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Abstract

The aim of this thesis is to compute the dimension of the space Val*P*®) of Spin(9)-invariant
valuations on R0,

McMullen’s theorem allows us to decompose this space in its homogeneous components. We can
then study them separately. It is done through the construction of the following exact sequence
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A large part of this work is then the computation of the dimensions of the spaces (A*1)SPin(9)

and Ql;’l(SV)Spm(g).

In order to do that, we present a description of the action of Spin(9) on R6. It uses the properties
of the 8-dimensional division algebra O of the octonions to decompose the Lie algebra so(9) of
Spin(9). The operation of the components on 02 is then explicitely given.

Using this description as well as representation-theoretic formulas, we can compute the dimensions
of (AFV)SPin() and QkL(SV)Spin(9),
Spin(9) |

Hence we obtain the following dimensions of Val,
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Spin(9)

It is clear, that the k-th intrinsic volume py belongs to Val, . The last chapter of this work
present the construction of a new element of Valgpm(g), which is linearly independent of .

On a Riemannian manifold (M, g), we construct a valuation by integrating the curvature tensor
on the disc bundle. We associate to this valuation on M a family of valuation on the tangent
spaces. We show, that this valuations are even and homogeneous of degree 2. Moreover, since the
valuation on M is invariant under the action of the isometry group Isom(M, g) of M, the induced
valuation on T, M is invariant under the action of the stabilisator Stab, for all p € M.

In the special case M = QP2 this construction yields an even, homogeneous of degree 2, Spin(9)-
invariant valuation on 02 = R'6, whose Klain function is not constant, i.e. which is linearly
independent of the second intrinsic volume.



Deutsche Zusammenfassung

Das Ziel dieser Arbeit ist es, die Dimension des Raumes der Spin(9)-invarianten Bewertungen zu
bestimmen.

Bevor wir das eigentliche Problem behandeln kénnen, brauchen wir ein paar allgemeine Definitio-
nen.

Auf einem n-dimensionalen Euklidischen Vektorraum V', betrachten wir den Raum K(V') der kom-
pakten konvexen Teilmengen in V. Eine Bewertung ist ein reell- oder komplexwertiges Funktional
w auf (V) mit folgender Additivitétseigenschaft :

(K UL)+ pu(KNL)=u(K)+ p(L),

fir alle K, L € K(V) mit K UL € (V).

Beispiele von Bewertungen sind das Volumen, der Flacheninhalt des Randes und die Euler Charak-
teristik.

Eine Bewertung p heisst stetig, wenn pu stetig beziiglich der Hausdorff Topologie ist. u heisst
translationsinvariant, wenn fiir jedes K € K(V) und z € V,

(K +2) = p(K).

Wir beschrinken den Rahmen dieser Arbeit auf den Vektorraum der stetigen translationsinvari-
anten Bewertungen, der mit Val bezeichnet wird.
Sei p eine Bewertung, und k& € C. p heisst homogen vom Grad k, wenn

H(tK) = (K,

fir alle ¢ > 0 und K € K(V). Zum Beispiel ist das Volumen homogen vom Grad n, der
Flacheninhalt des Randes vom Grad n — 1 und die Euler Charakteristik vom Grad 0.
Der Raum Val lasst sich wie folgt zerlegen (Satz von McMullen) :

Val = EB Valy,.
k=0

Insbesondere ist der Homogenitéatsgrad eine ganze Zahl zwischen 0 und n.
Eine Bewertung p heisst gerade, bzw. ungerade, wenn

p(—K) = p(K), bzw. p(—K) = —p(K).
Jeder Raum Val;, lasst sich schreiben als
Val, = Val @ Val,,

wobei der oberer Index +, bzw. —, fiir gerade, bzw. ungerade, Bewertungen steht.

Gerade k-homogene Bewertungen kénnen durch ihre Klainfunktion charakterisiert werden; sei
w € Valf (V), und E € Gry(V) ein k-dimensionaler Unterraum von V. Dann ist M|E ein Vielfaches
¢(F) des k-dimensionalen Lebesguemass auf E. Die Klainfunktion von pu ist dann durch

Kl,(E) = ¢(E)
definiert. Die induzierte Abbildung K1 : Val;” — C(Gry(V)) ist injektiv.
Die Gruppe GL(n, V) operiert auf Val durch

(gu)(K) = u(g™'K),

fir g € GL(n,V), u € Val und K € (V). Diese Operation ist stetig und der Homogenitatsgrad
und die Paritét bleiben unter dieser Operation erhalten. Ausserdem gilt nach dem Irreduzi-
bilitétstheorem von Alesker ([1]):



Die Darstellung von GL(n, V) auf Valki ist irreduzibel fiir jedes k =0, ...,n.

Sei G eine kompakte Untergruppe von SO(n) = SO(V). Wir betrachten den Untervektorraum
Val® C Val von G-invarianten Bewertungen. Es wurde durch Alesker bewiesen [1], dass dieser
Raum nur endliche Dimension hat, wenn G transitiv auf der Einheitssphére S(V') von V operiert.
Die Bestimmung aller kompakten zusammenhéngenden Lie Gruppen, die transitiv auf der Ein-
heitssphére operieren, wurde durch Montgomery—Samelson [36] und Borel [19] ausgefiihrt. Es
sind

SO(n), U(n),SU(n),Sp(n), Sp(n) - U(1), Sp(n) - Sp(1),

und die drei Ausnahmegruppen
Go, Spin(7), Spin(9).
Das Problem der Bestimmung der Dimension von Val® fiir G aus dieser Liste ist nur teilweise
gelOst.
Der Fall G = SO(n) wurde vollstindig von Hadwiger [30] studiert : Die Dimension von Val>°(™

ist n + 1; eine Basis dieses Raumes ist durch die sogenannten intrinsischen Volumina gegeben.
Fir G = U(n), wurde das Thema von Park [37] fiir n = 2,3 und von Alesker [2] fiir n beliebig

behandelt :
dim ValV (™ — (” ; 2) .

Bernig hat dann in [14] die Dimensionen von ValiU(") gegeben :

Vale(n) = Valg(n) for k # n,
dim ValS'™ = vall™ 44 ifn=0 mod 2,
dimVal’U'™ = val’™ 12 ifn=~1 mod 2.

Fiir die drei letzte Reihen von der oberen Liste, Sp(n), Sp(n)-U(1), Sp(n)-Sp(1), hat Bernig in [16]
kombinatorische Dimensionsformeln von Val®, G = Sp(n),Sp(n) - U(1), Sp(n) - Sp(1), hergestellt.
Die Fille G = G2 und G = Spin(7) wurden vollstandig von Bernig in [15] untersucht. Der Beweis
benutzt die Inklusionen

SU(3) < G2 < Spin(7), SU(4) < Spin(7),

und die fir SU(3) und SU(4) bekannten Resultate.

Bis jetzt wurden fiir Spin(9) nur partielle Resultate von Alesker erhalten : er hat einige Beispiele
von Spin(9)-invariante Bewertung in [9] konstruiert.

In der vorliegende Arbeit stellen wir eine Methode vor, um die Dimension von Val®P(®) 2y berech-
nen.

Das erste niitzliche Hilfsmittel ist der Rumin-Operator [38]. Er wird folgendermassen definiert :
Eine Form w auf der Kontaktmannigfaltigkeit SV = V x S(V) heisst vertikal, wenn a A w = 0,
wobei « die Kontaktform auf SV ist.

Rumin hat in [38] gezeigt, dass es fiir w € Q¥"~*~1(SV) eine einzige vertikale Form w, existiert,
so dass d(w + w,) vertikal ist. Der Rumin-Operator ist dann definiert durch

Dw = d(w + wy).
Der Raum der Differentialformen auf SV =V x S(V) hat eine Bigraduierung

Q*(SV) = P ar'(sv),

k.l

wobei Q%!(SV) den Raum der Differentialformen vom Bigrad (k, 1) auf SV bezeichnet.
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Sei G wie vorher eine kompakte Untergruppe von SO(V), die transitiv auf S(V') operiert.

Auf QF!(SV) definieren wir folgende Teilriume :

HSV) = {w e QPNSV) w=aAé+dany, £ QFESY), ¢ e QF LTSV
Qi’f’l(SV)G = {we Q“(SV)G |a Aw =0} space of vertical forms,
QZ’Z(SV)G = Qk’l(sv)c/gﬁﬁl(sv)G space of horizontal forms,
k.l G
Q];’l(SV)G = Q (SV) /Ik’l(SV)G ,

wobei der obere Index G wie vorher den Raum der G-invarianten Formen bezeichnet.

Man betrachtet zusétzlich folgende Konstruktion :

Zu einem kompakten konvexen Korper K € K(V'), kénnen wir eine n — 1-dimensionale Lipschitz
Untermannigfaltigkeit von SV assoziieren, durch

N(K) :={(z,v) € SV |z € OK,v &usserer Einheitsnormalenvektor an K im Punkt x}.

N(K) heisst Normalenzyklus von K.
Man definiert den Operator

ne: Q’;’”*kfl(SV)G — Val{, w / w.
N()

Dann gilt
Theorem 2.2.1.([16]) Fir 0 < k < n, ist die Sequenz

d d nc
0 —— (AFV)G —— QO(SV)G 2 2 Qb= h=1(§Y)E s Valf —— 0
exakt.
Es folgt also
Korollar 2.2.2.([16]) Fir 0 < k,l <n, sei

by = dim(A*V)C,

bk,l = dim Qﬁ’l(SV)G,
und by, =0, by =0 fiir andere Werte von k und .
Dann ist fir 0 <k <n :

n—k—1
dim Val,? = Z (—1)71_k_l_1(bk7l —bp—1,-1) + (—l)n_kbk.
=0

Um diese Koeffizienten by und by ; bestimmen zu kénnen, miissen wir zuerst die Spin(9) Aktion
auf R'® untersuchen. Dafiir prisentieren wir eine Darstellung von Sudbery [41], die mit Hilfe von
Eigenschaften der 8-dimensionalen Divisionalgebra @ der Oktonionen gegeben ist. R'6 wird als
0? betrachtet, und der Beweis folgendes Satzes wird vorgestellt :

Theorem 4.3.3.([41]) Die Lie Algebra so(9) von Spin(9) kann durch

s0(9) = AL(0) @ so(0'),
dargestellt werden, und die Aktion p von so(9) auf O? = R® (Spindarstellung) ist gegeben durch

Ae A0) = p(A)(z)=A=x (Matrixmultiplikation)
T €so(Q) = p(T)(x):=T" (komponentenweise).

Wir kénnen dann verifizieren, dass die Aktion vom Stabilisator Stab = so(7) auf den Tangen-
tialraum T(l’o)Sw = Q' @ O die Summe der Standarddarstellung von so(7) auf @' = R” und der
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Spindarstellung von so(7) auf QO = R? ist.
Damit kénnen wir dann die Koeflizienten by ; berechnen. Nach Umformung gilt ndmlich
b, = dim(AF(0 @ 0') @ AY (O @ Q)P

Benutzt man die oben angegebene explizite Darstellung und Formeln aus der Theorie der Darstel-
lungen und ihrer Charaktern, erhalten wir die Koeffizienten b, und by, ;.

Insgesamt erhalten wir folgende Dimensionen von Valip in(9)

k 0|12 3|4]|5 6 7T 81191011 12|13 |14 | 15| 16

dimVallP™@ 1 123610152027 2015106 |3 ][2]1]1

12131“(9)

Es ist klar, dass das k-te intrinsische Volumen in Va enthalten ist. Das letzte Kapitel dieser

Arbeit présentiert eine Konstruktion eines weiteren Elements von Valgpin(g), der linear unabhéngig
von fg ist.

Wir betrachten eine glatte n-dimensionale orientierte Mannigfaltigkeit M. Da wir in diesem
Zusammenhang von Konvexitdt nicht mehr sprechen konnen, muss man eine andere Klasse von
Teilmengen von M betrachten. Sei P(M) die Menge der kompakten Untermannigfaltigkeiten mit
Ecken. Ein Funktional p : P(M) — C ist dann eine Bewertung auf der Mannigfaltigkeit M, wenn
die gleiche Additivitatsbedingung wie im linearen Fall erfiillt ist, fiir jedes Paar von Elementen in
P(M) deren Schnitt und Vereinigung wieder in P(M) sind.

Fiir ein Element K aus P(M) kann man den normalen Zyklus N(K) C S*M definieren. N(K)
ist wie vorher eine n — 1-dimensionale Lipschitz Untermannigfaltigkeit von S*M. Zu K € P(M)
konnen wir zudem eine andere Teilmenge N1 (K) C T*M zuordnen, das Diskbiindel. Ny (K) wird
durch Summieren von K x {0} und dem Bild von [0,1] x N(K) unter der Homothetie in dem
2. Faktor bekommen. Integration einer n-Form auf 7% M iiber das Diskbiindel liefert eine glatte
Bewertung auf M.

Fiir jeden Punkt p € M, hat der Raum Val™ (T, M) der translationsinvarianten glatten konvexen
Bewertungen auf T, M, nach dem Satz von McMullen, eine Graduierung nach Homogenitatsgrad:

Val™ (T, M) = € Valy*(T,M).
=0

Man bezeichnet mit Val™ (T'M) das Biindel, dessen Faser tiber einem Punkt p der Raum Val® (7, M)
ist. Dann haben wir folgende Graduierung

n
Val™(TM) = @ Val;*(TM).
=0

Dann gilt
Theorem 6.1.6 [10] Es existiert eine kanonische Filtrierung des Raumes V(M) von glatten
Bewertungen durch abgeschlossene Teilmengen

VX (M)=Wy DW1 D ... D W,,

so dass der assoziierte graduierte Raum grw V(M) = @, o Wi/Wit1 kanonisch isomorph
zu C°(M,Val™(TM)), dem Raum der glatten Schnitte von dem unendlich dimensionalen Vek-
torbindel Val™ (T M) — M, ist.

Sei G eine Lie Gruppe, die isotropisch auf M operiert.
Dann beschrankt sich der oben angegebene Isomorphismus zu

grw V= (M)C =2 C> (M, Val™(TM))% = Val (T, M)

iv



wobei H C G der Stabilisator des Punktes p ist; insbesondere gilt
(Wi/Wi1) = Val{! (T, M).

Wir kénnen diesen Isomorphismus explizit angeben :
SeipeWrundpe M. Sei7:U — V CR” eine Karte um p. Fir K € P(T,M) definieren wir

k 1 dk —1y*
TFu(K) - (77 ) u(7(p) + t(dmp(K) — 7(p))) -

i
Dann ist T, z}f p unabhéngig von der Wahl der Karte 7 und gehort zu Valy” (T,M).

Ist M eine Riemannsche Mannigfaltigkeit, so hat man eine zuséatzliche Struktur, die man benutzt
um eine kanonische Bewertung zu konstruieren.

Der Kriimmungstensor R, einer Riemannschen Mannigfaltigkeit ist ein Element von Sym?A*T;y M.
Mit Hilfe des Hodge-* Operators und einer Riemannschen Submersion, kann man R, als Element
R von A™(T(, (T'M)) ansehen. Man definiert dann eine n-Form auf 7" M durch

-
W(p,w) = C'n_sz’

wobei C,,_o das Volumen des n — 2-dimensionalen Einheitsballs ist. Dann ist die Bewertung p
auf M, die durch Integration von w iiber das Diskbiindel definiert ist, Element von W,. Also
ist die Bewertung Tg,u auf T, M vom Homogenitatsgrad 2. Zudem ist Tp2,u invariant unter dem
Stabilisator von p, da w, und daher p, invariant unter der Operation von G' = I'som(M, g) ist. Wir
zeigen noch, dass Tp2 1 eine gerade Bewertung ist, deren Klainfunktion genau die Schnittkrimmung
der Mannigfaltigkeit M ist.

Wir wenden dann diese Konstruktion auf vier Beispiele.

Das erste Beispiel ist die n-dimensionale Sphire M = S™. Die konstruierte Bewertung Tg u auf
T,M ist dann das zweite intrinsische Volumen.

Dann betrachten wir M = CP", den komplex projektiven Raum. Die Bewertung T 1? pwauf T,M =
C" ist dann U(n)-invariant; die Klainfunktion von T7u lautet

Klrz,(Epy) =143 cos? p(x,y),

wobei E, , die Ebene ist, die durch z und y erzeugt wird, und ¢ der Kéhlerwinkel, definiert durch
cos® p(z,y) = (z,iy)*.
In der Basis der Tasaki Bewertungen (s. [18]) gilt also :
Tiu =To 0+ 3T2,1.

Im Fall M = HP", der quaternionisch projektive Raum, ist die Bewertung Tgu Sp(n) - Sp(1)-
invariant. Die Klainfunktion von Tg p wird durch

Ky, (Eyy) = 1+ 3cos® a(z,y),

angegeben; a wird analog zum Ké&hlerwinkel definiert.

Das letzte Beispiel ist fiir uns das interessanteste. Nehmen wir M = QP?2, die oktonionisch projek-
tive Ebene, so ist T, M = Q% und T2y ist eine Spin(9)-invariante Bewertung auf 0 = R1¢| deren
Klainfunktion nicht konstant ist. 77 ist deshalb linear unabhéngig von dem zweiten intrinsischen

Volumen ps. Da Valspin(g) Dimension 2 hat, kann man als Basis das zweite intrinsische Volumen

u2 und das oktonionische Pseudo-Volumen 7, eingefiihrt in [9], nehmen. In dieser Basis ist die
neu konstruierte Bewertung
Tp2 w=4ps — 37
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Introduction

The main object studied through this work are valuations. They are defined as follows:
On an n-dimensional Euclidean vector space V', we consider the space (V') of compact convex
subsets in V. A valuation is a real or complex valued functional p on (V) with the following
additivity property :

(K UL)+ pu(KNL) = u(K) + p(L),

for all K, L € K(V) with K UL € (V).

First examples of valuations are given by the volume or the Euler characteristic.

In this work we consider only continuous (with respect to the Hausdorff topology on (V) and
translation invariant valuations; we denote by Val the space of these valuations.

Let G be a compact subgroup of the special linear group SO(n) of V, and consider the space
Val® C Val of G-invariant valuations. It was shown by Alesker [1] that this vector space has finite
dimension if and only if G acts transitively on the unit sphere S(V) in V. The determination
of compact connected Lie groups acting transitively on S(V) was performed by Montgomery-
Samelson [36] and Borel [19]. The compact connected Lie groups acting transitively on the sphere
are

SO(n),U(n),SU(n),Sp(n),Sp(n) - U(1),Sp(n) - Sp(1), (1)

and the three exceptional groups
Ga, Spin(7), Spin(9). (2)
The space of SO(n)-invariant valuations is described by Hadwiger’s theorem, which states that

Val®©(™ has dimension n + 1. A basis of this space is formed by the so called intrinsic volumes.
The next case is G = U(n) acting on C". Park in [37] gave the dimension of Val"™ for n = 2,3,
and Alesker proved in [2] for general n :

dim ValV® — (" ; 2) .

Bernig proved in [14] a Hadwiger-type theorem for SU(n):

ValiU(n) = Valg(") for k # n,
dim ValS'™ = vall™ 44 ifn=0 mod 2,
dim Va3V — Valg(n) +2 ifn>1 mod 2.

For the three remaining series of the list (1), Sp(n),Sp(n) - U(1),Sp(n) - Sp(1), Bernig recently
found combinatorial dimension formulas for Val®, G = Sp(n), Sp(n) - U(1), Sp(n) - Sp(1), using the
Rumin-de Rahm complex and tools from representation theory [16].

The cases of Gy and Spin(7) have been treated completely by Bernig in [15]. The proof uses the
inclusions

SU(3) < G2 < Spin(7), SU(4) < Spin(7),

and the known results for SU(3) and SU(4). Another important argument is the following :
Spin(7) acts transitively on the sphere S7, the stabilizer of this action is Gg; Go operates on the



tangent space of S” which we identify with R7, and this action is transitive on the sphere S6. The
stabilizer of this action is then SU(3), which operates on the tangent space of S°, identified with
RS, and this action is again transitive on the sphere S°.

Until now, only some partial results have been obtained by Alesker in the case G = Spin(9) : he
constructed a few examples of Spin(9)-invariant valuation in [9]. The same argument as for G, and
Spin(7) cannot apply in the case G' = Spin(9), since the stabilizer of the action on R6 is Spin(7),
which does not operate transitively on the 14-sphere in the tangent space of S'°. Therefore, we
have to develop other techniques to determine a Hadwiger-type theorem in this case. This is the
subject of this thesis.

The present work is organized as follows :

In the first chapter we recall definitions and properties of certain classes of valuations. Since all
G-invariant valuations are even, we remind of the tools used to describe them; in particular, the
definitions of Klain function and Klain embedding are given. Moreover the different equivalent
definitions of smoothness of a valuation are explained. In this context arise the notion of normal
cycle.

In Chapter 2 we use the Rumin operator to derive a formula for the dimension of the space of
translation invariant, continuous, homogeneous of degree k, G-invariant valuations in terms of
dimensions of spaces of differential forms on the sphere bundle SV, namely :

Corollary 2.2.2.([16]) For 0 < k,l <n, set

by := dim(A*V)E,
bk,l = dim QQ’I(SV)G,

and by, =0, by = 0 for other values of k and [.
Then for 0 < k<n :

n—k—1
dimValf = > (=1)" " by — brora-1) + (—1)" by
=0

In Chapter 3, we collect facts from representation theory of Lie groups. We discuss in particular the
irreducible representations of so(2m+1), which are involved in the computations of the dimensions
b, and by, ; of Corollary 2.2.2. It will be useful to look at these representations at the level of their
characters, computed using Weyl’s character formula.

Chapter 4 is devoted to the better understanding of the spin groups and of the spin representations.
First we describe the spin groups in terms of Clifford algebras. This description, although it gives
us information on the structure of the spin groups, is not the right setting for our aim. Therefore,
we present a work by Sudbery ([40],[41]) on division algebras and their relations to field theory.
His approach applied to the division algebra O of the octonions yields an explicit description of
the spin actions of Spin(7) on R® 22 @ and Spin(9) on R6 = Q2.

In Chapter 5, we use the results and tools established in the previous three chapters to compute
the coefficients by, and by, ; from Corollary 2.2.2. As a consequence, we get the following dimensions

for the spaces Val{P™®) .

k 0|12 3|4]5 6 7T 81191011 12|13 |14 | 15| 16

dimVal,P™@ 1 123610152027 2015106 |3 [2]1]1

It is clear that the intrinsic volume gy is element of Valipin(g) for each £k =0,1,...,16.

The goal of Chapter 6 is to construct a second, linearly independent of po, element of Valgpm(g).
We obtain it as a special case of a general procedure.

We extend the setting to valuations on a smooth oriented manifold M, and recall first definitions

and properties. Then, restricting ourselves to a Riemannian manifold (M, g), we consider the



curvature tensor R, with which we derive an n-form w on T*M. Integrating this form on the disc
bundle yields a smooth valuation on M, which is invariant with respect to the isometry group G
of M. By theorems of Alesker ([6],[7]), this valuation induces a family of valuations on the tangent
spaces, which are in fact invariant under the action of the stabilizer of G in p. This valuations
are moreover of homogeneity degree 2 and even; therefore we can compute their Klain function,
which turns out to be the sectional curvature of the manifold M. We illustrate then this result
by a range of examples, one of them being M = OP?; we get thereby a valuation on T, M = 0?
which is invariant under Stab, = Spin(9), the stabilizer of p. Moreover, since its Klain function is
not constant, this valuation is linearly independent of the second intrinsic volume.



Chapter 1

Real valued valuations

1.1 Definition and basic properties

Let V be an n-dimensional real vector space. We denote by K(V') the space of compact convex
subsets of V. With the choice of a scalar product on V, we can endow K(V') with the Hausdorff
metric

d(A,B) :=inf{r >0| AC B,,BC A,},

where

A i={z eV |dist(z,A) <r}.

The induced Hausdorff topology does not depend on the choice of the scalar product.
With respect to Minkowski addition

K+L:={x+y|zecK,ye L},
K(V) is a semigroup.

Definition 1.1.1. A valuation is a functional p : K(V) — R with the following additivity
property :
p(K U L) = p(K)+ p(L) — p(K N L),

for every K, L € K(V') with KUL € K(V).

Examples of valuations are the volume of a convex body denoted by vol, its area and the constant
valuation p : K(V) = R, K +— 1, called Euler characteristic and denoted by .

A particularly important class of valuations is that of continuous, translation invariant valuations.

Definition 1.1.2. A wvaluation is called continuous if it is continuous with respect to the Haus-

dorff topology.
A wvaluation is translation invariant if

W(K + ) = u(K),
for every K e K(V),veV.

We denote by Val(V') = Val the vector space of all continuous and translation invariant valuations
on V. Val is an infinite dimensional vector space.

Definition 1.1.3. A valuation i is homogeneous of degree k if for every K € K(V), t > 0,
p(tK) = t* u(K).

A wvaluation p is even if u(—K) = u(K) and odd if u(—K) = —u(K).



We denote by Val;, Val, the subspace of Val of even resp. odd valuations of homogeneity degree
k. Each continuous translation invariant valuation on V' can be uniquely decomposed in his even
resp. odd components of degree k =0,1,...,n = dim(V) :

Theorem 1.1.4 (McMullen’s decomposition theorem, [35]).

n
Val = € Val;.
k=0
e=%
Note in particular that this implies that the degree of homogeneity can only be an integer between
0 and n. It is known that Valy(V') is one-dimensional and is spanned by the Euler characteristic

X, and Val, (V) is also one-dimensional and is spanned by a Lebesgue-measure [30]. There is a
natural operation of the general linear group GL(n, V') on Val given by

(gu)(K) = u(g™'K).

Theorem 1.1.5 (Alesker’s irreducibility theorem, [1]). The natural representation of the group
GL(n,V) on each space Valf 18 irreducible for any k =0,1,...,n.

This means that any invariant closed subspace of Valf is either {0} or the entire space Valf. If
the subspace is not closed, it is therefore either {0} or dense in Valf

Definition 1.1.6. A wvaluation p € Val is smooth if the map GL(n,V) — Val, g — gu is
smooth.
We denote by Val*™ (V') the space of smooth translation invariant continuous valuations on V.

Val*™ (V) is a dense GL(n, V)-invariant vector subspace of Val.
We recall the definition from [3] of the following operator on Val(V'). Let B be the unit Euclidean
ball in V. Then the operator

(1) (K) : (K +B),

~ dtli=o

for K € K(V), is called derivation operator; £ preserves the parity and decreases the homo-
geneity degree of p by 1. We have

Theorem 1.1.7 (Hard Lefschetz theorem, [3], [17]). For § <k < n, the operator
£ Valf™ — Val®™,
is an tsomorphism.

For a compact subgroup G of SO(V) = SO(n), we let Val® C Val denote the subspace of G-
invariant valuations, namely :

Val® := { € Val | u(gK) = w(K), Vg € G, K € K(V)}.

Theorem 1.1.8 ([1]). Let G be a compact subgroup of SO(n) for n > 2. Then dim Val® < oo if
and only if G acts transitively on the sphere S(V).

Proposition 1.1.9 ([4]). Let G be a compact subgroup of SO(n) for n > 2 acting transitively on
the sphere of V.. Then
Val® (V) € Val*™ (V).



The condition that G acts transitively on the sphere was studied by Montgomery-Samelson [36]
and Borel [19]. They gave a complete classification of the connected compact Lie groups satisfying
this condition; they are namely

SO(n), U(n),SU(n), Sp(n), Sp(n) - U(1), Sp(n) - Sp(1),

and the three exceptional groups
Go, Spin(7), Spin(9).

There are various natural inclusions among these groups:
U(n),SU(n) < SO(2n), Sp(n),Sp(n) - U(1),Sp(n) - Sp(1) < SO(4n),
SU(4) < Spin(7), G2 < SO(7), SU(3) < Ga < Spin(7) < SO(8), Spin(9) < SO(16).

The last two inclusions are the spin representations, which play an important role in this work
and will be described further in Chapter 4.

Proposition 1.1.10. If G is a compact subgroup of SO(n), n > 2, acting transitively on the
sphere, then
Val? C Val*.

This is clear if —1 € G. The only groups for which this is not true are SO(n) and SU(n) for n odd
and Ga; proofs for these three cases are given in [30], [14] and [15] respectively.

1.2 Hadwiger’s theorem
Remarkable examples of continuous translation invariant valuations are the intrinsic volumes. We
can define them by the

Theorem 1.2.1 (Steiner formula).

Let B be the n-dimensional unit ball in V' and wy, the volume of the k—dimensional unit ball.
Fort >0 and K € K(V), let K +tB be the t-tube around K. Then vol(K + tB) is a polynomial
in t given by

vol(K +tB) = Z,un,k(K)wktk.
k=0

Definition 1.2.2. The valuations pg, k =0, ...,n, are called intrinsic volumes.
The k-th intrinsic volume pj has the following properties :
1. p is a continuous translation invariant and SO(n)-invariant valuation
2. py is homogeneous of degree k
3. the restriction of uy to a k-plane is the k—dimensional Lebesgue measure on that plane
4. pg is even.

In particular the py are in Val?0(™), Hadwiger’s theorem states conversely that all valuations in
Val®?(™ are obtained by linear combinations of intrinsic volumes.

Theorem 1.2.3 (Hadwiger’s theorem, [30]). The vector space Val®C™ is of finite dimension
n+ 1, and the valuations pg, p1,---, by form a basis of it.

This theorem was proved in 1957 by Hadwiger ([30]); more recently a shorter proof was given by
Klain ([32]) using the following theorem :

Theorem 1.2.4 (Klain’s theorem, characterization of the volume, [32]). Let v be an even, trans-
lation invariant, continuous valuation which is simple, i.e. p(K) =0 if dim(K) < n = dim(V).
Then there exists some constant ¢ € R such that

w=c-vol.



1.3 Even valuations

By Proposition 1.1.10, the valuations of interest in this work are all even, so it makes sense to try
to understand them better.

Let p be an even valuation of homogeneity degree k. For E € Gri(V), the restriction u|g is a
continuous, translation invariant simple valuation. By Klain’s theorem 1.2.4, u|gp = ¢(E) - volg
with some constant ¢(E) € R.

Definition 1.3.1. The map Kl, : Gri,(V) — R, K1, (E) = ¢(E) is called Klain function of p.
It is a continuous function on Gri(V).

Proposition 1.3.2. The induced map Kl : Val — C(Gre(V)), u — Kl, is injective. Kl is
called Klain embedding.

Proof. Suppose Kl,, = 0 for some p € Valz. Let F' be a subspace of minimal dimension such that
plF # 0, in particular dim F' = j > k. Then p|p is simple, hence by Klain’s theorem p|p = cvol;.
Since u is homogeneous of degree k, this is only possible if x| = 0. Hence there exists no subspace
F of V with plp #0, i.e.u = 0. O

Even smooth valuations of degree k can be characterized in the following way :

Let 1 be a smooth, translation invariant signed measure on the affine Grassmannian Gr,,_(V)
which is invariant under maps E — —F and satisfying (m;).n = t~*n with m; : Gr,,_.(V) —
Grpx(V), E—tE, t>0.

Then the map u : K(V) — R defined by

H(K) == /ﬁ (K N E)d(E)
Grp—k(V)

is an even translation invariant, continuous valuation of degree k. 7 is called Crofton measure
for p. A valuation admitting such a representation is called smooth. This definition coincide
with the Definition 1.1.6 given above ([11]).

1.4 Another description of smooth valuations

Smooth valuations can be described in terms of integration of differential forms over some sub-
manifold of the sphere bundle SV'. More precisely :
Let K € K(V), x € 9K and E an affine hyperplane.

Definition 1.4.1. E is a support plane of K at z ifx € E and K C ET or K C E~, where
ET and E~ are the two half spaces bounded by E.
E is an oriented support plane of K atx ifx € F and K C E~.

If 0K is smooth, there exists exactly one oriented support plane through each boundary point x.
For x € OK and E an associated oriented support plane, the couple (x, F) is an element of the
oriented n — 1-dimensional Grassmann bundle Gr; | (TV). We can see each pair (z, E) as an
element (z, [£]) of S*V, where z € V', [¢] € T2V and [¢] = [€] if and only if £ = \¢ for some A > 0.
V being an Euclidean vector space, we can identify S*V with the sphere bundle SV =V x S(V),
where S(V') is the unit sphere in V. The manifold

Gri ((TV)=S*V =SV
is in fact a contact manifold. Contact manifolds are defined as follows ([29]) :

Definition 1.4.2. A k-dimensional distribution in a smooth manifold M is a smooth section
Q of the Grassmannian GriyTM, i.e. Qp is a k-dimensional subspace of T,M forp e M.



A contact manifold is a smooth manifold M of dimension 2n — 1 with a codimension 1 dis-
tribution QQ which is completely non-integrable, i.e. if locally Q = ker a for some 1-form «, then
aANda™ 1 £ 0. If o is another 1-form with kero' = @Q, then o/ = fa for some non-vanishing
function f and o/ ANda™ "t = fa A (df Aa+ fda) ! = fra Ada™ "t # 0.

« is called contact form. In general, a exists only locally.

Since aAda™"t # 0 and Q = ker o, we have da~!|g, # 0 for p € M. Hence dalq, is a symplectic
form on @, and @ is a symplectic bundle over M.

The canonical contact form a on the sphere bundle SV is defined by
Az,0) (W) = (v, dr(w)),

where 7 : SV — V is the canonical projection.
The kernel of « defines the contact distribution @ = ker a.

Definition 1.4.3. The conormal cycle of K is defined by
N(K) = {(x,E) € Gr}_(TV) | E is an oriented support plane of K through z}.

The image of the conormal cycle of K under the identification S*V = SV is called the normal
cycle of K :

N(K) :={(z,v) € SV | v is an outer unit normal vector of K through z}.
Theorem 1.4.4 (Properties of N(K), [26]).

i) N(K) is a Lipschitz submanifold of SV of dimension n — 1,

ii) N(K) is a cycle : ON(K) =0, i.e. fN(K) dp =0 for p € Q"72(SV),
i1i) N(K) is horizontal : fN(K) aNp =0 for all p, where o is the contact form on SV,
iv) N(K) is legendrian, i.e. fN(K) da A p =0 for all p,

v) m.N(K) = 0K, where 7 is the projection w: SV =V, (z,v) — z,

vi) If K,L, K UL € K(V), then N(K UL) + N(K N L) = N(K) + N(L).

The last property implies that if w € Q?~(SV) is translation invariant, then the map

K — w
N(K)

is a translation invariant continuous valuation.

Definition 1.4.5. A waluation p € Val is called smooth if there exists w € Q""Y(SV)!" and
© € A"V* = Q"(V)I" such that
W)= [ wt [ o
N(K) K

where the superscript '™ means translation invariant.

This definition of smoothness is equivalent to definition 1.1.6 ([7]).
We denote by Val®™ the space of smooth valuations in Val. By Alesker’s irreducibility theorem,
Val®™ is a dense subspace of Val. The map

U QST x QU V)T — Val®™
(wa 50) = \Il(w,tp)a



defined by
\Il(w,tp)(K) ::/ w +/ ®,
N(K) K
is surjective. Its kernel is given by the following theorem :
Theorem 1.4.6 ([17]). ¥(, ) = 0 if and only if
i) Dw+ 7*¢ =0,
i1) mew =0,

where m : SV — V s the canonical projection and D is the Rumin operator, which will be
introduced in the next section.

Remark 1.4.7. The construction of the normal cycle and of ¥ can be extended to the more
general setting of valuations on manifolds, as we will see in Chapter 6.



Chapter 2

The Rumin operator and
valuations

2.1 The Rumin operator

Let V be as before an Euclidean vector space. The sphere bundle SV =V x S(V) is a contact
manifold with contact form given by

O‘(a:,v)(w) = <U’d7r(w)>7

where 7 : SV — V is the canonical projection.
The space of differential forms on SV =V x S(V) has a bigrading

Q*(SV) = P (sV),
k,l
where Q%!(SV') denotes the space of differential forms of bidegree (k,l) on SV.

Definition 2.1.1. A differential form w € QFY(SV) is called vertical if w(vy,...,v54;) = 0
whenever v; are horizontal, i.e.v; € Q.

Equivalently : w A a =0 or w=a A ¢ for some ¢ € QF~LL{(SV).
Proposition 2.1.2 ([38]). Let w € Q¥"=*=1(SV). Then there is a unique vertical form w, such
that d(w + w,,) is vertical.
Definition 2.1.3 ([38]). The Rumin operator is defined by
Dw = d(w + wy).
Remark 2.1.4 ([38]). If w is vertical, then Dw = d(w — w) = 0.

Ifw=daA g, then Dw =d(w—a Adp) =0.
If w is closed, then Dw =0 (w, =0 is vertical).

Let G be a compact subgroup of SO(V) acting transitively on S(V).
We define the following subspaces of Q%!(SV). As before the superscript G denotes the space of
G-invariant forms. We define

MSV) = {w e QNS |w =anE+dang, € QFTH(SY), e QNI (SV)Y,
QL SY = {we QPY(SV)Y | aAw =0} space of vertical forms,

QZ’I(SV)G = Qk’l(sv)a/gﬁyl(sv)G space of horizontal forms,

Q’;’I(SV)G = Qk7l(SV)G/Ik»l(Sv)G space of primitive forms.
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Multiplication by the symplectic form da induces an operator L : Q' (SV)¢ — QFtHIH1(gy)6
which is injective for k 4+ 1 < n — 2 and surjective for k +1 > n — 2 ([42]).
Moreover :

k,l G
QEL(SV)E = Q7 (SV) /L(QZ’l’l’l(Sv)G) .
The exterior derivative d : Q%!(SV)¢ — QFH1(SV)E induces an operator
dg : QPHSV)E = Qb (sV)9,
since d(ZF!(SV)¥) c ZFIFL(SV)E -

dlaNE+dany) =dané—aAdé+dandp e THTHSY). v

Moreover, since multiples of « and of do lie in the kernel of D (cf. Remark 2.1.4),
. Ok,n—k—-1 G kn—k G
D:Qy (SV)" — QF (SV)*™.
Lemma 2.1.5 ([16]). Let w € Q5H(SV)E with dw = 0. Then
i) If0 <l <n—1, there exists p € QM=L(SV)Y with dp = w,
i) If 1 =0, then w € (AFV)¢ C QFO(SV)C.

w:= Zci¢i N Ti,

Proof. We write

where ¢; € A*V and 7; € QI(S(V)).
Then
dw = Zciqﬁi ANdr; =0,

implies dr; = 0, i.e. the 7;’s are closed.

For 0 <l < n—1: Since the I-th de Rham cohomology of the sphere S(V) is 0, we find
pPi € Ql_l(S(V)) with dp; = 7;.

Then @ := Y ¢;¢; A p; satisfies dg = w, but is not G-invariant in general.

Define ¢ := [, g*@dg. Then ¢ € Q*'=1(SV)% and dp = w.

If [ = 0, then all the 7;’s are constant, hence w € (AFV)€. O

2.2 Link to valuations

The method presented in this section was developed by Bernig in [16] to compute the dimensions
of the spaces Val® with G = Sp(n),Sp(n) - U(1),Sp(n) - Sp(1).

For K € K(V) let as above N(K) be its normal cycle.
We define the operator

nc:Q];’"_k_l(SV)G - Valf

W = w.
N(K)

This map is well defined, since N(K) is horizontal and legendrian.

Theorem 2.2.1 ([16]). For 0 < k < n, the sequence

d d e
0 —— (AFV)G —— QEO(SV)G 2 L 2 @bk L(gY)E 0 Vil —— 0

18 exact.
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Proof. By Lemma 2.1.5, ii) the injectivity of the map (A*¥V)¢ —— Q’;’O(SV)G is clear. v
For 0 < <n—1,let [w] € Q&H(SV)Y with dglw] = 0, i.e. w € QX (SV)Y with dw = ané+dany €
Ik’H—l(SV)G.
Define w’ :=w —a A and £ := £ + dip.
We obtain

dw' =aANé+dany —danp+aAdp=aANE.
Differentiation yields

0=daAN& —and,

hence L(ﬁ"Q) = 0 where L is the multiplication by da, which is injective for k +1 < n — 2.
Therefore f"Q =0, so we can write £’ = a A£”, and so dw’' = a A& = 0. By Lemma 2.1.5 there
exists ¢’ € QF=1(SV) such that dy’ = w'.
Hence [w] = [w'] = [d¢'] = dg[¢'], i-e. [w] is dg-exact. v
The surjectivity of the map nc follows from Alesker’s irreducibility theorem 1.1.5. Let u be a
G-invariant valuation of degree k. We may approximate u by a sequence of valuations i, of the
form

et K — w.
N(K)

Averaging these valuations over G, we may in fact approximate p by a sequence of G-invariant
such valuations u&. But the space of G-invariant valuations of this type is finite dimensional,
hence closed. So p itself is of the form K + [y w for some w € QFn=k(SV)C, v

Finally, if [w] € QF"=k=1(SV) with nc[w] = 0, then by Theorem
P
Dw] =d(w+w,) =0

for some vertical form w, € QF"k=1(SV)4 Then ' := w + £ is a closed translation invariant
G-invariant form of bidegree (k,n —k—1), hence by Lemma 2.1.5 there exists ¢ € QFn=F=2(51)¢
with dp = w, L.e. [w] = [W'] = dglp] is dg-exact. v

O
Corollary 2.2.2 ([16]). For 0 < k,l <mn, set
by := dim(A*V)C,
by = dim Q) (SV)C,
and b, =0, by; = 0 for other values of k and [.
Then for0 <k <n :

n—k—1
dimValf = > (=1)"F 7 by — bro1io1) + (1) Fb.
=0

Proof. For k = n, the equation becomes
dimVal§ =1=b,
which is correct ([30]).

For k = 0, we have by; = dim Q'(S(V)) and the cohomology of the complex

0—— QUS(V)¢ —L= Q1 (s(V))¢ —s .. L5 Q= 1(S(V))E —— 0
is the same as the cohomology of the usual de Rham complex, hence

S (1) 4 (1) = (—1)" T (S(V) (D" = 1,
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which equals dim Val§.

For 0 < k < n, by Theorem 2.2.1 we have

n—k—1
dimValf = > (=1)" 1 dim QEH(SV)Y + (—=1)"F dim(A*V)€
1=0
n—k—1
= (=) " by = b1 go1) + (1) by,
1=0

using the fact that for [ <n — k — 1, L is injective and
k.l G
QEL(SV)E = 7 (SV) /L(QZ’l’l’l(sv)G) . O
Ezample : G = SO(V).

As an example, we use corollary 2.2.2 to verify the classical Hadwiger’s theorem. Let therefore
V =R"™ and G = SO(n).
The coefficients by, = dim(AkR”)So(") are 1 for kK = 0,n and 0 for other values of k.

We can hence already compute the dimension of Val3°(™ .

dim Val3°™ = (—1)%,, =1,

which is correct.
To compute the coefficients by ; for 0 < k < n — 1, we use the description of QIZ’Z(SV)G which will
be explained in Section 5.2

QZ,I(SV)G ) Ak,l(T ® T)Stab7

where T'= T, (S(V)) and Stab is the stabilizer of (0,v) € SV. In our case, Stab = SO(n — 1) and
T =R""!. So we have
bk,l = dim Ak,l(Rn—l @ Rn—l)SO(n—l).

Fu gives in [25] a set of generators of A*(R"~! @ R"~1)S0(=1) i the following way :
Choose generators dz1, ...,dx,_1,dy1, ..., dy,_1 of A*(R"~1 @ R"~1) such that

dxzi(e;,0) = dy;(0,e;) = d;5,

where ey, ..., e,_1 is the standard orthonormal basis of R»~!, and

dz;(0,v) = dy;(v,0) =0 for all v € R™ 1.
Define )
w = Z dz; A dy;,
i=1
and
n—1

Koy 1= /\ (dz; + dy;).

i=1

w and K, are invariant under the action of SO(n — 1). Furthermore, since the subspaces
AGi,n—i—1) = AR T@0)AA"HOP R

are invariant, with A"~}(R"~! ¢ R*~ 1) = EB:ZOl A(i,n —i — 1), it follows that the components
ki € A(i,n—i—1),i=0,...,n — 1, of k, are all invariant.
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Lemma 2.2.3. The exterior algebra of invariant elements of A*(R"~! @ R"~1) is generated by
W, R1yeeey Kp—1-

Remark that w € A(1,1) with the same notation as before, and that x? = 0 for i # "771, since
k? € A(2i,2n — 2i — 2) = 0 and either 2i or 2n — 2i — 2 is strictly bigger than n — 1 (n > 2). The
element k2 _, is of bidegree (n — 1,n — 1), and plays therefore no role in our computation, since

2
bp—1n1 = dim AP~ (R g R?1)SO(M=1) does not appear in the formula of corollary 2.2.2.
An element of A*!(R?~1 @ R"*~1)SO(=1) i5 therefore of the form
n—1

Wim e+ S P

i=1
where a € {0,1,...,n — 1} and r, 3; € R. 7 is of bidegree (k,1) if and only if
a+ S B i=k
a+ Y B (n—i—1)=1
where 3} is 1 if 8; # 0 and 0 if 3; = 0.

There are two possible cases.
First case : Y 5} # 0. The second equation becomes

a+(n— 1)252—12 Zzﬁ;,
which inserted in the first equation implies
204+ (n—1)Y B =k+1 (2.1)
Since0<k<n—-land0<I<n—-k-1
0<k+1l<n—-1.
It follows that o = 0, and only one 3} can be 1 and so 7 = B;r;. Equation (2.1) becomes

k+1=mn—1, hence the bidegree of n is (k,1) = (k,n — k — 1), so n = Bxkk.

Second case : Y. B} = 0. Since B € {0,1}, this implies that all 3] are 0, and the system of
equations becomes
k=a=I,

and 1 = rw” is of bidegree (k,1) = (k, k).

Remark that for n = 2m + 1 odd, the space of invariant (m,m)-forms is 2-dimensional and
spanned by the forms

w™ and K-

The dimension of A®!(R*~1 @ R*~1)SO(=1) ig therefore

1, if/c;é”Tflandeitherk::lork—|—l:n—17
bei =14 2, if k=1=251,
0, else.

The formula from corollary 2.2.2 becomes for 1 <k <n—1

n—k—1
ValiO(”) _ (_l)nfk\blj/_*_ Z (_1)n7k7l71(bk7l - bk—l,l—l)
~ 1=0
(1)1 + (=1)" b — br—1.8-1), if1<k<nzt
= (*1)0bk,71—k—1a if ”T_l <k<n-1
(=1)%(br,e — br—1,k—1), if | = o1
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which is the expected result.

Finally for £ = 0 we get
n—1
dim Valgo™ = (=1)"bp + Y (=1)" "oy
1=0
(=)™ + (=1)""bo,o + (—1)bo,n—1

which is also true.
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Chapter 3

Representation theory of Lie
groups

3.1 Lie groups and Lie algebras

The representation theory of Lie groups is a wide subject. We give here only the necessary elements
for this work. We refer to [22] for proofs.

Definition 3.1.1. A group G is a Lie group if G is a manifold and the multiplication G X G —
G, (g,h) = gh and the inversion G — G, g+ g~ are differentiable.
A closed subgroup H C G which is also a submanifold is called Lie subgroup of G.

Examples of Lie groups are all finite groups or the so called classical Lie groups :
Gl(n), Sl(n), SO(n),0(n),U(n), SU(n).

Definition 3.1.2. A Lie algebra is a vector space g with a bilinear product [-,-] : g X g — @
satisfying

i) (X, Y] =—-[Y,X] forall X,Y € g
i) [[X,Y],Z)+[[Y, Z], X] + [[Z,X]),Y] =0 for all X,Y,Z € g (Jacobi identity).
A wvector subspace b C g is called Lie subalgebra of g if by is closed under the Lie bracket |.,.].

Theorem 3.1.3. (i) If G is a Lie group, then g = T.G is a Lie algebra. g is also isomorphic to
the space of left-invariant vector fields in G.

(i) If g is a Lie algebra, there exists a unique simply connected Lie group G with Lie algebra g.
(i) If G and H are Lie groups with G connected and simply connected, the maps from G to
H are in one-to-one correspondence with maps of the associated Lie algebras, by associating to
p: G — H its differential (dp). : g — 9.

There is an exponential map exp : g — G, X + exp(X) = ¥ (1), where 4X is the integral curve
of the left-invariant vector field associated with X.

If G is compact and connected, then exp is surjective. In general, exp(g) generate the connected
component of e in G.
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3.2 Representation theory

Definition 3.2.1. A representation of a Lie group G is a vector space V' together with a
homomorphism p : G — GL(V). We will write gv for p(g)(v).

A representation of a Lie algebra g is a vector space V' together with a linear map ¢ : g —
End(V) such that

[¢X, 9Y] = o([X, Y]).

Remark that statement (iii) in the above theorem implies in particular that representations of a
connected and simply connected Lie group are in one-to-one correspondence with representations
of its associated Lie algebra.

Definition 3.2.2. A G-linear map ¢ between two representations V. and W is a vector space
map ¢ : V. — W such that the diagram

v %%

bk

V2w

[}
—

commutes for every g € G. The set of G-linear maps between V and W is a vector space denoted
by Homg(V,W).

A subrepresentation of a representation V of G is a G-invariant vector subspace.

V' is called irreducible if there is no non-zero G-invariant subspace.

Proposition 3.2.3. If V and W are two representations of G, then the direct sum V & W and
the tensor product V@ W are also representation of G, via respectively

glvdw) = gvd gw and g(v®@w) = gv ® gw.

In particular, the n-th tensor power V" is also a representation of G, in which the exterior power
A™(V) and the symmetric power Sym™(V') are subrepresentations.
Hom(V, W) is also a representation of G through

(99)(v) = g((g~ ")),

or equivalently
VoW
bl
v-2aw
commutes. The space Hom(V, W) of elements of Hom(V, W) fized by the action of G is therefore

the space of G-linear maps between V and W, i.e.

Hom(V,W)% = Homg(V,W).

The special case where W is C implies that the dual space V* is also a representation with the
G-action given by

(9€)(v) = &(g™"v).

Proposition 3.2.4. The following usual identities for vector spaces are also true for representa-
tions of Lie groups :

U(VeW)=UV)® (U W)
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MNVow)= @ AY(V)2A W)
a+b=k

AR(V) = AR (V)"

If V is a representation of GG, then it induces a representation of its Lie algebra g in the following
way : suppose ¥y is a curve in G with 49 = e and 1), = X € g. Then the action of X on V is given
by

d

dt lt=o0

Theorem 3.2.5 (Complete reducibility theorem). Any representation of a compact Lie group G
is a direct sum of irreducible representations.

X(v) = (V).

Corollary 3.2.6. For a representation V of a Lie group G, the dimension of the subspace V& of
G-invariant elements of V' is the coefficient of the trivial representation in the decomposition of V
in irreducible representations.

Proof. Let V be an irreducible G-representation. Then the space
C=—{veV|gv=vVYgeG}

is a closed G-invariant subspace of V. Since V is irreducible, either V& =V or V€ = (. The first
case is only possible if V' = V;,.;, = C is the trivial representation.
Let now V' be an arbitrary representation. Then by the complete reducibility theorem

V=P naVa,

where V,, are irreducible representations. Then

G G
= @nava = ntriv‘/trivv
a

hence
. G
dim V"™ = ngpio-

O

Theorem 3.2.7 (Schur’s lemma). If V and W are irreducible representations of a Lie group G,
then
1 itvew,

dim Homg(V,W) = { 0 i VZW

3.3 Irreducible representations of so(2m + 1)

We will here no longer present the general definitions but only give the necessary tools in order
to compute the dimensions of the G-invariant spaces of interest in Chapter 5. Further details and
general definitions can be found e.g. in [27].

Let us therefore consider only representations of the Lie algebra so(2m + 1).

We can associate to any irreducible representation V' an element of a lattice in R™, called weight
lattice. For the irreducible representations of so(2m + 1), this lattice A is generated by vectors
Li,Ls,...;Ly and (L1 +...+ Ly, ) /2. The elements of this lattice which are associated to irreducible
representations of so(2m + 1) are of the form



where Ay > Ao > ... > A\, > 0 and the )\; are either all integers or all half-integers.
This vector is called the highest weight of the irreducible representation.
The irreducible representation with highest weight > \;L; will also be denoted by I'[y, .. x,.]-

Moreover, the exterior powers of the standard representation generate all the irreducible represen-
tations whose highest weights are in the sublattice Z{L, ..., L, }. In fact we have :

Theorem 3.3.1 ([27]). For k= 1,...,m — 1, the exterior power A*¥(Vy;) of the standard represen-
tation Vg of so(2m + 1) is the irreducible representation with highest weight

Li+ ...+ L.

The spin representation S is the irreducible representation with highest weight

1
§(L1 + ...+ Ly).

These highest weights are called fundamental weights and the associated representations fun-
damental representations.

A useful tool to study representations is the notion of character of a given representation. The
general definition is somewhat technical, therefore we choose here to use another approach which
is sufficient for our aim : we use Weyl character formula to define the character of irreducible
representations and deduce from those the character of any representation.

We form the representation ring R of so(2m + 1) by taking the free abelian group on the
isomorphism classes [V] of finite-dimensional representations V' and dividing by the equivalence
relation [V] = [U] + [W] whenever V = U @ W. By the complete reducibility theorem 3.2.5, it
follows that R is a free abelian group on the classes [V] of irreducible representations. The tensor
product of representations makes R into a ring : [V]- [W] = [V @ W].

In fact, R is a polynomial ring on the classes [Vs], [A*Vst], ..., [A™ 7 V4], [S] of the fundamental
representations

R = ZH‘/StL [A2V5t]a ) [Amilvst]a [SH

Let A be as before the lattice generated by the vectors Ly, ..., L,, and (L1 + ... + L,,)/2, and let
Z[A] be the integral group ring on the abelian group A.

Definition 3.3.2 (Weyl character formula). The character of an irreducible representation
Cinyoam) = D is defined by

x;\i+m7i+l/2 B x;()\i+m7i+1/2)

Char(Ty) := ‘

‘xmfi+1/2 B mf(mfiJrl/Q)‘ € Z[A],

J J

where xfl and w;ﬂ/Q are the elements of Z[A] corresponding to the weights £L; and :I:%Lj re-
spectively.

For the fundamental representations of so(2m + 1), this formula yields that the character of AV,
is the k-th elementary symmetric polynomial of the 2m + 1 elements x1, :z:l_l, ceey Tn, Tt and 1

denote it by By. The character of the spin representation S is B := leﬂ/2 e :minl/Z which
we can see as the m-th elementary symmetric polynomial in the variables xi /2 +a:i_1/ 2, i=1,...,m.

Then the above considerations together with the following theorem allow us to define the character
of any so(2m + 1)—representation through :
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Theorem 3.3.3. The homomorphism
Char : R = Z[[Vi], [N*Vai], ooy [N V], [S]] — Z[Bu, ..., Bm—1, B] C Z[A]
is an isomorphism.

In practice, there is no easy way to find the decomposition of an arbitrary representation as
an element of R = Z[[Vy], [A®Va], ..., [A™ V], [S]]. But in Section 5.4 we will see that the only
representations of interest in our case are exterior powers of irreducible representations or sums of
irreducible representations. To compute the character of a representation given in this form, we
can use the following recurrence formula :

Theorem 3.3.4 (Adams formula, [21]). Define the Adams operator ¥ : Z[A] — Z[A] by
P (x;) = x;“

Then we have for any so(2m + 1)—representation V
1l
Char(A"V) = = > " (=1)*"'¢*(CharV)Char (A*~*V)).
d k=1

This formula allows us to compute inductively the character of A¥V. The next step is to write
the obtained polynomial as linear combination of characters of irreducible representations. Since
a character determines completely the associated representation, if

Char(V) = @ nxChar(Ty),

then
V= @nAFA.

To decompose the character of a representation in characters of irreducible representations, we
need two observations :

- The leading monomial of the character of the irreducible representation I'y, . x,.] is
xi‘l -...-z;m where the leading monomial of a polynomial is the monomial of highest degree
(with respect to the lexicographic order).

- If the leading monomial of the character of a representation V is nxaz/\l < ... xpm, then the
leading monomial of the character of V' —nI'[y, ., is of strictly lower degree.

Therefore we apply the following algorithm to decompose the character of a representation V' in
irreducible characters :

a) Find the leading monomial of Char(V) : naz! - ... - zhm,

)
b) Compute Char(I'[, ... x,,)) With Weyl character formula,
c¢) Compute Char(V —nxI'x, .a0),

)

d) Find the leading monomial of the new polynomial. If it is not a constant, start over with

b), else we have the decomposition of V.

After at most deg Char(V') steps, we obtain the decomposition of Char(V).
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Chapter 4

The spin groups

4.1 The spin groups in terms of Clifford algebras

We present here a description from [27] of the spin groups in terms of Clifford algebras. This
representation will not be the one we use to describe the Spin(9) representation, but it gives some
more information about the structure of the spin groups.

Let V be a finite dimensional vector space, with dimension n, and let @ be a symmetric bilinear
form on V.

Consider the special orthogonal group SO(Q) of V.

It is known that 71 (SO(Q)) = Z/2Z for n > 3. This result induces that, for n > 3, SO(Q) has a
connected double covering, and this double covering is called the spin group Spin(Q), for which
holds the following short exact sequence :

{1} 7/27 Spin(Q) —— SO(Q) — {e}.

Definition 4.1.1. The Clifford algebra C = C(Q) of V is an associative algebra with unit 1,
which contains and is generated by V, with v-v = —Q(v,v) - 1 for all v € V. By polarization, we
get equivalently

vewtw-v=—-2Q(v,w) -1, Yo, w € V.

Remark 4.1.2. We could also use the condition v-v = Q(v,v) -1 (as in [27]). We preferred to
use the one with which Q is positive definite.

The Clifford algebra can also be defined as the universal algebra with the following property :
if £ is any associative algebra with unit, and there is a linear mapping j : V — FE such that
j(v)? = —=Q(v,v) - 1 or equivalently

J() - J(w) +j(w) - j(v) = =2Q(v, w) - 1, Yv,w eV,

then there should be a unique homomorphism of algebras from C(Q) to E extending j :

1% C c(@)

I
\ !
E

The Clifford algebra can be constructed by taking the tensor algebra T*(V) = @,-, V®" and
setting a

c@ =1°(V) / 1(Q)

where I(Q) is the ideal generated by all elements of the form v ® v + Q(v,v) - 1.
Then holds
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Lemma 4.1.3. Ifey,..., e, form a basis of V', then the products e;, -....e;, withl <13 < ... <ip <n
and 1 form a basis of C(Q). In particular, dim C(Q) = 2™. Moreover we have the following
relations if we take the canonical basis ey, ...,e, of V :

€ €j = —€j - € e; - e; = —1.
On C(Q) we have different operations :
1. An anti-involution called the conjugation ~: C(Q) — C(Q) defined by
Ty = (1), - -y, Vo1, ..., 0. €V,

which is the composition of

2. the canonical anti-automorphism ¢ : C(Q) — C(Q) defined by

t(vg e vp) =0 -0, Y1, .0 €V,

and

3. the canonical automorphism « : C(Q) — C(Q) defined by

a(vy o cvp) = (=101« oo - Uy Yo, ...,v,. € V.

For v = 0,1, we consider the eigenspaces C(Q)" of « for the eigenvalues (—1)”
ie.C(Q) ={z€C(Q) | alz) = (-1)"z}, and we see that

C(Q)° =: C(Q)°v°" is spanned by the products of an even number of elements in V', and
C(Q)! =: C(Q)°% is spanned by the products of an odd number of elements in V.

It follows

?

C(Q) — C(Q)even D Cf(Q)odd7
and C(Q)®" is a subalgebra of C(Q).

We start now with an abstract definition of the spin group and verify that it is the double covering

of SO(V).
Definition 4.1.4.

Spin(Q) :=={z € C(Q)*™™" |z-z=1andz-V -z CV}.

Any 2 € Spin(Q) determines an endomorphism p(x) on V' by
plr)lv=x-v-T,
and we have
Proposition 4.1.5. For x € Spin(Q), p(z) is in SO(Q). The mapping
p: Spin(Q) = SO(Q)

is an homomorphism, making Spin(Q) a connected double covering of SO(Q).
The kernel of p is {£1}.

Proof. Consider the larger subgroup, called pin group,
Pin(Q):={zcC(Q) |z -z=1andz-V -z CV},
and the homomorphism

p: Pin(Q) — 0(Q), plx)v=a(z) v-Z.
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Then we have Spin(Q) = Pin(Q) N C(Q)*V", and p|spin(q) = p-

1st claim : for z € Pin(Q) : p(z) € O(Q), i.e. p preserves the quadratic form Q.

First note that for w € V, w = —w, and therefore Q(w,w) = —w - w = w - w. So we can compute
Qp(a)v, playy) = al@)-v-z-(a(@) v 7)
= afz)v-Z-x-0 o)
= afz) v v aT)
= Qv,v)a(z) - a(z)
— QU v)alz-7)
= Q(v,v). v

2nd claim : p is surjective.
It is a well known fact that the orthogonal group O(Q) is generated by reflections. Taking R, as
the reflection in the hyperplane perpendicular to w, normalizing w so that Q(w,w) =1, we see

w-w=w-(—w)=Q(w,w)-1=1,

so w € Pin(Q),
plww=a(w) w-©=-w-1=—-w,
and for v € V with Q(v,w) = 0 (v perpendicular to w)

plww=alw)-v-w=-w-v-w=(v-w-—2Q(w,w) 1) - W=v -w-W=0. v

3rd claim : the kernel of p is {£1}.

Suppose x is in the kernel, and decompose x = zo + 27 with 29 € C(Q)**" and x; € C(Q)°%.
Then
alz)-v=v-a(x) Vv eV,
and so
To-v=v-x9and —xy-v=v-x1 Yo € V. (4.1)

Next we can write g as a linear combination of monomials in the canonical basis of V' (cf. Lemma
4.1.3), so
To = ag + e1by, with ag € C(Q)™", by € C(Q)*,

where neither ag nor b; contain a summand with a factor e;.
Applying the first relation of (4.1) to v = ey, we get

ag +e1b = el_l(ao +e1br)eq.

Since each monomial in ag is of even degree and contains no factor e;, we have ejag = age;.
Similarly e;by = —byeq, and so it becomes

Qg + elbl = ag — elbl.

We conclude that e;1b; = 0 and therefore that xy contains no monomial with a factor e;.

The same argument applied successively to the other basis elements proves that xy can be written
as linear combination of monomials with no e;,7 = 1,...,n as factor, i.e.zp € R - 1.

Proceeding similarly with the second relation in (4.1), with 1 = a1 + e1by and v = ey, we get

a1 +e1bg = —ejarer — bger = a1 — e1by.
Thus bp =0 and z; e R-1. But R-1 C C(Q)*"", so 21 = 0.

In conclusion z = 29 € R - 1, and with the condition - 7 = 22 = 1, we get x = +1. v
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It follows that if R € O(Q) is written as product of reflections Ry, - ...+ Ry, then the two elements
in p~H(R) are +wy - ... - w,.
In particular, this gives us another description of the spin group

Spin(Q) = Pin(Q)NC(Q)™" =5~ (S0(Q))

To complete the proof, we must check that Spin(Q) is connected, or equivalently that the two
elements in the kernel of p can be connected by a path in Spin(Q).
Consider the path between +1 and —1

v :t+— cost+sint e; - eq, 0<t<m.

We have
~v(t) = cost —sint e - ea,

s0 y(t) - v(t) = 1, and therefore y(t) € Pin(Q).
Since p(y(t)) must stay in a connected component of O(Q) and 5(v(0)) = E € SO(Q):

~(t) € Spin(Q) Vt.

4.2 Octonions

To be able to give the description of the spin groups in the next section, we present here the
octonions as well as some of their useful properties.

We will only give a few basic facts about octonions. We refer to Baez’s paper ([12]) for more
information.

The first way of constructing the division algebra O of the octonions can be seen as an extension
of the construction of the complex numbers as pairs of real numbers.

We start with the algebra R of the real numbers. R is a real commutative associative division
algebra.

Any complex number can be identified with a pair of real numbers through

z=a+1b,

where a,b € R and i satisfy the relation i> = —1. The division algebra C of the complex numbers

is not ordered anymore, but still commutative and associative.
Analogously we can see any quaternion as a pair of complex numbers

h=y+jz,

where y, z € C and j satisfy the same relation j2 = —1. So the quaternions form a division algebra
H of real dimension 4 with basis 1,1, 7,7 - j =: k satisfying

i? =42 =k? =ijk = —1.

H is associative but not commutative anymore.
If we repeat this procedure, we get the algebra O of the octonions : it is a division algebra of real
dimension 8 and basis denoted by 1 =: eq, e1, ..., e7 satisfying

e =—1

i y 61'6j = 76j€i.

O is not associative anymore, only alternative, i.e. any subalgebra generated by any two elements
is associative.

However we cannot construct a 16-dimensional division algebra with this procedure. In fact, we
have
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Proposition 4.2.1 ([20]). All division algebras have dimension 1,2,4 or 8.

And also
Proposition 4.2.2 ([31]). R,C,H and O are the only normed division algebras.

Since O is no longer commutative nor associative, the computation with octonions has to be

performed carefully, using their multiplication table :
Let eg = 1,eq,...,e7 be the basis elements of . Then their multiplication is given in this table,
whose element on the i-th row and the j-th column is the result of the multiplication of e; with

€j.

€1 €9 €3 €4 €5 €g er
€1 -1 €4 (&rd —€9 €g —€5 —e€3
ey | —eq | —1 es e1 —e3 er —eg
€3 —er —e€5 -1 €g €9 —€4 €1
ey es —e1 | —eg | —1 er es —es
€5 —€g €3 —€9 —€7 -1 €1 €4
e es —e7 ey —e3 | —e1 | —1 es
€7 €3 €6 —eq1 €5 —€4 —€9 -1

We can see a range of properties from the table:
Le?2=-1
2. eje; = —eje; for i # j
3. €i€j; = € = €j41€j4+1 = €k+1
4. ejej = ey = egiea; = eg

where 4, j,k > 0 and the indices in 3. and 4. are considered as elements of Z.
With these properties and one non trivial product like e1es = e4, we can recover the whole table.
This table can be nicely represented in a picture called the Fano plane :

€6

€4 €1

\\/

€3 €9 €5

Each pair of distinct points lies on a unique line. Each line contains three points, and each of
these triples has a cyclic ordering shown by the arrows. If e;, e; and e;, are cyclically ordered in

this way then
€;€; = €k, €j€; = —€k.

These rules, together with
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1. ey =1 is the identity element,
2. e?=—1fori >0,

define the algebra structure of O.
The center of O is equal to R and we denote by Q' its orthogonal complement in O, i.e.the
subspace of pure octonionic elements of . Every octonion can be written in the form

7
q:§ Ti€q,
=0

with z; € R.
There is a conjugation map ~ in O defined by

7

q— q = xpeg — E Ti€;,
i—1

and a scalar product (.,.) : 02 — R

7 7 7
(z,y) = <ineiazyiei> = Zifzyz = %(m.@ +yI).
=0 =0 =0

As already mentioned, O is not associative, but alternative. By a theorem of Artin ([39]), an
algebra A is alternative if and only if for all a,b € A

a(ab) = (aa)b, (ab)a = a(ba), (ba)a = b(aa).

In fact, any two of these equations imply the third, so we can take only two of them as definition
of alternative.
An equivalent definition can be given in the following way. Define on A the trilinear map

[]: A% — A
by
[a,b,c] = (ab)c — a(be).

This map is called the associator. It measures the failure of associativity, analogously to the
commutator which measures the failure of commutativity.
Then A is alternative precisely when the associator is an alternating map, i.e. for all a,b,c € A

[a,b,c] = —[b,a,c], or equivalently [a,a,b] = 0.

4.3 An explicit description of the Spin(9) representation

All the results in this section are due to Sudbery ([41],[40]). They lead to an explicit description
of the action of Spin(9) on R® = Q2.

Let H5(0) be the set of hermitian 2 x 2 matrices with entries in O, defined by the condition

X*:= X = X, where the bar denotes the componentwise conjugation in Q. Let A2(Q) be the
set of antihermitian 2 x 2 matrices with entries in O, defined by the condition X* = —X.

H5(0) forms a 10-dimensional Jordan algebra with the product given by the anticommutator, i.e.
if we define

1
XY= 5(XY +YX),
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then X -Y is a commutative but not associative product satisfying

X (X2 7)=X?(X-Y).

EM(Q,@)’ <“ Z)<

(2,0) ‘ a,deR,beO

d(1 0 0 b

5 (0 —1>+<B 0)‘a,deR,be©}
10 0 b

) (0 _1>+<5 0) ‘a,ﬁeR,bG@}.

Let W be the 9-dimensional subspace of Hy(Q) generated by

P::<(1)_01>, S(@::(Eﬁ) z€O0,

with inner product given by
glaP + S(x),BP + S(y)) = aB + (z,y)  «a,BERz,yecO.

Then Ho(Q) =R -1 @® W. I acts as an identity in the Jordan algebra, and the Jordan product of
two elements of W is

(aP+S(z)) - (BP+S(y) = ;((i _xa>(§ —yﬁ)+<§ —%)(j —xa >)

_ 1 200 + xy + yx 0
2 0 2a + Ty + yx
= (aB+(z,y)I

= g(aP+ S(z),BP+ S(y))I.

The set of derivations of the Jordan algebra Hy(0), i.e. the set of linear maps D : Hy(Q) — H5(Q)
satisfying

We can decompose Hz(QO) as

o = {(:

QL
Q)OI

I
—
)

/MmN R AT
O = N
m
S

+ =<
w N—
+
)
|

|
—

o}
7N
O =
- o

D(zy) = (Dz)y + z(Dy), (4.2)

is the set of antisymmetric linear maps on W, since derivations on Hs(Q) acts only on W (I is
the identity of the algebra) and the condition (4.2) is equivalent to

g(Dv,w) + g(v, Dw) =0, Yo, w € W,
thus
DerHy(0) 22 so(W) = so(9). (4.3)

On the other hand :
For any associative normed division algebra K, H5(K) also forms a Jordan algebra with the product
given by the anticommutator, and the derivations are all of the form

X > adA(X) = [A, X]

for some antihermitian matrix A. This is the zero derivation if and only if A = AI with a A in the
center of K.
Although O is not associative, the identity

A, X Y] =[AX]Y +X-[AY]
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which makes adA a derivation holds for A € A5(0) and X,Y € Hy(0).
Derivations of O also act as derivations of Hz(Q) by acting on each entries of the matrices.
These are all the derivations of Hy(0) and so we have

Deng (@) = adAg (@) + Der(@).
The space of antihermitian matrices can be decomposed as

(e a)emeo| (2 d)=(5 2

A2(0)

- {( —aB Z) e M(2,0) mde@’,be@}
a—d b atd 0 ,
= {( —26 _a+d>+( (2) M)‘a,de@,be@}
2 2
= A,(0)p O -1,

where A5(0) is the subspace of traceless matrices in A2(Q), and O’ - I is the subspace of pure
octonionic multiples of the identity matrix I.

For a € @', ad(al) acts on an element X of Hy(Q) by acting as the commutator map C, : O —
0, C,(x) := [a,x] on each entries of X:

ad(al)(X) = |[al,X]
_ a 0 T11 Tz \ [ T11 Z12 a 0
- 0 a Ti2 T22 Ti2 T2 0 a
_( az11 —zna amis — T100
B aT1s — T124 QT2 — L2204

= (Gl Gema ).

We therefore have ad(Q'I) = C(0Q’).
Furthermore, since Hy(0) is an irreducible set, ad A5 (Q) = A5(0). Hence

DerHy(0) = AL(0Q) + C(Q') + Der(Q). (4.4)

In order to obtain a decomposition of so(Q’), we need to give an explicit description of
Der(0) =: Gs.
In fact, we have:

Lemma 4.3.1. For any a,b € O, the linear map
1
D(av b)x = [av ba .’E] + g[[aa b]v .’E]
is a derivation of Q.
Proof. D(a,b) is a derivation if and only if

D(a,b)(zy) = (D(a,b)x)y + z(D(a,b)y)
< D(a,b)o Ry, = Ry 0 D(a,b) + Rp(a,p)y
g [D(a, b)v Ry] = RD(a,b)ya
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where R, is the right multiplication by y.

We prove this last equality.

To do that, we need some formulas: Recall that O is alternative, i.e. the associator

[y, 2] i= a(yz) — (2y)2

is an alternating function. This alternative law is equivalent to the following equalities :

LyLy—Lyy = Ly,—LyL,
— R,,— R,R,

RuR, — Ry

[Ly, Ra]

= _[L% Ry]7

where L, is the left multiplication by x.
We therefore get the following formulas for the commutators of two right multiplications, respec-

tively left multiplications :

[R,, R, R,R, — RyR,
— R.Ry+ (R.Ry — Rys — Ruy)
= —2[L,,R,] + 2Ry, — Ry, — Ry,
= Riay) = 2[Le, Ry,
and
[La,L,] = LuL,—L,L,

So we can finally compute

2[Ry, D(a,b)] =

LoLy+ LyLy— Lyy— Ly,
2(_[Lma Ry] + Lry) - Lzy - Ly:r
= 72[LI, Ry] + L[»L,y]

2
g[Ry,L[a,b] — Ria ) — 3[Ly, Ry]]
1 2
[Ry, —Rap) — 2[La, Ry)] + g[Ryv Rpay] + g[Ry, L))
1
[Ry,[Ra, Rp]] + g([Rw Riap] + [Riap); Ryl + Rijap),0)

1
[Ry, [Ra, Ry]] + 3 a)y)-

Furthermore for an associative algebra (such as R(Q) the set of all R, with a € Q), we have

[Aa [Bv CH =

A(BC — CB) — (BC — CB)A

— C(AB+ BA) + (AB + BA)C — B(AC + CA) — (AC + CA)B.

We have also, by the alternative law :

So we get

[Ry, [Ra, R]]

R.Ry + RyRy = Ruyiye-

RbRay+ya + Ray+yaRb - RaRberby - RberbyRa

R (ya)+b(ay)+(ya)b+(ay)b—a(yb)—alby)—(yb)a—(by)a

= R_slapyl+ibaly)-
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So it becomes

1
Rsfabyi+ibalyl + 3800l

2[Ry, D(a,b)]

—2Rab,5)+ 1[0 ,b].9]
= —2Rp(apy-
O

The proof shows that D(a,b) is generated by left and right multiplication maps. In fact it is
generated by the commutator maps Cy := Ly — Ry, namely

1
D(a7 b) = 6([007 Ob] + C[a,b])' (46)
This equality follows also from the above formulas :
1 1
6([0‘“ Col + Clay) = 6([L“ — Ro, Ly — Ry) + Lgp) — Rjay))

= Z({Las L]+ (R Bo] — (L Ro) — [y L) + L i)+ 21L, B

+[Rq, Ry] + 2[Lq, Ry))
1

= 3([La7Lb] + [RaaRb] + [LaaRb])
1

= 5(—3[%, Ry] + Liap) — Riap))

= D(a,b).

Such a derivation, and sums of such derivations, are called inner derivations. It can be shown
([39]) that all the derivations of @ are of this type.

In general the antisymmetric maps of O are given by the derivations and the left and right multi-
plication maps :

s0(0) = Der(0) + L(Q") + R(O').
Let C, = L, — R,, be as before the commutator map, and let C'(Q’) be the set of all C, with
a € Q'. Then each C, maps Q' to itself. The derivations in Der(Q) have the same property, so
the Lie algebra so(7) = so(Q’) of antisymmetric maps of Q' is

so(Q’) = Der(0) + C(0Q').

Since O is neither commutative nor associative, these sums are direct sums (as vector spaces, not
as Lie algebras), and the Lie brackets are given by

[D,Ls] = Lpa

[D,R.,] = Rpa

[La; Ly] = 2D(a,b) + %L[a,b] + %R[a,b] (4.7)
[Ra, By] = 2D(a,b) — %L[a,b] - %R[a,b}

[La, Ry] = —D(a,b)+ %L[a,b] - %R[a,b]a

with D € Der(Q), a,b € @'. The proof of these formulas is already contained in the computations
above.

With this decomposition of so(Q’), (4.4) becomes

DerHy(0) = A(O) & so(Q'), (4.8)
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and so, with (4.3),
s0(9) = A5(0) & so(0). (4.9)

so(Q’) is a subalgebra in this algebra, the Lie bracket of T' € so(Q’) and a matrix A € AL(O) is
given by the action of T on the entries of A and the Lie bracket between two matrices A and B
in A5(0) is

[A,B]|=(AB—BA—al)® (C, + E(A, B)), (4.10)

where a = $tr(AB — BA) and

E(A,B)JZ = Z[aij,bij,x} (.73 S @)

(2]

This decomposition of so(9) allows us to give explicitly the spin action of so(9) on @2 = R16,
We start with one of the most remarkable properties of the octonions, which comes from considering
a generalization of the derivation equation (4.2) in the form

T(zy) = (T'z)y + z(T"y), (4.11)

where T, T*, T are antisymmetric maps. The principle of triality asserts that if 7 € so(8) =
s0(0) is given, then there exist unique maps 7%, T” satisfying (4.11).
These mappings * and ° verify for all 71, T, € so(8) :
[T17T2]u - [Tf’TQﬁ]v

and [T, o) = [17,T3),
since : [T1,T5] is also an element of so(8), so the principle of triality implies that it exists unique
maps [jjl,Tlg]t1 and [ThTQ]b s.t.

(T, To)f'2)y + o([T1, Toly) = [T1,To)(x,y)

= Ti(Tx(zy)) — To(Ti(zy))

= T(Tix)y + «(T3y)) — To((Tix)y + «(T7y))

= (T}(Tiw)y + (Tix)(TYy) + (T2)(T3y) + (T} (T3y))

—(T§(Tw))y — (Tf2)(T3y) — (Tix)(TYy) — =(T3(T1y))

= ((T{T =TT )2)y + 2 (T T3 — T3TY)y)

= ([}, T2y +2([1}, T3)y). v
The correspondences T +— T% and T +— T° define therefore 8-dimensional representations of

s0(8). These are not equivalent to the defining representation . A further representation, which is
equivalent to the defining representation, is given by 7'+ T where

Tx = (Tz).

Explicitly, 7%, 7% and T are given as follows, since so(8) = Der(Q) @ L(Q') @ R(Q) :

D¥=D"=D (D € Der(0))
LY =L, + R, L) =—L,
R: = R, R, =L,+R, (a € 0)

Remark 4.3.2. Note that for T = D + C, € so(Q') we have
T=T and TE=T",

50T — T% and T +— T are equivalent as representations of so(Q').
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We can compute for T € so(Q) : (T} =T, (I°)> =T, (T*)> = T, (T")! = T¥%, so we get the
following equations

T(zy) = (Tﬁz)y+x(zby) (4.12)
THzy) = (Tx)y+z(Ty) (4.13)
T(xy) = (Thx)y+a(Ty). (4.14)

Hence we have the final statement :

Theorem 4.3.3 ([41]). The Lie algebra so(9) of Spin(9) can be represented as
s0(9) = A5(0) & so(0'),

and the action p of so(9) on S := {2 x 1 column vectors with entries in O} = Q% = R (spin
representation) is given by

A€ AL(0) = p(A)(z)=A-x (matrix multiplication)
T €s0(Q) = p(T)(z):=T' (componentwise action)

Proof. The first part was proved above.
For the second part, it remains to show that

[o(T), p(A)] = p([T, A]).

o (5) = (rto 1o ) ()

( T(p)s1 +T(q]%§ )

~T(q)s1 — T
1) (31 ) = oo (2
o(T) ( patte Yoo () )
ti(P81 +q82) ) _ ( PETﬁsl) + q(T*s2) )
T*(—qs1 — ps2) —q(T%s1) — p(T*s3)

( p)si+p(T7s1) + (Tq)sz +q(T7s2) = p(T¥s1) — q(T%s2) ) of. (4.13)

Let T € so(0'), A= ( P _qp ) € A5(0) and (s1,82)T € S = 02. Then we have:

52

oo ()

Tq s1— q(T°s1) — (Tp)sa — p(T"s2) + @(Tts1) + p(Tts2)

p)s1 + (Tq)sa ) . o
Tq 51— (Tp)ss since Remark 4.3.2 implies T7° =T
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Chapter 5

Computation of the coefficients b;.
and bk,l

5.1 Stabilizer

First we can verify that the stabilizer of the Spin(9) representation is Spin(7) in the explicit de-
scription given in Section 4.3.

Since the action of Spin(9) is transitive on the sphere S5, it is sufficient to compute the stabilizer
of the point (1,0) € 0? = RS,

Given the description of so(9) in Section 4.3, an element of so(9) is given by a pair (A,T) with
o p q . / 3 no_ .
A_(—(j _p)vvlthpe(@,qe@, T € s0(0") = so(7).
Such an element is in the stabilizer of (1,0) if and only if the equation

4n(6)=(5)

holds, where the action on the left is given in theorem 4.3.3. It becomes therefore
#
P YL (TWY_(0),
—q 0 0

¢=0and p=—T*(1).

or equivalently

An element of the stabilizer Stab is therefore of the form

( 0 )M

for some T' € s0(Q'), and we get the following bijective map
Y :s0(Q') —» Stab

roo (T 0 Yor

33



However this map is not an isomorphism of Lie algebra, since it does not conserve the Lie brackets.
We introduce therefore a new map

©: so(Q') — s0(0)
D e Der(0) — D
1
C,€C(Q) _50'1'
where we use the isomorphism (as vector spaces) so(Q’) = Der(0) @ C(Q').
The new map ® := 1) o ¢ is now an isomorphism of Lie algebras between so(Q’) = so(7) and the

stabilizer of the spin action on so(16). We can indeed verify :
For Dy, Dy € Der(0) :

[@(D1), ®(D2)] = [¥(D1),¢(D2)]

- [(Dgo(l) —D0§<1>>@D1’(Dgo(1) —D%(l))@DQ}

= [0@ Dy,0® D]
= 0®[Dy, D]
= ®([D1, D)),

since [D1, D] is again a derivation. v

For D € Der(0),C, € C(Q') :

[B(D),8(C,)] = |9(D).~5v(C.)]
[ et 0 1
= _O@D,( 2 8( _§C§(1)>@_20a:|
r Lo
= _OQBD,( 208(1) —§005(1)>@0]+0@_ (D, C,)
- < D(O%a) D(E% ) )@O—i—OEB[D,La R,
= (50" _ipa )@ 5(LouTn (ef. (4.7))
_ (365 L
- (%Y da e
= qﬁ(*%cDa)
- (I)(ODa)
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For Cy,Cp € C(O) :

[@(Ca)a (ﬁ(cb)]

1 1
[=59(Ca), =59(Cy)]
1ot) 0 1 1ei) 0 1
DY aw e (9 Ldiy ) e20)
lct) 0 1ok) 0 ) }
[( T0 -1 )@0’( o g )
=(1)
[ ici 0 1
+_< 2 0() ;cg(l)>@0’0@20”]
=(2)
I 1 Lei) 0
+_0@20a,< 2 8 —§C£(1)>®O]
=(3)
+ 0@—;6&1,0@—;01,} .

=(4)

With the rule (4.10) for the computation of commutators between two elements of AL(Q), we

compute :

where

and

(1) becomes :

3 3
_ a0 EL
(1) = |:( 0 3a>@0’< 0 gb)@o]
—A =:B
1 Ma,b] 0
- 4
= 2tI‘( 0 %[a,b} )
= Z[mb]ﬂ
E(A,B)z = Z[aij,bji7$]
ij
3 3 3 3
= {2(1’ 25,35] + {—261,—25’4
— g[a,b,x]
- 7g[La,Rb}$ (cf. (4.5)).
9 9
= 0& ZC[U“'b] - i[Laa Rb]

9 9 1
0® ZC[a,b] - 5(_D(a7b) + gC[a,b]) (Cf (47))

9 3
O @ §D(a, b) —+ Zc[a’b].
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Since the commutator between an element T of so(7) and A of A4(Q) is given by the action of T'
on the entries of A, (2) and (3) becomes :

(2)

Il
| — |
N
[N][)
S'a
|
wlw &S
<)
~
S5
=)
o
®
|
| =
2
—_

1 30
— 2
- |:0@ 20{17( 0 gb)@0:|
—1C.(2b) 0 )
— 2a\2 @0
(75 elow

Finally, since so(Q’) is a Lie subalgebra of so(9), (4) is

(4)

1
0 Z[Ca’ Cb}

0@ i([La,Ra] ~ [La, Ry) — [Ra, Ly) +[Ra, R))
N——

=[La,Ry]
cf. (4.5)

1 1 2
04 1 <2D(a, b) + gL[a,b] + gR[wb]
1 1
—2(=D(a,b) + 3Lt — gR[a,b])
2 1
+(2D(av b) - gL[a,b] - gR[a,b])>
1
0@ 7(6D(a,b) = Liay) + Rpap))

3 1
0® §D(a, b) — Zc[a’b}.
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We therefore get, :

[@(Ca), ®(Cy)] = (1) +(2)+ )+ (4)

o
S
=

10 %D(a, b) — %C[a,lﬂ
_ ( —%[‘%b] 3[4 0 ) ®6D(a,b) + %C[a,b]
2
0 1
_ [a b R
— O@GD a b ( %C?a,b](l) > ©® QC[a,b]
= $(6D(a.)) ~ (-5 Clan)
= ®(6D(a,b)) — (C[a b))
— ([Cmcb])o (Cf. (4.6)) v

Moreover the action of Stab 2 so(7) on the tangent space T(LO)SH’ = Q' ® O is the sum of the
standard representation of so(7) on @’ = R” and the spin representation of so(7) on O = R,
To show this, let D & C, € so(7) and p € Q', ¢ € @. Then we have :

oweer(z) - (¥ 3)er-)(5)
#

0
3ap + D¥(p) — 5CE(p) )

(Lq +2R)())

(ap + 2pa) )

i i W e NI e N
N
S
_|_
S
§
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and

@(D@Ca)(g) =

and since, by Remark 4.3.2, for T' € so(Q'), the representations T’ — T?and T — T are equivalent,
this is really the spin representation of so(7) on O = R8. v/

5.2 Preliminary observations
In Section 2.1, we proved the following formula for the dimensions of ValkG :

Corollary 2.2.2. For 0 < k,l <n, set
by == dim(A*V)Y,
by := dim QN (SV)C,
and by, =0, by = 0 for other values of k and [.
Then for 0 < k<n :

n—k—1
dimValf = > (=1)"F 7 by — brori1) + (—1)" Fb.
=0

So we want to compute the coefficients b; and by, ;.
The coefficients by’s can be computed with the Adams operator (cf. Theorem 3.3.4).

For the computation of the coefficients by ;, we first need to describe the spaces Q]Z’Z(SV)
Let v = (1,0)7 € S'5 C 0% We have the isomorphism :

T - Qk,l(SV)Spin(Q) N Ak,l(T(07U)SV)Stab((0,v)) — Ak’l(T(OVU)SV)Sme)
w = w(0,v)

Spin(9) .

Then with the decomposition :
T(O,v)(SV) = T(O,v)(v X 815)
= ToV xT,S"
= VT, with 7:=T,S1 =0’ ¢ O
= RvpTaT,

the isomorphism becomes

T QRSP AP (Re 0 @060 6 0)%Pn)
w = w(0,v).
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Recalling that
Al (SV)E 1= QSVIE [ gy

where
QRS = {w € QPL(SV)C |a Aw = 0},
and since
V(o) (M +w) = agpu(iv+w)
= (v,\v)
= A7

¥ induces an isomorphism on the space of horizontal forms by

Qi,l(sv)Spin(S)) N Ak’l(@/ 2000 & @)Spin(?)

w = w(0,v).
So the coefficients by ; can be computed as
bry = dim AFHQ' @ 0 @ Q' @ 0)5Pn(D),

This expression can be decomposed as :

A O 0000 00) = (AF(O' @ 0)e A0 @ 0))5Pn™.

For two G-representations V, W,
VoW =Hom(V,W¥)

and
(Ve W)% = Homg(V,W*).

By the complete reducibility theorem 3.2.5, V' and W* can be decomposed as
V=P nala, W* = @ mpT's,
a B

where I'y are irreducible representations. Then

(VeoW)® = Homg(V,W")

= @ nemg Homg(Ta,T'g)
—_——

@h =0 if a#f
(Schur’s lemma 3.2.7)

= @namaHOmG(ra’Fa)a

[

and hence

dim(V @ W)¢

@ NaMe dim(Homg(Ly,Ty))

=1 (Schur’s lemma 3.2.7)

- Prome
«

Therefore, if we can decompose ‘
A'(Q' @ 0)
for i =0,...,7, with (5.1) we find the coefficients by, ;.

39



5.3 Computation of the b,

Proposition 5.3.1.
b, =1 for k=0,8,16,

b, =0 for other values of k.

Proof. Case k=0 : A°(V) = C is the trivial representation, so by = 1.
Casek=1: A V)=V = T'11/2,1/2,1/2,1/2) is irreducible, so by = 0.
Case 2 < k <8 : With the Adams formula, we have :

k
Char(A*(V %Z 1)7= (?(Char(V))Char(A*7V))

and with the algorithm given in Section 3.3, we find

AV = Tpae+ 00

NV = Tpa32,1/2.1/2 + isj2,1/2,1/2,1/2

AV = Tpaoe+ i1+ D00 + D0 + Dy

ANV = Uisj2,3/2.1/2,172) + Uisg2,1/2.1/2,172) + U/2,3/2,3/2,3/20 + Tisj2.8/2,1/2,172) + Tisj2,1/2,1/2.1/2)
AV = Tpa0+ 00+ D2+ Dy + Do + Tiz,00 + Do) + Do)
AV = Uiz/2.172.172,1720 + Uisj2,3/2,3/2,172) + Uisj2.3/2.172,172) + Uisge,1/2,172,1721 + T [3/2,3/2.3/2,1/2)

F3/2,3/2,1/2,1720 + Tis/2,1/2,1 /2,120 + Tuy2,1/2,1/2,1/2)
AV = Tio00 + 5101+ Ti31,1.0 + D000 + D220 + D220 + D2,2,0,0 + Ti2,1,1.1]
+2,1,1,00 + Ti2,000,0 + Py + oo + T+ Toj0,0,0]
——

trivial representation

hence
bp.=1 < k=28.
Case 9 < k <16 : Since
ARV = ARy,
the only non-zero by is big. O

5.4 Computation of the b
As established in Section 5.2,
by = dim Q' (SV)5P ) = dim(A*(0' & 0) ® AY(Q' & 0))5Pn(T),

and since
dlm V (24 W @ NaMe

where

V= nala W =W =@mel's
«

B

are the decompositions in irreducible representations, it only remains to find the decomposition
in irreducible representations of

AF(O' & 0)
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for0<k <7

We first compute with Weyl character formula 3.3.2 the character

Char(L'0,0) + Char(T'j2,1/2,1/2)

of O @ O, then apply Adam’s formula 3.3.4 and the same algorithm as before to find

A0 0)
A0 a0
A2(0 @ 0)
A0 0)
A0 @ 0)

A0a0)
A ®O)

A0 0)

T0,0,0]
P00 + /2,172,172
Tis2,1/2,1720 F P00 +2 X P00 + Tjny2,1/2,1/2)
= T+ o0t 13232172 12X Tzy21/2,120 2 X T+ g0 + o0
+2 x I'1y2,172,1/2) + L0,0,0)
= Ds/2,1/2,1/21 T T2,2,00 + T2, + T21,0) 72 X T2j0,00 + Ui3/2,3/2,3/2) + 2 X Tiz/2,3/2,1/2]
+3 X Uzyo1/21/2) 4 X Ty + Do) +2 X o0 +3 X Diuyeiiy2,1/2) +2 X Fioo,0)
= I'go,0 + 572,372,172 + Tis/2,1/2,172) + 22, +3 X 2,1, +2 X Tiz1 )
+2 X I'z/2,3/2,3/2) +3 X I'3/2.3/2,1/2) 5 X U3/2,172,172) 3 X 1) +9 X i)
+3 X I'i10,00 +4 X Tiaye1/2,1/2) + Loj0,0
= D0 +Us/2,3/2,3/2 + Tis/2,3/2,172) +2 X Uisp2,1/2,172) 2 X Tao0) +4 X T
+3 X 21,00 + L2000 T2 X I'3/2,3/2,3/2) 5 X L[3/2,3/2,1/2) + 6 X T'[3/2,1/2,1/2)
+4 X111 +6 X100 +5 X o0 +95xy21/21/2
= D'+ Us/2,3/23/20 2 X Uis/2,3/2,172) +2 X Uisge,1/2,1/2) + Tj2,2,2) + T22,1
+2 X o0 +4xTp11+4x 10 +3x o0 +3x 323723/
+5 X T(3/2,3/2,172) + 7 X U3/2,1/2,172) + 7 X Py +4 X Fgy1,00 + 3 X Uo,0)
+6 X T'1/2,1/2,1/2) +4 X g 0,0

We can summarize this results in the following table whose kth column contains in the line indexed
by [A1, A2, Az] the coefficient of I'[y, », 5, in the decomposition of AFO0O@ Q) :

AF(0O @ O)
E=0k=1]k=2 k=3 k=4 k=51k=6]k=7
F[AIJ\[%)%] ]

0,0,0 1 1 2 1 4
3,2, 3] 1 1 2 3 4 5 6
1,0,0 1 1 1 2 3 5 3
1,1,0 2 1 1 5 6 1
[1,1,1] 2 4 3 4 7
[?%é] 1 2 3 5 6 7
[?gg] 2 3 5 5
3,35, 3] 1 2 2 3
[2,0,0] 1 2 1 1 3
[2,1,0] 1 1 2 3 1
2,1,1] 1 3 1 1
[2,2,0] 1 2
2,2, 1] 1 9 1
[2,2,2] 1
[%éé] 1 1 2 2
[gv ga g] L 2
[57 2 5] 1 1
[3,0,0] 1

[3,1,0] 1

3,1, 1] 1
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Then the coefficient by ; is the component-wise multiplication of the kth column with the /th

column, e.g.
b1o=0-0+1-1+1-140-240-04+0-1=2.

So finally we obtain for the coefficients by ; the following symmetric table

Ejol 1|2 /|3 | 4|5 |6 |7

10 | 28 | 50 | 88 | 150 | 204 | 210
419 2463|116 | 162 | 210 | 266

l

0 110101 2 1 0 4
1 0121|213 5 7 10 9
2 O} 2 |7 | 7|10 ] 22| 28 | 24
3 113 |7 (18] 30 | 39 | 50 | 63
4 2|5 11030 | 56 | 68 | 88 | 116
) 1] 7 122]39] 68 | 116 | 150 | 162
6 0

7

and for the coefficients where 8 < k < 15 or 8 <[ < 15 we have the symmetry relations

bry = bis—g,15—1 = br,15-1 = b5
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Hence, with Corollary 2.2.2, we get for the dimensions of the spaces of Spin(9)—invariant k-
homogeneous valuations :

. Spin(9
dim ValP™®) =

. Spin(9
dlmVallg ® —

. Spin(9
dim Val}} © =

. Spin(9
dim Val35™(®)

. Spin(9
dim Val}y ®)

dim Val$P®) =

. Spin(9
dim Valjj © =

dim ValsP™®) =

dim ValZP™(®

big =1
—bis + b15,0
boo =1

big — (b1a,0 — b13,—1) + (b1a,1 — b13,0)

—bi,0+b1,1 —bap

2

—b13 + (bi3,0 — biz,—1) — (b13,1 — b12,0) + (b132 — bi2,1)

bao —ba1+ b3+ bao—b3

3

biz — (b12,0 — b11,—1) + (b12-1 — b11,0) — (b12,2 — b11,1) + (b12,3 — b11,2)
—b30+b31 —bso—b32+bs1+b33—byo

6

—b11 + (b11,0 — b10,—-1) — (b11,1 — b10,0) + (b11,2 — b10.1) — (b11,3 — b10,2)
+(b11,4 — b10,3)

bgo —ba1 +bs0+bao—bs1 —bs3+bso+bya—bs3

10

bio — (b10,0 — byg,—1) + (b10,1 — bg,0) — (bro,2 — by,1) + (b10,3 — by.2)
—(b1o,a — bg,3) + (b10,5 — bg.4)
—bs0+bs1—bso—bs2+bs1+bs3—bs2—bs4+0bs3+bss—bsa
15

—bg + (bg,0 — bg,—1) — (bg,1 — bg,0) + (bo,2 — bs,1) — (bo,3 — bs,2) + (bga — g 3)

—(bg,5 — bg,4) + (bos — bs5)

bs,o —bs,1 +b70+bs2—br1 —bs3+bro+bsa—brs—bes+bra+bss—brs

20

bg — (bg,0 — br,—1) + (bs,1 — br,0) — (bg2 — br,1) + (bs,;3 — br2) — (bga — b7.3)

+(bg5s — bra) — (bg,g — br5) + (bs,7 — brg)
1 —2b7,0 + 2b7,1 — 2b7,2 + 2b73 — 2b7 4 + 2b7 5 — 2b76 + b7 7
1+26=27

and for 0 < k <7, we have by the Hard Lefschetz theorem 1.1.7,

So the dimensions of Val

dim Val??™ ) = dim Val$P"™(®).

Spin(9) .
. are :

k

15

16

dim Val;"™®)
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Chapter 6

Smooth valuations on manifolds

6.1 Valuations on smooth manifolds

The following section is based on the two papers [6], [7] and the lectures notes [10], due to Alesker.

Let M be a smooth oriented n-dimensional manifold. We would like to define on M a similar
concept as convex valuations on a vector space.

In order to be able to do that, we define on M another class of bodies (as convexity does not make
sense on an arbitrary manifold), namely the class of submanifolds with corners.

Definition 6.1.1. A closed subset N C M is a submanifold with corners if it is locally
diffeomorphic to R x R7, with integers i, j.

Denote by P(M) the space of compact submanifolds with corners in M.
For K € P(M), we consider the following subsets of T*M :

Definition 6.1.2. The characteristic cycle of K is given by

cC(K) = | J (1K),

zeK
where T, K denotes the tangent cone to K at x
T.K :={¢| 3 curve ¢c: R — K with ¢(0) = z,c/(0) = &},
(T, K)° is the dual tangent cone
(ToK)* :={n e T;M | (n,§) <0VE e T,K}.

The normal cycle of K is given by

N(K) = | J (TaK)°\0)/Rx0

zeK

It is known that N(K) is a n— 1-dimensional Lipschitz submanifold of the oriented projectivization
Py of T*M

]P)]y[ = (T*M\O)/RZO = SM7
where 0 is the zero section of T* M.
An element of N(K) can be thought of as a pair (p, H) with p € M and H C T, M an oriented
hyperplane.
If M =V is a vector space, this definition coincides with the definition of Section 1.4 and N(-)
satisfies the properties of Theorem 1.4.4.
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Definition 6.1.3. A valuation on a manifold M is a finitely additive functional p : P(M) —
R, i.e. for any A, B € P(M) such that AUB, ANB e P(M),

p(AU B) = u(A) + p(B) — p(AN B).

A waluation is said to be smooth if there exists w € Q"~1(SM), p € Q*(M) such that

wK) = w+/ ®.
N(K) K

We denote by V>°(M) the space of smooth valuations on M. Note that by the properties of the
normal cycle, any pair (¢,w) € Q*(M) x Q""1(SM) defines a valuation.

Let K be a compact submanifold with corners in M. We associate to K a submanifold of TM by:

Definition 6.1.4. For a compact submanifold with corners K C M, its disc bundle Ny (K) C
TM is obtained by summing K x {0} and the image of [0,1] x N(K) under the homothety in the
second factor :

Ni(K) = w.(K) + F.([0,1] x N(K)),

wherer: M — TM, p— (p,0) is the natural inclusion and F : RxSM — TM, (¢, (p,v)) — (p,tv)
is the homothety map.

N;(K) is a n-dimensional submanifold of TM, and we have
ONi(K) = N(K).

If a smooth form ¢ € Q"~1(SM) extends to an n — 1-form on T'M, then Stoke’s theorem implies

Jeo?= oo
N() Ni(-)

Lemma 6.1.5. Any n-form w on T'M defines a smooth valuation by

Conversely, we have the following :

w(K) = w,
Ni(K)

for K € P(M).

Proof. Such a valuation can be written as

n(K) = /Nl(K)w

L
K [0,1]

d
_/%%—F/N(K)/ |(t)<at,.>dt

~ fer] s
K N(K)

with ¢ € Q"(M) and w € Q"1 (SM). O

1] x

)

=

€
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There is a canonical filtration by closed subspaces on the space of smooth valuations.
For every point p € M, the space Val™ (T,,M) of translation invariant smooth convex valuations
on T, M has, by McMullen’s theorem, a grading by the degree of homogeneity:

Val™ (T, M) = @D Val® (T, M).
i=0

Let us denote by Val®(T'M) the bundle whose fiber over a point p is the space Val> (T, M). Then
we have the grading

Val™(TM) = @) Val;*(TM).
=0

Theorem 6.1.6 ([10]). There exists a canonical filtration of V(M) by closed subspaces
VDO(M) =Wy DW; D...DOW,,

such that the associated graded space gry V> (M) = @?:0 Wi /Wiy1 is canonically isomorphic
to the space C™°(M,Val>™(TM)) of smooth sections of the infinite-dimensional vector bundle
Val*(TM) — M.

Let G be a Lie group acting isotropically on M, i.e. G acts transitively on the sphere bundle SM.
Then the isomorphism above restricts to

grw V= (M)C =2 C> (M, Val™(TM))% = Val (T, M)
where H C G is the stabilizer of the point p; in particular, we have the following isomorphism
Wi /Wi1)9 = Vall (T, M). (6.1)

We can also introduce a filtration on the space of n-forms on T*M, following [6].
For every y € T*M we define

(Wi(Q(T*M)))y, = {weA"T,;(T*M) |w|p =0 forall F CT,(T*M)
with dim(F N Ty (7' (y))) > n—i},
where 7 : T*M — M is the projection (p,&) — p. Then we have the filtration
QT M) =Wo(Q(T*M)) D W1 (QY(T*M)) D ... D WL(Q"(T*M)) D W1 (U (T*M)) =0,
and

Theorem 6.1.7 ([6]). The map E: Q" (T*M) — V> (M) given by

EE) = [ w

CC(K)
is surjective. Moreover, for i =0,1,...,n, the map E maps W;(Q"(T*M)) onto W; surjectively.

Let w € Wy and p € M. Let 7: U — V C R" be a coordinate chart around p. The differential
drp : TyM — Tr(,)V =2 R" is a linear isomorphism. For K € P(T,M), we define

1 d*
TI’fu(K) =

= o (7—71)*‘u (T(p)+t(d7'p(K) 77’(}))))-

t=0

Proposition 6.1.8 ([7]). T u is independent of the choice of T and belongs to Vali® (T,M).
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6.2 A canonical valuation on Riemannian manifolds

All the notions of Riemannian geometry presented and used in this section can be found with
more details in [28].

Let M be an n-dimensional differentiable manifold, and T'(M) the space of vector fields on M.
Definition 6.2.1. An affine connection on M is a map
V:I'(M)xT'(M) —T(M), (X,Y)— VxY

with the following properties :

(i) Vix+pyZ = [iVxZ + foVyZ,

(i) Vx(Y+2)=VxY +VxZ,
(1)) Vx(f-Y)=fVxY +X(f) Y.
If (M, g) is a Riemannian manifold, we define a particular affine connection :

Definition 6.2.2. An affine connection V on (M, g) is a Levi-Civita connection if and only
if

(i) V is torsion-free, i.e. VxY — Vy X = [X,Y],

(i) V is metric, i.e. Xg(Y,Z) = g(VxY,Z)+ g(Y,VxZ) for all X;Y,Z € T'(M).

There exists on every Riemannian manifold a unique Levi-Civita connection.

Definition 6.2.3. For X, Y € T'(M), V the Levi-Civita connection on M, we define
R(X,Y): (M) — T(M)
Z = R(X,Y)Z:=VyVxZ—-VxVyZ+VixyZ
This map R induces a (1,3)-tensor on T, M through

Definition 6.2.4. For z,y,z € T,M, define Ry(z,y)z € T,M by (R(X,Y)Z)(p) where X,Y,Z €
(M) are vector fields which extend x,y,z. The (1,3)-tensor

R, :T,M xT,M xT,M — T,M
(,y,2) =  Rp(z,y)z
is called curvature tensor.
This (1,3)-tensor R, is equivalent to the (0,4)-tensor (again denoted by R,) defined by
Ry(z,y,z,w) 1= gp(Rp(z,y)z,w).
Definition 6.2.5. Forpe M, v,w € T, M, we define

K(v,w) = R,(v,w,v,w)

(v, v){w, w) — (v, w)2’
In particular, if v,w are orthonormal, then
K(v,w) = Ry(v,w,v,w).
K depends in fact only on the 2-plane E, ., in T,M generated by v and w. K is called the

sectional curvature of I, ,,.
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Lemma 6.2.6 (Properties of the curvature tensor). For z,y,z,w € T,M, we have
1. Ry(z,y,z,w) = —Ry(y, z, z,w)
2. Ry(z,y, z,w) = —Ry(x,y,w, 2)
3. Ry(x,y, z,w) = Ry(z,w,z,y)

R, is thus an element of Sym?A*T,M C A*T,M @ A*T,M.

Definition 6.2.7. On the set of k-forms on an oriented vector space W, the Hodge-+ operator
is defined by

QW — Qv Rw

w o kW,

where
*W (V1 ovey Un—k) = W(Un—kt1, -, Un),

for an oriented orthonormal basis v1,...,v, of W.

The Hodge-* operator is an isomorphism. Hence, we can see R, as an element R}, of A(T,M) ®
A"X(T,M) C A"(T,M & T,M).

Let (M, g), (N,h) be two Riemannian manifolds, y € N, and ¢ : (N, h) — (M, g).
We define two subspaces of T,V :
the vertical subspace of T,V

Vy = kerdyp,,

and the horizontal subspace of T, N
H, = Vyl = (kerdp,)*.

Definition 6.2.8. A map ¢ : (N,h) — (M, g) is o Riemannian submersion if ¢ is a smooth
submersion, and for any y € N, dp, is an isometry between H, and T, M.

We would like to prove that the projection 7w : TM — M is a Riemannian submersion. First we
equip T'M with an appropriate Riemannian metric.

Definition 6.2.9. A vector field along a curve ¢c: I CR — M is a curve X : [ — TM
such that X(t) € TeyyM for allt € 1.

Theorem 6.2.10 ([28]). Let V be as before the Levi-Civita connection of M, and ¢ be a curve on
M. There exists a unique operator ~- defined on the vector space of vector fields along ¢, which

dt
satisfies the following conditions :
i) for any real function f on I

v : v
S (MNE® = FOYE) + FO) Y (1),

i) if there exists a neighborhood of tg in I such that'Y is the restriction to ¢ of a vector fields
X defined on a neighborhood of c(to) in M, then

\%
%Y(to) = (Dc’(to)X) ’c(
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Then TM is a Riemannian manifold with the metric given by the following : for ¢;(¢) :=
(pi(t),vi(t)), i =1,2, two curves in TM with ¢1(0) = c2(0), we define

& 0.65(0) = g0, 0).55(0) +. 350100 20))

With this metric, the projection 7 : TM — M is a Riemannian submersion :

Vipoy = {¢(0) | ¢ = (z,w) : I — TM with ¢(0) = (p,v), dr(,.c'(0) = z'(0) = 0}

and
1 / . \Y
Hepoy = Vipw)” ={(0) | ¢ = (z,w) : I — TM with ¢(0) = (p,v), ﬁw(O) = 0},
hence for two curves ¢; = (z;,w;) : I — TM,i=1,2, s.t. ¢j(0) € Hp,p)
9(dmp,0) (€1(0)), dm(p) (c5(0))) = g(2(0), 25(0))
= 9(c1(0),¢5(0)),

and so dm(, ) is an isometry between H, .y and T, M.

Moreover we have
Vipw) = T(p,v)”_l(p) =TpunIpyM

and since T, M is a vector space, we can identify
V(p,v) =T,M.

It follows therefore that, for (p,v) € T'M, the vertical subspace V(, ., and the horizontal subspace
H, .y are n-dimensional subspaces of T(,, ,,T'M with

T(PKU)TM = ‘/(p,'u) EB H(p’q)) = TpM @ TpM,

hence
T(Z,U)TM & T;M &) T;M.

Therefore we can see the curvature tensor as an element of
R; e N (T,M & T,M) = A”(T(p’v)TM),
and we can define an n-form w € Q(T'M) by
1
w(Pv”) = C

R; S An(CZ—'(:D,U)CZ—']W)7
n—2
where the normalization constant C,,_s is the volume of the n — 2-dimensional unit ball :

(=22

Cho=——5.
SR C=REY

By Lemma 6.1.5, such an n-form on T'M yields a smooth valuation p € V°° (M) through integration
over the disc bundle of K :

K € P(M) > p(K) = /N o

Theorem 6.2.11. The valuation p defined above has filtration index 2, i.e. u € Ws.
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Proof. By defining the n-form

W=

{ w  on N(K)
0 onT*M\N;(K)

we can rewrite p as
n(K) = .
CC(K)

Although @ is not smooth, we can approach & by smooth forms whose restriction to N (K)
is w. Hence we can apply Theorem 6.1.7 which gives the condition : p € W, if and only if
@ € WL (Q"(TM)).

Therefore, for y = (p,v) € TM, we have to show that

Ry, =0

for all F C T,(TM) with dim(F N T, (7 *n(y))) = dim(F N V(,.)) > n — 2, where V{,, ) = T,M
is the vertical subspace of T(, ,\(T'M).
Ifvi, .y Vpo1 € Vip oy, w € Tip oy (TM) = T, M, then :

Ry(w,v1, ., vp-1) =0,

since by definition R} € A*(T,M) @ A"~?(T,,M). Therefore & € W5(Q*(TM)), and pp € Wy. [

Hence Proposition 6.1.8 implies that we can associate to p a valuation 7, 5 pon T, M of homogeneity
degree 2. The isomorphism W, /Ws = Valy (T, M) is given by

TIK) = L (77 (7 (p) + t{drp(K) — 7(p)))

C2dt?|,_,

for K € P(T,M), where 7: U C M — V C R™ is a coordinate chart around p.
Since w is invariant under the action of the isometry group G of M, the valuation pu is also G-
invariant. Hence, equation (6.1) implies that 77 is invariant under H = Stab,G.

Proposition 6.2.12. The valuation Tgu is even.

Proof. Recall the definition of the Euler-Verdier involution, introduced by Alesker in [7].
Let s: S*M — S*M be the natural involution (g, [£]) — (g, [—£]).

Definition 6.2.13. Let ¢ = 1), be a valuation given by

() = [ o

with n € Q"~1(S*M). The Euler-Verdier involution is then defined as (—1)")g«,.

The valuation T;f 1 on the vector space T}, M is even, if and only if it belongs to the (—1)*-eigenspace
of the Euler-Verdier involution ([13], [7]).
Analogously, consider the involution on T'M

$:TM — TM, (g,v) = (gq,—v).
The valuation T is even if and only if it belongs to the (—1)?-eigenspace of the involution induced
by s.

Since §*w = (—1)
2 .
T is even.

"=2y  u belongs to the (—1)2-eigenspace of the involution induced by §; hence

O
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Theorem 6.2.14. The Klain function of the valuation Tg,u € Valy (T, M) is the sectional curvature
of M.

Proof. Let E € Gra(T,M) be a 2-dimensional vector subspace of T, M, and D? be the 2-dimensional
unit ball in E. Consider the exponential map exp : T,M — M, and set 7 := exp~!'. Then we have
7(p) = 0 and d7, = id|7,»s. Hence :

1 d? s
T;M(DQ) = 39 (77 1 (7(p) + t(drp(D?) — 7(p)))
t=0

1 d? 1i)o

- Y uep?)
2 dt2 =0 ( )
1 d? /

= —— w.
2dt?|,_o J N, (r1(2D2))

Define S; := 771(tD?) € P(M). Then

usy = [ w
N1 (Se)

= / w(q,v)(v{‘,vg,vg, vy U )dgdv
N1(St)

where !, v are horizontal lifts (i.e.lifts in the horizontal subspace H4.)) of an orthonormal ba—
sis {v1,v2} of T;S; and vy, ..., v, are vertical lifts (i.e. lifts in the vertical subspace V(,.)) of an

orthonormal basis of the orthogonal complement of 77,.S; in T, M,

1
= vol,,_o(D"™?) Ry (vi,v2,v3, ..., vn)dg,
Cn72 St

where D"~2 denotes the n — 2-dimensional unit ball, since, by definition, R} is constant on each
fiber. It becomes through the isomorphism given by the Hodge-* operator

1 1
@M(St) = @/S Rq(”l;”Q,”lv”Q)dq
1
= @ o K(qut)dq

— K(E), ast — 0,

where we recall that F is the 2-dimensional vector subspace of T),M and K denote the sectional
curvature.

Hence
1 d?
TpQN(DZ) = Jae t_OM (St)
= (9K(E) = voly(D*)K(E),
therefore the Klain function of Tg 1 is the sectional curvature K of M. O
Examples

Ezample 1. The n-dimensional sphere M = S™. Then we have T,M = R", G = Isom(M, g) =
O(n+1), H = Stab, = O(n), and the construction above allows us to construct a valuation 777
on T, M whose Klain function

Klpe), = Ksn =1
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is constant 1, hence, by the injectivity of the Klain embedding, Tg 1 is the second intrinsic volume
w2

Ezample 2. The complex projective space M = CP?. Then we have T,M = C", G = Isom(M, g) =
U(n+1)/U(1), Stab, = U(n), and

Klzz, =1+ 3cos? o(z,y),
where ¢ is the Kéhler angle : for a plane generated by two vectors v, w, the angle ¢ satisfies
cos? () = (v, iw)?.

¢ measures the angle between the complex planes spanned by {v, v} and {w,iw} (cf. [33]).

Several bases of ValV™ have been given by Bernig-Fu in [18]. A basis for Valg(") is given by the
Tasaki valuations 75 ;, ¢ = 0,1. Their Klain functions are

Kl,, =1, Kl , = cos? i,

where ¢ is the Kéhler angle.
Hence we can express our new valuation Tg 1 in the basis of the Tasaki valuations by

Topu="T0+ 3721

FEzxample 3. The quaternionic projective space M = HP™ Then we have T,M = H", G =
Isom(M,g) = Sp(n+1)-Sp(1) and H = Stab, = Sp(n) - Sp(1).
The sectional curvature of the quaternionic projective space is given by

K(E,,) =1+ 3cos® a(z,y),
where the angle « is defined by
cos” a(z,y) = (z,yi) + (x,yj) + (z,yk),

with 1,4, 7, k the usual basis of H over R (cf. [34]).

Ezample 4. The octonionic projective plane M = QP2. Due to the non-associativity of Q, the
concept of octonionic projective space QP™ only makes sense for n = 2 ([12]). In this case, we
have T,M = 02, G = Isom(M,g) = F, and H = Stab, = Spin(9). For (a,b), (c,d) € O? with
[l(a,b)]] = |l(e,d)|| = 1 and {((a,b), (¢,d)) = 0, the sectional curvature of the plane generated by
(a,b), (c,d) is given by (cf.[23])

1 1 1
K(Eap) (ea) =4 |lanel® + b AdI* + Zllall®lldl* + Z 1Bl lell” + 5 (ab, cd) — (ad, be) | ;

hence :
i) K(E@,0,0,0) =4,
ii) K(E(a,o),(o,b)) =1
Since Spin(9) acts transitively on S, we may assume (a,b) = (1,0). Then it becomes
K(E(1,0),(c,) = 4llel® + [ld]1*.

The Klain function of T,?M is therefore between 1 and 4. Alesker constructed in [9] a valuation
7 which is Spin(9)-invariant and of homogeneity degree 2, called the octonionic pseudo-volume
(in analogy to the quaternionic pseudo-volume defined in [5]). For the octonionic pseudo-volume
holds
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i) Kl (Ea,0),.0) = 0;

ii) Kl-(E1,0),0,1) = 1.
Since we have shown that Valgpin(g) is of dimension 2, the valuation Tp2 1 can be expressed as a
linear combination of the second intrinsic volume and the octonionic pseudo-volume. Comparing
the values given above for the Klain functions of T, 5 w and 7, we get for Tg T

T2y = 4py — 37
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