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1. Introduction 

 
1.1 Basic architecture of the glycine receptor 

The anion-conductive inhibitory glycine receptor (GlyR) belongs to the cys-loop 

superfamily of pentameric ligand-gated ion channels (LGIC), which includes the 

nicotinic acetylcholine receptors (nAChRs), the γ-aminobutyric acid receptors 

(GABAARs and GABACRs), and the 5-hydroxytryptamine type 3 receptor (5HT3R). 

GlyRs mediate fast postsynaptic inhibition in the spinal cord and the brain stem of the 

mammalian central nervous system. Four genes encoding the ligand-binding GlyR α 

subunit (α1-α4) and a single gene for the structural β subunit are known in 

vertebrates (for review, see Kuhse et al., 1995; Harvey & Betz, 2000). These subunits 

form functional α homo-pentameric or αβ hetero-pentameric chloride channels 

(Kuhse et al., 1993; Langosch et al., 1988). 

The different GlyR subunits share a common modular structure (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

  
 
 
 
 
 

 
Fig. 1. Sequence and Membrane topology of the GlyR α1 subunit.  
The membrane topology and predicted boundaries of the transmembrane segments are based on the 
original model (Harvey & Betz, 2000). NX(T/S) sequons are indicated with grey symbols combined 
with white lettering. Notably, only one of the sequons (38NVS) is located on the predicted ectodomain, 
whereas the three others (335NFS, 358NNS, 361NTT) are located on the cytoplasmic M3-M4 loop. Basic 
residues (Lys, Arg) are highlighted with filled black symbols and white lettering, whereas acidic 
residues (Glu, Asp) are highlighted in grey. His6, C-terminal hexahistidyl tag. 
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They consist of a more than 200 amino acids long N-terminal ectodomain, which is 

followed by four membrane-spanning regions, M1–M4. M1 and M2 as well as M2 

and M3 are separated by short hydrophilic loops, whereas a large endodomain of 83 

amino acids separates M3 from M4 (designated here as M3-M4 loop). The N-

terminal ectodomain comprises not only part of the agonist binding site, but also 

controls the specificity of subunit oligomerization (Verrall & Hall, 1992). It further 

includes a 15 amino acids long cysteine loop and a cleavable signal peptide that 

directs the N-terminus of the polypeptide into the endoplasmic reticulum (ER), where 

N-glycosylation either at one (α1, α3, α4) or at two consensus sites (α2, β) occurs.  

 

 

 

1.2 GlyR topology: The classical model and new determinants  

 

In the classical model of intracellular protein topogenesis the orientation of the signal 

sequence determines the overall topology of the mature protein by initiating the 

transport of the following amino acids over the ER membrane (Blobel, 1980; 

Rapoport et al., 1996). Accordingly, downstream hydrophobic sequences simply 

serve as alternate stop transfer- and signal anchor sequences, which cause the nascent 

polypeptide to follow passively the lead of the preceding transmembrane segment and 

thereby direct the sequential insertion of the membrane domains. In most prokaryotic 

proteins, the orientation of the signal sequence follows the “inside- or cis-positive 

rule” (von Heijne & Gavel, 1988), predicting that the transmembrane orientation 

depends on the charge of the flanking amino acids, and that the more positively 

charged segment retains on the cytoplasmic (cis) side. Arginines and lysines may 

interact with the negatively charged head groups of phospholipids (van Klompenburg 

et al., 1997) and the negative-inside transmembrane potential (Andersson & von 

Heijne, 1994). Histidines in contrast have almost no effect because of their low 

average degree of ionization at physiological pH (Andersson et al., 1992). Negatively 

charged residues seem to affect the topology of prokaryotic proteins only when 

present in high numbers (Nilsson & von Heijne, 1990). 
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For eukaryotic proteins, the cis-positive rule does not correlate sufficiently 

with the orientation of the first transmembrane segment. Here, according to the 

charge difference hypothesis, also negative charged amino acids have to be taken into 

account and their number has to be subtracted from the number of positive residues. 

The segment which carries the more positive net charge will face the cytosol 

(Hartmann et al., 1989). Besides the charge difference also the hydrophobicity of the 

signal sequence and its length (Sato et al., 1990; Wahlberg & Spiess, 1997) play 

important roles for the orientation of the first transmembrane segment. Also 

glycosylation at sites near the signal sequence has been shown to affect topology 

(Goder et al., 1999).  

Even though a variety of membrane proteins follow the classical insertion 

model (Wessels & Spiess, 1988; Lipp et al., 1989; Harley & Tipper, 1996; Gafvelin 

et al., 1997), there is growing evidence that the initial translocation events may not 

necessarily dictate the topology of the entire mature protein (Wilkinson et al., 1996; 

Beltzer et al., 1991; Andrews et al., 1992). The correct positioning of the following 

transmembrane segments in multispanning proteins seems to depend on additional 

downstream topogenic information (Goder & Spiess, 2001). To address this issue, the 

GlyR α1 M3-M4 loop was investigated for potential motives that may have an 

influence on the correct protein topology.  

 

 

 

1.3 Distribution and density of LGICs 

 

The efficiency of synaptic transmission depends critically on a dense packing of 

neurotransmitter receptors in the postsynaptic membrane. Different mechanisms that 

trigger receptor distribution and density at the plasma membrane have been 

demonstrated for LGICs. In differentiating muscle fibers, for instance, the 

postsynaptic density of nAChRs at the developing motor endplate is regulated by 

gene expression, efficient internalisation and degradation of extrasynaptic receptors, 

synaptic clustering by rapsyn and slowing down the turnover of synaptically 

accumulated nAChRs (Colledge & Froehner, 1998; Sanes & Lichtman, 1999). 

Denervation (Sanes & Lichtman, 1999) or treatment with α-bungarotoxin 
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(Akaaboune et al., 1999) leads to an increase in nAChR turnover and a postsynaptic 

loss of nAChRs (Xu & Salpeter, 1999).  

In this context, endocytosis is often considered to be a crucial step in the 

regulation of postsynaptical nAChR density, because receptor degradation only 

occurs after internalisation and lysosomal targeting (Xu & Salpeter, 1999; Pumplin & 

Fambrough, 1982). Moreover, different studies revealed that exo- and endocytosis of 

receptors plays a dynamic role in regulating synaptic efficacy at glutamatergic 

synapses of the central nervous system (Turrigiano, 2000; Lüscher et al., 2000). In 

hippocampal neurons high frequency stimulation leads to an increase of AMPA 

receptors in the dendritic spines during long term potentiation (Shi et al., 1999), 

whereas the clathrin-mediated receptor internalization might be a crucial step in long 

term depression in the cerebellum (Wang & Linden, 2000; Man et al., 2000).  

Like the nAChRs and glutamatergic receptors, also the inhibitory GlyR is 

known to undergo efficient endocytosis. Blockade of GlyRs by strychnine in cultured 

spinal neurons leads to internalization of the receptors into an endosomal 

compartment (Kirsch & Betz, 1998; Levi et al., 1998). Concomitantly, the blocked 

GlyRs fail to co-localize with gephyrin, a peripheral membrane protein that anchors 

GlyRs and GABAARs in the postsynaptic membrane (Kneussel & Betz, 2000). Also 

gephyrin-deficient mice lack GABAAR clusters at synapses and show an increased 

intracellular GABAAR immunoreactivity (Kneussel et al., 1999a). These results 

indicate that binding to gephyrin at the postsynaptical membrane may prevent 

endocytotical internalisation of GABAARs and GlyRs.  

In summary, a variety of processes, driven either by development or neuronal 

activity, lead to changes in LGIC density at the postsynaptical membrane by affecting 

membrane incorporation, surface stability and receptor endocytosis. Especially the 

mechanisms that trigger internalization have been intensively studied. As only 

cytosolically exposed portions of a receptor molecule are capable of interacting with 

cytoskeletal elements, the question arises whether the M3-M4 loop of the GlyR α1 

subunit contains information involved in the internalisation and degradation 

processes. Due to its well analysed molecular structure, subunit assembly and cell 

surface incorporation the homomeric GlyR is particularly suited for such an analysis.  
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1.4 Assembly of nicotinic α7 subunits in Xenopus oocytes 

The most intensively studied member of the cys-loop superfamily of LGICs is the 

cation-conductive nAChR. Like GlyRs all nAChRs are thought to share a pentameric 

structure. The best characterized nAChR, situated at neuromuscular junctions, is 

composed of four homologous gene products with a stoichiometry of (α1)2β1γδ 

(fetal) or (α12)β1εδ (adult). Eleven additional genes, eight encoding nAChR α 

subunits (α2–α7, α9, α10) and three encoding β subunits (β2–β4), have been found 

in the mammalian nervous system. In contrast to α subunits 2-6, which need to 

heteropolymerize with at least one of the β subunit isoforms to form functional 

nAChRs (McGehee & Role, 1995; Sargent, P.B., 1993; Le Novere et al., 2002), α7 

and α9 subunits homopolymerize to functional ion channels when expressed in 

Xenopus oocytes (Couturier et al., 1990; Anand et al., 1993; Séguela et al., 1993) and 

certain cells of neuronal origin (Puchacz et al., 1994; Quik et al., 1996; Blumenthal et 

al., 1997; Cooper & Millar, 1997). Moreover, endogenous α7 homopentamers have 

been convincingly demonstrated in a PC12 cell line and rat brain (Chen & Patrick, 

1997; Drisdel & Green, 2000). In contrast, transient transfection of non-neuronal cell 

lines with α7 subunit cDNA resulted in little or no production of functional nAChRs, 

although high levels of α7 mRNA and α7 protein were observed (Cooper & Millar, 

1997; Kassner & Berg, 1997). Also certain neuronal cell lines, including those PC12 

cells which lack endogenous α7 nAChRs, did not produce functional nAChRs from 

transfected α7 cDNA (Blumenthal, et al., 1997). Obviously, the assembly, maturation 

and/or stabilization of functional homo-pentameric nAChRs do critically depend on 

additional cellular factors which are present only in a subset of cells (Blumenthal et 

al., 1997; Kassner & Berg 1997; Helekar & Patrick, 1997; Halevi et al., 2002; 

Helekar et al., 1994). Interestingly, a comparable cell-specific receptor formation is 

not found with other members of the cys-loop superfamily of LGICs, such as the 

homooligomeric 5HT3A or GlyR α1 receptors. 

To determine the step that requires those additional cellular factors for proper 

receptor formation, homo-pentameric α7 nAChRs were expressed in Xenopus 

oocytes and analyzed via the blue native PAGE technique. As a control the 

homooligomeric 5HT3A receptor was used, which exhibits 51% amino acid sequence 

homology with the nAChR α7 subunit (Ortells & Lunt, 1995). 
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1.5 Quaternary structure of P2X receptors (LGIC class III) 

On the basis of their amino acid sequences and membrane threading patterns, LGICs 

have been grouped into three major classes (Le Novere & Changeux, 2001; North, 

R.A., 1996): (i) the nicotinic acetylcholine receptor superfamily discussed above, (ii) 

the cationic glutamate receptor (iGluR) family including AMPA (α-amino-3-

hydroxyl-5-methyl-4-isoxazole propionic acid), NMDA (N-methyl-D-aspartate), and 

kainate receptors; and (iii) the ATP-gated P2X receptor family. The class I LGIC 

members consist of a pentameric barrel stave-like array of homologous subunits 

arranged in a circular order around a central ion channel. Also iGluRs were first 

thought to share a pentameric architecture. However, both biochemical and 

electrophysiological data favor the view that iGluRs form tetramers similar to K+ 

channels (for references see Dingledine et al., 1999). The architecture of the class III 

LGICs, the P2X receptors, is still controversially discussed. The seven known P2X 

isoforms (designated P2X1 to P2X7) form multiple functional homomultimeric and 

heteromultimeric cation-channels (Brake et al., 1994; Valera et al., 1994; Bo et al., 

1995; Chen et al., 1995; Buell et al., 1996; Collo et al., 1996; Surprenant et al., 1996; 

Soto et al., 1997) and open in response to extracellular ATP released from neuronal 

and non-neuronal cells (Bodin & Burnstock, 2001). All P2X subunits share a 

common membrane topology with cytosolic N and C termini, two membrane-

spanning hydrophobic domains (M1 and M2), and a large intervening hydrophilic 

extracellular loop. From kinetic data (Ding & Sachs 2000) and the structural 

similarity to the inward rectifying K+ channel, a tetrameric organization was 

anticipated also for P2X receptors. However, several biochemical and 

electrophysiological studies have demonstrated that recombinant P2X receptors 

possess a trimeric architecture (Nicke et al., 1998, 1999, 2003; Stoop et al., 1999; 

Rettinger et al., 2000).  

Against this background, the assembly properties and oligomeric states of 

slowly desensitizing homomeric P2X receptors were carefully re-evaluated with 

biochemical methods. The studies focused in particular on P2X2 homomers and 

P2X1+2 heteromers. Because of their known inability to form functional homomeric 

receptors in Xenopus oocytes, P2X6 subunits were also investigated. In addition to 

blue native PAGE analysis selective cell surface radioiodination followed by 

chemical cross-linking of plasma membrane-bound P2X receptors was used as a 

novel and independent approach.  
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2. Materials and Methods 

 
2.1 cDNA constructs 

Site-directed mutagenesis was performed using the QuickChangeTM site-directed 

mutagenesis kit (Stratagene) using the human α1 GlyR subunit cDNA in vector 

pNKS2# (Gloor et al., 1995) as a template. For protein purification, a His6 tag was 

introduced at the 3´ end of the coding region. All constructs were verified by 

sequencing. Amino acids were numbered according to their position in the mature 

protein sequence. 

 

 

 

2.2 cRNA synthesis 

Linearized plasmid DNAs were used for in vitro synthesis of cRNAs as described in 

Schmalzing et al., 1991. cRNA concentrations were determined by optical density 

readings at 260 nm. 

 

 

 

2.3 Oocyte Expression 

Defolliculated Xenopus oocytes were injected with 50 nl aliquots of capped cRNAs 

(0.5 µg/µl) and kept at 19°C in sterile frog Ringer’s solution (ORi: 90 mM NaCl,      1 

mM KCl, 1 mM CaCl2, 1 mM MgCl2, and 10 mM Hepes, pH 7.4) supplemented with 

50 mg/litre gentamycin (Schmalzing et al., 1991). One to three days after cRNA 

injection, glycine responses were measured by two-electrode voltage-clamp recording 

at a holding potential of -70 mV. Electrophysiological measurements were kindly 

performed by Dr. Bodo Laube (MPI für Hirnforschung, Frankfurt). 
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2.4 Metabolic labeling with L-[35S]methionine and cell surface 

radioiodination with 125I-sulfo-SHPP 
 

cRNA-injected and non-injected control oocytes were metabolically labeled by 

overnight incubation with L-[35S]methionine (>40 TBq/mmol; Amersham 

Biosciences) at about 100 MBq/ml (0.1 MBq per oocyte) in frog Ringer’s solution at 

19°C and chased with 1 mM unlabeled methionine as indicated.  

For selective labeling of plasma membrane-bound receptors, the injected 

oocytes were incubated for 3 days at 19°C. Then the oocytes were washed in oocyte-

PBS (30 mM sodium phosphate, 70 mM NaCl, 1 mM MgCl2, 0.1 mM CaCl2) and 

placed in 0.5 ml polypropylene tubes on ice. Sulfo-SHPP was iodinated at ambient 

temperature by rapid subsequent addition of sulfo-SHPP (Pierce) in 2 µl of DMSO, 

18.5 MBq of carrier-free Na125I (NEN), 10 µl of 5 mg/ml of chloramines T in 0.5 M 

sodium phosphate buffer pH 7.5, 100 µl of 1 mg/ml of DL-α-hydroxyphenylacetic 

acid in 0.1 M NaCl, and 10 µl of 12 mg/ml of sodium metabisulfite in 0.05 M sodium 

phosphate buffer pH 7.5. A 10 µl aliquot of this reaction mix was immediately added 

per 10–12 oocytes. After 60 min of incubation on ice with occasional gentle mixing, 

oocytes were rinsed with Ca-free ORi. Where indicated, surface radioiodinated 

oocytes were first washed in frog Ringer’s solution to remove unbound 125I-sulfo-

SHPP and then incubated for another 20 h at 19°C. 

 

 

 

2.5 Protein Purification 

His-tagged α1 GlyR receptors were purified by Ni2+-NTA agarose chromatography. 

As elution can be achieved by competitive displacement with imidazole, denaturing 

agents such as SDS can be avoided (Nicke et al., 1998), thus allowing to release 

natively purified proteins in a non-denatured state. Oocytes were homogenized in 

detergent buffer (20 µl/oocyte) consisting of 0.1 M sodium phosphate buffer pH 8.0, 

1% (w/v) digitonin (Serva, water-soluble), 10 mM iodacetamide to prevent artificial 

cross-linking of polypeptides by disulfide bonds, and the protease-inhibitors Pefa 

block-SC (100 µM), Leupeptin (50 µM), antipain (10 µM), and pepstatin (5 µM), all 

purchased from Biomol. Detergent extracts were cleared by centrifugation (10 min at 
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10,000 g and 4°C), diluted 5-fold with detergent buffer (same composition as the 

homogenisation buffer, but without iodacetamide), supplemented with Ni2+-NTA 

agarose (Qiagen) and imidazole/HCl pH 8.0 (final concentration 10 mM). After 30 

min of end-over-end mixing at ambient temperature, beads were washed five times 

with ice-cold detergent buffer consisting of 0.1 M sodium phosphate buffer pH 8.0, 

0.2% (w/v) digitonin (Serva, water-soluble), 1 mM iodacetamide, 25 mM 

imidazole/HCl pH 8.0, and 100 µM Pefa block-SC. Proteins were released from the 

Ni2+-NTA agarose beads by two rounds of continuous gentle shaking, each for 10 min 

at ambient temperature, with non-denaturing elution buffer consisting of 250 mM 

imidazole/HCl pH 7.6 and 0.5 % (w/v) digitonin (Calbiochem, water-soluble). Eluted 

proteins were kept at 0°C until analyzed. 

 

 

 

2.6 SDS-PAGE and blue native PAGE 

For SDS-PAGE (Sodium Dodecyl Sulfate - Polyacrylamide Gel Electrophoresis) or 

Tricine-SDS-PAGE (Schägger & von Jagow, 1987), proteins were supplemented with 

the appropriate SDS sample buffer containing 20 mM dithiothreitol, and 

electrophoresed in parallel with [14C]labeled molecular mass markers (Rainbow; 

Amersham Biosciences) on linear SDS-polyacrylamide gels. Where indicated, 

samples were treated prior to SDS-PAGE with either endoglycosidase H (Endo H) or 

peptide-N-glycosidase F (PNGase F; both enzymes were purchased from New 

England Biolabs) in the presence of 1% (w/v) Nonidet P-40 to counteract SDS 

inactivation of PNGase F. Blue native PAGE (Schägger et al., 1994; Nicke et al., 

1998) was performed immediately after protein purification. Purified proteins were 

supplemented with blue native sample buffer to final concentrations of 10% (v/v) 

glycerol, 0.2% (w/v) Serva blue G, and 20 mM sodium 6-amino-n-caproate, and 

applied onto polyacrylamide gradient slab gels. Where indicated, samples were 

treated prior to blue native PAGE with 8 M urea to induce partial dissociation of 

receptor complexes into lower order intermediates. Both SDS- and blue native 

polyacrylamide gels were fixed, dried, and exposed to BioMax MS film (Eastman 

Kodak Co.) at -80°C. For quantification, the dried gels were exposed to a 

PhosphorImager screen and scanned using a Storm 820 PhosphorImager (Amersham 

Biosciences). Individual bands were quantified with the ImageQuant software. 
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3. Results 
 

 

 

3.1 UBIQUITINATION PRECEDES INTERNALIZATION AND 

PROTEOLYTIC CLEAVAGE OF PLASMA MEMBRANE-

BOUND GLYCINE RECEPTORS 
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The paper describes that the α1 GlyR is subjected to ubiquitination in Xenopus laevis 

oocytes; the study dealing with the subject of this paper was already in progress when 

I joined the lab. Early experiments (mainly done by Cora Büttner) showed that (after 

hetorologous expression in Xenopus oocytes and isolation by Ni2+-NTA-agarose 

chromatography under nondenaturing conditions) α1-His subunits migrated with an 

apparent mass of 48 kDa on a reducing Tricine-SDS-PAGE gel. Subsequent to a 20h 

chase interval, additional 35 and 13 kDa proteins, which were not present 

immediately after the [35S]methionine labeling pulse, were isolated. These data 

indicated that the α1-His subunit was proteolytically cleaved into two defined 

fragments of 35 kDa and 13 kDa during the chase period. Additional experiments 

with the N-glycosidases Endo H and PNGase F revealed that the GlyR α1 subunit 

must have already left the ER and passed beyond the Golgi apparatus before cleavage 

occurred.  

To visualize selectively the plasma membrane-bound α1-His GlyRs, the outer 

cell surface of oocytes was radioiodinated with 125I-sulfo-SHPP, a membrane-

impermeant Bolton-Hunter derivative (Thompson et al., 1987). These experiments 

revealed that the truncated forms of the α1-His GlyR were exclusively intracellularly 

located. This data indicated that homopentamers consisting of nicked subunits were 

either not routed to the cell surface or that cleavage occurred in a compartment distal 

from the plasma membrane. Unexpectedly, besides the full length 48 kDa subunit two 

additional bands of 55 and 62 kDa, and occasionally a third band of 69 kDa, were 

resolved by the Tricine-SDS-PAGE. Like the 48 kDa subunit, these polypeptides 

were Endo H resistant, but reduced by 3 kDa upon PNGase F treatment, indicating 

that they all carried a single complex-type N-glycan. Blue native PAGE analysis of 

the surface radioiodinated GlyR combined with Tricine-SDS-PAGE in the second 

dimension revealed that the 55 and the 62 kDa polypeptides were integral parts of the 

α1-His pentamer and not co-isolated accessory proteins. These results indicated that 

the 55 and the 62 kDa bands originate from α1-His subunits, to which one or two 

molecules of 7 kDa were conjugated en route to the plasma membrane or at the 

plasma membrane itself.1 

 

 
                                                 
1 The experiments and results described in this chapter were mainly performed and achieved by Cora 
Büttner 



 - 12 -

3.1.1 The α1 GlyR can be isolated from the cell surface through 

hexahistidyl-tagged ubiquitin 

 
Taking the findings of Cora Büttner into account, my thesis work initially focused on 

the identification of the molecular nature of the 7 kDa molecules that were conjugated 

to the GlyR α1-His subunits. The ladder-like pattern of α1-subunit bands differing 

from each other by ~7 kDa was strongly reminiscent of that of other polypeptides 

conjugated to one, two, and three molecules of ubiquitin, a protein of 76 amino acids. 

To examine whether ubiquitin is conjugated to the GlyR and accounts for the 

additional 55 and the 62 kDa bands at the plasma membrane, antibodies to ubiquitin 

were used in a first approach. However, no ubiquitin was detectable by Western blot 

analysis of recombinant GlyRs affinity-purified from Xenopus oocytes. Because this 

result may be due to a low abundance of the GlyR in the purified preparations, human 

His-ubiquitin was co-expressed together with a non-histidyl-tagged GlyR α1 subunit, 

to examine whether GlyRs can be isolated through covalently attached His-ubiquitin. 

As it can be seen from control purifications from [35S]methionine-labeled oocytes 

(Fig. 2C) His-ubiquitin was efficiently expressed in this system. By using the co-

expression approach, non-tagged α1 GlyR could be purified through His-tagged 

ubiquitin from surface-radioiodinated oocytes (Fig. 2A). Analysis by Tricine-SDS-

PAGE showed the same ladder-like pattern as when the His-tagged α1 GlyR was 

expressed alone. This experiment revealed that the 55 and 62 kDa polypeptides 

indeed derive from mono- and di-ubiquitinated forms of the 48 kDa α1 subunit. The 

fact that a major fraction of the co-purified α1 subunits exists also in the non-

ubiquitinated 48 kDa form indicates that not all α1 subunits within the homopentamer 

are ubiquitinated. Similar results were obtained when commercially available 

recombinant His-ubiquitin protein was used together with non-tagged GlyR α1 cRNA 

(Fig. 2B). 
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Fig. 2. GlyR α1 is ubiquitinated at the plasma membrane.  
Autoradiographies of reducing Tricine-SDS-polyacrylamide gels are shown. Panels A and B, 3 days 
after injection of the indicated cRNAs, oocytes were surface labeled for 1 h at 0°C with 125I-sulfo-
SHPP. Oocytes were immediately extracted with digitonin, and proteins were purified under non-
denaturing conditions by Ni2+-NTA-agarose chromatography. The non-tagged GlyR α1 subunit (α1 no 
His) could be isolated in large amounts in both His-ubiquitinated and nonubiquitinated form upon co-
expression of His-ubiquitin (panels A and B) or co-injection of recombinant His-ubiquitin protein (His-
Ub prot, panel B). * indicates a protein band that was also isolated from non-injected control oocytes 
in this particular experiment. Panel C, proteins were purified by Ni2+-NTA-agarose chromatography 
from [35S]methionine-labeled oocytes injected with the indicated cRNAs. Note that lanes 4 and 5 show 
solely small amounts of non-ubiquitinated GlyR α1 subunit, but no His-ubiquitinated GlyR α1 subunit 
co-isolated with His-ubiquitin. Ub, His-ubiquitin. 
 
 
 
 
 
Control experiments confirmed that only traces of GlyR protein were purified by the 

same method when the non-tagged GlyR α1 was expressed without His-ubiquitin. 

These traces consistently accounted for ≤5% of the GlyR α1 subunit obtained after 

co-injection of His-ubiquitin.  

Notably, the same approach with [35S]methionine-labeled oocytes did not 

result in a co-isolation of significant amounts of GlyR α1 subunits (Fig. 2C). This 

observation suggests that ubiquitination occurs predominantly or exclusively at the 

plasma membrane and thus comprises only the fraction of GlyRs that are incorporated 

into the plasma membrane at the time of the experiment.  
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3.1.2 The α1-His GlyR is cleaved after internalization  

These results strongly indicated that the ladder-like pattern of α1 subunit bands 

differing from each other by ~7 kDa was due to the conjugation of one, two, and three 

molecules of ubiquitin. However, it was still unclear at which trafficking step to and 

from the plasma membrane the α1 GlyR was proteolytically nicked. To address this 

question, plasma membrane-bound GlyRs of cRNA-injected Xenopus oocytes were 

labeled with 125I-sulfo-SHPP. Subsequently, the oocytes were incubated for a further 

20 h either at 19°C or at 0°C to allow for endocytosis or to block endocytosis, 

respectively.  The truncated 35 kDa form and the cleaved 13 kDa fragment could only 

be isolated from oocytes that were kept for 20 h at 19°C, but not from oocytes that 

were kept on ice. These results indicate that cleavage does neither take place en route 

to the plasma membrane nor at the plasma membrane itself, but in a later 

compartment, i.e. in the endocytotic pathway. 

 

 

 

3.1.3 Arginine substitution of lysine residues between M3 and M4 

abolishes ubiquitination of the α1 GlyR in the plasma membrane, 

but does not block its internalization and lysosomal cleavage2 

 

The GlyR α1 subunit harbors ten cytoplasmic lysine residues, which are all located in 

the large intracellular loop between transmembrane segments M3 and M4 (see Fig. 

1). Monoubiquitin attached to lysine residues of endocytic membrane proteins has 

been demonstrated to be a signal for sorting of cargo into vesicles that bud into the 

late endosome lumen for delivery into the lysosome (for review see Hicke & Dunn, 

2003). To investigate whether the observed ubiquitination of α1 GlyRs in Xenopus 

oocytes is a prerequisite for internalisation and cleavage of the receptor into the 35 

and 13 kDa fragments, all ten lysine residues of intracellular loop were replaced by 

arginines, which cannot be ubiquitinated. After surface radioiodination, the so called 

GlyR no-K mutant appeared exclusively as a 48 kDa polypeptide on the Tricine-SDS-

PAGE gel. In contrast the wild type GlyR α1 subunits migrated in the non-

                                                 
2 The following two chapters contain unpublished Data 
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ubiquitinated 48 kDa form and the 55, 62 and 69 kDa ubiquitinated forms (Fig. 3A). 

The loss of ubiquitination confirms that only the lysine residues of the intracellular 

loop between M3 and M4 are used to attach ubiquitin to the GlyR α1 subunit. 

To examine whether ubquitination deficiency has a direct influence on GlyR 

α1 cleavage, the injected oocytes were metabolically labeled with [35S]methionine. In 

contrast to expectations, however, the GlyR α1 no-K mutant and the parent α1-His 

GlyR were subjected to a similar degree of proteolytic cleavage (Fig. 3B). This 

suggests that abolition of ubiquitination does not impair internalization. 

 

 

 

 

 

 

 

 
 
 
 
Fig. 3.  Loss of ubiquitination does not abolish lysosomal cleavage.  
Panel A, Oocytes injected with 25 ng of cRNA for GlyR α1-His (wt) or GlyR α1-His no-K were 
incubated for 3 days at 19°C and then labeled with membrane-impermeant 125I-sulfo-SHPP. Receptors 
were purified by Ni2+-NTA chromatography from 1% digitonin extracts of oocytes, and analysed by 
discontinuous Tricine-SDS-PAGE (13-10-4% acrylamide), followed by autoradiography. The GlyR 
α1-His no-K mutant does not show any ubiquitinated forms (lane 2). Panel B, Oocytes injected with 
25 ng of cRNA for GlyR α1-His or GlyR α1-His no-K were metabolically labeled with 
[35S]methionine for 4h at 19°C. Cells were then chased for 14 h or 38 h. Receptors were purified by 
Ni2+-NTA chromatography from 1% digitonin extracts of oocytes, and analysed by discontinuous 
Tricine-SDS-PAGE (13-10-4 % acrylamide), followed by autoradiography. Despite the loss of 
ubiquitination, the GlyR α1-His no-K mutant shows a wild-type like cleavage behavior.  
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3.1.4 Internalization of GlyR is regulated by at least two signals, 

ubiquitination and 339Y 

 
Since ubiquitination appeared not to constitute a dominant signal for internalization, 

the sole tyrosine located on the M3-M4 loop of the GlyR α1 subunit, 339Y, was 

considered as a residue potentially relevant for endocytosis. Single tyrosines are well 

known to constitute crucial residues of various endocytosis motives involved in 

internalization and targeting of membrane proteins to cellular compartments like 

endosomes and lysosomes. To assess its possible role as an endocytic signal, 339Y was 

replaced by alanine. But the GlyR Y339A-α1-His mutant was proteolytically cleaved 

to virtually the same degree into 35 kDa and 13 kDa fragments as the wild type GlyR 

(Fig. 4A). If, however, 339Y was eliminated in addition to all the cytoplasmic 

ubiquitination sites, the proteolytic cleavage of the corresponding mutant (designated 

Y339A-α1-His no-K) during a 38 h chase interval was greatly reduced (Fig. 4B). 

 

         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Replacement of Y339 and ubiquitination-sites leads to a reduction of α1-GlyR cleavage 
Oocytes injected with 25 ng of cRNA for either GlyR α1-His, GlyR α1-His no-K, Y339A GlyR α1-His 
or Y339A GlyR α1-His no-K were metabolically labeled with [35S]methionine for 4h at 19°C. Cells 
were then chased for 38h. Receptors were purified by Ni2+-NTA chromatography from 1% digitonin 
extracts of oocytes, and analyzed by discontinuous Tricine-SDS-PAGE (13-10-4% acrylamide), 
followed by autoradiography. Panel A, GlyR Y339A-α1-His does not show a modified cleavage 
behavior (lane 2). Panel B, Y339A GlyR α1-His no-K is cleaved significantly less than the wild-type or 
the single mutants (lane 4) 
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The degree of cleavage of the various mutants compared to the wild type α1 GlyR 

was quantified by PhosphorImager analysis (Fig. 5). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Percentage of intact wt- and mutant GlyR α1 subunits after a 36h chase internal. 
Oocytes injected with 25 ng of cRNA for GlyR α1-His, α1-His no-K, Y339A-α1-His or Y339A-α1-His 
no-K were metabolically labeled [35S]methionine for 4 h at 19°C and then chased for 38 h. Receptors 
were purified by Ni2+-NTA chromatography from 1 % digitonin extracts of oocytes, and analyzed by 
discontinuous Tricine-SDS-PAGE (13-10-4 % acrylamide). The dried gels were subjected to 
phosphoimage analyses for protein quantification. Error bars represent standard deviations of the 
means of three independent experiments. 
 

 

The percentages of the non-cleaved wild type α1-His, the no-K mutant, and the Y339A 

mutant did not differ significantly from each other. The ubiquitination deficient 

mutant carrying the additional Y339A mutation, however, was significantly less 

proteolysed. This may suggest that two endocytosis pathways operate in Xenopus 

oocytes to mediate the internalisation of GlyRs. One pathway may depend on 

ubiquitin as a signal, whereas the second pathway may involve a tyrosine-based 

motif. The results can best be reconciled with the view that to two endocytotic 

pathways can compensate for each other if one of the pathways is blocked. 
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3.2 A BASIC CLUSTER DETERMINES TOPOLOGY OF THE 

CYTOPLASMIC M3-M4 LOOP OF THE GLYCINE 

RECEPTOR α1 SUBUNIT 
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This paper describes that the correct topology of the GlyR α1 subunit depends 

critically on six positively charged residues within a basic cluster, RFRRKRR, 

located in the large cytoplasmic loop a few residues downstream to M3. The role of the 

basic cluster for the proper transmembrane folding has first been noticed during my work 

about ubiquitination of α1-GlyRs in Xenopus laevis. To examine the role of this cluster 

in detail, a large number of charge neutralization GlyR α1 mutants were subsequently 

created and investigated both biochemically and functionally. My contribution to this 

study involved the generation of most of the charge mutants as well as the entire 

biochemical examination of these mutants regarding their synthesis, assembly capacity, 

and post-translational processing in Xenopus oocytes.  
 

 

 

3.2.1 Alanine substitution of basic residues of the α1-His chain down-

stream to M3 results in a mixed orientation of the M3-M4 loop 
 

The starting point of this study was the analysis of two charge neutralization GlyR α1 

mutants designated 316–320A-α1-His and   316–322,325A-α1-His, with either four or seven of 

the basic residues C terminal to M3 replaced by alanines (see Fig. 7). The two GlyR 

mutants did not show any differences in the shape of the glycine-induced currents or in the 

glycine potency compared to the wild-type GlyR α1 when analysed in Xenopus oocytes 

by two-electrode voltage-clamp electrophysiology. However, in three independent 

experiments, each with five to ten oocytes, the maximal current of the 316–320A-α1-His 

receptor was significantly reduced in amplitude, from 4.7 ±1.2 to 2.3 ±0.8 µA compared 

to the parent α1-His receptor. 

Next the synthesis and post-translational processing of the parent α1-His GlyR 

and the charge neutralization mutants were compared. As in the experiments described 

above, the wild-type α1-His polypeptide migrated as a single band at 48 kDa when 

analyzed by reducing Tricine-SDS-PAGE subsequent to isolation by Ni2+-NTA-agarose 

chromatography from [35S]methionine-labeled Xenopus oocytes (Fig. 6A and B, lane 1). 

Endo H treatment of α1-His subunits that were isolated directly after the [35S]methionine 

pulse led to a mass shift from 48 kDa to 45 kDa protein core. The difference of 3 kDa 

corresponds to the mass of a single N-glycan removed from 38N of the sole N-

glycosylation motif 38NVS in the N-terminal extracellular domain (see Fig. 1) (Griffon et 

al., 1999). In contrast to the parent α1-His polypeptide, the 316–320A-α1-His and the 316–
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322,325A-α1-His mutants migrated as double bands of apparent masses of 48 and 54 kDa 

when analyzed under the same conditions (Fig. 6A, lanes 2 & 3). Endo H or PNGase F  

treatment of the two mutants (only shown for 316–320A-α1-His in Fig. 6B, lanes 5 & 6) 

resulted in mass shifts from 48 kDa and 54 kDa to the 45 kDa α1-His protein core. These 

data indicate that the mass difference of 6 kDa between the 48 kDa and the 54 kDa band 

results from additional (most probably two) N-glycans, each with a single mass of 3 kDa.  

Deglycosylation at low Endo H concentrations displayed a ladder-like pattern 

of four bands (Fig. 6C, lanes 8 and 9) corresponding to polypeptides from which one, 

two, and three N-glycans had been cleaved off. The fully deglycosylated 45 kDa 

polypeptide was prominent at high Endo H concentrations (lanes 10-12). 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. N-Glycan status of GlyR α1-His subunits with neutralized basic charges downstream to M3. 
Oocytes were injected with indicated cRNAs, labeled overnight with [35S]methionine, and extracted 
with digitonin. Proteins were natively purified by Ni2+-NTA-agarose chromatography, denatured with 
Tricine-SDS sample buffer, and resolved by reducing Tricine-SDS-PAGE (4/10/13 % acrylamide). 
Autoradiographs of the gels are shown. Panel A, the wild-type GlyR α1-His subunit migrates as a 48 
kDa polypeptide. Neutralization of positively charged amino acids leads to the appearance of an 
additional 54 kDa polypeptide. Panel B, the same samples as in A were denatured with reducing 
Tricine-SDS sample buffer and then incubated for 2 h with Endo H or PNGase F as indicated. The 54 
kDa form of the 316–320A-α1-His mutant was reduced to the 45 kDa protein core by deglycosylation 
with Endo H or PNGase F. Panel C, the indicated polypeptides were incubated with increasing 
amounts of Endo H (in percent of maximum amount of enzyme used). Panel D, elimination of N-
glycosylation sequons located in the M3-M4 loop results in mass shifts, which corroborate that the 
misfolded 54 kDa polypeptides carries N-glycans at Asn335 and Asn358 (or Asn361). 
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Provided that the GlyR α1 subunit topology shown in Fig. 1 is correct, 
38NVS is the only acceptor site for N-linked glycosylation. This led to the conclusion 

that the two additional N-glycans must be attached to glycosylation sites that are 

inaccessible in the mature GlyR α1 polypeptide but, due to a different topology, 

accessible in the 316–320A-α1-His mutant. The GlyR α1 subunit harbors a total of 

four consensus N-glycosylation sites, three of which are located on the cytoplasmic 

M3-M4 loop, 335NFS, 358NNS, and 361NTT (see Fig. 1). These motifs get accessible 

to the glycosylation apparatus only when the M3-M4 loop translocates into the ER 

lumen. Indeed, elimination of 335N of the 318,321A-α1-His mutant by replacement 

with glutamine resulted in a mass shift from 54 kDa to 51 kDa, corresponding to the 

loss of one N-glycan with a typical mass of 3. kDa (Fig. 6D, lane 3). When 358N and 
361N were simultaneously eliminated in addition to 335N, the 51 kDa band 

disappeared as well (Fig. 6D, lane 4) and only the 48 kDa band was detectable. This 

data indicates that the two additional N-glycans of the 54 kDa α1-His mutant 

polypeptides are located at 335N and 358N (or 361N). The fact that only two of the 

three possible glycosylation sites of the endoplamatic loop are used might result 

from a steric hindrance at the two closely neighboring 358NNS / 361NTT 

glycosylation sequons. 

These results imply that the membrane spanning segment M3 fails to 

integrate properly into the membrane upon neutralization of positive charges of the 

M3-M4 loop; as a consequence, the M3-M4 loop adopts a luminal orientation. 

 

 

 

3.2.2 GlyRs with an aberrant topology of the M3-M4 loop have an 

impaired assembly capacity and are unable to leave the ER 

 
To investigate the effect of the aberrant topology on the assembly process, several of 

the GlyR α1 charge neutralization mutants were analysed by blue native PAGE, a 

method that is well suited for displaying oligomeric states of receptor proteins 

(Nicke et al., 1998; Griffon et al. 1999). When purified after an overnight chase 

intervall, all charge neutralization mutants migrated as perfectly assembled 

homopentamers regardless of how many basic amino acids were neutralized 
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downstream to M3 (results not shown). If, however, the charge mutants were 

purified directly after a 4 h [35S]methionine pulse, a propensity of the mutants to 

aggregate became apparent, as indicated by the appearance of high molecular weight 

α1-His protein that migrated at a broad range of masses above that of the pentameric 

receptor (Fig. 8A).  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.  Assembly and ER exit of GlyR α1-His subunits with neutralized basic charges 
downstream to M3.  
Panel A, α1-His GlyRs natively purified from cRNA-injected oocytes immediately after a 4 h 
[35S]methionine pulse were resolved by blue native PAGE (4–12 % acrylamide). Panel B, 
quantitative profiles of the protein bands of the lanes shown in A obtained by PhosphorImager 
analysis reveal an increased propensity of the α1-His mutants to aggregate (hatched areas). Panel C, 
α1-His GlyRs natively purified from cRNA-injected oocytes after a 4 h [35S]methionine pulse and an 
additional 36 h chase interval were denatured with reducing Tricine-SDS sample buffer and then 
incubated for 2 h with Endo H or PNGase F as indicated. The monoglycosylated 48 kDa polypeptide 
was entirely Endo H-resistant, indicating that it had reached the Golgi apparatus. In contrast, the 54 
kDa polypeptide persisted in the Endo H-sensitive form, consistent with retention in the ER. 

5

5

5

5

1

1

1

1

5

5

5

54

4

4

3

4

3

3

3

2

2

2

1

2

1

1

1

wt

319A

320A

316-320A

A B1 2 3 4 5 6 7 8

- + - + - + - +
wt 319A 320A 316-320Aα1-His

8 M urea

5
4

3

2

1

Lane 3

Lane 5

Lane 7

Lane 1

Lane 4

Lane 6

Lane 8

Lane 2

A
g
g
re

g
at

es

5

5

5

5

1

1

1

1

5

5

5

54

4

4

3

4

3

3

3

2

2

2

1

2

1

1

1

wt

319A

320A

316-320A

A B1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

- + - + - + - +
wt 319A 320A 316-320Aα1-His

8 M urea - + - + - + - +
wt 319A 320A 316-320Aα1-His

8 M urea

5
4

3

2

1

Lane 3

Lane 5

Lane 7

Lane 1

Lane 4

Lane 6

Lane 8

Lane 2

A
g
g
re

g
at

es

54 kDa
48 kDa

35 kDa

13 kDa

Sven 519b

- +Endo H + -

- -PNGase F - +

-

+

-

-

wtα1-His 316-320A

1 2 3 4 5 6

66-

46-

30-

21-

14-

C

54 kDa
48 kDa

35 kDa

13 kDa

Sven 519b

- +Endo H + -

- -PNGase F - +

-

+

-

-

wtα1-His 316-320A

- +Endo H + -

- -PNGase F - +

-

+

-

-

wtα1-His 316-320A

1 2 3 4 5 61 2 3 4 5 6

66-

46-

30-

21-

14-

C



 - 24 -

Quantification by PhosphorImager analysis revealed that not only the charge 

mutants but also the wild-type GlyR α1-His subunits existed partially in an 

aggregated form shortly after synthesis (Fig. 8B). However, the tendency to form 

aggregates was significantly higher when one charge of the basic cluster 

downstream of M3 was neutralized (R319A, K320A; see lanes 3 and 5) and increased 

further upon neutralization of four basic charges (RFRRK316–320AFAAA; see lane 

7). The aggregates of both the wild-type and the mutant GlyR α1 subunits 

disappeared during a subsequent chase interval (Fig. 8C, lanes 1 & 4) and also the 

hyperglycosylated 54 kDa form decreased relative to the 48 kDa form with increasing 

chase time (unpublished data). From this we conclude that the high molecular 

aggregates are predominantly derived from misfolded subunits with a luminally 

exposed M3-M4 loop and that the hyperglycosylated form of the α1 subunit is 

subjected to accelerated degradation. 

To examine whether α1-His GlyRs with aberrantly folded M3-M4 loop are 

able to leave the ER, the glycosylation status of the GlyR charge mutants after a 36 

h chase interval was investigated (Fig. 8C). Many plasma membrane proteins 

exhibiting N-glycans become complex-glycosylated and hence resistant to Endo H 

during passage of the Golgi apparatus en route to the cell surface. As observed in 

previous experiments, the wild-type GlyR was entirely insensitive to Endo H 

treatment after a 36 h chase interval (Fig. 8C, lane 2). In contrast, the 

hyperglycosylated 54 kDa polypeptide generated from the 316–320A-α1-His construct 

was found to be completely in the Endo H sensitive form, indicating that GlyR α1 

subunits with aberrantly folded M3-M4 loops are not able to leave the ER (Fig. 8C, 

lane 5). This view is supported by a relative decrease in the amounts of the 

additional 35 and 13 kDa polypeptides, which represent proteolytic cleavage 

products from endocytotically retrieved GlyRs and hence are indicative of the 

plasma membrane insertion of the receptor (Büttner et al, 2001). Quantification by 

PhosphorImager analysis revealed that 57 % of the wild-type α1-His subunit, but 

only 16 % of the 316–320A- α1-His mutant, was proteolytically cleaved into the 35 

and 13 kDa products.  

From these results it can be concluded that GlyRs with an aberrantly folded 

M3-M4 loop are not exported to the cell surface.  
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3.2.3. Neutralization of a single basic residue downstream to M3 is 

sufficient to disturb topology of the M3-M4 loop 

 
To determine how many basic residues can be removed without disturbing 

membrane topology, GlyR α1 mutants with only one or two alanine substitutions in 

the 316RFRRKRRHHK motif were generated (see. Fig. 7). Surprisingly, already the 

exchange of one single basic amino acid was sufficient to create a mixed topology, 

revealed by the appearance of the hyperglycosylated 54 kDa polypeptide (Fig. 9A). 

As observed before also a minor portion of the wild type GlyR migrated in the 

misfolded form (Fig. 9A, lane 1). Quantification by PhosphorImager analysis 

revealed that 5–10% wild-type α1 subunits possessed a luminally oriented M3-M4 

loop shortly after synthesis. 
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Fig. 9. Positional effects of charged residues on M3-M4 loop topology of the GlyR α1 subunit 
revealed by alanine scanning mutagenesis.  
cRNA injected oocytes were incubated with [35S]methionine for 4 h (Panel A) or 14 h (Panel B) prior 
to extraction with digitonin. Proteins were resolved by reducing Tricine-SDS-PAGE. 
Autoradiographs of the gels are shown. Panel C and D, protein bands shown in Panel A or B were 
quantified by PhosphorImager analysis to determine the fraction of misfolded 54kDa polypeptide of 
single mutants (C) and double mutants (D) as a function of the position of the neutralized basic 
residues. For the double mutants, the arithmetic mean of the amino acid position of the two mutations 
is plotted. The dotted line indicates the relative level of misfolded 54 kDa wild-type α1 subunit in 
these experiments. 
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3.2.4. Positional effect of basic residues on M3-M4 loop topology 

To investigate a positional effect of the single charge neutralisation of the M3-M4 

loop, the relative amounts of 48 kDa and 54 kDa peptides in Fig 9A were quantified 

by PhosphorImager analysis. As it can be seen from Fig. 9C the largest effect was 

found when K320 was substituted by alanine, which is located at a distance of ~12 

residues from the end of the M3 domain (see Fig. 1). 48 % of the total mutant 

receptor subunits migrated in the aberrantly folded 54 kDa form directly after a 4 h 

[35S]methionine pulse. To examine the effect of charge neutralization over the entire 

M3-M4 loop, a set of double mutants was generated in which two consecutive 

positively charged amino acids were systematically replaced by alanine (see Fig. 7). 

The highest relative amounts of aberrantly folded polypeptides were observed when 

either R318 and R321 or R319 and K320 were neutralized by alanine substitution (Fig. 

9D), indicating that positive charges in the centre of the basic cluster are of 

particular importance for the topology of the M3-M4 loop. Neutralisation of more 

than two basic residues in this cluster as in the 316–322,325A-α1-His mutant did not 

further increase the relative amounts of the 54 kDa polypeptide (Fig. 9B, lane 3). 

Neutralization of basic residues close to M3 (Fig. 9B, lane 6) or in the C-terminal 

half of the M3-M4 loop (lanes 11–14) showed little or no effect. Even when a total 

of five basic amino acids in the C-terminal half of the M3-M4 loop was replaced by 

alanines (lane 15) no 54 kDa polypeptide could be observed. 

To further investigate whether the net charge in this particular region is 

responsible for the correct topology of the M3-M4 loop, three negative charges, 

EDE, immediately downstream of the basic cluster at positions 326–328 were 

neutralized in the 318,321A-α1-His mutant. As it can be seen from Fig. 9B, lane 5, this 

mutant, 318,321,326–328A-α1-His, still showed a mixed topology. Quantification 

revealed a relative decrease of the misfolded 54 kDa polypeptide from 60 % (parent 
318,321A-α1-His mutant) to 48% (318,321,326–328A-α1-His mutant), indicating that 

increasing the net charge difference (positive charges minus negative charges) can 

only partially compensate for neutralization of residues within the basic cluster.  
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3.2.5 Neutralization of basic charges in the M2-M3 ectodomain 

rescues GlyR α1 mutant topology 

 
Former studies (Gafvelin & Von Heijne, 1994) revealed that the presence of several 

positive charges on both sides of a transmembrane domain can prevent its correct 

membrane insertion. To examine whether these findings apply to the charge mutants 

used in this study two basic amino acids in the short hydrophilic loop connecting M2 

and M3, K276 and K281, were neutralized by alanine substitution in the 318,321A-α1-

His mutant (see Fig. 1 & 7). As it can be seen from Fig. 10A (lanes 3 & 4) and Fig. 

10B neutralisation of one of these lysines in the charge mutant 318,321A-α1-His 

resulted in clearly decreasing amounts of the 54 kDa peptide. Simultaneous 

neutralisation of both lysines almost fully abolished the fraction of newly 

synthesized 318,321A-α1-His with luminal M3-M4 loop orientation. This data 

suggests that the basic cytoplasmic cluster C-terminal to M3 is required to 

counteract the three basic charges in the M2-M3 ectodomain, which otherwise 

impede a correct membrane insertion of M3.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10.  Effect of simultaneous neutralization of positive charges of the M2-M3 ectodomain and 
the basic cluster on the disposition of the M3-M4 loop.  
Panel A, cRNA-injected oocytes were pulse-labeled with [35S]methionine for 4 h. Proteins were 
purified from digitonin extracts of these cells and resolved by reducing Tricine-SDS-PAGE. Panel B, 
the relative amount of the misfolded 54 kDa polypeptide in A was quantified by PhosphorImager 
analysis. 

1 2 3 4 5

RASLPKVSYVKAID

2
7

1

2
7

6

2
8

1

wt 318,321A
276A 281A 276A

281A

α1-His

66-

46-

30-

21-

14-

A

1 2 3 4 5

RASLPKVSYVKAID

2
7

1

2
7

6

2
8

1

RASLPKVSYVKAID

2
7

1

2
7

6

2
8

1

wt 318,321A
276A 281A 276A

281A

α1-His

66-

46-

30-

21-

14-

A B

0

20

40

60

80

wt 318,321A
276A 281A 276A

281A

5
4

 k
D

a
p
o

ly
p

e
p

ti
d

e
(%

 o
f 

to
ta

l)

B

0

20

40

60

80

wt 318,321A
276A 281A 276A

281A

5
4

 k
D

a
p
o

ly
p

e
p

ti
d

e
(%

 o
f 

to
ta

l)



 - 29 -

 
 

 

3.3 ASSEMBLY OF NICOTINIC α7 SUBUNITS IN XENOPUS 

OOCYTES IS PARTIALLY BLOCKED AT THE 

TETRAMER LEVEL 
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The paper describes that Xenopus oocytes have a limited capacity to guide the 

assembly of nicotinic α7 subunits. My contribution to this study was the blue native 

PAGE analysis of metabolically labeled  α7 and 5HT3A receptors as well as the 

examination of the glycosylation state of metabolically labeled  α7 subunits. 

 

 

  

3.3.1 Unlike 5HT3A subunits, α7 subunits assemble inefficiently to 

homopentamers in Xenopus oocytes 

 
Subsequent to isolation under non-denaturing conditions from Xenopus oocytes 

5HT3A-His subunits migrated predominantly as homopentamers on the blue native 

PAGE gels (Fig. 11A, lane 4). Quantification by PhosphorImager analysis 

confirmed that 5HT3A-His subunits were largely incorporated in the 

homopentameric complex (Fig. 11B, lane 4). Treatment with 8 M urea or 0.1 % SDS 

to weaken non-covalent subunit interactions generated a ladder of five bands, 

corresponding to one, two, three, four and five copies of the 5HT3A-His subunit 

(Fig. 11A, lanes 5 and 6). These data are consistent with former studies, all 

indicating that the 5HT3A receptor has a pentameric structure (Boess et al., 1995; 

Green et al., 1995). The additional protein band in the non-dissociated sample can be 

assigned to a minor fraction of homotrimers (Fig. 11B, lane 4). The absence of 

significant amounts of intermediate assembly states indicates that the 5HT3ARs 

attained a pentameric state during or shortly after synthesis while still in the ER.  
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Fig. 11. Assembly state of homomeric nAChR α7-His and 5HT3A-His shortly after their synthesis. 
Panel A, Xenopus oocytes were injected with cRNAs for His-tagged a subunits and non-tagged 
accessory subunits as indicated. After [35S]methionine labeling, LGICs were natively purified from 
digitonin extracts of these cells. LGICs were immediately resolved by blue native PAGE either 
without further treatment or after a 1 h incubation at 37°C in the presence of 8 M urea, 0.1 M DTT or 
0.1 % SDS as indicated. Panel B, quantitative profile of the radioactivity incorporated in the various 
homooligomers was established by PhosphorImager analysis of individual lanes of the blue native 
PAGE gel shown in A. The origin of the abscissa corresponds to the top of the blue native PAGE gel. 
Numbers indicate the oligomeric state of the corresponding protein bands. Hatched areas indicate 
aggregated protein. Lane numbers are the same as in A. Experiments were repeated ≥ 3 times with 
virtually identical results. 
 
 
 

 

In contrast, the recombinant α7-His protein existed in several oligomeric states and 

also in an aggregated form as indicated by the high molecular mass proteins that 

migrated at a broad range of masses above that of the pentameric receptor (Fig. 11A, 

lane 1). Treatment either with 8 M urea alone or with 8 M urea, 0,1 % SDS and 

DTT induced partial dissociation of receptor complexes into lower order 

intermediates (Fig. 11A, lanes 2 & 3). 

By comparison with the pattern of bands produced by dissociating treatment 

of the α7-His protein the discrete protein bands in lane 1 could be assigned to 

homotrimers and homotetramers of the α7-His subunit. Quantification by 

PhosphorImager analysis revealed the presence of monomers, dimers, and pentamers 

besides the dominant homotetramer (Fig. 11B, lane 1). However, the quantitative 

profile clearly shows that the bulk part of α7-His subunits was contained in high 
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molecular aggregates larger than the homopentamer. These aggregates did not 

disappear during a subsequent 36 h chase interval (results not shown). 

Virtually the same results were obtained when digitonin extracts of LGIC-

expressing oocytes were subjected to sucrose density centrifugation, a method more 

commonly used in this respect. The similar results obtained by either method also 

demonstrate that blue native PAGE represents a convenient alternative for sucrose 

density centrifugation. 

 

 

 

3.3.2 Solely complex-glycosylated α7 pentamers arrive at the cell 

surface 
 

Further experiments mainly performed by Anette Nicke showed that the plasma 

membrane contained exclusively homopentameric α7 nAChRs, albeit in comparably 

low amounts. No α7-His tetramers or lower order complexes were observed to exist 

at the cell surface. Deglycosylation experiments revealed that the plasma membrane-

bound α7 subunits were entirely Endo H resistant, indicating that all plasma 

membrane bound α7-His subunits become complex-glycosylated during passage of 

the Golgi apparatus en route to the cell surface. The fraction of complex-

glycosylated α7 subunits relative to the total amount of α7 subunits synthesized 

appears to be very slow as only Endo H-sensitive α7 subunits could be detected 

when the total cellular pool of α7 subunits was analyed. Selective visualization of 

plasma membrane bound α7 subunits was required to detect their Endo H resistance. 
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When I worked about the ubiquitination and membrane tethering of GlyRs, several 

studies on the quaternary structure of P2X receptors (LGIC class III) were in 

progress in the lab. All biochemical and electrophysiological data from these studies 

favoured the view that recombinant P2X receptors possess a trimeric architecture 

(Nicke et al., 1998, 1999, 2003; Rettinger et al., 2000). However, not all scientist 

were convinced of a trimeric structure. The present paper represents an extension of 

previous studies by including several additional homomeric and heteromeric P2X 

receptors in the analysis. My contribution to this study was the biochemical analysis 

of the human P2X2 and P2X6 subtypes.  

 

 

 

3.4.1 Intracellular rat and human P2X2 subunits exhibit distinct 

assembly states 
 

Armaz Aschrafi, the main author of the paper showed that subsequent to isolation 

under non-denaturing conditions from Xenopus oocytes the His-rP2X2 protein 

migrated on blue native PAGE predominantly in an aggregated form. The only 

discrete protein band detectable could be assigned to homotrimers of the His-rP2X2 

subunit. Higher order assembly states could also be detected with recombinant 

rP2X1, rP2X3, rP2X4 and rP2X5 receptors, but trimers represented the predominant 

assembly state of these P2X subtypes, indicating that the formation of large amounts 

of undefined aggregates was unique to rP2X2 subunits. Deglycosylation experiments 

with Endo H and PNGase F revealed that ~70 % of metabolically labeled rP2X2 

subunits acquired Endo H resistance during an extended chase interval. Accordingly, 

the high amounts of rP2X2 aggregates could not be assigned to ER retention. 

Because of the exceptional assembly-behaviour of the rP2X2 protein, its 

human orthologue was investigated in the same manner. In contrast to rP2X2 

subunits, hP2X2 subunits migrated under virtually identical conditions in a single 

defined assembly state, which could be clearly assigned to a trimer. 
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3.4.2 rP2X2 receptors exist as individual homotrimers and clusters 

of homotrimers at the plasma membrane 

 
To visualize selectively the plasma membrane-bound rP2X2 receptors, the outer cell 

surface of oocytes was radioiodinated with 125I-sulfo-SHPP. In contrast to the His-

rP2X1 receptor that migrated in a single defined assembly state, the His-rP2X2 

receptor existed at the cell surface in several defined oligomers. These oligomers 

migrated in a ladder-like pattern of three or four bands, each spaced by the mass of a 

His-rP2X2 trimer. Accordingly, hexameric and nonameric states can be assigned to 

the higher mass oligomers. Thus, rP2X2 receptors appear as homotrimers or 

multimers of homotrimers at the plasma membrane, whereas their intracellular 

assembly state remained undefined by blue native PAGE. 

To determine the quaternary structure of the rP2X2 receptor at the cell 

surface of intact Xenopus oocytes by a second, independent approach, plasma 

membrane-bound receptors were chemical cross-linked prior to purification. The 

autoradiogram of the reducing SDS-PAGE gel displayed the formation of an 

increasing amount of adducts in expense of the monomer at different stages of the 

cross-linking reaction. Three different bands with molecular weight ~65, ~130, and 

~190 kDa could be distinguished corresponding in mass to the rP2X2 monomer, 

dimer and trimer. Since no bands larger than the 190 kDa band could be detected, 

these findings add further strong support to the view that functional rP2X2 receptors 

are organized as homotrimers. 

 

 

 

3.4.3 Polymerization of rP2X2 and rP2X1 subunits generates 

rP2X1+2 heterotrimers 

 
Since P2X2 subunits have not only been shown to build stable homotrimers, but also 

to heteropolymerize with P2X1 (Brown et al., 2002) and P2X3 subunits (Lewis et al., 

1995; Chen et al., 1995), the question arose whether a trimeric architecture can also 

be assigned to heteromultimeric P2X receptors. Therefore, oocytes co-expressing the 

hexahistidyltagged rP2X1 subunit with the non-tagged rP2X2 subunit were surface 
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radioiodinated with [125I]sulfo-SHPP. The receptors isolated from oocytes co-

expressing rP2X2 and His-rP2X1 subunits migrated on blue native PAGE gels in 

between that of homotrimeric His-rP2X1 receptors and homotrimeric His-rP2X2 

receptors, consistent with the formation of heterotrimeric rP2X1+2 receptors. 

Interestingly, no homomeric His-rP2X1 receptors could be isolated from those 

oocytes which were co-expressing rP2X2 and His-rP2X1 subunits, indicating that 

heteromer formation represents the favored assembly pathway. Reanalysis of the 

rP2X1+2 receptor intermediate in the second dimension by SDS-PAGE corroborated 

this view by resolving two bands of ~57 kDa and ~62 kDa as expected for His-

rP2X1 and rP2X2 monomers, respectively. These results clearly indicate that rP2X1+2 

have a trimeric architecture. Also, the results of cross-linking experiments were fully 

consistent with the view that rP2X1+2 receptors are organized as trimers. 

 

 

 

3.4.4 hP2X6 subunits form tetramers and aggregates that are not 

exported to the plasma membrane of Xenopus oocytes  

 
P2X6 subunits represent the sole P2X subtype that is unable to form functional 

homomeric receptors in Xenopus oocytes (North, R.A., 2002; Collo et al., 1996). 

However, co-expression with P2X4 subunits results in the generation of heteromeric, 

functional ATP receptors (Le et al., 1998). Subsequent to isolation under non-

denaturing conditions from Xenopus oocytes the His-hP2X6 protein migrated on the 

blue native PAGE gel in a single distinct assembly state as well as in an aggregated 

form as indicated by the high molecular mass proteins (Fig. 12A, lane 3). Treatment 

with 8 M urea (lane 4) induced partial dissociation of receptor complexes into lower 

order intermediates, each spaced by the mass of an hP2X6 monomer. By comparison 

with the pattern of bands produced by dissociating treatment of the His-hP2X6 

protein the discrete protein band in Fig. 12A, lane 3 could be assigned to 

homotetramer of the His-hP2X6 subunit. The coanalyzed rP2X3 receptor and the α1 

GlyR migrated as trimers (lanes 1 & 2) and pentamers (lanes 5 & 6), respectively. 

Deglycosylation experiments revealed that the metabolically lebeled hP2X6 subunit 

was completely Endo H-sensitive after an extended chase interval (Fig. 12B). 
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Attempts to visualize selectively plasma membrane-bound homomeric hP2X6 

receptors failed, although other homomeric P2X receptors that were expressed in 

parallel showed high surface expression levels (results not shown). Together, these 

findings indicate that the tetrameric hP2X6 complex is recognized and retained in the 

ER by the quality control machinery as an incorrectly assembled protein. Tetramers 

and aggregates were also observed for the rat orthologue, rP2X6 (results not shown). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12.  hP2X6 subunits form aggregates and homotetramers in Xenopus oocytes.  
Panel A, metabolically labelled GlyR α1 subunits and rP2X3 subunits, both known to form functional 
homomeric receptors, migrated as pentamers and trimers, respectively, on the blue native PAGE gel. 
In contrast, hP2X6 subunits known for their inability to form a functional homomeric receptor in 
Xenopus oocytes, migrated as tetramers and aggregate. Panel B, N-glycan content of hP2X6 subunits. 
The same samples as in A were deglycosylated as indicated and resolved by SDS-PAGE. The 
observed shift, from 56 to 48 kDa (49 kDa calculated protein core), is consistent with the presence of 
three N-glycans, suggesting that all three consensus sites (155NGT, 185NFT, 200NFS) were used. No 
complex-glycosylated bands were observed. 
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4.   Discussion 

 
4.1 Ubiquitination of the α1 GlyR: A targeting signal for   

internalization and lysosomal degradation? 
 

The results presented here strongly indicate that ubiquitination of the recombinant 

human α1 GlyR at the plasma membrane of Xenopus oocytes is involved in receptor 

internalisation and degradation. Ubiquitination of the human α1 GlyR has been 

demonstrated by radio-iodination of plasma membrane-bound α1 GlyRs, whose 

subunits differed in molecular weight by additional 7, 14 or 21 kDa, corresponding 

to the molecular weights of one, two and three conjugated ubiquitin molecules, 

respectively, and by co-isolation of the non-tagged human α1 GlyR through 

hexahistidyl-tagged ubiquitin. Ubiquitin conjugated GlyRs where prominent at the 

plasma membrane, but could be hardly detected in total cell homogenates, indicating 

that ubiquitination takes place exclusively at the plasma membrane and not during 

intracellular routing of the receptor.  

After ubiqitination at the plasma membrane the receptor was internalized and 

proteolytically cleaved into an N-terminal 35 kDa and C-terminal 13 kDa fragment. 

Since α1 GlyR homopentamers could be isolated from cell homogenates even after 

cleavage, nicking does not cause a dissociation of the α1 subunits (Büttner et al., 

2001). This observation is consistent with former studies showing that the critical 

determinants of assembly are located on the extracellular N-terminal domain of the 

α1 subunit (Kuhse et al., 1993). A similar importance of extracellular domains for 

receptor assembly has been demonstrated for GABAARs and GABACRs (Hackam et 

al., 1997) as well as for the muscle nAChR (Verrall & Hall, 1992). Moreover, when 

proteolytically nicked by papain, the nAChR neither shows a tendency to 

disassemble nor a loss of function. Even extensive proteolysis had no dramatic 

effect on sedimentation characteristics, toxin binding, the doughnut-like appearance 

in transmission electron microscopy, or cation channel function (Lindstrom et al., 

1980; Huganir & Racker, 1980). By analogy, the nicked α1 GlyR might still 

function as glycine-gated Cl--channel, but apparently it is not localized in the plasma 

membrane.  
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Altogether, the results presented here place the human α1 GlyR into a class 

of mammalian membrane proteins, that are ubiquitinated at the cell surface, 

internalized and routed to lysosomal or lysosomal-like vacuolar degradation 

(Bonifacino & Weissman, 1998).  

On one hand these observations agree with former findings showing hat 

ubiquitination at the plasma membrane constitutes a general internalisation signal, 

thus regulating the amount of receptor proteins at the cell surface (Hicke, 1999; 

Bonifacino & Weissman, 1998). On the other hand, ubiquitination is well known to 

regulate the degradation of short lived cytosolic proteins by the 26S proteasome 

(Hershko & Ciechanover, 1998). In addition, ubiquitination followed by 

proteasomal destruction provides for degradation of many luminal and 

transmembrane ER proteins that, when abnormally folded or incompletely 

assembled, are translocated back into the cytosol (Bonifacino & Weissman, 1998). 

By analogy the results presented here could be interpreted as a cellular reaction to 

downregulate high amounts of α1 GlyR caused by overexpression. However, several 

results argue against this view. First, after heterologous expression in Xenopus 

oocytes α1 subunits assembled properly and with high efficiency into functional α1 

GlyR homopentamers, as revealed by blue native PAGE and two-electrode voltage 

clamp. In addition, α1 GlyR homopentamers were translocated efficiently to the 

Golgi apparatus, as judged from the rapid and complete acquisition of complex-type 

carbohydrates. Second, compared to abnormally folded or incompletely assembled 

proteins, which have in general very short half-lifes of less than 1 h, the homo-

pentameric α1 GlyR is metabolically stable and shows a half-life in the range of 

days. Third, the ubiquitinated α1 subunits are contained within the assembled 

homopentameric α1 GlyR and carry complex-type carbohydrate chains indicative of 

a localization in the Golgi or later compartments. Moreover, ubiquitination of the α1 

subunits seems to be topologically restricted to the plasma membrane, as revealed 

by surface-labeling experiments. Finally, the proteasome system, which is involved 

in the degradation of many short lived cytosolic proteins, does not play a role in the 

degradation process observed here as the proteasome inhibitor lactacystin did not 

inhibit α1-His cleavage. In contrast, cleavage appears to be mediated by lysosomal 

serine proteases as phenylmethylsulfonyl fluoride blocked processing almost as 

efficiently as did NH4Cl. 
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The suggestion that ubiquitination of GlyRs serves as a signal for 

internalisation agrees well with the finding that ubiquitinated GlyR carried only one 

to three ubiquitin molecules per α1 subunit. While modification by a single 

ubiquitin molecule or by multiple single ubiquitins on multiple distinct lysine 

residues is not sufficient to serve as a proteasomal targeting signal (recognition by 

the proteasome requires branched multiubiquitin chains containing at least four 

copies of ubiquitin; Thrower et al, 2000), monoubiquitination has been shown to be 

sufficient for internalisation of the yeast maltose transporter (Lucero et al., 2000) 

and Ste2p, a yeast G-protein-coupled receptor (Terrell et al., 1998). Monoubiquitin 

has also been shown to promote endocytosis of an alpha-factor receptor-ubiquitin 

chimeric protein in the absence of any other internalization signals (Shih et al., 

2000). Moreover, cell-surface receptor tyrosine kinases (RTKs) are 

monoubiquitinated at multiple sites following ligand stimulation (Haglund et al., 

2003; Mosesson et al., 2003). Since termination of RTK signaling occurs via 

endocytosis and lysosomal degradation, (Dikic & Giordano, 2003) 

monoubiquitination may act as internalization signal, routing the receptor to the 

lysosome for degradation.  

Therefore, it can be assumed that multiple lysine residues within the large 

cytoplasmic loop of the α1 subunit (Fig. 1) are monoubiquitinated rather than that a 

single lysine residue carries a branched multiubiquitin chain and that the 

ubiquitination reactions identified here serve exclusively in labeling GlyRs for 

removal from the plasma membrane.  

 

 

 

4.2 Potential roles of receptor ubiquitination in synaptic 

development and remodelling 

 
Ubiquitination of the GlyR and related LGICs may play a role in the regulation of 

receptor abundance at developing and adult synapses by initiating endocytosis and 

lysosomal degradation. At the developing muscle, extrasynaptic nAChRs in the non-

innervated sarcolemmal membrane have been shown to be rapidly internalized, 

whereas synaptic nAChRs become metabolically stable upon further development of 



 - 41 -

the neuromuscular junction (Sanes & Lichtman, 1999). In contrast, during 

withdrawal of nerve terminals from the motor endplate, the postsynaptic membrane 

is depleted of nAChRs before there is any obvious loss of membrane in the 

overlying motor nerve ending (Balice-Gordon & Lichtman, 1993). An early loss of 

postsynaptic nAChRs can also be observed during synapse elimination in 

reinnervated adult muscles (Rich & Lichtman, 1989). Notably, an identical 

distribution of ubiquitin and nAChRs in postsynaptic membranes of neuromuscular 

junctions has been demonstrated (Serdaroglu et al., 1992) as well as a rise in 

cytosolic ubiquitin in a comparable early stage of response to axonal injury (De 

Stefano et al., 1998). Altogether, these findings support the view that ubiquitination 

constitutes an important labeling reaction for enhanced receptor internalization 

and/or degradation. 

It is tempting to assume that ubiquitination plays a role in activity-dependent 

regulation of synaptical LGICs. A decrease in AMPA receptor abundance at 

synaptic sites by synaptic activity has been shown to accompany long term 

depression in the cerebellum (Wang & Linden, 2000; Matsuda et al., 2000) and in 

hippocampal neurons (Man et al., 2000). Recent studies revealed that AMPA 

receptors (GLR-1) of  C. elegans are ubiquitinated at synapses. When ubiquitination 

of GLR-1 was experimentally decreased, the amount of GLR-1 at synapses 

increased and the locomotion behaviour was altered in a manner that is consistent 

with increased synaptic strength. Overexpression of ubiquitin led to a decrease of 

GLR-1 at synapses as well as to a decrease in density of GLR-1-containing synapses 

(Burbea et al., 2002). By analogy, ubiquitination may play a similar role at 

glycinergic synapses. Ubiquitin conjugation to homopentameric GlyRs expressed in 

Xenopus oocytes has been presented here. Embryonic GlyRs that were electrically 

blocked by the selective antagonist strychnine have been shown to be routed rapidly 

to an endosomal compartment by a yet unidentified pathway, consistent with an 

inactivity-dependent internalisation (Kirsch & Betz, 1998).  

Ubiquitination may also be involved in the receptor isoform switches during 

development, e.g. the postnatal replacement of the embryonic γ-subunit by the 

adult ε-subunit in the nAChR of neuromuscular junctions. Comparable isoform 

switches occur also with glutamate, GABAA, and glycine receptors in the 

developing central nervous system (for references, see Missias et al., 1997).  
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A possible consequence of ubiquitin additions to LGIC subunits may be the 

disruption of protein-protein interactions at the synapse, e.g. the interaction between 

LGICs with their anchoring proteins. The reduction of synaptic AMPA receptor 

numbers seen upon induction of long term depression in cerebellar neurons is 

thought to involve release from the postsynaptic anchoring protein GRIP and 

subsequent clathrin-dependent endocytosis (Matsuda et al., 2000; Xia et al., 2000). 

Also GlyRs bind with their β-subunit to a receptor-anchoring protein named 

gephyrin. This interaction is thought to be crucial for a stable, postsynaptic 

localization of the receptor (Kneussel & Betz, 2000; Kneussel et al., 1999b; Kirsch 

et al., 1996). Recruitment of an E3 ligase3 to one or several α1-subunits within an 

α13β2 heteropentameric GlyR (Langosch et al., 1988) may sterically affect GlyR-

gephyrin interactions and even result in ubiquitination of one or several of the 13 

lysine residues within the large cytoplasmic loop of a neighbouring β-subunit. 

Conceivably, such modification might interfere with GlyR anchoring to postsynaptic 

gephyrin and thus facilitate receptor internalization by endocytosis. Conversely, 

immobilization of plasma membrane-bound heteromeric GlyRs on a preassembled 

gephyrin scaffold (Kneussel & Betz, 2000; Sola et al., 2001) could protect receptors 

against ubiquitination and thus stabilize the postsynaptic receptor pool at the 

synapse (Changeux & Danchin, 1976). Similar interactions may also occur with 

GABAARs which are also anchored by gephyrin at postsynaptic sites. In cultured 

hippocampal neurons from gephyrin-deficient mice synaptic GABAAR clusters were 

absent and intracellular immunoreactivities of GABAAR subunits were found to be 

strikingly increased compared with wild-type cells (Kneussel et al., 1999a). 

In conclusion, all presently available data can be reconciled with the view 

that ubiquitination of plasma membrane LGICs constitutes an important signal in 

targeting receptors to intracellular compartments for proteolytic degradation. One 

may speculate that receptor-protein interactions regulate receptor turnover by 

affecting ubiquitination reactions directly at the synapse. Such an idea is supported 

by the observation that multiple membrane proteins of unknown identity are 

conjugated with ubiquitin in brain synaptic membranes and postsynaptic densities, 

indicating that ubiquitination of membrane proteins is a widespread phenomenon in 

the mammalian brain (Chapman et al., 1994).  
                                                 
3 E3 ligases transfer ubiquitin to the target protein and are the last group of enzymes in a row of three, 
that are involved in the ubiquitination process 



 - 43 -

4.3 Ubiquitination and 339Y are involved in the internalization of 
the α1 GlyR 

 

Ubiquitination of the α1 GlyR at the plasma membrane was no longer detectable 

when the ten lysine residues of the cytoplasmic loop between transmembrane 

segments M3 and M4 were replaced by arginines. Despite this proteolytic cleavage 

continued to take place at the same extent as with the wild type α1 GlyR, suggesting 

that removal of GlyRs from the plasma membrane and routing to lysosomes for 

degradation were not dependent on ubiquitination. Also replacing a tyrosine in 

position 339, which was speculated to be part of an additional endocytosis motif, did 

not lead to a significant reduction of cleavage of the GlyR α1 subunits. However, a 

mutant lacking both, ubiquitination sites and 339Y, was significantly less processed. 

These results may suggest that the GlyR α1 subunit harbors at least two endocytosis 

motifs, which may act independently to regulate the density of α1 GlyR. 

Apparently, each of the two signals may be capable of compensating entirely the 

loss of the other. Such redundant regulation systems are often found at critical points 

of metabolic pathways and may serve to prevent a fast collapse of cell function in 

case of a single metabolic disturbance. 
 

 

 

4.4 Functional importance of the basic cluster for correct GlyR 

subunit topogenesis 
 

According to the classic model of membrane integration of polytopic proteins, the 

hydrophobic M3 region of the α1 GlyR subunit should follow the lead of the 

preceding transmembrane segment, M2. Because M2 has an Ncyt-Cexo orientation, 

M3 should adopt passively the opposite Nexo-Ccyt orientation, thus acting as a stop-

transfer sequence that halts further translocation of the polypeptide chain across the 

membrane. In contrast, the data presented here clearly demonstrates that the correct 

orientation of M3 critically depends on the presence of a cluster of basic amino 

acids, 316RXRRKRR, directly downstream of the M3 transmembrane segment. 

Between 30 and 80 % of newly synthesizes α1 GlyR subunits M3 failed to integrate 

into the membrane when at least one basic residue of this cluster was substituted by 
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a neutral amino acid, indicating that this basic cluster directly downstream to M3 

plays a crucial role in proper membrane integration of  α1 GlyR subunits. A similar 

role of positively charged residues in halting translocation of a hydrophobic segment 

has been described previously (Kuroiwa et al., 1991).  

In general, there is growing evidence for polytopic proteins that topologic 

information is not restricted to the most N-terminal transmembrane domain but 

spread over the entire polypeptide chain (Goder & Spiess, 2001). One of the 

determinants is apparently the transmembrane distribution of positive charges, 

which prevents not only the translocation of N- and C-terminal segments (Zhang et 

al. 1995), but also of connecting loops of polytopic membrane proteins. (Sato & 

Mueckler, 1999) demonstrated that positive charges, present at equivalent positions 

within two different cytoplasmic loops of the glucose transporter Glut1 form critical 

anchoring points. In addition, internal loops of polytopic membrane proteins have on 

average a higher content of positively charged residues as compared with external 

ones (Gafvelin et al., 1997).  

Nevertheless, the high percentage of α1 GlyR subunits that failed to integrate 

properly into the membrane after neutralization of only a single positive residue 

within the basic cluster was still unexpected, because seven positively charged 

residues are still left within the 15 residues flanking the C-terminal end of the 

hydrophobic M3 region. With respect to the charge difference rule this means a 

surplus of 6 positively charged residues C-terminal and of 2 positively charged 

residues N-terminal of M3, resulting in a net charge difference ∆(C-N) of +4 for the 

single charge neutralization mutants. This should be more than sufficient to dictate a 

Nexo-Ccyt orientation of a signal anchor sequence. However, despite this excess of 

positive charges only a minor fraction of the M3 segment adopted the correct Nexo-

Ccyt orientation and most of the M3-M4 loops were translocated incorrectly. In 

addition, the α1 GlyR subunit harbors a total of 20 positively charged amino acids 

but only 9 negatively charged residues over the entire M3-M4 loop. With respect to 

the positive inside rule the excess of 11 positive charges should clearly induce the 

correct Nexo-Ccyt orientation of M3. 

Taken together neither the charge difference rule nor the positive inside rule 

are consistent to a biased topology of the apolar M3 domain subsequent to 

neutralization of one or several positively charged residue. This suggests that the M3 

segment by itself is unable to reliably halt translocation.  
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4.5 Positive charges on the short M2-M3 ectodomain seem to 

impair the stop-transfer function of the apolar M3 segment 
 

Hydropathy analysis of the M3 domain by the Kyte-Doolittle algorithm with a 

window of five amino acids provided no indication for an impaired membrane 

integration. The observation that a proper integration of the M3 domain can be 

restored in the charge mutants when positive charges on the short M2-M3 loop are 

neutralized led to the conclusion that these positive charges N-terminal to M3 

impose a problem for a proper membrane integration of M3. The three positive 

charged amino acids of the short M2-M3 loop may impose constraints to the M3 

segment to adopt an Ncyt-Cexo orientation, which is obviously incompatible with the 

Ncyt-Cexo orientation of the preceding M2 domain. Therefore, the M3 domain may 

remain in an unstable state until the cluster of basic residues downstream M3 serves 

as a stop transfer sequence and constrains M3 into the correct Nexo-Ccyt orientation. 

The extreme sensitivity of the M3 transmembrane orientation to neutralization of 

single basic residues within the 316RXRRKRR sequence suggests that the particular 

high density of positive charges is essential for keeping the M3-M4 loop on the cis-

side of the membrane. After the correct Nexo-Ccyt insertion additional interactions 

with the lipid bilayer or integral proteins may stabilize the adopted topology. 

Interestingly, positive charges appear to be more easily translocated through 

the ER than through bacterial membranes, most likely because of the absence of a 

membrane potential in the ER (Gafvelin et al., 1997). The results presented here 

imply that basic clusters play an important role in these translocation processes. This 

view is supported by the finding that basic charged motifs in cytoplasmic loops 

occur more frequently near cytoplasmic membrane surface than expected from 

computer-based predictions of the Arg/Lys frequency (Juretic et al., 2002). It is 

likely that topogenic basic clusters act through electrostatic interactions with 

negative charges of lipids or proteins (or both). Anionic phospholipids have been 

shown to interact electrostatically with lysine and arginine residues of membrane 

proteins in prokaryotes, thus stabilizing protein topology (van Klompenburg et al., 

1997; Gallusser & Kuhn, 1990; Bogdanov et al., 2002). A potential role for 

phospholipids in conformational stabilization of GlyR subunits is also supported by 

early findings, showing that successful solubilization of the GlyR but not of the 

nicotinic acetylcholine receptor critically depends on the presence of exogenous 
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phospholipids (Pfeiffer & Betz 1981). Whether the topogenic basic cluster identified 

here contributes to phospholipid stabilization of GlyR structure by ensuring its 

proper topology remains to be determined. 
 

 

 

4.6 Incomplete assembly of α7 subunits in Xenopus oocytes 
 

Although many non-neuron-derived cells fail to express functional nAChRs at the 

cell surface when transiently transfected with α7 subunits, Xenopus oocytes were 

always considered as an established exception of this rule. Accordingly, oocytes 

served frequently in the analysis of electrophysiological and pharmacological 

properties of the homomeric α7 nAChR. In contrast, the data presented here clearly 

demonstrates that only a minor fraction of intracellular α7 subunits assemble 

properly to homopentamers in Xenopus oocytes. Blue native PAGE analysis and 

deglycosylation experiments with Endo H and PNGase F revealed that a large 

portion of α7 subunits exists as homotetramers and aggregates which remain trapped 

in the ER in the high-mannose form. Only a limited fraction of the totally 

synthesized α7 subunits polymerizes properly to homopentamers and acquires 

complex-type carbohydrates in the Golgi apparatus en route to the plasma 

membrane. Incomplete homopolymerization in Xenopus oocytes is neither found 

with homooligomeric 5HT3A subunits (presented here) nor GlyRα1 subunits 

(Griffon et al., 1999; Büttner et al., 2001; Sadtler et al., 2003). Since the small 

amount of 5HT3A homotrimers that was observable directly after the 

[35S]methionine pulse disappeared completely during a subsequent chase period 

(data not shown), a trimeric architecture can be considered as transient assembly 

state of homopentameric 5HT3ARs. In contrast, the relative amounts of α7 tetramers 

and aggregates persisted during the chase interval, suggesting that a significant 

percentage of the α7 subunits was permanently misfolded and misassembled. 
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4.7 N-Glycan status of α7 nAChRs in Xenopus oocytes 
 

Deglycosylation experiments with Endo H and PNGase F revealed that the small 

fraction of homopentameric α7 nAChRs that reached the cell surface harbors 

exclusively Endo H resistant, complex-type carbohydrates. This result was 

unexpected, since previous studies always showed α7 subunits to carry solely high-

mannose type carbohydrates, irrespective of whether they were isolated from native 

tissue, i.e., brain, or from host cells such as Xenopus oocytes or COS cells (Chen et 

al., 1998). Most likely, the detection of complex-type carbohydrates requires the 

selective visualization of the plasma membrane-bound α7 nAChR by surface 

radioiodination. Since complex-glycosylated α7 subunits at the cell surface 

constitute only a minor fraction of the total α7 subunit pool, it may be impossible to 

detect this fraction in lysates of metabolically labeled oocytes. Hence, it is likely that 

small amounts of complex-glycosylated α7 subunits remained undetected in 

previous studies, in which the plasma membrane-bound nAChRs were not 

selectively labeled. 

 

 

 

4.8 Incompletely assembled α7 nAChRs are retained by the 

quality control system in Xenopus oocytes 
 

The mechanisms that account for the low abundance of functional homopentameric 

α7 nAChRs at the cell surface of transiently transfected cells are cell type specific. 

While tsA201 cells of a human kidney epithelial cell line route α7 subunits properly, 

but in a non-functional form to the cell surface (Rakhilin et al., 1999), COS cells 

produce properly folded and assembled α7 nAChRs, which remain located in an 

intracellular pool because they lack trafficking motifs needed for distribution to the 

plasma membrane (Dineley & Patrick, 2000). The data presented here suggests that 

large parts of newly synthesized α7 subunits do not assemble properly in Xenopus 

oocytes and are retained in the ER by the ER quality control system (Hurtley & 

Helenius 1989). A similar mechanism appears to be responsible for the low surface 

expression of functional α7 nAChRs in HEK293 and fibroblast QT6 cells.          
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Like Xenopus oocytes, these cells produce the α7 protein, but largely fail to 

assemble it properly (Kassner & Berg, 1997). The need for structural subunits such 

as homologous subunits, splice variants or folding isomers as well as the absence of 

specific helper proteins could explain the limited capacity of α7 subunits to 

polymerize. One such helper protein, RIC-3, has recently been identified to be 

involved in functional maturation of nAChRs in Caenorhabditis elegans (Halevi et 

al., 2002). 

In summary, the data presented here show that Xenopus oocytes efficiently 

synthesize nicotinic α7 subunits, but do not have the capacity to guide the 

polymerization of α7 subunits with the same efficiency as other LGIC subunits. 

Thus, the limited number of functional α7 nAChRs observed at the cell surface can 

be assigned to inefficient pentameric assembly rather than on inefficient routing of 

fully assembled α7 receptors. Efficient α7 nAChR formation in Xenopus oocytes 

apparently needs co-assembly with other nAChR subunit isoforms such as β2 

(Khiroug et al., 2002) and β3 subunits (Jones et al., 1999) or support from cell type-

specific chaperones that guide the assembly process. 

 

 

 

4.9 Tetrameric versus trimeric organization of P2X Receptors 
 

Although evidence for a trimeric assembly of P2X receptors is accumulating, the 

architecture of this LGIC class is still under debate. (Kim et al., 1997) demonstrated 

that refolding of the bacterially expressed extracellular domain of the P2X2 subunit 

results in the formation of stable tetramers. However, an important cave to these 

experiments is that multimerization of full length P2X2 subunits is determined by the 

second transmembrane domain, and not by the extracellular loop (Torres et al., 

1999). Further support to the tetramer hypothesis was lent by kinetic data. The 

inactivation rate of the P2X2 receptor in excised patches has been shown to increase 

with a Hill coefficient of 4, suggesting that the functional channel has at least four 

Ca2+ binding sites (North, R.A., 2002). However, as mentioned by the author, these 

data can also be reconciled with other stoichiometries if multiple Ca2+ binding sites 

are present per subunit. 
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In contrast, the results presented here clearly argue against a tetrameric 

organization and support the trimer hypothesis. All P2X subtypes that form 

functional homomeric receptors in Xenopus oocytes showed a trimeric aritechture 

when isolated and analysed under non-denaturating conditions. Tetrameric 

assemblies were only observed upon expression of P2X6 subunits, which are known 

for their incapability to form as functional homomeric receptors in Xenopus oocytes 

(North, R.A., 2002). Their complete absence at the cell surface and their sensitivity 

to Endo H indicates that both P2X6 aggregates and tetramers are recognized and 

permanently retained by the ER quality control system as incorrectly assembled 

proteins. This lends indirect support to the view that tetramers are not a functional 

oligomeric state of P2X receptors. In addition to the results presented here all other 

functional studies reported so far are in essence consistent with a trimeric channel. 

Experiments conducted before P2X receptors were cloned suggested that ATP-gated 

ion channels must bind ATP to each of three identical, non-interacting binding sites 

to open the channel. (Bean, B.P., 1992). Later single channel studies with 

recombinant rP2X2 receptors supported this view by determining a Hill coefficient 

of 2.3 for the opening probability in response to ATP (Ding & Sachs 1999). Also 

when low agonist concentrations were used to minimize the contribution of 

cooperative interactions of subunits, initial slopes of 2.5 and 2.7 were derived for 

homooligomeric rP2X2 and rP2X3 receptors, consistent with three identical, 

independent binding sites (Jiang et al., 2003). Although these results cannot exclude 

the existence of more than three ATP binding sites, the data fit best with a model in 

which the channel proceeds through three ATP binding steps before opening. 

Also experiments with concatenated P2X subunit cDNAs argue for a trimeric 

subunit organisation. Contiguous copies of the rP2X2 subunit carrying a functional 

reporter mutation could not be inhibited by a cysteine-reactive compound if the 

reporter mutation was introduced into the fourth copy, indicating that not four but 

maximally three subunits actively participate in channel formation (Stoop et al., 1999). 

In a more biochemically oriented study with concatamers of up to six rP2X1 

subunits in series, significant problems were encountered in the interpretation of the 

electrophysiological data arising from the production of minute levels of lower order 

by-products such as monomers and dimers (Nicke et al., 2003). These by-products 

combined to functional multimers equal in mass to the homotrimeric rP2X1 receptor 

assembled from rP2X1 monomers. Because multimers consisting of more than three 
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rP2X1 monomers were not observed to appear in the plasma membrane, these results 

provide additional support for a trimeric architecture of rP2X1 receptors. 

The assessment of the oligomeric organization of rP2X2 receptors was 

unexpectedly complicated by an undefined intracellular assembly state that was not 

observed with any other P2X receptor. Since blue native PAGE analyses of radio-

iodinated oocytes and cross-linking experiments revealed that all plasma membrane-

bound rP2X2 receptors exist in a defined assembly state of homotrimers or multiples 

thereof, it is likely that the amorphous mass observed with metabolically labelled 

oocytes consists predominantly of those multiples of rP2X2-homotrimers. This view 

is supported by the finding that a large majority of rP2X2 subunits were insensitive 

to Endo H, indicating that they were not retained in the ER by the quality control 

system. Interestingly, hP2X2 subunits do not show a similar amorphous migration on 

blue native PAGE gels, but migrate in their intracellular form solely as homotrimers. 

As sequence variability between human and rat P2X2 subunits is almost confined to 

the C-terminal cytoplasmic domain, this observation points to a role of the long C-

terminal tail for the unusual migration of rP2X2 receptors.  

Similar (heteromeric) P2X subunits also formed trimers, as shown for co-

expressed P2X1 and P2X2 subunits, which assembled efficiently to a P2X1+2 receptor 

that was exported to the plasma membrane. It has recently been suggested that a 

trimeric P2X2+3 receptor would have the composition P2X2(P2X3)2 (Jiang et al., 

2003). For the heterotrimeric P2X1+2 receptor, SDS-PAGE gels indicate that 

significantly more radioactivity corresponds to the co-isolated non-tagged P2X2 

subunits than to His-P2X1 subunits. Assuming that both subunits become labelled by 

[125I]sulfo-SHPP with similar efficiency, this observation favours the view that the 

trimeric P2X1+2 receptor incorporates one P2X1 subunit and two P2X2 subunits. 

Surprisingly, the assembly of P2X1 and P2X2 subunits to heteromeric P2X1+2 

receptors seems to be favoured over an assembly of P2X1 subunits to a homomeric 

P2X1 receptor. Since P2X1 and P2X2 subunits co-exist in a variety of tissues (Brown 

et al., 2002) the efficient formation of heteromeric P2X1+2 receptors raises the 

intriguing possibility that ATP-gated currents attributed to homotrimeric P2X1 

receptors may at least in some native tissues be mediated by P2X1+2 heterotrimers. 
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4.10 Higher order interactions of plasma membrane-bound 

homotrimeric rP2X2 receptors: a possible structural basis of 

coupled gating 
 

The existence as multiples of homotrimers at the plasma membrane was unique to 

the rP2X2 receptor in the experiments presented here. In previous studies a 

propensity to form hexamers has been demonstrated for rP2X1 and rP2X3 subunits if 

n-octylglucoside was used instead of digitonin as detergent for receptor 

solubilization (Nicke et al., 1998). Accordingly, the clusters of homotrimeric rP2X2 

receptors may be considered to form as artefacts similar to the rP2X1 hexamers 

produced by n-octylglucoside in our previous study. An intriguing alternative 

possibility, however, comes from a kinetic study showing that multiple rP2X2 

receptors in a patch do not open and close independent of each other as expected for 

individual receptors, but are functionally coupled and partially synchronized (Ding 

& Sachs, 2002). Cooperative effects resulting from homomeric channel interactions 

have been demonstrated for a variety of ion channels including nAChRs (Keleshian 

et al., 2000; Schindler et al., 1984), K+ channels (Tytgat & Hess, 1992), and Ca2+ 

release channels on the sarcoplasmic reticulum membrane (Marx et al., 2001). Thus, 

the physical association between rP2X2 homotrimers observed here could well 

represent the structural basis for the coupled gating behavior, leading to a 

synchronized opening of neighboring rP2X2 receptors. 
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5.  Deutsche Zusammenfassung 

 
5.1 Der Internalisierung und Proteolyse des GlyRs geht eine 

Ubiquitinierung an der Zelloberfläche voraus4 
 

Der inhibitorische Glycin-Rezeptor (GlyR) gehört zur Superfamilie der pentameren 

Ligand-gesteuerten Ionenkanäle (LGIC), zu der auch der nikotinische Acetylcholin-

Rezeptor (nAChR), die γ-Aminobuttersäure-Rezeptoren (GABAAR und GABACR) 

und der 5-Hydroxytryptamin-Rezeptor-Typ-3 (5HT3R) gerechnet werden. Als 

postsynaptischer Chloridkanal vermittelt der GlyR in Säugetieren die schnelle 

Reizweiterleitung an inhibitorischen Synapsen des Zentralnervensystems und des 

Rückenmarks. In Vertebraten konnten vier verschiedene α-Untereinheiten (α1-α4), 

die an der Ligandbindung beteiligt sind und eine strukturgebende β-Untereinheit 

identifiziert werden, die sowohl zu αβ-Heteropentameren als auch zu funktionellen 

α-Homopentameren assemblieren. Die vier verschiedenen α-Untereinheiten und die 

ß-Untereinheit haben einen ähnlichen strukturellen Aufbau (vgl. Fig. 1).  

Der 200 Aminosäuren zählende N-Terminus umfasst ein Signalpeptid, das 

die wachsende Peptidkette in das Endoplasmatische Retikulum dirigiert, sowie eine 

15 Aminosäuren große Cysteinschleife. Im Endoplasmatischen Retikulum findet bei 

α1-, α3- und α4-Untereinheiten eine N-Glykosylierung an einem, im Falle der α2- 

und β-Untereinheit an zwei Glykosylierungsmotiven statt. An den N-Terminus 

schließen sich vier Transmembrandomänen, M1 bis M4 an. Während M1 und M2 

sowie M2 und M3 durch eine lediglich kurze hydrophile Sequenz getrennt sind, 

befindet sich zwischen M3 und M4 eine ca. 83 Aminosäuren zählende, große 

cytoplasmatische Domäne, die Gegenstand eines Großteils meiner Untersuchungen 

war und die im Folgenden als „M3-M4-Schleife“ bezeichnet wird.  

Die postsynaptische Dichte Liganden-gesteuerter Ionenkanäle hat einen 

entscheidenden Einfluss auf die Effizienz der synaptischen Reizweiterleitung. Für 

nAChRs beispielsweise konnten multiple Mechanismen aufgezeigt werden, die die 

                                                 
4Büttner, C., Sadtler, S., Leyendecker, A., Laube, B., Griffon, N., Betz, H., Schmalzing, G. (2001) 
Ubiquitination precedes internalization and proteolytic cleavage of plasma membrane-bound glycine 
receptors. J Biol Chem. 276, 42978-42985. 
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synaptische Verteilung und Dichte der Rezeptoren in der Plasmamembran steuern. 

Vor diesem Hintergrund wurden die Internalisierung- und Degradations-

mechanismen homopentamerer α1-GlyRs näher untersucht. 

Die Ergebnisse dieser Studie sowie weiterführende, bisher unveröffentlichter 

Experimente zeigen, dass die α1-Untereinheit des GlyRs in ihrer cytoplasmatischen 

Schleife zwischen M3 und M4 (mindestens) zwei verschiedene Internalisierungs- 

und/oder Degradationsmotive besitzt. Hierbei handelt es sich um zehn Lysinreste, 

die als Konjugationspunkte für (vermutlich) einzelne Ubiquitinmoleküle dienen, 

sowie ein als Teil eines Internalisierungsmotives fungierendes Tyrosin in Position 

339. Beide Motive sind imstande, den Verlust des jeweils anderen vollständig zu 

kompensieren. Nach der Ubiquitinierung des GlyRs an der Plasmamembran erfolgt 

dessen Internalisierung in endosomale Kompartimente und von dort eine Weiter-

leitung in die Lysosomen, in denen α1-Untereinheiten in zwei Fragmente von 35 und 

13 kDa gespalten werden. Das Proteasom-System scheint an dieser Spaltung nicht 

beteiligt zu sein. Nachdem inzwischen auch für den AMPA-Rezeptor eine für dessen 

Internalisierung kritische Ubiquitinierung an Synapsen gezeigt werden konnte 

(Burbea et al., 2002), könnte Ubiquitinierung einen generellen Internalisierungs-

mechanismus für Ligand-gesteuerte Ionenkanäle darstellen. 

 

 

 

5.2 Ein basisches Aminosäure-Cluster bestimmt die Topologie der 

cytoplasmatischen M3-M4-Schleife des α1-GlyRs5 
 

Nach dem klassischen Modell der Topogenese von Membranproteinen wird die 

Gesamt-Topologie eines Proteins von der Orientierung der Signalsequenz bestimmt, 

die die Einschleusung der Polypeptidkette über die ER-Membran initiiert. Die weiter 

C-terminal gelegenen hydrophoben Domänen dienen ausschließlich als Stop-

Transfer und Ankersequenzen, welche die wachsende Polypeptidkette dazu 

veranlassen, passiv dem vorangehenden Transmembransegment zu folgen, so dass 

auf diese Weise die typische Zick-Zack-Faltung polytoper Membraneproteine entsteht. 

                                                 
5Sadtler, S., Laube, B., Lashub, A., Nicke, A., Betz, H., Schmalzing G. (2003) A basic cluster 
determines topology of the cytoplasmic M3-M4 loop of the glycine receptor α1 subunit. J Biol Chem. 
278, 16782-16790. 
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Obwohl die Topologie vieler Proteine dem klassischen Modell folgt, gibt es 

zunehmend Hinweise, dass die korrekte Topologie von die Membran mehrfach 

durchspannenden Proteinen nicht allein von der Orientierung der ersten 

Transmembrandomäne, sondern auch von verschiedenen, weiter C-terminal 

gelegenen topogenen Informationen abhängt.  

Die hier beschriebene Studie belegt, daß eine Ansammlung sechs basischer 

Aminosäuren, RFRRKRR, unmittelbar C-terminal der dritten Transmembran-

domäne gelegen, entscheidenden Einfluss auf die Topologie der GlyR-α1-

Untereinheit hat. Der Austausch einer oder mehrerer basischer Aminosäuren dieses 

Clusters gegen ungeladene Aminosäuren, nicht aber der Austausch anderer 

basischer Aminosäuren der M3-M4-Schleife, führte zu einer anormalen Faltung der 

M3-M4-Schleife in das ER-Lumen. Um zu untersuchen, ob die Netto-Ladung für 

die falsche Ausrichtung der dritten Transmembrandomäne verantwortlich war, 

wurden in einer Mutante mit zwei neutralisierten basischen Aminosäuren drei dem 

basischen Cluster benachbart gelegene, negativ geladene Aminosäuren durch 

Alanine ersetzt. Auch wenn ein leichter Rückgang der Menge an inkorrekt gefalteten 

α1-Untereinheiten beobachtet werden konnte, lagen immer noch knapp 50% des 

Proteins mit einer ins ER-Lumen gerichteten M3-M4-Schleife vor. Die 

Falschfaltung konnte jedoch verhindert werden, wenn neben in einer Mutante mit 

zwei neutralisierten basischen Aminosäuren gleichzeitig zwei der drei basischen 

Aminosäuren der zwischen M2 und M3 liegenden Ectodomäne neutralisiert wurden.  

Diese Ergebnisse zeigen, dass das basische Cluster C-terminal von M3 ein 

kritisches topogenes Motiv für die GlyR-α1-Untereinheit darstellt. Die inkorrekte 

Faltung der cytoplasmatischen M3-M4-Schleife bei den erstellten α1-Mutanten lässt 

sich nicht durch das klassische Topogenese-Modell erklären. Nach der „positiv-

inside“ Regel wäre bei Substitution einer der basischen Aminosäuren des Clusters 

immer noch ein deutlicher Überschuss von vier positiven Aminosäuren auf der C-

terminalen Seite von M3 zu verbuchen. Die erhebliche Ladungsdifferenz sollte 

somit für die korrekte Nexo-Ccyt-Orientierung von M3 ausreichen. Vermutlich stellt 

das basische Cluster ein für die korrekte Topogenese notwendiges Gegenstück zu 

den zwei positiv-geladenen Aminosäuren N-terminal von M3 dar, welche ansonsten 

eine zuverlässige Inkorporation von M3 in die Membran verhindern würden.  
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5.3 Der Assemblierungsvorgang der nikotinischen α7 Untereinheit 

in Xenopus-Oozyten ist auf der Tetramer-Ebene partiell 

blockiert6 
 

Eines der am intensivsten studierten Mitglieder der Cys-loop-Superfamilie Ligand-

gesteuerter Ionenkanäle ist der Kationen-selektive nAChR. Wie GlyRs weisen 

nAChRs eine pentamere Struktur auf. Der am besten charakterisierte nAChR 

befindet sich an der neuromuskulären Endplatte, setzt sich aus vier homologen 

Genprodukten zusammen und besitzt die Stöchiometrie (α1)2β1γδ (fetal) bzw. 

(α12)β1εδ (erwachsen). Insgesamt sind bei Säugern neun Gene, die α-

Untereinheiten kodieren (α1-α7, α9 und α10) und vier Gene, die β-Untereinheiten 

kodieren (β1-β4) bekannt. 

Obwohl die meisten nicht-neuronalen Zelllinien Schwierigkeiten haben, α7-

Untereinheiten nach einer transienten Transfektion zu funktionellen 

homopentameren nAChRs zu assemblieren, galten Xenopus-Oozyten als etablierte 

Ausnahme. Verschiedene Veröffentlichungen beschreiben, dass Xenopus-Oozyten 

nach einer Expression von α7- und α9-Untereinheiten funktionelle homopentamere 

Rezeptoren ausbilden. Die Ergebnisse der hier vorgestellten Studie zeigen jedoch, 

dass nur ein geringer Teil der in Xenopus-Oozyten exprimierten α7-Untereinheiten 

zu funktionellen homopentameren Rezeptoren assembliert. Der weitaus größte Teil 

an α7-Untereinheiten assembliert unvollständig zu Tetrameren oder bildet 

hochmolekulare Aggregate, die nicht imstande sind, das ER zu verlassen. 

Vermutlich ist die limitierte Assemblierungskapazität in Xenopus-Oozyten auf das 

Fehlen von spezifischen Helferproteinen oder aber auf die Unfähigkeit, strukturell 

notwendige Faltungsisomere zu bilden, zurückzuführen. Die Ergebnisse von 

Deglykosylierungs-Experimenten lassen zudem auf eine Zurückhaltung 

unvollständig assemblierter α7-Untereinheiten im ER durch das ER-

Qualitätskontrollsystem schließen. Da eine große Zahl der unvollständig 

assemblierten α7-Untereinheiten in Form von Tetrameren vorlag, scheint vor allem 

der Einbau einer fünften α7-Untereinheit zum entstehenden Rezeptorkomplex in 

Oozyten ein Problem darzustellen. 

                                                 
6Nicke, A., Thurau, H., Sadtler, S., Rettinger, J., Schmalzing, G. (2004) Assembly of nicotinic α7 
subunits in Xenopus oocytes is partially blocked at the tetramer level. FEBS Lett. 2004 Sep 24;575(1-
3):52-8. 
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5.4 Homomere P2X2- und heteromere P2X1+2-Rezeptoren weisen 

eine trimere Architektur auf7 
 

Auf der Basis ihrer Aminosäuresequenz und Faltung durch die Plasmamembran 

werden LGICs in drei große Gruppen eingeteilt: Die zuvor beschriebene nAChR-

Superfamilie (Klasse I), die Kationen-selektive Glutamatrezeptor-Familie, zu der 

AMPA-, NMDA- und Kainatrezeptoren gerechnet werden (Klasse II) und die 

Familie ATP-gesteuerter P2X-Rezeptoren (Klasse III). Während die Architektur der 

Klasse I und II LGICs aufgeklärt zu sein scheint, wurde die der Klasse III LGICs zu 

Beginn meiner Dissertation noch kontrovers diskutiert. Obwohl oberflächliche 

Ähnlichkeiten mit K+-Kanälen eher für eine tetramere Organisation von P2X-

Rezeptoren sprachen, belegten biochemischen Ergebnisse der eignen Arbeitsgruppe 

eindeutig eine trimere Architektur für homomere P2X1- und P2X3-Rezeptoren.  

Vor diesem Hintergrund wurde das Assemblierungsverhalten verschiedener 

P2X-Rezeptoren sorgfältig mit verschiedenen biochemischen Methoden re-evaluiert. 

Im Fokus der Untersuchungen standen der homomere P2X2- sowie der heteromere 

P2X1+2-Rezeptor. Auch das Assemblierungsverhalten von P2X6-Untereinheiten, die 

bekanntermaßen nicht im Stande sind, in Xenopus-Oozyten funktionelle Rezeptoren 

zu bilden, wurde untersucht. Alle in der hier vorgestellten Studie gewonnenen 

Ergebnisse untermauern die Vorstellung, dass P2X-Rezeptoren an der 

Zelloberfläche aus drei nicht-kovalent gebundenen Untereinheiten bestehen. Sowohl 

für die schnell desensibilisierenden rP2X1- und rP2X3-Rezeptoren, als auch für die 

langsam desensibilisierenden rP2X2-, rP2X4- und rP2X5-Rezeptoren wurden trimere 

Assemblierungszustände an der Zelloberfläche beobachtet.  

Ein außergewöhnliches Assemblierungsverhalten konnte bei metabolischer 

Markierung für rP2X2-Untereinheiten beobachtet werden. Im Gegensatz zu allen 

anderen untersuchten P2X-Rezeptoren lagen diese intrazellulär nur zu einem 

geringen Prozentsatz als Trimere vor. Der weitaus größte Teil assemblierte zu 

hochmolekulare Aggregaten. Deglykosylierungsexperimente  zeigten jedoch, dass 

die Bildung dieser hochmolekularen Aggregate nicht an eine Zurückhaltung im ER 

gekoppelt war. Ca. 70% der metabolisch markierten rP2X2-Untereinheiten hatten 

nach einem verlängerten Chase-Intervall das ER verlassen. Interessanterweise zeigte 
                                                 
7Aschrafi, A., Sadtler, S., Niculescu, C., Rettinger, J., Schmalzing, G. (2004) Trimeric Architecture 
of Homomeric P2X2 and Heteromeric P2X1+2 Receptor Subtypes. J Mol Biol. 2004 Sep 3;342(1):333-
43. 
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das humane Ortholog kein solches Verhalten. Unter identischen 

Versuchsbedingungen konnten beim hP2X2-Rezeptor ausschließlich perfekt 

assemblierte Homotrimere beobachtet werden. Da der rP2X2-Rezeptor an der 

Plasmamembran ausschließlich als Homotrimer vorlag, bleibt als einzige Erklärung, 

dass rP2X2-Rezeptoren auch im ER Homotrimere sind, diese Struktur jedoch 

aufgrund zusätzlicher (unbekannter) Protein-Protein-Interaktionen bei der blauen 

nativen PAGE-Analyse maskiert ist. 

hP2X6-Untereinheiten wurden intrazellulär, erwartungsgemäß jedoch nicht 

an der Zelloberfläche nachgewiesen. Im blauen nativen PAGE-Gel wanderten       

sie in Form von hochmolekularen Aggregaten sowie als Tetramere. 

Deglykosylierungsexperimente zeigten, dass die isolierten hP2X6-Untereinheiten 

selbst nach einem verlängerten Chase-Intervall vollständig Endo H sensibel waren. 

Diese Ergebnisse sprechen dafür, dass tetramere P2X6-Komplexe und P2X6-

Aggregate vom ER-Qualitätskontrollsystem als inkorrekt assemblierte Protein 

erkannt und im ER zurückgehalten werden.  
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