
Institut für Informatik

Fachbereich Informatik und Mathematik

Frankfurter Informatik-Berichte

Institut für Informatik • Robert-Mayerst.11-15 • D-60054 Frankfurt am Main, Germany

ISSN 1868-8330

Improved Space Bounds for Strongly

Competitive Randomized Paging

Algorithms

Gabriel Moruz, Andrei Negoescu

2013

Improved Space Bounds for Strongly Competitive
Randomized Paging Algorithms

∗

Gabriel Moruz
Goethe University Frankfurt am Main

Robert-Mayer-Str. 11-15
60325 Frankfurt am Main, Germany

gabi@cs.uni-frankfurt.de

Andrei Negoescu
Goethe University Frankfurt am Main

Robert-Mayer-Str. 11-15
60325 Frankfurt am Main, Germany
negoescu@cs.uni-frankfurt.de

ABSTRACT
Paging is one of the prominent problems in the field of on-
line algorithms. While in the deterministic setting there
exist simple and efficient strongly competitive algorithms,
in the randomized setting a tradeoff between competitive-
ness and memory is still not settled. Bein et al. [4] con-
jectured that there exist strongly competitive randomized
paging algorithms, using o(k) bookmarks, i.e. pages not
in cache that the algorithm keeps track of. Also in [4] the
first algorithm using O(k) bookmarks (2k more precisely),
Equitable2, was introduced, proving in the affirmative a
conjecture in [7].

We prove tighter bounds for Equitable2, showing that it
requires less than k bookmarks, more precisely ≈ 0.62k. We
then give a lower bound for Equitable2 showing that it can-
not both be strongly competitive and use o(k) bookmarks.
Nonetheless, we show that it can trade competitiveness for
space. More precisely, if its competitive ratio is allowed to
be (Hk + t), then it requires k/(1 + t) bookmarks.

Our main result proves the conjecture that there exist strongly
competitive paging algorithms using o(k) bookmarks. We
propose an algorithm, denoted Partition2, which is a vari-
ant of the Partition algorithm byMcGeoch and Sleator [13].
While classical Partition is unbounded in its space require-
ments, Partition2 uses Θ(k/ log k) bookmarks. Further-
more, we show that this result is asymptotically tight when
the forgiveness steps are deterministic.

General Terms
Online algorithms, Paging, Randomized algorithms

1. INTRODUCTION

∗Partially supported by the DFG grants ME 3250/1-3 and
MO 2057/1-1, and by MADALGO (Center for Massive Data
Algorithmics, a Center of the Danish National Research
Foundation).

Paging is a prominent and well studied problem in the field
of online algorithms. We are provided with a two-level mem-
ory hierarchy consisting of a fast cache which can accommo-
date k pages, and a slow memory of infinite size. The input
consists of requests to pages which are processed as follows.
If the currently requested page is in the cache, we say that
a cache hit occurs and the algorithm proceeds to the next
page. Otherwise, a cache miss occurs and the requested page
must be brought into cache. Additionally, if the cache was
full, a page in cache must be evicted to accommodate the
new one. The cost of the algorithm is given by the number
of cache misses incurred.

Online algorithms in general and paging algorithms in par-
ticular are typically analyzed in the framework of competitive

analysis[11, 15]. An algorithmA is said to have a competitive

ratio of c (or c-competitive) if its cost satisfies for any input
cost(A) ≤ c · cost(OPT) + O(1), where cost(OPT) is the
cost of an optimal offline algorithm, i.e. an algorithm which
is presented with the input in advance and processes it op-
timally; for randomized algorithms, cost(A) is the expected
cost of A. An algorithm achieving an optimal competitive
ratio is said to be strongly competitive. For paging, an op-
timal offline algorithm was proposed decades ago; upon a
cache miss, it evicts the page in cache whose request occurs
the furthest in the future [6]. In the remainder of the paper,
we refer to this algorithm as OPT . For comprehensive sur-
veys on online algorithms in general and paging algorithms
in particular, we refer the interested reader to [2, 7].

Competitive ratio has been often criticized for its too pes-
simistic quality guarantees. Especially in the deterministic
setting, the empirically measured performance for practical
algorithms is far below the theoretical guarantee of k pro-
vided by competitive analysis [16]. This gap is significantly
smaller for randomized algorithms, since the best possible
competitive ratio is Hk. Although using only the qual-
ity guarantees provided by competitive analysis is a naive
way to distinguish good paging algorithms from bad ones,
we have shown in [14] that ideas from competitive analy-
sis for randomized algorithms can be successfully employed
to design algorithms with good performance on real-world
inputs. That is because an optimal randomized algorithm
can be viewed as a collection of reasonable deterministic al-
gorithms, and the algorithm designer can simply look for
suitable algorithms in this collection.

Related work. Randomized competitive paging algorithms
have been extensively studied over the past two decades.
In [10] a lower bound of Hk on the competitive ratio of ran-
domized paging algorithms has been given1. Also in [10],
a simple (2Hk − 1)-competitive algorithm, denoted Mark,
has been proposed. In [9] it was shown that no randomized
Marking algorithm can achieve a competitive ratio better
than (2− ε)Hk for any ε > 0, meaning that Mark is essen-
tially optimal.

The first strongly competitive paging algorithm, denoted
Partition, was proposed in [13]. While it achieves the opti-
mal competitive ratio of Hk, its time and space requirements
are in the worst case proportional to the input size inde-
pendently of the cache size, which makes them hopelessly
high. More recent research has focused on improving these
bounds, especially the space requirements. In the literature,
a bookmark refers to a page outside the cache that the algo-
rithm keeps track of; in particular, an algorithm is denoted
trackless if it stores no bookmarks at all. In [1], an Hk-
competitive algorithm, denoted Equitable, was proposed,
using only O(k2 log k) bookmarks. Using a better version
of Equitable, denoted Equitable2, this bound was fur-
ther improved in [5] to 2k bookmarks. This solved the open
question in [7] that there exist Hk-competitive paging algo-
rithms using O(k) space. In [8] we proposed an algorithm,
denoted OnlineMIN, which further improved Equitable2

by reducing its runtime for processing a page from O(k2) to
O(log k/ log log k) while maintaining its space requirements.

A distinct line of research for randomized paging algorithms
consists of considering fixed small cache sizes (k = 2 and
k = 3 to our best knowledge) to obtain tighter bounds than
for general k. In [3], for k = 2, a 3

2
-competitive algorithm

using only one bookmark was proposed. Also in [3], for
trackless randomized algorithms a lower bound on the com-
petitive ratio of 37

24
≈ 1.5416 was given. Still for k = 2,

a trackless algorithm having an upper bound of ≈ 1.6514
was introduced in [9]. Finally, in [5], strongly competitive
randomized paging algorithms were proposed for k = 2 and
k = 3, using 1 and 2 bookmarks respectively.

Our contributions. This work focuses on the number of
bookmarks needed by randomized algorithms to achieve the
optimal competitive ratio of Hk. The best previously known
result is 2k [5]. In [5] it was conjectured that there exist
algorithms that use o(k) bookmarks and areHk-competitive.

We first give a tighter analysis for Equitable2 improving
the amount of bookmarks from 2k to ≈ 0.62k, which is the
first solution using less than k bookmarks. We give a nega-
tive result showing that Equitable2 cannot achieve a com-
petitive ratio of Hk using o(k) bookmarks. Nonetheless,
we show that it can trade competitiveness for space: if it
is allowed to be (Hk + t)-competitive, it requires k/(1 + t)
bookmarks.

We propose an algorithm Partition2 which is a modifica-
tion of the Partition algorithm. Partition2 improves the
bookmarks requirements from proportional to input size to

1Hk =
∑k

i=1 1/i is the kth harmonic number.

Θ(k/ log k) and thus proves the o(k) conjecture. For our
analysis we provide a constructive equivalent between the
two representations of the offset functions in [13] and [12].
Since offset functions are the key ingredient in the design
and analysis of optimal competitive algorithms for paging,
this may be of independent interest. Finally, we show that
k/Hk is a lower bound on the number of bookmarks for any
strongly competitive algorithm which uses a deterministic
approximation of the offset function. This makes Parti-

tion2 asymptotically optimal within this class.

2. PRELIMINARIES
In this section we give a brief introduction concerning offset
functions for paging, the Equitable algorithms, and for-
giveness as a space bounding technique.

Offset Functions. In competitive analysis the cost approx-
imation of the optimal offline algorithm plays an important
role. For the paging problem it is possible to track online the
exact minimal cost using offset functions. For a fixed input
sequence σ and an arbitrary cache configuration C (i.e., a
set of k pages), the offset function ω assigns to C the dif-
ference between the minimal cost of processing σ ending in
configuration C and the minimal cost of processing σ. A con-
figuration is called valid iff ω(C) = 0. In [12] it was shown
that the class of valid configurations V determines the value
of ω on any configuration C by ω(C) = minX∈V{|C \X|}.
We can assume that OPT is always in a valid configuration.
More precisely, if p is requested and there exists a valid con-
figuration containing p, then the cost of OPT is 0; otherwise
OPT pays 1 to process p.

Layer Representation. In [12] it was shown for the pag-
ing problem that the actual offset function can be repre-
sented as a partitioning of the pageset in k + 1 disjoint
sets L = (L0|L1| . . . |Lk), denoted layers. An update rule
for the layers when processing a page was also provided.
Initially, the first k pairwise distinct requested pages are
stored in layers L1, . . . , Lk, one page per layer, and L0 con-
tains the remaining pages. Upon processing page p, let
Lp = (Lp

0|Lp
1 . . . |Lp

k) be the partitioning after processing p;
Lp is obtained from L as follows2:

• Lp = (L0 \ {p}|L1| . . . |Lk−2|Lk−1 ∪ Lk|{p}), if p ∈ L0

• Lp = (L0| . . . |Li−2|Li−1∪Li \{p}|Li+1| . . . |Lk|{p}), if
p ∈ Li, i > 0

This layer representation can be used to keep track of all
valid configurations. More specifically, a set C of k pages is
valid iff |C ∩ Li| ≤ i holds for all 0 ≤ i ≤ k [12].

For a given L, denote by support S(L) = L1∪· · ·∪Lk. Also,
we call a layer containing a single page a singleton. Let r
be the smallest index such that Lr, . . . , Lk are singletons.
The pages in Lr, . . . , Lk are denoted revealed, the pages in
support which are not revealed are unrevealed, and the pages

2We use the layer representation introduced in [8], which is
equivalent to the ones in [1, 12].

in L0 are denoted Opt-miss. OPT faults on a request to p iff
p ∈ L0 and all revealed pages are (independent of the current
request) in OPTs cache. If L consists only of revealed pages
it is denoted a cone and we know the content of OPT’s
cache. Although the layer representation is not unique it
has an unique signature. The signature χ(L) is defined as
a k-dimensional vector χ = (x1, . . . , xk), with xi = |Li| − 1
for each i = 1, . . . , k.

Selection Process. In [8] we defined a priority based selec-
tion process on L which is guaranteed to construct a valid
configuration. Assume that pages in the support have pair-
wise distinct priorities. Our selection process builds a hier-
archy of sets C0, . . . , Ck as follows:

• C0 = ∅
• Ci consists of the i pages in Ci−1∪Li having the high-

est priorities, for all i > 0.

Note that, by definition, when cunstructing Ci there are
i+xi candidates and i slots. Also, if Li is singleton we have
xi = 0 and Ci = Ci−1 ∪Li; for singleton layers and only for
singleton layers, all elements in both Ci−1 and Li make it
to Ci and we say that no competition occurs. The outcome
Ck contains k pages and is always a valid configuration. In
particular, if the priorities are the negated timestamps of
the next requests (in the future) for the support pages, then
Ck is identical to OPT’s cache.

Equitable and OnlineMin. The cache content of the Eq-

uitable algorithms [1, 5] is defined by a probability distri-
bution over the set of all valid configurations. The cache con-
figuration depends solely on the current offset function. This
distribution is achieved by the OnlineMin algorithm using
the previously introduced priority-based selection process,
when priorities are assigned to support pages such that each
permutation of the ranks of these pages is equally likely. The
cache content of OnlineMin is at all times the outcome Ck

of the selection process. Since we use in the remainder of
the paper only this selection process, we do not describe the
selection process for Equitable. Nonetheless, the resulting
probability distribution on cache configurations is the same
as for Equitable, and in the rest of the paper we refer to this
distribution and the associated algorithm as Equitable.

Forgiveness. Note that the support size increases only when
pages in L0 are requested, and may decrease only when pages
in L1 are requested. As the amount of Opt-miss requests
may be very large, the support size and together with it
the space usage of algorithms, such as Equitable, using it
to decide their cache content may also be arbitrarily large.
To circumvent this problem, the forgiveness mechanism is
used. Intuitively, if the support size exceeds a given thresh-
old, then the adversary did not play optimally and we can
afford to use an approximation of the offset function which
is bounded in size.

3. BETTER BOUNDS FOR EQUITABLE2

There are two Equitable algorithms, Equitable [1] and
Equitable2 [5]3. For a fixed offset function (both use an
approximation of the actual offset function), they have the
same distribution as previously introduced. The difference
between them is given by the forgiveness mechanism used.
In this section we focus on the Equitable2 algorithm us-
ing the forgiveness mechanism described in [5] which works
as follows. Whenever the support size reaches a threshold
value and an Opt-miss page is requested, the requested page
is artificially inserted in L1 and processed as a L1 page. This
way, all pages in L1 move to L0 and the support size never
exceeds the designated threshold. The threshold in [5] is
set to 3k, i.e. the algorithm uses 2k bookmarks. We give a
tighter analysis and show that using the same forgiveness the
algorithm uses less than k bookmarks. We also give lower
bounds showing that it can not achieve o(k) bookmarks
while preserving its Hk competitive ratio. Finally, we show
that it can trade competitiveness for space. More specifi-
cally, if the algorithm is allowed to be (Hk + t)-competitive,
it can be implemented using k/(1 + t) bookmarks, where t
is an arbitrary non-negative value, e.g a function in k.

To accommodate the selection process for OnlineMIN pre-
viously introduced, all pages in support have pairwise dis-
tinct priorities, such that each priority ordering of the sup-
port pages is equally likely. We say that some page p has
rank i in a set if its priority is the i’th largest among the
elements in the given set.

Potential. In [1] an elegant potential function, based only
on the current offset function, was introduced. Given the
layer representation L, the potential Φ(L) is defined to be
the cost of a so-called lazy attack sequence, that is, a se-
quence of consecutive requests to unrevealed pages until
reaching a cone. The potential Φ is well defined because
in the case of the Equitable distribution, all lazy attack
sequences have the same overall cost for a given offset func-
tion [1].

Initially, we are in a cone and thus Φ = 0. Upon a request
to a page p in support, having cache miss probability pb(p),
by definition we have that ∆Φ = −pb(p). On lazy requests
OPT does not fault and thus ∆cost+∆Φ = ∆costOPT = 0.
Upon a request from L0 both Equitable and OPT have
cost 1 and it was shown that ∆Φ ≤ Hk − 1 [1, 5]. Since
upon revealed requests both algorithms never fault and the
offset function does not change we have:

∆cost+∆Φ ≤ Hk ·∆costOPT .

If L is a cone, it is easy to verify that a request in L0 leads
to ∆Φ = Hk − 1. If the support size is strictly larger than
k the difference in potential is smaller, i.e. ∆Φ < Hk − 1.
This means that the algorithm pays less than its allowed
cost and thus it can make savings. These savings can be
tracked by a second potential function and are used to pay
for the forgiveness step when the support size becomes large
enough. While Φ is very comfortable to use for requests
in support, for arbitrary offset functions there is no known
closed form for its exact actual value or for its exact change

3In [5] Equitable2 is denoted K Equitable. In this paper
we use its original name.

upon a request in L0.

3.1 Approximation of Φ
The key ingredient to our analysis is to get a bound as tight
as possible for ∆Φ on requests in L0. That is because a
tighter bound for this value implies larger savings, which
in turn means that these savings can pay earlier (i.e. for
a smaller support size) for a forgiveness step, which in the
end means fewer bookmarks. We therefore analyze ∆Φ for
requests to pages in L0 when no forgiveness step is applied.
Note that Φ depends only on the signature χ = (x1, . . . , xk)
of the layer representation. We use χ = 0 for the cone
signature (0|0| . . . |0) and χ = ei for the i-th unit vector
(0| . . . |xi = 1| . . . |0). If χ = 0 we have Φ = 0. Otherwise, let
i be the largest index such that xi > 0. Since all lazy attack
sequences have the same cost, we get that Φ is the cost of i
consecutive requests, each of them to a page in the (current)
first layer. For the layer representation L of the current
offset function, we let cost1(L) denote the probability of
cache miss for a page p in L1, i.e. pb(p /∈ Ck) in the selection
process.

We start with a simple case, where all layers are singletons
except some layer Li. The potential Φ for this particular
case is easy to calculate and is given in Lemma 1.

Lemma 1. Let χ = n · ei be the signature of L, where

n > 0 and 0 < i < k. We have Φ(χ) = n · (Hi+n −Hn).

Proof. Let p be a page in L1. Since there is no compe-
tition in the selection process for Cj , where j ̸= i, we have
that p ∈ Ci−1 independent of its priority and p ∈ Ck iff
p ∈ Ci. For the selection in Ci we have i slots and i + n
candidates. All these candidates have the same probability
to be selected in Ci, since all layers L1, . . . , Li are singleton
and thus no competition steps happened; note that this ar-
gument holds only if x1 = · · · = xi−1 = 0. This means that
the probability of a cache miss is n

i+n
. Updating the layers

leads to χ = n · ei−1. Repeating the argument we obtain:

Φ =
n

i+ n
+

n

i− 1 + n
+ · · ·+ n

1 + n
= n(Hi+n −Hn) ,

and the claim holds.

For some arbitrary values i, n, and κ, where 0 < i < κ ≤ k
consider the signatures χ = n · ei and χ′ = n · ei + eκ−1; let
L and L′ be their corresponding layer representations. We
define the difference in the cost for a request in L1:

f(i, n, κ) = cost1(χ
′)− cost1(χ) .

In the special case κ = k it represents ∆cost1 upon a request
in L0. The value for f(i, n, κ) can be computed exactly and
is given in Lemma 2.

Lemma 2. f(i, n, κ) = 1
n+κ

∏κ−1
j=i

j
n+j

.

Proof. If i = κ − 1, we have cost1(χ) = n/(κ − 1 + n)
and cost1(χ

′) = (n+1)/(κ+n), and the result immediately
follows. For the remainder of the proof we assume i < κ−1.
Consider a priority assignment for χ′ and a request to some

page p in L′
1. By the selection process for OnlineMIN, the

value of f(i, n, κ) is given by the probability that p ∈ C′
i

and p /∈ C′
κ−1, since if p ∈ C′

κ−1 then p ∈ C′
k and the

probability that p ∈ C′
i is the probability of a cache hit in

χ, i.e. if p ∈ Ci then p ∈ Ck. The scenario p ∈ C′
i and

p /∈ C′
k−1 happens when p has rank i (i.e. has the i’th

highest priority) among the n+ i pages in L′
1 ∪ · · · ∪L′

i and
all pages in L′

i+1, . . . , L
′
κ−1 have greater priorities than p.

There are (n+ i− 1)! possibilities that p has rank i among
the n+ i pages in L′

1 ∪ · · · ∪L′
i. For each of these, there are

i · (i+1) · . . . · (κ− 1) possibilities that all the κ− i pages in
L′

i+1, . . . , L
′
κ−1 have priorities higher than p. We get that:

f(i, n, κ) =
(n+ i− 1)!

∏κ−1
j=i j

(n+ κ)!
=

1

n+ κ

κ−1
∏

j=i

j

n+ j
,

which concludes the proof.

We are now ready to move to a more general case. In
Lemma 3 we show that f(i, n, κ) is an upper bound on
∆cost1 for a whole class of signatures.

Lemma 3. Consider a signature χ = (x1| . . . |xk), and let

i be the minimal index with xj = 0 for all j > i. Also, let

χ′ = χ+ eκ−1, i < κ ≤ k. For n = x1 + · · ·+ xi, we have

cost1(χ
′)− cost1(χ) ≤ f(i, n, κ).

Proof. Let g(i, n, κ) = cost1(χ
′) − cost1(χ). Similar to

the proof of Lemma 2, the value of g(i, n, κ) is given by the
probability that a request p ∈ L′

1 is in C′
i and not in C′

κ−1.
Intuitively, the proof is based on the observation that the
fact that p must have exactly rank i among the n+ i pages
in L′

1 ∪ · · · ∪ L′
i is necessary but not sufficient, whereas in

the proof of Lemma 2 this fact was necessary and sufficient.

Assume i < κ−1. By the definition of the selection process,
if p ∈ C′

i then the priority of p is compared against the
priorities of all pages in L′

1 ∪ · · · ∪ L′
i, because p ∈ L′

1; note
that this doesn’t necessarily hold if p ∈ L′

j , with j > 1. This
immediately means that p must necessarily have rank i in
L′

1∪· · ·∪L′
i. The number of permutations where p has rank

i among the n+ i pages is (n+ i− 1)!. However, it may not
hold that for all of them we have p ∈ C′

i. Let j1, . . . , jt be
indices smaller than i such that x′

jl
̸= 0 for all jl. To have

p ∈ C′
i, the priority of p must also be among the largest j1

in L′
1∪· · ·∪L′

j1 , among the largest j2 in C′
j1 ∪L′

j1+1 · · ·∪L′
j2

and so on; in short, p must overcome t selection processes,
instead of one as in the proof of Lemma 2. The set P of
permutations on the (n+ i) pages in the first i layers where
p has rank i and p ∈ C′

i has size at most (n+ i− 1)!. Recall
that all κ− i elements in L′

i+1∪· · ·∪L′
κ−1 must have higher

priorities than p. For each permutation in P there are i ·(i+
1) · . . . · (κ− i) possibilities to do so. In total, we get that:

g(i, n, κ) =
|P |∏κ−1

j=i j

(n+ κ)!
≤

(n+ i− 1)!
∏κ−1

j=i j

(n+ κ)!
= f(i, n, κ) .

If i = κ − 1, we have that g(i, n, κ) is the probability that
p ∈ Ci and p /∈ C′

i. Let q be an arbitrary page in L′
i. Then

g(i, n, κ) is bounded by the probability that q has rank (i+1)
in L′

1 ∪ · · · ∪ L′
i and rank i in L′

1 ∪ · · · ∪ L′
i \ {q}. Using a

similar reasoning, there are (n + i − 1)! · i possibilities for
this scenario to occur, which concludes the proof.

Lemma 4 provides a useful identity for approximating ∆Φ
for a request in L0.

Lemma 4. For any i and κ with i < κ, it holds that
∑i

j=1 f(i− j + 1, 1, κ− j + 1) = Hκ −Hκ−i − i
κ+1

.

Proof. We first note that:

f(i, 1, κ) =
1

κ+ 1
· i

i+ 1
· i+ 1

i+ 2
· · · κ− 1

κ
=

i

κ(κ+ 1)
.

Denoting by S(i, κ) =
∑i

j=1 f(i − j + 1, 1, κ − j + 1) and

using that i/(κ(κ+ 1)) = i/κ− i/(κ+ 1), we have:

S(i, k) = f(i, 1, κ) + · · ·+ f(1, 1, κ− (i− 1))

=
i

κ
− i

κ+ 1
+ · · ·+ 1

κ− (i− 1)
− 1

κ− (i− 2)

=
1

κ
+ · · ·+ 1

κ− (i− 2)
+

1

κ− (i− 1)
− i

κ+ 1
,

which concludes the proof.

Theorem 1. For a request to a page p ∈ L0 where no

forgiveness is applied, let i be the largest index with xi > 0;
i = 0 if we are in a cone. We have that:

Hk−i −H1 ≤ ∆Φ ≤ Hk −H1 − i/(k + 1).

Proof. For i = 0, in a cone we have ∆Φ = Hk − 1 by
Lemma 1. If i > 0, let L and L′, and χ and χ′ = χ + ek−1

denote the layers and their corresponding signatures before
and after the request to p respectively. We consider the cost
of a sequence of i consecutive requests p1, . . . , pi, each of
these to pages in the current L1. For each j = 1, . . . , i let
χj and χ′j denote the signatures before processing pj . After
the whole sequence is processed, we have χ = 0 with Φ = 0
and χ′ = ek−i−1 with Φ′ = Hk−i − H1 by Lemma 1. We
get:

∆Φ = Hk−i −H1 +
i

∑

j=1

(

cost1(χ
′j)− cost1(χ

j)
)

Since cost1(χ
′j)− cost1(χ

j) is non-negative, the left inequa-
tion holds.

Now we bound cost1(χ
′j)−cost1(χ

j) using Lemma 3. Before
processing page pj we have x

j
i−j+1 > 0, xj

l = 0 for all indices

l > i−j+1 and χ′j = χj+eκ−1 with κ = k−j+1 . Denoting
nj = xj

1 + · · ·+ xj
i−j+1, we get:

∆Φ ≤
i

∑

j=1

f(i− j + 1, nj , k − j + 1) +Hk−i −H1

≤
i

∑

j=1

f(i− j + 1, 1, k − j + 1) +Hk−i −H1

= Hk −Hk−i − i

k + 1
+Hk−i −H1 .

The inequations stem from the fact that f is decreasing in
n and nj > 0 for all j ≤ i, and the equality is the result in
Lemma 4.

3.2 Competitiveness and Bookmarks
Having obtained a tighter bound on ∆Φ for requests in L0,
we get improved savings using a second potential Ψ. To
define Ψ(L), we first introduce the concept of chopped sig-

nature. For some signature χ = (x1| . . . |xk), let i be the
largest index such that xi > 0. The chopped signature cor-
responding to χ is χ = (x1| . . . |xk), where xi = xi − 1 and
xj = xj for all j ̸= i. If we are in a cone and χ = 0 we define
χ = χ. Ψ is defined as:

Ψ(L) =
1

k + 1

k−1
∑

i=1

i · xi .

Note that Ψ(L) = 0 if χ = 0 or χ = ei and otherwise we
have Ψ(L) > 0 .

Lemma 5. For a request to page p ∈ Li, i > 0, it holds:

∆Ψ = − 1

k + 1

k−1
∑

j=i

xj .

Proof. Before the request each xj with j ≥ i contributes

with
j·xj

k+1
and after the request with

(j−1)·xj

k+1
leading to a

difference of − xj

k+1
.

To prove that Equitable2 is Hk-competitive, it suffices to
show that for each request cost + Φ + Ψ ≤ Hk · costOPT ,
as both Φ and Ψ are non-negative. We do so by proving
for each step the inequation is preserved by considering the
differences in costs and potentials.

Lemma 6. If no forgiveness is applied it holds,

∆cost+∆Φ+∆Ψ ≤ Hk ·∆costOPT .

Proof. We first analyze the case for a request p ∈ Li,
with i > 0. We have ∆cost+∆Φ = 0 by the definition of Φ
and ∆costOPT = 0. By Lemma 5 ∆Ψ ≤ 0 and we are done.

For requests to pages in L0, both the algorithm and OPT
incur a cost of one, and thus ∆cost = 1 and ∆costOPT = 1.
It remains to show that ∆Ψ + ∆Φ ≤ Hk − 1. We analyze
separately the case when we are in a cone. In this case, by
definition ∆Ψ = 0, and by Lemma 1 we obtain ∆Φ = Hk−1.
In the following we assume we are not in a cone upon the
L0 request. Let i be the largest index with xi ̸= 0. By the
update rule, we get that x′

k−1 = xk−1+1 and x′
j = xj for all

j ̸= k−1. For the chopped signature χ′ this implies x′
j = xj

for all j ̸= i and x′
i = xi + 1, because i ̸= k as Lk is always

singleton. It follows ∆Ψ = i/(k+1). On the other hand we
have by Theorem 1 that ∆Φ ≤ Hk −H1 − i/(k + 1).

Theorem 2. Equitable2 is Hk-competitive and requires

2 +
√

5−1
2

· k bookmarks.

Proof. If the support size reaches the threshold k+x, i.e.
x bookmarks, we apply upon a request from L0 the forgive-
ness mechanism from [5]. Recall that we move the requested
page artificially into L1. This step does not increase OPT’s
overall cost. Then we process it as if it was requested from
L1. We have ∆cost = 1 and ∆costOPT = 0. Like in [5], we
need to prove that 1+∆Φ+∆Ψ ≤ 0. Denote by χ the current
signature, and let x =

∑k
i=1 xi be the number of bookmarks

used by the algorithm. We have that ∆Φ = −cost1(χ). We
get that 1 + ∆Φ is the probability that a page in L1 is in
the algorithm’s cache, which by the selection process of On-

lineMin is at most k/|S| = k/(x + k). Using the result in

Lemma 5 and the fact that
∑k−1

j=1 xj = x − 1, we need to
ensure that:

k

x+ k
− x− 1

k + 1
≤ 0 .

Solving this inequation, we get x ≥ (1−k+
√
5k2 + 6k + 1)/2,

which is at most
√

5−1
2

k + c for c ≥ 2. Therefore, Equi-

table2 needs only
√

5−1
2

k+c ≈ 0.62k bookmarks. The cases
where no forgiveness occurs are covered by Lemma 6.

Lower bound. We now show in Theorem 3 that Equi-

table2 can not achieve o(k) bookmarks and beHk-competitive.

Theorem 3. If Equitable2 uses t ≤ k/4 bookmarks, it

is not Hk-competitive.

Proof. For easiness of exposition we assume that k is
divisible by 4. It suffices to build an input sequence which
starts and ends in a cone where the cost of Equitable2

using t bookmarks exceeds Hk · OPT for arbitrary large k.
This sequence consists of three phases.

In the first phase we bring t additional pages into layer Li

(no forgiveness occurs), where the index i > 0 is deter-
mined later. To do so, we request a page in L0 leading
to χ = ek−1 followed by k − i − 1 requests from Li+1. The
resulting signature is ei = (0| . . . |xi = 1| . . . |0). We repeat
this step t−1 more times and obtain the signature χi = t ·ei
which by Lemma 1 has the potential Φi = t(Ht+i − Ht).
By Theorem 1, each request in L0 increases Φ by at least
Hk−i − 1, leading to a total amount of potential increases
Φ+ = t ∗Hk−i − t. Since Φ decreases upon lazy requests the
total cost of Equitable during this phase is

t+Φ+ − Φi = t · (Hk−i −Ht+i +Ht).

The second phase starts with a request from L0 which forces
Equitable2 to apply forgiveness. This leads to χ = t · ei +
ek−1 whereas the signature used by Equitable2 is χEq =
t · ei−1. This means that page q ∈ L1 in the (original)
layer representation is for sure not in cache. We request q.
We can repeat the last request type i − 1 additional times
which leads to a total cost in the second phase of i whereas
OPT pays 1. In the third phase we bring the (original)
offset function to a cone, and repeat revealed requests (if
needed) such that Equitable also reaches a cone and we
can repeat our attack. The third phase incurs no cost for
OPT. Choosing i = (k − t)/2 we need to show:

tHt + 0.5(k − t)

t+ 1
> Hk.

Setting t = k/4, we get:

1.5 + ·Hk/4 −Hk − Hk

k/4
> 0.

For the value k = 200 the left side is about 0.0036. The
term Hk/4 −Hk is increasing in k. To see this let k = k+4.
We obtain a difference of 4

k
− 1

k+1
− 1

k+2
− 1

k+3
− 1

k+4
> 0.

On the other hand Hk

k/4
is decreasing in k. We conclude that

the inequation is true for k ≥ 200.

Trading competitiveness for space. We now show that
Equitable2 can achieve o(k) bookmarks at the expense of
competitiveness. This result is given in Theorem 4.

Theorem 4. There exist implementations of Equitable2

that are (Hk + c)-competitive and use k/(1 + c) bookmarks,

for k > 1 and c ≥ 1.

Proof. Again, we consider two functions Φ and Ψ, both
initially set to zero, and for each request we prove that:

∆cost+∆Φ+∆Ψ ≤ (Hk + c)∆costOPT .

As before, Φ is the cost of a lazy sequence of requests in the
support ending in a cone. However, Ψ is defined differently:
Ψ = c

k+1

∑k−1
j=1 j · xj .

For requests in L0 when no forgiveness step is applied, we
have ∆cost = 1, ∆costOPT = 1, and, by Theorem 1, we get
∆Φ ≤ Hk−H1−i/(k+1), where i is the largest index having
xi > 0. Also, similarly to Lemma 6, we get ∆Ψ ≤ ci

k+1
,

which, using i < k, leads to 1 + ∆Φ+∆Ψ ≤ Hk + c.

For pages in support, we analyze the request to a page p ∈
Li. By definition of Φ, we have ∆cost+∆Φ = 0. The result
in Lemma 5 can be adapted straightforward to obtain ∆Ψ =
− c

k+1

∑k−1
j=i xj . Altogether, we get ∆cost+∆Φ+∆Ψ ≤ 0.

For requests in L0 , when forgiveness must be applied, we
use the same forgiveness mechanism from [5], where the re-
quested page is artificially inserted in L1 and processed as
a page in L1. Again, in this case, the algorithm is charged
a cost of 1, and OPT is charged 0. We have that 1 + ∆Φ is
the probability of a cache hit for a page in L1, which is at
most k

x+k
, where x =

∑k
j=1 xj is the amount of bookmarks

allowed. Using ∆Ψ = − c
k+1

(x− 1), we need to ensure that
k

x+k
≤ cx

k+1
. Solving the inequation, we get that it holds for

x ≥ − k
2
+

√
c2k2+4kc

2c
. Enforcing x = k/(1 + c), the result

follows.

We note that the result in Theorem 4 gives a range of algo-
rithms whose performance is between the classic Equitable
and Marking algorithms, with respect to competitiveness
and space usage; in particular, the interesting values for c
are such that c = ω(1) and c < Hk − 1. That is because,
classic Equitable is Hk-competitive but uses Θ(k) book-
marks, while Marking uses no bookmarks, but is 2Hk − 1
competitive.

4. PARTITION
In this section we prove in the affirmative the conjecture
in [5] that there exists a strongly competitive paging algo-
rithm using o(k) bookmarks. We propose a variation of the
Partition algorithm [13], that we call Partition2, which
uses O(k/ log k) bookmarks. We furthermore give a simple
lower bound showing that for any Hk-competitive random-
ized paging algorithm, the number of pages having non-zero
probability of being in cache must be at least k+k/Hk. This
leads to a lower bound of k/Hk bookmarks for all algorithms
which store all non-zero probability pages, i.e. representa-
tion of the approximated offset function, and have a deter-
ministic forgiveness step. Note that this bound holds for
all known Hk-competitive algorithms with bounded space
usage, i.e. depending only on k.

4.1 Partition
In this section we give a brief description of the Partition

algorithm in [13]. A crucial difference between Partition

and Equitable is that while the distribution of the cache
configurations depends only on the current offset function
for Equitable, Partition is defined on a special, more de-
tailed, representation of the offset function, which we denote
in the following set-partition. We show in Observation 1
that the offset function alone does not suffice to determine
the probability distribution for the cache of Partition4. It
partitions the whole pageset into a sequence of disjoint sets
Sα, Sα+1, . . . , Sβ−1, Sβ and each set Si with i < β has a la-

bel ki. Initially β = α + 1, Sβ contains the first k pairwise
distinct pages, the remaining pages are in Sα, and kα = 0.
Throughout the computation Sβ contains all revealed pages
(pages which are in OPT’s cache independent of the future
requests) and Sα all the pages which are not in OPT’s cache.
Upon a request to page p the set-partition is updated as fol-
lows. If p ∈ Sβ nothing changes. If p ∈ Sα the following
assignments are done:

Sα = Sα \ {p}, Sβ+1 = {p}, kβ = k − 1, β = β + 1.

The last case covers p ∈ Si, where α < i < β:

Si = Si \ {p}, Sβ = Sβ ∪ {p}, kj = kj − 1 (i ≤ j < β).

Additionally, if there are labels which become zero, let j be
the largest index such that kj = 0; the following assignments
are performed:

Sj = Sα ∪ · · · ∪ Sj , α = j.

In [13] it was shown that the following invariants on the
labels hold: kα = 0 and ki > 0 for all i > 0; kβ = k−|Sβ−1|.
Furthermore, it holds at all times that:

ki = (ki−1 + |Si|)− 1.

Probability distribution of cache configurations. The
probability distribution of the cache content can be described
as the outcome of the following selection process on the set-
partition:

• Cα = ∅
4Previous work [1] gave a simplified and intuitive description
of Partition, but which is not fully accurate.

• For α < i < β choose p uniformly at random from
Ci−1 ∪ Si and set Ci = (Ci−1 ∪ Si) \ {p}

• Cβ = Cβ−1 ∪ Sβ .

Note that, whereas for the selection process of OnlineMIN

the size of Ci is given by i, for Partition we have that
|Ci| = ki. The following result was given in [13, Lemma 3].

Lemma 7. If p is requested from Si, where α < i < β,
the probability that p is not in the cache of Partition is at

most
∑

i≤j<β

1

kj + 1
.

Cache replacement. Apart from obeying the cache distri-
bution previously introduced, Partition must satisfy two
constraints, namely it must not evict pages upon a cache hit
and it must not evict more than one page upon a cache miss.
For any set Ci, the membership of a page to Ci is encoded
with a marking system on pages as follows. If a page is in
set Si, where α < i < β, it has either no mark or a series
of marks i, i + 1, . . . , j − 1, j. If p has no mark then p /∈ Ci

and otherwise it is in the selection sets Ci, Ci+1, . . . , Cj−1, Cj .
The cache of Partition is at all times Cβ , with |Cβ | = k.
For a page p ∈ Si it suffices to store the value mp of the
highest mark or i− 1 if p has no mark.

Initially there are only the two sets Sα and Sβ and thus
no marks. If the requested page p ∈ Sβ nothing changes. If
p ∈ Sα first the set-partition is updated, where β is increased
by 1 and we have to determine Cβ−1. A page q is chosen
uniformly at random from the k elements Cβ−2 ∪ Sβ−1 (the
cache content before the request), and this element is the
only one not receiving a β− 1 mark. The page q is replaced
in the cache by the requested page p. We now turn to the
case p ∈ Si, where α < i < β. If p is in cache thenmp = β−1
and we do nothing. Otherwise let j ≤ β − 1 be the lowest
index such that p /∈ Cj . We choose uniformly at random
a page q ∈ Cj and set mp = mq and mq = j − 1, i.e. p
steals the marks of q. We repeat this until mp = β− 1. The
page which loses its β − 1 mark is replaced in cache by p.
Afterwards the set-partition is updated.

Observation 1. The probability distribution of Parti-

tion does not depend on the offset function alone.

Proof. To illustrate the claim, we give two scenarios
leading to the same offset function where there exist a page
having different probabilities of being in cache. In the first
scenario, we start with the cone L1 = (p1| . . . |pk−1|q1) and
request two pages from L0, namely q2 and q3. Since upon a
request in L0 Partition evicts a page uniformly at random
from cache, the probability that q1 is in cache after process-
ing q3 is (k − 1)2/k2. In the second scenario, we start with
offset function L2 = (p1| . . . |pk−1|q2) and we request q1 and
q3, both of which are in L0. This leads to the same layer
representation of the offset function as in the first scenario,
but the probability that q1 is in cache is now only (k−1)/k,
which concludes the proof.

4.2 Partition2
In this section we describe the Partition2 algorithm. As
implied by its name, it is a variant of Partition which
uses (deterministic) forgiveness to reduce the space usage
from arbitrarily high bookmarks to O(k/ log k) bookmarks.
A lower bound is provided which shows that this bound is
asymptotically optimal for algorithms using deterministic
forgiveness. Unlike previous works, when a forgiveness step
must be applied, we distinguish between two cases and apply
two distinct forgiveness rules accordingly. The first of them
is the same one used by Equitable2 and covers only a single
request, and the second one is a forgiveness phase which
spans consecutive requests. To apply the forgiveness step
of Equitable2, we first provide an embedding of the set-
partition into the layer representation of the offset function.
Based on this embedding, we give a simple potential function
which depends only on the signature of the offset function.

Layer Embedding. In the following we provide an embed-
ding of the set-partition into the layer representation of the
offset functions, as used by Equitable. The layers become
ordered sets and contain pages and set identifiers, the lat-
ter of which we visualize by ⋆. The initialization does not
change and no set identifiers are present. The update rule
changes mainly for the case p ∈ L0:

Lk−1 = (Lk−1, Lk, ⋆), Lk = {p}.
Upon the merge operation Li−1 ∪Li \{p} in the case p ∈ Li

we remove p from Li and concatenate Li−1 with Li without
removing any set identifier. Upon merging L1 into L0 we
delete all set identifiers from the resulting layer L0. An
example is given in Figure 1. The following fact follows
inductively.

Fact 1. For Li, with i > 0 and |Li| = 1 + xi, it holds

• Li contains exactly xi set identifiers,

• if xi > 0 then the last element in Li is a set identifier.

We describe how to obtain the sets of the set-representation.
Let j be maximal such that xj > 1. We have Sβ = Lj+1 ∪
· · · ∪ Lk and Sα = L0. A set Sα+j , where 1 < j < β − α
consists of all pages between the (j − 1)-th and the j-th
set identifier; for j = 1, Sα+1 consists of all support pages
until the first set identifier. We say that each set Sα+j ,
0 < j < β − α, is represented by the j’th set identifier. As
long as no pages are moved into Sα, the correspondence be-
tween the layer representation and the set-partition follows
immediately from the update rules. Otherwise, by Lemma 8
and noticing that each Li with xi > 0 ends in a set delimiter,
we obtain that p is in L1 and moreover the pages moved to
Sα correspond to L1 \ {p}.

Lemma 8. Let Sa, Sa+1, . . . , Sb be the sets whose identi-

fiers are in layer Li, i ≥ 0. We have:

kb = i, ka+j ≥ i for 0 ≤ j < b− a .

Proof. We show that the invariant remains true after
each update of the set-partition. Let p be the currently

Req Offset function
- L = (7, 8, 9|1|2|3|4|5|6)

S = {7, 8, 9}0{1, 2, 3, 4, 5, 6} (α = 1, β = 2)
9 L = (7, 8|1|2|3|4|5, 6, ⋆|9)

S = {7, 8}0 {1, 2, 3, 4, 5, 6}5 {9} (α = 1, β = 3)
6 L = (7, 8|1|2|3|4, 5, ⋆|9|6)

S = {7, 8}0 {1, 2, 3, 4, 5}4 {9,6} (α = 1, β = 3)
8 L = (7|1|2|3|4, 5, ⋆|9, 6, ⋆|8)

S = {7}0 {1, 2, 3, 4, 5}4 {9, 6}5 {8} (α = 1, β = 4)
1 L = (7|2|3|4, 5, ⋆|9, 6, ⋆|8|1)

S={7}0 {2, 3, 4, 5}3 {9, 6}4 {8, 1} (α = 1, β = 4)
9 L = (7|2|3|4, 5, ⋆, 6, ⋆|8|1|9)

S = {7}0 {2, 3, 4, 5}3 {6}3 {8, 1, 9} (α = 1, β = 4)
6 L = (7|2|3, 4, 5, ⋆, ⋆|8|1|9|6)

{7}0 {2, 3, 4, 5}3 {}2 {8, 1, 9, 6} (α = 1, β = 4)
3 L = (7|2, 4, 5, ⋆, ⋆|8|1|9|6|3)

S = {7}0 {2, 4, 5}2 {}1 {8, 1, 9, 6, 3} (α = 1, β = 4)
5 L = (7, 2, 4|8|1|9|6|3|5)

{7, 2, 4}0 {8, 1, 9, 6, 3, 5} (α = 3, β = 4)

Figure 1: Example for the layer embedding of the

set-representation.

requested page; also let L and L′ be the layer representation
and S and S′ the corresponding set-partition before and
after processing p respectively.

If page p ∈ Sβ nothing (except a shift of the revealed layers
in L) changes. If p ∈ Sα we also have p ∈ L0. Page q ∈ Lk

followed by a new set identifier (representing the set Sβ′−1)
is appended to Lk−1 and L′

k = {p}. All sets except for
Sβ′−1 are not affected. The set-partition update rule assigns
kβ′−1 = k− 1. Since the identifier of Sβ′−1 is the rightmost
element in L′

k−1, the result holds.

Now we turn to the case p ∈ Si∗ , where α < i∗ < β. Let Li

be the layer containing p. if Li is singleton, then for all sets
Sj∗ , j

∗ ≥ i∗ we have that both kj∗ and its corresponding
layer index decrease by 1. Since the relevant parameters
for the remaining sets don’t change, the result holds. If Li

is not singleton, by construction Li ends in a set identifier;
this set identifier represents a set Sj∗ , j

∗ ≥ i∗. By inductive
hypothesis, we get kj∗ = i. By the update rules, k′

j∗ =
i − 1 and it is the last set identifier in L′

i−1. All other set
identifiers in Li represent sets having labels at least i, which
might decrease by at most 1. All these identifiers are moved
to L′

i−1 and the result follows.

Lemma 9. If p is requested from Li, where i > 0, the

probability that p is not in the cache of Partition is at

most
∑

j≥i

xj

j + 1

Proof. If p ∈ Sβ , then it is in a revealed layer Li and
thus xj = 0 for all j ≥ i and the result holds. Let Si∗ be the
set with p ∈ Si∗ , α < i∗ < β. Then by Lemma 7 we have the
probability bounded by

∑

i∗≤j∗<β
1

kj∗+1
. All sets S∗

j , where

i∗ ≤ j∗ < β have their identifier in some layer Lj with j ≥ i

and using Lemma 8 we obtain 1
kj∗+1

≤ 1
j+1

. Since each layer

Lj contains exactly xj identifiers the statement follows.

Forgiveness. Forgiveness is applied when the support size
reaches a threshold of k + 3t (we define t later) and a page
in L0 is requested. Depending on the support we have
two kinds of forgiveness: regular forgiveness and an ex-

treme forgiveness mode. The regular forgiveness is applied
if |L1|+ · · ·+ |Lt| > 2t and is an adaptation of the forgive-
ness step of Equitable2. If a page p is requested from L0

(equivalent to Sα), we first identify a page q satisfying that
q ∈ Sα+1 ∩ L1. Note that there always exists such a page,
since kα+1 ≥ 1 and |S1| = k1 + 1 and at least one of them
is in L1. We move q to L0 and replace it, together with its
marks, by p. Then we perform the set-partition and mark
update where p is requested from Sα+1. We stress that in
terms of the layer representation of the offset function (used
by e.g. Equitable), we replace the requested page with an
existing page in L1, and replacing q ∈ L1 by p and request-
ing p leads to the same offset function when the forgiveness
step in [5] is applied. This has a cost of 1 for Partition

and a cost of 0 for OPT. The size of the support decreases
by |L1| − 1 ≥ 0.

The extreme forgiveness mode is applied if |L1|+ · · ·+ |Lt| ≤
2t. We simply apply regular forgiveness for any page request
in L0 starting with the current one. This extreme forgiveness
mode ends when reaching a cone.

Competitive ratio and bookmarks. We use Partition

with the forgiveness rule for t = ⌈ k
ln k

⌉ from the previous
paragraph if k > 10 and denote the resulting algorithm Par-

tition2. For k ≤ 10 we apply the the regular forgiveness if
the support size reaches 2k.

Theorem 5. Partition2 uses Θ(k
logk

) bookmarks and is

Hk-competitive.

Proof. The space bound follows from the fact that the
support size never exceeds k+3t for k > 10, where t = ⌈ k

ln k
⌉.

It remains to show that Partition2 is still Hk-competitive.
We use the following potential on the layer representation
of the offset function:

Φ =

k−1
∑

j=1

xj · (Hj+1 − 1)

We denote by cost the cost of Partition2 and by OPT
the cost of the optimal offline algorithm. We have to show
that cost ≤ Hk · OPT holds after each request. In all cases
except the extreme forgiveness we show that the following
holds before and after each request

Φ + cost ≤ Hk ·OPT .

This leads to cost ≤ Hk · OPT since Φ ≥ 0. When ap-
plying the extreme forgiveness we assume that the potential
inequation holds before the phase and show that it holds at
the end of the phase, but not necessary during the phase.

For requests during the phase we argue directly that it al-
ways holds cost ≤ Hk ·OPT .

Let p be the requested page. If p ∈ L0 without forgiveness,
∆OPT = 1 and xk−1 increases by 1, which implies that
∆Φ +∆cost = Hk − 1 + 1 = 1 ·Hk.

If p is from some layer Li, where 0 < i ≤ k, we use the
bound on the cache miss probability from Lemma 9

∆Φ+∆cost ≤ −
∑

j≥i

xj

j + 1
+

∑

j≥i

xj

j + 1
≤ 0 ≤ Hk ·∆OPT.

Now we analyze the cases where forgiveness occurs for k >
10. Assume that |L1|+ · · ·+ |Lt| ≥ 2t+1 which implies that
x1 + · · ·+ xt ≥ t+ 1. We perform just one forgiveness step,
yielding ∆cost = 1 and ∆OPT = 0. We have to show that
∆Φ ≤ −1.

∆Φ = −
k−1
∑

j=1

xj

j + 1
≤ −

t
∑

j=1

xj

t+ 1
= − t+ 1

t+ 1
= −1.

Now assume that xt+1 + · · · + xk−1 ≥ 2t. Before we start
the extreme forgiveness mode, we have that

Φ ≥
k−1
∑

j=t+1

xj(Hj+1 − 1) ≥ 2t(Ht+2 − 1)

By the choice of t = ⌈ k
ln k

⌉ and the approximation Hx ≥ lnx
we obtain

Φ ≥ 2k

ln k
(ln k − ln ln k − 1) ≥ k, if k > 10.

Right before the phase starts we have cost+Φ ≤ Hk ·OPT ,
where Φ ≥ k which is equivalent to cost ≤ Hk · OPT − k.
Reaching the next cone implies at most k − 1 unrevealed
requests and thus the cost during this phase is bounded by
k − 1. This implies that cost ≤ Hk ·OPT holds. Since in a
cone Φ = 0 we also have at the end of the phase the invariant
cost+Φ ≤ Hk ·OPT .

For the case k ≤ 10 the analysis of the extreme forgiveness
does not hold. In this case we use only the regular forgive-
ness step if we have k bookmarks. Using x1+ · · ·+xk−1 = k
the same argument as before leads to ∆Φ ≤ −1.

Lemma 10. For any Hk-competitive algorithm A there

exists an input such that the maximal number of pages with

non-zero probability of being in A‘s cache is at least k+k/Hk.

Proof. We assume that A is Hk-competitive and the
number of pages with non-zero probability is always less
than k + k/Hk. We start in a cone (p1|p2| . . . |pk) and re-
quest q1, q2, . . . , qα, where α = k/Hk and all qi have never
been requested before. Thus OPT and A perform each α
page faults. The resulting work function has the signature
(0| . . . |0|α|0) and the support has size k+α. By our assump-
tion there exists at least one page from the support on which
A faults with probability 1. Since for the next k−1 requests
the support does not change we can force k − 1 page faults
on A each with cost 0 for OPT. Afterwards we continue the
request sequence to reach a cone and repeat our attack. We

conclude that A is not Hk competitive

cost(A)

cost(OPT)
=

k − 1 + α

α
= 1 +

k − 1

k/Hk
> Hk ,

and the proof follows.

5. CONCLUSIONS
We have shown that Partition2 improves the bookmark
complexity from O(k) to O(k/ log k) and thus proved the
conjecture that there exist Hk-competitive randomized pag-
ing algorithms using o(k) bookmarks. This is the best possi-
ble for algorithms using deterministic forgiveness techniques
and store the whole representation of the (approximated)
offset function. One possible direction to improve this bound
is to use randomization at the forgiveness step. The more
LRU-like distribution of Partition and its simple poten-
tial in the layer embedding seems to be the more promising
candidate.

We stress that the forgiveness used for Partition2 does not
lead to o(k) bookmarks for the distribution of Equitable.
Nonetheless, Equitable is interesting due to its O(log k)
runtime and the elegant potential definition. Moreover, the
priority-based selection process in [8] gives an alternate ap-
proach to analyzing the Equitable distribution by employ-
ing elementary combinatorics.

6. REFERENCES
[1] D. Achlioptas, M. Chrobak, and J. Noga. Competitive

analysis of randomized paging algorithms. Theoretical
Computer Science, 234(1-2):203–218, 2000.

[2] S. Albers. Online algorithms: a survey. Mathematical

Programming, 97(1–2):3–26, 2003.

[3] W. W. Bein, R. Fleischer, and L. L. Larmore. Limited
bookmark randomized online algorithms for the
paging problem. Information Processing Letters,
76(4-6):155–162, 2000.

[4] W. W. Bein, L. L. Larmore, and J. Noga. Equitable
revisited. In Proc. 15th Annual European Symposium

on Algorithms, pages 419–426, 2007.

[5] W. W. Bein, L. L. Larmore, J. Noga, and R. Reischuk.
Knowledge state algorithms. Algorithmica,
60(3):653–678, 2011.

[6] L. A. Belady. A study of replacement algorithms for
virtual-storage computer. IBM Systems Journal,
5(2):78–101, 1966.

[7] A. Borodin and R. El-Yaniv. Online computation and

competitive anlysis. Cambridge University Press, 1998.

[8] G. S. Brodal, G. Moruz, and A. Negoescu. Onlinemin:
A fast strongly competitive randomized paging
algorithm. Theory of Computing Systems, Special

issue of the 9th Workshop on Approximation and

Online Algorithms, 2013.

[9] M. Chrobak, E. Koutsoupias, and J. Noga. More on
randomized on-line algorithms for caching. Theoretical
Computer Science, 290(3):1997–2008, 2003.

[10] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D.
Sleator, and N. E. Young. Competitive paging
algorithms. Journal of Algorithms, 12(4):685–699,
1991.

[11] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D.
Sleator. Competitive snoopy caching. Algorithmica,

3:77–119, 1988.

[12] E. Koutsoupias and C. H. Papadimitriou. Beyond
competitive analysis. In Proc. 35th Symposium on

Foundations of Computer Science, pages 394–400,
1994.

[13] L. A. McGeoch and D. D. Sleator. A strongly
competitive randomized paging algorithm.
Algorithmica, 6(6):816–825, 1991.

[14] G. Moruz and A. Negoescu. Outperforming LRU via
competitive analysis on paramtrized inputs for paging.
In Proc. 23rd Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 1669–1680, 2012.

[15] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rules. Communications of

the ACM, 28(2):202–208, 1985.

[16] N. E. Young. The k-server dual and loose
competitiveness for paging. Algorithmica,
11(6):525–541, 1994.

