		[Bates, Dachille,	Roy, 1965]	
	W	4.00			
	V_X	20.454 Å^3			
	f_X	1.229			
	V_D	16.641 Å^3			
BG-Parameter	b	0.377			
	R_1	2.444 Å			
Atom Ge 1	V_{WB}	20.522 Å ³			
	Zähligkeit	4			
	$\sum s$	3.993			
Abstand [Å]/s	2.479/0.911	2.479/0.911	2.486/0.895	2.486/0.895	3.455/0.068
	3.455/0.068	3.645/0.041	3.645/0.041	3.811/0.027	3.811/0.027
	3.928/0.019	3.928/0.019	3.957/0.018	3.957/0.018	3.974/0.017
	3.974/0.017				
Atom Ge 2	V _{WB}	20.420 Å ³			
	Zähligkeit	8			
	$\sum s$	4.003			
Abstand [Å]/s	2.479/0.911	2.486/0.895	2.488/0.890	2.488/0.890	3.455/0.068
	3.569/0.050	3.569/0.050	3.645/0.041	3.753/0.031	3.753/0.031
	3.762/0.030	3.874/0.022	3.909/0.020	3.928/0.019	3.957/0.018
	3.974/0.017	4.215/0.009	4.215/0.009	·	·

Element	δ –Ge		[Bates, Dachille,	Roy, 1965]	
	W	4.00			
	V_X	20.711 Å^3			
	f_X	1.254			
	V_D	16.508 Å^3			
BG-Parameter	b	0.376			
	R_1	$2.438~{\rm \AA}$			
Atom Ge 1	V_{WB}	20.711 Å^3			
	Zähligkeit	16			
	$\sum s$	4.000			
Abstand [Å]/s	2.404/1.093	2.494/0.860	2.494/0.860	2.494/0.860	3.589/0.047
	3.728/0.032	3.728/0.032	3.728/0.032	3.728/0.032	3.728/0.032
	3.728/0.032	4.033/0.014	4.033/0.014	4.033/0.014	4.033/0.014
	4.033/0.014	4.033/0.014			

Element	$N_2 a)$		[Donohue, 1961]		
	W	3.00			
	V_X	22.677 Å^3			
	f_X	8.627			
	V_D	2.629 Å^3			
BG-Parameter	b	0.204			
	R_1	$1.263~{\rm \AA}$			
Atom N 1	V_{WB}	22.677 Å^3			
	Zähligkeit	8			
	$\sum s$	3.000			
Abstand [Å]/s	1.039/3.000	3.604/0.000	3.604/0.000	3.604/0.000	3.604/0.000
	3.604/0.000	3.604/0.000	3.653/0.000	3.653/0.000	3.653/0.000
	3.653/0.000	3.653/0.000	3.653/0.000	5.132/0.000	5.132/0.000
	5.132/0.000				
Element	N ₂ b)		[Jordan et al., 19	64]	
	W	3.00			
	V_X	22.545 Å^3			
	f_X	7.247			
	V_D	3.111 Å^3			
BG-Parameter	b	0.215			
	R_1	$1.336 { m ~\AA}$			
Atom N 1	V_{WB}	22.239 Å^3			
	Zähligkeit	4			
	$\sum s$	3.000			
Abstand [Å]/s	1.099/3.000	3.428/0.000	3.428/0.000	3.428/0.000	3.556/0.000
	3.556/0.000	3.556/0.000	3.556/0.000	3.556/0.000	3.556/0.000
	3.737/0.000	3.737/0.000	3.737/0.000	5.095/0.000	5.095/0.000
	5.095/0.000				
Atom N 2	V_{WB}	22.851 Å^3			
	Zähligkeit	4			
	$\sum s$	3.000			
Abstand [Å]/s	1.099/3.000	3.428/0.000	3.428/0.000	3.428/0.000	3.724/0.000
	3.724/0.000	3.724/0.000	3.724/0.000	3.724/0.000	3.724/0.000
	3.737/0.000	3.737/0.000	3.737/0.000	5.095/0.000	5.095/0.000
	5.095/0.000				

Element	P_4		[Simon, Borrman	n, Craubner, 1987]	
	W	3.00			
	V_X	26.468 Å^3			
	f_X	2.013			
	V _D	13.150 Å^3			
BG-Parameter	b	0.348			
	R_1	2 <u>.159</u> Å			
Atom P 1	V _{WB}	27.059 Å ³			
	Zähligkeit	2			
	$\sum s$	2.983			
Abstand $[Å]/s$	2.163/0.990	2.165/0.984	2.179/0.945	3.754/0.010	3.773/0.010
	3.801/0.009	3.812/0.009	3.864/0.007	3.973/0.005	3.974/0.005
	4.032/0.005	4.366/0.002	4.471/0.001	5.034/0.000	
Atom P 2	V _{WB}	26.767 Å^3			
	Zähligkeit	2			
	$\sum s$	2.977			
Abstand [Å]/s	2.164/0.987	2.168/0.976	2.179/0.945	3.646/0.014	3.773/0.010
	3.776/0.010	3.801/0.009	3.812/0.009	3.956/0.006	4.032/0.005
	4.055/0.004	4.324/0.002	4.472/0.001	4.958/0.000	
Atom P 3	V _{WB}	26.546 Å^3		· · · · · ·	
	Zähligkeit	2			
	$\sum s$	2.994			
Abstand [Å]/s	2.165/0.984	2.167/0.978	2.173/0.962	3.599/0.016	3.635/0.014
	3.730/0.011	3.875/0.007	3.994/0.005	4.043/0.004	4.055/0.004
	4.324/0.002	4.328/0.002	4.366/0.002	4.404/0.002	4.747/0.001
Atom P 4	V _{WB}	25.763 Å^3			
	Zähligkeit	2			
	$\sum s$	3.030			
Abstand [Å]/s	2.157/1.007	2.168/0.976	2.170/0.970	3.599/0.016	3.628/0.015
	3.687/0.012	3.747/0.010	3.758/0.010	4.066/0.004	4.127/0.004
	4.139/0.003	4.248/0.002	4.788/0.001		
Atom P 5	V _{WB}	26.997 Å^3			
	Zähligkeit	2			
	$\sum s$	2.990			
Abstand [Å]/s	2.165/0.984	2.169/0.973	2.169/0.973	3.746/0.010	3.816/0.009
	3.856/0.008	3.876/0.007	3.959/0.006	3.972/0.005	4.023/0.005
	4.069/0.004	4.074/0.004	4.404/0.002	4.747/0.001	
Atom P 6	V _{WB}	25.475 Å^3			
	Zähligkeit	2			
	$\sum s$	3.048			
Abstand [Å]/s	2.160/0.998	2.163/0.990	2.167/0.978	3.599/0.016	3.635/0.014
	3.680/0.013	3.718/0.011	3.816/0.009	3.876/0.007	4.179/0.003
	4.213/0.003	4.256/0.002	4.313/0.002	4.404/0.002	-

Atom P 7	V _{WB}	26.708 Å ³			
	Zähligkeit	2			
	$\sum s$	3.008			
Abstand [Å]/s	2.157/1.007	2.165/0.984	2.179/0.945	3.658/0.014	3.678/0.013
L J/	3.721/0.011	$3.754^{\prime}/0.010$	3.856/0.008	4.002/0.005	4.114/0.004
	4.248/0.002	4.256/0.002	4.474/0.001	$4.676^{\prime}/0.001$	4.788/0.001
	4.958/0.000	7	7	7	/
Atom P 8	V _{WB}	26.874 Å^3			
	Zähligkeit	2			
	$\sum s$	3.011			
Abstand [Å]/s	2.164/0.987	2.165/0.984	2.170/0.970	3.628/0.015	3.687/0.012
	3.716/0.011	3.872/0.007	3.974/0.005	3.994/0.005	4.009/0.005
	4.044/0.004	4.471/0.001	4.472/0.001	4.474/0.001	4.820/0.000
	5.135/0.000				
Atom P 9	V_{WB}	26.613 Å^3			
	Zähligkeit	2			
	$\sum s$	3.007			
Abstand [Å]/s	2.165/0.984	2.166/0.981	2.169/0.973	3.625/0.015	3.730/0.011
	3.898/0.007	3.959/0.006	3.966/0.006	4.002/0.005	4.009/0.005
	4.066/0.004	4.074/0.004	4.100/0.004	4.213/0.003	
Atom P 10	V_{WB}	26.521 Å^3			
	Zähligkeit	2			
	$\sum s$	2.980			
Abstand $[Å]/s$	2.160/0.998	2.173/0.962	2.179/0.945	3.646/0.014	3.658/0.014
	3.721/0.011	3.746/0.010	3.842/0.008	4.069/0.004	4.100/0.004
	4.127/0.004	4.313/0.002	4.328/0.002	4.404/0.002	5.034/0.000
Atom P 11	V_{WB}	26.054 A^3			
	Zähligkeit	2			
	$\sum s$	2.974			
Abstand $[A]/s$	2.166/0.981	2.169/0.973	2.178/0.948	3.625/0.015	3.678/0.013
	3.747/0.010	3.842/0.008	3.966/0.006	3.972/0.005	4.023/0.005
	4.114/0.004	4.133/0.003	4.174/0.003	4.820/0.000	
Atom P 12	V_{WB}	26.239 A ³			
	Zähligkeit	2			
A	$\sum s$	2.997	0.100/0.051	2 500 /0 01 0	0.000/0.010
Abstand $[A]/s$	2.165/0.984	2.165/0.984	2.177/0.951	3.599/0.016	3.680/0.013
	3.716/0.011	3.875/0.007	3.898/0.007	3.956/0.006	3.973/0.005
	4.043/0.004	4.044/0.004	4.139/0.003	4.676/0.001	5.135/0.000

Element	$\mathbf{P}_{Hitt.}$		[Thurn, Krebs,19	69]	
	W	3.00			
	V_X	21.784 Å^3			
	f_X	1.596			
	V_D	13.651 Å^3			
BG-Parameter	b	0.353			
	R_1	2.186 Å			
Atom P 1	V_{WB}	25.061 Å^3			
	Zähligkeit	4			
	$\sum s$	2.999			
Abstand [Å]/s	2.200/0.962	2.206/0.946	2.220/0.909	3.269/0.046	3.382/0.034
	3.395/0.032	3.540/0.022	3.592/0.019	3.916/0.007	4.060/0.005
	4.092/0.004	4.107/0.004	4.116/0.004	4.450/0.002	4.614/0.001
	4.734/0.001				
Atom P 2	V_{WB}	23.103 Å^3			
	Zähligkeit	4			
0	$\sum s$	2.876			
Abstand $[Å]/s$	2.205/0.949	2.220/0.909	2.262/0.807	3.216/0.054	3.252/0.049
	3.523/0.023	3.527/0.022	3.543/0.021	3.935/0.007	3.947/0.007
	3.970/0.006	4.060/0.005	4.080/0.005	4.153/0.004	4.181/0.003
	4.197/0.003	4.683/0.001	5.077/0.000		
Atom P 3	V_{WB}	23.011 A^3			
	Zähligkeit	4			
	$\sum s$	2.906			
Abstand $[A]/s$	2.199/0.965	2.201/0.960	2.272/0.785	3.242/0.050	3.252/0.049
	3.315/0.041	3.568/0.020	3.928/0.007	3.936/0.007	3.940/0.007
	3.956/0.007	4.147/0.004	4.188/0.003	4.548/0.001	4.640/0.001
	4.824/0.001	22.257 12			
Atom P 4	V_{WB}	22.357 A ³			
	Zähligkeit	4			
1 - 1 = 1	$\sum s$	3.083	0.010/0.025	2 000 /0 040	2 200 /0 024
Abstand [A]/S	2.199/0.905	2.205/0.949	2.210/0.935	3.209/0.040	3.380/0.034
	3.387/0.033	3.408/0.020	3.318/0.023	3.338/0.022	3.338/0.022
Atom D 5	$\frac{3.029}{0.017}$	$\frac{4.044/0.005}{22.200}$	4.139/0.004	4.440/0.002	
Atom F 5	V _{WB} Zähligkoit	23.299 A			
	\sum_{α}	4 2 066			
Abstand [Å]/s	2.3	2 205 /0 040	2 240 /0 850	2 066 /0 110	3 370 /0 035
Abstant $[A]/S$	2.201/0.900 3.380/0.034	2.205/0.949	2.240/0.839	2.900/0.110 3.530/0.022	3.570/0.055
	3 007 /0 008	<i>1</i> 0 <i>4 4</i> 0 005	<i>1</i> 191 /0.022	<i>4</i> 288 /0 003	1 353 /0 002
	4 498/0 001	4 539/0 001	4 555 /0 001	4.200/0.003	4.000/ 0.002
Atom P 6	Vuun	$19.969 Å^3$	1.000/0.001	1.021/0.001	
	Zähligkeit	4			
	$\sum s$	$\frac{1}{2.967}$			
Abstand [Å]/s	2.205/0.949	2.207/0.943	2.285/0.756	3.242/0.050	3.277/0.045
				5.2.12/ 0.000	5.2.1/ 0.010
	3.310/0.041	3.380/0.034	3.389/0.033	3.451/0.028	-3.540/0.0221
	3.310/0.041 3.635/0.016	3.380/0.034 3.692/0.014	3.389/0.033 3.727/0.013	3.451/0.028 3.946/0.007	3.540/0.022 3.979/0.006

Atom P 7	V _{WB}	21.244 Å ³			
	Zähligkeit	4			
	$\sum s$	3.083			
Abstand [Å]/s	2.201/0.960	2.207/0.943	2.237/0.867	2.966/0.110	3.358/0.036
	3.382/0.034	3.440/0.029	3.510/0.023	3.540/0.022	3.569/0.020
	3812/0010	3 907/0 008	3 916/0 007	4 014/0 006	4.025/0.005
	4.182/0.003	4.449/0.002	0.010/0.001	1.011/0.000	1.020/ 0.000
Atom P 8	V _{WB}	22.717 Å ³			
	Zähligkeit	4			
	$\sum s$	2.922			
Abstand [Å]/s	2.200/0.962	2.201/0.960	2.273/0.782	3.216/0.054	3.310/0.041
	3.311/0.041	3.544/0.021	3.565/0.020	3.672/0.015	3.941/0.007
	3.954/0.007	4.072/0.005	4.188/0.003	4.483/0.001	4.515/0.001
	4.614/0.001	,	,	,	,
Atom P 9	V _{WB}	21.000 Å^3			
	Zähligkeit	4			
	$\sum s$	3.139			
Abstand [Å]/s	2.192/0.985	2.196/0.973	2.214/0.925	3.280/0.045	3.310/0.041
	3.348/0.037	3.395/0.032	3.543/0.021	3.544/0.021	3.703/0.014
	3.727/0.013	3.732/0.012	3.809/0.010	3.936/0.007	4.498/0.001
	4.640/0.001	·	·		
Atom P 10	V_{WB}	20.722 Å^3			
	Zähligkeit	4			
	$\sum s$	2.907			
Abstand [Å]/s	2.214/0.925	2.214/0.925	2.262/0.807	3.237/0.051	3.245/0.050
	3.518/0.023	3.524/0.022	3.535/0.022	3.538/0.022	3.549/0.021
	3.707/0.013	3.940/0.007	3.956/0.007	3.970/0.006	3.978/0.006
Atom P 11	V_{WB}	20.650 Å^3			
	Zähligkeit	4			
	$\sum s$	3.068			
Abstand $[Å]/s$	2.200/0.962	2.202/0.957	2.214/0.925	3.280/0.045	3.300/0.042
	3.349/0.037	3.387/0.033	3.660/0.015	3.667/0.015	3.692/0.014
	3.728/0.013	3.954/0.007	4.449/0.002	4.683/0.001	
Atom P 12	V_{WB}	20.285 Å^3			
	Zähligkeit	4			
	$\sum s$	3.005			
Abstand $[Å]/s$	2.197/0.971	$2.200/0.96\overline{2}$	2.272/0.785	$3.223/0.05\overline{3}$	3.245/0.050
	3.309/0.041	3.512/0.023	3.530/0.022	3.535/0.022	3.538/0.022
	3.568/0.020	3.696/0.014	3.941/0.007	3.946/0.007	3.947/0.007

Atom P 13	V_{WB}	21.535 Å^3			
	Zähligkeit	4			
	$\sum s$	3.044			
Abstand [Å]/s	2.197/0.971	2.201/0.960	2.239/0.862	3.016/0.095	3.349/0.037
	3.370/0.035	3.436/0.029	3.696/0.014	3.728/0.013	3.782/0.011
	3.872/0.008	4.060/0.005	4.072/0.005	4.515/0.001	,
Atom P 14	V _{WB}	18.447 Å ³	,	,	
	Zähligkeit	4			
	$\sum s$	3.075			
Abstand [Å]/s	2.201/0.960	2.202/0.957	2.285/0.756	3.064/0.083	3.220/0.053
	3.223/0.053	3.306/0.042	3.359/0.036	3.373/0.035	3.451/0.028
	3.536/0.022	3.540/0.022	3.667/0.015	3.672/0.015	
Atom P 15	V_{WB}	21.535 Å^3			
	Zähligkeit	4			
	$\sum s$	3.029			
Abstand [Å]/s	2.202/0.957	2.203/0.954	2.236/0.869	3.016/0.095	3.348/0.037
	3.358/0.036	3.540/0.022	3.660/0.015	3.707/0.013	3.809/0.010
	3.872/0.008	4.080/0.005	4.117/0.004	4.188/0.003	
Atom P 16	V_{WB}	19.380 Å^3			
	Zähligkeit	4			
	$\sum s$	3.039			
Abstand [Å]/s	2.196/0.973	2.203/0.954	2.273/0.782	3.220/0.053	3.237/0.051
	3.295/0.043	3.306/0.042	3.510/0.023	3.512/0.023	3.540/0.022
	3.547/0.021	3.635/0.016	3.703/0.014	3.928/0.007	3.935/0.007
	3.979/0.006				
Atom P 17	V_{WB}	21.903 Å^3			
	Zähligkeit	4			
- 9	$\sum s$	3.149			
Abstand $[Å]/s$	2.192/0.985	2.199/0.965	2.206/0.946	3.270/0.046	3.295/0.043
	3.311/0.041	3.462/0.027	3.518/0.023	3.527/0.022	3.733/0.012
	3.812/0.010	3.872/0.008	3.907/0.008	4.147/0.004	4.191/0.003
	4.258/0.003	4.288/0.003			
Atom P 18	V_{WB}	21.493 A^3			
	Zähligkeit	4			
	$\sum s$	3.099			
Abstand $[A]/s$	2.202/0.957	2.206/0.946	2.210/0.935	3.309/0.041	3.315/0.041
	3.468/0.026	3.495/0.024	3.523/0.023	3.524/0.022	3.550/0.021
	3.691/0.014	3.733/0.012	3.872/0.008	3.907/0.008	4.060/0.005
	4.116/0.004	4.182/0.003	4.188/0.003	4.252/0.003	

Atom P 19	V_{WB}	26.361 \AA^3			
	Zähligkeit	4			
	$\sum s$	2.625			
Abstand [Å]/s	2.239/0.862	2.240/0.859	2.299/0.727	3.373/0.035	3.389/0.033
	3.440/0.029	3.495/0.024	3.568/0.020	3.568/0.020	4.070/0.005
	4.159/0.004	4.197/0.003	4.450/0.002	4.470/0.002	4.483/0.001
	4.734/0.001	5.077/0.000			
Atom P 20	V_{WB}	23.927 Å^3			
	Zähligkeit	4			
	$\sum s$	2.693			
Abstand [Å]/s	2.236/0.869	2.237/0.867	2.299/0.727	3.359/0.036	3.380/0.034
	3.436/0.029	3.439/0.029	3.462/0.027	3.547/0.021	3.565/0.020
	3.620/0.017	4.014/0.006	4.070/0.005	4.181/0.003	4.448/0.002
	4.548/0.001	4.555/0.001			
Atom P 21	V_{WB}	19.462 Å^3			
	Zähligkeit	4			
	$\sum s$	3.225			
Abstand [Å]/s	2.178/1.024	2.199/0.965	2.206/0.946	3.270/0.046	3.277/0.045
	3.300/0.042	3.310/0.041	3.526/0.022	3.550/0.021	3.569/0.020
	3.592/0.019	3.629/0.017	3.978/0.006	4.107/0.004	4.153/0.004
	4.539/0.001				

Element	P_{black}		[Brown, Rundqui	st, 1965]	
	W	3.00			
	V_X	18.993 Å^3			
	f_X	1.387			
	V_D	13.694 Å^3			
BG-Parameter	b	0.353			
	R_1	$2.189 { m \ \AA}$			
Atom P 1	V_{WB}	18.993 Å^3			
	Zähligkeit	8			
	$\sum s$	3.000			
Abstand [Å]/s	2.224/0.905	2.224/0.905	2.244/0.855	3.314/0.041	3.314/0.041
	3.334/0.039	3.334/0.039	3.475/0.026	3.475/0.026	3.475/0.026
	3.475/0.026	3.592/0.019	3.592/0.019	3.801/0.010	3.801/0.010
	4.002/0.006	4.002/0.006			

Element	$\alpha - As$		[Pearson's Hand)	book, 1997]	
	W	3.00			
	V_X	21.521 Å^3			
	f_X	1.183			
	V_D	18.196 Å^3			
BG-Parameter	b	0.388			
	R_1	2.406 Å			
Atom As 1	V_{WB}	21.521 Å^3			
	Zähligkeit	6			
	$\sum s$	3.000			
Abstand [Å]/s	2.517/0.752	2.517/0.752	2.517/0.752	3.120/0.159	3.120/0.159
	3.120/0.159	3.760/0.031	3.760/0.031	3.760/0.031	3.760/0.031
	3.760/0.031	3.760/0.031	4.132/0.012	4.132/0.012	4.132/0.012
	4.132/0.012	4.132/0.012	4.132/0.012	4.525/0.004	4.525/0.004
	4.525/0.004	4.790/0.002			

Element	$\epsilon - As$		[Smith, Leadbett	er, Apling, 1974]	
	W	3.00			
	V_X	22.434 Å^3			
	f_X	1.228			
	V_D	18.265 Å^3			
BG-Parameter	b	0.388			
	R_1	2.409 Å			
Atom As 1	V_{WB}	22.434 Å^3			
	Zähligkeit	8			
	$\sum s$	3.000			
Abstand [Å]/s	2.479/0.836	2.493/0.806	2.493/0.806	3.318/0.096	3.318/0.096
	3.620/0.044	3.620/0.044	3.650/0.041	3.650/0.041	3.766/0.030
	3.766/0.030	3.766/0.030	3.766/0.030	3.805/0.028	3.805/0.028
	4.412/0.006	4.412/0.006		·	

Element	Sb		[Pearson's Hand)	oook, 1997]	
	W	3.00			
	V_X	30.206 Å^3			
	f_X	1.139			
	V_D	26.521 Å^3			
BG-Parameter	b	0.440			
	R_1	$2.728~{\rm \AA}$			
Atom Sb 1	V_{WB}	30.206 Å^3			
	Zähligkeit	6			
	$\sum s$	3.000			
Abstand [Å]/s	2.908/0.665	2.908/0.665	2.908/0.665	3.355/0.241	3.355/0.241
	3.355/0.241	4.308/0.028	4.308/0.028	4.308/0.028	4.308/0.028
	4.308/0.028	4.308/0.028	4.507/0.018	4.507/0.018	4.507/0.018
	4.507/0.018	4.507/0.018	4.507/0.018	5.198/0.004	5.198/0.004
	5.198/0.004	5.265/0.003			

Element	Bi		[Pearson's Hand)	oook, 1997]	
	W	3.00			
	V_X	35.383 Å^3			
	f_X	1.137			
	V_D	31.120 Å^3			
BG-Parameter	b	0.464			
	R_1	2.878 Å			
Atom Bi 1	V_{WB}	35.383 Å^3			
	Zähligkeit	6			
	$\sum s$	3.000			
Abstand [Å]/s	3.071/0.659	3.071/0.659	3.071/0.659	3.529/0.246	3.529/0.246
	3.529/0.246	4.546/0.027	4.546/0.027	4.546/0.027	4.546/0.027
	4.546/0.027	4.546/0.027	4.746/0.018	4.746/0.018	4.746/0.018
	4.746/0.018	4.746/0.018	4.746/0.018	5.486/0.004	5.486/0.004
	5.486/0.004	5.549/0.003	·	·	

Element	$\alpha - O_2$		[Barrett, Meyer,	Wasserman, 1967]	
	W	2.00			
	V_X	17.360 Å^3			
	f_X	4.873			
	V_D	3.562 Å^3			
BG-Parameter	b	0.225			
	R_1	1.306 Å			
Atom 0 1	V_{WB}	17.360 Å^3			
	Zähligkeit	4			
	$\sum s$	2.000			
Abstand [Å]/s	1.150/1.998	3.182/0.000	3.182/0.000	3.200/0.000	3.200/0.000
	3.200/0.000	3.200/0.000	3.315/0.000	3.328/0.000	3.328/0.000
	3.429/0.000	3.429/0.000	3.617/0.000	3.617/0.000	4.239/0.000

Element	S_6		[Steidel, Pickardt	, Steudel, 1978]	
	W	2.00			
	V_X	23.561 Å^3			
	f_X	1.740			
	V_D	13.542 Å^3			
BG-Parameter	b	0.352			
	R_1	2.038 Å			
Atom S 1	V_{WB}	23.561 Å^3			
	Zähligkeit	18			
	$\sum s$	2.000			
Abstand [Å]/s	2.067/0.921	2.067/0.921	3.227/0.034	3.227/0.034	3.443/0.018
	3.443/0.018	3.471/0.017	3.697/0.009	3.815/0.006	3.815/0.006
	3.832/0.006	4.220/0.002	4.220/0.002	4.225/0.002	4.225/0.002
	4.997/0.000				

Element	$\gamma - S_7$		[Steudel et al., 19	980]	
	W	2.00			
	V_X	24.304 Å^3			
	f_X	1.801			
	V_D	13.498 Å^3			
BG-Parameter	b	0.351			
	R_1	2.036 Å			
Atom S 1	V_{WB}	25.177 Å^3			
	Zähligkeit	4			
	$\sum s$	2.059			
Abstand [Å]/s	2.046/0.972	2.050/0.961	3.223/0.034	3.227/0.034	3.605/0.011
	3.622/0.011	3.809/0.006	3.811/0.006	3.813/0.006	3.852/0.006
	3.947/0.004	4.070/0.003	4.174/0.002	4.213/0.002	4.633/0.001
Atom S 2	V_{WB}	23.747 Å^3			
	Zähligkeit	4			
	$\sum s$	1.965			
Abstand [Å]/s	2.046/0.972	2.097/0.840	3.240/0.032	3.248/0.032	3.555/0.013
	3.571/0.013	3.585/0.012	3.619/0.011	3.622/0.011	3.733/0.008
	3.813/0.006	3.896/0.005	4.131/0.003	4.131/0.003	4.173/0.002
	4.213/0.002	·	·	·	
Atom S 3	V _{WB}	25.593 Å^3			
	Zähligkeit	4			
	$\sum s$	1.918			
Abstand [Å]/s	2.050/0.961	2.101/0.831	3.248/0.032	3.275/0.029	3.403/0.020
	3.555/0.013	3.672/0.009	3.788/0.007	3.850/0.006	3.978/0.004
	4.146/0.002	4.174/0.002	4.481/0.001	4.762/0.000	
Atom S 4	V _{WB}	24.857 Å^3		·	
	Zähligkeit	4			
	$\sum s$	2.086			
Abstand [Å]/s	1.998/1.114	2.097/0.840	3.227/0.034	3.365/0.023	3.371/0.022
	3.571/0.013	3.585/0.012	3.789/0.007	3.817/0.006	3.852/0.006
	3.978/0.004	4.070/0.003	4.317/0.002	4.481/0.001	4.633/0.001
Atom S 5	V _{WB}	23.248 Å ³	·	·	
	Zähligkeit	4			
	$\sum s$	2.109			
Abstand [Å]/s	1.997/1.117	2.101/0.831	3.223/0.034	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.371/0.022
	3.402/0.020	3.571/0.013	3.645/0.010	3.716/0.008	3.721/0.008
	3.778/0.007	3.817/0.006	3.896/0.005	4.146/0.002	4.569/0.001
	4.762/0.000	,	,	,	,
Atom S 6	V _{WB}	24.091 Å^3			
	Zähligkeit	4			
	$\sum s$	1.918			
Abstand [Å]/s	1.998/1.114	2.176/0.671	3.240/0.032	3.365/0.023	3.516/0.015
	3.605/0.011	3.619/0.011	3.645/0.010	3.778/0.007	3.788/0.007
	3.789/0.007	3.850/0.006	3.947/0.004		
Atom S 7	V_{WB}	23.418 Å^3			
	Zähligkeit	4			
	$\sum s$	1.944			
Abstand [Å]/s	1.997/1.117	2.176/0.671	3.275/0.029	3.365/0.023	3.402/0.020
	3.403/0.020	3.516/0.015	3.571/0.013	3.672/0.009	3.721/0.008
	3.809/0.006	3.985/0.004	3.985/0.004	4.173/0.002	4.317/0.002

Element	$\delta - S_7$		[Steudel et al., 19	980]	
	W	2.00			
	V_X	24.406 Å^3			
	f_X	1.785			
	V_D	13.672 Å^3			
BG-Parameter	b	0.353			
	R_1	$2.045~{\rm \AA}$			
Atom S 1	V_{WB}	23.983 Å^3			
	Zähligkeit	4			
	$\sum s$	2.116			
Abstand [Å]/s	2.048/0.990	2.052/0.979	3.214/0.036	3.238/0.034	3.500/0.016
	3.587/0.013	3.732/0.008	3.756/0.008	3.775/0.007	3.804/0.007
	3.827/0.006	3.942/0.005	4.013/0.004	4.200/0.002	4.960/0.000
Atom S 2	V_{WB}	26.352 Å^3			
	Zähligkeit	4			
	$\sum s$	1.963			
Abstand $[Å]/s$	2.048/0.990	2.102/0.850	3.266/0.031	3.282/0.030	3.552/0.014
	3.578/0.013	3.600/0.012	3.829/0.006	3.916/0.005	3.924/0.005
	4.177/0.002	4.228/0.002	4.433/0.001	4.570/0.001	
Atom S 3	V_{WB}	23.830 Å^3			
	Zähligkeit	4			
0	$\sum s$	1.987			
Abstand $[Å]/s$	2.052/0.979	2.103/0.847	3.254/0.032	3.282/0.030	3.455/0.018
	3.488/0.017	3.494/0.016	3.520/0.015	3.724/0.009	3.915/0.005
	3.930/0.005	4.044/0.003	4.212/0.002	4.230/0.002	4.278/0.002
	4.280/0.002	4.294/0.002			
Atom S 4	V_{WB}	23.709 A^3			
	Zähligkeit	4			
	$\sum s$	2.166	2 014/0 020	2 250 /0 024	0.000/0.004
Abstand $[A]/s$	1.995/1.151	2.102/0.850	3.214/0.036	3.359/0.024	3.363/0.024
	3.497/0.016	3.508/0.016	3.656/0.010	3.668/0.010	3.732/0.008
	3.874/0.006	3.915/0.005	3.924/0.005	4.228/0.002	4.261/0.002
	$\frac{4.024}{0.001}$	$\frac{4.704}{0.001}$			
Atom 5 5	V _{WB} Zählighoit	25.080 A°			
	\sum_{c}	$\frac{4}{9.117}$			
Abstand [Å]/s	$\frac{2}{3}$	2.117 2 103 /0 847	3 238 /0 034	3 363 /0 094	3 591 /0 015
Abstand [A]/S	1.994/1.104 3.605/0.012	2.105/0.047	3.238/0.034	3.303/0.024	3.521/0.015 4.013/0.004
	$\frac{3.005}{0.012}$	<i>3.107/0.009</i> <i>4.107/0.003</i>	<i>4</i> 288 /0 002	3.930/0.003	4.013/ 0.004
Atom S 6	4.100/0.003	$\frac{4.107/0.003}{24.305 ^{3}}$	4.200/0.002		
	Zähligkeit	24.000 A 4			
	$\sum s$	1 948			
Abstand [Å]/s	1.995/1.151	2.183/0.675	3.266/0.031	3.396/0.022	3.520/0.015
	3.578/0.013	3.663/0.010	3.756/0.008	3.823/0.006	3.852/0.006
	4.158/0.002	4.212/0.002	4.230/0.002	4.288/0.002	4.467/0.001
	4.484/0.001	1.212/0.002	1.200/ 0.002	1.200/0.002	1. 101 / 0.001

Atom S 7	V_{WB}	23.543 Å^3			
	Zähligkeit	4			
	$\sum s$	1.972			
Abstand [Å]/s	1.994/1.154	2.183/0.675	3.254/0.032	3.359/0.024	3.458/0.018
	3.488/0.017	3.663/0.010	3.724/0.009	3.724/0.009	3.724/0.009
	3.852/0.006	3.916/0.005	3.942/0.005	·	
Atom S 8	V _{WB}	24.819 Å ³	·		
	Zähligkeit	4			1
	$\sum s$	1.841			ĺ
Abstand [Å]/s	2.047/0.993	2.169/0.703	3.228/0.035	3.243/0.033	3.458/0.018
	3.600/0.012	3.707/0.009	3.756/0.008	3.821/0.006	3.823/0.006
	3.829/0.006	3.849/0.006	4.261/0.002	4.294/0.002	4.484/0.001
Atom S 9	V _{WB}	24.146 Å^3	·	÷	,
	Zähligkeit	4			Ì
	$\sum s$	1.980			1
Abstand [Å]/s	2.047/0.993	2.106/0.840	3.256/0.032	3.406/0.021	3.520/0.015
2 3,	3.528/0.015	3.552/0.014	3.653/0.010	3.656/0.010	3.827/0.006
	3.874/0.006	3.918/0.005	3.921/0.005	4.158/0.002	4.222/0.002
	4.368/0.001	4.570/0.001	,	,	,
Atom S 10	V _{WB}	25.479 Å ³			
	Zähligkeit	4			
	$\sum s$	1.683			
Abstand [Å]/s	2.103/0.847	2.169/0.703	3.276/0.030	3.406/0.021	3.455/0.018
L J/	3.502/0.016	3.521/0.015	3.668/0.010	3.804/0.007	$3.923^{\prime}/0.005$
	3.937/0.005	4.107/0.003	4.280/0.002	5.136/0.000	,
Atom S 11	V _{WB}	23.624 Å ³	,	,	
	Zähligkeit	4			
	$\sum s$	2.152			1
Abstand [Å]/s	1.996/1.148	2.106/0.840	3.243/0.033	3.345/0.025	3.347/0.025
	3.396/0.022	3.497/0.016	3.508/0.016	3.775/0.007	3.829/0.006
	3.849/0.006	3.918/0.005	4.358/0.001	4.433/0.001	
Atom S 12	V _{WB}	24.875 Å^3	·	·	
	Zähligkeit	4			
	$\sum s$	2.133			
Abstand [Å]/s	1.998/1.141	2.103/0.847	3.228/0.035	3.347/0.025	3.373/0.023
	3.494/0.016	3.668/0.010	3.821/0.006	3.876/0.006	3.921/0.005
	3.937/0.005	4.022/0.004	4.044/0.003	4.100/0.003	4.200/0.002
	4.467/0.001		·	·	
Atom S 13	V_{WB}	23.809 Å^3			
	Zähligkeit	4			
	$\sum s$	1.971			
Abstand [Å]/s	1.996/1.148	2.179/0.683	3.256/0.032	3.373/0.023	3.528/0.015
	3.587/0.013	3.644/0.011	3.644/0.011	3.653/0.010	3.773/0.007
	3.829/0.006	3.850/0.006	3.923/0.005	4.624/0.001	
Atom S 14	V_{WB}	24.034 Å ³			
	Zähligkeit	4			
	$\sum s$	1.968			
Abstand [Å]/s	1.998/1.141	2.179/0.683	3.276/0.030	3.345/0.025	3.500/0.016
	3.502/0.016	3.520/0.015	3.605/0.012	3.756/0.008	3.773/0.007
	3.850/0.006	4.222/0.002	4.278/0.002	4.358/0.001	4.368/0.001
	4.704/0.001	4.960/0.000			,

Element	$\alpha - S_8$		[Rettig, Trotter, 1983]		
	W	2.00			
	V_X	25.756 Å^3			
	f_X	1.933			
	V_D	13.322 Å^3			
BG-Parameter	b	0.350			
	R_1	2.027 Å			
Atom S 1	V_{WB}	25.452 Å^3			
	Zähligkeit	32			
	$\sum s$	2.009			
Abstand [Å]/s	2.038/0.969	2.049/0.939	3.300/0.026	3.316/0.025	3.502/0.015
	3.766/0.007	3.800/0.006	3.834/0.006	3.876/0.005	4.030/0.003
	4.088/0.003	4.188/0.002	4.244/0.002	4.559/0.001	
Atom S 2	V _{WB}	27.137 Å^3	·		
	Zähligkeit	32			
	$\sum s$	1.977			
Abstand [Å]/s	2.046/0.947	2.049/0.939	3.311/0.025	3.316/0.025	3.707/0.008
	3.815/0.006	3.824/0.006	3.876/0.005	3.933/0.004	4.115/0.003
	4.151/0.002	4.151/0.002	4.364/0.001	4.375/0.001	4.425/0.001
	4.651/0.001	·	·		
Atom S 3	V _{WB}	26.055 Å^3			
	Zähligkeit	32			
	$\sum s$	1.997			
Abstand [Å]/s	2.046/0.947	2.046/0.947	3.300/0.026	3.330/0.024	3.414/0.019
L 1/	3.707/0.008	3.834/0.006	3.858/0.005	4.088/0.003	4.099/0.003
	4.128/0.002	4.159/0.002	4.364/0.001	4.424/0.001	4.559/0.001
	4.651/0.001	,	,	,	,
Atom S 4	V _{WB}	24.379 Å^3			
	Zähligkeit	32			
	$\sum s$	2.017			
Abstand [Å]/s	2.044/0.953	2.046/0.947	3.311/0.025	3.330/0.024	3.376/0.021
	3.502/0.015	3.800/0.006	3.815/0.006	3.824/0.006	3.858/0.005
	3.933/0.004	4.159/0.002	4.188/0.002	- 	

Element	$\gamma - S_8$		[Gallacher, Pinkerton, 1993]		
	W	2.00			
	V_X	26.214 Å^3			
	f_X	1.969			
	V_D	13.315 Å^3			
BG-Parameter	b	0.350			
	R_1	2.027 Å			
Atom S 1	V_{WB}	28.267 Å^3			
	Zähligkeit	4			
	$\sum s$	1.947			
Abstand [Å]/s	2.043/0.954	2.060/0.909	3.299/0.026	3.319/0.025	3.792/0.006
	3.808/0.006	3.941/0.004	3.992/0.004	4.081/0.003	4.157/0.002
	4.208/0.002	4.260/0.002	4.281/0.002	4.331/0.001	4.682/0.001
	4.788/0.000	5.077/0.000			
Atom S 2	V_{WB}	26.718 A^3			
	Zähligkeit	4			
	$\sum s$	1.998	2 200 /0 020	0.010/0.007	
Abstand [A]/s	2.040/0.962	2.049/0.938	3.299/0.026	3.319/0.025	3.578/0.012
	3.626/0.010	3.783/0.007	3.785/0.007	3.941/0.004	4.185/0.002
	4.251/0.002	4.325/0.001	4.331/0.001	4.679/0.001	4.799/0.000
Atom S 3		25.450 A ³			
	Zahligkeit	4			
	$\sum s$	2.016	2 202 /0 020	2 210 /0 025	0.007/0.010
Abstand $[A]/s$	2.040/0.962	2.043/0.954	3.303/0.026	3.319/0.025	3.637/0.010
	3.750/0.007	3.783/0.007	3.789/0.007	3.870/0.003	3.911/0.005
	4.108/0.003 4.670/0.001	4.200/0.002	4.323/0.001	4.431/0.001	4.437/0.001
Atom S 4	$\frac{4.079}{0.001}$	24 052 13			
Atom 54	V _{WB} Zöhligkoit	24.052 A			
	\sum_{e}	4 2 026			
Abstand [Å]/s	2.037/0.071	2.020	3 303/0 026	3 319/0 025	3 443 /0 017
Abstand [A]/ S	2.037/0.971 3.569/0.012	3 637 /0 010	3 702 / 0.020	3 808 / 0 006	3.902/0.017
	3.983/0.004	4 157/0 002	4 431/0 001	4.682/0.001	0.002/0.000
Atom S 5	Vwp	$24 920 \text{ Å}^3$	1.101/0.001	1.002/0.001	
	Zähligkeit	4			
	$\sum s$	2.046			
Abstand [Å]/s	2.036/0.974	2.040/0.962	3.284/0.027	3.299/0.026	3.626/0.010
	3.702/0.008	3.750/0.007	3.792/0.006	3.902/0.005	$3.911^{\prime}/0.005$
	3.913/0.005	3.925/0.004	4.081/0.003	4.227/0.002	4.410/0.001
	4.655/0.001	,	,	,	,
Atom S 6	V_{WB}	27.091 Å^3			
	Zähligkeit	4			
	$\sum s$	1.982			
Abstand [Å]/s	2.040/0.962	2.050/0.935	3.299/0.026	3.313/0.025	3.737/0.008
,	3.834/0.006	3.871/0.005	3.894/0.005	3.925/0.004	4.059/0.003
	4.281/0.002	4.575/0.001	5.077/0.000		-

Atom S 7	V_{WB}	26.799 Å^3			
	Zähligkeit	4			
	$\sum s$	2.007			
Abstand [Å]/s	2.036/0.974	2.050/0.935	3.284/0.027	3.290/0.027	3.569/0.012
	3.737/0.008	3.800/0.006	3.894/0.005	3.957/0.004	3.983/0.004
	4.208/0.002	4.212/0.002	4.575/0.001	4.578/0.001	4.788/0.000
Atom S 8	V_{WB}	26.412 Å^3			
Atom S 8	V _{WB} Zähligkeit	26.412 Å ³ 4			
Atom S 8	V_{WB} Zähligkeit $\sum s$	26.412 Å ³ 4 1.977			
Atom S 8 Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.040/0.962	26.412 Å ³ 4 1.977 2.057/0.917	3.290/0.027	3.313/0.025	3.443/0.017
Atom S 8 Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.040/0.962 3.800/0.006	26.412 Å ³ 4 1.977 2.057/0.917 3.834/0.006	3.290/0.027 3.913/0.005	3.313/0.025 3.992/0.004	3.443/0.017 4.185/0.002

Element	S ₁₀		[Steudel, Steidel,	Reinhardt, 1983]	
	W	2.00			
	V_X	25.312 Å^3			
	f_X	1.879			
	V_D	13.472 Å^3			
BG-Parameter	b	0.351			
	R_1	$2.035~{\rm \AA}$			
Atom S 1	V_{WB}	25.069 Å^3			
	Zähligkeit	8			
	$\sum s$	1.997			
Abstand [Å]/s	2.040/0.985	2.078/0.884	3.240/0.032	3.292/0.028	3.498/0.015
	3.535/0.014	3.613/0.011	3.771/0.007	3.794/0.007	3.861/0.005
	4.089/0.003	4.192/0.002	4.192/0.002	4.270/0.002	4.864/0.000
Atom S 2	V_{WB}	25.832 Å^3			
	Zähligkeit	8			
	$\sum s$	1.961			
Abstand $[Å]/s$	2.048/0.962	2.078/0.884	3.292/0.028	3.360/0.023	3.498/0.015
	3.613/0.011	3.627/0.011	3.726/0.008	3.908/0.005	3.968/0.004
	4.044/0.003	4.085/0.003	4.213/0.002	4.377/0.001	4.692/0.001
	4.949/0.000	4.977/0.000			
Atom S 3	V_{WB}	24.863 Å^3			
	Zähligkeit	8			
	$\sum s$	2.045			
Abstand $[Å]/s$	2.048/0.962	2.048/0.962	3.232/0.033	3.240/0.032	3.535/0.014
	3.543/0.014	3.779/0.007	3.878/0.005	3.908/0.005	3.911/0.005
	4.091/0.003	4.375/0.001	4.414/0.001	4.692/0.001	
Atom S 4	V_{WB}	26.358 A^3			
	Zähligkeit	8			
	$\sum s$	1.964			
Abstand [A]/s	2.048/0.962	2.071/0.901	3.321/0.026	3.360/0.023	3.489/0.016
	3.771/0.007	3.861/0.005	3.878/0.005	3.968/0.004	4.089/0.003
	4.091/0.003	4.097/0.003	4.148/0.002	4.213/0.002	4.375/0.001
	4.977/0.000	04407 83			
Atom S 5	V_{WB}	24.435 A ³			
	Zähligkeit	8			
	$\sum S$	2.032	2 222 /0 022	2 221 /0 020	2 400 /0 010
Abstand $[A]/S$	2.033/1.004	2.071/0.901	3.232/0.033	3.321/0.026	3.489/0.016
	3.343/0.014	3.027/0.011	3.720/0.008	3.911/0.005	3.900/0.004
	• 4 H K K / H H H H Y	/1 ////////////////////////////////////			
	4.000/0.000	4.210/0.002	4.327/0.001	4.327/0.001	4.377/0.001
Element	S_{11}		[Steidel, Steudel,	1982]	
-----------------	-------------	-----------------------	--------------------	--------------	-------------
	W	2.00			
	V_X	25.538 Å^3			
	f_X	1.899			
	V_D	13.449 Å^3			
BG-Parameter	b	0.351			
	R_1	2.033 Å			
Atom S 1	V_{WB}	24.806 Å^3			
	Zähligkeit	4			
	$\sum s$	2.106			
Abstand [Å]/s	2.028/1.016	2.049/0.957	3.247/0.031	3.262/0.030	3.412/0.020
	3.524/0.014	3.637/0.010	3.745/0.008	3.862/0.005	3.905/0.005
	3.997/0.004	4.123/0.003	4.181/0.002	4.627/0.001	4.662/0.001
Atom S 2	V_{WB}	25.917 Å^3			
	Zähligkeit	4			
	$\sum s$	2.048			
Abstand [Å]/s	2.028/1.016	2.068/0.906	3.205/0.035	3.268/0.030	3.385/0.021
	3.633/0.010	3.641/0.010	3.815/0.006	4.047/0.003	4.108/0.003
	4.197/0.002	4.221/0.002	4.324/0.001	4.409/0.001	4.643/0.001
	5.114/0.000				
Atom S 3	V_{WB}	25.254 Å^3			
	Zähligkeit	4			
	$\sum s$	1.985			
Abstand $[Å]/s$	2.049/0.957	2.068/0.906	3.262/0.030	3.323/0.025	3.485/0.016
	3.608/0.011	3.732/0.008	3.745/0.008	3.790/0.007	3.888/0.005
	4.041/0.003	4.050/0.003	4.133/0.003	4.134/0.003	4.627/0.001
Atom S 4	V_{WB}	24.875 Å^3			
	Zähligkeit	4			
- 0	$\sum s$	1.977			
Abstand $[Å]/s$	2.049/0.957	2.072/0.896	3.268/0.030	3.298/0.027	3.467/0.017
	3.624/0.011	3.719/0.008	3.736/0.008	3.745/0.008	3.887/0.005
	3.893/0.005	3.905/0.005	4.404/0.001	4.739/0.000	4.959/0.000
Atom S 5	V_{WB}	26.200 A^3			
	Zähligkeit	4			
	$\sum s$	1.988			
Abstand [A]/s	2.037/0.990	2.072/0.896	3.323/0.025	3.327/0.025	3.524/0.014
	3.681/0.009	3.714/0.008	3.873/0.005	3.999/0.004	4.067/0.003
	4.097/0.003	4.099/0.003	4.108/0.003	5.091/0.000	
Atom S 6	V_{WB}	25.093 A ³			
	Zähligkeit	4			
	$\sum s$	1.907	2 202 12 22	0.01 - 10.00	0.10-10.01
Abstand [A]/s	2.037/0.990	2.111/0.802	3.298/0.027	3.315/0.026	3.465/0.017
	3.596/0.012	3.638/0.010	3.732/0.008	3.777/0.007	4.025/0.003
	4.258/0.002	4.284/0.002	4.301/0.002	4.643/0.001	

Atom S 7	V_{WB}	27.707 Å^3			
	Zähligkeit	4			
	$\sum s$	1.876			
Abstand [Å]/s	2.039/0.984	2.111/0.802	3.320/0.026	3.327/0.025	3.611/0.011
	3.745/0.008	3.793/0.007	4.013/0.004	4.102/0.003	4.117/0.003
	4.197/0.002	4.409/0.001	4.596/0.001	4.647/0.001	4.649/0.001
Atom S 8	V_{WB}	25.626 Å^3			
	Zähligkeit	4			
	$\sum s$	2.033			
Abstand [Å]/s	2.039/0.984	2.056/0.938	3.286/0.028	3.315/0.026	3.637/0.010
	3.641/0.010	3.681/0.009	3.697/0.009	3.780/0.007	3.967/0.004
	4.050/0.003	4.129/0.003	4.548/0.001	4.605/0.001	4.737/0.000
	4.966/0.000				
Atom S 9	V_{WB}	25.872 Å^3			
	Zähligkeit	4			
	$\sum s$	2.015			
Abstand $[Å]/s$	2.047/0.962	2.056/0.938	3.263/0.030	3.320/0.026	3.421/0.019
	3.777/0.007	3.796/0.007	3.815/0.006	3.862/0.005	3.873/0.005
	3.990/0.004	4.091/0.003	4.133/0.003	4.596/0.001	4.934/0.000
	0.000/0.000			1.000/0.001	
Atom S 10	V _{WB}	24.677 Å ³		100070001	
Atom S 10	V _{WB} Zähligkeit	24.677 Å ³ 4		1000701001	
Atom S 10	$ \begin{array}{c} \mathbf{V}_{WB} \\ \mathbf{Z}\ddot{\mathbf{a}}\mathbf{h}\mathbf{lig}\mathbf{k}\mathbf{e}\mathbf{i}\mathbf{t} \\ \sum s \end{array} $	24.677 Å ³ 4 2.029			
Atom S 10 Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.047/0.962	24.677 Å ³ 4 2.029 2.055/0.940	3.247/0.031	3.286/0.028	3.465/0.017
Atom S 10 Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016	24.677 Å ³ 4 2.029 2.055/0.940 3.608/0.011	3.247/0.031 3.777/0.007	3.286/0.028 3.893/0.005	3.465/0.017 4.097/0.003
Atom S 10 Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016 4.147/0.002	24.677 Å ³ 4 2.029 2.055/0.940 3.608/0.011 4.169/0.002	3.247/0.031 3.777/0.007 4.261/0.002	3.286/0.028 3.893/0.005 4.346/0.001	3.465/0.017 4.097/0.003
Atom S 10 Abstand [Å]/s Atom S 11	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016 4.147/0.002 V_{WB}	24.677 Å ³ 4 2.029 2.055/0.940 3.608/0.011 4.169/0.002 25.296 Å ³	3.247/0.031 3.777/0.007 4.261/0.002	3.286/0.028 3.893/0.005 4.346/0.001	3.465/0.017 4.097/0.003
Atom S 10 Abstand [Å]/s Atom S 11	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016 4.147/0.002 V_{WB} Zähligkeit	24.677 Å ³ 4 2.029 2.055/0.940 3.608/0.011 4.169/0.002 25.296 Å ³ 4	3.247/0.031 3.777/0.007 4.261/0.002	3.286/0.028 3.893/0.005 4.346/0.001	3.465/0.017 4.097/0.003
Atom S 10 Abstand [Å]/s Atom S 11	$V_{WB} Z \ddot{a} h ligkeit \sum s 2.047/0.962 3.484/0.016 4.147/0.002 V_{WB} Z \ddot{a} h ligkeit \sum s 2.047/0.002 V_{WB} Z \ddot{a} h ligkeit D S S 2.047/0.002 Z S 2.047/$	24.677 Å ³ 4 2.029 2.055/0.940 3.608/0.011 4.169/0.002 25.296 Å ³ 4 2.022	3.247/0.031 3.777/0.007 4.261/0.002	3.286/0.028 3.893/0.005 4.346/0.001	3.465/0.017 4.097/0.003
Atom S 10 Abstand [Å]/s Atom S 11 Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016 4.147/0.002 V_{WB} Zähligkeit $\sum s$ 2.049/0.957	24.677 Å ³ 4 2.029 2.055/0.940 3.608/0.011 4.169/0.002 25.296 Å ³ 4 2.022 2.055/0.940	3.247/0.031 3.777/0.007 4.261/0.002 3.205/0.035	3.286/0.028 3.893/0.005 4.346/0.001 3.263/0.030	3.465/0.017 4.097/0.003 3.383/0.021
Atom S 10 Abstand [Å]/s Atom S 11 Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016 4.147/0.002 V_{WB} Zähligkeit $\sum s$ 2.049/0.957 3.632/0.010	24.677 Å ³ 4 2.029 2.055/0.940 3.608/0.011 4.169/0.002 25.296 Å ³ 4 2.022 2.055/0.940 3.719/0.008	3.247/0.031 3.777/0.007 4.261/0.002 3.205/0.035 3.802/0.006	3.286/0.028 3.893/0.005 4.346/0.001 3.263/0.030 4.049/0.003	3.465/0.017 4.097/0.003 3.383/0.021 4.129/0.003
Atom S 10 Abstand [Å]/s Atom S 11 Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016 4.147/0.002 V_{WB} Zähligkeit $\sum s$ 2.049/0.957 3.632/0.010 4.258/0.002	24.677 Å ³ 4 2.029 2.055/0.940 3.608/0.011 4.169/0.002 25.296 Å ³ 4 2.022 2.055/0.940 3.719/0.008 4.371/0.001 5.10/0.001	3.247/0.031 3.777/0.007 4.261/0.002 3.205/0.035 3.802/0.006 4.401/0.001	3.286/0.028 3.893/0.005 4.346/0.001 3.263/0.030 4.049/0.003 4.404/0.001	3.465/0.017 4.097/0.003 3.383/0.021 4.129/0.003 4.475/0.001
Atom S 10 Abstand [Å]/s Atom S 11 Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016 4.147/0.002 V_{WB} Zähligkeit $\sum s$ 2.049/0.957 3.632/0.010 4.258/0.002 4.647/0.001	$\begin{array}{r} 24.677 \text{ Å}^{3} \\ 4 \\ 2.029 \\ 2.055/0.940 \\ 3.608/0.011 \\ 4.169/0.002 \\ 25.296 \text{ Å}^{3} \\ 4 \\ 2.022 \\ 2.055/0.940 \\ 3.719/0.008 \\ 4.371/0.001 \\ 5.104/0.000 \end{array}$	3.247/0.031 3.777/0.007 4.261/0.002 3.205/0.035 3.802/0.006 4.401/0.001	3.286/0.028 3.893/0.005 4.346/0.001 3.263/0.030 4.049/0.003 4.404/0.001	3.465/0.017 4.097/0.003 3.383/0.021 4.129/0.003 4.475/0.001
Atom S 10 Abstand [Å]/s Atom S 11 Abstand [Å]/s Atom S 12	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016 4.147/0.002 V_{WB} Zähligkeit $\sum s$ 2.049/0.957 3.632/0.010 4.258/0.002 4.647/0.001 V_{WB}	24.677 Å ³ 4 2.029 2.055/0.940 3.608/0.011 4.169/0.002 25.296 Å ³ 4 2.022 2.055/0.940 3.719/0.008 4.371/0.001 5.104/0.000 24.820 Å ³ 4	3.247/0.031 3.777/0.007 4.261/0.002 3.205/0.035 3.802/0.006 4.401/0.001	3.286/0.028 3.893/0.005 4.346/0.001 3.263/0.030 4.049/0.003 4.404/0.001	3.465/0.017 4.097/0.003 3.383/0.021 4.129/0.003 4.475/0.001
Atom S 10 Abstand [Å]/s Atom S 11 Abstand [Å]/s Atom S 12	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016 4.147/0.002 V_{WB} Zähligkeit $\sum s$ 2.049/0.957 3.632/0.010 4.258/0.002 4.647/0.001 V_{WB} Zähligkeit	24.677 Å ³ 4 2.029 2.055/0.940 3.608/0.011 4.169/0.002 25.296 Å ³ 4 2.022 2.055/0.940 3.719/0.008 4.371/0.001 5.104/0.000 24.820 Å ³ 4 1.005	3.247/0.031 3.777/0.007 4.261/0.002 3.205/0.035 3.802/0.006 4.401/0.001	3.286/0.028 3.893/0.005 4.346/0.001 3.263/0.030 4.049/0.003 4.404/0.001	3.465/0.017 4.097/0.003 3.383/0.021 4.129/0.003 4.475/0.001
Atom S 10 Abstand [Å]/s Atom S 11 Abstand [Å]/s Atom S 12	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016 4.147/0.002 V_{WB} Zähligkeit $\sum s$ 2.049/0.957 3.632/0.010 4.258/0.002 4.647/0.001 V_{WB} Zähligkeit $\sum s$ 2.045/0.002	24.677 Å ³ 4 2.029 2.055/0.940 3.608/0.011 4.169/0.002 25.296 Å ³ 4 2.022 2.055/0.940 3.719/0.008 4.371/0.001 5.104/0.000 24.820 Å ³ 4 1.995 2.061/0.024	3.247/0.031 3.777/0.007 4.261/0.002 3.205/0.035 3.802/0.006 4.401/0.001	3.286/0.028 3.893/0.005 4.346/0.001 3.263/0.030 4.049/0.003 4.404/0.001	3.465/0.017 4.097/0.003 3.383/0.021 4.129/0.003 4.475/0.001
Atom S 10 Abstand [Å]/s Atom S 11 Abstand [Å]/s Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016 4.147/0.002 V_{WB} Zähligkeit $\sum s$ 2.049/0.957 3.632/0.010 4.258/0.002 4.647/0.001 V_{WB} Zähligkeit $\sum s$ 2.057/0.935 9.561/0.012	24.677 Å ³ 4 2.029 2.055/0.940 3.608/0.011 4.169/0.002 25.296 Å ³ 4 2.022 2.055/0.940 3.719/0.008 4.371/0.001 5.104/0.000 24.820 Å ³ 4 1.995 2.061/0.924 2.541/0.015	3.247/0.031 3.777/0.007 4.261/0.002 3.205/0.035 3.802/0.006 4.401/0.001 3.242/0.032	3.286/0.028 3.893/0.005 4.346/0.001 3.263/0.030 4.049/0.003 4.404/0.001 3.268/0.030	3.465/0.017 4.097/0.003 3.383/0.021 4.129/0.003 4.475/0.001 3.383/0.021
Atom S 10 Abstand [Å]/s Atom S 11 Abstand [Å]/s Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.047/0.962 3.484/0.016 4.147/0.002 V_{WB} Zähligkeit $\sum s$ 2.049/0.957 3.632/0.010 4.258/0.002 4.647/0.001 V_{WB} Zähligkeit $\sum s$ 2.057/0.935 3.561/0.013 4.025/0.002	$\begin{array}{r} 24.677 \text{ Å}^{3} \\ 4 \\ 2.029 \\ 2.055/0.940 \\ 3.608/0.011 \\ 4.169/0.002 \\ 25.296 \text{ Å}^{3} \\ 4 \\ 2.022 \\ 2.055/0.940 \\ 3.719/0.008 \\ 4.371/0.001 \\ 5.104/0.000 \\ 24.820 \text{ Å}^{3} \\ 4 \\ 1.995 \\ 2.061/0.924 \\ 3.561/0.013 \\ 4.1000 \\ 3.602 \\ 3.6$	3.247/0.031 3.777/0.007 4.261/0.002 3.205/0.035 3.802/0.006 4.401/0.001 3.242/0.032 3.772/0.007	3.286/0.028 3.893/0.005 4.346/0.001 3.263/0.030 4.049/0.003 4.404/0.001 3.268/0.030 3.835/0.006	3.465/0.017 4.097/0.003 3.383/0.021 4.129/0.003 4.475/0.001 3.383/0.021 3.929/0.004

Atom S 13	V_{WB}	25.475 Å^3			
	Zähligkeit	4			
	$\sum s$	1.974			
Abstand [Å]/s	2.061/0.924	2.061/0.924	3.230/0.033	3.268/0.030	3.421/0.019
	3.611/0.011	3.655/0.010	3.796/0.007	3.967/0.004	4.067/0.003
	4.083/0.003	4.091/0.003	4.301/0.002	4.475/0.001	4.689/0.001
Atom S 14	V _{WB}	25.542 Å ³	,	,	,
	Zähligkeit	4			
	$\sum s$	2.016			
Abstand [Å]/s	2.042/0.976	2.061/0.924	3.268/0.030	3.309/0.026	3.596/0.012
	3.694/0.009	3.697/0.009	3.721/0.008	3.777/0.007	3.990/0.004
	4.049/0.003	4.117/0.003	4.134/0.003	4.142/0.002	4.570/0.001
	5.114/0.000		·		
Atom S 15	V _{WB}	24.878 Å^3			
	Zähligkeit	4			
	$\sum s$	1.988			
Abstand [Å]/s	2.042/0.976	2.075/0.888	3.268/0.030	3.314/0.026	3.484/0.016
	3.596/0.012	3.677/0.009	3.714/0.008	3.772/0.007	3.887/0.005
	3.929/0.004	3.951/0.004	4.431/0.001	4.662/0.001	4.966/0.000
Atom S 16	V_{WB}	26.287 Å^3			
	Zähligkeit	4			
	$\sum s$	1.979			
Abstand [Å]/s	2.038/0.987	2.075/0.888	3.309/0.026	3.323/0.025	3.561/0.013
	3.624/0.011	3.736/0.008	3.855/0.006	4.013/0.004	4.078/0.003
	4.091/0.003	4.091/0.003	4.221/0.002	4.605/0.001	5.104/0.000
Atom S 17	V_{WB}	24.961 Å^3			
	Zähligkeit	4			
	$\sum s$	1.982			
Abstand $[Å]/s$	2.038/0.987	2.078/0.881	3.314/0.026	3.319/0.026	3.459/0.017
	3.624/0.011	3.632/0.010	3.694/0.009	3.772/0.007	3.997/0.004
	4.261/0.002	4.324/0.001	4.345/0.001	4.689/0.001	
Atom S 18	V_{WB}	27.409 Å^3			
	Zähligkeit	4			
	$\sum s$	1.980			
Abstand $[Å]/s$	2.030/1.010	2.078/0.881	3.323/0.025	$3.324/0.0\overline{25}$	3.633/0.010
	3.721/0.008	3.796/0.007	3.999/0.004	4.083/0.003	4.134/0.003
	4.181/0.002	4.475/0.001	4.617/0.001	4.719/0.000	4.737/0.000

Atom S 19	V_{WB}	25.916 Å^3			
	Zähligkeit	4			
	$\sum s$	2.041			
Abstand [Å]/s	2.030/1.010	2.062/0.922	3.298/0.027	3.319/0.026	3.561/0.013
	3.624/0.011	3.655/0.010	3.802/0.006	3.888/0.005	4.047/0.003
	4.099/0.003	4.134/0.003	4.195/0.002	4.649/0.001	4.959/0.000
Atom S 20	V_{WB}	25.193 Å^3			
	Zähligkeit	4			
	$\sum s$	2.026			
Abstand [Å]/s	2.042/0.976	2.062/0.922	3.263/0.030	3.324/0.025	3.385/0.021
	3.485/0.016	3.772/0.007	3.793/0.007	3.796/0.007	3.835/0.006
	3.855/0.006	4.142/0.002	4.548/0.001	4.617/0.001	4.934/0.000
Atom S 21	V_{WB}	24.666 Å^3			
	Zähligkeit	4			
	$\sum s$	2.040			
Abstand [Å]/s	2.042/0.976	2.056/0.938	3.242/0.032	3.298/0.027	3.459/0.017
	3.467/0.017	3.596/0.012	3.790/0.007	3.951/0.004	4.078/0.003
	4.123/0.003	4.169/0.002	4.284/0.002	4.401/0.001	
Atom S 22	V_{WB}	25.373 Å^3			
	Zähligkeit	4			
	$\sum s$	1.994			
Abstand [Å]/s	2.056/0.938	2.057/0.935	3.230/0.033	3.263/0.030	3.412/0.020
	3.638/0.010	3.677/0.009	3.780/0.007	4.041/0.003	4.195/0.002
	4.345/0.001	4.346/0.001	4.371/0.001	4.431/0.001	4.475/0.001
	4.719/0.000	5.091/0.000	·	·	·

Element	S_{12}		[Steidel, Steudel,	Kutoglu, 1981]	
	W	2.00			
	V_X	26.046 Å^3			
	f_X	1.941			
	V_D	13.419 Å^3			
BG-Parameter	b	0.350			
	R_1	2.032 Å			
Atom S 1	V_{WB}	26.335 Å^3			
	Zähligkeit	4			
	$\sum s$	1.966			
Abstand [Å]/s	2.057/0.931	2.057/0.931	3.309/0.026	3.309/0.026	3.684/0.009
	3.684/0.009	3.756/0.007	3.756/0.007	3.979/0.004	3.979/0.004
	4.083/0.003	4.083/0.003	4.254/0.002	4.254/0.002	4.668/0.001
	4.668/0.001	4.725/0.000	4.725/0.000		
Atom S 2	V_{WB}	25.483 Å^3			
	Zähligkeit	8			
	$\sum s$	2.006			
Abstand [Å]/s	2.048/0.955	2.057/0.931	3.274/0.029	3.286/0.028	3.405/0.020
	3.470/0.017	3.836/0.006	3.979/0.004	4.041/0.003	4.073/0.003
	4.083/0.003	4.183/0.002	4.199/0.002	4.246/0.002	4.537/0.001
	4.537/0.001	5.226/0.000	5.309/0.000		
Atom S 3	V_{WB}	25.672 Å^3			
	Zähligkeit	8			
	$\sum s$	2.012			
Abstand [Å]/s	2.048/0.955	2.052/0.944	3.298/0.027	3.309/0.026	3.351/0.023
	3.684/0.009	3.756/0.007	3.836/0.006	3.955/0.004	4.041/0.003
	4.199/0.002	4.229/0.002	4.246/0.002	4.725/0.000	4.725/0.000
Atom S 4	V_{WB}	27.634 Å^3			
	Zähligkeit	4			
	$\sum s$	1.999			
Abstand $[Å]/s$	2.052/0.944	2.052/0.944	3.286/0.028	3.286/0.028	3.470/0.017
	3.470/0.017	3.955/0.004	3.955/0.004	4.183/0.002	4.183/0.002
	4.229/0.002	4.229/0.002	4.254/0.002	4.254/0.002	4.668/0.001
	4.668/0.001	4.700/0.000	4.867/0.000		

Element	S_{13}		[Steudel, Steidel,	Sandow, 1986]	
	W	2.00			
	V_X	25.401 Å^3			
	f_X	1.909			
	V_D	13.308 Å^3			
BG-Parameter	b	0.350			
	R_1	2.026 Å			
Atom S 1	V_{WB}	24.815 Å^3			
	Zähligkeit	4			
	$\sum s$	1.958			
Abstand [Å]/s	2.051/0.932	2.058/0.913	3.254/0.030	3.286/0.027	3.546/0.013
	3.556/0.013	3.678/0.009	3.894/0.005	3.911/0.005	3.976/0.004
	3.995/0.004	4.052/0.003	4.214/0.002	5.022/0.000	
Atom S 2	V_{WB}	25.118 Å^3			
	Zähligkeit	4			
	$\sum s$	1.956			
Abstand [Å]/s	2.056/0.919	2.058/0.913	3.261/0.029	3.293/0.027	3.404/0.019
	3.501/0.015	3.655/0.009	3.901/0.005	3.961/0.004	4.018/0.003
	4.091/0.003	4.127/0.002	4.131/0.002	4.160/0.002	4.274/0.002
	4.509/0.001				
Atom S 3	V_{WB}	24.927 Å^3			
	Zähligkeit	4			
	$\sum s$	1.951			
Abstand $[Å]/s$	2.056/0.919	2.059/0.911	3.275/0.028	3.286/0.027	3.445/0.017
	3.513/0.014	3.644/0.010	3.813/0.006	3.883/0.005	3.931/0.004
	4.031/0.003	4.107/0.003	4.199/0.002	4.241/0.002	5.192/0.000
Atom S 4	V_{WB}	24.501 A^3			
	Zähligkeit	4			
	$\sum s$	1.986	0.000 /0.000	0.001 /0.000	
Abstand [A]/s	2.045/0.948	2.059/0.911	3.229/0.032	3.261/0.029	3.376/0.021
	3.475/0.016	3.536/0.013	3.829/0.006	4.016/0.003	4.101/0.003
	4.157/0.002	4.241/0.002	5.131/0.000		
Atom S 5	V_{WB}	26.445 A ³			
	Zähligkeit	4			
	$\sum s$	1.950	2 275 /0 020	2 201 /0 020	9 401 /0 010
Abstand [A]/s	2.045/0.948	2.068/0.888	3.275/0.028	3.301/0.026	3.421/0.018
	3.330/0.013	3.821/0.000	3.931/0.004	4.070/0.003	4.091/0.003
	4.112/0.003	4.121/0.002	4.141/0.002	4.240/0.002	4.397/0.001
	4.407/0.001	$\frac{4.742}{0.000}$	4.872/0.000	4.897/0.000	
Atom 5 6	V_{WB}	20.228 A			
	\sum_{α}	4 9 101			
Abstand [Å]/a	2°	2.101	3 220 /0 022	3 353 /0 000	3 560 /0 019
Abstand [A]/S	3 566 /0 019	∠.000/0.000 3.658 /0.000	3 702 /0 006	3 001 /0 005	3.075 /0.012
	<i>4</i> 000/0.012	3.030/0.009	3.792/0.000	J. JUL / 0.000	1 860 /0 000
	4.029/0.003	4.044/0.003	4.214/0.002	4.240/0.002	4.009/0.000
	0.132/0.000				

Atom S 7	V _{WB}	24.291 Å^3			
	Zähligkeit	4			
	$\sum s$	2.093			
Abstand [Å]/s	1.993/1.100	2.074/0.872	3.292/0.027	3.301/0.026	3.491/0.015
	3.556/0.013	3.596/0.011	3.668/0.009	3.711/0.008	3.958/0.004
	4.063/0.003	4.302/0.001	4.405/0.001	4.411/0.001	4.471/0.001
	5.192 / 0.000	,	, 	/	/
Atom S 8	V _{WB}	23.814 Å^3			
	Zähligkeit	4			
	$\sum s$	2.164			
Abstand [Å]/s	1.976/1.155	2.074/0.872	$\overline{3.251}/0.030$	$\overline{3.353}/0.022$	3.376/0.021
	3.396/0.020	3.416/0.019	3.600/0.011	3.907/0.005	4.076/0.003
	4.141/0.002	4.234/0.002	4.332/0.001	4.497/0.001	5.464/0.000
Atom S 9	V_{WB}	26.103 Å ³			
	Zähligkeit	4			
	$\sum s$	2.146			
\overline{A} bstand $[A]/s$	1.976/1.155	2.073/0.875	3.229/0.032	$\overline{3.292}/0.027$	3.396/0.020
	3.566/0.012	3.670/0.009	4.027/0.003	4.101/0.003	4.112/0.003
	4.126/0.002	4.299/0.002	4.397/0.001	4.411/0.001	4.557/0.001
	4.579/0.001	4.588/0.001			
Atom S 10	V_{WB}	$2\overline{5.688}$ Å ³			
	Zähligkeit	4			
	$\sum s$	1.940			
Abstand $[A]/s$	2.045/0.948	2.073/0.875	3.251/0.030	3.257/0.030	3.390/0.020
	3.622/0.010	3.814/0.006	3.926/0.004	3.958/0.004	3.971/0.004
	4.156/0.002	4.240/0.002	4.384/0.001	4.440/0.001	4.543/0.001
~	4.545/0.001	4.557/0.001			
Atom S 11	V_{WB}	26.481 A ³			
	Zähligkeit	4			
	$\sum s$	1.992	2 222 /0 222	2 200 /0 027	2 = 40 /0 012
Abstand [A]/s	2.045/0.948	2.049/0.937	3.229/0.032	3.290/0.027	3.548/0.013
	3.662/0.009	3.678/0.009	3.792/0.006	4.092/0.003	4.131/0.002
	4.293/0.002	4.384/0.001	4.405/0.001	4.589/0.001	4.622/0.001
A.L. C. 10	4.803/0.000	5.131/0.000			
Atom S 12	V_{WB}	24.312 A ³			
	Zähligkeit	4			
A1 / 1 [Å] /	$\sum s$	2.020	2054/0020	2 057 /0 020	2 200 /0 020
Abstand $[A]/s$	2.043/0.953	2.049/0.937	3.254/0.030	3.257/0.030	3.390/0.020
	3.659/0.009	3.002/0.009	3.739/0.007	3.776/0.007	3.781/0.007
	4.039/0.003	4.126/0.002	4.160/0.002	4.304/0.001	4.374/0.001
	4.986/0.000				

Atom S 13	V _{WB}	26.948 Å ³			
	Zähligkeit	4			
	$\sum s$	1.985			
Abstand [Å]/s	2.043/0.953	2.051/0.932	3.290/0.027	3.293/0.027	3.601/0.011
2 3/	3.730/0.008	3.818/0.006	3.844/0.006	4.027/0.003	4.044/0.003
	4.157/0.002	4.199/0.002	4.251/0.002	4.302/0.001	4.316/0.001
	4.697/0.000	4.897/0.000	5.132'/0.000	5.464/0.000	/
Atom S 14	V _{WB}	26.283 Å ³	,	,	
	Zähligkeit	4			
	$\sum s$	1.970			
Abstand [Å]/s	2.048/0.940	2.051/0.932	3.287/0.027	3.304/0.026	3.560/0.012
	3.719/0.008	3.739/0.007	3.844/0.006	3.963/0.004	4.156/0.002
	4.273/0.002	4.274/0.002	4.293/0.002	4.449/0.001	4.803/0.000
Atom S 15	V_{WB}	25.446 Å^3			
	Zähligkeit	4			
	$\sum s$	1.983			
Abstand [Å]/s	2.049/0.937	2.051/0.932	3.293/0.027	3.311/0.025	3.435/0.018
	3.548/0.013	3.658/0.009	3.894/0.005	3.984/0.004	4.032/0.003
	4.063/0.003	4.251/0.002	4.269/0.002	4.273/0.002	4.374/0.001
	4.466/0.001	4.543/0.001			
Atom S 16	V_{WB}	24.445 Å^3			
	Zähligkeit	4			
	$\sum s$	1.969			
Abstand [Å]/s	2.049/0.937	2.059/0.911	3.271/0.028	3.287/0.027	3.490/0.015
	3.664/0.009	3.678/0.009	3.735/0.008	3.781/0.007	3.926/0.004
	4.012/0.003	4.018/0.003	4.124/0.002	4.207/0.002	4.316/0.001
	4.449/0.001	0.0			
Atom S 17	V_{WB}	25.831 A^3			
	Zähligkeit	4			
	$\sum s$	1.955			
Abstand $[A]/s$	2.050/0.934	2.059/0.911	3.232/0.032	3.293/0.027	3.536/0.013
	3.730/0.008	3.814/0.006	3.907/0.005	3.961/0.004	3.988/0.004
	4.034/0.003	4.107/0.003	4.164/0.002	4.240/0.002	4.299/0.002
	4.550/0.001	2 4 6 4 6 8 2			
Atom S 18	V_{WB}	24.649 A ³			
	Zähligkeit	4			
A	$\sum s$	1.937	0.051/0.020	0.000/0.000	0.404/0.010
					· · · · · · · · · · · · · · · · · · ·
Abstand $[A]/s$	2.050/0.934	2.073/0.875	3.271/0.028	3.282/0.028	3.404/0.019
Abstand [A]/s	2.050/0.934 3.445/0.017	2.073/0.875 3.719/0.008	3.271/0.028 3.821/0.006	3.282/0.028 3.829/0.006	3.404/0.019 3.883/0.005

Atom S 19	V_{WB}	26.166 Å^3			
	Zähligkeit	4			
	$\sum s$	2.021			
Abstand [Å]/s	2.015/1.033	2.073/0.875	3.232/0.032	3.332/0.024	3.435/0.018
	3.601/0.011	3.646/0.010	3.776/0.007	3.963/0.004	3.984/0.004
	4.163/0.002	4.557/0.001	4.579/0.001	4.589/0.001	$4.869^{\prime}/0.000$
	4.871/0.000	4.872/0.000	7	7	/
Atom S 20	V _{WB}	28.732 Å ³			
	Zähligkeit	4			
	$\sum s$	1.909			
Abstand [Å]/s	2.015/1.033	2.112/0.783	3.282/0.028	3.293/0.027	3.670/0.009
	3.711/0.008	3.818/0.006	3.992/0.004	4.031/0.003	4.100/0.003
	4.234/0.002	4.338/0.001	4.407/0.001	4.545/0.001	4.545/0.001
	4.742/0.000	4.778/0.000	5.022/0.000	,	,
Atom S 21	V _{WB}	24.892 Å ³	·		
	Zähligkeit	4			
	$\sum s$	2.001			
Abstand [Å]/s	1.994/1.097	2.112/0.783	3.284/0.027	3.332/0.024	3.475/0.016
	3.536/0.013	3.596/0.011	3.644/0.010	3.730/0.008	3.975/0.004
	3.976/0.004	4.130/0.002	4.497/0.001	4.545/0.001	4.550/0.001
Atom S 22	V _{WB}	24.731 Å^3	·	·	·
	Zähligkeit	4			
	$\sum s$	2.106			
Abstand [Å]/s	1.994/1.097	2.072/0.877	3.210/0.034	3.293/0.027	3.416/0.019
	3.435/0.018	3.491/0.015	3.792/0.006	3.988/0.004	4.016/0.003
	4.100/0.003	4.121/0.002	4.351/0.001		
Atom S 23	V_{WB}	25.328 Å^3			
	Zähligkeit	4			
	$\sum s$	1.986			
Abstand [Å]/s	2.033/0.981	2.072/0.877	3.239/0.031	3.284/0.027	3.421/0.018
	3.513/0.014	3.655/0.009	3.730/0.008	3.911/0.005	3.992/0.004
	4.012/0.003	4.124/0.002	4.163/0.002	4.440/0.001	4.471/0.001
	4.557/0.001	4.778/0.000			
Atom S 24	V_{WB}	24.428 Å^3			
	Zähligkeit	4			
	$\sum s$	2.022			
Abstand $[Å]/s$	2.033/0.981	2.056/0.919	3.210/0.034	3.276/0.028	3.490/0.015
	3.622/0.010	3.646/0.010	3.659/0.009	3.678/0.009	4.034/0.003
	4.338/0.001	4.466/0.001	4.509/0.001	4.588/0.001	4.986/0.000

Atom S 25	V_{WB}	25.270 Å^3			
	Zähligkeit	4			
	$\sum s$	1.939			
Abstand [Å]/s	2.056/0.919	2.060/0.908	3.239/0.031	3.304/0.026	3.501/0.015
	3.546/0.013	3.664/0.009	3.995/0.004	4.012/0.003	4.059/0.003
	4.092/0.003	4.127/0.002	4.269/0.002	4.304/0.001	
Atom S 26	V_{WB}	25.564 Å^3			
	Zähligkeit	4			
	$\sum s$	1.959			
Abstand [Å]/s	2.048/0.940	2.060/0.908	3.276/0.028	3.311/0.025	3.435/0.018
	3.668/0.009	3.735/0.008	3.792/0.006	3.971/0.004	4.012/0.003
	4.052/0.003	4.164/0.002	4.207/0.002	4.332/0.001	4.622/0.001
	4.871/0.000				

Element	$\alpha - S_{18}$		[Schmidt et al., 1	974]	
	W	2.00			
	V_X	25.481 Å^3			
	f_X	1.890			
	V_D	13.485 Å^3			
BG-Parameter	b	0.351			
	R_1	$2.035~{\rm \AA}$			
Atom S 1	V_{WB}	24.876 Å^3			
	Zähligkeit	4			
	$\sum s$	2.024			
Abstand [Å]/s	2.052/0.953	2.054/0.948	3.255/0.031	3.271/0.030	3.492/0.016
	3.607/0.011	3.722/0.008	3.772/0.007	3.866/0.005	3.962/0.004
	4.058/0.003	4.177/0.002	4.193/0.002	4.236/0.002	4.548/0.001
Atom S 2	V_{WB}	25.034 Å^3			
	Zähligkeit	4			
	$\sum s$	2.019			
Abstand [Å]/s	2.052/0.953	2.054/0.948	3.269/0.030	3.315/0.026	3.475/0.017
	3.602/0.012	3.653/0.010	3.675/0.009	3.885/0.005	3.976/0.004
	4.036/0.003	4.360/0.001	4.678/0.001	4.865/0.000	
Atom S 3	V_{WB}	26.903 Å^3			
	Zähligkeit	4			
	$\sum s$	1.976			
Abstand [Å]/s	2.054/0.948	2.061/0.929	3.271/0.030	3.315/0.026	3.594/0.012
	3.772/0.007	3.775/0.007	3.880/0.005	3.955/0.004	3.978/0.004
	4.267/0.002	4.405/0.001	4.596/0.001	4.966/0.000	4.991/0.000
Atom S 4	V_{WB}	25.730 Å^3			
	Zähligkeit	4			
	$\sum s$	1.974			
Abstand $[Å]/s$	2.061/0.929	2.061/0.929	3.315/0.026	3.321/0.026	3.431/0.019
	3.626/0.011	3.740/0.008	3.791/0.007	3.828/0.006	4.055/0.003
	4.124/0.003	4.236/0.002	4.248/0.002	4.416/0.001	4.429/0.001
	4.489/0.001	4.511/0.001	4.753/0.000		
Atom S 5	V_{WB}	25.805 Å^3			
	Zähligkeit	4			
	$\sum s$	1.966			
Abstand $[Å]/s$	2.061/0.929	2.061/0.929	3.280/0.029	3.315/0.026	3.583/0.012
	3.653/0.010	3.673/0.009	3.755/0.007	3.971/0.004	4.045/0.003
	4.177/0.002	4.235/0.002	4.405/0.001	4.516/0.001	4.829/0.000
	5.168/0.000	0.8			
Atom S 6	V_{WB}	27.228 Å^3			
	Zähligkeit	4			
	$\sum s$	1.970			
Abstand $[A]/s$	2.055/0.945	2.061/0.929	3.320/0.026	3.321/0.026	3.734/0.008
	3.772/0.007	3.775/0.007	3.880/0.005	3.976/0.004	4.047/0.003
	4.116/0.003	4.121/0.003	4.243/0.002	4.411/0.001	4.511/0.001
	4.780/0.000	4.780/0.000			

Atom S 7	V_{WB}	26.034 Å^3			
	Zähligkeit	4			
	$\sum s$	2.006			
Abstand [Å]/s	2.054/0.948	2.055/0.945	3.271/0.030	3.280/0.029	3.596/0.012
	3.601/0.012	3.775/0.007	3.919/0.005	3.941/0.004	3.967/0.004
	3.978/0.004	4.116/0.003	4.124/0.003	4.416/0.001	,
Atom S 8	V _{WB}	24.087 Å ³	·	·	
	Zähligkeit	4			
	$\sum s$	2.026			
Abstand [Å]/s	2.054/0.948	2.055/0.945	3.269/0.030	3.320/0.026	3.505/0.015
	3.527/0.014	3.543/0.014	3.564/0.013	3.832/0.006	3.839/0.006
	4.032/0.003	4.058/0.003	4.261/0.002	4.360/0.001	5.168/0.000
Atom S 9	V_{WB}	24.763 Å^3			
	Zähligkeit	4			
	$\sum s$	2.011			
Abstand [Å]/s	2.055/0.945	2.059/0.935	3.271/0.030	3.278/0.029	3.411/0.020
	3.475/0.017	3.772/0.007	3.778/0.007	3.866/0.005	3.971/0.004
	4.080/0.003	4.121/0.003	4.184/0.002	4.239/0.002	4.343/0.001
	4.572/0.001	4.829/0.000	4.966/0.000		
Atom S 10	V_{WB}	25.121 Å^3			
	Zähligkeit	4			
	$\sum s$	2.002			
Abstand [Å]/s	2.053/0.951	2.059/0.935	3.269/0.030	3.279/0.029	3.543/0.014
	3.607/0.011	3.755/0.007	3.778/0.007	3.883/0.005	3.885/0.005
	4.031/0.003	4.243/0.002	4.263/0.002	4.572/0.001	
Atom S 11	V_{WB}	25.147 Å^3			
	Zähligkeit	4			
	$\sum s$	2.010			
Abstand $[Å]/s$	2.053/0.951	2.056/0.943	3.278/0.029	3.333/0.025	3.485/0.016
	3.583/0.012	3.606/0.011	3.740/0.008	3.962/0.004	3.985/0.004
	4.032/0.003	4.289/0.002	4.370/0.001	4.633/0.001	4.678/0.001
	4.865/0.000				
Atom S 12	V_{WB}	25.982 Å^3			
	Zähligkeit	4			
	$\sum s$	1.981			
Abstand [Å]/s	2.056/0.943	2.060/0.932	3.279/0.029	3.307/0.027	3.564/0.013
	3.685/0.009	3.791/0.007	3.850/0.006	3.857/0.006	3.967/0.004
	4.335/0.001	4.398/0.001	4.422/0.001	4.429/0.001	4.516/0.001
	4.596/0.001	4.943/0.000			

Atom S 13	V_{WB}	26.600 Å^3			
	Zähligkeit	4			
	$\sum s$	1.963			
Abstand [Å]/s	2.060/0.932	2.061/0.929	3.298/0.027	3.333/0.025	3.573/0.013
	3.675/0.009	3.685/0.009	3.828/0.006	4.070/0.003	4.159/0.002
	4.235/0.002	4.267/0.002	4.343/0.001	4.489/0.001	4.633/0.001
	4.753/0.000	,	,	,	,
Atom S 14	V_{WB}	25.908 Å^3			
	Zähligkeit	4			
	$\sum s$	1.952			
Abstand [Å]/s	2.061/0.929	2.067/0.914	3.283/0.029	3.307/0.027	3.602/0.012
	3.606/0.011	3.722/0.008	3.778/0.007	4.048/0.003	4.055/0.003
	4.159/0.002	4.263/0.002	4.289/0.002	4.335/0.001	4.422/0.001
	4.663/0.001	5.034/0.000			
Atom S 15	V_{WB}	26.229 Å^3			
	Zähligkeit	4			
	$\sum s$	1.980			
Abstand $[Å]/s$	2.052/0.953	2.067/0.914	3.298/0.027	3.311/0.026	3.573/0.013
	3.596/0.012	3.626/0.011	3.857/0.006	3.985/0.004	4.045/0.003
	4.047/0.003	4.147/0.002	4.193/0.002	4.261/0.002	4.398/0.001
	4.991/0.000				
Atom S 16	V_{WB}	24.322 Å^3			
	Zähligkeit	4			
- 0	$\sum s$	2.058			
Abstand $[A]/s$	2.044/0.975	2.052/0.953	3.263/0.030	3.283/0.029	3.431/0.019
	3.527/0.014	3.734/0.008	3.775/0.007	3.850/0.006	3.919/0.005
	3.941/0.004	3.955/0.004	4.070/0.003		
Atom S 17	V_{WB}	23.911 A^3			
	Zähligkeit	4			
	$\sum s$	2.058	0.000	0.011/0.000	0.111.10.000
Abstand [A]/s	2.044/0.975	2.055/0.945	3.255/0.031	3.311/0.026	3.411/0.020
	3.492/0.016	3.594/0.012	3.601/0.012	3.832/0.006	3.839/0.006
	4.031/0.003	4.036/0.003	4.370/0.001	4.411/0.001	5.034/0.000
Atom S 18	V_{WB}	24.972 A ³			
	Zähligkeit	4			
	$\sum s$	2.022	2 202 /0 020	2 2 2 2 1 2 2 2 2	0.405/0.010
Abstand $[A]/s$	2.054/0.948	2.055/0.945	3.203/0.030	3.209/0.030	3.485/0.016
	5.505/0.015	3.073/U.UU9	3.118/0.001	3.883/0.005 4.920/0.009	4.048/0.003
	4.000/0.003	4.147/0.002	4.104/0.002	4.239/0.002	4.240/0.002
	4.548/0.001	4.003/0.001	4.943/0.000		

Element	β -S ₁₈		[Debaerdemaeker	, Kutoglu, 1974]	
	W	2.00			
	V_X	26.499 Å^3			
	f_X	1.903			
	V_D	13.925 Å ³			
BG-Parameter	b	0.355			
	R_1	2.057 Å			
Atom S 1	V_{WB}	25.142 A^3			
	Zähligkeit	4			
- °	$\sum s$	2.004			
Abstand [A]/s	2.071/0.962	2.088/0.917	3.314/0.029	3.370/0.025	3.438/0.020
	3.556/0.015	3.601/0.013	3.821/0.007	3.833/0.007	4.078/0.003
	4.197/0.002	4.378/0.001	4.388/0.001	4.572/0.001	4.633/0.001
Atom S 2	V_{WB}	25.098 A ³			
	Zahligkeit	4			
	$\sum s$	2.051	2 224 /0 222	2 250 /0 020	2 207 /0 002
Abstand $[A]/s$	2.058/0.998	2.088/0.917	3.264/0.033	3.350/0.026	3.397/0.023
	3.580/0.013	3.614/0.012	3.740/0.009	4.011/0.004	4.116/0.003
	4.130/0.003	4.100/0.003	4.210/0.002	4.210/0.002	4.300/0.001
Atom S 2	$\frac{4.407}{0.001}$	26 810 13			
Atom 5 5	V _{WB} Zähligkoit	20.019 A			
	\sum_{e}	+ 9 118			
Abstand [Å]/s	2.054/1.000	2.110	3 314 /0 020	3 321 /0 028	3 / 38 / 0 0 20
	3850/0006	3 941 /0 005	4 022/0 004	4 063/0 004	$4\ 101\ / 0\ 003$
	4.166/0.003	4.171/0.003	4.253/0.002	4.475/0.001	4.500/0.001
	4.559/0.001	4.623/0.001	4.656/0.001		
Atom S 4	V _{WB}	26.967 Å ³	/		
	Zähligkeit	4			
	$\sum s$	1.989			
Abstand [Å]/s	2.054/1.009	2.103/0.879	3.264/0.033	3.412/0.022	3.556/0.015
	3.832/0.007	3.841/0.007	3.990/0.004	4.063/0.004	4.082/0.003
	4.116/0.003	4.119/0.003	4.731/0.001	4.954/0.000	
Atom S 5	V_{WB}	26.187 Å^3			
	Zähligkeit	4			
0	$\sum s$	1.932			
Abstand $[Å]/s$	2.081/0.935	2.103/0.879	3.321/0.028	3.321/0.028	3.586/0.013
	3.614/0.012	3.675/0.010	3.791/0.008	3.850/0.006	4.078/0.003
	4.216/0.002	4.251/0.002	4.341/0.002	4.681/0.001	4.681/0.001
	5.304/0.000	20104 83			
Atom S 6		28.184 A ³			
	Zahligkeit	4			
Abstand [Å]/a	2 081 /0 025	1.920	2 220 /0 021	2 /19 /0 099	2 775 /0 000
Abstand $[A]/S$	2.001/0.935	2.091/0.094	J. 209/U.UJI	3.412/0.022	J. 1 13/ U.UU8
	5.005/0.007 4.916/0.009	3.032/0.007 4.951/0.009	3.033/0.007 4 952/0.009	3.974/0.003 4 378/0.001	4.009/0.003
	4.210/0.002 5.012/0.000	4.201/0.002	4.205/0.002	4.010/0.001	4.407/0.001
	0.012/0.000				

Atom S 7	V_{WB}	26.210 Å^3			
	Zähligkeit	4			
	$\sum s$	1.975			
Abstand [Å]/s	2.070/0.964	2.097/0.894	3.289/0.031	3.321/0.028	3.675/0.010
	3.740/0.009	3.740/0.009	3.821/0.007	3.941/0.005	4.011/0.004
	4.082/0.003	4.119/0.003	4.171/0.003	4.197/0.002	4.500/0.001
	4.656/0.001				
Atom S 8	V_{WB}	27.559 Å^3			
	Zähligkeit	4			
	$\sum s$	2.001			
Abstand [Å]/s	2.070/0.964	2.083/0.930	3.289/0.031	3.370/0.025	3.397/0.023
	3.791/0.008	3.913/0.005	3.974/0.005	4.022/0.004	4.150/0.003
	4.341/0.002	4.572/0.001	4.633/0.001	4.731/0.001	4.954/0.000
	5.012/0.000	5.304/0.000			
Atom S 9	V_{WB}	26.325 Å^3			
	Zähligkeit	4			
	$\sum s$	2.003			
Abstand [Å]/s	2.071/0.962	2.083/0.930	3.289/0.031	3.350/0.026	3.601/0.013
	3.740/0.009	3.803/0.007	3.841/0.007	3.990/0.004	4.060/0.004
	4.060/0.004	4.069/0.003	4.101/0.003	4.623/0.001	

Element	S ₂₀		[Schmidt et al., 1	974]	
	W	2.00			
	V_X	26.327 Å^3			
	f_X	1.983			
	V_D	13.274 Å^3			
BG-Parameter	b	0.349			
	R_1	$2.025~{\rm \AA}$			
Atom S 1	V_{WB}	26.862 Å^3			
	Zähligkeit	8			
	$\sum s$	1.906			
Abstand [Å]/s	2.023/1.004	2.104/0.797	3.218/0.033	3.278/0.028	3.532/0.013
	3.641/0.010	3.734/0.007	4.072/0.003	4.099/0.003	4.138/0.002
	4.306/0.001	4.347/0.001	4.347/0.001	4.487/0.001	4.556/0.001
	4.873/0.000				
Atom S 2	V_{WB}	26.633 Å^3			
	Zähligkeit	8			
	$\sum s$	2.061			
Abstand [Å]/s	2.023/1.004	2.042/0.951	3.263/0.029	3.278/0.028	3.485/0.015
	3.641/0.010	3.802/0.006	3.817/0.006	4.063/0.003	4.171/0.002
	4.172/0.002	4.240/0.002	4.376/0.001	4.378/0.001	4.491/0.001
Atom S 3	V_{WB}	26.993 Å^3			
	Zähligkeit	8			
	$\sum s$	1.993			
Abstand $[Å]/s$	2.042/0.951	2.049/0.932	3.218/0.033	3.261/0.029	3.415/0.019
	3.753/0.007	3.802/0.006	3.915/0.004	4.080/0.003	4.145/0.002
	4.178/0.002	4.258/0.002	4.387/0.001	4.556/0.001	4.873/0.000
	4.935/0.000	5.077/0.000			
Atom S 4	V_{WB}	26.505 Å^3			
	Zähligkeit	8			
- 0	$\sum s$	2.030			
Abstand $[A]/s$	2.025/0.999	2.049/0.932	3.263/0.029	3.280/0.027	3.531/0.013
	3.682/0.009	3.916/0.004	4.019/0.003	4.072/0.003	4.134/0.002
	4.138/0.002	4.141/0.002	4.179/0.002	4.491/0.001	4.950/0.000
Atom S 5	V_{WB}	26.573 A^3			
	Zähligkeit	8			
	$\sum s$	2.040			2
Abstand $[A]/s$	2.025/0.999	2.047/0.938	3.261/0.029	3.287/0.027	3.531/0.013
	3.551/0.013	3.745/0.007	3.902/0.005	4.063/0.003	4.172/0.002
	4.334/0.001	4.334/0.001	4.487/0.001	4.493/0.001	4.668/0.001
	4.935/0.000				
Atom S 6	V_{WB}	25.257 A ³			
	Zähligkeit	8			
<u>А</u> Д (Т Г Х Л /	$\sum s$	2.027	2 000 /0 007	2 000 /0 027	9 405 10 015
Abstand $[A]/s$	2.030/0.985	2.047/0.938	3.280/0.027	3.286/0.027	3.485/0.015
	3.493/0.015	3.734/0.007	3.916/0.004	4.141/0.002	4.145/0.002
	4.171/0.002	4.493/0.001	4.538/0.001	5.149/0.000	

Atom S 7	V_{WB}	26.742 Å^3			
	Zähligkeit	8			
	$\sum s$	1.993			
Abstand [Å]/s	2.030/0.985	2.059/0.906	3.282/0.027	3.287/0.027	3.493/0.015
	3.677/0.009	3.902/0.005	3.997/0.004	4.019/0.003	4.080/0.003
	4.099/0.003	4.134/0.002	4.240/0.002	4.338/0.001	4.338/0.001
	4.668/0.001	4.950/0.000			
Atom S 8	V_{WB}	25.296 Å^3			
	Zähligkeit	8			
	$\sum s$	1.969			
Abstand [Å]/s	2.043/0.949	2.059/0.906	3.265/0.029	3.286/0.027	3.415/0.019
	3.563/0.012	3.655/0.009	3.762/0.007	4.099/0.003	4.179/0.002
	4.265/0.002	4.329/0.001	4.372/0.001	4.372/0.001	4.436/0.001
	5.077/0.000	·	·	·	
Atom S 9	V_{WB}	26.137 Å^3			
	Zähligkeit	8			
	$\sum s$	2.011			
Abstand [Å]/s	2.038/0.962	2.043/0.949	3.282/0.027	3.309/0.025	3.563/0.012
	3.655/0.009	3.677/0.009	3.745/0.007	3.963/0.004	4.178/0.002
	4.258/0.002	4.329/0.001	4.376/0.001		
Atom S 10	V_{WB}	26.273 Å^3			
	Zähligkeit	8			
	$\sum s$	1.968			
Abstand [Å]/s	2.038/0.962	2.061/0.901	3.265/0.029	3.309/0.025	3.532/0.013
	3.551/0.013	3.682/0.009	3.915/0.004	3.997/0.004	4.099/0.003
	4.265/0.002	4.378/0.001	4.387/0.001	4.436/0.001	4.538/0.001
	5.149/0.000				

Element	α -Se		[Cherin, Unger, 1	.967]	
	W	2.00			
	V_X	27.261 Å^3			
	f_X	1.398			
	V_D	19.498 Å^3			
BG-Parameter	b	0.397			
	R_1	$2.301~{\rm \AA}$			
Atom Se 1	V_{WB}	27.261 Å^3			
	Zähligkeit	3			
	$\sum s$	2.000			
Abstand [Å]/s	2.373/0.835	2.373/0.835	3.436/0.057	3.436/0.057	3.436/0.057
	3.436/0.057	3.716/0.028	3.716/0.028	4.366/0.006	4.366/0.006
	4.366/0.006	4.366/0.006	4.470/0.004	4.470/0.004	4.470/0.004
	4.470/0.004	4.969/0.001	4.969/0.001	4.969/0.001	4.969/0.001

Element	$\alpha - \mathrm{Se}_8$		[Cherin, Unger, 1	.972]	
	W	2.00			
	V_X	29.811 Å^3			
	f_X	1.550			
	V_D	19.237 Å^3			
BG-Parameter	b	0.395			
	R_1	2.291 Å			
Atom Se 1	V_{WB}	29.940 Å^3			
	Zähligkeit	4			
	$\sum s$	1.997			
Abstand $[Å]/s$	2.330/0.906	2.334/0.897	3.658/0.031	3.702/0.028	3.767/0.024
	3.821/0.021	3.832/0.020	3.887/0.018	3.895/0.017	3.973/0.014
	3.995/0.013	4.307/0.006			
Atom Se 2	V_{WB}	30.448 Å^3			
	Zähligkeit	4			
	$\sum s$	1.974			
Abstand $[Å]/s$	2.334/0.897	2.337/0.890	3.698/0.028	3.740/0.026	3.775/0.023
	3.781/0.023	3.821/0.021	3.856/0.019	3.998/0.013	4.029/0.012
	4.127/0.010	4.274/0.007	4.793/0.002	4.895/0.001	4.945/0.001
Atom Se 3	V_{WB}	29.555 Å^3			
	Zähligkeit	4			
0	$\sum s$	1.996			
Abstand $[Å]/s$	2.337/0.890	2.346/0.870	3.588/0.038	3.692/0.029	3.700/0.028
	3.763/0.024	3.767/0.024	3.775/0.023	3.856/0.019	3.908/0.017
	3.981/0.014	4.241/0.007	4.307/0.006	4.666/0.002	4.973/0.001
	4.976/0.001	5.161/0.001	5.305/0.000		
Atom Se 4	V_{WB}	30.325 A^3			
	Zähligkeit	4			
	$\sum s$	1.973			
Abstand $[A]/s$	2.337/0.890	2.346/0.870	3.571/0.039	3.702/0.028	3.731/0.026
	3.752/0.025	3.781/0.023	3.982/0.014	3.995/0.013	4.027/0.012
	4.029/0.012	4.266/0.007	4.306/0.006	4.560/0.003	4.634/0.003
	5.256/0.001	20.000 83			
Atom Se 5	V_{WB}	28.933 A ³			
	Zähligkeit	4			
	$\sum s$	2.027	0 470 /0 050	2 002 /0 020	2 700 /0 000
Abstand [A]/s	2.327/0.913	2.337/0.890	3.476/0.050	3.692/0.029	3.700/0.028
	3.711/0.028	3.788/0.023	3.827/0.021	3.895/0.017	3.973/0.014
	4.127/0.010	$\frac{4.560/0.003}{20.700}$	4.793/0.002		
Atom Se 6	V_{WB}	29.700 A ³			
	Zahligkeit	4 2.005			
$\mathbf{A} = 1 \begin{bmatrix} \mathbf{X} \\ \mathbf{X} \end{bmatrix} 1$	$\sum S$	2.000	2 500 /0 020	2 600 /0 026	9.677/0.090
Abstand $[A]/S$	2.327/0.913	2.343/0.8(2	3.388/0.038	3.000/0.030	3.077/0.030
	3. (31/0.026	5.752/0.025	3.800/0.019	3.887/0.018	3.981/0.014
	4.306/0.006	4.329/0.006	4.945/0.001	4.973/0.001	

Atom Se 7	V_{WB}	28.668 Å^3			
	Zähligkeit	4			
	$\sum s$	2.018			
Abstand [Å]/s	2.333/0.899	2.345/0.872	3.571/0.039	3.600/0.036	3.658/0.031
	3.698/0.028	3.711/0.028	3.763/0.024	3.788/0.023	3.908/0.017
	4.027/0.012	4.364/0.005	4.895/0.001	5.161/0.001	
Atom Se 8	V_{WB}	30.917 Å^3			
	Zähligkeit	4			
	$\sum s$	2.009			
Abstand [Å]/s	2.330/0.906	2.333/0.899	3.476/0.050	3.677/0.030	3.740/0.026
	3.832/0.020	3.856/0.019	3.982/0.014	3.998/0.013	4.266/0.007
	4.274/0.007	4.329/0.006	4.364/0.005	4.634/0.003	4.666/0.002
	4.976/0.001	5.256/0.001	5.305/0.000		

Element	β -Se ₈		[Marsh, Pauling,	1953]	
	W	2.00			
	V_X	30.125 Å^3			
	f_X	1.566			
	V_D	19.230 Å^3			
BG-Parameter	b	0.395			
	R_1	2.291 Å			
Atom Se 1	V_{WB}	31.885 Å^3			
	Zähligkeit	4			
	$\sum s$	2.042			
Abstand $[Å]/s$	2.300/0.977	2.337/0.890	3.702/0.028	3.738/0.026	3.740/0.026
	3.749/0.025	3.902/0.017	3.913/0.016	3.956/0.015	4.096/0.010
	4.277/0.007	4.683/0.002	4.719/0.002	5.358/0.000	5.671/0.000
Atom Se 2	V_{WB}	30.093 Å^3			
	Zähligkeit	4			
	$\sum s$	2.063			
Abstand $[Å]/s$	2.300/0.977	2.358/0.844	3.400/0.060	3.599/0.037	3.675/0.030
	3.702/0.028	3.707/0.028	3.938/0.015	3.939/0.015	4.090/0.011
	4.123/0.010	4.593/0.003	4.625/0.003	4.961/0.001	5.060/0.001
	5.358/0.000	0.0			
Atom Se 3	V_{WB}	30.375 A^3			
	Zähligkeit	4			
- 0	$\sum s$	1.958			
Abstand $[A]/s$	2.333/0.899	2.358/0.844	3.531/0.043	3.738/0.026	3.743/0.025
	3.775/0.023	3.788/0.023	3.845/0.020	3.913/0.016	4.096/0.010
	4.143/0.009	4.226/0.007	4.306/0.006	4.625/0.003	4.698/0.002
	5.227/0.001	20.067 83			
Atom Se 4	V_{WB}	30.865 A ³			
	Zähligkeit	4			
	$\sum s$	1.927	2	2 051 /0 020	2 702 /0 000
Abstand $[A]/s$	2.333/0.899	2.360/0.839	3.578/0.038	3.651/0.032	3.702/0.028
	3.769/0.024	3.922/0.016	3.938/0.015	4.170/0.009	4.177/0.008
	4.287/0.000	4.300/0.000 5.942/0.001	4.874/0.001	4.874/0.001	5.012/0.001
Atom So F	$\frac{5.000}{0.001}$	$\frac{3.243/0.001}{20.501}$			
Atom Se 5	V _{WB} Zöhligkoit	29.391 A°			
	Σ_{a}	4			
Abstand [Å]/s	2.38	1.990	2 400 /0 060	2 182 /0 040	2 795 /0 097
Abstand [A]/s	2.320/0.915 3.743/0.025	2.300/0.839	3.400/0.000	3.465/0.049	3.723/0.027 4.123/0.010
	<i>1</i> 287 / 0.025	1 332 /0 006	<i>4</i> 608 /0 002	5.950/0.015	4.123/0.010
Atom Se 6	V_{WD}	29 130 Å ³	1.050/0.002		
	Zähligkeit	4			
	$\sum s$	2.014			
Abstand [Å]/s	2.326/0.915	2.348/0.865	3.578/0.038	3.599/0.037	3,707/0.028
	3709/0.028	3 769/0 024	3 788/0 023	3 847 /0 019	3.922/0.016
	4.226/0.007	4.283/0.006	4.332/0.006	4.719/0.002	5.522/ 0.010
	=======================================	=:====;=:===;=:===	<u> </u>	10/0002	

Atom Se 7	V_{WB}	30.406 Å^3			
	Zähligkeit	4			
	$\sum s$	1.979			
Abstand [Å]/s	2.337/0.890	2.348/0.865	3.644/0.033	3.702/0.028	3.725/0.027
	3.740/0.026	3.749/0.025	3.775/0.023	3.845/0.020	3.916/0.016
	4.090/0.011	4.177/0.008	4.593/0.003	4.683/0.002	4.961/0.001
	5.012/0.001	5.227/0.001			
Atom Se 8	V_{WB}	28.647 Å^3			
	Zähligkeit	4			
	$\sum s$	2.026			
Abstand [Å]/s	2.337/0.890	2.337/0.890	3.483/0.049	3.531/0.043	3.644/0.033
	3.651/0.032	3.675/0.030	3.709/0.028	3.939/0.015	4.143/0.009
	4.277/0.007	5.243/0.001			

Element	$\gamma - \mathrm{Se}_8$		[Foss, Janickis, 19	980]	
	W	2.00			
	V_X	30.284 Å^3			
	f_X	1.581			
	V_D	19.155 Å^3			
BG-Parameter	b	0.395			
	R_1	2.288 Å			
Atom Se 1	V_{WB}	30.096 Å^3			
	Zähligkeit	4			
	$\sum s$	2.022			
Abstand $[Å]/s$	2.329/0.901	2.336/0.885	3.469/0.050	3.546/0.041	3.570/0.039
	3.660/0.031	3.719/0.027	3.887/0.017	4.065/0.011	4.163/0.009
	4.356/0.005	4.720/0.002	4.822/0.002	5.022/0.001	5.181/0.001
Atom Se 2	V_{WB}	29.698 Å^3			
	Zähligkeit	4			
	$\sum s$	2.020			
Abstand $[Å]/s$	2.330/0.899	2.336/0.885	3.404/0.059	3.591/0.037	3.687/0.029
	3.692/0.028	3.743/0.025	3.887/0.017	3.979/0.014	4.108/0.010
	4.258/0.007	4.507/0.004	4.507/0.004	4.960/0.001	4.972/0.001
	5.306/0.000	്റ			
Atom Se 3	V_{WB}	29.971 A^3			
	Zähligkeit	4			
	$\sum s$	2.007			
Abstand $[A]/s$	2.328/0.903	2.330/0.899	3.475/0.049	3.555/0.040	3.719/0.027
	3.719/0.027	3.889/0.017	3.900/0.017	3.979/0.014	4.100/0.010
	4.509/0.004	5.515/0.000			
Atom Se 4	V_{WB}	31.738 A ³			
	Zähligkeit	4			
	$\sum s$	1.981	2 502 /0 020	2 742 /0 025	2 700 /0 004
Abstand [A]/s	2.328/0.903	2.331/0.896	3.583/0.038	3.743/0.025	3.766/0.024
	3.810/0.021	3.889/0.017	3.954/0.015	3.993/0.013	4.190/0.008
	4.203/0.007	$\frac{4.303}{0.000}$	4.333/0.003	4.333/0.003	4.833/0.002
Atom Se 5	V_{WB}	29.903 A			
	Σ_{a}	$\begin{array}{c} 4 \\ 2 \\ 0 \\ 2 \end{array}$			
Abstand [Å]/a	231/0.806	2.021	2 246 /0 068	2 599 /0 042	2.711/0.007
Abstand $[A]/S$	2.331/0.090 3.718/0.027	2.337/0.003	3.340/0.000	3.326/0.043 3.054/0.015	3.711/0.027 4.180/0.008
	3.110/0.021	3.719/0.027 4.207/0.005	<i>J. 947</i> / 0.013	3.934/0.013	4.189/0.008
	4.197/0.008	4.397/0.003	4.010/0.003	4.972/0.001	5.161/0.001
Atom So 6	V	30.878 Å ³			
Atom Se u	VWB Zähligkoit	JU.010 A			
	$\sum s$	$\frac{1}{1}958$			
Abstand [Å]/s	2.337/0.883	2 344 /0 867	3 475/0 049	3 549/0 041	3766/0024
	3.810/0.021	3.815/0.021	4.133/0.009	4.191/0.008	4.197/0.008
	4 204 / 0 008	4 263/0 007	4 338/0 006	4 509/0 004	4 615/0 003
	5 306 / 0 000	1.200/0.001	1.000/0.000	1.000/0.004	1.010/0.000
	0.000/0.000				

Atom Se 7	V_{WB}	28.233 Å ³			
	Zähligkeit	4			
	$\sum s$	2.025			
Abstand [Å]/s	2.340/0.876	2.344/0.867	3.346/0.068	3.476/0.049	3.530/0.043
	3.660/0.031	3.709/0.027	3.718/0.027	3.941/0.015	3.993/0.013
	4.586/0.003	4.615/0.003	4.960/0.001	,	,
Atom Se 8	V _{WB}	29.557 Å^3	,		
	Zähligkeit	4			
	$\sum s$	2.010			
Abstand [Å]/s	2.329/0.901	2.340/0.876	3.550/0.041	3.555/0.040	3.636/0.033
	3.687/0.029	3.801/0.022	3.815/0.021	3.924/0.016	4.207/0.008
	4.252/0.007	4.258/0.007	4.436/0.004	4.483/0.004	4.718/0.002
Atom Se 9	V _{WB}	31.540 Å^3			
	Zähligkeit	4			
	$\sum s$	1.968			
Abstand [Å]/s	2.333/0.892	2.333/0.892	3.591/0.037	3.693/0.028	3.707/0.027
	3.781/0.023	3.881/0.018	3.915/0.016	4.065/0.011	4.093/0.010
	4.207/0.008	4.675/0.002	4.839/0.002	4.931/0.001	5.182/0.001
Atom Se10	V_{WB}	30.735 Å^3			
	Zähligkeit	4			
	$\sum s$	1.978			
Abstand [Å]/s	2.333/0.892	2.342/0.872	3.546/0.041	3.568/0.039	3.636/0.033
	3.717/0.027	3.797/0.022	3.861/0.019	4.093/0.010	4.101/0.010
	4.227/0.007	4.720/0.002	4.731/0.002	4.949/0.001	5.186/0.001
Atom Se11	X 7	0.8	,	/	0.100/0.001
	V_{WB}	31.102 Å^3		/	0.100/ 0.001
	V _{WB} Zähligkeit	31.102 Å ³ 4	·	/	0.100/ 0.001
	V_{WB} Zähligkeit $\sum s$	$\begin{array}{c} 31.102 \ \text{\AA}^3 \\ 4 \\ 1.966 \end{array}$	·		0.100/ 0.001
Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.331/0.896	31.102 Å ³ 4 1.966 2.342/0.872	3.469/0.050	3.676/0.030	3.692/0.028
Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.331/0.896 3.781/0.023	31.102 Å ³ 4 1.966 2.342/0.872 3.881/0.018	3.469/0.050 4.108/0.010	3.676/0.030 4.163/0.009	3.692/0.028 4.227/0.007
Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.331/0.896 3.781/0.023 4.252/0.007	31.102 Å ³ 4 1.966 2.342/0.872 3.881/0.018 4.268/0.007	3.469/0.050 4.108/0.010 4.515/0.004	3.676/0.030 4.163/0.009 4.515/0.004	3.692/0.028 4.227/0.007 4.675/0.002
Abstand [Å]/s Atom Se12	V_{WB} Zähligkeit $\sum s$ 2.331/0.896 3.781/0.023 4.252/0.007 V_{WB}	31.102 Å ³ 4 1.966 2.342/0.872 3.881/0.018 4.268/0.007 32.732 Å ³	3.469/0.050 4.108/0.010 4.515/0.004	3.676/0.030 4.163/0.009 4.515/0.004	3.692/0.028 4.227/0.007 4.675/0.002
Abstand [Å]/s Atom Se12	V_{WB} Zähligkeit $\sum s$ 2.331/0.896 3.781/0.023 4.252/0.007 V_{WB} Zähligkeit	31.102 Å ³ 4 1.966 2.342/0.872 3.881/0.018 4.268/0.007 32.732 Å ³ 4	3.469/0.050 4.108/0.010 4.515/0.004	3.676/0.030 4.163/0.009 4.515/0.004	3.692/0.028 4.227/0.007 4.675/0.002
Abstand [Å]/s Atom Se12	V_{WB} Zähligkeit $\sum s$ 2.331/0.896 3.781/0.023 4.252/0.007 V_{WB} Zähligkeit $\sum s$	31.102 Å ³ 4 1.966 2.342/0.872 3.881/0.018 4.268/0.007 32.732 Å ³ 4 1.959	3.469/0.050 4.108/0.010 4.515/0.004	3.676/0.030 4.163/0.009 4.515/0.004	3.692/0.028 4.227/0.007 4.675/0.002
Abstand [Å]/s Atom Se12 Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.331/0.896 3.781/0.023 4.252/0.007 V_{WB} Zähligkeit $\sum s$ 2.327/0.906	31.102 Å ³ 4 1.966 2.342/0.872 3.881/0.018 4.268/0.007 32.732 Å ³ 4 1.959 2.331/0.896	3.469/0.050 4.108/0.010 4.515/0.004 3.694/0.028	3.676/0.030 4.163/0.009 4.515/0.004 3.797/0.022	3.692/0.028 4.227/0.007 4.675/0.002 3.801/0.022
Abstand [Å]/s Atom Se12 Abstand [Å]/s	V_{WB} Zähligkeit $\sum s$ 2.331/0.896 3.781/0.023 4.252/0.007 V_{WB} Zähligkeit $\sum s$ 2.327/0.906 3.821/0.021	31.102 Å ³ 4 1.966 2.342/0.872 3.881/0.018 4.268/0.007 32.732 Å ³ 4 1.959 2.331/0.896 3.861/0.019	3.469/0.050 4.108/0.010 4.515/0.004 3.694/0.028 3.915/0.016	3.676/0.030 4.163/0.009 4.515/0.004 3.797/0.022 4.101/0.010	3.692/0.028 4.227/0.007 4.675/0.002 3.801/0.022 4.268/0.007

Atom Se13	V_{WB}	29.231 Å^3			
	Zähligkeit	4			
	$\sum s$	2.013			
Abstand [Å]/s	2.327/0.906	2.339/0.878	3.530/0.043	3.568/0.039	3.676/0.030
	3.711/0.027	3.719/0.027	3.821/0.021	3.849/0.019	3.924/0.016
	4.397/0.005	4.822/0.002	4.949/0.001	5.182/0.001	
Atom Se14	V_{WB}	28.627 Å^3			
	Zähligkeit	4			
	$\sum s$	2.021			
Abstand [Å]/s	2.339/0.878	2.339/0.878	3.476/0.049	3.528/0.043	3.583/0.038
	3.685/0.029	3.694/0.028	3.711/0.027	3.849/0.019	4.305/0.006
	4.335/0.006	4.338/0.006	4.405/0.005	4.405/0.005	4.718/0.002
	4.931/0.001	5.186/0.001			
Atom Se15	V_{WB}	30.236 Å^3			
	Zähligkeit	4			
	$\sum s$	2.004			
Abstand [Å]/s	2.325/0.910	2.339/0.878	3.549/0.041	3.550/0.041	3.693/0.028
	3.709/0.027	3.711/0.027	3.947/0.015	4.100/0.010	4.133/0.009
	4.190/0.008	4.335/0.006	4.643/0.003		
Atom Se16	V_{WB}	30.264 Å^3			
	Zähligkeit	4			
	$\sum s$	2.041			
Abstand [Å]/s	2.325/0.910	2.333/0.892	3.404/0.059	3.570/0.039	3.685/0.029
	3.717/0.027	3.719/0.027	3.900/0.017	3.941/0.015	4.189/0.008
	4.191/0.008	4.436/0.004	4.483/0.004	4.835/0.002	5.515/0.000
	5.611/0.000				

Element	Те		[Adenis, Langer,	Lindquist, 1989]	
	W	2.00			
	V_X	33.939 Å^3			
	f_X	1.164			
	V_D	29.154 Å^3			
BG-Parameter	b	0.454			
	R_1	$2.632~{\rm \AA}$			
Atom Te 1	V_{WB}	33.939 Å ³			
	Zähligkeit	3			
	$\sum s$	2.000			
Abstand [Å]/s	2.835/0.639	2.835/0.639	3.491/0.151	3.491/0.151	3.491/0.151
	3.491/0.151	4.456/0.018	4.456/0.018	4.456/0.018	4.456/0.018
	4.456/0.018	4.456/0.018	5.281/0.003	5.281/0.003	5.281/0.003
	5.281/0.003				

Element	F_2		[Pauling, Keaven	y, Robinson, 1970]	
	W	1.00			
	V_X	16.047 Å^3			
	f_X	2.137			
	V_D	7.508 Å^3			
BG-Parameter	b	0.289			
	R_1	$1.474~{\rm \AA}$			
Atom F 1	V_{WB}	16.047 Å^3			
	Zähligkeit	8			
	$\sum s$	1.000			
Abstand [Å]/s	1.488/0.953	2.825/0.009	2.825/0.009	2.864/0.008	3.176/0.003
	3.202/0.003	3.202/0.003	3.202/0.003	3.202/0.003	3.254/0.002
	3.280/0.002	3.280/0.002	3.385/0.001	4.184/0.000	·

Element	Cl_2		[Powell, Heal, To	rrie, 1984]	
	W	1.00			
	V_X	29.122 Å^3			
	f_X	1.715			
	V_D	16.977 Å^3			
BG-Parameter	b	0.379			
	R_1	1.935 Å			
Atom Cl 1	V_{WB}	29.122 Å^3			
	Zähligkeit	8			
	$\sum s$	1.000			
Abstand $[Å]/s$	1.980/0.888	3.330/0.025	3.330/0.025	3.735/0.009	3.735/0.009
	3.803/0.007	3.879/0.006	3.879/0.006	3.879/0.006	3.879/0.006
	3.981/0.005	3.981/0.005	4.243/0.002	4.243/0.002	

Element	Br_2		[Powell, Heal, To	rrie, 1984]	
	W	1.00			
	V_X	33.988 Å^3			
	f_X	1.415			
	V_D	24.017 Å^3			
BG-Parameter	b	0.426			
	R_1	$2.172~{\rm \AA}$			
Atom Br 1	V_{WB}	33.988 Å^3			
	Zähligkeit	8			
	$\sum s$	1.000			
Abstand [Å]/s	2.287/0.763	3.367/0.060	3.367/0.060	3.894/0.017	4.014/0.013
	4.014/0.013	4.087/0.011	4.087/0.011	4.087/0.011	4.087/0.011
	4.154/0.009	4.154/0.009	4.481/0.004	4.481/0.004	

Element	I_2		[Ibberson, Moze,	Petrillo, 1992]	
	W	1.00			
	V_X	41.473 Å^3			
	f_X	1.208			
	V_D	34.334 Å^3			
BG-Parameter	b	0.479			
	R_1	$2.447~{\rm \AA}$			
Atom I 1	V_{WB}	41.473 Å^3			
	Zähligkeit	8			
	$\sum s$	1.000			
Abstand [Å]/s	2.714/0.573	3.513/0.108	3.513/0.108	3.994/0.040	4.294/0.021
	4.294/0.021	4.294/0.021	4.294/0.021	4.359/0.019	4.359/0.019
	4.436/0.016	4.436/0.016	4.710/0.009	4.710/0.009	

Element	Cu_5Zn_8		[Brandon et al., 1	1974]	
	V_X	13.457 Å^3			
	f_X	1.010			
	V_D	13.328 Å^3			
Atom Zn 1	V_{WB}	12.988 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	1.054			
Abstand [Å]/ σ	2.583/0.102	2.583/0.102	2.583/0.102	2.617/0.093	2.617/0.093
	2.617/0.093	2.639/0.087	2.639/0.087	2.639/0.087	2.735/0.066
	2.735/0.066	2.735/0.066	3.369/0.011		
Atom Cu 1	V_{WB}	12.630 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	1.127			
Abstand [Å]/ σ	2.560/0.109	2.560/0.109	2.560/0.109	2.594/0.099	2.594/0.099
	2.594/0.099	2.617/0.093	2.617/0.093	2.617/0.093	2.707/0.072
	2.707/0.072	2.707/0.072	3.369/0.011		
Atom Cu 2	V_{WB}	13.429 Å^3			
	Zähligkeit	12			
	$\sum \sigma$	0.991			
Abstand [Å]/ σ	2.537/0.116	2.537/0.116	2.560/0.109	2.583/0.102	2.583/0.102
	2.707/0.072	2.707/0.072	2.822/0.052	2.822/0.052	2.822/0.052
	2.822/0.052	2.846/0.048	2.846/0.048		
Atom Zn 2	V_{WB}	13.903 Å^3			
	Zähligkeit	24			
	$\sum \sigma$	0.944			
Abstand [Å] $/\sigma$	2.537/0.116	2.560/0.109	2.594/0.099	2.639/0.087	2.642/0.086
	2.642/0.086	2.642/0.086	2.642/0.086	2.822/0.052	2.822/0.052
	2.846/0.048	3.387/0.010	3.387/0.010	3.468/0.008	3.468/0.008

Element	Ag_5Zn_8		[Marsh, 1954]		
	V_X	15.672 Å^3			
	f_X	1.008			
	V_D	15.540 Å^3			
Atom Ag 1	V_{WB}	14.838 Å ³			
	Zähligkeit	8			
	$\sum \sigma$	1.114			
Abstand [Å]/s	2.663/0.119	2.663/0.119	2.663/0.119	2.721/0.101	2.721/0.101
	2.721/0.101	2.820/0.077	2.820/0.077	2.820/0.077	2.864/0.069
	2.864/0.069	2.864/0.069	3.430/0.015		
Atom Zn 1	V_{WB}	15.516 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	0.997			
Abstand [Å]/s	2.710/0.104	2.710/0.104	2.710/0.104	2.756/0.092	2.756/0.092
	2.756/0.092	2.820/0.077	2.820/0.077	2.820/0.077	2.959/0.053
	2.959/0.053	2.959/0.053	3.430/0.015		
Atom Ag 2	V_{WB}	15.655 Å^3			
	Zähligkeit	12			
	$\sum \sigma$	0.987			
Abstand [Å]/s	2.682/0.113	2.682/0.113	2.707/0.105	2.710/0.104	2.710/0.104
	2.864/0.069	2.864/0.069	2.966/0.052	2.966/0.052	2.966/0.052
	2.966/0.052	2.978/0.050	2.978/0.050		
Atom Zn 2	V_{WB}	16.012 Å^3			
	Zähligkeit	24			
	$\sum \sigma$	0.970			
Abstand [Å]/s	2.663/0.119	2.682/0.113	2.721/0.101	2.756/0.092	2.771/0.089
	2.771/0.089	2.771/0.089	2.771/0.089	2.966/0.052	2.966/0.052
	2.978/0.050	3.548/0.011	3.548/0.011	3.697/0.007	3.697/0.007

Element	γ^*				
	f_X	1.023			
Atom Zn 1	Zähligkeit	8			
	$\sum \sigma$	0.937			
rel. Abstand/ σ	1.000/0.105	1.000/0.105	1.000/0.105	1.000/0.105	1.000/0.105
	1.000/0.105	1.000/0.105	1.155/0.034	1.155/0.034	1.155/0.034
	1.155/0.034	1.155/0.034	1.155/0.034	1.633/0.001	1.633/0.001
	1.633/0.001	2.000/0.000			
Atom Cu 1	Zähligkeit	8			
	$\sum \sigma$	0.937			
rel. Abstand/ σ	1.000/0.105	1.000/0.105	1.000/0.105	1.000/0.105	1.000/0.105
	1.000/0.105	1.000/0.105	1.155/0.034	1.155/0.034	1.155/0.034
	1.155/0.034	1.155/0.034	1.155/0.034	1.633/0.001	1.633/0.001
	1.633/0.001	2.000/0.000			
Atom Cu 2	Zähligkeit	12			
	$\sum \sigma$	1.005			
rel. Abstand/ σ	1.000/0.105	1.000/0.105	1.000/0.105	1.000/0.105	1.000/0.105
	1.000/0.105	1.000/0.105	1.000/0.105	1.155/0.034	1.155/0.034
	1.155/0.034	1.155/0.034	1.155/0.034		
Atom Zn 2	Zähligkeit	24			
	$\sum \sigma$	1.039			
rel. Abstand/ σ	1.000/0.105	1.000/0.105	1.000/0.105	1.000/0.105	1.000/0.105
	1.000/0.105	1.000/0.105	1.000/0.105	1.155/0.034	1.155/0.034
	1.155/0.034	1.155/0.034	1.155/0.034	1.155/0.034	

Element	$\mathrm{Cu}_5\mathrm{Cd}_8$		[Brandon et al., 1	974]	
	V_X	17.094 Å^3			
	f_X	1.045			
	V_D	16.363 Å^3			
Atom Cu 1	V_{WB}	13.594 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	1.578			
Abstand [Å]/ σ	2.556/0.179	2.556/0.179	2.556/0.179	2.611/0.154	2.611/0.154
	2.611/0.154	2.785/0.097	2.785/0.097	2.785/0.097	2.789/0.096
	2.789/0.096	2.789/0.096			
Atom Cu 2	V_{WB}	14.667 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	1.285			
Abstand [Å]/ σ	2.611/0.154	2.611/0.154	2.611/0.154	2.774/0.100	2.774/0.100
	2.774/0.100	2.799/0.093	2.799/0.093	2.799/0.093	2.853/0.081
	2.853/0.081	2.853/0.081			
Atom M 1	V_{WB}	17.838 Å^3			
	Zähligkeit	12			
	$\sum \sigma$	0.864			
Abstand [Å]/ σ	2.785/0.097	2.785/0.097	2.853/0.081	2.853/0.081	2.858/0.080
	2.893/0.073	2.893/0.073	2.957/0.061	2.957/0.061	2.957/0.061
	2.957/0.061	3.390/0.019	3.390/0.019		
Atom M 2	V_{WB}	18.698 Å^3			
	Zähligkeit	24			
	$\sum \sigma$	0.780			
Abstand [Å]/ σ	2.774/0.100	2.789/0.096	2.799/0.093	2.893/0.073	2.957/0.061
	2.957/0.061	3.003/0.054	3.003/0.054	3.003/0.054	3.003/0.054
	3.270/0.027	3.270/0.027	3.390/0.019	4.047/0.003	4.047/0.003

Element	$\mathrm{Fe}_{3}\mathrm{Zn}_{10}$		[Brandon et al., 1	1974]	
	V_X	14.104 Å^3			
	f_X	1.020			
	V_D	13.828 Å^3			
Atom M 1	V_{WB}	12.429 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	1.262			
Abstand [Å]/ σ	2.571/0.116	2.571/0.116	2.571/0.116	2.616/0.102	2.616/0.102
	2.616/0.102	2.618/0.101	2.618/0.101	2.618/0.101	2.622/0.100
	2.622/0.100	2.622/0.100	3.591/0.006		
Atom Fe 2	V_{WB}	12.597 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	1.219			
Abstand [Å]/ σ	2.571/0.116	2.571/0.116	2.571/0.116	2.583/0.112	2.583/0.112
	2.583/0.112	2.621/0.100	2.621/0.100	2.621/0.100	2.717/0.076
	2.717/0.076	2.717/0.076	3.591/0.006		
Atom Zn 1	V_{WB}	14.410 Å^3			
	Zähligkeit	12			
	$\sum \sigma$	0.931			
Abstand [Å]/ σ	2.616/0.102	2.616/0.102	2.637/0.096	2.643/0.094	2.643/0.094
	2.717/0.076	2.717/0.076	2.817/0.058	2.817/0.058	2.817/0.058
	2.817/0.058	3.053/0.030	3.053/0.030		
Atom Zn 2	V_{WB}	15.011 Å^3			
	Zähligkeit	24			
	$\sum \sigma$	0.874			
Abstand [Å]/ σ	2.583/0.112	2.618/0.101	2.621/0.100	2.643/0.094	2.752/0.069
	2.752/0.069	2.752/0.069	2.752/0.069	2.817/0.058	2.817/0.058
	3.053/0.030	3.257/0.017	3.257/0.017	3.636/0.006	3.636/0.006

Element	Au_5Sn		[Osada, Yamaguo	hi, Hirabayashi, 19	974]
	V_X	17.880 Å^3			
	f_X	0.995			
	V_D	17.965 Å^3			
Atom Au 1	V_{WB}	17.841 Å^3			
	Zähligkeit	3			
	$\sum \sigma$	1.009			
Abstand [Å]/ σ	2.910/0.088	2.910/0.088	2.910/0.088	2.940/0.082	2.940/0.082
	2.940/0.082	2.941/0.081	2.941/0.081	2.941/0.081	2.941/0.081
	2.941/0.081	2.941/0.081	4.115/0.004	4.115/0.004	4.115/0.004
Atom Au 2	V_{WB}	17.841 Å^3			
	Zähligkeit	3			
	$\sum \sigma$	1.009			
Abstand $[Å]/\sigma$	2.910/0.088	2.910/0.088	2.910/0.088	2.940/0.082	2.940/0.082
	2.940/0.082	2.941/0.081	2.941/0.081	2.941/0.081	2.941/0.081
	2.941/0.081	2.941/0.081	4.115/0.004	4.115/0.004	4.115/0.004
Atom Au 3	V_{WB}	17.874 Å^3			
	Zähligkeit	9			
	$\sum \sigma$	1.002			
Abstand [Å]/ σ	2.878/0.096	2.878/0.096	2.910/0.088	2.910/0.088	2.941/0.081
	2.941/0.081	2.941/0.081	2.941/0.081	2.971/0.075	2.971/0.075
	2.971/0.075	2.971/0.075	4.115/0.004	4.115/0.004	
Atom Sn 1	V_{WB}	17.977 Å^3			
	Zähligkeit	3			
	$\sum \sigma$	0.977			
Abstand [Å]/ σ	2.940/0.082	2.940/0.082	2.940/0.082	2.940/0.082	2.940/0.082
	2.940/0.082	2.941/0.081	2.941/0.081	2.941/0.081	2.941/0.081
	2.941/0.081	2.941/0.081			

Element	AuSn		[Jan et al., 1963]		
	V_X	22.332 Å^3			
	f_X	1.125			
	V_D	19.849 Å^3			
Atom Au 1	V_{WB}	20.019 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	1.110			
Abstand [Å]/ σ	2.761/0.164	2.761/0.164	2.852/0.130	2.852/0.130	2.852/0.130
	2.852/0.130	2.852/0.130	2.852/0.130		
Atom Sn 1	V_{WB}	24.645 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	0.890			
Abstand [Å]/ σ	2.852/0.130	2.852/0.130	2.852/0.130	2.852/0.130	2.852/0.130
	2.852/0.130	3.722/0.015	3.722/0.015	3.722/0.015	3.722/0.015
	3.722/0.015	3.722/0.015	4.322/0.003	4.322/0.003	4.322/0.003
	4.322/0.003	4.322/0.003	4.322/0.003		

Element	$AuSn_2$		[Schubert, Breim	er, Gohle, 1959]	
	V_X	23.882 Å^3			
	f_X	1.149			
	V_D	20.788 Å^3			
Atom Au 1	V_{WB}	19.963 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	1.259			
Abstand [Å]/ σ	2.677/0.224	2.677/0.224	2.758/0.183	2.765/0.180	2.766/0.180
	2.862/0.142	2.988/0.104	3.902/0.011	4.089/0.007	4.303/0.004
Atom Sn 1	V_{WB}	25.689 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	0.932			
Abstand [Å]/ σ	2.677/0.224	2.677/0.224	2.766/0.180	3.055/0.088	3.132/0.073
	3.520/0.028	3.707/0.018	3.755/0.016	3.755/0.016	3.804/0.014
	3.902/0.011	3.959/0.009	3.959/0.009	4.089/0.007	4.099/0.007
	4.106/0.007	4.550/0.002			
Atom Sn 2	V_{WB}	25.994 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	0.810			
Abstand [Å]/ σ	2.758/0.183	2.765/0.180	2.862/0.142	3.055/0.088	3.132/0.073
	3.520/0.028	3.707/0.018	3.733/0.017	3.733/0.017	3.804/0.014
	3.890/0.011	3.890/0.011	4.099/0.007	4.106/0.007	4.196/0.005
	4.196/0.005	4.303/0.004			

Element	AuSn ₄		[Kubiak, Wolcyrz	2, 1984]	
	V_X	24.839 Å^3			
	f_X	1.082			
	V_D	22.956 Å^3			
Atom Au 1	V_{WB}	20.166 Å^3			
	Zähligkeit	4			
	$\sum \sigma$	1.402			
Abstand [Å]/ σ	2.806/0.204	2.806/0.204	2.833/0.191	2.833/0.191	2.919/0.156
	2.919/0.156	2.952/0.144	2.952/0.144	4.475/0.004	4.475/0.004
	4.687/0.002	4.687/0.002			
Atom Sn 1	V_{WB}	25.607 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	0.954			
Abstand [Å]/ σ	2.806/0.204	2.833/0.191	2.989/0.132	3.018/0.123	3.443/0.045
	3.446/0.044	3.446/0.044	3.459/0.043	3.459/0.043	3.670/0.026
	3.720/0.023	3.750/0.021	4.266/0.006	4.314/0.006	4.687/0.002
Atom Sn 2	V_{WB}	26.407 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	0.845			
Abstand [Å]/ σ	2.919/0.156	2.952/0.144	3.018/0.123	3.068/0.109	3.425/0.047
	3.425/0.047	3.443/0.045	3.443/0.045	3.443/0.045	3.670/0.026
	3.720/0.023	3.750/0.021	4.266/0.006	4.314/0.006	4.475/0.004

Element	Pt_3Sn		[Shelton, Merewe	ther, Skinner, 1981	L]
	V_X	16.217 Å^3			
	f_X	1.000			
	V_D	16.214 Å^3			
Atom Sn 1	V_{WB}	16.217 Å^3			
	Zähligkeit	1			
	$\sum \sigma$	1.000			
Abstand [Å]/ σ	2.841/0.082	2.841/0.082	2.841/0.082	2.841/0.082	2.841/0.082
	2.841/0.082	2.841/0.082	2.841/0.082	2.841/0.082	2.841/0.082
	2.841/0.082	2.841/0.082	4.018/0.003	4.018/0.003	4.018/0.003
	4.018/0.003	4.018/0.003	4.018/0.003		
Atom Pt 1	V_{WB}	16.217 Å^3			
	Zähligkeit	3			
	$\sum \sigma$	1.000			
Abstand [Å]/ σ	2.841/0.082	2.841/0.082	2.841/0.082	2.841/0.082	2.841/0.082
	2.841/0.082	2.841/0.082	2.841/0.082	2.841/0.082	2.841/0.082
	2.841/0.082	2.841/0.082	4.018/0.003	4.018/0.003	4.018/0.003
	4.018/0.003	4.018/0.003	4.018/0.003		

Element	PtSn		[Shelton, Merewe	ther, Skinner, 1981]
	V_X	19.814 Å^3			
	f_X	1.121			
	V_D	17.673 Å^3			
Atom Pt 1	V_{WB}	17.917 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	1.086			
Abstand [Å]/ σ	2.720/0.139	2.720/0.139	2.731/0.135	2.731/0.135	2.731/0.135
	2.731/0.135	2.731/0.135	2.731/0.135		
Atom Sn 1	V_{WB}	21.711 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	0.914			
Abstand [Å]/ σ	2.731/0.135	2.731/0.135	2.731/0.135	2.731/0.135	2.731/0.135
	2.731/0.135	3.607/0.014	3.607/0.014	3.607/0.014	3.607/0.014
	3.607/0.014	3.607/0.014	4.101/0.004	4.101/0.004	4.101/0.004
	4.101/0.004	4.101/0.004	4.101/0.004		

Element	Pt_2Sn_3		[Schubert, Pfister	er, 1949]	
	V_X	20.952 Å^3			
	\mathbf{f}_X	1.131			
	V_D	18.533 Å^3			
Atom Sn 1	V_{WB}	22.565 Å^3			
	Zähligkeit	2			
	$\sum \sigma$	0.830			
Abstand [Å]/ σ	2.855/0.110	2.855/0.110	2.855/0.110	2.855/0.110	2.855/0.110
	2.855/0.110	3.414/0.026	3.414/0.026	3.414/0.026	3.414/0.026
	3.414/0.026	3.414/0.026	4.325/0.003	4.325/0.003	4.325/0.003
	4.325/0.003	4.325/0.003	4.325/0.003		
Atom Pt 1	V_{WB}	18.253 Å^3			
	Zähligkeit	4			
	$\sum \sigma$	1.136			
Abstand [Å]/ σ	2.670/0.176	2.670/0.176	2.670/0.176	2.755/0.142	2.768/0.137
	2.855/0.110	2.855/0.110	2.855/0.110		
Atom Sn 2	V_{WB}	22.845 Å^3			
	Zähligkeit	4			
	$\sum \sigma$	0.949			
Abstand [Å]/ σ	2.670/0.176	2.670/0.176	2.670/0.176	2.755/0.142	3.084/0.061
	3.084/0.061	3.084/0.061	3.414/0.026	3.414/0.026	3.414/0.026
	4.325/0.003	4.325/0.003	4.325/0.003	4.325/0.003	4.325/0.003
	4.325/0.003	4.656/0.001	5.312/0.000	5.312/0.000	5.312/0.000

Element	$PtSn_2$		[Charlton, Corde	y-Hayes, Harris, 19	970]
	V_X	22.185 Å^3			
	f_X	1.138			
	V_D	19.496 Å^3			
Atom Pt 1	V_{WB}	18.719 Å^3			
	Zähligkeit	4			
	$\sum \sigma$	1.180			
Abstand [Å]/ σ	2.786/0.147	2.786/0.147	2.786/0.147	2.786/0.147	2.786/0.147
	2.786/0.147	2.786/0.147	2.786/0.147		
Atom Sn 1	V_{WB}	23.918 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	0.910			
Abstand [Å]/ σ	2.786/0.147	2.786/0.147	2.786/0.147	2.786/0.147	3.217/0.050
	3.217/0.050	3.217/0.050	3.217/0.050	3.217/0.050	3.217/0.050
	4.549/0.002	4.549/0.002	4.549/0.002	4.549/0.002	4.549/0.002
	4.549/0.002	4.549/0.002	4.549/0.002	4.549/0.002	4.549/0.002
	4.549/0.002	4.549/0.002	5.571/0.000	5.571/0.000	5.571/0.000
	5.571/0.000				

Element	$PtSn_4$		[Schubert, Rösler	, 1950]	
	V_X	23.284 Å^3			
	f_X	1.106			
	V_D	21.055 Å^3			
Atom Pt 1	V_{WB}	18.045 Å^3			
	Zähligkeit	4			
	$\sum \sigma$	1.504			
Abstand [Å]/ σ	2.759/0.188	2.759/0.188	2.759/0.188	2.759/0.188	2.765/0.185
	2.765/0.185	2.765/0.185	2.765/0.185	4.538/0.002	4.538/0.002
	4.538/0.002	4.538/0.002			
Atom Sn 1	V_{WB}	24.594 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	0.874			
Abstand [Å]/ σ	2.759/0.188	2.765/0.185	3.006/0.103	3.133/0.075	3.163/0.070
	3.343/0.045	3.343/0.045	3.357/0.043	3.357/0.043	3.598/0.024
	3.605/0.024	3.737/0.017	4.274/0.005	4.274/0.005	4.538/0.002
Atom Sn 2	V_{WB}	24.594 Å^3			
	Zähligkeit	8			
	$\sum \sigma$	0.874			
Abstand [Å]/ σ	2.759/0.188	2.765/0.185	3.006/0.103	3.133/0.075	3.163/0.070
	3.343/0.045	3.343/0.045	3.357/0.043	3.357/0.043	3.598/0.024
	3.605/0.024	3.737/0.017	4.274/0.005	4.274/0.005	4.538/0.002

10 Lebenslauf

28.11.1966	Geboren in Darmstadt als Kind von Dieter E. Hübner und Ursule Hübner geb. Galle
1972-1976	Grundschule Frankensteinschule, Darmstadt-Eberstadt
1976-1985	Gymnasium Lichtenbergschule, Darmstadt
Juni 1985	Allgemeine Hochschulreife
1985-1987	Zivildienst im Bereich Altenpflege, Darmstadt
1987	Student der Johann Wolfgang Goethe-Universität, Frankfurt am Main Studienfach: Musik und Deutsch für das Lehramt an Haupt- und Realschulen
seit 1989	Studienfach: Mathematik und Chemie für das Lehramt an Gymnasien
Juli 1992	Zwischenprüfung in den Fächern Mathematik und Chemie
November 1995	1. Staatsprüfung für das Lehramt an Gymnasien Examensthema: Bindungsvalenzanalyse und Wertigkeiten in intermetallischen Verbindungen mit Silber
seit April 1996	wissenschaftlicher Mitarbeiter im Institut für Anorganische Chemie der Johann Wolfgang Goethe-Universität, Frankfurt am Main
seit Juli 1996	Doktorand im Arbeitskreis von Prof. Dr. M. Trömel