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Zusammenfassung:

In der vorliegenden Arbeit wurde die Elektronenstrahlionenfalle (electron beam

ion trap, EBIT) des Heidelberger Max-Planck-Instituts für Kernphysik dazu be-

nutzt, hochgeladene Argonionen zu erzeugen und zu speichern. Relativistische

Effekte in Vielelektronensystemen wurden mithilfe der verbotener magnetischen

Dipolübergänge (M1) untersucht. Die Bestimmung der quantenelektrodynamischen

(QED) Beiträge zur Übergangsenergie ist nach wie vor eine anspruchsvolle Prob-

lemstellung. Ein interessanter Beitrag ist der sogenannte Isotopeneffekt, der von

endlicher Kernmasse und dem Kernvolumen verschiedener Isotope herrührt. Der

durch die endliche Kernmasse entstehende Effekt (Rückstoß-Effekt) kann in den nor-

malen Massen-Effekt (normal mass shift, NMS), welcher durch die reduzierte Masse

beschrieben werden kann, und den spezifischen Massen-Effekt (specific mass shift,

SMS), auch Massen-Polarisation genannt, unterteilt werden. Die Beiträge, die durch

Elektronen-Korrelation und QED entstehen, sind unabhängig vom Isotop. Daher

ermöglicht der direkte Vergleich der Übergangsenergien für zwei verschiedene Iso-

tope, die durch Volumen- und Massenkorrekturen entstehenden Unterschiede trotz

ihrer sehr kleinen Beiträge äußerst präzise zu bestimmen. Erst vor kurzer Zeit

wurden relativistische Beiträge in der Berechnung in der Isotopeneffekte berück-

sichtigt [TSC03], welche überraschenderweise von ähnlicher GröSSenordnung wie

die nichtrelativistischen Beiträge sind. Dies und die experimentelle Präzision, die in

der Bestimmung der Energieen von Übergängen im sichtbaren Bereich in Vier- und

Fünfelektronensystemen erreicht wurde [DCD03] motivierten uns dazu, zum ersten

mal den relativistischen RückstoSS-Effekt in hochgeladenen Ionen (highly charged

ions, HCI) zu vermessen.

Kapitel 1

Dieses Kapitel gibt einen Überblick über die theoretischen Methoden, die zur Berech-

nung der energetischen Zustände in Ein- und Vielelektronensystemen benutzt wer-

den, insbesondere über jene, die auf die Übergänge, die in dieser Arbeit unter-

sucht wurden, anwendbar sind. Der Ausgangspunkt ist die relativistische Dirac

Theorie, die den Elektronenspin sowie die Aufspaltung zwischen den Zuständen
2P1/2 und 2P3/2, welche im Spektrum des Wasserstoffatoms auftritt, beschreibt. Es

folgt die Erklärung der Wechselwirkung zwischen dem gebundenen Elektron und

dem quantisierten elektromagnetischen Strahlungsfeld (QED oder Strahlungskor-

rekturen), durch welche die Entartung der Zustände 2P1/2 und 2S1/2 aufgehoben

wird.



Die Schrödinger- und Diracgleichungen können ausschliesslich für das Wasserstoff-

atom sowie wasserstoffartige Ionen analytisch gelöst werden. Im Falle von Atomen

oder Ionen mit zwei oder mehr Elektronen ist dies nicht möglich, da die Coulomb-

Wechselwirkung zwischen den Elektronen im Hamilton-Operator nur als Störung

berücksichtigt werden kann. Die mathematischen Schwierigkeiten, die bei der

genauen Beschreibung von Vielelektronensystemen unter Berücksichtigung relativis-

tischer Effekte bestehen, werden aufgezeigt. Die hier beschriebenen Methoden, die

zur Berechnung relativistischer Vielelektronensysteme und deren Zustandsenergien

genutzt werden, können in zwei Klassen aufgeteilt werden [Kim97]. In der einen

Klasse wird relativistischen Effekten zum Teil in der Evaluation der Wellenfunk-

tionen Rechnung getragen. Diese basieren auf einer Verallgemeinerung der Dirac

Gleichung eines Elektrons in einem Zentralfeld auf den Viel-Elektronen Fall, wie

es z.B. in der relativistischen Hartee-Fock Methode gemacht wird. Auch die 1/Z-

Reihenentwicklung, in der Wasserstoff-Wellenfunktionen benutzt werden, wird dieser

Kategorie zugewiesen. Die andere Klasse beinhaltet alle Ansätze, die auf nichtrela-

tivistischen Wellenfunktionen aufbauen, und die relativistische Effekte über Störung-

sterme im Hamilton-Operator berücksichtigen.

Im nächsten Abschnitt wird eine Beschreibung strahlender Übergänge und ihrer

Auswahlregeln gegeben. Diese Regeln unterteilen die Übergänge in erlaubte und

verbotene Übergänge. Dabei wird gezeigt, daßdie Raten der verbotenen magnetis-

chen Dipolübergänge (M1) eine stärkere Abhängigkeit von der Kernladungszahl Z

aufweisen (≈ Z10) als die Raten der erlaubten elektrischen Dipolübergänge (≈ Z4).

Da die Ionen in dem in dieser Arbeit beschriebenen Experiment im starken Mag-

netfeld der EBIT gespeichert werden, müssen die Auswirkungen des externen Feldes,

das zum sogenannten Zeeman-Effekt führt, berücksichtigt werden. Der Einfluß

des Magnetfeldes auf die Ionen wird im nächste Abschnitt erläutert. Über eine

Beschreibung dieses Effekts durch die LS-Kopplungsnäherung wird gezeigt, daß

Emissionseigenschaften wie die Polarisation der ausgesandten Strahlung von den

Auswahlregeln und dem Winkel zur Quantisierungsachse, unter dem die Strahlung

detektiert wird, abhängen.

Am Ende des Kapitels wird auf die Wechselwirkungen eingegangen, die zu

Isotopeneffekten führen, wobei besonderes Augenmerk auf die Auswirkungen der

endlichen Kernmasse und des Kernvolumens gelegt werden. Zunächst werden die

massenabhängigen Beiträge in den normalen Masseneffekt (NMS) und den spezifis-

chen Masseneffekt (SMS) unterteilt. Dabei wird gezeigt, daß bei Einelektronensys-

temen die NMS Korrektur der Zustandsenergie durch das Ersetzen der Elektronen-

masse durch die reduzierte Masse des Systems beschrieben wird. Bei Vielelektronen-

systemen muß die Elektronen-Korrelation berücksichtigt werden. Die theoretische



Methode, welche zur Berechnung der verschiedenen relativistischen Beiträge zum

Masseneffekt (RNMS und RSMS) genutzt wird, wird erläutert. Der volumenab-

hängige Anteil des Isotopeneffekts hängt von der radialen Ladungsverteilung im

genutzten Kernmodell ab und ist ausschließlich für schwere Ionen von Bedeutung.

Kapitel 2

Relativistische und QED Effekte treten verstärkt in Ionen mit hoher Kern-

ladungszahl Z auf; die wesentliche Schwierigkeit bei der experimentellen Unter-

suchung dieser Effekte besteht darin, genügend HCI für ein Experiment bereitstellen

zu können. In diesem Kapitel wird detailliert auf die EBIT, mit der in dieser Arbeit

die HCI erzeugt und gespeichert wurden, eingegangen, und ein Vergleich mit Spe-

icherringen und Tokamaks gezogen. Aufgrund ihrer vergleichsweise geringen Kom-

plexität, Größe und Betriebskosten, ist die EBIT mittlerweile eines der wichtigsten

Geräte zur Untersuchung hochgeladener Ionen.

Die Beschreibungen in den nachfolgenden Abschnitten widmen sich den ver-

schiedenen Teilen der EBIT: der Elektronenkanone, den Fallenelektroden, dem Mag-

neten sowie dem Elektronenkollektor. Dabei wird erläutert wie hochgeladene Ionen

mit einer EBIT erzeugt und gespeichert werden, und wie sie in der Falle unter-

sucht oder für externe Anwendungen extrahiert werden können. Einige wesentlichen

Eigenschaften der Heidelberger EBIT werden im Vergleich mit anderen EBITs her-

vorgehoben.

Es folgt eine kurze Beschreibung der Elektronenstrahleigenschaften, nämlich

des Elektronenstrahlradius sowie der radialen und axialen Raumladung, die durch

seine Ladungsdichte erzeugt wird. Es wird gezeigt, daß diese Eigenschaften

eine wesentliche Rolle bei der Bestimmung der Linienbreiten der von den gespe-

icherten Ionen ausgesandten Strahlung spielt. Die Temperatur der Ionen führt

zur Dopplerverbreiterung der zu beobachtenden Linien. Im Allgemeinen verdeckt

diese Verbreiterung (in Kombination mit der begrenzten Auflösung des genutzten

Spektrometers) die natürliche Linienbreite vollständig. Nach einer Beschreibung der

Heiz- und Kühlmechanismen, die auf die gespeicherten Ionen wirken wird gezeigt,

wie die Temperatur der Ionen in unserem Experiment durch evaporatives Kühlen

und Absenkung des axialen Fallenpotentials von 30 eV auf 6 eV reduziert wer-

den konnte. Aufgrund der niedrigen Ionentemperatur und der damit einhergehen-

den kleineren Dopplerverbreiterung, konnte die Zeeman-Aufspaltung der emittierten

Linien aufgelöst werden.



Kapitel 3

Aufgrund der kleinen Zahl gespeicherter Ionen, wird für spektroskopische Unter-

suchungen an einer EBIT empfindliche Messtechnik benötigt. In diesem Kapitel

wird eine detaillierte Beschreibung des optischen Aufbaus und des Spektrometers,

das im vorgestellten Experiment genutzt wurde, gegeben.

Der optische Aufbau besteht aus einem Spektrometer, das über verschiedene

Linsen und Spiegel an die EBIT gekoppelt wird (Abb. 1). Die ersten beiden Linsen

(L1 und L2) sind innerhalb des Vakuums der EBIT angebracht, um eine Abbildung

der gespeicherten Ionen ausserhalb der EBIT zu erhalten. Da die Ionenwolke in

der EBIT horizontal liegt, wird eine Optik bestehend aus drei Spiegeln (M1, M2

und M3) sowie zwei Linsen (L3 und L4) dazu genutzt ihr Bild zu drehen und auf

den vertikal ausgerichteten Eingangsspalt des Spektrometers zu fokussieren. Dieser

Aufbau ist fest auf demselben Tisch wie das Spektrometer montiert um jegliche

relativen Verschiebungen zu unterdrücken. Das hier eingesetzte Czerny-Turner

Spektrometer (CT) ist mit einer kryogenisch gekühlten CCD (charge coupled

device) Kamera ausgestattet.

Unterdruckkammer
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SK

CCD Kamera

SF

Drehgitter
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Polarisator

Figure 1: Skizze des in dieser Arbeit benutzten experimentellen Aufbaus. Zwei Quartzlinsen (L1,
L2) sind innerhalb der EBIT Vakuumkammer angebracht. Ausserhalb der EBIT wird das Licht
der Ionen durch eine Optik mit den Spiegeln M1, M2 und M3 sowie den Linsen L3 und L4 in das
Czerny-Turner Spektrometer geführt.

Die exakte Ausrichtung der Optik und des Spektrometers an das EBIT Vakuum-

fenster wurde mithilfe eines Helium-Neon Lasers sichergestellt. Das Spektrometer



wurde nach seiner lateralen und axialen Ausrichtung fixiert, und es wird lediglich eine

Linse dazu genutzt, das Bild der Ionenwolke auf die CCD Kamera zu fokussieren.

Die Feinjustage wird mit Linse L4 und Spiegels MC vorgenommen, die auf Schienen

angebracht sind und mit Mikrometerschrauben eingestellt werden können. Die

Datenaufnahme und die Spektrometerfunktionen werden mit einer Spezialsoftware

(Jobin-Yvon Spectra-Max für Windows, Version 3.0) gesteuert.

Die mit der CCD Kamera aufgenommenen Spektren werden mithilfe von Ref-

erenzlinien kalibriert. Zu diesem Zweck wird eine Hohlkathodenlampe, die schmale

Referenzlinien emittiert, benutzt. Das Licht dieser Lampe wird durch eine Faser

in die Optik geführt und folgt dem gleichen Strahlengang wie das Licht der EBIT-

Ionen, nachdem es auf einem Diffusor gestreut wird. Kalibrationsspektren dieser

Lampe werden vor und nach jeder Messung aufgenommen. Dies erlaubt die Über-

prüfung der Stabilität der experimentellen Bedingungen. Zudem wird die Messung

häufig wiederholt, wobei die Position des Gitters im Spektrometer von Aufnahme zu

Aufnahme in kleinen Schritten modifiziert wird, um systematische Unsicherheiten,

die durch das Sampling der schmalen Linien auf wenigen Pixeln der CCD entstehen

könnten, zu vermeiden. Inklusive der Kalibarationsaufnahmen betrug die Aufnah-

mezeit der Spektren, die in dieser Arbeit untersucht wurden, 30 Minuten (Ar13+)

bzw. 60 Minuten (Ar14+).

Die Emissionslinien der Lampe wurden zusätzlich dazu benutzt, die durch eine

gaussförmige Apparatefunktion charakterisierte Spektrometerauflösung zu bestim-

men. Mehr als zehn Kalibrationslinien wurden in jedem (Ar13+,14+) Spektrum dazu

genutzt, die Dispersionsfunktion zu bestimmen: die Literaturwerte der Wellenlängen

dieser Referenzlinien (in nm) werden gegen die Position der Linien (in Pixeln) aufge-

tragen und ein Polynom zweiter Ordnung, das diese Funktion am besten beschreibt,

wird an diese Datenpunkte angepasst.

Durch die für EBIT-Bedingungen untypisch niedrigen erreichten Ionentempera-

turen sowie die sorgfältige Kalibration der Spektren und die vielen aufgenommenen

Datenpunkte (30 bis 40 Spektren) wurde eine sehr hohe Genauigkeit mit Unsicher-

heiten von weniger als 1 ppm (parts per million, hier im Bereich von 10−4 nm)

erreicht.

Kapitel 4

In diesem letzten Kapitel werden die experimentellen Ergebnisse dieser Arbeit zum

Isotopeneffekt in 40Ar und 36Ar zusammen mit der Bestimmung der Temperatur der

gespeicherten Ionen, der gJ -Faktor Bestimmung und den Übergangsenergien in Be-



und B-artigen Argon Ionen vorgestellt.

Aufgrund der niedrigen Temperatur der Ionen war es möglich, die Zeeman Aufs-

paltung der Übergänge zwischen den Zuständen 2P1/2 und 2P3/2 im Grundzustand

2s22p in B-artigem Ar13+ aufzulösen. Für diese Übergänge werden sechs Kompo-

nenten erwartet und, wie in Abb. 2 gezeigt, beobachtet. Diese Komponenten sind

entweder parallel (π-Komponenten) oder senkrecht (σ-Komponenten) bezüglich

des Magnetfelds der EBIT unter transversaler Blickrichtung polarisiert. Aus der

beobachteten Aufspaltung dieser Komponenten konnte der gJ -Faktor der oberen

und unteren Feinstrukturzustände bestimmt werden. Die experimentell ermittelten

Werte sind in Übereinstimmung mit ”large scale configuration interaction“ (CI)

Dirac-Fock-Sturm Vorhersagen. Zudem war der genutzte experimentelle Aufbau

dazu geeignet, die Ionentemperatur zu vermessen. Die gefundene Temperatur

beträgt lediglich 6 eV bei einem Elektronenstrom von 20 mA, einer Elektronen-

strahlenergie von 865 eV und einem magnetischen Feld von 6.82 Tesla. Unter sonst

üblichen Betriebsbedingungen der EBIT ist die Ionentemperatur zwei Größenord-

nungen höher.

Figure 2: Ein typisches Ar13+ Spektrum des 2P1/2−2 P3/2 übergangs bei Ee=875 eV, Ie=50 mA
und 6.82 T magnetischer Feldstärke. Der untere Graph zeigt die Residuen des Fits.



Es ist prinzipiell möglich, daß das starke Magnetfeld in der EBIT den Schwer-

punkt der beobachteten Linien verschiebt. Die mögliche Verschiebung, ∆EJ,MJ
(B)

wurde mit der zuvor genannten Methode berechnet. Der berechnete Wert ergibt ver-

nachlässigbare Verschiebungen von -0.00000324 nm für σ- und π1/2-Komponenten

bzw. -0.00000162 nm für π3/2-Komponenten bei einer Erhöhung der magnetischen

Feldstärke von 5 T auf 8 T, da die Linien-Aufspaltung nahezu symmetrisch um

den Linienschwerpunkt auftritt. Es wird daher keine bemerkbare Abhängigkeit von

der magnetischen Feldstärke innerhalb der angegebenen Unsicherheit erwartet. Als

Linienschwerpunkt der Zeeman-Komponenten wurde ein Wert von 441.2556(1) nm

ermittelt. Dieses Ergebnis weicht leicht von einem vormals von Draganić [DCD03]

gefundenen Wert von 441.2559(1) nm ab. Die hier gefundene Wellenlänge des Über-

gangs in Be-artigem Argon von 594.3879(2) nm stimmt gut mit Draganićs Wert von

594.3880(3) nm überein.

Reine 36Ar und 40Ar Proben wurden genutzt, um den Isotopeneffekt zu vermessen.

Zunächst wurde 36Ar Gas in die Falle injiziert. Nachdem die Messung an diesem Iso-

top abgeschlossen war wurde, das Gasinjektorsystem ausgepumpt, um eine mögliche

isotopische Kontamination zu vermeiden, bevor zu 40Ar gewechselt wurde. Weiter-

hin wurden die Ionen aus der Falle extrahiert und ihre q/m Verteilung mithilfe eines

Analysemagneten vermessen. Dabei wurde bestätigt, daß keine 36Ar Rückstände in

der Falle waren, bevor die Injektion von 40Ar in die Falle begonnen wurde.

Die Ergebnisse sind in Tabelle 1 zusammengefasst und werden mit theoretischen

CI Dirac-Fock (DF) Berechnungen verglichen. Der relativistische Rückstoß-Effekt

ist bei den Übergängen 2P3/2 −2 P1/2 in Ar13+ und 3P1 −3 P2 in Ar14+ deutlich

ersichtlich (Tabelle 2). In Tabelle 2 sind weiterhin die Beiträge des NMS und SMS

sowie ihrer relativistischen Korrekturen, RNMS bzw. RSMS, angegeben. Aus dieser

Aufstellung wird deutlich, daßdie Beiträge der RNMS und RSMS, die bisher in

Berechnungen vernachlässigt wurden, von ausschlaggebender Bedeutung sind. Die

in dieser Arbeit experimentell ermittelten Werte des Isotopeneffekts bestätigen die

neuesten Berechnungen des relativistischen Kernrückstoßeffekts, und zeigt erstmalig

die erheblichen Unzulänglichkeiten früherer theoretischer Vorhersagen auf.



Table 1: Übergangsenergien in Ar13+,14+ und Isotopeneffekte in 40Ar/36Ar (in nm). Die Iso-
topeneffekte sind nicht von den großen Unsicherheiten in der Wellenlängenberechnung beeinflußt,
da sie aus der Differenz der gemessenen Wellenlängen erhalten werden

Wellenlängen Isotopeneffekt

Ion Theorie Experiment Theorie Experiment

Ar13+ 441.16(27) 441.2556(1) 0.00126 0.0012(1)∗

0.00125(7)∗∗

Ar14+ 594.24(30) 594.3879(2) 0.00136 0.0012(1)

∗ π - Komponenten. ∗∗ σ - Komponenten

Table 2: Berechnete Werte der einzelnen Beiträge zum Isotopeneffekt in 40Ar/36Ar der verbote-
nen übergänge in Ar13+ und Ar14+. Die rms Kernladungsradien, die in den Berechnungen benutzt
wurden, sind <r2>1/2 = 3.390 fm und 3.427 fm für 36Ar bzw. 40Ar. NMS: Normaler Massenef-
fekt, berechnet mit Dirac Wellenfunktionen; SMS: Spezifischer Masseneffekt, berechnet mit Dirac
Wellenfunktionen; RNMS: relativistischer Operator Korrektur zum NMS; RSMS: relativistischer
Operator Korrektur zum SMS. FS: Feldeffekt. Die Angaben sind in cm−1 angegeben

Ion NMS SMS RNMS RSMS FS Total

Ar13+ 0.1053 -0.0742 -0.0822 0.1151 -0.0005 0.0635
Ar14+ 0.0797 -0.0698 -0.0627 0.0887 -0.0001 0.0358



Abstract:

In the present work, the Heidelberg electron beam ion trap (EBIT) at the Max-

Planck-Institute für Kernphysik (MPIK) has been used to produce, trap highly

charged argon ions and study their magnetic dipole (M1) forbidden transitions.

These transitions are of relativistic origin and, hence, provide unique possibilities to

perform precise studies of relativistic effects in many electron systems. In this way,

the transitions energies of the 1s22s22p for the 2P3/2 - 2P1/2 transition in Ar13+ and

the 1s22s2p for the 3P1 - 3P2 transition in Ar14+, for 36Ar and 40Ar isotopes were

compared.

The observed isotopic effect has confirmed the relativistic nuclear recoil effect

corrections due to the finite nuclear mass in a recent calculation made by Tupitsyn

[TSC03], in which major inconsistencies of earlier theoretical methods have been

corrected for the first time. The finite mass, or recoil effect, composed of the normal

mass shift (NMS), and the specific mass shift (SMS) were corrected for relativistic

contributions, RNMS and RSMS. The present experimental results have shown that

the recoil effects on the Breit level are indeed very important, as well as the effects

of the correlated relativistic dynamics in a many electron ion.
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Introduction

There is abundant evidence indicating the importance of relativistic effects in the

atomic structure. The fine structure of hydrogen was the first case in which the ob-

served spectrum was in contradiction with Schrödinger’s theory; only the relativistic

electron theory introduced by Dirac was able to explain the splitting observed in the

spectra between the 2P1/2 and 2P3/2 levels. However, it was not capable of describing

the non-degeneracy of the 2P1/2 and 2S1/2 levels. This failure was solved by introdu-

cing the interaction between the bound electron and the quantized electromagnetic

radiation field, the so-called quantum electrodynamics (QED) corrections into the

description of the system. Recent calculations of the isotope shift in highly charged

ions (HCI) have shown, once again, the necessity and mathematical difficulties of

taking accurately relativistic effects into account [TSC03]. This shift is the effect

on the electronic binding energies due to the finite mass and volume of the nucleus.

Where the finite mass, also know as recoil effect, is composed by the normal mass

shift (NMS), i.e., the reduced mass, and the specific mass shift (SMS) or mass po-

larization. In order to have high precision calculations of the energy levels in high-Z

few-electron atoms, relativistic nuclear recoil corrections must be included. This

crucial assessment, together with the also recently achieved precision in the transi-

tion energy determination for four- and five-electron systems in argon ions [DCD03]

gave the motivation for our work to measure, for the first time, the relativistic recoil

effect in HCI.

The first observations of HCI, which by then were not understood, date from the

XIXth century and the beginning of the XXth century from spectroscopic investi-

gation of the solar corona. The rareness of total solar eclipses, their short durations

and the distances one has to travel to observe them made the investigation of the

line spectrum of the solar corona very difficult. This problem was overcome by the

development of coronagraphs providing continuous observation of the sun’s corona

at practically all eclipse expeditions. The first photograph of the corona spectrum

without an eclipse was taken on 1930 and the wavelength of one of the first and

most prominent lines, the green line of Fe XIV at 5303 Å, was already determined
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with 0.02 Å accuracy [Lyo39]. Many emission lines were identified later as transi-

tions from energetically low-lying metastable levels normally forbidden to decay, and

therefore able to appear only in sources of very low density. Many of them showed

the particularity to be caused by emission from high ionization stages of the coronal

atoms. Detailed observations of a number of features of these emission lines such

as their energy (wavelength), intensity (strength), and profile (spectral shape) have

led to an expanded understanding of atomic physics.

An increased curiosity on this type of transitions followed the development of

laboratory devices capable of producing hot plasmas, where production and exci-

tation of highly ionized atoms takes place. The main motivation for these studies

was to control thermonuclear fusion for the energy production. In this aim, the

first achievement, using the so-called theta-pinch effect, was made with the Scylla I

machine in 1958 [JLQ60]. It consisted of a cylindrical discharge tube enclosed by a

single-turn magnet coil, in which a short discharge current was induced. The mag-

netic field generated squeezes the plasma inward into a small radius thus heating

it [FJW61, SBH63]. In the following years, a different approach to fusion research

was the use of powerful lasers to produce hot plasmas. Laser beams can be ampli-

fied and focused to concentrate, temporally as well as spatially, their energy onto

very sharp target spots to produce very high temperature plasmas [FGP 66,Faw70].

Then, a first highly developed, large-scale fusion device realized in Princeton was

the Tokamak [Hin76]. Tokamaks use a combination of an external toroidal mag-

netic field and an internal magnetic field generated by the induced plasma current

to confine and heat the plasma with energetic pulsed discharges. Their large dimen-

sions cause a relative reduction of radiation losses and facilitate the achievement of

very high temperatures and long confinement times, thus making them the currently

most advanced approach to controlled thermonuclear fusion. Tokamaks can be used

as photon sources to study the radiation emitted by HCI. However, the plasma pa-

rameters inside such machines are not constant, such that spectroscopy nowadays’s

is mostly used as an important tool to diagnose the fusion plasma, in next gener-

ation devices, like stellarators JET or the upcoming international ITER machine,

just recently agreed upon to be realized in Cadarache, France. Therefore, for precise

plasma diagnostics one either has to rely on simulations or on other laboratory data

obtained under well-controlled conditions to analyze the experimental results.

Compared with such high-power systems, simpler and more compact ion sources

were developed for small laboratories, some of them even allowing continuous o-

peration. One widely used device is the electron cyclotron resonance ion source

(ECRIS) [Xie98]. In a ECRIS, plasma electrons are heated in the presence of a

magnetic field by means of microwave radiation at the electron cyclotron resonance
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frequency. The plasma electrons are generated initially by field and thermal emis-

sion, and their density grows rapidly due to secondary electron emission from the

walls, and through the ionization of the working gas at pressures around 10−6 mbar.

Due to the absence of a cathode, these devices are robust and long lived. However,

they have some critical problems, from the spectroscopic (optical) point of view,

due to so-called satellite electrons. These electrons are the result of the strong ex-

citation rate, which can produce multiply-excited ions with a high probability. The

presence of satellite electrons changes the energies of the electronic transitions and

also their probabilities. Although, ions in charge states as high as Ar18+ or U48+

can be produced, these sources can generate only intermediate plasma temperatures

and, thus, produce mostly ions in low ionization stages. To produce high ionization

stages one can also make use of high energy ion beams. Since early on, at facilities

such as linear accelerators, cyclotrons or synchrotrons, a technique called beam-foil

spectroscopy (BFS) was applied [LWW80] until the present day, where fast ions are

shot through a thin foil leading to further ionization due to stripping, as well as

to excitation of the ions. Downstream from the foil, spectroscopic observations are

possible. This method is particularly characterized by a very good time resolution

which permits lifetime measurements (transition rates) of ionic excited states. In ad-

dition, often excellent accuracy in the energy determination of electronic transitions

can be achieved, again, however, mostly influences by satellite electrons [ZSW04].

A major step forward in accelerator based spectroscopy was marked by the

realisation of heavy-ion cooler storage rings at the end of the 1980th to early

1990th [BGH 98, GvR03]. Here, highly charged ions, produced earlier by slipping

in a foil, an stored, cooled by stochastic, laser or electron cooling methods and usu-

ally excited states are prepared in collisions with atoms of internal gas-jet targets

or with electrons in a cooler. Thus, with this technology, the most precise spectro-

scopic data on Li- and He-like uranium [BSB02,MSB 01] has been achieved, laser

spectroscopy on hyper-fine transitions was performed [KHJ 92] for the first time

and highly accurated measurements on dielectronic recombination transition were

performed [GGR03].

Mostly common to all these techniques, fusion devices, accelerators and storage

rings, is that they are large and expensive to run. Trying to minimize the complexity,

dimension and running costs a new device, the electron beam ion trap (EBIT), was

developed in the 1980’s, based upon the principles of the electron beam ion source

(EBIS) [DDD02]. Within the last 20 years it has became the main alternative tool

for studying HCI [MLK88]. In an EBIT, highly charged ions are produced and

trapped by means of a high current density electron beam which is compressed with

a strong magnetic field. The trapped ions can be observed or they can be extracted
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for external applications. Similarly to the conditions present in the solar atmosphere,

in an EBIT the excitation is primarily induced by electron collisions.

In the present work, the Heidelberg EBIT has been used to produce, trap and

study magnetic dipole (M1) forbidden transitions in highly charged argon ions. Over

the last 50 years, these forbidden transitions had become of great interest due to

their relativistic origin and hence, the unique possibility to perform precise studies

of relativistic effects in one- to many-body electron systems. One intriguing contri-

bution is the so-called isotopic effect caused by the finite nuclear mass of different

isotopes. Not only the modified mass that affects the system’s kinematics, but also

the changes induced in the nuclear charge distribution, lead to small variations in

the transition energies. By measuring the difference in the transition energy between

two isotopes, the largest error contributions in comparison with theory arising from

the uncertainty in the calculation of the corrections due to interelectronic correlation

and the QED contributions are cancelled out because they are practically the same

for the different isotopes. Hence, the remaining differences from the size and mass

corrections can be extracted very precisely despite of their very small magnitude.

Traditionally, measurements of the optical isotope shifts in atomic spectra have

been systematically carried out to determine changes in the mean-square nuclear

charge radii 〈r2〉, among other nuclear properties which affect structures found in

the atomic spectra. More recently, the relevance of this field has been emphasized

by new applications. For instance, isotopic shift calculations in atoms and ions with

one valence electron above closed shells could help to explain the spectral line shifts

observed in quasar absorption spectra that had suggested a variation in the fine-

structure constant [BDF03]. Laser spectroscopy has been used to determine the

change distribution in the halo nuclei, 8Li+ and 9Li+ [END04]. However, only few

spectroscopic measurements with HCI have been reported with an accuracy sufficient

for the resolution of isotopic shifts. The study of these effects in HCI has the poten-

tial advantage of increased sensitivity to nuclear size and relativistic effects. This

enhanced sensitivity is a consequence of the stronger overlap between the electronic

and the nuclear wave function, of the higher expectation value of the electron energy,

and last but not least, of the simpler electronic structure of few-electron ions. This

last reason is indeed very important, since theoretical uncertainties in the treatment

of the electron correlations are still the prominent error source in the analysis of

experiments with atoms aiming at determining physical properties of the nucleus or

its constituents, as the case in parity-non-conservation experiments [BW99,BB97],

among many others.

As we will see throughout this work, the combination of an EBIT, providing a

stable population of trapped HCI, with accurate calibration techniques carried out in
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this work has allowed us to experimentally determine such isotope shifts with very

high accuracy. The results confirm newest calculations of the relativistic nuclear

recoil effect, in which major inconsistencies of earlier theoretical methods had been

addressed and corrected for the first time.

The experimental study of the isotopic shift in B- and Be-like argon ions pre-

sented here is structured as follows. In the first chapter, a brief overview of the

different theoretical descriptions which have evolved over time from the Sommerfeld

quantum theory, through the relativistic formulation made by Dirac of the atomic

structure to modern QED corrections is provided. The case of hydrogen is treated

and extended to many-body systems, giving an overall description of the different

multi-configuration methods used to study highly ionized atomic systems. It also

includes an explanation of the particular theoretical method used for calculating

the isotopic shift in the systems under study. In the following chapter, after a brief

historical introduction to the EBIT, a detailed description of the one operational

in Heidelberg is made. There, the specific parameters, for the present experiment

and its particular characteristics are explained. The third chapter is dedicated to

the experimental setup used for the spectroscopic observation of the emitted visible

lines, the data acquisition process, as well as the data analysis and treatment of

the errors. In the last chapter, after presenting results concerning the transition

energies and the temperature of the trapped ions, the experimental results obtained

for the isotopic shift are presented and discussed in comparison with the theoretical

predictions.

23





Chapter 1

Theory of the atomic structure

The starting point for modern atomic structure theory was the Bohr model of the

hydrogen atom, based on the Rutherford atom model and incorporating the ideas

of Planck. Its main points are the concept of discrete stationary states of a given

energy, and the emission and absorption of photons of frequency ν21 = E2 − E1/h

in radiative transitions between states of energies E1 and E2, with h being Planck’s

constant. The development of these models layed the foundations of quantum me-

chanics, which successfully described the hydrogenic spectrum.

The fundamental postulates of quantum mechanics were made by Schrödinger.

His wave equation for the motion of a particle in a potential V (x, y, z) explained

the existence of discrete atomic energy levels. But this theory could not account for

the fine structure observed in some experimental spectra as all levels with the same

principal quantum number n are degenerate in Schrödinger’s theory. Modern fully

quantum mechanics theory was born as the spin concept was introduced by Dirac

in his relativistic electron theory. The fine structure of the simplest possible atomic

system, hydrogen, was well described by the Dirac wave equation. However, an

experiment carried out by Lamb and Retherford showed that the 2 2s1/2 level did not

have exactly the same energy as the 2 2p1/2 level, in contradiction with the theoretical

prediction. A qualitative explanation based on the interaction between the bound

electron and the electromagnetic field was given by Welton. This resulted later in the

formulation of a relativistic quantum field theory of the electromagnetic interaction,

called quantum electrodynamics (QED). It describes all phenomena exhibited by

charged particles emitting or absorbing photons and interacting by photon exchange.

This theory includes classical electrodynamics in the limit of many photons and

strong fields, and also explains quantum phenomena relevant to the atomic structure.

QED is part of a wider theoretical framework called the Standard Model, which

combines two foundations of particle physics: electroweak theory, describing the
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electromagnetic and weak interactions and quantum chromodynamics, the theory of

the strong interaction.

With QED, extremely accurate explanations of physical observables like the

anomalous magnetic moment of the electron and muon and the hydrogen Lamb

shift could be made. This is the first quantum field theory, in which the difficulties

of building a consistent fully quantal description of fields, creation and annihilation

of quantum particles are solved satisfactorily. In general, it is difficult to perform

experiments that test with sufficient accuracy the predictions of this theory in atoms

or ions because the average energies of the atomic electrons are generally many or-

ders of magnitude larger than the QED effects. Moreover, in atomic systems - with

exception of hydrogen - it is generally impossible to calculate the QED indepen-

dent parts of the electronic structure with enough precision to distinguish quantum

electrodynamic effects. However, in systems with high nuclear charge Z, relativistic

effects and QED are enhanced, since their contributions scale with high powers of

Z. Hence, highly charged ions (HCI) make feasible to perform experiments with a

precision comparable to or even better than that of calculations.

In this chapter an overview of theoretical methods used to calculate the energy

levels in one- as well as many-electron systems will be presented.

1.1 Hydrogen-like systems

The hydrogen atom and its spectrum are of special interest in atomic theory because

only for them the Schrödinger and Dirac equations can be solved analytically. Thus,

the so-called hydrogen-like approximations are widely used.

The energy levels of the hydrogen atom exhibit the well-known fine structure

splitting which is partly due to the relativistic mass increase of the electron, partly

due to its spin and to its delocalisation accounted for in the so-called Darwin term.

An effect of relativity on the atomic structure was already predicted by calculations

evaluating relativistic corrections to the Schrödinger equation for particles without

spin. Since the spin itself is of relativistic nature, the Dirac wave equation forms the

basis of a fully relativistic theory.

1.1.1 Fine structure in l · s coupling

For the hydrogen atom and hydrogen-like ions with low Z, the relativistic effects are

relatively small and can be taken appropriately into account even by using pertur-
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1.1. Hydrogen-like systems

bation theory and applying it to the non-relativistic Schrödinger equation. These

effects are treated in terms of the velocity-dependent electron mass, the electron

spin angular momentum ~s, and it’s position uncertainty, called the Darwin term.

The perturbation due to the relativistic mass increase effect (see Eq. (1.9)) results

in a level shift of

∆E ′
nl = −c2α

4Z4

2n4

(
1

l + 1/2
− 3

4n

)
, (1.1)

where l is the orbital angular momentum, n is the principal quantum number.

From now on, we adopt the use of atomic units (a.u.) for simplicity (mo, e, ~ ≡ 1).

The magnetic moment of the electron ~µ = µB ·~s, connected with the electron spin

~s, leads to an additional interaction between the electron and the nucleus, namely

~µ · ~B = µB ·~s · ~B. Here, ~B is the magnetic field associated with the electron moving

in the electric field ~E, and can be described in terms of the angular momentum ~l.

This results in the so-called spin-orbit interaction.

The spin-orbit interaction depends on the mutual orientation of the angular mo-

mentum ~l and ~s, i.e., on the value of the total angular momentum, ~j= ~l + ~s. For

a given value of j, the z component mj of the total angular momentum can take

(2j+1) different values j, j− 1, ..., -j . Therefore, the level nlj has 2j+1 magnetic

substates, differing in its quantum number mj. The quantity 2j + 1 is called the

statistical weight of the j level.

The total angular momentum of any isolated system is conserved. Therefore,

the state of an atom is characterized by the value of the total angular momentum

j, even in the case when the orbital and spin angular momentum are not sepa-

rately conserved. Since ~l · ~s = (~j2 − ~l2 − ~s2)/2 and its mean value equal to

[j(j+1) - l(l+1) - s(s+1)]/2, the correction to the energy due to the spin-orbit

interaction is

∆E ′′
nlj = −c2α

4Z4

4n3

j(j + 1)− l(l + 1)− s(s+ 1)

l(l + 1)(l + 1/2)
(1.2)

= [j(j + 1)− l(l + 1)− s(s+ 1)] ζ(LS) , (1.3)

where ζ(LS) denotes the fine structure splitting.

The corresponding energy correction of the Darwin term, which only contributes

to the energy of the states with l = 0 is
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∆E ′′′
n = c2

α4Z4

2n3
. (1.4)

Comparison of Eq. (1.1) and Eq. (1.2) shows that the effects of the electron-mass

velocity dependence and the electron spin have the same order of magnitude. The

total correction to the energy ∆E ′
nl + ∆E ′′

nlj + ∆E ′′′
n is given by the expression

∆Enlj = ∆E ′
nl + ∆E ′′

nlj + ∆E ′′′
n = −α

4Z4

2n4

(
1

j + 1/2
− 3

4n

)
. (1.5)

This splitting of the level nl into two components is called the fine structure

splitting. The dimensionless constant α determines the magnitude of the splitting.

It is important to note that, whereas both corrections ∆E ′ and ∆E ′′ separately

depend on l, the total correction ∆E does not depend on l but on j.

As the fine structure splitting decreases with increasing n approximately as 1/n3,

this splitting is particularly important for lower levels. The set of lines arising

from the transitions between the fine structures of the levels nl and n
′
l
′
(transitions

nlj→n′l′j′) is a called multiplet (see Section 1.4).

1.1.2 Dirac equation

The corrected solution can be obtained by solving the Dirac equation. With an scalar

potential ϕ(~r) and a vector potential ~A(~r) describing an external electromagnetic

field, the Dirac wave equation for a stationary state of total energy E is given by

HDΨ(~r) = EΨ(~r) , (1.6)

where the wave function Ψ depends on the position ~r and the spin of the electron

and

HD = −eϕ+ βE0 + αi · (c~p+ e ~A) (1.7)

is the one-electron Dirac Hamiltonian. Here -e is the charge of the electron,

E 0 = m0c
2 and ~p are the electron rest energy and the momentum operator of the

electron, respectively, with c the speed of light and m0 the rest mass. The αi and

β Dirac operators are usually expressed in terms of the Pauli spin matrices (see

definition in [BS57]).
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1.2. QED corrections

The exact eigenvalues of states with a principal quantum number n and a quantum

number j describing the total angular momentum are

Enj = c2


1 +

 Zα

n− (j + 1/2) +
√

(j + 1/2)2 − (Zα)2

2−1/2

− 1

 . (1.8)

Here α = e2/~c ∼= 1/137 is the fine structure constant [WG34]. An expansion of

this expression in powers of (Zα)2 yields:

Enj = c2
1

2

(Zα)2

n2

[
1 +

(Zα)2

n

(
1

j + 1/2
− 3

4n

)]
+ ... . (1.9)

However, even this exact solution does not give a complete description of the

hydrogen atom. Indeed, the experiment made by Lamb and Retherford [LR47] in

1947 showed a splitting between 2s1/2 and 2p1/2 levels with the same j quantum

number, which were predicted to be degenerate by Eq. (1.9). This observation led

to some corrections [Wel48] to the Dirac electron theory.

1.2 QED corrections

The discrepancy between theory and experiment found in the fine structure of the

second quantum state (n = 2) of hydrogen triggered the search for a theoretical

explanation. Kemble and Present [KP32] as well as Pasternack [Pas38] showed that

the shift of the 2s level could not be explained by a nuclear interaction of a reason-

able magnitude, and Uehling [Ueh35] found that the effect of the polarization of the

vacuum was much too small and it had, in addition, the opposite sign. Schwinger

[Sch48] and Weisskopf [Wei39], as well as Oppenheimer [Opp30,Opp31,Opp35] sug-

gested that a possible explanation might be a shift of the energy levels by the in-

teraction of the electrons with the radiation field, an additional radiative correction

called the self-energy of the electron.

Attempts to evaluate the radiative corrections to electron binding energies had

heretofore been beset by divergence difficulties, which arise in the calculations as a

consequence of virtual transitions involving photons with unlimited energy. Experi-

ments later confirmed that the underlying elementary phenomena causing the Lamb

shift were the self-energy of the electron and the polarization of the vacuum [Sch49].

These effects are essentially due to the interaction of the electrons with the vacuum

fluctuations of the electromagnetic field.
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1.2.1 Self-energy of the electron

In classical electrodynamics the self-energy of an electron without spin at rest con-

sists solely of the energy-equivalent of its rest mass m0 and of its electrostatic field,

which diverges linearly for an infinitely small electron radius [Wei39].

The dominant contribution to the Lamb shift in a strong Coulomb potential, the

self-energy, can be calculated accurately in the framework of QED [Moh75]. It is

represented by means of a Feynman diagram in Fig. 1.1a. It describes the emis-

sion and the subsequent reabsorbtion of a virtual photon, i.e., the interaction of the

electron with its own radiation field. This leads to a considerable correction of the

electron mass and binding energy. As an example, for the 1s Lamb shift in hydrogen,

the self-energy contribution is 8396.456(1) MHz over the 8172.802(40) MHz of the

total shift [WHK95], roughly equivalent to 30 µeV.

a) b)

Figure 1.1: Feynman diagrams: a) the self-energy and b) the vacuum polarization of a bound
electron. Double lines indicate wave functions and propagators in the external field of the nucleus.

To get a first impression concerning the importance of both radiative processes in

highly charged ions we can consider the associated energy shift for a K-shell electron

in hydrogen-like uranium. The sum of the calculated vacuum polarization and the

self-energy corrections amounts to -266 eV, which should be compared with the total

K-shell electron binding energy of 132 keV [MPS98].

1.2.2 Polarization of the vacuum

The vacuum-polarization, which was first treated by Uehling in 1935 [Ueh35] is

shown in the Feynman diagram in Fig. 1.1b. This figure is often called the photon

self-energy. Here, a virtual photon generates a virtual electron-positron pair which,

in lowest order in the coupling constant Zα to the external field, is supposed to
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propagate freely, i.e., undisturbed by the Coulomb field. The production of the

virtual e+ − e− pair gives rise to an effective modification of the Coulomb potential

1/r and thus, causes a shift of the electron binding energy. The vacuum-polarization

potential has been accurately and efficiently evaluated to order Zα and Zα2 [FR76].

1.2.3 Reduced mass

The motion of the nucleus around the atomic center of mass modifies slightly the

electron’s energy and its magnetic moment [Sal52, Sch48]. The Dirac equation is

limited in its application to the energy levels of a single electron moving around

a nucleus and justified only to the extent that the electron may be considered to

move in a fixed field of force. As a consequence, this equation is not valid for the

discussion of the effect of the nuclear motion on the energy levels. The influence of

the motion of the nucleus on the spectra of hydrogen and hydrogen-like light ions

(which are not strongly affected by relativity) may be accounted for by replacing the

electron mass m0 by the reduced mass µ = m0M/(m0 +M), M being the mass of

the nucleus. This simple procedure does not suffice neither for systems with more

than one electron nor for relativistic electrons.

1.3 Multi-electron systems

The Hamiltonian for multi-electron atoms is in most cases investigated under the

independent-particle model, in which the electrons are assumed to move indepen-

dently of each other in an average field due to the nucleus and the other electrons.

The independent-particle model and the variational principle lead to the Hartree-

Fock equations where the average potential is spherically symmetric.

1.3.1 The multi-configuration Hartree-Fock method

The Hartree-Fock (HF) method was developed to study atomic configurations con-

taining closed shells. A method introducing a self-consistent field (SCF) for de-

termining the wave functions and energy levels of an atom with many electrons

was developed by Hartree [Har34], and later eveloped from a variational princi-

ple and modified to take account of exchange and of Pauli exclusion principle by

Slater [Sla29] and Fock. No attempt was made to consider relativistic effects, and

the use of spin wave functions was purely formal. However, since the relativistic

corrections depend on the ratio Z/α, they are important for heavy atoms.
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Attempts to set up relativistic self-consistent field calculations were initiated by

Swirles in 1935 [Swi35]. She showed that the Dirac equation could be solved with

a variational principle, and was able to carry out the relativistic version of the

Hartree-Fock equations for a closed shell configuration. As her work predated to

the modern developments using Racah tensor operators, she was unable to present

the equations in the relatively simple form that we use now. The first numerical

results were reported by Williams [Wil40], who neglected exchange terms. A number

of calculations giving full solutions of the Hartree-Fock equations, including the

exchange terms have been later on reported by Grant [Gra61].

A generalization of the HF method to account for electron correlation effects

led to the so-called multi-configuration Hartree-Fock (MCHF) procedure [FS83]. In

MCHF, corrections to the mean field description are accounted for by construc-

ting the many-electron wavefunction as a linear combination of anti-symmetrized

products of one-electron orbitals.

1.3.2 The multi-configuration Dirac-Fock method

The relativistic analogue method to the MCHF is the multi-configuration Dirac-Fock

(MCDF) method [GMP76]. In the relativistic Dirac-Fock method the Hamiltonian

for an N -electron atom is given by

H =
N∑

i=1

Hi +
N∑

i<j

1

rij

, (1.10)

whereHi is the Dirac Hamiltonian for an electron i including the nuclear Coulomb

interaction (see Eq. (1.7)) and rij = |~ri - ~rj| is the difference between the positions

~ri, ~rj of the electrons i and j, respectively.

Each atomic state is expressed as a linear combination of N -electron basis func-

tions. These are constructed from single-electron central-field Dirac spinors ua(r) of

the form [Gra70]

ua(r) =
1

r

(
Pa(r) χa

iQa(r) χ̄a

)
, (1.11)

where Pa(r) and Qa(r) are the purely radial functions. χa and χ̄a are the two-

component spherical spinors. The label a represents the set of nalajamja quantum

numbers (where Pa(r), Qa(r) depend only on n, l and j and χa, χ̄a depend on l, j

and m).

32



1.3. Multi-electron systems

The orbitals ua(r) are eigenfunctions of ~j2, jz and the parity operator P . The

parity of the state is given by (-1)la , where la = ja± 1
2

is the orbital angular momen-

tum of the large component. The eigenvalues of ~j2 and jz are given by ja(ja + 1)

and mja, respectively. Under the assumption that ua(r) forms an orthonormal set,

the configuration state functions (CSF) are constructed as linear combinations of

anti-symmetrized products of single-particle spinors of the form

ua1(~r1)ua2(~r2)...uaN
(~rN) , (1.12)

corresponding to an assignment of the N electrons to specified states a1, a2, ..., aN .

They are coupled together to give an eigenstate of the sequence total angular mo-

mentum ~J2 and its z-component Jz, with ~J being ~J =
∑N

i=1
~ji.

These CSF, denoted by Φr(γrPJM), are eigenfunctions of ~J2 and Jz, belonging

to the eigenvalues J(J+1) and MJ the z component of the total angular momentum,

and of parity P . The label γr denotes the set of internal symmetry labels necessary

to define an orthonormal N -electron basis. A general open-shell atomic state is

expressed as a linear combination of CSF belonging to the same P and M . Such a

linear combination is called an atomic state function (ASF) and written as

Ψα(PJM) =
N∑

r=1

crαΦr(γrPJM) . (1.13)

The essence of the MCDF method is to determine the configuration-mixing coef-

ficients crα and the orbitals ua(r) by applying the variational method to the expec-

tation values of the Hamiltonian with respect to the ASF Ψα(PJM).

The relativistic Dirac-Fock equations for neutral atoms or ions in a bound state

have been solved numerically within the framework of the multi-configuration ap-

proximation at first by Desclaux [Des75] and Grant [GMN80].

1.3.3 The many-body perturbation theory

The Hartree-Fock method deals with particles with weak or long-range interactions.

However this method is difficult to apply to systems of particles which interact

strongly through short-range potentials. The origin of the difficulty lies in the strong

correlations which might exist in the wave-functions of the multi-particle system, and

which are neglected in the Hartree-Fock method.

The development of many-body perturbation theory (MBPT) was initiated by

Brueckner [BL55, Bru55] and Goldstone [Gol57], which introduced the one-body
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Chapter 1. Theory of the atomic structure

potential. This procedure was later extended to general open-shell systems by

Brandow [Bra67] and Lindgren [Lin85].

As follows from Eq. (1.10) the non-relativistic Hamiltonian for an atomic system

is (in atomic units),

H = −1

2

N∑
i=1

∇2
i −

N∑
i=1

Z

ri

+
∑
i<j

1

rij

, (1.14)

where the terms on the right-hand side represent the kinetic energy, the nuclear

attraction and the inter-electronic repulsion, respectively. Relativistic effects, such

as the spin-orbit interaction, and effects of the radiation field (QED) are omitted

here. Except for the simplest systems, the eigenvalues of this Hamiltonian cannot

be determined exactly and various approximation schemes have to be applied.

A first scheme results from applying perturbation theory. Here, the Hamiltonian

is divided into two parts:

H = H0 + V , (1.15)

where H0 is an approximate (unperturbed) Hamiltonian, which can be treated

exactly and should be a reasonably good approximation of the full Hamiltonian

and V is the perturbation. The unperturbed Hamiltonian H0 is assumed to be the

Hamiltonian of the central-field model given by

H0 =
N∑

i=1

[
−1

2
∇2

i −
Z

ri

+ U(ri)

]
=

N∑
i=1

h0(i) , (1.16)

where U(ri) represents a Hartree-Fock central potential approximating the effect

produced by the other electrons. Here the electrons move independently of each

other in a spherically symmetric field. Furthermore, this field is considered to be

the same for all electrons.

The perturbation V is the non-central part of the electrostatic interaction

V =
∑
i<j

1

rij

−
N∑

i=1

U(ri) . (1.17)

A second method used to treat many-body systems is the relativistic many-body

perturbation theory (RMBPT) first introduced by Johnson, Blundell and Sapirstein

[JBS88a, JBS88b]. This method is particularly well suited for calculations of the
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1.4. Radiative transitions

properties of highly charged multi-electron ions because of the rapid convergence of

the 1/Z expansion [Doy69], which is of crucial importance for this technique.

To summarize, the methods employed in the calculation of relativistic bound-state

energies of multi-electron systems can be divided into two classes [Kim97]. In the

first class, the relativistic effects are partially taken into account in the calculation

of the wave-functions. Such methods are based upon a generalization of the Dirac

equation for an electron in a central field to a multi-electron case. The principal

method whitin this category is the relativistic Hartree-Fock method. Also in this

category is the relativistic 1/Z expansion theory, in which relativistic hydrogenic

wave-functions are used. The second class of methods includes all approaches based

upon non-relativistic wave-functions. In these methods the relativistic effects are

taken into account in the perturbation terms of the Hamiltonian only. For atoms

with relatively small nuclear charge Z (strictly those for (αZ)2 � 1) the relativistic

Hamiltonian is taken to be the Breit-Pauli Hamiltonian.

1.4 Radiative transitions

Depending on the type of radiative transition which take place in a multi-electron

atom, different so-called selection rules apply. These rules depend on the quantum

numbers of initial and final states of the electronic systems (see Table 1.1). The

strongest transitions result from the electric dipole interaction E1. Transitions that

obey the selection rules for E1 are called allowed transitions. If these selection rules

are not satisfied, the dipole moment is zero, and the transition rate is also zero

(see below). In such a case, the excited state can relax through so-called forbidden

transitions [Bow36]. For cases where E1 radiative transitions are forbidden, the

upper state is said to be metastable. The use of the word forbidden is somewhat

misleading here, it actually means electric-dipole forbidden. These transitions are

possible, but just occur at slower rates than E1. After the electric dipole interaction,

the next two strongest interactions between the photon and the atom give rise to the

magnetic dipole M1 and electric quadrupole E2 forbidden transitions. The M1 and

E2 transitions have much smaller probabilities than E1 transitions. However, these

processes become stronger for highly charged ions, and the transition probabilities

for M1, E2 ... lines grow with -in most cases- high powers of the ionic charge Z. For

instance, for H-like ions the transition probability of the M1 radiation, if the energy

level separation is primarily due to spin-orbit interaction, scales with Z10. Thus,

the forbidden transitions can be very strong in highly charged ions. As an example

of the different possible radiative transitions a typical level scheme for Kr XIX is

shown in Fig. 1.2.
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Chapter 1. Theory of the atomic structure

Table 1.1: Selection rules between discrete states transitions

Electric dipole Magnetic dipole Electric quadrupole
(E1) (M1) (E2)

“allowed” “forbidden” “forbidden”

Rigorous rules 1. ∆J = 0, ±1 ∆J = 0, ±1 ∆J = 0, ±1, ± 2
(0 = 0) (0 = 0) (0 = 0)

(1/2 = 1/2)
(0 = 1)

2. ∆MJ = 0, ± 1 ∆MJ = 0, ± 1 ∆MJ = 0, ± 1, ± 2
(0 = 0 when ∆ J= 0) (0 = 0 when ∆J = 0)

3. Parity change No parity change No parity change

For LS-coupling 4. ∆S = 0 ∆S = 0 ∆S = 0
only

5. ∆L = ± 1 ∆L = 0 ∆L = 0, ± 2
(0 = 0) ∆J = ± 1 (0 = 0) (0 = 1)

Figure 1.2: Level scheme of the 3s23p53d levels in the Ar-like krypton (KrXIX) [TBB 01]. The
energy scale is only approximate.
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1.4. Radiative transitions

1.4.1 The magnetic dipole forbidden transition

The transition rate A12 within fine structure states is calculated from the initial and

final wave functions (Ψ1, Ψ2) of the involved states by using the Fermi golden rule:

A12 =
2π

~
|M12|2 g (hν) , (1.18)

where M12 is the transition matrix element and g(hν) is the degeneracy or density

of states. The matrix element is equal to the overlap integral:

M12 =

∫
Ψ∗

2 (~r)B′ (~r) Ψ1 (~r) d3~r . (1.19)

where B′ is the interaction between the atom and the photon wave that causes

the transition.

When the transitions are taking place via the magnetic dipole mechanism, the

expression for the B′ is given by the operator of the magnetic moment

QM1 = − e~
2m0c

∑
i

(~li + 2~si) , (1.20)

which takes into account the sum over all electrons i of the orbital angular mo-

mentum ~li and the spin ~si of the individual electrons.

The magnetic dipole line strength for a transition between two states within the

LS-coupling, in the notation of Condon and Shortley [CS59], is given as the squared

reduced matrix element

SM1
nlj,n′l′j′ =

∣∣〈αJ ||QM1||αJ ′
〉∣∣2 . (1.21)

Here, l, j and l′, j′ are the quantum numbers of the active electrons participating

in the transition. As M1 transitions are only possible between components of the

fine structure J = L+1/2 and J ′ = L− 1/2 (J ′ = J − 1), a final expression is given

by

SM1(LJ, LJ ′) = (L+1/2+J+1)(L+1/2−J+1)(J−L+1/2)(J+L−1/2)
4J

. (1.22)

37



Chapter 1. Theory of the atomic structure

In this special case, this quantity does not depend on the n, n′ quantum numbers

anymore [CLFM01]. Relationships between the oscillator strength S (dimensionless)

and the transition probability A is generally valid for M1 and E1 transitions. In SI

units AM1 (in s−1) is related to SM1 by the expression

AM1 =
16π3µ0

3hωiλ3
SM1 , (1.23)

where µ0 is the vacuum permeability, ωi is the statistical weight of the initial

state and λ is the transition wavelength.

For the electric dipole the transition probability is written as follows

AE1 =
16π3

3hε0ωiλ3
SE1 , (1.24)

where ε0 is the vacuum permittivity.

In Fig. 1.3 the transition probabilities for the E1 and M1 transitions along the

H-like isoelectronic sequence are compared. The values of A are plotted against

Figure 1.3: Transition probabilities versus the ion charge Z for the H-like isoelectronic sequence
for 2P1/2 − 1S1/2 E1 transition (open triangles) and the 2S1/2 − 1S1/2 M1 transition (open
circles) [BS03].
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1.5. External magnetic field. Zeeman effect

the atomic number Z of ions [BS03]. As we can see, the electric dipole transitions

have much larger probabilities than the M1 transitions. It can also be seen that the

transition probabilities for these two cases increase with different powers of Z.

1.5 External magnetic field. Zeeman effect

Now we consider states of an atom or ion that lay in a uniform external magnetic

field. For a small perturbation HB the interaction is written in the classical form as

follows

HB = −~µ · ~B = −µB

~
(~L+ 2~S) · ~B = −µB

~
( ~J + ~S) · ~B , (1.25)

where ~µ is the total magnetic moment of the electronic system and ~B the external

magnetic field. In terms of the orbital and spin magnetic moment the interaction,

in the non-relativistic limit, is given by

HB =

(∑
i

gLµB
~li +

∑
i

gSµB~si

)
· ~B , (1.26)

where both gL and gS, the orbital and spin g-factors are defined to be positive.

It is important to consider the size of the perturbation HB compared with other

terms in the Hamiltonian. In the case of a weak field, the LS-coupling approximation

is used. Here, the energy splitting produced by the external field (≈ µBB) is small

compared to the fine structure splitting ζ(LS) of Eq. (1.3) which is proportional to

the internal magnetic field of the atom (≈ µBBint); we speak here of the Zeeman

effect [Zee97]. In a strong field (µBB � ζ(LS)) the LS-coupling is no longer

appropriate. The field-induced precessions are so rapid that we must take into

account the total angular momentum ~L and spin ~S as they individually precess

about ~B, that is, the effect of ~B is effectively to decouple ~L from ~S, and to make
~J meaningless. In this limit we speak of the Paschen-Back effect [PB12]. Then,

it is appropriate to describe the atom in terms of partially coupled basis functions

|γLSMLMS〉, where ML and MS are the projections on the z-axis, i.e., the direction

of ~B, of the ~L and ~S, respectively.
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Chapter 1. Theory of the atomic structure

Zeeman effect in LS-coupling

In first order perturbation theory the energy shift caused by the Zeeman effect is

given by

∆E = 〈γLSJMJ |HB|γLSJMJ〉 , (1.27)

and Eq. (1.26) is rewritten as

HB = µB(~L+ gs
~S) · ~B

= µBB(Lz + gsSz) , (1.28)

where Lz and Sz are the projections of the total angular momentum and spin

onto the axis defined by the direction of the external field, respectively.

In Fig. 1.4 we show a vector model where ~L and ~S precess rapidly around ~J with

a precession rate proportional to ζ(γLS), while ~J slowly precesses around the z-axis

with a rate proportional to µBB (<ζ(γLS)).

mL

mS

mL

mS

mJ

m
mz

B
S

J

L
J

L

S

b)a)

B = 0 B = 0/

Figure 1.4: Vector model of the µ-components in the direction of ~J under LS - coupling conditions.
a) without magnetic field and b) in the presence of a magnetic field.
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1.5. External magnetic field. Zeeman effect

To evaluate the matrix elements of Lz and Sz we take the projection of ~L onto ~J

and then project it onto the z-axis (along the B direction), and in the same manner

the projection of ~S onto ~J . Using the identities


~L · ~J = 1

2
( ~J2 + ~L2 − ~S2)

~S · ~J = 1
2
( ~J2 − ~L2 + ~S2) ,

the energy shift becomes

∆E = µBB〈γLSJMJ |12
{

( ~J2 + ~L2 − ~S2)

+gS( ~J2 − ~L2 + ~S2)
}

Jz

J(J+1)
|γLSJMJ〉 ,

(1.29)

where Jz = Lz + Sz. Making the projection of the total magnetic moment µB of

the electrons onto ~J we can define an effective µ-factor by

µeff = −gJµBJz , (1.30)

where gJ depends on L, S and J . The energy shift is then written as follows:

∆E = 〈γLSJMJ | − µeffB|γLSJMJ〉
= 〈γLSJMJ |gJµBBJz|γLSJMJ〉
= gJµBBMJ . (1.31)

Comparing Eq. (1.31) with Eq. (1.29) the Landé gJ -factor is obtained:

gJ = J(J+1)+L(L+1)−S(S+1)
2J(J+1)

+ gS
J(J+1)−L(L+1)+S(S+1)

2J(J+1)
. (1.32)

For a singlet state (S = 0, J = L), we obtain gJ=1, independently of L, S, and

J . In the absence of spin, the normal Zeeman effect results just from the interaction

of the orbital moment L with the external field, and the interaction energy of the

atom is therefore

∆E = −µzB = µBBML , (1.33)
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where ML is the orbital magnetic quantum number. This equation shows us that

the application of an external B-field splits the degenerate ML states evenly. For a

transition between two singlet levels the energy spacing between the states is µBB,

the same for each term, and the photon energy is

hν = hν0 + µBB∆ML , (1.34)

where hν0 is the energy difference between the unperturbed levels.

The polarization of the Zeeman lines is determined by the selection rules and

the observation angle. If we are looking along the field (longitudinal observation),

the photons must be propagating in the z-direction. Light waves are transverse and

therefore only the x and y polarizations are possible. When observing at right angles

to the field (transverse observation), all three lines are present (see Fig. 1.5a). In both

cases the lines are symmetrically arranged around the position of the unperturbed

transition and separated by µBB/h.

0=B / 0=B /0=B

2P3/2

2S1/2

+

1/2+

3/2

- 3/2

- 1/2

+ 1/2

- 1/2
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0=B / 0=B /0=B

L = 1

L = 2

hu0

+ 1

- 1

0
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- 1

0
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a) b)
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MJ

D
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J
=

 +
1
, 
0
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hu0 hu0hu0

hu hu hu

Figure 1.5: a) Normal Zeeman effect for a p → d transition. The field splits the degenerate
ML levels equally. Optical transitions can occur if ∆ML = 0,±1. (For the sake of clarity, only
the transitions originating from the ML = 0 level of the L = 1 state are labeled.) b) Anomalous
Zeeman splitting of the sodium D-line (D2 = 589.0 nm) by a weak magnetic field.
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For general case of transitions between multiplets in LS-coupling, the situation

is different. In this case gJ 6=1 depending on the L, S and J and, hence, it is

different for each level. This is known as the anomalous Zeeman effect, which

is the most common case despite of its name. The frequency of the transition

(γLSJMJ) → (γ′L′S ′J ′M ′
J) is given by

hν = (E ′ + ∆E ′)− (E + ∆E)

= hν0 + µBB(g′JM
′
J − gJMJ) , (1.35)

where gJ and gJ ′ correspond to the Landé g-factors of the initial and final states,

respectively (see Fig. 1.5b).

In the Zeeman effect, the field-dependence of the energy of each state is in first

order linear in B, as shown in Fig. 1.6. From Eq. (1.31) one can express the expec-

tation value of µz as the negative slope of the energy with respect to the field:

〈µz〉 = −∂E
∂B

= −gJµBMJ . (1.36)

In the Paschen-Back regime this dependence is not any longer linear as it can be

seen in Fig. 1.6. A direct measurement of the electron moment can most easily be

made by a measurement of the g-factor of an atomic energy state [Phi49]. Direct

1 2 3 4
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-1
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2

D zE/

2

P
3/2

2

P
1/2
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mBB/z

-mBB

mBB

3/2, 1, 1/2

-3/2, -1, -1/2

1/2, 0, 1/2

-1/2, 0, -1/2

1/2, 1, -1/2

-1/2, -1, 1/2

MJ ,  ML ,  MS

Figure 1.6: The dependence of the Zeeman energy states of 2P term on the magnetic field. ∆E/ζ

is plotted as a function of µBB/ζ. The ∆E is plotted for gS = 2.
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determinations of the g-factors of atomic states can be done by measurements of the

frequencies of Zeeman lines in a known magnetic field [KF48].

Polarization and intensity of the multiplet Zeeman components

The polarization expresses the direction of the electric vector ~E in a given coordi-

nate system, whereas the intensity of a line is proportional to the magnitude | ~E2|.
Table 1.2 shows the polarization directions for E1, M1, and E2 transitions. Con-

ventionally, π-components are those polarized parallel to the external field (the θ

direction), and σ-components are those polarized perpendicular to the field (the φ

direction). As a particularity, for the longitudinal view (θ = 0◦), only the ∆MJ = ±1

components appear and are always circularly polarized. Thus, the longitudinal ob-

servations cannot distinguish the type of transition.

Table 1.2: Multipole Zeeman component polarizations. θ is the observation angle with respect to
the magnetic field axis. π and σ are linear polarized. The elliptical and circular lights are right (r)
and left (l) polarized. The symbol —– denotes zero intensity

Transition Transverse Diagonal Longitudinal
type (θ = 900) (θ = 450) (θ = 00)

E1 ∆MJ = 0 π π ——
∆MJ = ±1 σ elliptical (r, l) circular (r, l)

M1 ∆MJ = 0 σ σ

∆MJ = ±1 π elliptical (r, l) circular (r, l)
E2 ∆MJ = 0 —— π ——

∆MJ = ±1 π elliptical (r, l) circular (r, l)
∆MJ = ±2 σ elliptical (r, l) ——

Because the electric and the magnetic fields are perpendicular to each other,

the M1 Zeeman components have opposite polarizations to the E1 components. In

the case of E1 transitions, the central components (∆MJ=0) are polarized parallel

to the field. Meanwhile, in M1 transitions the central components are polarized

perpendicular to the field. And hence, for M1 radiation, the ∆MJ = 0 transitions

are σ-components, and the ∆MJ = ±1 transitions are π-components (see Fig. 1.7)

[SM68].

The angular distribution of the magnetic dipole radiation is identical with that of

the electric dipole radiation, and therefore, the Zeeman patterns for M1 are given by

the same equations as for E1. In many laboratory sources, the magnetic sublevels are
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Figure 1.7: For M1 transitions, the π- and σ-components are linearly polarized (parallel and
vertical to the B-field, respectively) at the observation angle of θ = 900.

populated equally so that only the atomic transition probability and the multipole

field intensity have to be considered when calculating the line intensities. For dipole

transitions (E1 or M1), the field intensity pattern Ilq(θ), where l is the multiplet

type (l = 1 for dipole) and q = ∆MJ , is

I10(θ) =
3

8π
sin2θ

I1±1(θ) =
3

8π

1 + cos2θ

2
. (1.37)

1.6 Nuclear interaction. Isotopic shifts

For atoms with different nuclear mass M but the same nuclear charge Z, their

nuclear structures, shape and finite mass produces small but discernible shifts on

the energy levels known as isotopic shifts. This energy shift is caused by two effects:

The first one is due to the fact that the atomic level is described by eigenfunctions

with eigenvalues for the angular momentum and energy. As the former has a defined

fixed value, any change in the mass affects the total energy. This is known as the

mass shift (MS). Second, even though different isotopes have the same number of

protons they have different mass distributions in the nucleus. Depending on the size

and shape of the nuclear electronic charge distribution, the energy of an atomic level

is different. This nuclear charge distribution, depending on the number of neutrons,

modifies the electric field at short distances from the origin and thus influences the
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energy of the atomic electrons. This change in the level energy is called the field

shift (FS). In other words, the mass shift or recoil effect arise from the finiteness of

the nuclear mass, and the field shift arise from the finite nuclear size.

The mass effect tends to decrease with Z since the atomic mass increases with Z

and thus, the ratio m0/M is reduced, whereas the field effect tends to increase with

Z because the size of the electronic orbitals becomes smaller and the ratio of the

nuclear size to the orbital size as well as their mutual overlap increases. Hence, for

light elements, i.e., small Z, the mass effect is generally predominant over the field

effect while for heavier elements the field effect is dominant over the mass effect.

Generally, the total shift is small for intermediate Z (Z ≈ 20 to 40).

1.6.1 Mass shift

The nuclear mass effect is originated from the fact that the mass of the electron

is not completely negligible compared with the mass of the nucleus. This effect

is explained by assuming that the nucleus and the electron revolve about their

common center of mass. It has been discussed and satisfactory compared with the

observed displacements for Hα and Dα [PWH94,Pac94]. In atoms with more than

one electron, since the optical electron interacts with all other electrons as well as

with the nucleus, the problem is much more complex. A common approximation

for this case consists in separating the nuclear mass contributions into two parts,

the normal mass shift (NMS) and the specific mass shift (SMS) sometimes also

called mass polarization correction. This second part includes the contributions

characteristic of the many-body problem.

In the one-body problem the energy is corrected by the replacement of the electron

mass by the reduced mass µ = m0M/(m0+M), where m0 is the electron rest mass

and M is the nuclear mass. This change in mass leads to the energy correction

Enr
NMS = E − E0 = −E0

m0

m0 +M
, (1.38)

where the superscript nr is used for non-relativistic. This equation represents

the exact evaluation of the NMS approximation. For systems having more than

one electron calculations need to include electron-electron correlation effects, which

cause an additional shift called specific mass shift. For multi-electron systems a non-

relativistic calculation of the SMS was first performed by Hughes and Eckart [HE30].

The energy correction is given by
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Enr
SMS = E − E0 = −

〈
ψ

∣∣∣∣∣ 1

M

N∑
i<j

∇i∇j

∣∣∣∣∣ψ
〉

. (1.39)

Relativistic corrections to the order (v/c)2 were derived, with the aid of the Breit

[Bre29] two-body relativistic interactions, to the order m0/M by Lowen [Low37]. A

full relativistic theory of the nuclear mass effect can only be formulated whitin the

framework of quantum electrodynamics [TSC03]. Such a theory was first presented

by Shabaev [Sha85], who derived complete formulae as a function of αZ for the recoil

corrections to the atomic energy levels to first order in m0/M . Pachuki derived also

formulae to calculate the mass corrections in H-like atoms to order (αZ)6m2
0/M

[PG95]. Whitin the lowest-order relativistic approximation (≈ (v/c)2) and to the

first order in m0/M , the sum of the mass corrections can be derived by using the

following mass Hamiltonian

Hrel
M =

1

2M

∑
ij

[
~pi · ~pj −

αZ

ri

(
~αi +

(~αi · ~ri)~ri

r2
i

· ~pj

)]
, (1.40)

where the superscript rel refers to relativistic, ~α is a vector incorporating the

Dirac matrices and ~pi,j are the four momentum operator of the electrons. The

expectation value of Hrel
M on the Dirac wave function yields the total mass correction.

By separating Eq. (1.40) into two parts, the lowest-order relativistic correction

to the one-electron normal mass operator can be written as follows:

Hrel
NMS = − 1

2M

∑
i

αZ

ri

(
~αi +

(~αi · ~ri)~ri

r2
i

· ~pi

)
. (1.41)

The corresponding two-electron correction or specific mass shift is

Hrel
SMS = − 1

2M

∑
i6=j

αZ

ri

(
~αi +

(~αi · ~ri)~ri

r2
i

· ~pj

)
. (1.42)

To the lowest order in m0/M , the mass isotope shift between two ion masses M1

and M2, is determined as the difference of the expectation values of the finite mass

correction Hamiltonian Hrel
M for two different isotopes Hrel

M1, H
rel
M2 as
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δErel
MS =

〈
ψ|Hrel

M1 −Hrel
M2|ψ

〉
, (1.43)

where |ψ〉 is the eigenvector of the Dirac-Coulomb-Breit Hamiltonian.

1.6.2 Field shift

If a bound electron has an appreciable probability density at zero radius, as in the

case of an s electron, then the binding energy of the system is lower if the nucleus

is spread out, for instance over a sphere with radius R. This consideration is not

essentially changed by the presence of other electrons around the nucleus, except for

a certain amount of screening by other s electrons. The extended structure of the

nucleus was first suggested by Goudsmit [PG30] as the reason for the isotope shift

observed in the spectra of heavy atoms. Between two isotopes, the binding energy is

higher for the (heavier) one with the greater radius. This effect gives rise to the field

shift. The magnitude of the volume effect depends somewhat upon the radial charge

distribution in the nuclear model chosen; the influence of the charge distribution was

first studied by Humbach and later reviewed by Ford and Hill [FH55].

To a good approximation, for an s electron the field shift can be approximated

as:

∆Efield = |ψ(0)|2 〈V − V ′〉 , (1.44)

where |ψ(0)| is the electronic wave function at the nucleus and V , V ′ are the elec-

trostatic potentials in the region close to the nucleus for the two different isotopes,

respectively. This approximation assumes that the nuclei are uniform and spherical,

and that the electronic wavefunction is uniform over the nuclear radius. Further

analysis along these lines yields:

∆Efield =
2π

3
Z|ψ(0)|2

(〈
r2
A

〉
−
〈
r2
A′

〉)
, (1.45)

where 〈r2〉 is the difference of the mean-square nuclear radii between two different

masses A and A′.

Then, the field shift can be written as
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δνAA′

i,field = Fiλ
AA′

, (1.46)

where δνAA′
i is the difference in transition frequency for the two isotopes (i) with

masses A and A′, respectively, and λAA′
is defined by

λAA′
= K̃δ

〈
r2
〉AA′

, (1.47)

where K̃ can be approximated theoretically, but only differs significantly from

unity for heavy nuclei. And Fi is a relativistic electronic factor defined in the follo-

wing manner:

Fi(r) =
πa3

0

Z
∆i|ψ(0)|2f(r) , (1.48)

where a0 is the Bohr radius, Z is the atomic number, f(r) is the nuclear form

factor and ∆|ψ(0)|2 is the change in the electronic density between the states of the

transition. It is clear from Eq. (1.47) that a measurement of the isotope shifts across

a chain of isotopes can yield the change in their mean square charge radii.

In recent relativistic calculations on the isotope effect [TSC03] the field isotope

shift between two isotopes have been determined by

δEFS =

〈
ψ|
∑

i

δVN(ri, R)|ψ

〉
, (1.49)

where

δVN(r) = VN(r, R + δR)− VN(r, R) , (1.50)

and δR is the difference of the root-mean-square (rms) nuclear charge radii

(R = 〈r2〉1/2
) for the two isotopes. Here, the nuclear charge distributions ρ(r′, R)

was assumed to follow the Fermi model [PTF92]

ρnuc
Fermi(r) =

ρ0

1 + e(r−c/a)
, (1.51)
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where c is the radius at which ρnuc
Fermi(r) = ρ0/2, and a is the skin thickness. Then,

the potential of the extended nucleus is expressed by

VN(r, R) = −4παZ

∫ ∞

0

dr′r2ρ(r′, R)
1

r>

, r> = max(r, r′) . (1.52)

This potential shape is used in the Dirac-Coulomb-Breit Hamiltonian to obtain

the relativistic electronic wave functions in [TSC03]. If the nuclei are spherically

symmetric and if an approximate A1/3 law of radius holds, then the fractional in-

crease of radius is just δA/3A, and the difference of the mean-square nuclear radii

can be expressed by

δ
〈
r2σ
〉

= (2σ/3) (δA/A)
〈
r2σ
〉

, (1.53)

where σ = [1− (αZ)2]
1/2

and 〈r2〉 is averaged over the radius and angle. From

knowledge of the regular variation of nuclear deformation one can find the magnitude

of the isotope shift corresponding to an equivalent uniform distribution of radius

Req =

[
5

3

〈
r2
〉]1/2

, (1.54)

which by means of measurements of the optical shift [FH55] was found to be

Req = (0.90± 0.1)× 10−13A1/3cm , (1.55)

appreciably too small to agree with the results obtained in µ-meson or electron-

scattering experiments [FR53,HFM53]. The explanation offered by Wilets [WHF53]

was that the nuclear density is not a constant but depends slightly on the neutron-

proton ratio. When a neutron is added to a nucleus, the nuclear density increases

slightly as a result of the diminished Coulomb energy, and the resultant fractional

increase of radius is less than (1/3A). The isotope shift is consequently smaller than

for constant density nuclei, which was the erroneous assumption which led to the

anomalously low radius given by Eq. (1.54).

Another possible contribution to the isotopic shift can be caused by the polar-

ization, i.e., the virtual excitation, of the nucleus by the electrons. This effect may
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1.6. Nuclear interaction. Isotopic shifts

be interpreted in terms of admixtures to the nuclear ground state of low-lying ex-

cited levels, in such a way as to give greater concentration of protons toward the

center of the nucleus where the electron probability density is greatest. Contribu-

tions arising from the nuclear polarization [BAC50], as well as those due to the

intrinsic magnetic moment of the electron were first pointed out by Breit and his

student Clendenin [BC52]. Recent calculations of the nuclear polarization correction

in heavy systems were performed by [NLP96,PMG89].
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Chapter 2

Optical emission from an Electron

Beam Ion Trap

An electron beam ion trap (EBIT) at the Max-Planck-Institute für Kernphysik

(MPIK) in Heidelberg has been used to produce and trap highly charged ions for in

situ spectroscopic observation. The machine design has originally been developed

for x-ray spectroscopy measurements of the trapped ions. With the subsequent addi-

tion of visible (VIS), ultraviolet (UV), and vacuum ultraviolet (VUV) spectrometers,

high-resolution observations of spectral emission lines from a few eV to several tens

of keV (up to 100 keV) are now possible.

2.1 Principle and applications

The electron beam ion trap, schematically shown in Fig. 2.1, is a very convenient

tool if one wants to study highly charged heavy elements with only a few electrons

left [Gil01]. One of its advantages is the minimization of the Doppler shift due to

typically slow motion of the ions along the line of sight in the trap. It is possible to

produce ions with a relatively narrow charge state distribution under excitation by a

nearly mono-energetic electron beam and, thus, it is a powerful source for emission

spectroscopy. By allowing high precision measurements, higher order effects due to

various interactions among the nucleus, the electrons, and the electromagnetic field,

such as QED effects can be studied in detail.

The device consists of three main assemblies: an electron gun, a trap region and

a collector. In the electron gun, electrons emitted from a negatively biased cathode

are accelerated towards the trap region, which is positively biased with respect to
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Chapter 2. Optical emission from an Electron Beam Ion Trap

the laboratory ground potential. The accelerated electron beam is compressed by a

strong axial magnetic field. To achieve such a high field, two pairs of superconducting

coils, cooled down to 4.2 K with liquid helium, are used. At this low temperature,

the trap itself becomes a very efficient cryo-pump, helping to produce the required

vacuum (10−13 torr) in the trap region to prevent charge exchange effects causing

losses of the trapped ions (see Fig. 2.1).

After passing through the trap region, the electrons are decelerated as they ap-

proach the collector electrode which is biased at the same potential as the catho-

de. The magnetic field strength is reduced towards the collector resulting in a

re-expansion of the focused electron beam. Finally, the electron beam with a kinetic

energy of the order of 1 keV is stopped at the collector electrode.

Cathode

Drift tube assembly

E beam

Superconducting coils

B

Collector

Axial potential

Radial
potential

Radial escape

Axial escape

Radiative
recombination

Excitation

Ionization

Charge
exchange

Figure 2.1: A schematic diagram of the principle of an EBIT and some of the processes occurring
inside the trap.
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2.1. Principle and applications

The radial trapping of the ions is provided by the negative space charge potential

of the compressed electron beam. The axial trapping is generated by applying

appropriate voltages to the drift tube electrodes, which can be biased independently.

Thus, different trap configurations can be chosen for specific purposes. In such a

way, a shallow trap is used when cold ions are required, and a deep trap when the

ion temperature is less important.

There are a few EBITs worldwide. The first one was built at the Lawrence

Livermore National Laboratory (LLNL) [MLK88], where also the second one, called

Super-EBIT [MEK94], was later constructed allowing higher electron beam energies

and currents (up to 200 keV and 200 mA, respectively). Based on these models, two

more machines were built at the National Institute of Standards and Technology

(NIST) [Gil97] and at Oxford University [SVM94]. Another slightly modified copy

is the Berlin EBIT [BFF97]. There is a new EBIT at Stockholm University [Uni05].

High-energy EBITs are currently working at LLNL, at the University of Electro-

Communication in Tokyo [CAI 96], at the Institute of Modern Physics in Shanghai

and at the MPI für Kernphysik in Heidelberg. There also exists a compact EBIT

using a permanent magnet at the Forschungszentrum Rossendorf in Dresden. Two

more EBITs are under construction at the MPI in Heidelberg, which will be used at

the ISAC facility at TRIUMF (Vancouver), and at the Tesla test facility laboratory

in Hamburg, respectively.

2.1.1 Atomic collisional processes

The ions in an EBIT are produced by successive electron impact ionization events

from either low charge state ions or neutrals that are introduced into the trap. A

detail understanding of the atomic physics processes occurring in the trap is essential

for the analysis of the ion charge balance inside and the radiation emitted from the

trap.

An excitation process from a level nl to a level n′l′ is possible only if the collision

energy exceeds the necessary threshold energy. The collision reaction reads

Aq+(nl) + e− −→
[
Aq+

(
n′l′)]∗ + e− , (2.1)

where q is the ions charge state. The excited ion is stabilized usually by emitting

a photon with specific energy, by a photon cascade, or by an Auger process. The

electron impact ionization (EI) is the dominant ion production process in most

plasmas. The most simple process of which is direct single ionization,
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Aq+ + e− −→ A(q+1)+ + 2e− . (2.2)

Electron recombination take places when an electron is captured into a bound

state of an ion. If a single photon is released, the process is called radiative recom-

bination (RR),

Aq+ + e− −→ A(q−1)+(nl) + hν . (2.3)

Another type of recombination may also occur through a resonant process called

dielectronic recombination (DR),

Aq+ + e− −→ A∗∗(q−1)(nln′′l′′) −→ A(q−1)+(nl) + hν . (2.4)

These two processes (RR and DR) are studied and described in the context of

EBITs in more detail by González Mart́ınez in [Gon05].

When an ion captures one or several electrons from a neutral atom the charge

exchange process take place:

Aq+ +B −→ A(q−p)+(n1l1, n2l2, ..., nplp) +Bp+ . (2.5)

This process results in the stepwise lowering of the charge state, and eventually in

the loss of HCI. While neutrals may affect strongly the charge balance, in an EBIT,

charge exchange between highly charged ions is very unlikely and can be ignored

in most cases, due to their low kinetic energies and the strong Coulomb repulsion

between them.

The rate of change of the number density of a particular charge state is coupled to

the number density of its neighboring charge states through the previous processes

(ionization, excitation, recombination and charge exchange) [PBD91].

2.1.2 The Heidelberg EBIT

The main difference between the Heidelberg design and all other EBITs essentially

being of the Livermore type is its horizontal arrangement, as shown in Fig. 2.2.
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Moreover, it has two thermal shields in order to reduce the liquid helium consump-

tion and, thus, the running costs. Besides, these shields provide an efficient diffe-

rential pumping providing an enhancement of the vacuum quality. The reason for

this horizontal design is to facilitate simple extraction of ions, which, for instance,

can be transferred into a reaction microscope [KSM97] to study collisions involving

slow highly charged ions with atoms, and molecules [UMD03] as well as to other

experiments for ion-surface interaction studies.

The magnetic field strength can be as high as 9 T. This highest field can be

reached by cooling the super conducting (SC) magnet down to 2.2 K by means of

a Lambda-plate refrigerator. Such a strong field compresses the electron beam dia-

meter down to below 50 µm. Due to the high electron beam energy and current,

combined with the excellent vacuum conditions, it has already been possible to pro-

duce a broad variety of highly charged ions, as for instance Ar18+, Kr36+, Xe54+, ...

Hg78+.

Superconducting

Helmholtz coils Electron gun

Drift tube assembly

Collector

Figure 2.2: The horizontal design of the Heildelberg EBIT.

Electron gun

The main parts of the electron gun are a thermoionic cathode, a focus and an anode

electrodes, respectively. The cathode, which uses a dispenser of barium oxide, has a

spherical-concave shape (Pierce geometry) which produces well-defined beam profiles

and a smoother beam-waist than other commonly used cathode designs [CBM04].

The focus electrode controls the emission current and compensates the edge effects

of the cathode field. To accelerate the electrons emitted from the cathode, a tubular
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Chapter 2. Optical emission from an Electron Beam Ion Trap

anode electrode is used. Proper tuning of the potentials applied to these two elec-

trodes (focus and anode) improves the focusing, and thus, the beam intensity and

quality.

The effect of a residual magnetic field at the cathode surface, which is to limit the

minimum diameter achievable under a given BMAX at the trap center, is minimized

by means of a so-called bucking coil, which surrounds the electron gun. A proper

tuning of the magnetic field at the cathode surface by means of this coil minimizes

the diameter of the electron beam in the trap region (see below). The picture of

the electron gun, shown in Fig. 2.3, displays these and other important parts as the

trimming coil, which are used to tune the beam.

Anode insulator

Anode

HV

supplies

Ba dispenser

cathode

Soft iron

magnetic yoke

Bucking coil

Trimming coil Water cooling

circuit

Focus Insulation

Figure 2.3: Electron gun assembly.

Trap, electrodes and magnet

Two superconducting coils are mounted in a Helmholtz configuration around the

trap region. The trap region consist of nine electrodes called drift tubes (DT).

These electrodes have different cylindrical shapes, with a radius decreasing towards

the direction of the central trapping region. The middle one is 40 mm long and has

a 5 mm inner radius (rdt). The neighbouring electrodes are 55 mm, 56 mm, 27 mm

and 15 mm long, respectively. This distribution is symmetrical on both sides of

the central drift tube. By applying appropriate voltages to these electrodes, various

trap configurations with a length varying from 40 to 350 mm can be formed. The

central DT has four elongated apertures allowing optical access to the trapped ions.

Depending on the experimental goal, ports with optical lenses for laser or visible
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spectroscopy, or beryllium windows for x-ray experiments are used. The port under

the trap region is used for the neutral gas injection (see below).

In Fig. 2.4 the main vacuum chamber containing the two thermal shields cooled

with a cryogenic system is shown. The outer shield operates at about 50 K. The

second thermal shield lies at temperature of about 16 K. This shield surrounds the

cryostate, which is filled with liquid He at 4.2 K, and contains the superconducting

coils. Hence, the pressure in the trap region is estimated to be as low as 10−13 Torr.

Superconducting
coils

Gas injection

Transition
electrode

Trumpet
electrode

DT 1

DT 4
DT 5

DT 9

DT 8
Ceramic rods

Drift tubes

Figure 2.4: The main vacuum chamber with, on the right, an enlargement of the setup for the
drift tubes. In DT9, the central drift tube, there are four rectangular apertures for optical access.

Just in front of the drift tubes, the so-called transition electrode is located. A

good guiding of the electron beam from the electron gun through the drift tubes to

the collector without hitting the electrodes is very important. Two pairs of small

magnetic coils (steering magnets) mounted outside the vacuum chamber are used to

steer the electron beam and reduce current losses.

In this experiment, the trap is continuously loaded with neutral gas atoms by

means of an atomic beam. It is periodically dumped to avoid the slow accumulation

of high-Z ion impurities by applying a positive voltage to DT9. As an example, for

argon a typical cycle lasts a few seconds.

Electron collector

The purpose of the electron collector is to slow down and stop the electron beam

after it has passed the trap. It consists of a water-cooled collector electrode and ad-

ditional electrodes called suppressor and extractor, and it is surrounded by a magnet

coil. This coil (see Fig. 2.5) compensates the residual axial magnetic field of the SC

magnet allowing the electron beam to expand and hit the collector wall. In order
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to prevent the secondary electrons produced here from escaping back into the trap,

a suppressor electrode biased negatively with respect to the collector is used. The

extractor electrode is used to extract ions from the electron beam. This electrode

has a negative potential applied in order to stop the electrons from leaving the col-

lector through its rear aperture. The collector is cooled with water to remove the

heat produced by the electron beam.

Suppressor

Water cooling

circuit

Magnet coilCollector

electrode

Extractor

Electron beam

Insulation

Insulation

Figure 2.5: Sketch of the electron collector.

Gas injection

An atomic beam is injected into the trap by means of two differential pumping stages.

This system lets only ballistic molecules pass through the two stages, producing a

narrow slit-shaped atomic beam and, hence, less atoms can contaminate the main

tank vacuum. Atoms or molecules in the gas phase (Ne, Ar, Kr, Xe, Cl2, UF6, Hg,...)

can be injected in this way. It has to be mentioned that barium and tungsten ions

evaporated from the cathode material are always present in the trap.

In order to regulate the gas injection, a needle valve connected to the gas supply

is controlled thermally. The gas pressure, monitored by ionization gauges, is about

10−8 Torr in the first stage (see Fig. 2.6).
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Stage 1

Electron beam

Vacuum chamber

50 K

16 K

Stage 2

4 K Dewar

Turbomolecular

pump

Needle

valve

Figure 2.6: The two-stage differentially pumping gas injection system.

2.2 Properties of the electron beam

The optimum operation of the EBIT depends on a proper tuning of the electron

beam. While the electron beam energy (Ee) determines the ion charge state, the

ionization rate depends on the electron beam current (Ie). For a given current, a

smaller beam diameter means a higher electron density and, thus, shorter ionization

times and higher excitation rates. The diameter and position of the electron beam

depend mainly on the field strength of the superconducting magnet, but it is also

affected by the operation of the bucking coil and the steering magnets.

2.2.1 Electron beam radius

A rigorous calculation of the electron beam radius, rH , performed by Herrmann

[Her58], based on a non-laminar electron beam of cylindrical shape, and also taking

into account the thermal motion of the electrons, yields

rH = rB

√√√√1

2
+

1

2

√
1 + 4

(
8m0kBTcr2

c

e2r2
BB

2
+
B2

c r
4
c

B 2r2
B

)
, (2.6)

which contains the contribution of the cathode properties, namely its radius rc,

the magnetic field strength on its surface Bc and its temperature Tc. kB is the

Boltzmann constant and e is the elementary charge. rB is a fictitious value of the

radius of an ideal electron beam, obtained using the Brillouin theorem [Bri45]. This

theorem does not take thermal effects into consideration and, for a laminar electron
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flow, propagating in an uniform axial field B in terms of the electron beam current

Ie, the electron speed ve and the electron mass m0, yields a radius rB of

rB =

√
2m0Ie

πε0veeB2
, (2.7)

where ε0 is the permitivity of the vacuum. In Fig. 2.7a the calculated dependency

of the electron beam radius rH as a function of the electron beam current is shown.

The Herrmann radius is plotted as a function of the electron beam energy Ee in

Fig. 2.7b as well. Here, we can see that rH does not change significantly with Ee.

Figure 2.7: The electron beam radius rH as a function of a) the electron beam current Ie and b)
the electron beam energy Ee at B = 8 T.

The magnetic field on the surface of the cathode Bc has to be minimized to

optimize the laminar flow of the electron beam [Her58]. This is achieved by a

combination of the bucking coil, the trimming coils and the superconducting magnet.

The strong influence of the bucking coil on the beam radius has been measured by

Utter [UBC99] in the EBIT at LLNL in Livermore. There, the electron beam

image was obtained by observing x-rays emitted by the trapped ions with a pinhole

camera and a position sensitive detector. At a field of 3 T, the beam diameter could

be modified from 40 µm to 80 µm by changing the bucking coil current from 0.95 A

to 1.20 A. However, the compression of the electron beam radius is essentially caused

by the axial magnetic field as is shown in Fig. 2.8.
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Figure 2.8: Electron beam radius as a function of the axial magnetic field for a beam energy
Ee = 0.7 keV and a beam current Ie = 50 mA calculated with Eq. (2.6).

2.2.2 Radial space charge potential

The electron charge density generates a space charge potential Vsp which must be

taken into account to know the actual acceleration voltage. The electron beam is

assumed to have a flat uniform profile distribution along the radial direction within

its radius re, and to flow along the axis of a drift tube with a radius rdt [Gil01].

Under the boundary conditions that the space charge potential is zero at the drift

tube wall and steady at the electron beam edge r = re, the Vsp is given by

Vsp(r ≤ re) =
Ie

4πε0ve

[(
r

re

)2

+ ln

(
re

rdt

)2

− 1

]
, (2.8)

Vsp(r ≥ re) =
Ie

2πε0ve

ln

(
r

rdt

)
, (2.9)

where ve is the electron velocity. At the drift tube center, r = 0, the radial space

charge potential can be calculated using the following approximation
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Vsp(0)[V ] ≈ 30Ie [A]√
1−

(
Ee[keV ]

m0c2
+ 1
)−2

[
ln

(
re

rdt

)2

− 1

]
, (2.10)

with the electron speed expressed as ve = c
√

1− (Ee/m0c2 + 1)−2, and the elec-

tron mass m0c
2 = 511 keV. A reduction of the electron beam radius produces

an increase of the radial space charge potential. In Fig. 2.9 the calculated space

charge potential Vsp is plotted versus the electron beam energy for different electron

beam currents, showing how it changes linearly with the electron beam current at

a given electron energy. For instance, and for an electron beam radius of 29 µm

at Ee = 0.7 keV the space charge potential is calculated to be Vsp = - 128 V at

Ie = 20 mA and - 645 V at 100 mA, respectively.

Figure 2.9: Space charge potential at the electron beam center as a function of the electron beam
energy Ee for different electron beam currents.

However, the effective radial space charge potential due to the electron beam

(negative) is reduced when highly charged ions (positive) are accumulated in the

trap. Therefore, an additional factor f , the so-called compensation factor, has to be

taken into account. It is defined as

64



2.2. Properties of the electron beam

f =

∑
nqq

ne

, (2.11)

where nq is number density of ions with the charge q and ne the negative (electron)

charge density, within the electron beam volume of interest [Wid98]. The electron

density ne can be determined by assuming that the distribution of the transversal

thermal velocities of the electrons follows a Gaussian function. Its radial dependence

is written as

ne(r) = ne0e
− r2

e
2σ2

r , (2.12)

where the maximum ne0 and the width σr (the geometrical cross section) of the

Gaussian beam charge distribution are given by

ne0 =
Ieln5

πr2
bve

,

σ2
r =

r2
b

2ln5
. (2.13)

Using these definitions, the beam radius rb encloses 80 % of the total charge.

We finally obtain an expression for the actual beam energy Ee including the space

charge effects

Ee = −Vcathode + Vdt − Vsp(1− f) . (2.14)

To determine the still unknown f , one observes the appearance and/or disap-

pearance of some characteristic spectral feature or signal due to certain charge state

Xq+. In order to produce that charge state, the electron beam needs an energy at

least as high as the ionization potential of the X(q−1)+ ion, I
(q−1)+
P .

By recording Vcathode, Vdt (and in some cases the additional acceleration voltage

applied to the whole electron gun) and observing the threshold behavior of the chosen

feature, the value of f can be obtained by means of Eq. (2.14), when Ee = I
(q−1)+
P .

2.2.3 Axial space charge potential

Due to the different radii of the drift tubes along the beam axis, a variable axial space

charge potential V ax
sp is inherently generated along the electron beam propagation in
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addition to the radial one. This produces a trapping potential along the drift tube

electrodes, which can be approximately calculated as the difference between the ra-

dial space charge potential of the two neighboring electrodes, V ax
sp = V dti

sp −V dtcentral
sp .

Here dti represents the radius of the drift tubes next to the the central drift tube

dtcentral. In our case rdtcentral
= 5 mm and rdti = 1.5 mm. With these parame-

ters, the axial space charge potential difference between the central and neighboring

electrodes is:

V ax
sp [V ] =

72.24 Ie [A]√
1−

(
Ee[keV ]

511
+ 1
)−2

. (2.15)

In order to illustrate the importance of this effect, a simulation of the electro-

static potential along the r = 0 axis (under the assumption that all drift tubes are

grounded) caused by an 0.7 keV, 50 mA electron beam is shown in Fig. 2.10. Under

those conditions, the axial space charge potential generated is V ax
sp = 69 V, which

even without any external voltage applied to the drift tubes is sufficient to trap ions.

Figure 2.10: Simulation of the axial space charge potential in the trap region for 0.7 keV and
50 mA electron beam energy and current, respectively.
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2.2.4 Heating and cooling mechanisms

Most of the electron-ion collisions in an EBIT result in the transfer of a small random

amount of kinetic energy to the ions. Thus, despite of the large difference in the

masses of ions and electrons, the ion population is heated up by the electron beam.

Changing their charge state during an ionization process, ions can gain kinetic energy

depending on their electrostatic potential at the position where ionization took place.

Among the different processes which may contribute to the heating of the ions, the

collisional heating dominates in the EBIT. The heating rate dEq/dt is given by

dEq

dt
=

0.442q22jenqln(Pm/P0)

AEe

(eV/sec · cm3) , (2.16)

where A is the ion mass (in atomic units), P0 and Pm are the minimum and maxi-

mum ion-electron impact parameter, respectively, q is the ion charge and nq denotes

the number density of q times ionized ions [LMH88]. The expression ln(Pm/P0),

denoted as ln(Λ), is usually called the Coulomb logarithm, and typically has a value

of the order of 10.

Figure 2.11: Evaporative cooling of highly charged ions by an admixture of low charged ions.

This continuous heating would eventually result in all ions leaving the trap. In or-

der to counter act the heating, an appropriate cooling mechanism is needed. Evapo-

rative cooling is used for this purpose in EBITs [LMH88]. It basically consists in
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Chapter 2. Optical emission from an Electron Beam Ion Trap

the cooling of the HCIs of interest by ion-ion collisions with lighter ions in some-

what lower charge states (see Fig. 2.11). This process is deliberately enhanced by

introducing a light element, typically Ne or N2 into the EBIT. Its atoms are rapidly

ionised to their bare state and quickly thermalize with the heavier ions by collisions.

Their lower maximum charge state implies a lower effective trapping potential and,

thus, they can evaporate from the trap more easily. In this way, the light element

efficiently cools the HCIs under study. Other techniques developed for this purpose

are pulsed evaporative cooling [KCO99] and sympathetic cooling [MFR01].

In the present experiment, the first factor studied with respect to the ion tem-

perature was the electron beam energy. In Fig. 2.12 a decreases in the width of

the observed emission line (see section 3.5.2) can be seen while lowering the beam

energy. So, by reducing the electron beam energy but keeping it high enough to

produce the desired charge state the temperature of the trapped ions is decreased.

Figure 2.12: Profile of the emission line from the 2P3/2 −2 P1/2 transition in Ar13+ for different
electron beam energies (non-calibrated wavelength scale).

The next factor which helps in reducing the temperature is simply realized by

lowering the external axial trapping potential, thereby controlling the evaporation

rate. Thus, the Doppler broadening was reduced as well, as shown in Figs. 2.13a

and b, respectively, for two different Ee values.
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2.2. Properties of the electron beam

Figure 2.13: Profile for the emission line from the 2P3/2−2 P1/2 transition in Ar13+ at a) 800 eV
and b) 700 eV electron beam energy (Ie = 100 mA and 70 mA, respectively) for different external
axial trapping potentials, i.e., drift tube voltages (non-calibrated wavelength scale).

For the present experiments ion cooling is very important, since the Zeeman

splitting of the fine structure 2P3/2−2 P1/2 transition in Ar13+ is very small and can

only be resolved at low temperatures. The accuracy of the wavelength measurement

can also be increased with narrower lines. For this purpose, the electron beam

current was varied as well, looking for the best conditions (see Fig. 2.14).

Moreover, by increasing the gas injector pressure the neutral atom density in

the trap increases. The ion production rate increases accordingly, and more light

ions can be evaporated. Enhanced evaporative cooling leads to ion temperature

reduction and, thus, to a narrowing of the spectral width of the emission lines, as

shown in Fig. 2.15.

A systematic optimization of the evaporative cooling allowed us finally to achieve

a FHWM of only 0.013(1) nm, for the HCI forbidden lines. After correcting for the

apparatus profile of the spectrometer, this Doppler broadening of the line implies ion

temperatures as low as 6(1) eV. The ion temperatures of 60 eV, in an EBIT, reported

by Beiersdorfer [BOD96] had enabled very high resolution x-ray measurements. In

our experiment, the achieved temperature is even lower and helped to carry out the

present wavelength measurements, which have the highest accuracy ever reported

for HCI.
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Chapter 2. Optical emission from an Electron Beam Ion Trap

Figure 2.14: Resolved Zeeman splitting spectrum of the fine structure 2P3/2 −2 P1/2 transition
in Ar13+ for Ee = 700 eV, Vdt = 0 V and Ie = 50 mA.

Figure 2.15: Reduction of the spectral line width of the emitted light for two different injector
gas pressures (non-calibrated wavelength scale).
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Experimental setup

Spectroscopic observations in an EBIT require always the use of very sensitive ins-

trumentation. The low number of trapped ions (105 to 107 typically), the reduced

solid angle subtended by spectrometers (10−3 to 10−8) as well as the small excita-

tion cross sections imply in many cases that long observation times are necessary to

acquire sufficient statistical significance. Under these circumstances, detector noise

becomes also a central issue.

Vacuum chamber

L1

L2

Czerny-Turner
spectrometer

Optical
box

Figure 3.1: Sketch of the set up used in this experiment. Two quartz lenses (L1, L2) are installed
inside the main vacuum chamber. Outside the EBIT, the light passes through an optical system
into the Czerny-Turner spectrometer.
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In the present experiment, the observation of the visible forbidden lines produced

in the EBIT has been carried out using a Czerny-Turner spectrometer equipped with

a cryogenically cooled charge coupled device (CCD) camera. Since the ion cloud in

the EBIT has a horizontal shape (40 mm length × 0.3 mm diameter, roughly), it is

convenient to rotate its image in order to increase the amount of light going through

the vertically arranged spectrometer slit by means of an optical system consisting of

mirrors and lenses (see Fig. 3.1). This setup was enclosed in a box mounted onto the

same table as the spectrometer and fixed to it to prevent any relative motion. The

data acquisition and the spectrometer control were carried out using a specialized

software (Jobin-Yvon Spectra-Max for Windows version 3.0).

3.1 Optical imaging system

In order to obtain a real image of the trapped ions outside the EBIT, two lenses (L1,

L2) are mounted inside the main vacuum chamber. The optical access is provided

by a quartz window (≈ 92% transmission) setup on a side vacuum port. The opti-

cal system, used to rotate the image, is composed of two lenses and three mirrors

contained in a completely opaque and closed box. The lenses (L3, L4) are used to

transfer the image of the trap produced by the first set of lenses to the entrance

slit of the spectrometer, as shown in Fig. 3.2. With the first and second mirrors

(M1, M2) the image is rotated from horizontal to vertical. The last mirror (M3) is

required to align the optical axis with the spectrometer (see Fig. 3.13). The distance

from M1 to the spectrometer entrance slit is 230 mm.

Vacuum
chamber

Optical
box

CZ
spectrometer

D1 = f D3 = 2f D1

L1 L2 L3 L4

D4D2

Figure 3.2: Optical system used to generate an image of the ion cloud inside the trap at the
entrance slit of the spectrometer. The distance from the trap center to the port view is 300 mm.
The lens L4 can be moved back and forth and, hence, the distances D4 and D1 change.
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All the lenses used in this system are planoconvex. This arrangement was choosen

to reduce spherical aberration. They are made of quartz (fused silica) and have

50 mm diameter and 150 mm focal length. The magnification of the system is

roughly one at 441 nm. The substrate material of the mirrors is fused silica; they

are coated with aluminum and have a protective MgF2 layer. Their diameter is

25 mm and their flatness is λ/4 over the central 90% of the mirror diameter.

Coma and astigmatism

In a real imaging system, for points off the optical axis the images are comet-shaped

figures rather than circles. This aberration is called coma [JW57]. A lens produces a

sharp image at the field center, but the image becomes increasingly blurred towards

the field edges.

Image

Figure 3.3: Illustration of the coma aberration of a lens.

The astigmatism of the spectrometer setup produces a curvature of the spectral

image observed on the CCD camera. However, by binning the camera in 8 regions

(stripes) and only using the central ones (where the image is sharpest) in the analysis,

this effect is nearly eliminated. In Fig. 3.4a the FWHM for the 2P3/2 − 2P1/2

transition in B-like argon is shown as a function of the CCD region (see below). The

curvature of the lengthy image of the ion-cloud along the non-dispersive direction

and the coma cause a wider FWHM of the line at the CCD regions further away

from its center (towards the end of the trap). In Fig. 3.4b the peak intensity of

this spectral emission lines is also shown as a function of the region on the CCD

camera, i.e., the position of emitters in the trap (the center of the CCD at around

pixel number 500 corresponds to the center of the trap). The narrowest width

corresponds to the highest line intensity.
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Figure 3.4: a) FWHM in nm (black squares) and b) peak intensity in arbitrary units (blue circles)
as a function of the CCD region along the non-dispersive direction of the spectrometer.

3.2 Czerny-Turner spectrometer

The Czerny-Turner (CT) spectrometer function is to disperse the light into discrete

wavelengths by means of a grating. The spectral image is viewed in the exit focal

plane using a two dimensional CCD camera. A concave optical mirror (MC) is used

to collimate the incoming radiation. After diffraction by the grating, the light is

subsequently focused by a second concave mirror (MF) onto the CCD camera, as

shown in Fig. 3.5.

MCCCD camera

MF

Grating tower

Entrance slit

Focal plane

Figure 3.5: Illustration of the Czerny-Turner spectrometer.
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3.2. Czerny-Turner spectrometer

In a CT spectrometer with a rotational grating, the axis of rotation of the grating

is usually aligned along its surface. The symmetrical geometry of the CT produces

a flattened spectral field and good coma correction at any given wavelength. The

spherical aberration created by the first mirror is compensated by the second mirror

(see below). The astigmatism is also reduced by illuminating the grating with an

only slightly divergent beam. The focal length of the present spectrometer is 550 mm

and its input aperture ratio f/6.4.

3.2.1 Grating properties

In a grating, the incident and reflection angles of a light beam with a wavelength λ

(see Fig. 3.6) are related by the following equation:

sinα+ sinβk = knλ , (3.1)

where α is the incidence angle, βk the diffraction angle relative to the grating

normal (NG), k the diffraction order and n the groove density (1/d). When k = 0,

Eq. (3.1) is reduced to α = β0, the specular reflection law. If the diffraction angle

is fixed, the difference between α and βk, the so-called deviation angle (DV ), is

constant (see Fig. 3.6).

a
Reflected
light

Incident
light

d

L
A

L
B

NG

bk

NB

wB

wB

DV

Figure 3.6: Scheme of the light reflexion in a grating. NB is the blaze normal and ωB defines the
blaze angle. The distance between two consecutive grooves is defined by d.
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A reflection grating can concentrate most of the diffracted spectral radiation

into a single spectral order and, therefore, reduce the intensity of all other orders.

This redistribution of intensity among the orders depends on the angle between the

reflecting elements and the grating surface, which is called the blaze angle ωB (see

Fig. 3.6). Blazed gratings are optimized for a specific wavelength range and can

reach an typically absolute efficiencies of more than 70% for this respective range.

Dispersion

The derivative of the diffraction angle over the wavelength is known as the angular

dispersion. It is a measure of the angular separation between beams of adjacent

wavelengths. An expression for the angular dispersion is derived by differentiating

Eq. (3.1) for a fixed incident angle α. Thus,

∂βk

∂λ
=

kn

cosβk

. (3.2)

A high dispersion can be achieved either by choosing a grating with a high groove

density (n), or by using a coarse grating in high diffraction order (k). The linear

wavelength dispersion at the exit focal plane of a spectroscopic instrument is usually

specified as reciprocal linear dispersion given in nm/mm. If the focal length of the

instrument is LB, then the reciprocal linear dispersion is given by:

D(λ) =
∂λ

∂p
=
kncosβk

LB

, (3.3)

where p represents the distance in mm. Since the size of the instrument depends

on the focal length of the optical system, by choosing a grating with a high groove

density, the instrument can be made more compact.

As shown in Eq. (3.3), the relation between the pixel position p on the CCD

camera and the real wavelength λ is given by the dispersion function D(λ). This

function depends on the wavelength. At least one reference point p0 in the spectrum

(a known wavelenght λ0) is required to calibrate the wavelength scale, if D(λ) is

known. Then the λ of any other line on the spectrum can be obtain by

λ = λ0 +

∫ p

p0

D(λ)dp . (3.4)
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3.2. Czerny-Turner spectrometer

This is, in general, difficult and often only numerically solve because the dispersion

function is not a simple function of the wavelength. If the dispersion function is

independent of λ, Eq. (3.4) is expressed as

λ = λ0 +D(p− p0) , (3.5)

and the desired wavelength λ can be determined. For the CT spectrometer con-

figuration, the dispersion function is given by [JW81]

D(λ) =
dλ

dp
=
dx

dp

1

kLBn

√cos2φ−
(
knλ

2

)2

− knλ

2
tanφ

 , (3.6)

where dx/dp is the pixel size of the chip in the CCD and φ is the incidence

grating angle. The use of this equation is cumbersome since for determination of

each wavelength one would have to numerically solve Eq. (3.4) for the unknow λ.

Resolution

The resolution or chromatic resolving power of a grating describes its ability to

separate adjacent spectral lines. The resolution is generally defined as R = λ
∆λ

,

where ∆λ is the difference in wavelength between two spectral lines with equal

intensity that are separable.

The limit of resolution of a grating is R = kN, where N is the total number of

grooves illuminated on the grating. A more practical expression for the resolution

is obtained using Eq. (3.1)

R = kN =
Nd(sinα+ sinβk)

λ
. (3.7)

Since sinα+sinβk can have a maximum value of 2, the maximum resolving power

at any wavelength turns out to be equal to 2Nd/λ, where the product Nd is the

illuminated width W of the grating, and, therefore,

Rmax =
2W

λ
. (3.8)
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This condition for the maximum resolution corresponds to the grating Littrow

configuration, i.e., α ≈ βk, |α| ≈ |βk| ≈ 90◦. The measured resolving power of a

real grating is less than the theoretical value as the surfaces or the grating grooves

deviate from the ideal shape and position. In the present experimental setup, we

use a plano-blazed holographic grating which parameters are listed in Table 3.1.

Table 3.1: Properties of the plano-blazed holographic grating used here. λB is the blaze wave-
length at the blaze angle ωB and Rth,ex denotes the theoretical and experimental spectrometer
resolution, respectively

Parameter Value

Grooves/mm 2400

Dimensions 76 × 76 mm

ωB (at λB = 441 nm) 31.95◦

Efficiency range (0.67 - 2) λB

∂λ/∂p 0.643 nm/mm

Rth 0.002 nm

Rex 0.03 nm

Efficiency

The grating efficiency is generally a rather complex function of the wavelength and

polarization of the incident light and depends on the groove density, the shape of

the grooves and the grating material. Depending on the orientation of the incident

electric field vector with respect to the grating grooves, the efficiency can change

rapidly over a narrow wavelength range, as shown in Fig. 3.7. This phenomenon

was first observed by Wood in 1902 [Woo35], and usually called Wood’s anomalies.

We have measured the efficiency of the grating for the light being polarized either

parallel (S) or perpendicular (P ) with respect to the grating grooves, by means of a

hollow cathode lamp (see below). To separate S from P , a polarizer (PW-64) was

inserted in front of the CT (see Fig. 3.13). The value of the transmission coefficient

of this polarizer, provided by the company, for a given polarization is higher than

60% over the spectral range of interest (440 - 600 nm), as shown in Fig. 3.8. In

Fig. 3.9 the ratio between the intensity of the perpendicular polarized radiation P

and the parallel polarized radiation S is plotted versus the wavelength.
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Figure 3.7: Theoretical efficiency as a function of the wavelength for a 2400 l/mm grating opti-
mized for the visible region [Opt05]. S represents the incident light being polarized parallel with
respect to the grating grooves, P the perpendicular polarization and AVG the averaged or random
polarization.

Figure 3.8: Transmission of the polarizer as a function of the wavelength. The solid line represents
the transmission for the parallel polarization and the dash-dot line shows the transmission for the
perpendicular one.
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Figure 3.9: Ratio between the measured intensity of the perpendicular (P ) and parallel (S)
polarized beams, respectively, as a function of the wavelength, for the same incident flux.

3.3 CCD detector

The CCD camera is a solid state detector array made of silicon with a sensitive

range from 400 to 1100 nm. It converts the incoming light into electrons through

the photoelectric effect. These free electrons are stored in a rectangular array of

imaging elements called pixels defined by a grid of gate electrodes in the X and

Y directions, respectively. The charge is collected under the gate with the highest

potential. During the readout cycle, the voltages applied to the gate electrodes are

manipulated to shift the accumulated charge across the pixels to the output register

at the edge of the array. The CCD provides simultaneously information for both

intensities and positions projected along the height of the spectrograph image plane.

The CCD chip size used is 30 × 12 mm2 and is composed of 2000 × 800 pixels. Each

pixel has an area of 15 × 15 µm2.

The CCD readout can be binned and, thus, allow us to adjust the effective de-

tector height from one pixel up to the full height of the camera. As more than one

binned area can be read out for a given image, multiple spectra at different heights in

relation to the main optical axis can be obtained. This results in horizontal images

separated across the chip height (onto which the spectrometer slit is imaged). In this

experiment the whole area of the CCD camera was usually divided into 8 different

regions, each of them having 100 pixel height.
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Three sources of noise affect the CCD: thermal dark current, readout noise and

cosmic rays. The dark current is caused by free electrons resulting from thermal

excitation from the valence band to the conduction band in the Si material. The

readout noise is generated during the digitalization process, which involves an am-

plification of the charge. To correct the first of these two effects, a dark image is

taken, in which no light strikes the chip and then subtracted pixel by pixel from the

object image. As the camera is cooled with liquid nitrogen (LN2) to reduce ther-

mal noise, it can integrate weak signals for hours without accumulating disturbing

background (less than 1 electron/pixel/hour). Typical readout noise is less than

3 electrons/pixel at -140◦ C.

Cosmic rays are highly energetic particles which generate a huge amount of charge

due to ionization processes over a few adjacent pixels, and appear as bright spots on

the image. These cosmic ray hits are easily to discriminate and can be subtracted

from the spectrum.

3.4 Adjustment procedure

The image focussing on the CCD camera was done by moving the MF mirror of the

CT spectrometer. Then, the optical system and the spectrometer must be aligned

with respect to the ions trapped inside the EBIT. To find the optical axis a He-

Ne laser was used. For the fine tunning, the last lens L4 in the optical system is

moved, perpendicular and parallel to the electron beam axis, to improve the focus

and alignment adjustment, respectively.

3.4.1 Image focusing

In order to focus the slit image properly onto the CCD detector, the second mirror

(MF) of the CT spectrometer (see Fig. 3.5) is mounted in a linear stage, which can

be moved back and forth by means of a micrometer screw within a range of 25 mm.

Fig. 3.10 shows how the shape of a calibration line changes as a function of the MF

position. Here, it should be noticed the sharp deformation of the observed profile

at large displacements from the ideal position. The best focus was obtained at the

setting of ≈ 15 mm. The mirror was then adjusted around the optimum position

in fine steps in order to maximize the line intensity and to reduce the width of the

observed spectral line, as shown in Fig. 3.11.
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Figure 3.10: Bringing the CCD into the focus by moving the MF mirror in 2 mm steps. As the
optimum focus is approached the spectral line shown here appears narrower and more symmetrical,
and, thus, displays a higher peak intensity.

Figure 3.11: a) FWHM (black squares) and b) intensity in arbitrary units (blue circles) as a
function of the fine focusing of the MF mirror position.
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3.4.2 Alignment of the spectrometer

During the alignment procedure, at first a linearly polarized He-Ne laser (at 633 nm)

beam is sent through the optical system from the last lens L3 into the center of

the quartz window (vacuum chamber). Then the optical box is fixed to a table

preventing any movement. Once the optical axis has been so found, the spectrometer

is mounted onto the same table behind the box, in such a way that the imaginary

line between the entrance slit and the center of the first mirror MC of the CT

spectrometer is aligned to the optical axis defined by the laser. The spectrometer

is fixed to the table at about 300 mm from the view port window. Since blue light

(≈ 400 nm) is more strongly focused than red light (≈ 700 nm), this distance slightly

varies as a function of the wavelength under observation.

The size of the image coming from the central drift tube slits of the EBIT is

40 mm (length) × 7 mm (height), and is projected onto the entrance slit plane. The

entrance slit has a height of 15 mm and a variable width of up to 2 mm, which can

be closed down as much as desired to increase the spectral resolution. By using a

beam stop, the height of the entrance slit can be reduced as well in few steps down

to 1 mm.

In order to center the image of the trapped ions on the entrance slit, first the slit

is fully opened to 2 mm width and an image of the trapped ions is collected at the

wavelength of some prominent spectral line in which the ions emit radiation. Since

the entrance slit is much wider than the ion cloud image, the centroid of the wide

line observed indicates its position on the entrance slit plane. Then, the slit is closed

down to 50 µm width and another image is taken. In this case, the centroid position

is due to the image of the narrow slit, which has a fixed position with respect to

the instrument axis. If the centroids of these two lines are shifted, the image of the

ion cloud is not exactly centered on the slit. In order to adjust the image to the

slit, the last lens L4 (mounted on a linear stage) is moved left and right (parallel to

the electron beam axis) using a micrometer screw. After moving the lens, another

image using again a 2 mm slit is taken and compared with the one obtained with

the narrow slit width. This process is repeated until the image of the ion cloud is

centered onto the spectrometer entrance slit.

As can be seen in Fig. 3.12, when the slit width is 50 µm and less, the line centroids

are shifted. This indicates that the image of the ion cloud is not perfectly aligned

with respect to the entrance slit. Such a misalignment results in a loss in signal

intensity and could, under certain conditions, affect the wavelength calibration.

Once the optimum for the 50 µm slit is achieved, the slit is successively closed

down to 20 µm and 10 µm, then, the same process is repeated (see Fig. 3.12). More-
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over, L4 can also be moved back and forth to focus the ion cloud image as perfectly

as possible onto the entrance slit. When the slit is fully open the real image of the

trapped ions at the entrance slit plane, which is narrower than the slit, is projected

onto the CCD. In this case, one can see a convolution of the geometrical size of the

ion cloud and the spectral width of the emission line used for the image. By reducing

the slit width, the spectrometer resolution improves within certain limits. However,

the line peak intensity is reduced. As a compromise between intensity and resolu-

tion, the spectrometer slit was set to 50 µm in most of the present measurements.

Figure 3.12: Image of the ion cloud on the CCD detector taken at different slit widths. The lower
diagram displays the residues. Square symbols correspond to 2.00 mm, circles to 50 µm, triangles
to 20 µm and rhombuses to 10 µm slit width, respectively.

In Fig. 3.12, for the ion cloud images taken with a 2 mm slit, the observed line is

fitted with a single Gaussian function. As the entrance slit is made narrower and,

thus, the resolution increases, the Zeeman splitting becomes apparent. For instance

in the 2P3/2−2P1/2 transition, six components are expected and, hence, the spectrum
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is fitted with six Gaussian functions, for the cases of 50 µm, 20 µm and 10 µm slit

width, respectively.

3.5 Calibration

The observed spectrum on the CCD camera delivers intensity as a function of the

pixel position. We need to convert this “internal” unit, i.e., the number of pixels

into correct wavelengths. For that purpose, a hollow cathode lamp was used. More-

over, to determine the “real” width or intensity of a line we need to know how the

spectrometer itself affects the assumed Gaussian profile of the individually observed

emission lines of the spectrum.

3.5.1 Hollow cathode lamp

In order to calibrate the observed spectrum, reference lines are needed. A hollow

cathode lamp yields a strong signal characterized by sharp emission lines. The lamp

consists of an anode and a cylindrical cathode sealed in a glass tube filled with an

inert gas at a typical pressure of 1 - 5 Torr. The cathode is made of the element

under study. A window transparent to the emitted light is fused to the end of the

tube. Light is emitted from the lamp when sufficient potential difference is applied

between the cathode and the anode resulting from collisions of gas molecules and

atoms sputtered from the cathode with discharge electrons. The radiation from the

lamp is focused by means of two achromatic doublet lenses (with 56 mm and 75 mm

focal length, respectively) onto an optical fibre and guided through it into the optical

box. Here, the light is reflected by means of a diffuser placed in front of the first

mirror (M1). From there on, the radiation from the calibration lamp follows the

same path as the ion cloud image into the spectrometer as shown in Fig. 3.13. The

diffuser is moved into the beam path for the calibration only, and is moved out for

data taking.

In the present case, the cathode is made of iron, and the lamp is filled with

neon, which emits many lines in the spectral region of interest (200 - 700 nm).

The maximum operation current of the lamp is 10 mA. A zoom into some of the

typically ten emission lines used for calibration in a single exposure is shown in

Fig. 3.14. These spectral lines are fitted to Gaussian functions (see below), all of

them having the same width. In the fit, the square root of the statistical error is

used to determine the error associated to the center peak position. Only prominent
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Figure 3.13: Setup for the hollow cathode lamp used for the light wavelength calibration.

lines with accurately known values are used for the calibration and, hence, the non

fitted lines have larger residues. The recommended wavelengths, which were used

here have been taken from the NIST data base (http://physics.nist.gov), and are

listed in Table 3.2. Most of these lines have an uncertainty as small as 0.0005 nm

and, in the best cases, the uncertainties are only 0.00005 nm. The contribution of

the uncertainty of the calibration line wavelength to the total error bar is, therefore,

almost completely negligible.

Table 3.2: Reference lines used for the calibration taken from http://physics.nist.gov

Species λ (nm) Species λ (nm) Species λ (nm)

Fe I 432.5762 Fe I 448.2228 Ne I 596.16243
Fe I 437.5929 Ne I 588.18952 Ne I 596.54716
Fe I 438.3544 Ne I 590.248 Ne I 597.46283
Ne II 439.1995 Ne I 590.64278 Ne I 597.55340
Fe I 440.4750 Ne I 591.36325 Ne I 598.79070
Ne II 440.930 Ne I 591.89080 Ne I 599.16511
Fe I 441.5122 Ne I 593.44560 Ne I 600.09263
Fe I 442.7299 Ne I 593.93180
Fe I 446.1652 Ne I 594.48342
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Figure 3.14: A typical spectrum from a calibration Fe lamp over 438 - 443 nm range. Some of
the lines were fitted with Gaussian functions. The lower plot displays the residue of the fit.

3.5.2 Spectral line profiles

The light emitted in atomic transitions is not perfectly monochromatic. The ob-

served spectral lines are always broadened, partly due to intrinsic physical reasons

and partly due to the finite resolution of the spectrometer. The natural line width,

as well as, the Doppler, the Stark and the pressure broadening are different mech-

anisms which affect the final spectral line width. The Lorentzian and Gaussian

profiles which are produced by these different broadening mechanisms appear con-

voluted in the observed spectral lines, resulting in the more general Voigt profile.

The Doppler broadening is caused by the thermal motion of the ions in the trap.

The Stark broadening [Sal98] is due to the averaged effect of the microscopic electric

fields experienced by the radiating species during collision with particles which are

charged or have a strong permanent electrical dipole. Pressure broadening [Gri97]

is due to collisions of the emitters with neighboring particles which cause a pertur-

bations of the energy levels. These two last effects are negligible compared with the

Doppler effect and, hence, not described here.
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Natural broadening

The excited states decay to the ground state with a finite lifetime (τ) by spontaneous

emission. Thus, the indetermination in time due to the Heisenberg uncertainty prin-

ciple produces the so-called natural broadening of the emission line. A Lorentzian,

also known as Breit-Wigner [BW36], distribution corresponds to this natural broad-

ening and reads as

y =
1

2π

Γ

(ν − ν0)
2 + Γ2

, (3.9)

where ν0 is the peak center and Γ is the full width at half maximum (FWHM),

which for a normalized function Γ = 1/2πτ . In Fig. 3.15 the Lorentzian function is

compared with a Gaussian function (see below).

Figure 3.15: Lorentzian and Gaussian profiles, respectively. The full width at half maximum is
given by Γ.

Doppler broadening

The thermal velocity distribution, n(v), of the light emitting ions, with the velocity

v is usually described by the following, so-called Maxwellian-Boltzmann distribution

function [BS03]:
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3.5. Calibration

n(v)dv = N

√
Mi

2πkBTi

exp

(
−Miv

2

2kBTi

)
dv , (3.10)

where N is the total number of ions, Mi the ion mass, Ti the ion temperature and

kB the Boltzmann constant. The average velocity v0 of the distribution is given by

v0 =

√
2kBTi

Mi

. (3.11)

Due to the Doppler effect, the observed radiation frequency ω emitted by an

ion moving with a velocity v relative to the observer differs from the frequency ω0

observed when the ion is at rest by

ω = ω0

(
1− v

c

)
, (3.12)

where c is the speed of light. The normalized Doppler broadened shape of a

spectral line is a Gaussian profile given by

I(ω) =
1√

π∆ωD

exp

[
−(ω − ω0)

2

∆ω2
D

]
, ∆ωD = ω0

v0

c
, (3.13)

where the quantity ∆ωD, called the Doppler width, is

∆ωD =
2ω0

c

[
2ln2

kBTi

Mi

]1/2

. (3.14)

This value of ∆ωD corresponds to the FHWM of the Doppler broadened line.

As an example, the Doppler broadening of the 1s22s22p 2P3/2 −2 P1/2 transition in

Ar13+ (Mi = 40 a.u. and at λ = 441 nm) in a plasma with kBTi = 300 eV is

about ∆ωD ≈ 0.1 nm, which corresponds to an spectral line width of 5.5 ×10−6 eV,

compared with 4.3×10−13 eV natural line width.
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Instrument response

The finite resolution of a spectrometer is characterized by the instrumental response

function or apparatus profile, i.e., the response of the spectrometer to a δ-function-

like spectral line. When the light passes through the spectrometer, the resulting line

shape is characterized by the convoluted form g(λ):

g(λ) =

∫ ∞

−∞
G(x)I(λ− x)dx , (3.15)

where I is the instrument response function and G the true line profile. To

determine the instrumental function we used the narrow spectral lines emitted by

the Fe hollow cathode lamp, since their width is much smaller than the instrument

resolution. The lines choosen were the strongest and/or most-isolated ones. These

observed lines were fitted by Gaussian functions described by

y = y0 +
A

ω
√
π/2ln4

e−2ln4(x−xc
ω )

2

. (3.16)

Figure 3.16: Observed line profile obtained with 50 µm slit width. The lower plot shows the
residues.
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Although the emission lines should be represented by a Voigt profile, the broad-

ening of the emission line is almost purely due to the Gaussian width, as explained

before. The deconvolution function required in order to obtain the instrument pro-

file is difficult to solve analytically. However, as the Doppler line width (from the

hollow cathode lamp) is smaller than the spectrometer response function we can say,

to a very good approximation, that the Gaussian profile of these lines represents the

instrument response function reasonably well (see Fig. 3.16). For a spectrometer slit

width of 50 µm (ideally the slit image would be a box function of 50 µm width),

all of the lines displayed a FWHM of 3.2 pixels over the whole wavelength range

investigated.

3.5.3 Dispersion

In order to obtain the dispersion function (see Eq. 3.5) of the spectrometer which

best represents the experimental results we can approximate the wavelength λ with

a polynomial function of the pixel position p

λ = A+B ∗ p+ C ∗ p2 + ... , (3.17)

where A, B and C are free parameters. From a calibration spectrum such as the

one shown in Fig. 3.14 we determine the pixel positions of a series of known lines by

fitting single Gaussian to them. Each of these peak positions values ise related to the

references wavelengths listed in Table 3.2. Then, with each pair of values (reference

wavelength versus peak position) we made a plot (see Fig. 3.17). Although, the

error bar of the peak position is in most cases of the order of 0.03 pixel, they are

relatively large compared with the typical precision of the reference wavelengths of

0.0001 nm. Hence, no one of these errors (on X and Y axis), are appreciably visible

on the plot. The observed data were then fitted with first, second and third order

polynomial functions.

Table 3.3: Result for the A, B and C parameters of the polynomials

Function A B C (×10−8) D(×10−12) χ2/DOF R2

Linear 432.26(2) 0.00895(2) — — 900.68 0.99996
Parabolic 432.223(1) 0.009092(2) -9.0(1) — 1.78 1
Cubic 432.222(1) 0.009098(5) -10.0(8) 4(3) 1.77 1
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Figure 3.17: Reference lines versus peak position of the emission lines of the calibration lamp.

Figure 3.18: Residue of the polynomial functions as a function of the peak position.
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The results of the fit are shown in Table 3.3. The χ2/DOF is the reduced χ2

for the parameter values over the number of degrees-of-freedom DOF . The χ2

defines the best fit by choosing the parameters such that the sum of the squares

of the deviations of the theoretical curve from the experimental points for a range

of independent variables is at its minimum. The DOF is given by the number of

data points considered less the number of free parameters. R2 is the square of the

correlation coefficient, which is a measure of the quality of the least-squares fitting

to the original data. Its maximum value is 1, and corresponds to a perfect fit.

In Fig. 3.18 the residues (the differences between the fitted curve and the data

points) are shown. The best fit function has the smallest residuals. In such a way,

the linear fit is ruled out. There is almost no difference in quality (within the error

bars) between the parabolic and cubic fit, and therefore the parabolic one was chosen

to approximate the spectrometer dispersion function.

3.6 Data acquisition process

The acquisition process consist of three parts: i) A first calibration is made by

sending diffuse light of the calibration lamp to the spectrometer (see Fig. 3.13). ii)

Without changing any spectrometer parameters, the diffuser is removed and the

EBIT image is now registered. iii) Then, a second calibration is made. This set of

three spectra delivers what we call a data point. The two calibrations are important

to check the experimental stability of the system; only when the two calibrations

are consistent, we use the data point in the further analysis.

The averaged acquisition time for one data point including the calibration is

typically 30 to 60 minutes. This exposure time can vary strongly depending on

the intensity of the observed emission lines. During this time two independent

spectra are taken (accumulations) for each calibration as well as the ion spectrum,

of which the second one is used to discriminate and remove possible spikes due to the

cosmic rays. To reduce vibrations, during the whole experiment, the access to the

experimental area is restricted to filling liquid nitrogen for cooling the CCD camera

once a day.

The CCD chip has 2000 pixels to cover roughly an 18 nm range when using the

2400 l/mm grating. Thus, we have a linear dispersion of 9×10−3 nm/pixel. The

grating is moved in fine steps of 0.01 nm between individual data points correspond-

ing roughly to 11 pixels steps to obtain enough data points across the line profile

for the accurate determination of the centroid, and also to reduce systematic uncer-

tainties of any particular pixel. By scanning the grating between 30 to 40 times (see
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Fig. 3.19) for a given line, we obtain enough data points accross the line profile to

determine the line centroid with an accuracy of 0.3 pixels.

First calibration

Set grating to position x nml =

Ion spectrum

Second calibration

Move grating to ( x + 0.01) nml =

Figure 3.19: Diagram of the routine followed in the data acquisition process.
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Results and discussion

The improved experimental resolution achieved in the present work allows us to

study the isotopic shifts in middle-Z ions, and the gJ -factor of some metastable

levels. Moreover, by investigating different isotopes, we have explored the relativis-

tic recoil effect and compared to most recent calculations for the first time. The

favorable experimental conditions of our set up were also used to extract informa-

tion on other important parameters of the trapped ions, as their temperature and

spatial extension. These quantities are inferred from characteristics of the spec-

tral lines, such as their width, intensity and wavelength. Argon was chosen since

many observations of its coronal lines have been reported and their wavelengths

have been systematized in a considerable amount of works since Edlén [Edl55] and

Pryce [Pry64]. The interest in these transitions is also reflected in the large number

of calculations published [SJS96a,SJS96b].

4.1 Wavelength determination

The ground configuration 2s22p of B-like Ar13+ ions consists of two levels, 2P1/2 and
2P3/2 as shown in Fig. 4.1. They have the same parity and, hence, the upper level

cannot decay through an electric dipole (E1) transition but a relaxation through a

magnetic dipole (M1) or an electric quadrupole (E2) transition is possible. Since the

M1 decay is about five orders of magnitude faster than the competing E2 transition,

it is the only important one for the determination of the transition energy. Be-like

argon, Ar14+, on the other side, has four fine structure levels in its first excited con-

figuration 1s22s2p, 1P1 and 3P0,1,2. In the present work, we studied the forbidden

transition from the 3P2 to the 3P1 level (see Fig. 4.2). These two ions under study

feature just one single measurable line in the visible spectrum each. For the first
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Figure 4.1: Grotrian diagram of the 2s22p levels in the B-like argon (Ar XIV). The energy scale
is only approximate.
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Figure 4.2: Grotrian diagram of the 2s2p levels in the Be-like argon (Ar XV). The energy scale
is only approximate.
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4.1. Wavelength determination

case, Ar13+ (2P1/2 − 2P3/2) the localization of the emission line in the spectrum

is an easy task, due to its high intensity. However, this is not the case for the se-

cond, Ar14+ (3P2 − 3P1), much weaker line. Here, the necessary adjustments to

the spectrometer were carried out using the strong transition 2P1/2 − 2P3/2 from

Cl XIII [Edl82] because its wavelength is close to the Ar XV line, allowing faster

focusing and alignment (see Fig. 4.3).

Figure 4.3: Typical spectrum showing the Zeeman splitting of the transition 2P1/2 − 2P3/2 in
Cl12+ at Ee = 700 eV, Ie = 90 mA and 8 T magnetic field.

In an EBIT, the electron beam energy basically determines the ion charge state.

The minimum energy required to ionize Ar12+ and Ar13+, are 675 eV and 744 eV,

respectively. The main operational parameters used in the present experiment are

listed in Table 4.1. The injected gas pressure was similar in both cases. The trap

was dumped every few seconds in order to avoid an excessive accumulation of heavy

impurity ions. The axial main magnetic field was varied in a series of measurements

in order to check any possible influence of its value in the center of gravity of the

emission lines (see below). The exposure times were shorter for Ar13+ than Ar14+,

due to the higher excitation rate of the upper level and also to the absence of any

competing transition starting from the same level. For Be-like argon, a very low

potential was applied to the trap drift tubes.
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Table 4.1: EBIT operational parameters for the visible transitions under study. * Electron beam
energy without including the space charge potential of the electron beam

Parameter Ar13+ Ar14+

Beam energy* (keV) 0.875 1.097
Beam current (mA) 50 88
Drift tube potential
DT4/DT5/DT8 (V) 0 / 0 / 0 5 / 0 / 400

Injection pressure (Torr) 7×10−9 4×10−9

Dump time (s) 20 1
Magnetic field (T) 5 - 8 5 - 8
Single exposure time (s) 1800 2400

The best conditions for data acquisition were found to be a most shallow trap

and the highest possible magnetic field (see section 2.2) for the EBIT operation.

This reduced the spectral line width, allowing us to resolve the Zeeman splitting (see

Section 1.5) for the B-like transition. However, for the Be-like line this splitting was

not clearly visible when looking into the different CCD camera regions individually

since the signal is much weaker. Nevertheless, it was possible to observe this effect

by averaging three out of the eight camera regions, as will be shown later. The data

analysis was carried out by means of a program written in the LabVIEW language

(see Appendix B).

4.1.1 Zeeman splitting in B-like argon

From the Zeeman splitting of the M1 transition in B-like argon, six components are

expected, as shown in Fig. 4.4. In this spectrum, the six components correspond

to two different polarizations, namely π- and σ-components, with a polarization

parallel and perpendicular to the magnetic field, respectively, for a transversal view.

This spectrum is fitted with 6 Gaussians for which the main three parameters are

the width Wi, the amplitude Ai and the peak position xci. The widths of the 6 lines

are constrained to be equal, as they are mainly determined by the ion temperature

and the spectrometer resolution. As the amplitude depends on the population and

transition probabilities of the different levels, and the spectrum has to be almost

completely symmetric around its center of gravity, they are equally fixed in pairs.

The peaks are nearly equidistant, and the differences between their positions will be

used for the gJ -factor determination.
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Figure 4.4: Typical spectrum showing the Zeeman splitting of the transition 2P1/2 − 2P3/2 in
Ar13+ at Ee = 875 eV, Ie = 50 mA and 6.82 T magnetic field. The peaks are named as xc1(π+

3/2),
xc2(π+

1/2), xc3(σ+), xc4(σ+), xc5(π−1/2) and xc6(π−3/2). The lower scatter plot shows the fit residuals.

As is shown in Fig. 4.4, in the following, the peaks are indexed from one to six

according to the order of appearance in the spectrum. The first peak on the far-left

(xc1) corresponds to the transition from the level MJ = 3/2 to the M ′
J = 1/2, that

means from MJ → MJ − 1 (∆MJ=1). This peak has π polarization and is named

by the notation π+
3/2. The next peak (xc2) is due to the transition from the level

MJ = 1/2 to the M ′
J = -1/2 and, hence, also from MJ → MJ − 1, thus being π

polarized as well. The assigned notation is π+
1/2. The third peak (xc3) arises from

the transition between the levels MJ = -1/2 and M ′
J = -1/2, therefore MJ → MJ

(∆MJ=0) and it has σ polarization which leads to the notation σ+. The fourth

(xc4) peak is labelled as σ−, and the fifth and sixth have the same notation as xc2
and xc1, respectively, but with a minus, because in these cases the transitions are

for MJ → MJ + 1 (∆MJ=-1) and, hence, we use π−1/2 and π−3/2 for xc5 and xc6,

respectively (see Fig. 4.1). According to the polarizations the amplitudes of the

different peaks are named as A1 for π+
3/2, A2 for π+

1/2, A3 for σ+, A4 for σ−, A5 for

π−1/2 and A6 for π−3/2.
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Temperature of the trapped ions

As shown in Seccion 3.5.2, the ion temperature has an effect on the width of the ob-

served spectral lines. This width, as obtained from the fit, is used here to determine

the ion temperature Ti by means of the following equation

kBTi =
Mi

2ln2

[
∆WDλ0

4π

]2

, (4.1)

where λ0 = 2πc/W0 corresponds to the central wavelength, withW0 being the nat-

ural line width, and Mi is the ion’s atomic mass. Neglecting W0 as discussed before,

the line width Wi observed in the raw data includes the instrumental broadening

due to the spectrometer finite resolution Wr. This contribution must be deconvo-

luted from the total width Wi to obtain ∆WD. Both widths can be approximately

described as Gaussians, and therefore, the deconvolution is simply carried out by

the following formula ∆WD =
√
W 2

i −W 2
r .

A typical spectrum, taken with a 50 mA electron beam current at 6.82 T magnetic

field, is shown in Fig. 4.5. Here, by using a polarizer, we separated both polarization

directions and an independent measurement for each of them could be done. In

Fig. 4.5a the four π - components are clearly resolved, while in Fig. 4.5b only the

two σ - components appear. With this procedure, exploiting the polarization of the

light, the emitted lines are better resolved and, therefore, they can be fitted with

higher accuracy, as the residual plot shows. In Fig. 4.6 the same feature but at

20 mA electron beam current is displayed.

The results for the ion temperature obtained for two different electron beam

currents Ie are collected in Table 4.2. By lowering the electron beam current the

ion temperature clearly decreases, as observed in the reduction of the line width.

However, the count rate also diminishes and, therefore, the statistical error becomes

larger. This problem affects especially the π - components, as we cannot completely

separate the four lines, and so the error in the determination of the line position and

width is larger. In the σ-components case, as only two components do appear, the

fits determine the line width with an error smaller than 4 % of the total width. The

number of measurements made with the polarizer at low current is only one eighth

of those taken at the higher current. The ion temperatures obtained here range

approximately from 4×105 K to 0.7×105 K, or 6 eV to 30 eV. This temperature is

a purely translational one, and the electronic excitation of the trapped ions is more

or less completely decoupled from it, since the electrons are nearly monoenergetic

with an energy defined by the acceleration potential.
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4.1. Wavelength determination

Figure 4.5: Spectra of a) π - and b) σ - Zeeman components of the M1 Ar13+ transition at
Ee = 875 eV, Ie = 50 mA and 6.82 T, separated with a polarizer. The lower plots shows the fit
residuals.

Figure 4.6: Spectra of a) π - and b) σ - Zeeman components of the M1 Ar13+ transition at
Ee = 875 eV, Ie = 20 mA and 6.82 T, separated with a polarizer. The lower plots shows the fit
residuals.
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Table 4.2: Temperature of the trapped ions for different electron beam currents at 875 eV beam
energy and 6.82 T

Ie[mA] Polarization ∆WD[nm] Ti[eV]
50 6 all components 0.024(1) 22(2)

π 0.028(1) 30(2)
σ 0.023(1) 20(2)

20 6 all components 0.013(1) 6(1)
π 0.015(2) 9(2)
σ 0.014(1) 7(1)

Magnetic field dependence

The line intensity of the emission lines is related to the transition probability Aik in

the following form

I = ~ωAik =
4

3
ω4c

∑
q

|〈J,MJ |Π1q| J − 1,M ′
J〉| , (4.2)

where ω is the transition frequency, Π1q the M1 decay operator (see Chapter 10

in [SM68]) and q = M − M ′. The Wigner-Eckart theorem takes the form

|〈J,MJ |Π1q| J − 1,M ′
J〉| = (−1)J,MJ 〈J ||Π1||J ′〉

(
J 1 J ′

−MJ q M ′
J

)
, (4.3)

where 〈J ||Πl||J ′〉 is the reduced matrix element, which does not depend on MJ

and M ′
J and, consequently q. Using this theorem, the relative line intensities of

the different components can be calculated for an angle of observation of 90◦. The

results, obtained without taken into account any effect of the magnetic field strenght

on the transition probabilities are given in Table 4.3.

The four upper levels (MJ), resulting from the fine structure splitting of the

J = 3/2 level, are almost equally populated by cascades from higher levels and,

therefore, they have similar intensity. In particular, the population of the MJ+ and

MJ− sublevels are supposed to be identical. Using this simplifying assumption, the

amplitudes for the different components were left free but fixed in pairs, i.e., A1 and

A6 amplitudes are assumed to be equal, A2 = A5 as well, and A3 = A4 during the

fit in Fig. 4.4. The measured ratios, A1/A3 and A2/A3, are shown in Table 4.3. The
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Table 4.3: Ratio between the amplitudes of the different transitions in Ar13+ ions

Measured Corrected Theory

A(π3/2)/A(σ) 0.225(2) 0.484(4) 0.75
A(π1/2)/A(σ) 0.119(3) 0.256(4) 0.25

experimental results are corrected with the grating efficiency factor (obtained from

Fig. 3.9) in the third column.

The intensity ratio A(π1/2)/A(σ) does not depend on the level population being

equal, since both transitions share the same upper level. Therefore, the branching

ratio is purely dependent on the Clebsch-Gordon coefficients. Here, we find good

agreement with theory. For the ratio A(π3/2)/A(σ) however, the large disagree-

ment indicates that the assumption of equal population of the MJ sublevels does

not hold. This departure from equal population can arise through the excitation

process, which does not only depend on electron impact from the ground state but

also on cascades from higher lying levels and collisional mixing with energetically

closed levels. Theoretical predictions for a particular set of experimental conditions

would be very time consuming and not very reliable. Therefore, we do not have a

satisfactory theoretical model for these observations. In the EBIT case, anisotropy

can be a result of the preferred direction given by the magnetic field and the electron

beam axis.

In Fig. 4.7 the predictions for ∆EJ,MJ
(B) as a function of the magnetic field

are shown. Here, the gJ(B) were calculated using the large scale CI Dirac-Fock-

Sturm method. A possible drift of the gravity center of the line which could be

expected from this effect does not appear, due to the fact that the levels are split

symmetrically with respect the center of gravity. Theoretically, the gravity center

is shifted -0.00000324 nm, for σ- and π1/2-components, and -0.00000162 nm, for

the π3/2-components, by increasing the magnetic field from 5 T to 8 T. Hence, no

appreciable dependence on the magnetic field on the range under study is expected.

The transition probability of the different MJ levels has also been calculated using

the large scale CIDFS method as a function of the magnetic field. These results are

listed in Table 4.4 and show only a very weak magnetic field dependence. As the

Zeeman splitting increases with rising the magnetic field strength, the changes in

transition probability for the different components could cause a slight asymmetry

of the Zeeman manifold, which then could result in a shift of its center of gravity.

This effect, however, would be very small. At the given separation of the Zeeman
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Figure 4.7: Calculated displacement of the different levels EJ,MJ
of 2P1/2 − 2P3/2 transition of

Ar13+ ions from the center of gravity EJ as a function of the magnetic field strength.

components it is estimated to be less than 10−4 nm. Moreover, since the intensity

of the individual components its mainly determined by the excitation rate of the

upper state, and not by the transition probability, the possible effect should be even

smaller and thus, completely negligible at the current accuracy level.

Table 4.4: Calculated transition probabilities as a function of the magnetic field B, in s−1 units

B(T) Aσ+ Aσ− Aπ++
3/2

Aπ+−
3/2

0 104.362 104.363 104.363 104.363
5 104.366 104.359 104.445 104.280
8 104.368 104.357 104.494 104.231
10 104.370 104.355 104.527 104.198
40 104.391 104.334 105.023 103.705
100 104.434 104.291 106.021 102.725
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Wavelength determination

From the six Gaussian functions used to fit the spectra three independent results

for the determination of the central wavelength can be obtained. The extremely

good resolution achieved allows us to determine the peak position with a very small

error. To obtain the central wavelength from these six emission lines we proceeded

as follows. First, for each line pair the average is built;

[
λ(π+

3/2) + λ(π−3/2)
]

2
≡ λ(π3/2) , (4.4)

where λ(π+
3/2) and λ(π−3/2) correspond to the position of the first and last peak,

respectively. Similarly, doing the same for the other two pairs of lines we get the

second λ(π1/2) and third λ(σ) values of the central wavelength.

In Fig. 4.8 the resulting wavelengths are plotted for the different data sets. Here,

we show an example of the CCD camera region 4 (remember that the camera is

divided in 8 regions). Due to the small total number of counts and the influence of

the neighboring peaks, the errors in the determination of xc2,5 are larger than for

the rest of the peaks. To obtain the overall wavelength we used the region 4, 5 and

6 and plot all the results together as shown in Fig. 4.9. By means of a constant fit,

the final result for the wavelength for the 2P1/2 − 2P3/2 transition in Ar13+ ions

from this table is 441.2557(1) nm.

By using the polarizer, the same measurements were repeated for the π- and

σ-components separately. Fig. 4.10 shows the results for the π-components and

Fig. 4.12 the σ-components obtained from the CCD camera region 4. In Fig. 4.11

the results for the wavelength of the CCD camera region 4, 5 and 6 are shown for

the π - components. As well, Fig. 4.13 shows the same for the σ - components.

The results for λ(π3/2) and λ(σ) have always smaller error bars than the π1/2 peak.

Their larger error bars are due to the neighboring π3/2 peak and to the fact that

these peaks are weaker and, therefore, the uncertainty on the peak position is larger.

From the π-components the resulting wavelength is 441.2554(1) nm and, from the

σ-components 441.2556(1) nm.

An statistically weighted average is built to determine the wavelength and the

corresponding statistical error. The accuracy of the calibration lines is of the order of

10−4 to 10−5 nm. Given that every single calibration uses several reference lines, the

total error is mainly determined by the statistical error of the peak position determi-

nation, and possible systematics effects but not by the calibration uncertainty which

is smaller. Possible sources of error coming from systematics or drifts are minimized
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Chapter 4. Results and discussion

Figure 4.8: Wavelength results for a) λ(π3/2), b) λ(π1/2) and c) λ(σ) of CCD camera region 4.

Figure 4.9: Wavelength results for the λ of CCD camera region 4,5 and 6, respectively.
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4.1. Wavelength determination

Figure 4.10: Results of the wavelength for a) λ(π3/2), b) λ(π1/2) of CCD camera region 4.

Figure 4.11: Wavelength results for the λ(π) of CCD camera region 4,5 and 6, respectively.
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Chapter 4. Results and discussion

Figure 4.12: Results of the wavelength for λ(σ) of CCD camera region 4.

Figure 4.13: Wavelength results for the λ(σ) of CCD camera region 4,5 and 6, respectively.
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4.1. Wavelength determination

by the measurement procedure, which involves scanning the grating position and

two calibrations for each single data point (see section 3.6). The reproducibility of

the results along the 40 different points, together with the high resolution results in

achieving a wavelength uncertainty for the final averaged wavelength below 0.3 ppm.

Forbidden transitions in Ar HCI have been studied in several works before.

The highest experimental precision was achieved in a recent work performed by

Draganić [DCD03]. In that experiment, also carried out at the Heidelberg EBIT,

the transitions of various charge states (Ar9+,10+,13+,14+) were measured with an ave-

rage accuracy of better than 1 ppm. In Fig. 4.14 the results obtained in the present

work are plotted and compared with previous experiments.

Figure 4.14: Comparison of the wavelengths obtained in previous measurements with the results
of the present work. The open circle corresponds to an independent measurement with the calibra-
tion made using Ar II lines excited in the HD-EBIT. The solid square corresponds to a previous
measurement were the Doppler broadening covered up the Zeeman splitting and, hence, the spectra
were fitted with single Gaussian functions. These three points were obtained at 5.25 T magnetic
field, while in the present experiment (red symbols) the magnetic field was 6.82 T. The shadowed
area represents the average of the present experiment and its error bar.

Determination of the gJ-factor

The six emission lines observed in the spectrum for the 2P1/2 − 2P3/2 transition

of B-like argon ions are almost equally separated from each other. This splitting is
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Chapter 4. Results and discussion

used here to determine the gJ - factor. The energy splitting for the different MJ

sublevels can be expressed as a function of the line separation as follows

∆λ(π3/2) =
hc

λ2
[∆E(3/2, 3/2)−∆E(1/2, 1/2)] , (4.5)

∆λ(π1/2) =
hc

λ2
[∆E(3/2, 1/2) + ∆E(1/2, 1/2)] , (4.6)

∆λ(σ) =
hc

λ2
[∆E(3/2, 1/2)−∆E(1/2, 1/2)] , (4.7)

where the notation used corresponds to ∆E(J,MJ) and ∆λ(π3/2) = λ(π−3/2) -

λ(π+
3/2). Here we have a system of three equations with three unknowns which give

us a determined system. By subtracting from the last equation the second one we

obtain:

∆E(1/2, 1/2) =

[
∆λ(π1/2)−∆λ(σ)

2

]
hc

λ2
, (4.8)

and if we substract from the last equation the second one and then we add the

first one we obtain:

∆E(3/2, 3/2) =

[
∆λ(π1/2)−∆λ(σ)

2
+ ∆λ(π3/2)

]
hc

λ2
, (4.9)

As ∆λ(π3/2), ∆λ(π3/2) and ∆λ(σ) are obtained from the experiment, the gJ -

factors can be expressed as

for J = 1/2 : g1/2 =
∆E(1/2, 1/2)

µBMJB
, (4.10)

for J = 3/2 : g3/2 =
∆E(3/2, 3/2)

µBMJB
. (4.11)

In Fig. 4.15 the results obtained for the gJ - factors out of the spectra from three

different CCD camera regions are shown along with theoretical predictions. The

single data reproducibility results in a relatively small error bar for each independent

region and for the averaged final value. The observed pairs of data correspond to

the agreement between the two calibrations, before and after, made for each single

data point. These error bars are the result of combining the uncertainties in the
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4.1. Wavelength determination

energy, in the magnetic field and of the Bohr-magneton, respectively. These large

errors are mainly coming from the energies uncertainties since the µB is determine

to 4×10−13 and the magnetic field precision (given by the company) is 5×10−4.

However, the experimental error still is too large to allow a critical comparison with

theory, as shown in Table 4.5. Here, the gD correspond to the one-electron Dirac g -

factors, ∆gcorr. is the correction due to the interelectronic correlation, ∆gneg. is the

contribution due to the negative continuum spectrum (which were both calculated

applying CI methods to the Hartree-Fock-Dirac-Sturm wave functions), and ∆gQED

is the QED correction.

Figure 4.15: Experimental values of the gJ -factor obtained from data taken from the regions 4,
5 and 6 of the CCD camera. The left plots (open symbols) corresponds to g1/2 and the right plots
(solid symbols) are the results for g3/2. Figs. 4.15a) and b) correspond to region 4, Figs. 4.15c)
and d) to region 5 and Figs. 4.15e) and f) to region 6.
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Chapter 4. Results and discussion

Table 4.5: Contributions to the total g-factor as calculated with the CI-HFDS method and
comparison with the experiment result

State gD ∆gcorr. ∆gneg. ∆gQED gtotal gexp.
2P1/2 0.6637754 0.0006730 0.0000224 -0.00078 0.6636908 0.663(7)
2P3/2 1.3310304 0.0005519 0.0000687 0.00077 1.3324210 1.333(2)

4.1.2 Be-like argon

In the case of Be-like argon, the lines were fitted with a single Gaussian function

using the same procedure for the error estimation as explained before. In Fig. 4.16,

an average spectrum of three regions is shown. Here, it is possible to see the Zee-

man splitting which in this transition corresponds to 9 emission lines. Though we

see only three peaks, there are more transition lines under each peak (see Fig. 4.2).

Due to the low resolution the best fit with the smallest residuals is obtained by using

just only three Gaussians. The resulting wavelength is 594.3879(2) nm, in excellent

agreement with the previous result 594.3880(3) nm obtained by Draganić [DCD03].

Figure 4.16: Average spectrum for the transition 3P2 − 3P1 in Ar14+ ions taken at Ee = 1.01 KeV,
Ie = 88 mA and 8 T. The lower plot shows the fit residuals.
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4.2. Isotopic shift in 36,40Ar

4.2 Isotopic shift in 36,40Ar

Argon was discovered by Lord Raleigh and Sir Williams Ramsay in 1894. The origin

of the name comes from the Greek word argos meaning inactive. It is a colorless

and odorless noble gas, i.e., chemically inert. Its atomic mass is 39.948(1) and it has

five stable isotopes, 36Ar, 37Ar, 38Ar, 39Ar and 40Ar. The most common one is 40Ar,

with a relative abundance of 99.600(3) %, compared with 0.0632 (5) % for 38Ar and

0.337(3) % for 36Ar. For this measurement of the isotope shift, the pair 40Ar/36Ar

was chosen. The 40Ar sample used was nearly pure, with 99.998% 40Ar. The 36Ar

gas sample mass spectroscopic analysis gave a relative composition of 99.7 atom %
36Ar and, 0.3 atom % 40Ar.

For the first measurement, 36Ar gas was injected into the trap region. Then,

before switching to the other isotope, the gas injection system was pumped out to

avoid isotopic contamination. Furthermore, by extracting ions out the trap and

measuring their q/m ratios by means of an analyzing magnet, it was checked that

no residues of this isotope were still present in the trap before the 40Ar injection

started. Fig. 4.17 displays the count rate for the different charge states as a function

of the voltage applied to the analyzing magnet. It can be seen that the extracted

ions confirm the isotopic purity of the trapped ions to a high degree as well as the

absence of other contaminants except for Cq+ and Oq+ ions, which have no interfe-

ring emission lines over the investigated wavelength region. These tests were carried

Figure 4.17: q/m analysis of the argon ions extracted from the trap region.
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out at higher electron beam energies for reasons of extraction efficiency. Thus, they

also show ions in charge states as high as Ar18+. Note that the relative intensities of

different charge states are similar in both cases. A few sharp spikes are due to the

dumping of the trap.

Figure 4.18: Wavelengths obtained for a) and b) π3/2-components and, c) and d) σ-components
for 36Ar13+ and 40Ar13+, left and right column, respectively, from the CCD camera region 5.

Figure 4.19: Wavelengths obtained for 36Ar14+ and 40Ar13+, in Figs. e) and f ), respectively,
from the CCD camera region 3.
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4.2. Isotopic shift in 36,40Ar

In order to determine the isotopic shift between the 40Ar/36Ar, all regions of the

CCD camera could be used, as only the differences between wavelengths had to be

measured. The notation used here corresponds to the difference between each two

wavelengths as λ(36Ar) - λ(40Ar). The results obtained in the CCD camera region 5

for B-like argon ion transitions in both isotopes and polarization directions (π− and

σ-components) are plotted in Fig. 4.18 for illustration. A careful comparison of the

plots reveals that the data points of the right hand figures are shifted down by a small

amount, compared to the left column. The Be-like argon ion transition is shown in

Fig. 4.19. Due to the width of the recorded line, which was the consequence of a

higher ion temperature and the use of a wider entrance slit during that measurement,

a single Gaussian function had to be used and, hence, only a single data point for

the determination of the isotopic shift was obtained out of each region. Fig. 4.19e

corresponds to the 36Ar and Fig. 4.19f to the 40Ar isotope, respectively. The isotopic

shifts resulting from the differences between the wavelength measured at different

CCD camera regions in B-like are shown in Fig. 4.20. The results for Be-like are

shown in Fig. 4.21.

As was explained before in Sec. 1.6, the isotopic shift contains contributions of

the mass and the field shift. Results of very recent relativistic calculations carried

out for Be-like and B-like argon ions, with the different contributions, are shown in

Table 4.6. The isotopic mass shift includes both the normal (NMS) as well as the

specific mass shift (SMS), which were calculated using Dirac wave functions, and the

relativistic operator correction for each of them, RNMS and RSMS, respectively.

To calculate the field isotope shift, the rms nuclear radii given in [FBH95] were used.

The transition energies are essentially determined by relativistic, QED and electron

correlation effects. But, it can be seen clearly that relativistic recoil corrections are

needed to come to a proper evaluation of the isotopic mass shift. For the ions under

consideration calculations predict that this shift strongly dominates over the field

shift. This results from the fact that the active electron is in a 2p orbital, which has

only a small overlap with the nucleus, thus making the overall effect very small.

Table 4.6: Calculated individual contributions to the isotope shifts in 40Ar/36Ar of the for-
bidden lines of Ar13+ and Ar14+. The rms nuclear charge radii used in the calculation are
< r2 >1/2 = 3.390 and 3.427 (fm) [FBH 95] for 36Ar and 40Ar, respectively. The figures are
given in cm−1

Ion NMS SMS RNMS RSMS FS Total

Ar13+ 0.1053 -0.0742 -0.0822 0.1151 -0.0005 0.0635
Ar14+ 0.0797 -0.0698 -0.0627 0.0887 -0.0001 0.0358
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Chapter 4. Results and discussion

Figure 4.20: Isotopic effect in B-like argon measured at different CCD camera regions. The
shadowed area in red represents the resulting average and its error, for the ∆π3/2 components and,
the shadowed area in black corresponds to the average obtained for the ∆σ components.

Figure 4.21: Isotopic effect in Be-like argon measured at different CCD camera regions. The
shadowed area indicates the average of the 6 regions and its error bar.
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4.2. Isotopic shift in 36,40Ar

Table 4.7 summarizes the present experimental and theoretical results for the

wavelengths of the 40Ar isotopes, as well as the isotope effects for the 40Ar/36Ar

pair for Ar13+ and Ar14+ ions, together with other theoretical predictions of the

overall wavelength [SJS96a, SJS96b]. The values shown in the second column are

obtained using relativistic many-body perturbation theory. These calculations were

carried out to second order in perturbation theory, including both the second-order

Coulomb interaction and the second order Breit-Coulomb interaction. While the

correction for the frequency-dependent Breit interaction was taken into account in

lowest order, the effect of the Lamb shift was estimated from a calculation in a local

central potential that approximates the core HF potential. In the third column the

present theoretical results are shown. They have been calculated with the large-scale

CI Dirac-Fock (DF) method used to solve the Dirac-Coulomb-Breit equation. Mean-

while, the QED corrections were evaluated using the one-electron Lamb shift data

taken from [JS85]. In theory, the large uncertainties are mainly due to the uncer-

tainty in the electronic correlation and QED corrections. The fourth column shows

the present experimental results, in comparison with the far less accurate (2-3 or-

ders of magnitude) predictions. They are in agreement with each other within their

large uncertainty limits. The theoretical and experimental results for the isotope

shifts are also listed. The theoretical uncertainty for the present calculations of the

isotopic shift appears in the last figure and is smaller than the experimental error.

The contribution to the theoretical uncertainty coming from the finite size and finite

mass of the nucleus (isotopic correction) can be determined with good accuracy. The

large theoretical error contributions to the total transition energy arising from the

relativistic, correlation and QED corrections, respectively, are approximately the

same for both isotopes and, hence, they cancel each other out.

Experimentally, in the case of Ar13+, the Zeeman splitting and the excellent

resolution achieved, as explained above, lead to a small error allowing, for the first

time, to observe these effects in HCIs. In particular, for the σ-components, the error

Table 4.7: Transition energies for Ar13+,14+ and isotope shifts in 40Ar/36Ar (in nm).

Wavelength Isotope shifts

Ion Theory Experiment Theory Experiment

Ar13+ 440.991 441.16(27) 441.2556(1) 0.00126 0.0012(1)∗

0.00125(7)∗∗

Ar14+ 593.882 594.24(30) 594.3879(2) 0.00136 0.0012(1)

1,2 [SJS96a,SJS96b]. ∗ π-components. ∗∗ σ-components
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Chapter 4. Results and discussion

is as small as 6 % of the total shift, and in good agreement with the current theory.

Even for the weaker π-components of the Ar13+ line, and also in the case of the

weak Ar14+ transition, the error bars are not much larger, namely about 8 %. The

experimental values are sligthly lower than the theoretical predictions.
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The central result of this work is the first experimental study of relativistic nuclear

recoil corrections in highly charged ions by means of spectroscopic isotope shift mea-

surements. These effects are extremely small, namely of the order of 2 ppm. Until

recently, no wavelenght measurement in HCI had achieved the accuracy needed for

such a study. The favourable and stable conditions of the Heidelberg EBIT, com-

bined with the precise instrumentation used in this experiment and the sophisticated

calibration procedures developed in this work, made possible to reach an accuracy

at the sub ppm level, thus making the detection of such minuscule effects possible.

Relativistic bound electrons, as those responsible for the optical forbidden tran-

sitions in Be-like Ar14+ (Ar XV) and B-like Ar13+ (Ar XIV), display a behaviour in

their dynamic interaction with the nucleus which is completely different from the

one found in neutral atoms and low-charge ions. To the extensively investigated

normal mass shift and specific mass shift, large corrections due to relativity have

to be added. In fact, the corrections are as large as the non-relativistic effects by

themselves, and have even opposite signs, at least for the cases here investigated.

Calculations for these relativistic contributions in many-electron systems are far

from trivial, and only very recently systematic problems in the customarily applied

algorithms have been eliminated. On the other side, no experimental results were

available to compare with. This work has delivered, for the first time, measurements

of the isotope shift with an accuracy allowing a critical comparison with these newest

calculations.

Moreover, the low ion temperature achieved in the present experiment, allowed

us to observe the Zeeman splitting of the investigated fine structure 2P3/2 - 2P1/2

M1 transition in the B-like argon ions also for the first time.

Such for HCI untypically low translational temperatures of few eV, and the fact

that these ions can be produced with relative ease in an EBIT makes this device the

best target for high precision optical measurements with HCI, in particular when

interactions with radiation are planned, as the case in the evolving experiments at
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the VUV FEL (DESY) or the laser spectroscopic experiments in Heidelberg.

Regarding the study of QED contributions to the g-factor of the bound electron,

and although the present experimental wavelength data have the highest accuracy

reported for HCI, they do not yet allow to determine the g-factors with an accuracy

enabling to evaluate the quality of theoretical predictions. The reason for that is

the fact that their values are obtained as a combination of the differences between

the energy transitions (splitting) for the different σ- and π-components, respectively,

yielding uncertainties of 1 % for g1/2 and 0.2 % for g3/2. Nonetheless, the remark

must be made that theoretical predicitions show 0.12 % and 0.06 % QED contribu-

tions for the g1/2, g3/2-factors, respectively, and hence, experimental improvements

which can be attained realistically in the near future will provide new results relevant

to the QED calculations.

From the Zeeman splitting in B-like argon we also obtained three new independent

values for the transition energy, which due to the good resolution were determined

with high accuracy.

The values measured here are in good agreement, but slightly below the previous

experimental results by Draganić [DCD03]. However, our results have achieved a

reduction of the experimental error as a consequence of the increased resolution.

The experimental uncertainty is, presently, mainly limited by the spectrometer res-

olution. In order to improve it, an immediate option is to use a spectrometer with a

larger focal length and also improved CCD detectors with an smaller pixel size and

larger array. However, the best outlook on the long run will be laser spectroscopy.

By exciting trapped, cooled ions with extremely monoenergetic beams, the resolu-

tion can be improved, in theory, tremendously, since the lifetimes of the forbidden

transitions in HCI are very long [LJC05], several milliseconds typically, in compari-

son with the allowed transitions of neutral atoms and low charged ions, and natural

line widths of few tens of Hz can be expected. Additionally, highly charged ions are

very insensitive to external fields, since their electronic structure is dominated by

the strong Coulomb field of the nucleus, which results in a very low polarizability.

Eventually, an optical transition of an HCI could be used as an extremely stable

frequency standard. Meanwhile, HCI provide unique opportunities for the study of

the QED contributions to the transition energy, the Lamb shift, the g-factor, the

dynamics of complex relativistic systems, and the nuclear size effects, as this work

has shown.
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Appendix A

Optical aberrations

An optical aberration is a distortion in the image formed by an optical system

compared to the original. They arise due to the limitations of lenses and mirrors in

optical setups. There are six aberration: Chromatic, spherical, astigmatism, field

curvature, distortion and coma aberration.

A.1 Chromatic aberration

A lens has different index of refraction for different wavelengths. This causes the

light rays to pass through different focal points according to the wavelength.

F F’

Figure A.1: Illustration of the chromatic aberration of a lens. The F and F’ represent the different
focal points.
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A.2 Spherical aberration

Spherical aberration occurs in spherical lenses or mirrors because rays on the edges

of the lens or mirror are brought to a focus slightly before that of rays hitting the

center of the optical element, as shown in Fig. A.2. Due to the CT spectrometer

configuration this type of aberration is largely reduced.

Figure A.2: Illustration of the spherical aberration caused by a concave mirror.

A.3 Astigmatism aberration

This is caused because the focal length along one diameter differs from that along

another, resulting in a distortion of the image. In particular, rays of light from

horizontal and vertical lines in a plane on the object are not focused to the same

plane on the edges of the image.

Figure A.3: Astigmatism aberration, from left to right : inside focus (sagittal), best focus, outside
focus (tangential).
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Appendix B

LabVIEW program

B.1 Analysis program

Due to the amount of spectra needed to be analyze a program using LabVIEW 7

Express was made by Bruhns [Bru05]. In Fig. B.1 the front panel of the program

is shown. The program block diagram of this front panel is shown in Fig. B.2.

The main program is shown in Fig. B.3. This library file is composed of several

subprograms which main block diagrams are shown in Figs. B.4, B.5, B.6 and B.7,

respectively.

Figure B.1: Front panel program showing the two calibration spectra, before and after, respec-
tively, made for each single point. In the worksheets, the results of the fitted curves together with
their corresponding error bars are listed.
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Figure B.2: Program block diagram for the loading data process from a file to be analyze. The
calibrations are named A and C, before and after, respectively, and the ion spectrum corresponds
to the named file B.
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Figure B.3: Main program block diagram. The calibration spectra are fitted to 10 Gaussian
function and a preliminary guess values for the offset, width, amplitude and peak position, are
given. After the parabola fit made to obtain the spectrometer dispersion function, a 6 Gaussian
function is fitted to the ion spectrum, with a preliminary guessing of the offset, width, amplitude
and peak position values. All the results are recollected and save under the name result.txt on the
same folder where the data are store.
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Appendix B. LabVIEW program
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Figure B.4: Block diagram used to fit 10 Gaussian function to the calibration spectrum.
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for the calibration spectrum fitting.
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B.1. Analysis program
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Figure B.6: Block diagram used to fit 6 Gaussian function to the ion spectrum.
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Figure B.7: Block diagram used for the offset, width, amplitude and peak positions guess values,
for the ion spectrum fitting.
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Vermare C.: Comparison of 2 cathode geometries for high current (2KA)

diodes. Proc. of LINAC (2004).

[CLFM01] Charro E., Lopez-Ferrero S. and Martin I.: Forbidden emission coeffi-

cients for intraconfiguration transitions 2P3/2-
2P1/2 along the boron se-

quence. J. Phys. B: At. Mol. Phys. 34, 4243 (2001).

130



Bibliography

[CS59] Condon E. U. and Shortley G.: The theory of atomic spectra. Cambridge

: Cambridge Univ. Pr. (1959).
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