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Abstract

Significant reductions in stratospheric ozone occur inside the polar vortices each spring
when chlorine radicals produced by heterogeneous reactions on cold particle surfaces
in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the
ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the5

chlorine currently present in the stratosphere, have been banned by the Montreal Pro-
tocol and its amendments, and the ozone layer is predicted to recover to 1980 levels
within the next few decades. During the same period, however, climate change is ex-
pected to alter the temperature, circulation patterns and chemical composition in the
stratosphere, and possible geo-engineering ventures to mitigate climate change may10

lead to additional changes. To realistically predict the response of the ozone layer to
such influences requires the correct representation of all relevant processes. The Eu-
ropean project RECONCILE has comprehensively addressed remaining questions in
the context of polar ozone depletion, with the objective to quantify the rates of some
of the most relevant, yet still uncertain physical and chemical processes. To this end15

RECONCILE used a broad approach of laboratory experiments, two field missions in
the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica
and an extensive match ozone sonde campaign, as well as microphysical and chemi-
cal transport modelling and data assimilation. Some of the main outcomes of RECON-
CILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually20

cold at stratospheric levels during the six-week period from mid-December 2009 until
the end of January 2010, with reduced transport and mixing across the polar vortex
edge; polar vortex stability and how it is influenced by dynamic processes in the tro-
posphere has led to unprecedented, synoptic-scale stratospheric regions with temper-
atures below the frost point; in these regions stratospheric ice clouds have been ob-25

served, extending over > 106 km2 during more than 3 weeks. (2) Particle microphysics:
heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice
has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also
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appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has
been characterised by chemical analysis of the non-volatile fraction of the background
aerosol; substantial formation of solid particles and denitrification via their sedimenta-
tion has been observed and model parameterizations have been improved. (3) Chem-
istry: strong evidence has been found for significant chlorine activation not only on po-5

lar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments
and field data on the ClOOCl photolysis rate and other kinetic parameters have been
shown to be consistent with an adequate degree of certainty; no evidence has been
found that would support the existence of yet unknown chemical mechanisms making
a significant contribution to polar ozone loss. (4) Global modelling: results from process10

studies have been implemented in a prognostic chemistry climate model (CCM); simu-
lations with improved parameterisations of processes relevant for polar ozone depletion
are evaluated against satellite data and other long term records using data assimilation
and detrended fluctuation analysis. Finally, measurements and process studies within
RECONCILE were also applied to the winter 2010/11, when special meteorological15

conditions led to the highest chemical ozone loss ever observed in the Arctic. In ad-
dition to quantifying the 2010/11 ozone loss and to understand its causes including
possible connections to climate change, its impacts were addressed, such as changes
in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.

1 Introduction20

The stratospheric ozone layer shields the Earth’s surface from UV radiation. Human ac-
tivities, primarily the release of chlorofluorocarbons (CFCs) and halons in the second
half of the 20th century, have led to a thinning of this protective layer which is most par-
ticularly marked in polar regions in spring (WMO, 2010). Even though the production
of CFCs has been banned by the Montreal Protocol and its subsequent amendments,25

and the ozone layer is expected to recover by the middle of the century at mid-latitudes
and by the end of the century over Antarctica (Eyring et al., 2010; WMO, 2010), climate
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change induced changes in stratospheric conditions and their impact on ozone are still
not easy to predict. The record-breaking ozone loss that occurred over the Arctic in
spring 2011 (Manney et al., 2011; Kuttippurath et al., 2012a) has shown that strato-
spheric ozone is still a critical issue, and that climate change could bring about ozone
hole like conditions in the Arctic as long as stratospheric chlorine levels are still high5

enough.
With its focus primarily on the Arctic stratosphere, the EU funded project RECON-

CILE, short for “Reconciliation of essential process parameters for an enhanced pre-
dictability of Arctic stratospheric ozone loss and its climate interactions”, runs from
2009 to 2013 and aims at understanding how the physical and chemical processes10

affecting stratospheric ozone will be influenced by and feedback on climate change.
In Sect. 2, a brief overview of past research on polar ozone depletion is given, and
the motivation and objectives of RECONCILE are stated. The overall strategy as well
as the tools and activities adopted are described in Sect. 3, and a summary of the
main scientific findings of the RECONCILE project is presented in Sect. 4. Section 515

explains how these results are used to advance our ability to predict the future state of
the ozone layer using chemistry climate models (CCMs), i.e. global circulation models
(GCMs) that include chemical reactions. Section 6 gives a brief overview on the record
Arctic ozone depletion 2011 and its implications.

2 Historical background and objectives20

Below, the history of research and policies on stratospheric ozone is briefly reviewed
and the state of knowledge, including open questions, at the beginning of the REC-
ONCILE project is described. Some key events – from the early warnings of possible
dangers to the ozone layer expressed in the 1970s to recent international research
projects with a focus on polar stratospheric ozone – are illustrated in Fig. 1.25
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2.1 The discovery of the ozone hole and the Montreal Protocol

In 1985 Joe Farman, Brian Gardiner and Jonathan Shanklin from the British Antarctic
survey reported “that the spring values of total O3 in Antarctica have now fallen consid-
erably” (Farman et al., 1985), and others soon confirmed this observation (Chubachi
and Kajiwara, 1986; Gernandt, 1987; Stolarski et al., 1986). Even though a number of5

scientists had expressed concerns that anthropogenic emissions of CFCs (Cicerone
et al., 1974; Crutzen, 1974; Molina and Rowland, 1974), nitrous oxide (N2O) from fer-
tilizer use (Crutzen, 1976), and reactive nitrogen compounds from high-flying aircraft
(Johnston, 1971; Crutzen, 1971) would potentially lead to faster catalytic ozone re-
moval rates and hence lower stratospheric ozone concentrations, the “Ozone Hole”10

came as a surprise to atmospheric scientists. But with the research that had already
been carried out in the 1970s as a solid foundation, a theory was soon developed that
the dramatic ozone destruction over the Antarctic in spring is the result of a complex
interplay of atmospheric dynamics, heterogeneous reactions, and catalytic reactions
involving chlorine compounds (Fig. 2).15

A link was made between these stratospheric chlorine compounds and CFCs, which
had been introduced as refrigerating agents and as propellants in spray cans in the
middle of the 20th century. Being inert in the lower atmosphere, these compounds are
transported to the stratosphere, where they release chlorine upon UV irradiation. We
undoubtedly know today that the attribution of CFCs as the ultimate cause of the ozone20

hole has been correct: Morgenstern et al. (2008) and Newman et al. (2009) recently
demonstrated that this first widely visible global environmental threat caused by human
activities had the potential for a global catastrophe.

Fortunately, the 1987 Montreal Protocol and its subsequent amendments and adjust-
ments essentially banned CFCs and certain other chlorinated and brominated com-25

pounds from being produced. As a result, stratospheric chlorine and bromine levels
have started to decline since the late 1990s and will continue to do so over the next
decades, although this will be a slow process due to their long atmospheric lifetimes
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(WMO, 2010). In most regions, column ozone is expected to return to 1980 levels (1980
is usually taken as the reference year for the so-called ozone recovery) around the mid-
dle of the century (Eyring et al., 2010; WMO, 2010). However, the state-of-the-art CCM
simulations used to estimate the recovery dates, clearly show that the decline in ozone
depleting substances (ODS) is only part of the story. The alterations to atmospheric5

dynamics and composition induced by global climate change (see Figs. 3–22 in WMO,
2010) become increasingly important and have a significant impact on stratospheric
ozone and consequently on recovery date projections (Eyring et al., 2010; Li et al.,
2009; Waugh et al., 2009; WMO, 2010).

2.2 Arctic variability and interactions with climate change10

Ozone is a greenhouse gas and radiatively heats the stratosphere. The reduced strato-
spheric heating related to the substantially reduced ozone amounts in Antarctic spring
has led to notable changes in atmospheric dynamics in the Southern Hemisphere
(Polvani et al., 2010; Gillett and Son, 2012 and references therein) and may be the
cause for observed increases in Antarctic sea ice (Turner et al., 2009). Increases in UV15

radiation caused by ozone depletion may affect ecosystems with possible feedbacks
on the carbon cycle.

On the other hand, climate change affects biogeochemical processes as well as at-
mospheric dynamics, leading to alterations in emissions and transport times of many
trace gases that play a role in stratospheric chemistry and affect ozone (Engel et al.,20

2009 and references therein; Waugh et al., 2009). A major factor in Arctic ozone de-
pletion, the stability of the polar vortex, directly depends on planetary wave forcing,
which is also sensitive to climate change (e.g. Shindell et al., 1999; Sigmond et al.,
2008; Dameris and Baldwin, 2012 and references therein; McLandress and Shepherd,
2009). A particular susceptibility of the Arctic stratosphere to climate change may man-25

ifest in the trend of cold stratospheric winters in the Arctic getting colder, amplifying
heterogeneous chlorine activation and ozone depletion (Rex et al., 2004, 2006).
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Over longer periods, climate change and possible geoengineering ventures to miti-
gate climate change (e.g. Crutzen, 2006) may radically alter the temperature, circula-
tion patterns and chemical composition in the stratosphere. It has been argued (e.g.
Tilmes et al., 2008) that the artificial injection of sulphur into the stratosphere consid-
ered as a geoengineering venture (e.g. Crutzen, 2006) would increase the extent of5

Arctic ozone depletion in cold winters and would considerably delay the recovery of the
Antarctic ozone hole. To realistically predict the response of the ozone layer to these
changes and the future evolution of Arctic ozone, a complete and correct representa-
tion of all relevant processes is necessary.

2.3 Major breakthroughs in understanding polar ozone depletion through pre-10

vious projects and field campaigns

A large number of international research projects (included on the timeline shown in
Fig. 1) carried out during the past 25 yr have continuously advanced our understanding
of the processes involved in ozone depletion. Virtually all major breakthroughs (e.g. role
of chlorine radicals in ozone destruction by Anderson et al., 1989; detection of large15

nitric acid trihydrate (NAT) particles by Fahey et al., 2001; heterogeneous nucleation
and growth of NAT particles by Voigt et al., 2005) have been based on outstanding ex-
perimental results gathered during large scale field campaigns. Some of these results
were somewhat unexpected or even surprising and have triggered new research.

Since the Airborne Antarctic Ozone Experiment (AAOE) in 1987 (Tuck et al., 1989),20

numerous campaigns for the exploration of polar as well as mid-latitude and tropical
UTLS (upper troposphere and lower stratosphere) processes have been carried out
(e.g. Turco et al., 1990; Anderson and Toon, 1993; Newman et al., 2002; Vaughan et al.,
2008; Cairo et al., 2010), employing state-of-the-art instrumentation and elaborate flight
strategies that exploit the full horizontal and vertical manoeuvrability of high-altitude25

research aircraft like the US ER-2 and Russian M55 Geophysica and complemented by
parallel balloon-borne and lower flying aircraft measurements and extensive modelling

30669

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/30661/2012/acpd-12-30661-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/30661/2012/acpd-12-30661-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 30661–30754, 2012

RECONCILE

M. von Hobe et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

activities. The RECONCILE project and the Arctic field campaign described in this
paper stand in and continue this fruitful tradition.

2.4 Objectives of RECONCILE

At the beginning of the RECONCILE project in 2009, the lack of understanding in strato-
spheric dynamics and chemistry was most palpable for issues including the catalytic5

ClOx/BrOx chemistry, chlorine activation on cold stratospheric aerosol, NAT nucleation
mechanisms, and mixing and transport of processed air to lower latitudes. Therefore,
the following specific objectives were defined for RECONCILE:

– Fully understand and correctly represent in global circulation models the transport
and mixing across the edge of the polar vortex.10

The edge of the polar vortex can be defined in several ways (e.g. Dameris et al., 1995;
Harvey et al., 2002; Nash et al., 1996; Waugh and Polvani, 2010). Dynamically, it is
roughly centred in the polar night jet that develops in the stratosphere over the winter
poles in response to seasonal cooling over the respective polar region. The strong cir-
cumpolar westerly winds act as a transport barrier and affect both the extent of ozone15

depletion and the meridional exchange of ozone depleted air with lower latitudes. Due
to the distinct land-sea distribution in the Northern Hemisphere, tropospheric weather
regimes and associated planetary wave activity modify the strength of the polar night
jet and lead to instabilities. Therefore, the persistence of the polar vortex and, even-
tually, the strength of transport barrier are rather variable during each winter and vary20

interannually. A misrepresentation of the transport and mixing across the vortex edge
in global circulation models affects our ability to reliably predict both quantities in future
climate scenarios.

– Elucidate in detail the processes of NAT nucleation leading to polar stratospheric
cloud (PSC) formation, in particular the role of meteoritic dust and other refractory25

material as condensation nuclei, and the mechanism by which NAT particles grow
to rather large sizes forming so-called NAT rocks.
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The conventional understanding of PSC formation based on NAT nucleation depending
on prior ice formation has been questioned based on in-situ and ground-based lidar
observations (Drdla et al., 2002; Pagan et al., 2004; Voigt et al., 2005). However, these
in-situ and ground-based lidar observations relied on spatially and temporally limited
data and left room for uncertainties. One issue were temperature histories along air5

parcel trajectories, which were calculated using gridded data of numerical weather
prediction (NWP) models. Due to the limited spatial and temporal resolution, these
temperature histories were not reliable because, for example, effects of stratospheric
mountain waves were not taken into account (Dörnbrack et al., 1998, 1999).

The possible role of meteoritic dust and other refractory material as condensation10

nuclei has been pointed out (Curtius et al., 2005; Voigt et al., 2005). NAT particles with
diameters of tens of microns have been observed and termed “NAT rocks” (Brooks
et al., 2003; Fahey et al., 2001; Fueglistaler et al., 2002). When gravitationally sed-
imenting, these particles efficiently transport and, eventually, redistribute nitric acid,
HNO3. Later in the polar winter, this redistribution impacts the potential for further PSC15

formation and the rate of chlorine deactivation into chlorine nitrate, ClONO2.

– Investigate the importance of chlorine activation on background aerosol.

Katja Drdla (Drdla, 2005; Drdla and Müller, 2012) pointed out that at sufficiently low
temperatures, chlorine is activated on the background binary aerosol, and that the
actual formation of PSCs is not a prerequisite for chlorine activation. This is of par-20

ticular importance in the context of enhanced stratospheric water vapour concentra-
tions fostering an enhanced total reactive surface area (Anderson et al., 2012), or of
geo-engineering concepts to cool the Earth’s surface by deliberately enhancing the
stratospheric loading of sulphate aerosol (Crutzen, 2006) or other aerosol composi-
tions (Pope et al., 2012). Clearly, the process of chlorine activation on binary aerosol25

could have consequences for stratospheric ozone on a global scale.

– Reduce uncertainties and reach an adequate level of confidence concerning the
parameters governing the rate of catalytic ozone loss
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Uncertainties in various kinetic parameters and the stratospheric bromine budget led
to significant uncertainties in model simulations of ozone loss (e.g. Frieler et al., 2006).
The single most critical parameter governing the rate of catalytic ozone loss in polar
spring is the ClOOCl photolysis rate JClOOCl, i.e. the product of the actinic flux and
the ClOOCl photolysis cross sections σClOOCl. In 2007, values of σClOOCl determined in5

numerous laboratory experiments differed by up to a factor of 10, and an experiment by
Pope et al. (2007) that suggested the lowest absorption cross sections ever published
even put into question our qualitative understanding of the catalytic ozone loss (von
Hobe et al., 2007; Schiermeier, 2007; von Hobe, 2007) leading to speculations on
previously unknown additional ozone loss mechanisms (e.g. Salawitch et al., 2009;10

Vogel et al., 2006).
Besides investigating these dynamic, microphysical and chemical processes, and

thus completing our knowledge and understanding of the processes leading to polar
ozone depletion, the central aim of RECONCILE is to develop reliable process parame-
terisations and implement them in a global CCM. It is worth pointing out that the model15

spread in stratospheric ozone simulations and projections is particularly wide for the
Arctic region (SPARC, 2010). This can be attributed to high natural variability but also
to very significant model differences in the representations of polar processes.

3 RECONCILE strategy and activities

Figure 3 gives a graphical representation of the RECONCILE overall approach. To20

address the uncertainties and open questions as named in Sect. 1.4, a comprehensive
strategy of laboratory experiments, aircraft and match campaigns, microphysical and
chemical transport modelling, and data assimilation is employed. The results are used
to produce reliable parameterisations of key processes in Arctic stratospheric ozone
depletion, which are implemented in a global CCM. The quality of the simulations is25

assessed against observations.
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3.1 Laboratory experiments

3.1.1 The ClOOCl absorption spectrum

A dual wavelength range spectrometer system that can simultaneously perform sin-
gle pass UV absorption spectroscopy (wavelength range 200–350 nm) and broadband
cavity enhanced absorption spectroscopy (BBCEAS, wavelength range 510–560 nm)5

has been used to investigate the UV and visible absorption cross sections of molecu-
lar chlorine (Cl2) and ClOOCl at different temperatures (Young et al., 2011). With this
spectrometer, the experiment carried out by Pope et al. (2007) – i.e. purifying ClOOCl
by cold trapping prior to spectral analysis – was repeated, but now with the possibil-
ity to simultaneously monitor and unambiguously subtract the Cl2 contribution to the10

spectrum, i.e. the impurity that proved to cause major uncertainties in the previous
experiment.

3.1.2 Heterogeneous NAT nucleation

The heterogeneous NAT nucleation rate on meteoritic nuclei was investigated by re-
visiting earlier experiments of Biermann et al. (1996). Back then, an upper bound had15

been reported for freezing rates of 6 different ternary H2SO4/HNO3/H2O-solutions with
immersed micrometeorites under stratospheric conditions. Using a Differential Scan-
ning Calorimeter (DSC) (e.g. Koop and Zobrist, 2009; Marcolli et al., 2007; Zobrist
et al., 2008), new bulk experiments were carried out on fragments of the meteorites
Orgueil and Murchison with radii varying between 100 and 500 nm, provided in a col-20

laboration with CSNSM (Centre de Spectrométrie Nucléaire et de Spectrométrie de
Masse, Paris, France).

3.2 Field observations

Extensive field measurements to study processes related to transport and mixing within
and at the edge of the polar vortex, PSCs, chlorine chemistry and ozone loss were25
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carried out in the Arctic winter 2009/10. This winter was marked by a sequence of
tropospheric disturbances and associated planetary wave activity impacting the for-
mation and evolution of the polar vortex in late November and early December 2009.
Afterwards, a period of exceptionally cold temperatures, leading to extensive PSC for-
mation, followed in January 2010 due to the development of a positive phase of the5

Western Pacific (WP) teleconnection pattern in the troposphere, as described by Nishii
et al. (2011) and Orsolini et al. (2009). A major sudden stratospheric warming (SSW)
near the end of January 2010 concluded the anomalously cold vortex period and pre-
vented an extensive ozone loss in the RECONCILE winter (cf. Sect. 4.1). A detailed
overview of the meteorological situation and evolution of the polar vortex has been10

given in Dörnbrack et al. (2012). An additional match campaign as well as investiga-
tions based on satellite observations were carried out in the subsequent Arctic winter
2010/11 that saw record breaking ozone loss (Manney et al., 2011, cf. Sect. 6).

3.2.1 The Geophysica aircraft campaign

During two measurement periods (17 January–2 February and 27 February–10 March15

2010) to cover early and late winter conditions, 12 RECONCILE flights of the high-
altitude aircraft M55-Geophysica totalling 57 flight hours were carried out from Kiruna,
Sweden, complemented by one flight of the PremierEX project funded by ESA (Spang
et al., 2011). An overview of all flights with the respective scientific missions is given
in Table 1 and the flight tracks are shown in Fig. 4. An overview of the instruments20

deployed onboard the M55-Geophysica during the RECONCILE campaign is given
in Table 2. The data will be made available online at https://www.fp7-reconcile.eu/
reconciledata.html.

Flight planning was based on results of the Integrated Forecast System (IFS) of the
European Centre of Medium-Range Weather Forecasts (ECMWF). Different thermo-25

dynamical fields and derived quantities from the deterministic run were visualized on
a web-site as part of the mission support system being developed at DLR (Deutsches
Zentrum für Luft und Raumfahrt, Rautenhaus et al., 2012). Chemical forecasts were
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made using a CLaMS (Chemical Lagrangian Model of the Stratosphere, cf. Sect. 3.5)
simulation that started at 1 December 2009 and was run using up-to-date ECMWF
analyses and ECMWF forecasts 3 to 4 days into the future.

Air mass trajectories for Lagrangian match experiments were also based on ECMWF
forecasts. The idea of the match method consists in probing an individual air parcel5

twice in order to obtain information on the temporal evolution of the concentration of
chemical species (cf. Sect. 3.2.2). During the RECONCILE aircraft campaign it was
applied to three flights. During two self-match flights air parcels probed during the
outbound flight leg were sampled again during the return flight leg to investigate the
temporal evolution of the concentration of chlorine species during sunrise. During one10

match flight air parcels probed during one flight were sampled again three days later to
investigate the transport and mixing processes in the stratosphere (Fig. 5).

3.2.2 Match sonde and balloon activities

A match campaign in the winter 2009/10 consisted of two elements, ozone sonde
matches and COBALD backscatter sonde activities, including water vapour soundings.15

The match technique to estimate winter ozone loss has been first described by Rex
et al. (1999). 31 ozone sounding stations (Fig. 6) participated in the 2010 match cam-
paign and 573 ozone sondes were launched from 29 of these stations. The ozone
sonde match campaign started on 5 January and was ended on 28 February, after
a major warming had occurred and the meteorological conditions for continuing the20

campaign deteriorated. The factors that led to the decision to terminate the campaign
included large shear and deformation in the flow, expected small scale filaments in the
ozone field and the position of the remnants of the polar vortex which were over East-
ern Siberia at that time, out of reach of the network of match stations. A vortex remnant
returned to Canada and later to the European sector of the Arctic during mid-March.25

Coordinated sondes were launched into this remnant to assess whether ozone loss
had continued after the end of the match campaign.
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An additional ozone sonde match campaign was carried out in the winter 2010/11
with about 270 ozone sonde launches from 13 stations actively participating in the
campaign. The campaign started on 12 January 2011 and was stopped on 27 April
2011.

The recently developed light-weight, high-power-LED-based aerosol backscatter5

sonde COBALD (Compact Optical Backscatter and AerosoL Detector, Wienhold, 2012)
was successfully employed during the RECONCILE campaign under Arctic winter con-
ditions (Engel et al., 2012a; Khaykin et al., 2012). During the PSC phase in January
2010, 8 COBALD launches with PSC observations were carried out from Ny-Ålesund,
with the advantage of reaching altitudes higher than the M55-Geophysica ceiling al-10

titude. Matches (planned and confirmed using trajectory calculations) with the Geo-
physica aircraft and with the Cloud-Aerosol Lidar (CALIPSO) satellite (see below) were
carried out to allow for a comparison of different particle backscatter measurements
and for the observation of cloud changes.

A series of balloon-borne soundings has been carried out in the framework of15

LAPBIAT-II (Lapland Atmosphere-Biosphere Facility) campaign held at Sodankylä, Fin-
land (360 km East of Kiruna, Sweden) under the premises of Finnish Meteorological
Institute’s Arctic Research Center (FMI-ARC). A total number of 172 individual bal-
loon instruments including radio and water vapour sondes, aerosol and ozone sen-
sors were flown during the LAPBIAT-II campaign. The balloon flights were coordi-20

nated with the aircraft flights and the sounding programme at Sodankylä was car-
ried out in two phases, with 18 payloads flown between 17 January and 6 February
2010 and 15 payloads flown between 10 and 24 March 2010. The stratospheric water
vapour measurements were conducted using two types of hygrometers, the Cryogenic
Frostpoint Hygrometer (CFH, Vömel et al., 2007) and the Fluorescence Lyman-alpha25

Stratospheric Hygrometer (FLASH-B, Yushkov et al., 1998). The intercomparison of
the data obtained by these two instruments during LAPBIAT-II shows good agreement
of 0.73±5 % and consistency in reproducing vertical structures, allowing for the use
of FLASH-B and CFH water vapour measurements as interchangeable data series
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(Khaykin et al., 2012). During the first phase of LAPBIAT-II the CFH instrument was
flown on board of 15 payloads, 11 of which included COBALD backscatter sondes, 5
payloads included FLASH-B sondes and 2 payloads included the backscatter sondes
of the University of Wyoming (Rosen and Kjome, 1991).

In coordination with the RECONCILE Geophysica flights, a balloon flight with a re-5

mote sensing payload consisting of the instruments MIPAS-B (Michelson Interferome-
ter for Passive Atmospheric Sounding – Balloonborne), TELIS (TErahertz and submil-
limeter LImbSounder) and mini-DOAS was carried out from Esrange, Kiruna, Sweden
on 24 January 2010 (de Lange et al., 2012; Wetzel et al., 2012) to study the diurnal
variation of reactive chlorine and nitrogen oxides inside the Arctic vortex from night-10

time photochemical equilibrium until local noon covering the full vertical extent of the
activated region. Along with O3, H2O and tracers the complete nitrogen and chlorine
families were measured, allowing to study the partitioning and the budgets of these
ozone-controlling substances from the tropopause up to about 34 km.

3.2.3 Satellite observations15

Observations made by a number of satellite instruments have been used extensively to
support the flight planning during the field campaigns and in scientific process studies.
In the following, the satellite instruments and data products that have been of particular
importance for the RECONCILE project are briefly described.

PSCs have been observed since June 2006 by the lidar system on the CALIPSO20

(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite, which pro-
vides extensive daily measurement coverage up to 82 degrees latitude in both hemi-
spheres. CALIPSO PSCs are detected at 180-m vertical resolution and at horizontal
resolutions ranging from 5 km to 135 km, and are classified by composition (super-
saturated ternary solution STS, liquid/NAT mixtures, ice, and wave ice) based on the25

measured 532-nm scattering ratio and aerosol depolarization ratio (Pitts et al., 2009,
2011).
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The Microwave Limb Sounder (MLS) is an instrument on the EOS (Earth Observing
System) Aura satellite, which is in a polar orbit of 705 km at an inclination of 98◦, and
has provided continuous measurements since August 2004 (Waters et al., 2006). MLS
provides about 3500 profiles each day from Earth’s surface to ∼90 km altitude between
82◦ N and 82◦ S. We use observations of gas-phase HNO3 (Santee et al., 2007a), H2O5

(Lambert et al., 2007), HCl (Froidevaux et al., 2008), ClO (Santee et al., 2007b), O3
(Froidevaux et al., 2008) and temperature from retrieval version 3.3 (Livesey et al.,
2012). In the stratosphere, the vertical resolution and precision of the observations are
3.5–4.5 km and 0.7 ppb for HNO3, 3 km and 15 % for H2O, 3 km and 0.2–0.4 ppb for
HCl, 3–4.5 km and 0.1 ppb for ClO, 3 km and 0.04–0.1 ppm for O3, and 4 km and 1 K10

for temperature
The Atmospheric Chemistry Experiment–Fourier Transform Spectrometer (ACE-

FTS) is a solar occultation instrument on SCISAT-1, flying in a circular orbit at 650 km
at an inclination of 74◦ and has made measurements since 2004 (Bernath et al., 2005).
ACE-FTS provides daily vertical profiles for up to 15 sunrises and 15 sunsets with15

latitudinal coverage exhibiting an annual cycle between 85◦ S to 85◦ N. We use ob-
servations of ClONO2, N2O5 (Wolff et al., 2008) and HCl (Mahieu et al., 2005) from
retrieval version 3 with a vertical resolution of 3–4 km.

The Sub-Millimetre Radiometer (SMR) onboard the Odin satellite observes the ther-
mal emission from the Earth limb and provides vertical trace gas profiles including O3,20

N2O, and HNO3. Stratospheric mode measurements are generally performed in the
altitude range from 7 to 70 km with a resolution of 1.5 km below 50 km tangent altitude
and 5.5 km above, normally covering the latitude range between 82.5◦ S and 82.5◦ N
(Urban et al., 2009; Murtagh et al., 2002).

To assess the impact of the 2011 Arctic ozone hole on surface UV radiation and25

compare the results to previous Arctic and Antarctic winters (Sect. 6), local-noon clear-
sky UV index data products from a combined MSR/SCIAMACHY (Scanning Imaging
Absorption Spectrometer for Atmospheric CHartographY) dataset (Eskes et al., 2005;
van der A et al., 2010; Allaart et al., 2004) were averaged as a function of day-of-
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year and latitude (von Hobe et al., 2012). The comparison of clear-sky data isolates
the ozone effect on UV-radiation, i.e. interannual variability due to changes in albedo
(snow cover), clouds and aerosol loading is excluded in the analysis.

3.3 Microphysical modelling

To understand STS, NAT, and ice formation in the Arctic stratosphere, the Zurich Op-5

tical/Microphysical box Model (ZOMM) is used. ZOMM has been described previously
by Luo et al. (2003) and Meilinger et al. (1995) and was applied very recently in de-
tailed cirrus modelling (Brabec et al., 2012). Along the lines of previous understand-
ing of PSC formation (Peter, 1997) – kinetic growth of STS by simultaneous uptake
of H2O and HNO3, homogeneous nucleation of ice in these solution droplets (Koop10

et al., 1995) and then heterogeneous nucleation of NAT on pre-existing ice particles
(Carslaw et al., 1998) along air parcel trajectories – the pre-RECONCILE version of
the model focussed on simulating exactly these processes. RECONCILE observations
triggered the implementation of additional new heterogeneous formation pathways for
NAT and ice. To this end, solid nuclei were implemented by assuming the presence of15

non-volatile particles with a radius of 20 nm and a uniform number density of 7.5 cm−3

throughout the Arctic stratosphere. These assumptions on size and number density re-
flect the in-situ measurements by the heated condensation nuclei counter COPAS on
board of Geophysica during RECONCILE and EUPLEX (cf. Sect. 4.2.2).

These heterogeneous nuclei for NAT and ice formation (Hoyle et al., 2012; Engel20

et al., 2012b) are then allowed to compete with the accepted pathway of NAT formation
via homogeneous nucleation of ice, which typically requires cold localized pools in
mountain-wave-driven temperature fluctuations (Carslaw et al., 1998; Peter, 1997). In
the absence of better knowledge of the nucleation properties of these nuclei, immersion
freezing of NAT and ice was assumed to occur on active sites much like heterogeneous25

ice nucleation on Arizona test dust demonstrated in previous laboratory experiments
(Marcolli et al., 2007). This approach still needs to be reconciled with the laboratory
experiments of Biermann et al. (1996), who established upper limits of NAT nucleation
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rates and classified direct heterogeneous NAT nucleation on pre-existing solid particles
as relatively inefficient.

3.4 Chemistry transport modelling

The Chemical Lagrangian Model of the Stratosphere (CLaMS, Konopka et al., 2004;
McKenna et al., 2002a,b; Grooß et al., 2005) is a hierarchy of models ranging from5

a box model to a 3-D Chemistry Transport Model (CTM) based on a Lagrangian trans-
port concept, in which the chemical evolution within individual air parcels is simulated
along trajectories determined from ECMWF temperature data and wind fields. Strato-
spheric chemistry in CLaMS is an update of that described in McKenna et al. (2002a)
and now includes reactions of importance in the upper stratosphere. 143 reactions of10

45 variable chemical species now explicitly contain reactions involving H radicals as
well as N2O and CFCs. Chemical reaction rates and absorption cross sections are
based on JPL 2011 (Sander et al., 2011) except when explicitly noted otherwise. Het-
erogeneous reaction rates are parameterised as described in Wegner et al. (2012a),
and a particle based denitrification scheme (Grooß et al., 2005) is implemented.15

For RECONCILE, CLaMS has been used extensively on all spatial, temporal and
complexity scales to investigate individual physical and chemical processes using field
observations and to develop mathematical parameterisations for use in global prog-
nostic models (cf. below). Hemispheric simulations have been carried out with horizon-
tal resolutions up to 70 km. For the mixing parameterisation (McKenna et al., 2002b;20

Konopka et al., 2004), a time step of 24 h and a critical Lyapunov coefficient of 1.5 day−1

were used (see also Riese et al., 2012). To study transport and mixing processes, and
to distinguish between dynamic and chemical processes acting on the concentrations
of certain trace gases, dynamical tracers that are not influenced by chemistry such as
passive ozone, passive NOy, or artificial air mass origin tracers are used. The evolu-25

tion of the polar vortex composition during the winter 2009/10 has been investigated
utilizing a suite of 9 inert tracers defined by PV thresholds based on an algorithm by
Nash et al. (1996). The tracer fields were initialized on 1 December 2009 according
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to the initial position of the air masses in the modified potential vorticity (PV) space
(see Günther et al., 2008 and references therein). To further quantify the in-mixing of
air masses from lower latitudes into the polar vortex during the vortex split in mid De-
cember 2009, an additional simulation starting at the beginning of January 2010 with
re-initialized tracers was performed.5

ATLAS is another global Chemistry Transport Model with a focus on the stratosphere
(Wohltmann et al., 2010; Wohltmann and Rex, 2009), based on the same Lagrangian
approach as CLaMS. Transport and chemistry are driven by ECMWF ERA Interim data
for RECONCILE. The model includes a stratospheric chemistry module that comprises
47 species and more than 180 reactions, detailed heterogeneous chemistry on Po-10

lar Stratospheric Clouds and a particle-based Lagrangian denitrification module. For
RECONCILE, ATLAS has been used for global modelling studies of the 2009/10 winter
(Wohltmann et al., 2012).

3.5 Data assimilation

A data assimilation scheme to estimate chemical ozone loss in the Arctic winter strato-15

sphere based on a 3D-Var version of the operational Met Office assimilation system
(Jackson, 2007) has been developed by Jackson and Orsolini (2008) to address some
potential shortcomings of vortex-averaged and other methods used to estimate ozone
loss, namely, the definition of the vortex edge, and estimates of mixing across the vor-
tex edge. Jackson and Orsolini’s results showed that the data assimilation method is20

very promising and can lead to potentially more accurate ozone-loss estimates than
other, more established methods.

EOS MLS and SBUV/2 ozone observations are assimilated, together with dynami-
cal observations from satellites, aircraft, radiosondes and surface stations. A realistic
ozone field is produced by running the ozone assimilation (referred to as ASSIM) for25

one week. The ASSIM run is continued for several more weeks, while a reference
run (referred to as REF) is also started using the same initial conditions, but continued
without further ozone observations being assimilated. Hence in REF ozone is initialized
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with EOS MLS and SBUV/2 observations and thereafter transported passively by as-
similated winds. The one week initialization step ensures that the reference ozone is
realistic and shares the same potential observational biases as the assimilated ozone
in the ASSIM run. To estimate chemical ozone loss, REF ozone is subtracted from the
ASSIM ozone field. The dynamical fields in both runs are near-identical and differences5

between the assimilated and reference ozone fields can be attributed to chemistry. In
the middle and high-latitude winter lower stratosphere, it is likely that these chemical
changes will be overwhelmingly due to heterogeneous PSC-related chemistry. Apply-
ing this method for the Arctic winter 2005 between early February and mid March at
450 K, Jackson and Orsolini (2008) reported chemical ozone loss of 0.6 ppm, at the10

lower edge of the 0.6–1.2 ppm range for ozone loss estimates for this period based on
other methods.

3.6 Global modelling

Global models play a crucial role in understanding the chemical and dynamical pro-
cesses in the atmosphere. CCMs provide the only tool for predictions and projections,15

therefore their validation and the evaluation and improvement of the performance of
parameterizations are important parts of the continuous improvement.

CCM activities within RECONCILE are carried out with the LMDz-Reprobus model
(Marchand et al., 2012; Jourdain et al., 2008) that couples the LMDZ general circu-
lation model (Hourdin et al., 2006, 2012; Le Treut et al., 1998; Sadourny and Laval,20

1984) and the Reprobus stratospheric chemistry package (Lefèvre et al., 1994, 1998).
The performances of LMDz-Reprobus simulations of stratospheric ozone and climate
have been evaluated against a wide range of observations and against other chemistry-
climate models (Austin, 2010; Jourdain et al., 2008; Gettelman et al., 2010; Hegglin,
2010). In RECONCILE, the configuration of LMDz (LMDZ5) is identical to that em-25

ployed for the Coupled Model Intercomparison Project Phase 5 simulations (CMIP5,
Hourdin et al., 2012): the model extends from the ground up to 65 km on 39 hybrids
pressure vertical levels, and the horizontal resolution is 3.75◦ in longitude and 1.875◦ in
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latitude. The chemical package provides a comprehensive description of 55 chemical
species of stratospheric interest, by means of the usual set of gas-phase and hetero-
geneous reaction rates recommended by the JPL evaluation (Sander et al., 2011). In
its pre-RECONCILE version, the CCM scheme employed for the treatment of polar
stratospheric clouds is a simple equilibrium scheme that predicts the existence of liq-5

uid (binary H2O/H2SO4 or ternary H2O/H2SO4/HNO3 solutions) and solid (NAT or H2O
ice) aerosols from the local thermodynamic conditions in each model grid box. When
saturation is reached, solid particles are assumed to form instantaneously at a fixed ra-
dius (two modes of 0.5 and 6.5 µm for NAT, 10 µm for water-ice) and only their number
density (particlescm−3) is variable. As for all equilibrium schemes, the scheme has no10

memory of the temperature history of the air mass and the particles are not transported
separately from one time step to the other. This usual treatment of PSCs in CCMs is
computationally cheap but cannot represent properly the slow growth of large solid
particles (such as “NAT rocks”) and their consequences on denitrification and ozone
loss.15

The main objective of the global modelling activity in RECONCILE is to assess the
impact of the results from the process studies related to the field and laboratory mea-
surements on predictions of polar stratospheric ozone loss. This involves an ensem-
ble of long-term transient simulations covering the period 1960–2050 with different
parameterisations of polar stratospheric clouds. The reference simulations of LMDz-20

Reprobus for the past and future evolution of the ozone layer use the standard reaction
rates recommended by JPL 2011 and the pre-RECONCILE PSC equilibrium scheme
described above. These simulations also include the same scenarios for the emissions
of greenhouse and ozone-depleting gases as those published in the latest WMO as-
sessment (WMO, 2010). On the other hand, the improved version of the CCM takes25

full benefit of the results of RECONCILE obtained in the laboratory, in the field, and by
CTM modelling. In this version, a coherent set of kinetic parameters for ClOx chemistry
that is consistent with observations (Table 3 and Sect. 4.3) is adopted, and a more
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realistic parameterisation of PSCs has been developed based on the results described
in Sect. 4.2.

The improved version of LMDz-Reprobus will be integrated over the same timescales
as the reference simulation and the impact of the new parameterisations developed
from RECONCILE will be evaluated against the observed ozone trends since the 1960s5

and for the future period. A full analysis of the CCM runs carried out within the REC-
ONCILE framework will be presented in a future paper.

While the last big cross-validation project CCMVal-2 (Eyring et al., 2010; Gillett et al.,
2011; SPARC, 2010) provided comprehensive bias estimates for several models, we
extended the methodology by comparing dynamical features of empirical data and10

time series obtained by the LMDZrepro simulations. The main focus was on a global
analysis of spectral properties, two-point correlations determined by detrended fluctu-
ation analysis (DFA), and detecting higher order correlations by the spectral surrogate
method (see Sect. 5.2).

4 Processes in the Arctic vortex15

In this section, we summarize the key results from RECONCILE in terms of improved
understanding of dynamic, microphysical and chemical processes relevant to polar
ozone loss. The field measurements in 2010 provided good opportunities for process
studies, even though 2009/10 was a moderate winter in terms of ozone loss. From the
match campaign, maximum loss rates on the order of 60 ppbday−1 in mid-February and20

an overall column ozone loss of about 66 DU inside the polar vortex were determined.
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4.1 Vortex dynamics and mixing

4.1.1 The evolution of the 2009/10 Arctic vortex and factors influencing vortex
stability

The cooling of the air inside the polar vortex generally followed the 21-yr ECMWF cli-
matological mean from summer until mid-November 2009, when the minimum temper-5

ature (TMIN) at the 50 hPa pressure surface had dropped to about 200 K (Fig. 7). From
this time until mid-December 2009, the minimum temperatures inside the vortex were
well above the climatological mean. The period was characterized by significant plan-
etary wave activity (see Fig. 8 in Dörnbrack et al., 2012). As a consequence of these
disturbances, the polar vortex split into two unequally strong lobes during the first ten10

days of December 2009 (Fig. 8, left hand column). The two lobes rejoined, including
some mid-latitude air in the process, and the new vortex cooled gradually through mid-
January 2010 (second column in Fig. 8). There was a significant drop in TMIN to values
as much as 9 K below the climatological mean (Fig. 7). These coldest conditions in the
entire winter occurred during a brief period between two sudden stratospheric warm-15

ings (SSWs). Indeed, the polar stratospheric cooling and vortex strengthening during
this period were a response of the weakened planetary wave activity (Dörnbrack et al.,
2012). The formation of such an exceptionally cold vortex corresponds to the devel-
opment of a positive phase of the Western Pacific (WP) teleconnection pattern in the
troposphere, as described by Nishii et al. (2011) and Orsolini et al. (2009). The anoma-20

lously cold vortex period was concluded near the end of January 2010 by the onset of
a major SSW that was also related to tropospheric features (Ayarzaguena et al., 2011).
In early February, the vortex again broke apart into two lobes (third column in Fig. 8)
which rejoined again in early March with patches of mid-latitude air that were included
in the process. The new single vortex remained intact throughout March (Fig. 8, right25

hand column). A climatological analysis revealed the surprising result that the 2009/10
winter was the third warmest winter in the 21 yr period from 1989 to 2009 measured by
the polar cap temperatures at 50 hPa (see Tables in Dörnbrack et al., 2012).
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A comprehensive analysis of SSWs in past Arctic winters also suggests profound
tropospheric forcing for the observed major SSWs (Kuttippurath and Nikulin, 2012).
The authors also present a statistical analysis for the past 17 Arctic winters showing
that ozone loss closely relates to the intensity and timing of major warmings in each
winter and argue that a particularly high frequency of major warmings observed in5

recent Arctic winters could have significant implications for stratospheric ozone trends
in the Northern Hemisphere.

4.1.2 Mixing within the polar vortex and across its edge

According to the CLaMS artificial tracer simulations, 60 % of vortex air were affected
by mixing as a result of the vortex split in December 2009 (Fig. 8, left hand column).10

After a re-organization before January 2010 the vortex stayed coherent with significant
mixing only below 500 K (Fig. 8, second column). Following the second vortex split en-
hanced transport of air from lower latitudes into the reformed vortex occurred (Fig. 8,
third column), leading to a heterogeneous origin distribution inside the vortex interior
during late winter (Fig. 8, right hand column). The results from the CLaMS simula-15

tions were validated with observations obtained by the CRISTA (CRyogenic Infrared
Spectrometers and Telescopes for the Atmosphere) (Kalicinski et al., 2012) and HA-
GAR (Hösen et al., 2012) instruments. Analysis of tracer-tracer correlations observed
by HAGAR also indicate ongoing irreversible mixing of the intruded air masses inside
the vortex in March 2010 (Hösen et al., 2012), which is also captured by the CLaMS20

simulations.
A detailed case study of model uncertainties in reproducing observed tracer concen-

trations in a region of strong gradient was carried out for the RECONCILE match flight
(Wegner et al., 2010). The comparison of mixing ratios of the tracer N2O at the start
and end points of trajectories connecting the two match flights on 30 January and 225

February revealed that the matches were not always as successful as planned (Fig. 5),
and that the determination of matching air masses on the timescale of several days
solely by trajectory calculations is insufficient. The mean uncertainty of the trajectory
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calculations over three days was 65 km, even when they were based on high resolution
ECMWF wind fields. This could potentially impair ozone loss estimates by the match
technique in an inhomogeneous vortex.

4.1.3 Data assimilation

Issues related to mixing in and at the edge of the polar vortex were also investigated5

for the assimilation-based method. This was part of a broader study where ozone loss
estimates made using the assimilation-based method were compared to ozone loss
estimates obtained by running the University of Oslo CTM (Sovde et al., 2011). The
focus was on the winter of 2006/07, and the assimilation used 3D-Var, while the CTM
constituents were advected using ECMWF analyses produced by 4D-Var. The results10

indicated that the assimilation-system vertical transport is found to be too fast, which
affects the ozone reference field used for the loss estimation, and thus points to an
underestimation in the ozone loss estimate. However, horizontal transport errors in
the assimilation system were found to be small compared to the vertical transport er-
rors. Improving the ozone reference field, by advecting the Met Office ozone field by15

the ECMWF 4D-Var winds instead of the Met Office 3D-Var assimilated winds, pro-
duced results in better agreement with those produced by the CTM. These results are
in agreement with other studies that indicate that stratospheric transport is improved
when meteorological analyses are produced using 4D-Var instead of 3D-Var.

4.2 PSC evolutions and microphysical processes20

4.2.1 PSC observations

A large and complementary dataset on PSC properties has been obtained during the
RECONCILE winter by ground-based, aircraft and space-borne measurements. The
evolution of PSCs during the 2009–2010 Arctic winter is detailed in Pitts et al. (2011).
During this unusual winter, more PSCs were observed by CALIPSO than in the25
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previous three Arctic seasons combined. Examples of CALIPSO PSC observations
during the season are shown in Fig. 9. The early period from 15–30 December 2009
was characterized primarily by patchy, tenuous low number density liquid/NAT mixtures
(Fig. 9a). No ice clouds were observed by CALIPSO during this early phase, suggest-
ing that the NAT clouds were formed through a non-ice nucleation mechanism. From5

31 December 2009–14 January 2010, there were frequent mountain wave ice clouds
that nucleated widespread NAT particles throughout the vortex (Fig. 9b). Synoptic-
scale temperatures in the Arctic fell below the frost point during the period from 15–21
January 2010, which led to a rare outbreak of widespread ice PSCs (Fig. 9c). The
final period of the PSC season (22–28 January) was characterized by a major strato-10

spheric warming that distorted the vortex, displacing the cold pool from the vortex
centre. CALIPSO observed primarily STS PSCs during this final period, although NAT
particles may have been present in low number densities, but masked from detection
by the more abundant STS droplets at colder temperatures (Fig. 9d). The evolution of
PSCs in January 2010 observed by CALIPSO was also seen by ground based lidar15

observations near Kiruna (Khosrawi et al., 2011). PSCs have also been observed by
COBALD in every flight within the period from 17 to 25 January 2010. Closely matched
measurements between CALIPSO and COBALD agree well in their backscatter pro-
files at PSC levels (Fig. 10) and also the agreement between COBALD and the Ny
Ålesund lidar is convincing.20

The in situ optical particle spectrometers onboard the Geophysica FSSP (Forward
Scattering Spectrometer Probe) and CIP (Cloud Imaging Probe) observed PSCs dur-
ing the first five RECONCILE flights. Measurements with these instruments show the
existence of so-called NAT-rocks up to sizes of roughly 25 µm in diameter, confirming
earlier observations (Brooks et al., 2003; Fahey et al., 2001; Northway et al., 2002).25

The probably first images of NAT-rocks recorded by the greyscale CIP (optical array
probe) provide an additional proof of their existence with an optical detection technique
other than forward scattering. Those images were observed exclusively when the pen-
etration of NAT fields during a RECONCILE flight was confirmed also by the MAL
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(Miniature Aerosol Lidar), MAS (Multiwavelength Aerosol Scattersonde), and SIOUX
(StratospherIc Observation Unit for nitrogen oXides) instruments (cf. Table 2). The CIP
greyscale image data showed mainly 2–4 pixel features which correspond to particles
of roughly 15 µm to 30 µm in diameter. Larger particles were not detected. The images
recorded during a PSC penetration on 25 January 2010 over a time period of 30 min5

amounts to a number concentration of about 10−3 cm−3, which is in the same range as
measured by the FSSP. The NOy instrument (SIOUX) capable of resolving large NOy–
containing particles supports the optical data, including the assumed composition of
the particles and consequently the assumption of the refractive index of NAT for the
processing of FSSP data. Overall, the high number concentration of large NAT parti-10

cles amounts to condensed phase HNO3 concentrations approaching the theoretical
limit of available NOy, raising the question whether the composition of these particles
is exclusively NAT. Alternatively, non-spherical shapes of the NAT particles might con-
tribute to a certain overestimation in the particle size and therefore in the total volume of
the particle phase. Figure 11 shows a size distribution averaged over a period of 22 min15

that was measured by the FSSP-100 instrument in one of the dense NAT fields. This
size distribution is compared to the theoretical size distribution that Fahey et al. (2001)
retrieved from their NOy measurements made in 2000.

Beside the large NAT particles, the FSSP-300 detected a particle mode around 0.5–
1 µm which can be attributed to STS particles. It shows volume to temperature be-20

haviour close to the one measured (Dye et al., 1992) and modelled for STS (Peter,
1997). Throughout all proven PSC penetration events, the particles larger than about
1 µm in diameter were detected only at ambient temperatures below the NAT equilib-
rium temperature (TNAT), but mostly well above the frost point (TICE) so that pure ice
particles can most likely be excluded. Only at a few short parts along some of the25

flight tracks ambient air temperature just fell down to TICE. There was no indication
for the presence of ice from the observations of gas phase and total water by FLASH
(FLuorescent Airborne Stratospheric Hygrometer) and FISH (Fast In situ Stratospheric
Hygrometer). Consistent with the in situ observations, the presence of ice-particles at
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or below the flight altitude is not supported by the spectral signatures seen by CRISTA-
NF. Spectra simulated for in situ measured particle size distributions (similar to the one
shown in Fig. 11) compare reasonably well with the observed IR limb spectra under the
assumption that the large particles consist of NAT (Griessbach et al., 2012; Kalicinsky
et al., 2012).5

The series of balloon-borne measurements of water vapour and aerosol acquired
within the LAPBIAT-II campaign in Sodankylä during the second half of January re-
vealed an unprecedented evidence of water redistribution in the Arctic stratosphere
as a consequence of ice PSC formation and concurrent irreversible dehydration by up
to 1.5 ppm within 20–24 km altitude range followed by a rehydration in a 2 km thick10

layer below. The source region and the spatiotemporal evolution of the dehydrated air
masses were well established using AURA MLS observations (Khaykin et al., 2012).
For the first time, an active phase of ice PSC formation was captured by the simulta-
neous balloon measurements of water vapour and aerosol on 17 January, providing
a unique high-resolution snapshot of repartitioning of water vapour into ice particles.15

This observation, bearing important implications for the PSCs formation thresholds, is
analyzed in detail by Engel et al. (2012a) using microphysical box modelling.

4.2.2 Characterisation of background aerosol

The measurements with the COndensation PArticle counting System (COPAS, Weigel
et al., 2009) during the RECONCILE winter agree well with the data from Curtius20

et al. (2005). While outside the polar vortex, the fraction of non-volatile (at 250 ◦C)
particles remains nearly constant with altitude, it increases noticeably with altitude in-
side the vortex, reaching up to 80 % of detected sub-micron refractory particles deeply
inside the Arctic vortex (Θ ≈ 470 K).

Nevertheless, the hypothesis by Curtius et al. (2005) that the enhanced non-volatile25

aerosol in the polar vortex mainly consists of meteoritic smoke particles needs fur-
ther refinements. Weigel et al. (2012) present a detailed chemical analysis of the re-
fractory aerosol material from 13 (one for each flight) in-vortex particle samples that
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were collected using a miniaturized impactor system placed downstream of the COPAS
aerosol inlet, generally at Θ > 410 K. Subsequently, the samples are processed by us-
ing offline individual particle analysis with Environmental Scanning Electron Microscopy
(ESEM) and Energy Dispersive X-ray (EDX) analysis. Many of the samples contained
spheres and aggregates of globules (like “a bunch of grapes”, Bigg et al., 1970) in the5

size range 500 nm–2 µm, chemically dominated by metallic species such as Al, Cr, Mn,
Fe or Ni. The chemical composition and morphology indicates that these particles most
likely originate to a large extent from space debris. Apart from these metallic particles,
also fractured alumo-silicate particles, showing the character of crustal material, were
found. In many samples for smaller particles, i.e. dp < 500 nm, also a high number of10

soot and lead-bearing particles were found, indicating anthropogenic origin. Based on
these results, metallic particles (from meteoritic or space debris ablations) are not the
major compound of the vortex refractory aerosol material. In particular the fact that
surface aerosol material and even anthropogenic particles were found in the subsiding
air masses over the Arctic in winter is an essential new finding. It indicates efficient15

transport pathways for aerosol particles to reach elevated atmospheric altitude, i.e. the
stratosphere or even in the mesosphere, to re-enter the lowermost stratosphere due
to the developing polar vortex. It is conceivable, that the abundance of non-volatile
particles (up to 80 %) in the Arctic winter stratosphere significantly aids the formation
of PSCs, and furthermore influences the tropospheric cloud formation after the polar20

vortex has dissolved in the Arctic spring season.

4.2.3 New insights into particle nucleation and PSC formation

The CALIPSO observations during the RECONCILE winter were analyzed in detail
to investigate the heterogeneous nucleation pathway of NAT and ice on pre-existing
solid particles. The presence of an ample supply of such nuclei in the polar vortex is25

justifiable as described in Sect. 4.2.2.
For every distinct PSC period defined by Pitts et al. (2011) and described in

Sect. 4.2.1, optical parameters simulated by ZOMM (cf. Sect. 3.3) were compared to
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selected CALIPSO PSC observations. The best agreement between model results and
observations is achieved by (1) allowing NAT and ice to nucleate heterogeneously, and
(2) superimposing small scale temperature fluctuations onto the trajectories (which oth-
erwise remain unresolved along the ECMWF trajectories). Only the combination of both
effects can provide good agreement in particle types and captures the backscatter and5

depolarization ratios measured by CALIPSO (Hoyle et al., 2012; Engel et al., 2012c).
Figure 12 shows the new scheme of PSC formation and phase transitions that will be
presented and discussed in detail in two upcoming papers (Hoyle et al., 2012; Engel
et al., 2012b).

At first sight these results appear to be at odds with the previous laboratory-based10

understanding of NAT nucleation, namely that ice would be the first solid, nucleat-
ing homogeneously within liquid aerosol particles (Koop et al., 1995), and that NAT
nucleated only subsequently on ice (Carslaw et al., 1998). In these days direct het-
erogeneous NAT nucleation on pre-existing solid particles was thought to be unlikely
(Biermann et al., 1996). Within RECONCILE we presently undertake additional labora-15

tory experiments on meteoritic material. Preliminary experiments corroborate the early
results of Biermann et al. (1996), but also seem to suggest that the heterogeneous
NAT nucleation rate may indeed reach the upper limits specified by Biermann and col-
leagues. With today’s new insights into low number density NAT clouds, as observed by
CALIPSO in December 2009, and NAT-rocks, described by Fueglistaler et al. (2002),20

nuclei consisting of coagulated meteoritic smoke particles or micrometeorites become
favourable candidates to explain those observations.

4.2.4 Vertical redistribution of NOy

One of the RECONCILE objectives is to understand the processes causing the vertical
NOy-redistribution, i.e. denitrification above about 19 km altitude and a renitrification25

below.
In 2009/10, Odin/SMR observations showed the strongest denitrification since the

start of the Odin measurement period in 2001. However, this was exceeded in the
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2010/11 Arctic winter (cf. Sect. 6). Box model simulations together with Odin/SMR,
Aura-MLS and CALIPSO observations of HNO3, water vapour and PSC particles re-
spectively show that the strong denitrification observed in mid January 2010 is linked
to an unusually strong synoptic cooling event in mid January with ice particle forma-
tion on NAT as a possible formation mechanism. The denitrification in the beginning of5

January was more likely caused by the sedimentation of NAT particles that formed on
mountain wave ice clouds (Khosrawi et al., 2011).

During the aircraft campaign, NOy compounds were observed in situ by the SIOUX
instrument and also by remote sensing using MIPAS-STR and CRISTA-NF (Woiwode
et al., 2012b; Ungermann et al., 2012). HNO3 observations from the ACE-FTS satellite10

instrument are also available for the entire winter.
One critical parameter determining the rate and extent of vertical HNO3 redistribution

in the polar vortex is the nucleation rate for NAT particle formation. A CLaMS simula-
tion of denitrification was performed in a Lagrangian way using particle trajectories that
follow individual NAT particles. Previous simulations (Grooß et al., 2005) that assumed15

globally constant nucleation rates for all locations with T < TNAT produced reasonable
results for the winter 2002/3 using a nucleation rate of 7.8×10−6 cm−3 h−1. Using the
same nucleation rate, the observed vertical NOy redistribution in the winter 2009/10
was underestimated, suggesting faster NAT nucleation. In CLaMS simulations with the
new nucleation rate parameterisation described in Sect. 3.3, the vertical redistribution20

of NOy compares better to the observations, but still underestimates the observed den-
itrification in early March.

Significant HNO3 enhancements attributed to renitrification processes were ob-
served by MIPAS-STR and CRISTA-NF in the polar vortex after the end of the PSC
phase in the Arctic winter 2009/10. Standard retrieval results from MIPAS-STR showing25

vertical distributions of HNO3 versus potential temperature are presented in Fig. 13 for
the flight on 30 January and for two flights in March (vortex air identified by measured
tracer distributions). A significant HNO3 maximum peaking around 405 K is identified
for the flight in January directly after the PSC phase of this winter. The redistribution of
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HNO3 as a source for NO2 is closely linked to the deactivation of active chlorine species
into ClONO2. A dedicated study is carried out involving refined MIPAS-STR retrievals
and CLaMS simulations considering the new temperature-dependent NAT nucleation
parameterisation to verify whether the representation of HNO3 redistribution in CLaMS
is improved and whether ClONO2 formation is simulated adequately (Woiwode et al.,5

2012a).

4.3 Stratospheric halogen chemistry and catalytic ozone depletion

4.3.1 Heterogeneous chlorine activation

As expected, the cold vortex temperatures and extensive PSC coverage in December
2009 and January 2010 led to substantial chlorine activation. A broad activated layer of10

enhanced ClO between 16 and 26 km altitude was detected by MIPAS-B on 24 January
(Wetzel et al., 2012), corresponding nicely to the vertical extent of PSCs/cold temper-
atures observed by MIPAS-B in the same data set, as well as CALIPSO (Pitts et al.,
2011) and ground based lidars (Khosrawi et al., 2011) in the time period preceding the
flight. ClONO2 observations indicate no or very little activation in the air masses below15

and above this layer.
The RECONCILE flights on 20, 22 and 24 January showed temperatures where

chlorine activation would be expected and were analysed by CLaMS simulations along
seven-day backward trajectories (chemistry was initialised from a hemispheric CLaMS
simulation, cf. Sect. 3.4). Up to 1 ppb of additional chlorine activation was produced,20

and the simulated ClOx values are consistent with HALOX (HALogen Oxide monitor)
observations along the corresponding flight tracks (Fig. 14). Virtually no difference in
chlorine activation exists between simulations employing the full PSC scheme with the
aerosol surface area density (SAD) increasing with STS, NAT and ice formation and
simulations keeping the SAD at background levels, demonstrating that at sufficiently25

low temperatures heterogeneous chemistry on the cold binary background aerosol is
sufficient to produce the same amount of active chlorine as the full PSC scheme for the
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case considered (Wegner et al., 2012a). The same paper describes another CLaMS
investigation for an episode in the Arctic winter 2004/5 constrained by aircraft and satel-
lite data. Significant chlorine activation was produced by CLaMS along 96 h trajectories
leading up to a flight on 7 March 2005 (von Hobe et al., 2006) with the resulting ClOx
levels comparing well to the observations. Temperatures were low enough for chlo-5

rine activation to occur but significant denitrification probably prevented the formation
of NAT and STS, so that chlorine activation occurred to a very large extent on cold
background binary aerosol.

Wegner et al. (2012a) corroborate the conclusions of their CLaMS investigations by
an analysis of Aura-MLS observations for seven Arctic winters (2004/5–2010/11), fo-10

cusing on HCl as an indicator for chlorine activation and HNO3 as an indicator for the
formation of PSC particles. Below 550 K potential temperature, the vortex average re-
moval rates of gas-phase HCl and HNO3 are not correlated. By 1 January, the vortex
average shows that for all considered winters HCl has been removed from the gas-
phase to a similar extent while HNO3 shows great interannual variability. This indicates15

that at these altitudes the additional surface area provided by PSCs does not directly
influence the rate of chlorine activation. However, at higher altitudes, where the back-
ground aerosol begins to thin out, ice PSCs may play an important role. Between 600
and 650 K, the maximum HCl depletion is observed in the winter 2009/10, which was
unique in terms of occurrence of ice PSCs. Other than in the Arctic, HCl depletion20

cannot be used as an indicator for chlorine activation in the cold vortex core of the
Antarctic, where condensation of HCl into STS presents a viable pathway to sequester
HCl from the gas-phase. This has been demonstrated by Wegner et al. (2012c) who
argue that during the polar night a major part of HCl is dissolved in STS particles, be-
cause heterogeneous reactions, especially with ClONO2, cannot explain the observed25

loss of gas-phase HCl due to shortage of NOx even if the photolysis of condensed
phase HNO3 is taken into account as a potential additional NOx source.

A comprehensive set of sensitivity runs to examine the impact of known uncertainties
in heterogeneous chemistry and PSC microphysics was carried out using the ATLAS
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model (Wohltmann et al., 2012). The simulations were compared to MLS and ACE-FTS
observations and in-situ measurements onboard the Geophysica during the aircraft
campaign. Results show that ozone loss is a surprisingly robust quantity with regard
to changes in the microphysical assumptions with column ozone loss never varying
more than 10 % in all sensitivity runs (Fig. 15, right panel). In agreement with Weg-5

ner et al. (2012a), chlorine activation on liquid ternary aerosols alone and even on the
binary background aerosol was sufficient to explain the observed order of magnitude
and morphology of the abundances of chlorine, reservoir gases and ozone (Fig. 15).
Assuming default values for NAT number density and supersaturation, runs with differ-
ent rates for the heterogeneous reactions ClONO2 +HCl and ClONO2 +H2O on liquid10

aerosols (Hanson and Ravishankara, 1994; Shi et al., 2001) and on NAT (Carslaw and
Peter, 1997; Carslaw et al., 1997; based on laboratory studies by Abbatt and Molina,
1992; Hanson and Ravishankara, 1993) produce very similar results. Only if an appre-
ciable NAT surface area density is assumed and the reactions are not dominated by
liquid aerosols, the rate and degree of chlorine activation becomes significantly smaller15

with the rates based on Abbatt and Molina (1992).
Figure 16 summarizes the rate of the most important heterogeneous chlorine acti-

vation reaction, HCl+ClONO2 →Cl2 +HNO3 on different particle types as a function
of temperature. Above about 192 K, binary aerosol can activate chlorine just as fast as
NAT. Below 192 K, the activation rate increases along a smooth transition from binary to20

ternary aerosol. Below the frost point, ice PSCs can increase the activation rate again
by about a factor of 10.

4.3.2 ClOx catalysed ozone destruction

The UV/Vis spectrum (Young et al., 2012) obtained from the laboratory experiment de-
scribed in Sect. 3.1 agrees well with the one reported by Papanastasiou et al. (2009)25

that has been adopted for the most recent JPL recommendation (Sander et al., 2011).
Furthermore it is in close agreement with all the ClOOCl spectra which appeared sub-
sequent to Pope et al. (2007), namely: Chen et al. (2009), Lien et al. (2009), Wilmouth
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et al. (2009), Jin et al. (2010) and the spectrum reported by von Hobe et al. (2009)
which is scaled to the Lien et al. (2009) measurement. It is clearly not in agreement
with the Pope et al. (2007) results which likely suffered from subtracting too much Cl2
from the measured composite Cl2/ClOOCl spectrum. The measurement of the much
weaker visible spectrum of ClOOCl is the first time this spectrum has been measured. It5

provides important information to constrain the long wavelength absorption of ClOOCl
and hence the impact of this absorption on ClOx catalysed polar O3 cycles.

Results from the laboratory experiment are consistent with atmospheric observa-
tions made during the self-match flight (cf. Table 2) published by Sumińska-Ebersoldt
et al. (2012). The observed increase of ClO after sunrise is consistent with the Pa-10

panastasiou et al. (2009) cross sections, and essentially rules out ClOOCl absorption
cross sections lower than the spectrum published by von Hobe et al. (2009) scaled
to absolute cross sections near the peak of the spectrum (246 nm) observed by Lien
et al. (2009). The field measurements do not support an additional ClOOCl absorption
band of atmospheric significance in the visible region of the spectrum. Remaining un-15

certainties in the ClOOCl cross sections influence JClOOCl approximately on the same
order of magnitude as parameters influencing the actinic flux (Fig. 17). The presence of
PSCs can have a particularly strong influence on the actinic flux and photochemistry.
Wetzel et al. (2012) showed that, during the balloon flight on 24 January, the onset of
ClO production from ClOOCl photolysis was delayed by about 45 min after sunrise in20

the stratosphere due to the occurrence of stratospheric clouds.
The thermal equilibrium constant KEQ reported by Plenge et al. (2005) is supported

by HALOX ClO and preliminary ClOOCl observations made before sunrise during two
RECONCILE Geophysica flights (Stroh et al., 2012). The higher KEQ currently recom-
mended by JPL (Sander et al., 2011) would imply unrealistically high total stratospheric25

chlorine (Cly) around 5 ppb to be consistent with the ClO observations (Suminska-
Ebersoldt et al., 2012).

Table 3 provides parameterisations for ClOx kinetics that consistently and reasonably
accurately simulate atmospheric observations of ClOx partitioning and ozone loss. No
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indication was found for alternative ClOx chemistry that was suggested during the time
of the RECONCILE proposal (e.g. Salawitch et al., 2009; Vogel et al., 2006).

4.3.3 Bromine chemistry

The bromine budget and photochemistry – important for the rate of the ClO–BrO–cycle
– was also investigated by aircraft and balloon observations during RECONCILE. First5

on 7 and 8 September 2009 the stratospheric photochemistry of bromine was probed
for the high latitude fall circulation turn-over, where in the stratosphere major reac-
tive bromine species are at daytime BrO and at night time BrONO2. By observing
the transition of BrO into its night-time reservoir gas BrONO2 at dusk and dawn with
direct sun solar occultation and Limb spectroscopy and by radiative transfer and pho-10

tochemical modelling, Kreycy et al. (2012) found that the ratio of the photolysis rate
of BrONO2 JBrONO2

to the three body formation reaction (BrO+NO2 +M) rate coeffi-
cient of BrONO2 kBrO+NO2

, i.e. JBrONO2
/kBrO+NO2

, is by a factor 1.69±0.04 larger than
recommended by the most recent JLP-2011 compilation (Sander et al., 2011). Ma-
jor consequences of the findings for the stratosphere are that (1) recent assessments15

of total stratospheric bromine (Bry) using the inorganic method for high stratospheric
NOx loadings may have overestimated the necessary correction for the BrO to Bry
ratio (for this flight, Bry should be 1.4 ppt or 6.8 % of the total lower using the re-
vised JBrONO2

/kBrO+NO2
ratio as compared to the JPL-2011 recommendations), and (2)

a larger JBrONO2
/kBrO+NO2

ratio may cause a small increase in the bromine-mediated20

ozone loss in the stratosphere (maximum −0.8 %, see Fig. 18).
The trend of total stratospheric bromine (Fig. 1.21 in WMO, 2010) was also contin-

ued with data collected during RECONCILE, auxiliary field campaigns performed for
example in 2008 in the tropics, at high latitudes in fall 2009, in winter 2010 and spring
2011, and lately during the EU project SHIVA (Stratospheric Ozone: Halogen Impacts25

in a Varying Atmosphere) in the Western Pacific in fall 2011. The collected data indi-
cate that from its peak in the early 2000s, Bry continues to decrease by about 10 % per
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decade and may now have reached about 19 ppt in 4 yr old air. Together with the finding
of Kreycy et al. (2012) the collected field data, in particular during SHIVA, indicate that
the contribution of the so-called very short-lived species (VSLS) inferred using the in-
organic stratospheric method may be lower than stated in WMO (2010), i.e. 4±2.5 ppt
instead of 6 (range 3–8) ppt. The former estimate is also in better agreement with past5

and recent estimates of VSLS based on the organic bromine method, which indicate
[VSLS]= 2.25±0.25 ppt, where 90 % is due to contributions from CH2Br2 and CHBr3
(e.g. Brinckmann et al., 2012).

4.3.4 Halogen source gases

A number of important long-lived brominated and chlorinated source gases (i.e. the10

three major CFCs and HCFCs, the two major halons, CCl4 and CH3CCl3) were sam-
pled by the Whole Air Sampler (WAS) onboard the Geophysica and subsequently anal-
ysed in the laboratory. Together with age-of-air measurements inferred from SF6, the
results have been used for a re-evaluation of the stratospheric lifetimes of these com-
pounds as well as their fractional release (i.e. the fraction that has released its halo-15

gens) and Ozone Depletion Potentials (ODPs), all of which are policy-relevant quanti-
ties. As outlined in Laube et al. (2012b) there are indications for considerably smaller
fractional release for some of these gases. Alongside with possibly longer lifetimes this
would not only lead to smaller ODPs in many cases, but also has the potential to sig-
nificantly delay the recovery of the ozone layer. WAS measurements of other climate-20

relevant trace gases have improved the knowledge of their atmospheric distributions
(e.g. Laube et al., 2010b, 2012a; Oram et al., 2012).
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4.4 Studies of the Antarctic ozone hole

4.4.1 Minimum ozone mixing ratios

Although the main focus of RECONCILE is on Arctic ozone loss, the same processes
are at play in the Antarctic, and there is still a lot to be learned from studies looking
at the much more severe and annually reproducible Antarctic ozone hole. An investi-5

gation was carried out with CLaMS to explain the extremely low ozone mixing ratios
below about 10 ppb observed by ozone sondes in Antarctic spring (Solomon et al.,
2005). While in principle the mechanisms of ozone depletion are largely known, it was
not clear what controls the ozone and chlorine chemistry causing such low ozone con-
centrations and what determines the lowest ozone values that can be reached. The10

ozone observations since the 1990s show a very similar behaviour from year to year,
that is a minimum value changing with the time of year. This lower envelope of the ob-
servations reaches a minimum in late September and increases again in October and
November. The complex interaction between gas-phase and heterogeneous chemistry
under these conditions is described in detail by Grooß et al. (2011). To correctly sim-15

ulate the behaviour of the ozone observations, it is necessary to include the oxidation
chains of CO and CH4, especially the reaction of the methyl peroxy radical CH3O2 with
ClO (Crutzen et al., 1992) is important here.

4.4.2 Ozone trends

A long-term assessment of ozone loss and ozone trends in Antarctica has recently20

been published by Kuttippurath et al. (2012b). It reveals a slow but significant increase
of the September–November average column ozone since the late 1990s, indicating
that ozone recovery may have indeed started in the Antarctic.
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5 Progress in global chemistry climate modelling

5.1 Amendments to the model

Based on the results described in Sect. 4, the following updates were implemented in
the LMDZ-Reprobus CCM:

– A new PSC scheme is used with an improved parameterization of the growth of5

NAT particles. This new scheme includes a tracer keeping the memory of the time
spent under the theoretical temperature of NAT formation, allowing a more realis-
tic slow growth of NAT particles, rather than the instantaneous formation of large
particles previously used in the so-called equilibrium scheme of the CCM. Max-
imum radius and number density of liquid and solid PSC particles are tuneable10

parameters.

– Based on the results described in Sect. 4.3.3., no new reactions driving catalytic
ozone loss were included. ClOx parameterisations from Table 5 were adopted
as opposed to the reference model that uses parameterisations from Sander
et al. (2011).15

In addition to LMDZ, scientific findings from the RECONCILE project have been in-
corporated in the Whole Atmosphere Community Climate Model (WACCM). PSC pro-
cesses have been improved in WACCM to give a better representation of mixed PSCs
and the formation threshold for ice PSCs has been modified to agree with observations
(Wegner et al., 2012b).20

5.2 Model evaluation

Before carrying out long-term CCM simulations, the new PSC scheme developed dur-
ing the project was tested with the CTM version of REPROBUS driven by ECMWF
analysis for the Arctic winter 2009/10. The results obtained with this new microphysical
parameterisation show a clearly improved HNO3 distribution when compared to Aura25
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MLS measurements, with less denitrification than with the reference model. The impact
of this effect on ozone and climate over long timescales now needs to be investigated
with the CCM version.

The scanning algorithms necessary for data analysis on global scales and the de-
trended fluctuation analysis (DFA) intended to reveal the correlation properties of to-5

tal column ozone (TO) time series were implemented successfully and the perfor-
mance was cross-checked by reproducing the earlier results on satellite measure-
ments (Kiss et al., 2007). While the original analysis used mostly the records of
two instruments (Nimbus-7 and Earth Probe), the longer and continuous database
(daily TO time series between 1978 and 2011) compiled by Bodeker Scientific (http:10

//www.bodekerscientific.com/) was exploited in the present validation (Struthers et al.,
2009). DFA runs on the CCMVal-2 outputs from the LMDZrepro reference simulation
(1960–2006) indicate that the two-point correlation properties of model data are almost
fully consistent with the measurements (Fig. 19a, b).

As for the spectral analysis, various regions exhibit different behaviours. Three signif-15

icant peaks show up characterizing a half-year, annual and quasi-biennial oscillations
(QBO) with different amplitudes. In order to estimate the importance of these modes,
the spectral weight of the peaks were determined by integrating the area under the
given peak and normalizing by the total power (total area of the frequency spectrum).
As an example, a comparison of the spectral weight distribution of the semi-annual20

peak for the empirical and simulated data is shown in Fig. 19c, d. Interesting dynamical
features in the simulations are the apparent shift and increased amplitude at the equa-
torial Pacific region, and a semi-annual oscillation above the Tibetian Plateau missing
from the observations.

The QBO along the Equator is apparent in empirical TO data. However it is well25

known that numerical models can hardly reproduce this dynamical mode at the usual
spatial and temporal resolutions. In an extended analysis we compared simulated time
series of a CCM model, which is able to reproduce QBO (the Japanese Meteorological
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Research Institute model, MRI, in the CCMVal-2 data bank), but we could easily detect
other anomalies in the correlation and spectral properties in the MRI time series.

6 Arctic ozone depletion in 2011

In terms of geographical extent and persistence of PSC conditions the winter 2010/11
was one of the coldest Arctic winters on record (Fig. 7), and measureable ozone5

loss rates persisted longer into spring than in any previous winter and exceeded the
maximum rates previously measured in the Arctic. Based on Aura Satellite observa-
tions (OMI and MLS) as well as results from the 2010/11 match campaign, Manney
et al. (2011) have shown that the vertical loss profile is mostly within the range of
Antarctic ozone losses and far outside the range of previous ozone loss in the Arctic10

(Fig. 20). More than 80 % of ozone was lost at the surface subsiding to 460 K by late
March. Manney et al. (2011) also provided an in depth investigation of the processes
leading to the record ozone loss, highlighting the remarkable degrees of chlorine acti-
vation and denitrification. In addition, they presented a comprehensive comparison to
the winter 1996/97, which was among the coldest previous Arctic winters. Kuttippurath15

et al. (2012a) also discussed the dynamical situation in both winters and extended the
analysis of Manney et al. (2011) by describing the contribution of NOx cycle at higher
altitudes.

Balis et al. (2011) show that dynamics and in particular weak transport from lower
latitudes were important in setting the scene for the record low Arctic ozone in 2011.20

The respective roles of transport and chemical loss during 2010 and 2011 in simula-
tions with the University of Oslo CTM (Sovde et al., 2011) are compared in Fig. 21.
The upper panel shows that in 2010, ozone is replenished more efficiently at high lat-
itudes than in 2011, which results from both isentropic mixing and from transport by
the Brewer–Dobson circulation. This indicates that the lack of transport into the high25

latitudes played an important role in the ozone deficit in 2011. The second panel com-
pares the large relative difference in transport to high latitudes in 2010 vs. 2011 (dotted
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line) to the absolute contribution of heterogeneous chemistry to ozone loss in 2011
(full line, signed reversed). While the chemical loss in 2011was much higher than in
2010, the relative weakness of transport into the very stable and narrow vortex was
a stronger contributor to the column ozone deficit poleward of 60◦ N.

Von Hobe et al. (2012a) carried out an analysis of a 30-yr record of surface UV5

data products from satellite measurements and could show that for Arctic winters with
strong ozone depletion including 2011, increases in surface UV radiation did not reach
proportions like in the Antarctic. The enhancements were most significant at high lati-
tudes (> 60◦ N) in March and early April, when absolute UV levels are still moderate. At
lower latitudes, where UV increases pose a more serious threat to human health and10

ecosystems, low column ozone due to transport from the subtropics has a stronger
effect on surface UV than spring Arctic ozone loss.

7 Conclusions

RECONCILE has substantially advanced our understanding of the processes destroy-
ing ozone in the polar vortex. Three particular achievements are (1) the much improved15

elucidation of the NAT nucleation process and its impact on denitrification and thus
ozone loss in the polar vortex, (2) the gathering of substantial evidence for the im-
portance of heterogeneous chlorine activation on cold binary aerosol, and (3) the rec-
onciliation of kinetic parameters governing ClOx catalysed polar ozone loss. It should
be mentioned that many other substantial contributions besides RECONCILE have20

been made in the past few years, e.g. a recent SPARC initiative (Kurylo and Sinnhu-
ber, 2009) and related laboratory studies to investigate ClOOCl photolysis (Lien et al.,
2009; Papanastasiou et al., 2009; von Hobe et al., 2009). The representation of po-
lar ozone depletion and related processes in global models has also been improved
(WMO, 2010, and references therein).25

But besides helping to reach closure with respect to some existing uncertainties,
some of the RECONCILE results also raised new questions. The observation of the
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coldest Arctic winter on record in 2010/11 prompting an unprecedented degree of Arc-
tic ozone loss (Manney et al., 2011) and related increases in UV radiation (Bernhard
et al., 2012; von Hobe et al., 2012a), and the lack of prognostic tools that could have
predicted such an event, made it evident that efforts to understand exactly what drives
the stability and interannual variability of the Arctic polar vortex and the development5

of predictive capabilities are imperative. The finding of a large number of non-volatile
particles with sometimes surprising chemical composition inside the Arctic vortex chal-
lenges some of our presumptions on how material, and especially aerosols, are trans-
ported to and distributed through the stratosphere. This is particularly important if we
want to understand and model how climate change might affect the composition of the10

stratosphere in the future.
These questions concern the preconditions for Arctic ozone depletion rather than

the actual ozone destruction process. The answers lie, to a large extent, in the tropics.
The tropical tropopause is the main “gate to the stratosphere” (e.g. Fueglistaler et al.,
2009) for trace gases and particles, which are then transported to higher latitudes15

via the Brewer–Dobson (BD) circulation. Changes in the chemical composition of the
stratosphere related to climate change are likely, given the impact of climate on tropo-
spheric sources and sinks as well as chemical processing of gases and particles, on
convective transport into the tropical tropopause region, and on transport through the
stratosphere via the BD. For example, it has been shown by Zhou et al. (2012) that the20

upwelling branch of the BD circulation is strongly influenced by tropical and subtropical
wave activity. Also the turnaround latitudes of the BD circulation are likely governed by
an interplay of wave activity at midlatitudes and the tropics/subtropics. Since tropical
and subtropical wave activity is expected to increase in a changing climate, this is
expected to have an important strengthening influence on the BD circulation (Butchart25

and Scaife, 2001; Fomichev et al., 2007) with possible influences on ozone depletion at
high latitudes. Possibly even more important for ozone loss in the Arctic than potential
changes in chemical composition, Naoe and Shibata (2012) pointed out that climate
change may lead to changes in the Holton–Tan-mechanism that links the stability of
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the polar vortex to the QBO (Garfinkel et al., 2012; Holton and Tan, 1980). Future
investigations that address these questions will be needed to complement the work
done in RECONCILE and further advance our understanding of Arctic ozone depletion.

The service charges for this open access publication5
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Some of these data were available through the special project “Effect of non-hydrostatic gravity
waves on the stratosphere above Scandinavia” by one of the authors (A.D.).
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Fractional release factors of long-lived halogenated organic compounds in the tropical strato-
sphere, Atmos. Chem. Phys., 10, 1093–1103, doi:10.5194/acp-10-1093-2010, 2010a.

Laube, J. C., Martinerie, P., Witrant, E., Blunier, T., Schwander, J., Brenninkmeijer, C. A. M.,15
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Table 1. Overview of RECONCILE flights. All flights were carried out in 2010, take off and
landing times are in UTC. The corresponding flight tracks are shown in Fig. 4.

No date take off landing Scientific targets

F1 17 Jan 11:20 15:33 PSC characterization
F2 20 Jan 08:13 11:55 PSC characterization and CALIPSO match
F3 22 Jan 10:01 13:35 PSC characterization
F4 24 Jan 13:30 16:56 PSCs and renitrification
F5 25 Jan 05:50 09:19 PSCs, de/renitrification, Cl active., self-match experiment1

F6 28 Jan 09:00 12:56 vortex survey (dynamics and mixing)
F7 30 Jan 06:36 10:15 self-match experiment1, Cl activation, de/renitrification
F8 2 Feb 10:01 13:31 match experiment2, Cl activation, de/renitrification, O3 loss
F9 27 Feb 12:06 15:41 vortex filament
F103 2 Mar 02:51 06:31 vortex survey, Cl deactivation, de/renitrification, O3 loss
F113 2 Mar 09:35 13:35 vortex survey, Cl deactivation, de/renitrification, O3 loss
F12 5 Mar 15:05 18:36 vortex filament
F134 10 Mar 07:14 10:51 test of remote sensing instrumentation, O3 loss

1 The self match flight is a particularly useful flight pattern to constrain kinetic parameters. Air masses are sampled
twice during the same flight (Schofield et al., 2008). The two RECONCILE self match flights were carried out over
sunrise to constrain the ClOOCl photolysis rate J and the ClO/ClOOCl thermal equilibrium constant KEQ
(Suminska-Ebersoldt et al., 2012).
2 Three days after the second self-match flight, the air masses that had been sampled came within reach of the
Geophysica again, and a match flight was carried out to test the accuracy of trajectory calculations and to check the
consistency of observed and simulated chlorine activation and ozone loss (Wegner et al., 2012).
3 Flights F10 and 11 were carried out as relay flights with an intermediate stop in Spitsbergen.
4 Flight 13 was dedicated to test remote sensing instrumentation under the PremierEx project funded by ESA.
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Table 2. Instrumental payload of M55 Geophysica during the RECONCILE field campaign.

instrument parameter time res. accuracy precision technique references

in situ

FOZAN O3 1 s 0.01 ppm 8 % Dye
chemiluminescence+ECC

(Ulanovsky et al., 2001;
Yushkov et al., 1999)

FISH H2O (total) 1 s 0.2 ppm 4 % Lyman-α (Zöger et al., 1999)
FLASH H2O (gas phase) 8 s 0.2 ppm 6 % Lyman-α (Sitnikov et al., 2007)
SIOUX NO

NOy
Particle NOy

1 s
1 s

10 %
15 %

3 %
5 %

Chemiluminescence,
+ Au-converter
+ Subisokinetic inlet

(Voigt et al., 2005)

HALOX ClO
ClOOCl

10 s
30 s

20 %
30 %

5 %
15 %

CCRF
+ thermal dissociation

(von Hobe et al., 2005)

HAGAR N2O, CFC12
CFC 11
CH4, H2
SF6
Halon 1211
CO2

90 s
90 s
90 s
90 s
90 s
5 s

1.3 %
1.6 %
1.8 %
2.3 %
3.0 %
0.1 %

0.3 %
0.6 %
0.8 %
1.3 %
2.0 %
0.05 %

Gas Chromatography (GC)
with electron capture detec-
tor (ECD)
IR absorption

(Homan et al., 2010;
Werner et al., 2010)

COLD CO 5 s 9 % 1 % TDL (Viciani et al., 2008)
COPAS Condensation nuclei (CN-total, CN-non-

volatile)
1 s 10 % 5 % 2-channel CN counter,

one inlet heated
(Weigel et al., 2009)

FSSP Cloud particle size distrib. (0.4–47 µm) 1 s 20 % 10 % Laser-particle spectrometer (de Reus et al., 2009)
CCP Cloud particle size distrib. (3–47 µm) 1 s 20 % 10 % Laser-particle spectrometer
CIP Cloud particle size distrib. (25–1600 µm)

Particle Images
1 s 20 % 10 % Laser-particle spectrometer (Baumgardner et al., 2001)

MAS Aerosol optical properties 10 s 5 % 5 % Multi-wavelength Scattering (Buontempo et al., 2006)
WAS Long lived trace gases and isotopo-logues minutes 5 % < 2 %

isotopol: 0.1–2 ‰
Whole air sampling with lab
GC and MS analysis

(Kaiser et al., 2006; Laube
et al., 2010a)

Rosemount
probe (TDC)

T , P
horizontal wind

0.1 s
0.1 s

0.5 K
1 ms−1

0.1 K
0.1 ms−1

PT100,
5-hole probe

remote sensing

MAL 1 & 2 Remote Aerosol Profile (2 km from aircraft
altitude)

30–120 s 10 % 10 % Microjoule-lidar (Matthey et al., 2003)

miniDOAS BrO, OClO DOAS
MIPAS-STR Cloud Index, T , HNO3,O3,ClONO2, CFCs,

H2O and minor species
typ. 2.4/3.8 min for
1 profile (depends
on sampling pro-
gramme)

T < 1 K/
vmr typ. 10–15 %

T < 1 K/
vmr typ. 4–12 %

FTIR limb sounder (Woiwode et al., 2012b)

CRISTA-NF H2O, HNO3, PAN, ClONO2, CFCs, O3,
CCl4

MIR-Emission in limb view-
ing geometry

(Ungermann et al., 2012;
Weigel et al., 2010)

MARSCHALS O3, H2O, CO, HNO3, N2O Millimetre Wave spectrome-
ter in limb viewing geometry

(Moyna et al., 2006)
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Table 3. Kinetic and photochemical parameters for the ClO-dimer cycle that are most consistent
with the experiments and observations made within RECONCILE. Clearly, it does not represent
a comprehensive evaluation of kinetic parameters determined in laboratory experiments such
as given by Sander et al. (2011).

ClOOCl production
rate constant
kf

∗

(Nickolaisen et al., 1994)
2.1×10−32 · (T/300)−3.01

This is somewhat lower than the cur-
rent JPL recommendation (Sander
et al., 2011), but gives the best fit
to field measurements of ClO made
during the RECONCILE field cam-
paign in 2010 (Suminska-Ebersoldt
et al., 2012) and can be rationalized
based on theoretical chemistry cal-
culations (von Hobe et al., 2007)

ClO/ClOOCl
equilibrium constant
KEQ

(Plenge et al., 2005)
1.92×10−27 ·e8430/T

Field measurements of ClO before
sunrise in air masses that were
shown to be in thermal equilibrium
rule out parameterizations that give
higher values for KEQ (Suminska-
Ebersoldt et al., 2012). Again, this
is in good agreement with theo-
retical considerations by von Hobe
et al. (2007)

ClOOCl absorption
cross sections
σClOOCl

(Papanastasiou et al., 2009) These published cross sections are
consistent with the ones measured
in the laboratory as part of RECON-
CILE and also with ClO observations
made during the RECONCILE air-
craft campaign

∗ We only consider the low pressure limit for kf , which is much more relevant for stratospheric conditions than the
high pressure limit.
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Fig. 1. Illustrative timeline of ozone research. More detailed discussions on the history of the
discovery of the anthropogenic influence on stratospheric ozone are given by Solomon (1999),
Brasseur (2008) and Müller (2009). Parts of this figure are from WMO (2010) and http://www.
nobelprize.org, the Concorde photo is courtesy of K.-H. Nogai.
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Fig. 2. Conditions favouring the formation of an ozone hole in polar regions in spring. (a) The
isolation of the air inside the polar vortex inhibits dilution of active chlorine and replenishment
of ozone (McIntyre, 1989; Proffitt et al., 1989). (b) Fast heterogeneous reactions on particle
surfaces activate chlorine from reservoir gases (Solomon et al., 1986). (c) Ozone is destroyed
by catalytic cycles that are particularly efficient under cold temperature/high solar zenith angle
conditions (McElroy et al., 1986; Molina and Molina, 1987).
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Fig. 3. In RECONCILE, a fully integrated approach is adopted that joins detailed process stud-
ies including laboratory and field experiments with global chemistry-climate model (CCM) stud-
ies.
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Fig. 4. Geophysica flight paths during RECONCILE. In the left panel, all flights are marked by
different colours (referring to flight date, yymmdd). In the right panel, flight sections in vortex
air are marked red, flight sections outside the polar vortex are marked in blue. Two self-match
flights were carried out on 25 and 30 January, a match flight on 2 February (matching the flight
on 30 January).
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Fig. 5. Flight tracks of the second self match flight on 30 January and the match flight on
2 February with HAGAR N2O measurements along the flight tracks shown by the coloured
squares. The trajectories connecting the flights are colour coded according to the N2O (in ppb)
observed during the first flight. The grey contours in the background show PV from ERA-interim
at the 425 K level on 30 January, 12:00 UTC, with white representing high PV and darker grey
representing areas of low PV pointing to a significant contribution of non-vortex-air.
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Fig. 6. Network of ozone sounding stations that participated in the RECONCILE match cam-
paign (red). Gray dots indicate stations that were active in match campaigns in the past but
which went out of operation during recent years due to lack of support.
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Fig. 7. Minimum temperatures TMIN (K) between 65◦ N to 90◦ N on the 50 hPa (left panel) and
30 hPa (right panel) pressure surfaces. Black line: mean value from 1989–2011; red line the
TMIN evolution from July 2009 through June 2010, blue line from July 2010 through June 2011;
shaded area encompasses the minimum/maximum TMIN between 1 January 1989 and 30 June
2012. Source: ECMWF reanalyses interim (ERA Interim) data provided at 6 hourly temporal
resolutions, see: http://www.ecmwf.int.
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Fig. 8. Modified potental vorticity (PV, given in 10−6 Km2 kg−1 s−1, upper panel) and inert tracer
P4 (indicating the relative contribution of air masses that were inside the vortex core at the
time of initialization, lower panel) on 450 K isentropic level during the first vortex split, after re-
organization of the vortex, during the second vortex split and at the end of the winter (order
from left to right).
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Fig. 9. Examples of CALIPSO PSC composition observations during the 2009–2010 Arctic
winter. The panels on the left show CALIPSO PSC composition images for representative orbits
from four periods during the winter: (a) 15–30 December, (b) 31 December–14 January, (c)
15–21 January, and (d) 22–28 January. GEOS5 temperature and geopotential height fields at
30 hPa for 12:00 UTC are shown at the right of each panel with the location of the corresponding
CALIPSO orbit track indicated by the white line (red dot marks orbit track start).
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Fig. 10. CALIPSO–COBALD comparison on the 17 January 2010. Upper panel: CALIPSO
PSC composition observations. The black line denotes the location of the simultaneously per-
formed COBALD sounding. Lower left panel: GEOS5 temperature and geopotential height
fields at 30 hPa for 12:00 UTC with the location of the corresponding CALIPSO orbit track indi-
cated by the white line and the position of the COBALD sonde by the yellow dot. Lower right
panel: profiles of backscatter measurements from COBALD (red) and CALIPSO (black). Ac-
cording to the composition classification by Pitts et al. (2011) and the definition of ice, backscat-
ter ratios larger than 5 are highlighted in blue. Grey profiles show maximum and minimum
backscatter values from CALIPSO within a range of ±25 km around the closest profile indicat-
ing the uncertainty between both measurements at 21 km altitude.
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Fig. 11. Number size distribution obtained from FSSP-100 measurements during RECONCILE
flight on 25 January 2010, averaged over 22 min (from 7:58 to 8:20 UTC). For comparison, the
size distribution retrieved from NOy observations in the Arctic winter 2000 by Fahey et al. (2001)
is shown in red.
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Fig. 12. PSC formation pathways as implemented into ZOMM with SBS=Supercooled Binary
Solution (H2SO4/H2O), STS=Supercooled Ternary Solution (HNO3/H2SO4/H2O), NAT=Nitric
Acid Trihydrate (HNO3 ·3 H2O), N = solid inclusion, e.g. meteoritic dust. Grey arrows denote
pathways included in previous schemes describing PSC formation pathways (going back to
Peter, 1997). Black arrows show the heterogeneous nucleation pathways of NAT and ice on
pre-existing solid particles supported by the new laboratory and field observations.
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Fig. 13. MIPAS-STR standard retrieval results showing vertical redistribution of HNO3 attributed
to de/renitrification in Arctic polar winter/spring 2010.
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Fig. 14. Comparison of ClO simulated by CLaMS and observed by HALOX. Adapted from
Wegner et al. (2012a).
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Fig. 15. Results of ATLAS model runs, showing the reference (blue) and sensitivity (grey) runs
for vortex-averaged ClOx (left) and HCl (middle) for 18 January 2010, as well as ozone loss for
30 March 2010 as a function of potential temperature. For comparison, HCl observed by MLS
and ozone loss inferred from MLS measurements (subtracting observed ozone measurements
from the passive ozone tracer) are shown as black dashed lines in the respective panels. See
Wohltmann et al. (2012) for details.

30748

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/12/30661/2012/acpd-12-30661-2012-print.pdf
http://www.atmos-chem-phys-discuss.net/12/30661/2012/acpd-12-30661-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
12, 30661–30754, 2012

RECONCILE

M. von Hobe et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 16. Rates for the reaction Cl− +ClONO2 →Cl2 +NO−
3 in/on the condensed phase (liquid or

solid) calculated for pressure level 50 hPa and mixing ratio 1 ppb HCl, 10 ppb HNO3 and 5 ppm
H2O. Rates for aerosols, ice clouds and “maximum NAT PSC” refer to NAT clouds characteristic
for the Arctic, where the low NAT particle number densities with 2 orders of magnitude lower
surface area densities hinder the gas phase to equilibrate. Transition from binary H2SO4/H2O
aerosols to ternary HNO3/H2SO4/H2O aerosols is indicated by the smooth transition from light
green to black. Short time scales on the order of 1 day for chlorine activation appear to be
possible by processing on binary aerosols, not requiring the formation of any PSCs (based on
Biele et al., 2001; Carslaw et al., 1997; Dameris et al., 2007; Tsias et al., 1999).
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Fig. 17. ClOOCl photolysis rate, JClOOCl, at different solar zenith angels for two different ClOOCl
cross sections: Papa: determined by Papanastasiou et al. (2009) and currently recommended
by JPL; vH/Lien: spectrum measured by von Hobe et al. (2009) scaled to the absolute mea-
surement by Lien et al. (2009) at 248 nm wavelength. The grey area represents uncertainty
due to variability in the actinic flux, with the black lines denoting a baseline scenario and the
coloured error bars showing the sensitivities towards individual parameters affecting the actinic
flux. This plot summarizes von Hobe et al. (2012b). Actinic fluxes were calculated using the ra-
diative transfer model MYSTIC (Monte Carlo code for the phYsically correct Tracing of photons
in Cloudy atmospheres, Mayer, 2009) in fully spherical geometry (Emde and Mayer, 2007) with
the ALIS (Absorption Lines Importance Sampling) method to perform the high spectral reso-
lution calculations efficiently (Emde et al., 2011). MYSTIC is part of the libRadtran radiative
transfer package (Mayer and Kylling, 2005; see also http://www.libradtran.org).
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Fig. 18. Difference in zonal mean annual mean ozone from a simulation of the SLIMCAT 3-
D CTM with scaled JBrONO2

(times 1.27) and kBrO+NO2
(times 0.75) compared to a run with

standard JPL kinetics (from Kreycy et al., 2012).
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Fig. 19. (a) Global geographic distribution of the DFA2 correlation exponent determined for the
total column data base produced by Bodecker Scientific, and (b) for the LMDZrepro simula-
tions. The reproduction of empirical correlation properties is very accurate in the overlapping
region, spectroscopic measurements are not available over the poles. (c) Geographic distribu-
tion of the spectral weight of semiannual oscillations for the total column data base produced
by Bodecker Scientific, and (d) for the LMDZrepro simulations. The agreement is satisfactory,
however the simulations exhibit anomalously strong oscillations over the Indian ocean and the
Tibetan plateau. Semiannual oscillations over the Antarctic is a well known feature in many
atmospheric variables.
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Fig. 20. Vertical profile of chemical ozone loss for 2011 and previous Arctic winters derived
from match ozone sonde measurements.
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Fig. 21. Modelled average column ozone north of 60◦ N for January, February and March
2010 (upper panel, dotted line) and 2011 (upper panel, full line) in simulations with no ozone-
depleting chemistry north of 60◦ N. Relative difference in transport in 2010 compared to 2011
(lower panel, dotted line), and absolute ozone loss from heterogeneous chemistry in 2011
(lower panel, full line). Figure adapted from Isaksen et al. (2012).
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