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Supersurface electron scattering, i.e., electron energy losses and associated deflections in vacuum above

the surface of a medium, is shown to contribute significantly to electron spectra. We have obtained

experimental verification (in absolute units) of theoretical predictions that the angular distribution of the

supersurface backscattering probability exhibits strong oscillations which are anticorrelated with the

generalized Ramsauer-Townsend minima in the backscattering probability. We have investigated 500-eV

electron backscattering from an Au surface for an incidence angle of 70! and scattering angles between

37! and 165!. After removing the contribution of supersurface scattering from the experimental data, the

resulting angular and energy distribution agrees with the Landau-Goudsmit-Saunderson (LGS) theory,

which was proposed about 60 years ago, while the raw data are anticorrelated with LGS theory. This result

implies that supersurface scattering is an essential phenomenon for quantitative understanding of electron

spectra.
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Electron scattering from solid surfaces has been of
paramount importance in fundamental and applied science
and technology ever since the first experiments, conducted
over a century ago [1]. With the advent of nanotechnology,
the interest in the details of the dynamics of electrons near
a vacuum-solid boundary has seen a remarkable revival.
In particular, so-called ‘‘near-field’’ electron energy-loss
spectroscopy [2–5] has been established as an effective
tool to probe electro-optical modes of the solid-state
electrons in nanostructured surfaces. Furthermore, newly
developing electron-beam techniques such as the near field
emission secondary electronmicroscope [6], need an increa-
singly refined model of the electron-surface interaction.
While near-field energy loss spectroscopy in transmission
is nowadays well established, observing supersurface scat-
tering in a reflection geometry poses a great experimental
challenge, since the resulting spectra are dominated by
multiple losses experienced inside the solid.

Model calculations [7,8] predict that for scattering ge-
ometries near the very sharp Ramsauer-Townsend minima
in the elastic-scattering cross section, the contribution of

the supersurface inelastic-scattering probability in reflec-
tion electron energy-loss spectra (REELS) is significantly
enhanced by the (small-angle) deflections accompanying
a supersurface energy transfer, leading to oscillatory struc-
tures in the angular distribution of the surface-excitation
probability. This effect makes unambiguous identification
of supersurface scattering in a reflection experiment pos-
sible and elucidates the role of small-angle deflections
taking place during supersurface electron scattering.
Figure 1 illustrates the supersurface scattering process

for 500-eV electrons backscattered from a Au surface.
Panel (a) shows the situation without deflection; panel
(b) is for a finite supersurface scattering deflection angle
!ss before elastic backscattering, and panel (c) after elastic
backscattering. The backward part of the differential elas-
tic cross section (DECS) is illustrated in Fig. 1 in a polar
representation in blue [shown in full in Fig. 2(a) as the
green curve]. The DECS exhibits deep minima at scatter-
ing angles of 65!, 110!, and 153!, the so-called Ramsauer-
Townsend minima [9,10] that reflect the destructive
interference of partial waves with a given angular momen-
tum which experience different phase shifts during their
passage through the screened Coulomb potential of the
nuclei in the target. All panels in Fig. 1 are for the same
incidence (!i) and emission (!o) angles corresponding to a
net deflection angle (!s) for which the DECS exhibits a
deep minimum.
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As illustrated in Fig. 1(b), during the approach to the
surface, while still in vacuum, an electron may polarize the
surface charge, leading to a supersurface energy loss in
which a small amount of momentum is transferred, giving
rise to a deflection (h!ssi # 8!, for 500-eVelectrons on Au
on a binary collision model). After a supersurface interac-
tion, the scattering angle !0s which is then relevant for the
net deflection is no longer exactly at the minimum of the
DECS. In other words, the reflection probability increases
significantly when the incoming electron experiences a
deflection in a supersurface collision since, in the vicinity
of a minimum, the elastic cross section increases rapidly
with the scattering angle [see the inset of Fig. 2(a)]. Of
course, the opposite effect, in which an electron is scattered
out of a maximum in the DECS in the course of a super-
surface collision, also takes place, but the point is that the
maxima in the DECS are quite broad compared to the
minima; therefore, a net effect is only expected near a
minimum in the DECS.

Supersurface scattering not only has a measurable effect
if it takes place before the electron enters the solid, but also
after it leaves the solid. Consider the situation depicted
in Fig. 1(c): after elastic backscattering over !00s , a large
fraction of electrons will have a direction near the scatter-
ing maximum at $90!, and will therefore be outside the
detection cone. However, after experiencing a small angle
deflection !ss in the course of a supersurface excitation,
some of them are scattered into the detector. Again, the
opposite effect (scattering out of the detector) also takes
place but the point is that this scattering concerns a very
small fraction of electrons leaving the solid after elastic
backscattering, since the detector direction coincides with
a minimum in the elastic-scattering cross section.

A comparison of Monte Carlo model calculations and
experimental results for the angular distribution of 500-eV
electrons elastically backscattered from a polycrystalline
Au surface is presented in Fig. 2, for an incidence angle

of 70!. The angular distribution of the elastically back-
scattered intensity in the plane of incidence is presented
in Fig. 2(a). In Fig. 2(b), the average number of surface
excitations experienced inside the solid is represented by
the lower (blue) curves; the upper (red) curves correspond
to supersurface scattering. Dashed curves are without
deflection in an inelastic process, solid curves are for finite
scattering angles !ss, calculated on a binary collision
model [8]. The experimental results are represented by
the black solid curves with data points. Details concerning
the model calculations and the experimental procedure can
be found in Refs. [7,8,11].
Figure 2(a) compares the angular distribution of the

elastic reflection coefficient with the DECS. The minima
in the experimental data points are less deep, which is
caused on one hand by the finite opening angle of the
analyzer and, on the other hand, by multiple elastic scat-
tering inside the target. Goudsmit and Saunderson already
stipulated [12] that the angular distribution after multiple
elastic scattering can be conceived as a multiple self-
convolution of the DECS and becomes nearly isotropic
after a few elastic collisions (ne $ 4–5). The analytic
model [red curve in Fig. 2(a)] of Oswald, Kasper, and
Gaukler (OKG), which is based on this idea [13,14], is
indeed seen to reproduce the experimental data quite well
and is in close agreement with Monte Carlo model calcu-
lations (blue dashed curve). The deviations for emission
angles j!oj> 50! are attributed to a slight experimental
misalignment. The experimental data were normalized to
the OKG results at !s ¼ 80!.
According to the common model for the angular distri-

bution of the surface excitation probability [15], a smooth
dependence following the reciprocal cosine of the emission
angle is expected for the angular dependence. The upper
(red) dashed curve in Fig. 2(b) approximately follows
this law, except for emission angles near minima in the
cross section. This minor effect is caused by the energy

(a) (b) (c)

FIG. 1 (color online). Illustration of supersurface scattering: (a) without deflections during surface excitations; surface excitation
before (b) and after (c) backscattering with associated deflections (!ss) (see text).
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dependence of the elastic-scattering cross section. In par-
ticular, the position of the minima in the DECS shifts by a
few degrees when the probing electron loses about 10%
of its initial energy. Since the DECS varies rapidly with
the scattering angle near a deep minimum, an energy loss
experienced along the electron’s trajectory may signifi-
cantly enhance the probability for it to be reflected
compared to the quasielastic case where the position of
the minima in the DECS is taken to be independent of the
energy loss. This effect is of course stronger when the
electron is inside the medium since there it cannot only

experience surface excitations (with comparatively small
energy losses), but also (multiple) volume excitations and
in addition suffer a surface loss on its way out. When
deflections in inelastic collisions come into play, both the
vacuum and medium contribution of the surface excitation
probability (solid curves) exhibit strong oscillations which
are anticorrelated with the oscillations observed in the
elastic backscattering probability [Fig. 2(a)] and provide
a clear signature of supersurface scattering in a reflection
experiment.
It is assumed by many authors that surface excitations

experienced inside the solid are not observed in experi-
mental loss spectra since they are compensated by a cor-
responding decrease of volume excitations, the essence of
the so-called begrenzungs effect [16–18]. The present
results for the surface excitations, shown as solid circles
with error bars in Fig. 2(b), confirm this point of view
in that the data agree quite well with the supersurface
contribution predicted by the model calculations: apart
from features in the angular distribution for j!oj> 50!

the agreement is within a few percent in absolute units.
The agreement between the present experimental results

and the model calculations accounting in detail for the
surface dielectric response of the solid-state electrons [7]
has some interesting consequences. First of all, although
the existence of energy losses in supersurface scattering is
well established [2–4], the present findings demonstrate
that deflections during supersurface collisions need also to
be taken into account when the dynamics of electrons near
surfaces are investigated in detail. It is found that such
deflections may in a first approximation be modeled clas-
sically. Second, the fact that the surface excitation proba-
bilities derived from experimental loss spectra agree in
absolute units with theoretical predictions for the vacuum
contribution [solid red curve in Fig. 2(b)] shows that, by
virtue of the begrenzungs effect, surface losses observed in
energy loss experiments are predominantly attributable to
supersurface scattering. Inside the medium, the occurrence
of surface losses is compensated by a decrease of the bulk
modes of the polarization of the solid-state electrons.
Another interesting question is the role of supersurface

scattering in multiple electron scattering in non-crystalline
solids. The state-of-the-art model for multiple electron scat-
tering is provided by the Landau-Goudsmit-Saunderson
(LGS) loss function [12,14,19]

Gðs; T; ~!Þ ¼
X1

ni¼0

WniðsÞ"niðTÞ
X1

ne¼0

"neWneðsÞ"neð ~!Þ;

which describes the distribution of energy losses T as a
function of the pathlength s traveled in the medium for a

scattering geometry described by ~!. The subscripts ‘‘e’’ and
‘‘i’’ indicate elastic and inelastic scattering, respectively;
the functionsWnðsÞ represent the Poisson statistical process;
and the quantities "n are multiple self-convolutions of the
(in)-elastic inverse mean free paths. The first factor in this
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FIG. 2 (color online). (a) Solid curves: elastic peak intensity
according to the Oswald-Kasper-Gaukler (OKG)-model [13];
Dashed curve: Monte Carlo (MC) calculations. Data points
with solid curves: measured elastic peak intensity normalised
to theory at a scattering angle of 80!; Dash-dotted curves:
differential elastic-scattering cross section (DECS). The inset
compares an expanded view of the DECS for 140! < !s < 160!

with the solid angle of the analyzer and the average deflection
angle in a supersurface process. (b) Solid curves with data
points: average number of surface excitations derived from
experiment. Dashed and solid curves: Monte Carlo calculations
with (solid curves) and without (dashed curves) deflections
during inelastic scattering. Lower curves: surface excitations
taking place inside the medium; Upper curves: surface excita-
tions in vacuum; Note that this comparison is in absolute units.
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equation is Landau’s celebrated loss function [19], written in
an inelastic collision expansion [14], the second sum is the
distribution of pathlengths derived for an infinite medium
by Goudsmit and Saunderson [12], modified to account
for arbitrary boundary conditions by means of the coeffi-
cients"ne . A numerical evaluation of this expression pertain-
ing to the present experiment is given in Fig. 3(b), and is
compared with the raw experimental data in Fig. 3(a). The
resulting combined energy-angular distributions are not only
essentially different along the surface scattering ridge at an
energy loss of$5 eV, which was to be expected, but also all
remaining features are essentially anticorrelated, just as in
Figs. 2(b) and 2(c) for the surface excitation probability and
the elastic backscattering probability.

However, when the contribution of supersurface scatter-
ing is removed from the raw data [8], the resulting spectra,
shown in Fig. 3(c), are essentially in agreement with the
LGS theory. The minor differences between the relative

intensities of the maxima at !s ¼ 41!, 87!, and 131! in
Figs. 3(b) and 3(c) are of the same order of magnitude as
in Figs. 2(a) and 2(b) and are attributed to experimental
misalignment. Thus, by appropriately accounting for
supersurface scattering, it is now finally possible, also in
the case of electron spectra, to unambiguously expose the
effects of multiple scattering inside solids as described by
LGS theory that was introduced more than fifty years ago.
An impression of the extent of supersurface scattering in

electron spectra in general is presented in Fig. 4. Assuming
the Poisson stochastic process to govern plural surface scat-
tering [20], the reduction in the elastic intensity (in, e.g.,
photoelectron spectra) varies between$50% for 300 eVand
still assumes appreciable values of $10% at 3 keV.
Throughout the present work a somewhat special situ-

ation has been considered in order to obtain clear informa-
tion about the supersurface scattering process. However,
the complementarity between supersurface scattering
and scattering inside the medium seen in Fig. 3, makes it
obvious that a consistent description of any electron beam
experiment involving solid-vacuum boundaries needs to go
beyond the traditional description in terms of the elastic
and inelastic backscattering coefficient and the secondary
electron yield. In the case of inelastic backscattering a
distinction should be made between the volume inelastic
backscattering coefficient and a novel physical quantity,
the supersurface inelastic backscattering coefficient.
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FIG. 4 (color online). Average number of surface excitations
in vacuum (per surface crossing) for Au, Cu, and Al for energies
between 200 and 3000 eV, and an incidence angle of 60!. These
results were obtained by averaging the angular distribution in the
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FIG. 3 (color online). Combined energy and angular spectrum
of 500 eVelectrons backscattered from an Au surface. The elastic
peak has been removed from all data sets to improve contrast.
(a) As measured. (b) Theoretical results according to the Landau-
Goudsmit-Saunderson theory [12,14,19]. (c) Experimental data
after elimination of the supersurface scattering contribution.
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