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1. Summary 

Protein-protein interactions within the plane of cellular membranes play a key role 

for many biological processes and in particular for transmembrane signaling. A 

prominent example is the ligand-induced crosslinking of cytokine receptors, where 3-

dimensional cytokine binding followed by 2-dimensional interaction between the 

receptor subunits have been recognized to be important for regulating signaling 

specificity. The fundamental importance of such coupled interactions for cell-surface 

receptor activation has stimulated numerous theoretical studies, which have hardly 

been confirmed experimentally. An experimental approach to measure interactions 

and real time kinetics of type I interferon (IFN) induced assembly between interferon 

receptor subunits ifnar2 and ifnar1 on membrane was developed and determinants of 

the 2-dimensional interactions, such as dimensionality, size, valency, orientation, 

membrane fluidity and receptor density were quantitatively addressed  

The C-terminal decahistidine tagged extracellular domains (EC) of ifnar1 and 

ifnar2 were site- specifically tethered onto solid-supported fluid lipid membrane, 

which carried covalently attached chelator bis-nitrilotriacetic acid (bis-NTA) groups. 

Interactions on the lipid bilayer were detected with a novel solid phase detection 

technique, which allows simultaneous detection of ligand binding to a membrane 

anchored receptors and lateral interaction between them in the real time. This was 

achieved by combining two optical techniques: label-free reflectance interferometry 

(RIf) and total internal reflection fluorescence spectroscopy (TIRFS). Fluorescence 

signals, in the order of 10 fluorophores/µm2, were detected without substantial 

photobleaching. The sensitivity of the label-free interferometric detection was in the 

range of 10 pg/mm2. The crosstalk between the two signals was eliminated by means 

of spectral separation. Fluorescence was detected in the visible region and RIf was 

performed at 800 nm in the near infrared. Flow through conditions allowed to 

automate experiments and measure binding events as fast as ~ 5 s-1.  

Using this technique we have dissected the interactions involved in IFN-induced 

ifnar crosslinking. 2-dimensional association and dissociation rate constants were 

independently determined by tethering high stoichiometric excess of one of the 

receptor subunits and comparing dissociation of the labelled ligand away from the 

membrane in the absence and presence of the non-labelled high affinity competitor. 

Dissociation traces were fitted with the two-step dissociation model: the first step 
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being the 2-dimensional separation of the ternary complex followed by the 3-

dimensional ligand dissociation into solution. Label-free RIf detection allowed 

absolute parameterization of the 2-dimensional concentrations of the ifnar subunits 

on the membrane. The TIRFS signal provided high sensitivity of the ligand 

dissociation and was correlated against the RIf signal before fitting. These features of 

the detection system allowed us to parameterize the model, and the 2-dimensional 

association or dissociation rate constants were the only variables during the fitting.  

Another FRET based binding assay was developed to determine the 2-

dimensional dissociation rate constant using a pulse-chase approach. The donor 

fluorescence from ifnar2-EC was quenched upon the ternary complex formation with 

the acceptor-labelled IFN and the nonlabelled ifnar1-EC. The equilibrium was 

perturbed by rapid tethering of substantial excess of the nonlabelled ifnar2-EC onto 

the membrane. The exchange of the labelled ifnar2-EC with the nonlabelled one was 

monitored as the decrease in the FRET signal with the 2-dimensional dissociation of 

ifnar2-EC from the ternary complex being the rate limiting step.  

Based on the several mutants and variants of the interacting proteins, the effect 

of different rate constants and receptor orientation on the 2-dimensional crosslinking 

dynamics was studied. We have identified several critical features of the 2-

dimensional interactions on membranes, which cannot be readily concluded from the 

solution binding assays. The restricted rotation and the increased lifetime of the 

encounter complex due to high membrane viscosity are the main determinants of the 

2-dimensional association. Tethering ifnar1-EC to the membrane via N-terminal 

decahistidine tag decreased the 2-dimensional association rate constant 4-5 fold. 

Electrostatic attraction and steering, the important mechanism to enhance 

association rate constant between the soluble proteins, are not pronounced for 

interactions on the membrane. Protein orientation due to membrane anchoring 

dominates over electrostatic effects and together with the increased lifetime of the 

encounter complex consequence that 2-dimensional association rate constants are 

quite similar and do not correlate with association rate constants in solution. The 2-

dimensional dissociation rate constants were generally 2-5-fold lower compared to 

the corresponding 3-dimensional dissociation rate constants in solution. Possible 

explanations for this are that long lifetime of the encounter complex stabilizes the 

ternary complex or that membrane tethering affects the interaction diagram. In 

conclusion, combined TIRFS-RIf detection turn to be powerful and versatile 

technique to characterize protein-protein interactions on membranes. 
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2. Zusammenfassung 

Inter-zelluläre Kommunikation basiert häufig auf Liganden, welche selektiv von 

Rezeptoren auf der Plasmamembran erkannt werden, und durch Wechselwirkung mit 

diesen Rezeptoren Signaltransduktion im Zytoplasma aktivieren. Die molekularen 

Mechanismen der Signalvermittlung durch die Membran sind noch wenig verstanden. 

Die wichtigen Klassen der Zytokinrezeptoren und der Rezeptortyrosinkinasen werden 

durch Liganden aktiviert, die zu einer Di- oder Oligomerisierung von 

Rezeptoruntereinheiten führt, welche offenbar für die Aktivierung zytoplasmatischer 

Effektoren notwendig ist. Diese laterale Interaktion zwischen Rezeptoruntereinheiten 

lässt sich aus mehreren Gründen nicht mit der Interaktion der Proteine in Lösung 

vergleichen. Zum einen handelt es sich um eine Wechselwirkung in 2 anstatt von 3 

Dimensionen, d.h. die Interaktionspartner haben durch die Verankerung auf der 

Membrane weniger Freiheitsgrade als in Lösung. Dabei spielt die eingeschränkte 

Rotation ein besondere Rolle, da sie zu einer Vor-Orientierung der 

Interaktionspartner führt. Ein weiterer wichtiger Unterschied ist die dramatisch 

langsamere Diffusion von Membran-verankerten Proteinen im Vergleich zu Proteinen 

in Lösung. Über die Einflüsse dieser Faktoren auf die Bildung von Proteinkomplexen 

an der Membran wurde sehr viel spekuliert, aber es liegen bis dato kaum 

systematische experimentelle Untersuchungen vor. 

In der vorliegenden Arbeit sollten Detektionsmethoden und Bindungsassays 

etabliert werden, mit welchen die Gleichgewichtskonstanten und die 

Ratenkonstanten von Ligand-Rezeptor Interaktionen auf Membranen in vitro 

bestimmt werden können. Als biologisches Testsystem wurde der Typ I 

Interferonrezeptor gewählt. Typ I Interferone (IFN) sind wichtige Zytokine in der 

angeborenen Immunabwehr von viralen Infektionen, und haben weitere wichtige 

Funktionen für die Aktivierung des adaptiven Immunsystems. Interessanterweise 

binden verschiedene IFN an den gleichen Rezeptor, aber führen zu 

unterschiedlichen Wirkungsmustern. Diese Unterschiede müssen in der 

Wechselwirkung mit den Rezeptoruntereinheiten ifnar1 und ifnar2 kodiert sein. 

Intensive Struktur-Funktions-Untersuchungen konnten keine Unterschiede in der 

Struktur oder Stöchiometrie der Ligand-Rezeptor Komplexen identifizieren, die durch 

verschiedene IFN rekrutiert werden. Allerdings unterscheiden sich für verschiedene 

IFN die Bindungskonstanten und die Ratenkonstanten der Wechselwirkung mit den 

Rezeptoruntereinheiten außerordentlich. Daher sind vermutlich die Effinzienz der 
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Rekrutierung der Rezeptoruntereinheiten und die Dynamik des ternären Komplexes 

von zentraler Bedeutung für die differentielle Wirkung verschiedener IFN. Da der 

Ligand die beiden Untereinheiten auf der Membran verbrückt, sind hier 2-

dimensionale Wechselwirkungen Membran-verankerter Proteine vermutlich die 

Grundlage unterschiedlicher Wirkung. Um diese Szenario zu emulieren, wurden die 

extrazellulären Domänen von ifnar1 (ifnar1-EC) und ifnar2 (ifnar2-EC) über C-

terminale Histidin-tags an Festkörper-unterstützten Membranen mit Chelatorlipiden 

angebunden. FRAP-Experimente haben gezeigt, dass die so angebundenen 

Proteine lateral mit einer Geschwindigkeit von ca. 1 µm²/s diffundieren, also ähnlich 

der (lokalen) Diffusion auf der Plasmamembran. 

Zur Untersuchung der Ligand-induzierten Hetero-Dimerisierung von ifnar1-EC 

und ifnar2-EC auf Festkörper-unterstützten Membranen wurde ein Versuchsaufbau 

zur simultanen Detektion von Fluoreszenz und von Massenänderungen an 

Oberflächen implementiert. Dazu wurde die totalinterne Reflexions-Fluoreszenz 

Spektroskopie (TIRFS) mit der reflektometrischen Interferenzspektroskopie (RIf) 

kombiniert. TIRFS basiert auf der selektiven Anregung von Oberflächen-nahen 

Fluorophoren durch das evaneszente Feld, welches bei Totalreflexion an 

Grenzflächen wenige 100 nm mit dem benachbarten Medium wechselwirkt. Über 

Faseroptik wurde zusätzlich eine Illuminierung senkrecht zur Transducer-Oberfläche 

implementiert, über welche die Dicke einer Interferenzschicht reflektometrisch 

gemessen werden kann. Durch diese Methode können Bindungsereignisse an 

Oberflächen markierungsfrei quantifiziert werden. Da die Schichtdickenmessung bei 

800 nm im NIR Bereich erfolgt, ist sie von der Fluoreszenzmessung im sichtbaren 

Bereich (500-700 nm) spektral separiert. Die Detektion von Fluoreszenz- und 

Massenänderungen an der Oberfläche wurde über die Fusion von Vesikeln mit 

Fluoreszenzmarkierten Lipiden charakterisiert. So konnte gezeigt werden, dass in 

der Tat beide Signale voneinander unabhängig voneinander und ohne detektierbares 

Übersprechen detektiert wurden. Das massensensitive Interferenzsignal wurde 

mittels Vesikelfusion kalibriert, da die dabei entstehende Lipiddoppelschicht eine 

definierte, reproduzierbare Masse auf der Oberfläche abscheidet. Für die 

massensensitive Interferenzdetektion ergab sich so ein Detektionslimit von etwa 

10 pg/mm². Mittels Fluoreszenzdetektion konnten Oberflächenbeladungen von 

wenigen Molekülen/µm² detektiert werden. Durch Kombination mit einer 

automatisierten Fluidik konnten schnelle Injektionsschemata realisiert werden, so 

dass Ratenkonstanten von bis zu 5 s-1 aufgelöst werden konnten. 
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Diese kombinierte Detektionsmethode wurde zunächst eingesetzt, um die 

einzelnen Interaktionen von Fluoreszenz-markiertem IFNα2 sowie anderen IFN mit 

ifnar1-EC bzw. ifnar2-EC zu charakterisieren. So konnten die Ratenkonstanten 

dieser Interaktionen bei sehr geringen Oberflächenkonzentrationen charakterisiert 

werden, was für eine genaue Bestimmung ohne Einfluss von Massentransport-

Effekten notwendig ist. Durch simultane Detektion der Bindung über das 

Massensignal und das Fluoreszenzsignal wurde die Orts-spezifische 

Fluoreszenzmarkierung des Liganden IFNα2 untersucht, und gezeigt, dass die 

Bindung an die Rezeptoruntereinheiten durch die Fluoreszenzmarkierung nicht 

beeinflusst wurde. Zudem konnte kompetitive Bindung von IFN nicht nur an die hoch-

affine Untereinheit ifnar2, sondern auch an ifnar1, welche IFN nur mit sehr geringer 

Affinität erkennt, gezeigt werden. Im nächsten Schritt wurde die Ligand-induzierte 

Assemblierung des ternären Komplexes mit ifnar1-EC und ifnar2-EC auf fluiden 

Membranen untersucht. Dabei wurde bei hohen Rezeptorbeladungen sehr langsame 

Dissoziation des Liganden beobachtet, die bei niedrigen Rezeptorbeladungen 

deutlich schneller war. Diese Beobachtung deutete auf eine kinetische Stabilisierung 

des ternären Komplexes hin. Über Chasing-Experimente mit unmarkiertem Liganden 

konnte diese Vermutung bestätigt werden, da ein deutlich beschleunigter Austausch 

des Liganden beobachtet wurde. Da über das RIf-Signal die absoluten 

Oberflächenkonzentrationen von ifnar1-EC und ifnar2-EC bestimmt werden konnten, 

wurde so auch eine strikte 1:1:1 Stöchiometrie des ternären Komplexes gezeigt: war 

eine der Untereinheiten im Überschuss, dissozierte der überschüssige Ligand 

zunächst mit einer Kinetik, die dem entsprechenden 1:1-Komplex entsprach, bis sich 

ein stabiler 1:1:1-Komplex gebildet hatte. 

Die Bildung des ternären Komplexes wurde im Folgenden detailliert 

charakterisiert. Zunächst wurde die Dissoziationskinetik bei verschiedenen 

Oberflächenkonzentrationen der Rezeptoruntereinheiten in stöchiometrischem 

Verhältnis vermessen. Diese Kurven konnten durch ein 2-stufiges Assoziations- bzw. 

Dissoziationsmodell angepasst werden, in dem der Ligand im ersten Schritt an 

ifnar2-EC bindet und im zweiten Schritt mit ifnar1 auf der Membran einen ternären 

Komplex bildet. Dadurch, dass die Oberflächenkonzentrationen von ifnar1-EC und 

ifnar2-EC genau quantifiziert werden konnten, musste nur ein Parameter in diesem 

Modell angepasst werden, welcher der Gleichgewichts-Dissoziationskonstante der 2-

dimensionalen Interaktion des binären IFN/ifnar2-EC Komplexes mit ifnar1-EC 

beschreibt. Aus allen Experimenten mit Oberflächenbeladungen, die über einen 
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Konzentrationsbereich von zwei Größenordnungen variierte, konnte reproduzierbar 

eine Bindungskonstante von ca. 40 Molekülen/µm² bestimmt werden. 

Erstaunlicherweise liegt diese Bindungskonstante deutlich über der typischen 

Konzentration von Rezeptoren auf der Zelloberfläche (ca. 1000/Zelle). Damit ist es 

wahrscheinlich, dass die Bildung des ternären Komplexes auf der Zelloberfläche 

durch die Bindungsaffinität bzw. die Rezeptorkonzentration limitiert ist. Diese Affinität 

lässt sich nicht durch Steigerung der Dosis kompensieren. Interessanterweise gibt es 

zudem IFN mit deutlich höherer Affinität zu ifnar1. Damit könnte diese Interaktion 

eine Schlüsselrolle bei der Regulation des Ansprechverhaltens verschiedener Zellen 

spielen. 

Weitere Untersuchungen zur Bildung des ternären Komplexes wurden mit IFNα2 

Mutanten durchgeführt, welche eine niedrigere Bindungsaffinität zu ifnar2-EC 

zeigten. Die Dissoziationskinetiken dieser Mutanten aus dem ternären Komplex mit 

ifnar1-EC und ifnar2-EC ergaben, dass selbst bei stöchiometrischen Konzentrationen 

der Rezeptoruntereinheiten durchaus auch die Bindung an ifnar1 im ersten Schritt 

erfolgen kann. Da die Ligandenbindung der Geschwindingkeits-bestimmende 

Schritte der Rezeptorassembliert darstellt, entscheidet die relative 

Assoziationswahrscheinlichkeit, inwieweit welcher dieser beiden Wege populiert ist. 

Damit ist nicht nur die Assoziationsratenkonstante, sondern auch die relative 

Konzentration der Rezeptoruntereinheiten für den Assemblierungsmechanismus 

wichtig. Da unterschiedliche IFN verschiedene Assoziationsratenkonstanten haben, 

sind durchaus verschiedene Assemblierungssmechanismen für verschiedene IFN 

denkbar. 

Um die Dynamik des ternären Ligand-Rezeptor-Komplexes auf der Membran zu 

charakterisieren wurden Assays etabliert, um die 2-dimensionale Interaktionskinetik 

direkt zu messen. Hier wurden zwei Strategien verfolgt. Zunächst wurde der Förster-

Resonanzenergietransfer (FRET) zwischen Donor-markiertem ifnar2-EC und 

Akzeptor-markiertem ifnar1-EC eingesetzt, um die Ligand-Rezeptor Interaktion auf 

der Membran zu verfolgen. Durch schnelles Beladen mit einem Überschuss von 

unmarkiertem ifnar2-EC auf die Membran wurde ein Austausch von markiertem 

gegen unmarkierten ifnar2-EC über das Abklingen des FRET gemessen. Dieser 

Austausch wird bestimmt durch die 2-dimensionale Dissoziazionskinetik des ifnar2-

EC/IFNα2 Komplexes die aus der Änderung des FRET-Signals bestimmt werden 

kann. Interessanterweise war die Dissoziationsratenkonstante, die aus dieser Kinetik 
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bestimmt wurde, um einen Faktor 3-5 höher als die Dissoziationsratenkonstante des 

ifnar2-EC/IFNα2 Komplexes mit dem freien Liganden. Da die Bindung von ifnar1-EC 

keinen Einfluss auf die ifnar2-EC/IFNα2 Interaktion hat, müssen diese Unterschiede 

auf die Verankerung an der Membran zurückgeführt werden. Wahrscheinlich spielt 

die langsamere Diffusionskinetik hier eine entscheidende Rolle, die zu einer 

langsameren Separation der dissoziierten Komponenten führt. 

Diese Beobachtungen wurden bestätigt durch Bindungsassays, in denen die 

Austauschkinetik des Liganden im ternären Komplex bei Zugabe von unmarkiertem 

Liganden vermessen wurde. Dazu wurde eine der Rezeptoruntereinheiten im 

stöchiometrischen Überschuss auf die Membran geladen. Nach Bildung des ternären 

Komplexes mit Fluoreszenz-markiertem IFNα2 wurde der Überschuss an 

Rezeptoruntereinheit mit unmarkiertem Liganden in hoher Konzentration beladen. 

Der nun erfolgende Austausch von markiertem gegen unmarkierten Liganden wurde 

über das Fluoreszenzsignal verfolgt. Bei Verwendung geeigneter Mutanten ist diese 

Austauschkinetik wiederum durch die 2-dimensionale Dissoziationskinetik der 

Ligand-Rezeptor-Interaktion bestimmt. Mit diesen Bindungsassays wurden die 

Dissoziationskinetiken für ifnar1-EC und ifnar2-EC, sowie verschiedene Mutanten 

bestimmt. Aus der Gleichgewichts-Dissoziationskonstante und der 

Dissoziationsratenkonstante konnte auch die 2-dimensionale 

Assoziationsratenkonstante berechnet werden. Basierend auf systematischen 

Untersuchungen konnten einige prinzipielle Eigenschaften von 2-dimensionalen 

Protein-Protein Interaktionen identifiziert werden. So bestätigte sich für alle Ligand-

Rezeptor Interaktionspaare, dass die 2-dimensionale Dissoziationskinetik um einen 

Faktor 3-5 langsamer war als die entsprechende 3-dimensionale Dissoziation. 

Weiterhin ist konnte für die Assoziationskinetik beobachtet werden, dass die großen 

Unterschiede in der Assoziationsratenkonstante in Lösung, die durch 

elektrostatisches Wechselwirkungen zu erklären sind (electrostatic steering), nicht für 

die 2-dimensionale Interaktion auf der Membran beobachtet wurde. Weit wichtiger 

als elektrostatische Steuerung ist dagegen die „richtige“ Orientierung der Proteine an 

der Oberfläche: Durch Änderung der Orientierung von ifnar1-EC auf der Membran 

über ein N-terminales Histidin-tag sank die Assoziationratenkonstante um einen 

Faktor von >5. Dies ist insbesondere überraschend, weil ifnar1-EC eine flexible multi-

Domänenstruktur hat und zudem relativ flexibel über das Histidin-tag an der 

Membrane angebunden ist. Diese Ergebnisse zeigen, dass die Membran-

verankerung, die Flexibilität, die laterale Diffusionskinetik und die 
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Oberflächenkonzentration zentrale Parameter für die Bildung und die Dynamik 

Zytokin-Rezeptorkomplexen auf Membranen sind. Diese Eigenschaften hängen auch 

von der lokalen Umgebung auf der Plasmamembran ab, die sich auch durch die 

Komplexbildung ändern können. Damit lässt sich erwarten, dass 

Rezeptorassemblierung in Zellen einen noch durchaus komplexeren Verlauf nehmen 

kann. In dieser Arbeit konnten diese Prozesse unter kontrollierten Bedingungen 

charakterisiert werden. Dabei erwies sich die neu etablierte Methode der simultanen 

TIRFS-RIf Detektion als äußerst versatil. Die komplementären Messgrößen dieser 

Detektionsmethode waren insbesondere nützlich, um die multiplen Parameter 

(Membran-Assemblierung, Rezeptorkonzentrationen) zu kontrollieren, und 

gleichzeitig komplexe Bindungsassays mit hoher Zeitauflösung durchzuführen. Eine 

breite Anwendung dieser Methode, um komplexe Prozesse an Membranen und an 

nicht-fluiden Oberflächen zu charakterisieren, ist vorauszusehen. 
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3. Preface 

A cell uses cell surface receptors to constantly monitor its environment and 

initiate responses to environmental cues, e.g., signals such as hormones, growth 

factors and cytokines. The range of signals, typically ligands, a cell can detect and 

the concentrations at which ligands can be detected are determined by the array of 

receptors on the cell’s surface. When a receptor encounters an agonist ligand, 

ligand-receptor interaction triggers a cascade of intracellular signaling reactions that 

can lead to a variety of cellular responses, such as the secretion of mediators of cell–

cell communication, changes in gene expression, and cell proliferation. Protein-

protein interactions between cell surface receptors, triggered by ligand binding play 

crucial roles in signal transduction. Kinetic and equilibrium properties, stoichiometry 

and conformational states of the signaling complexes are suggested to be largely 

responsible for signaling amplitude and specificity. Type I interferons (IFNs) elicit 

their antiviral, antiproliferative and immunmodulatory responses through binding to a 

shared receptor consisting of the transmembrane proteins ifnar1 and ifnar2. 

Differential signaling by different interferons emphasize the importance of 2-

dimensional interactions between ifnar subunits in signal propagation. Therefore, 

understanding the determinants of protein-protein interactions on the biological 

membranes are important not only from the fundamental point of view, but also has a 

number of important practical applications. In 1968 Adam and Delbruck [1] 

introduced the concept of “reduction of dimensionality” which suggested that 

organisms handle some of the problems of timing, efficiency and sensitivity, in which 

small numbers of molecules and their diffusion are involved, by reducing the 

dimensionality in which diffusion takes place from the 3-dimensional space into 2-

dimensional surface diffusion. Later, the initial concept was expanded, and the 

consequences of dimensionality, diffusion, orientation, electrostatics and other 

variables on 2-dimensional association and dissociation rate constants and 

equilibrium dissociation constants were subject of intensive theoretical treatment. It 

was realized, that in some cases interaction between membrane anchored proteins 

can be much more potent than between their soluble counterparts. In general, 2-

dimensional interaction rate constants and equilibrium dissociation constants can not 

be deduced by measuring their 3-dimensional interaction in solution. Despite 

advances in experimental techniques little has been done to experimentally confirm 
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theoretical predictions and quantitatively understand determinants of protein-protein 

interactions in 2-dimensions.  

4. Interactions in three dimensions 

4.1. Basic description of biomolecular interactions 

When two molecular species, receptor R and ligand L with mutual affinity are 

mixed in a solution, a time-dependent association between these molecules is 

expected to occur following the simple model: 

R L+ RL
ka

kd     Eq. 1 

Where ka and kd are the association and the dissociation rate constants. 

This interaction mechanism is described by the differential equation of the type: 

[RL][L][L]
[RL][R][R]

[RL]k[R][L]k
dt

d[RL]

0

0

da

+=
+=

−=

    Eq. 2 

where [R], [L] and [RL] are concentrations of the reactants, [R]0 and [L]0 are the 

total amount of the receptor and the ligand respectively.  

After certain time, the reaction reaches equilibrium and concentrations of the 

reactants does not change during the time. Therefore 0=
dt

]RL[d  and Eq.2 can be 

simplified to 

]RL[k]L][R[k da =     Eq. 3 

The principle of microscopic reversibility at equilibrium states that, in a system at 

equilibrium, a number of association events is equal to the number of dissociation 

events. The equilibrium dissociation constant is defined as the ratio of concentrations 

between reagents and products at equilibrium: 

a

d
D k

k
]RL[
]L][R[K ==     Eq. 4 

As can be seen from Eq.4, the concentration of the free ligand [L], when half of 

the receptors are occupied is equal KD. 
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]RL[]R[D ]L[K ==     Eq. 5 

The relationship between the thermodynamic parameters characterizing complex 

formation, such as the Gibbs free energy ∆G0, and KD is described by following 

equation: 

)Kln(TRG D
gas0 ⋅=∆     Eq. 6 

Where Rgas is the gas constant, T – the absolute temperature.  

Eq.6 is the most important equation to predict the direction and the extent of an 

interaction. For spontaneous reaction the change in Gibbs free energy is negative 

∆G<0. The sequence of the several interactions will spontaneously proceed only if 

the overall change in free energy is negative. In the cell, thermodynamically 

unfavorable interactions are coupled with ATP hydrolysis and proceed spontaneously 

if ∆G+∆GATP<0. KD has a very strong dependence on ∆G0, because of the logarithmic 

relationship. This emphasizes the importance of weak interactions, since small 

changes in ∆G0 imply large changes in KD. For example, at room temperature an 

additional hydrogen bond of 5 kcal/mol would decrease KD more than three orders of 

magnitude. 

∆G0 can be divided into enthalpic, ∆H0, and entropic, ∆S0, contributions: 
000 STHG ∆∆∆ −=     Eq. 7 

Change in enthalpy depends on hydrogen bond formation, electrostatic and Van 

der Waals interactions, steric hindrance, solvation and other effects. Change in 

entropy is primarily associated with randomness and rigidness of the system, 

restrictions of its translational, rotational or vibrational motions upon complex 

formation.  

Most of the biological interactions happen in aqueous solutions and water does 

not act as the inert space filler, but is significantly involved during the course of 

complex formation. This is especially true when ions or dipolar molecules are 

involved. Water dipoles orient themselves in the electrostatic field generated by ions 

or dipoles and this contributes to a large negative change in solution entropy. The 

mobility of the hydrated proteins is further decreased bringing additional change in 

entropy. Water forms weak bonds with proteins resulting in positive enthalpy. Thus, 

changes in enthalpy and entropy tend to compensate each other. The free energy 
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difference of the hydration shell between R, L and their complex RL can have 

substantial contribution to the interaction ∆G0. 

4.2. Interaction diagram 

The potential energy surface of an interaction is a geometrical hypersurface on 

which the potential energy of a set of reactants is plotted as a function of coordinates 

representing the molecular geometries (for example, a bond length or bond angle) of 

the system. The energetically easiest route from reactants to products on the 

potential energy contour map defines the interaction potential-energy profile. The 

interaction coordinate is typically chosen to follow the potential energy profile from 

the reactants to the products. The potential energy profile plotted against interaction 

coordinate is called the interaction diagram. The diagram for elementary interactions 

is presented in Figure 1A. In 1935 Eyring [2] and others described the theory that an 

interaction proceeds through a transition state or an activated complex. The 

reactants are in rapid equilibrium with the transition state. The activated complex can 

go forward to produce the product, the complex RL, or reverse to re-generate the 

reactants R and L. Only molecules, which have enough energy to reach the transition 

state can form a complex.  

Most biological interactions can not be explained by elementary interaction 

diagram presented in Figure 1A. The course from R and L to RL often involve 

multiple sequential elementary steps. These steps are bringing proteins to close 

proximity state, removal of interfacial water, bond breakage and conformational 

optimization of binding sites to form a complex, formation of the interaction bonds 

between the receptor and the ligand chains and formation of a new hydration shell 

around the complex. These steps appear on different time and length scales. If 

proteins are very flexible, multiple conformational optimization, bond formation and 

hydration / dehydration cycles are required to form the functional complex. This type 

of complex formation is also called “induced fit” interaction. During the course of 

sequential elementary interactions the local free energy minimums with a depth 

greater than the RT can be formed. Protein complexes in these local energy wells 

are called interaction intermediates and these states can be detected with modern 

ultrafast spectroscopic detection techniques. The interaction diagram for two proteins 

(Figure 1B) is a complex curve with multiple transition states (RL‡, RL‡‡ and RL‡‡‡) 

and reaction intermediates (RL*and RL**). The energy barrier receptor and ligand 
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have to cross to associate is called activation energy or association free energy 

∆G‡
on. Similarly, the energy barrier for dissociation is called ∆G‡

off. The free energy 

difference between reactants R and L and their complex RL is the interaction free 

energy ∆G0. 
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Figure 1. Interaction diagram for (A) elementary reaction and (B) for receptor-
ligand complex formation. 

4.3. Factors affecting association rate constant 

The association rate constant for protein-protein interactions was intensively 

studied and summarized in numerous books and reviews [3-5]: 

)TRGexp(Zpk gas
ona ∆−⋅⋅=    Eq. 8 

where p is the orientation factor and Z is the collision frequency;  

The collision frequency for neutral spherical and uniformly reactive particles, R 

and L, in solution can be calculated from the Smoluchowski equation: 

r)DD(CC4Z D3
L

D3
R

D3
L

D3
R

D3 += π    Eq. 9 

where CR
3D and CL

3D – the concentrations of the R and the L respectively, DR
3D 

and DL
3D – the diffusion coefficients of the R and the L respectively, r – the encounter 

radius;  

The state of close proximity between the receptor and the ligand during collision 

is called diffusional encounter. Eq.8 shows that not every collision or not every 

diffusional encounter between R and L proteins leads to complex formation. First, 

)RTGexp( on∆−  represent fraction of collision pairs that have the necessary 

activation energy for biological interaction to take place. It should be noted, that only 

the activation energy which is localized in the protein binding site is important for 

association. Second, “p” is a steric or orientation factor, describing the probability that 
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energized collisions would have a geometry suitable for interaction. “p” values are 

difficult to predict and exact solutions can be found only in special cases [6,7].  

The long-range electrostatic interaction between R and L can change the 

association rate constant by increasing or decreasing collision frequency. Due to the 

attractive potential between opositively charged proteins, they will stay in the vicinity 

to each other and will collide several times before full separation. Additionally, charge 

distribution on protein interface affects the orientation at which they collide. This 

optimization of long range electrostatic interactions prior collision, also called 

electrostatic steering, can dramatically increase orientation factor “p” and 

corresponding association rate constant [8-10]. 

The solvent environment can influence the association rate constant and even 

the mechanism of complex formation by changing the force between the interacting 

proteins and hence altering the readiness with which they approach each other. Such 

phenomenon is illustrated by effect of solvent’s dielectric constant on electrostatic 

and Van der Walls forces among interacting proteins. Dissolved salts additionally 

minimize electrostatic and Van der Waals interactions affecting the orientation factor, 

the collision frequency and the activation energy barrier which needs to be 

overcome. Solvent viscosity affects the diffusion coefficients of proteins and hence 

alters the collision frequency “Z” between reacting species with possible effect on the 

association rate constant. Proteins are randomly activated / deactivated by solvent 

molecules during their collision. The translational energy of the solvent molecules 

can be converted to protein’s vibrational energy. Additionally, the energy between 

different vibration modes can be redistributed during collision. In favorable cases, 

these changes are delivered to the binding site, the protein gets activated and ready 

to form a complex. If no interaction partner is available in the vicinity of an activated 

protein, further collisions with solvent molecules will deactivate the protein until the 

next activation.  

4.4. Factors affecting dissociation rate constant 

Similarly to the association kinetics, dissociation kinetics theory also deals with 

the problem of diffusion in the presence of forces. Dissociation can be imagined as 

thermally activated particle escape from the potential well [2,11,12]: 

)RTGexp(Ak offd ∆=      Eq. 10 

where A is the preexponential factor. 
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In case of a receptor-ligand complex, dissociation involves bond breaking, 

dehydration, conformational changes of R and L, new bond and solvent shell 

formation and spatial separation. In high viscosity solvents, spatial separation of the 

reactants can become a rate-limiting step. If proteins will get activated, while being in 

close proximity state, they will reassociate back to the complex. Therefore, the 

observed dissociation rate constant will be lower than predicted from Eq.10.  

5. Comparison of interactions in two and three dimensions 

Interactions in two dimensions can be described using the same basic equations 

(Eq.4, Eq.6, Eq.8 and Eq.10) as used to analyze 3-dimensional interactions. 

However, the limitations introduced by the membrane interface affect the interaction 

rates and equilibrium constants. Therefore, the parameters, such as p, Z or ∆G0 will 

be different for membrane anchored proteins in comparison to the same proteins in 

aqueous solution. 

5.1. Collision frequency in 2D 

The collision frequency for neutral, spherical and uniformly reactive particles, R 

and L distributed on the membrane was calculated and reviewed by several authors 

[3,13-15] to be: 

D2
L

D2
R

D2
L

D2
RD2 CC

)r/bln(
)DD(4

Z
+

=
π

   Eq. 11 

where b is the average distance between R and L and r is the encounter radius. 

CR
2D and CL

2D are the concentrations of the receptor and ligand respectively, DR
2D 

and DL
2D – the diffusion coefficients of receptor and ligand respectively. 

It has been suggested that reactions between ligands and cell surface receptors 

can be speeded up by nonspecific adsorption of the ligand to the surface followed by 

2-dimensional surface diffusion to the receptor, a mechanism called “reduction of 

dimensionality rate enhancement” [16-21]. While this is certainly true for certain 

interactions [18] available data on lateral diffusion rates, membrane-substrate 

affinities and calculations have suggested that the encounter rates of membrane-

linked proteins, compared to cytosol-located proteins are actually very similar [22,23]. 

The reduction of dimensionality rate enhancement is getting significant only when the 

reactants are much diluted and the average distance between them exceeds well 

above the dimensions of an average cell. 
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Eq.11 was derived assuming infinitely large plane and homogeneous protein 

distribution on the membrane. Membrane proteins in vivo are often localized in 

membrane microdomains stabilized by the cytoskeleton, segregated lipids and 

special raft proteins [24-29]. Also because of high protein concentration in the 

membrane, temporal domains with moving boundaries can form. This effect is often 

described as macromolecular crowding [30-35]. Extensive computer simulations 

have shown that the long-distance molecular mobility is reduced when a particle 

diffuses in an environment with various size mobile or immobile obstacles [36,37]. 

Even if the translational diffusion coefficient is reduced, collision frequency within a 

domain can increase, depending on the domain size, in comparison to infinite plane 

situation [38]. 

5.2. The effect of surface exclusion 

Theoretical and experimental studies of the effect of excluded surface indicate 

that when the fraction of membrane surface occupied by membrane receptors 

exceeds a few percent, the equilibrium dissociation constant KD
exc, characterizing the 

interaction between macromolecules, may be markedly different than in the limit of 

high dilution KD
diluted [39]. For a simple bimolecular interaction the correction factor, 

kexc, is defined: 

RL

LR
excdiluted

D

exc
D k

K
K

γ
γγ

==     Eq. 12 

where γR, γL and γRL are the activity coefficients of receptor, ligand and receptor-

ligand complex, respectively.  

At the limit of 50% surface occupancy KD
exc is one order of magnitude higher in 

comparison to KD
diluted. This effect scales up with number of membrane proteins 

involved in complex formation. For tetramer kexc>100 at 50% surface occupancy. 

Effect of excluded surface is present on the membranes as well as for soluble 

proteins (the effect of excluded volume). However, excluded surface conditions are 

readily realized for membrane anchored proteins. A relatively low number of 

receptors on the membrane or membrane microdomain is needed to occupy 

substantial fraction of membrane or membrane domain surface area. This situation is 

very hard to achieve in solution. 
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5.3. Lifetime of the diffusional encounter complex 

The translational diffusion coefficient of membrane-anchored proteins is reduced 

as much as two orders of magnitude compared to soluble proteins because of the 

high membrane viscosity. This means that the lifetime of the diffusional encounter 

complex is also hundred times longer. Extracellular or cytoplasmic parts of the 

transmembrane protein are exposed to aqueous (low viscosity) solution, so vibrations 

and movements of these protein domains are not affected. Flexible proteins will have 

more time to optimize their structure to form a complex; therefore the orientation 

factor “p” will increase. Increased lifetime of the diffusional encounter also means that 

probability of receptor and ligand activation by solvent molecules during collision is 

much higher compare to the situation in solution.  

Cells can fine tune interaction efficiency by varying the viscosity of the 

membrane and corresponding diffusion coefficient of membrane anchored proteins 

by localizing them in different microdomains. Depending on membrane composition 

diffusion coefficients can vary between (1-10)E-8 cm²/s [40]. It decreases with 

increasing fraction of saturated alkyl chain lipids. Membranes in the gel phase are 

essentially immobile with diffusion coefficient in the order of 1E-11 cm²/s. In 

microdomain caveolae [41-43], integral membrane protein caveolin is attached to the 

actin cytoskeleton. This immobilization has many biologically important 

consequences including reduced membrane fluidity and the diffusion coefficient.  

5.4. Orientation 

The presence of the membrane anchors has only a minute effect on vibrational 

modes of the membrane anchored receptor side chains in comparison with soluble 

protein case. The situation is completely different for rotational movement. Soluble 

receptor chains freely rotate and collide with random orientation against each other. 

The membrane introduces a high potential energy barrier for rotation about the 

membrane anchor. This effect, also called hindered or restricted rotation, reduces the 

range of available rotation angles and orients membrane-anchored receptors. In 

contrast to the soluble protein case, the membrane anchored receptor and the ligand 

will not collide randomly oriented to each other, but with the preferred orientation. If 

this preorientation brings their binding sites to the interaction favorable positions, the 

orientation factor “p” will be drastically higher in comparison to the soluble protein 

case. The degree of “p” enhancement depends on residual rotational flexibility [39]. 
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For the very inflexible proteins “p” enhancement due to membrane anchoring can be 

as much as two orders of magnitude compare to the soluble protein case. The 

opposite scenario is also possible. If the binding sites are not positioned in the 

interaction favorable way, membrane anchored proteins will always collide with 

wrong geometrical orientation and complex will not form. In this case “p” will be lower 

than in interaction between soluble proteins. The unfavorable orientation constrains 

of some membrane receptors (epidermal growth factor receptor, insulin receptor) in 

the cell can be eliminated by ligand binding from solution. This is the effective way to 

switch receptors on and off and activate them only when it is required. 

The electrostatic steering, mechanism to enhance association rate constant 

between the soluble proteins, will not be strongly pronounced for interactions on 

membranes. Membrane anchored proteins are already oriented and additional 

orientation due to electrostatic steering should have only minor effect on “p” and 

association rate constant in general. 

5.5. Activation energy and ∆G° 

The effect of dimensionality on the potential energy landscape and the interaction 

diagram has not been systematically addressed. It was suggested, that anchoring the 

receptor and the ligand to the membrane would restrict their rotational and 

translational freedom as well as the diffusional properties, altering the reaction 

thermodynamics and binding kinetics. The ∆H0, which is related to the bond 

formation, is probably the same. But the entropic contribution, ∆S0, related to loss of 

degrees of freedom is clearly higher (less negative) in 2-dimensional case [39]. For 

example, formation of the RL complex between soluble R and L would result in the 

loss of six translational and rotational degrees of freedom in contrast to five for the 

membrane anchored proteins. Therefore, the change in system randomness and 

flexibility will be lower for 2-dimensional interactions. Rigidness of the polypeptide 

chain in solution and on the membrane can also be different, but these effects are 

difficult to quantify.  

Favorable orientation and increased lifetime of the encounter complex can 

drastically increase the collision efficiency and decrease the effective activation 

energy needed for interaction. Together with the movement restrictions imposed by 

presence of the membrane, Gibbs free energy landscape and a corresponding 
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interaction diagram can have different profile comparing soluble and membrane 

anchored proteins.  

5.6. Concluding remarks 

It is very likely, that cells use effects caused by receptor membrane anchoring to 

optimize interactions between membrane proteins. It is apparent that solubilization 

with detergents may disrupt the membrane protein-protein interactions of interest. 

Elimination of preferred orientation, shorter lifetime of the encounter complex and the 

substantial dilution can markedly shift the equilibrium towards dissociation. The 

change in entropy (and corresponding ∆G0) associated with complex formation will 

be different for proteins confined to a membrane than for proteins in solution. From 

what was said above it is clear that the binding affinity between receptor and ligand, 

localized on the membrane, cannot be easily determined by using soluble forms of 

the membrane proteins. 

6. Coupled three and two dimensional interactions 

When the receptors and the ligand are distributed both on the surface of the 

membrane and in the aqueous phase, two alternative mechanisms of bimolecular 

reactions differing in the dimensionality of reaction space are possible. These are the 

3-dimensional ligand binding to the membrane receptor and the 2-dimensional 

interaction between membrane receptors. Although both monovalent and multivalent 

ligands can bind to cell surface receptors, only multivalent ligands have the ability to 

simultaneously bind multiple receptors, that is, to crosslink receptors. The amount of 

crosslinked receptors, in contrast to ligand binding, is recognized to be the basic 

principle for signal transduction through cytokine receptors and growth factors [44-

48]. Crosslinked receptors can be considered a signaling unit. 

6.1. Bivalent ligand induced receptor crosslinking 

The ability of bivalent ligands to aggregate receptors is shown schematically in 

Figure 2. Receptors, which are linked to other receptors, are said to be crosslinked or 

dimerized. The apparent KD of bivalent ligand binding to membrane anchored 

receptors is increased due to multivalent interactions [13,49-55] and this affinity 

increase is modulated by the receptor density on the membrane [49,50,56-63].  
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Figure 2  Ligand induced receptor crosslinking. (A) Homodimeric ternary 
complex: ligand crosslinks two identical membrane anchored receptors. 
(B) Heterodimeric ternary complex: ligand crosslinks different 
membrane anchored receptors.  

6.2. Homodimerization 

Ligand induced receptor crosslinking occurs in two steps. The ligand binds to one 

receptor chain, with the equilibrium dissociation constant K1
3D, to form a binary 

complex RL. In a subsequent step RL recruits a second receptor chain to form the 

ternary complex RLR (Figure 3). The affinity of the second step, which is a 

bimolecular association event constrained to the two dimensions of the membrane, is 

given by dissociation constant K2
2D, which has units of molecules/µm² [64].  

membrane

K1
3D

K2
2D

RRL RLR  

Figure 3 Schematic of two step ligand induced receptor homodimerization 

The two interactions at equilibrium can be described:  

]RL[
]L][R[K D3

1 =  
]RLR[
]R][RL[K D2

2 =  ]RL[]RLR[*2]R[]R[ 0 −−=  Eq. 13 

Where [L] is the 3-dimensional concentration [mol/l] of the ligand and [R], [RL], 

[RLR] and [R]0 are the 2-dimensional concentrations [mol/mm²] of the receptor, the 

receptor-ligand complex, the crosslinked receptors and the total amount of receptor, 

respectively.  

Simulated [RLR], [RL] and [R] populations as a function of ligand concentration 

[L] are presented in Figure 4. Bell-shaped crosslinking curve is a characteristic 
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feature of homo and heterodimeric receptors that are activated by ligand induced 

dimerization. At low concentration of soluble ligand, most of the receptors are not 

occupied and the singly-bound ligand has a lot of free receptors available for 

crosslinking (Figure 4A and B). The amount of receptor crosslinking increases with 

increasing ligand concentration. When the concentration of soluble ligand increases 

even more, free receptor can be either occupied by ligand binding from solution or 

crosslinked by binary receptor-ligand complex. The two receptor chains involved in 

signaling complex are identical, so at very high concentration of the ligand, the 

system is forced to the state in which each receptor molecule is occupied by 

separate molecule of ligand (Figure 4C), such that, at equilibrium, virtually all 

receptor molecules are present in RL complexes. High concentration of the soluble 

ligand has a self-inhibiting effect, because receptor crosslinking, which initiates 

signaling, is prevented and receptor is present in the inactive state of binary complex 

(Figure 4C). There is, therefore, little formation of the ternary complex at either very 

low or very high concentration of ligand in solution. The concentration of the ligand 

that corresponds to the peak or mid point of the bell shaped curve equals K1
3D, the 

affinity of ligand binding to the first receptor chain. Figure 4C shows that initial 

binding of L to R and the self-inhibition, which occurs at very high concentrations of L 

are both governed by K1
3D, so at [L]= K1

3D these effects are equally balanced and the 

concentration of [RLR] is maximal.  

The amount of [RLR] at the peak of the bell shaped curve is another measure of 

how effective ligand induced receptor dimerization is. Equations from [60] predicts 

that the height of the peak is a function of K2
2D and [R]0 but not K1

3D. [R]0 has to be 

high relative to K2
2D to induce majority of the receptors to dimerize. For example, to 

dimerize 80% of the receptor molecules at [L]= K1
3D, [R]0/ K2

2D, must be equal 80.  
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Figure 4 Dependence of the concentration of the RLR complex, expressed as a 
fraction of total receptor, [R]0, on the ligand concentration for a value 
[R]0/K2

2D = 10. (A) Schematic of the dominant receptor states at 
different ligand concentration. (B) The ligand concentration that 
produces maximal level of RLR and therefore defines the peak of the 
bell shaped curve is equivalent to K1

3D, the width at half maximal RLR is 
designated as WHM. (C) The same simulation as shown in (A), but 
showing how each of the forms of the receptor, RLR (black), RL (red) 
and R (green) varies with the ligand concentration.  

The width of the bell-shaped curve at half maximum (WHM) is a measure of the 

ligand concentration range at which at least half maximal amount of crosslinked 

receptors is present. As it was calculated by Perelson and Delisi [60], the magnitude 

of the WHM is governed by the effective affinity of the second step in receptor 

crosslinking, which is the affinity of RL binding to R on the membrane. It is a function 

of [R]0*K2
2D, but not of K1

3D (Figure 5A). A low K2
2D and a high [R]0 both favor a wide 

WHM (Figure 5B). This is because the more thermodynamically stable RLR, the 

lower concentration of RL is required to form it, and the higher concentration of L is 

required to disrupt the RLR complex. The experimental observation of a very broad 

WHM would therefore indicate that the total concentration of receptor on the cell 

membrane, [R]0, is much larger than K2
2D. 
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Figure 5 Influence of K1
3D and K2

2D on the shape of the RLR crosslinking curves. 
(A) For fixed values of K2

2D and [R]0 ([R]0=10*K2
2D), increasing or 

decreasing K1
3D by a factor of 10 causes the mid point to shift to 

correspondingly higher or lower ligand concentrations. The width and 
the amplitude of the curve are unaffected. (B) For a fixed value of K1

3D 
and [R]0, decreasing K2

2D by increments of 10 over the range of values 
[R]0/K2

2D = 1 (black); 10 (red); 100 (green) increases the width and 
amplitude of the RLR curve without altering the mid point. (An identical 
result would be obtained if [R]0 were increased at constant K2

2D.)  

Only very few studies analyzed bivalent fluorescent ligand binding titration curves 

with above discussed two-step interaction model (Figure 3) [21,65-68]. The major 

difficulty associated with this type of data analysis is the requirement to parameterize 

the surface density of unoccupied receptors. In these studies, the density was 

calculated by using fluorescent standard or correlating the fluorescence signal with 

radioimmunoassay. 

6.3. Heterodimerization 

The same line of arguing is valid in the case when the ligand crosslinks different 

receptors, R1 and R2. Receptor crosslinking can be imagined as a two step process: 

3-dimensional ligand binding to R1 or R2 from solution and 2-dimensional 

crosslinking as depicted in Figure 6.  
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Figure 6 Schematic of two step ligand induced receptor heterodimerization. 

The equilibrium dissociation constants of this system are defined as: 

]L2R[
]L][2R[K D3

1 =  
]1LR2R[
]1R][L2R[K D2

2 =  
]1LR2R[
]2R][L1R[K D2

3 =  
]L1R[
]L][1R[K D3

4 =   

]L2R[]T[]2R[]2R[ 0 −−=  ]L1R[]T[]1R[]1R[ 0 −−=  Eq. 14 

Where [L] is the 3-dimensional concentration [mol/l] of the ligand and [R1], [R2], 

[R1L], [R2L], [R2LR1], [R2]0 and [R1]0 are the 2-dimensional concentrations 

[mol/mm²] of the receptors, the receptor-ligand complexes, the crosslinked receptors 

and the total amount of the receptors, respectively.  

Let us assume, without simplifying the system, that the ligand affinity towards R2 

is hundred times higher than for R1, i.e. K1
3D=0.01 K4

3D. Simulated [R2LR1], [R2L], 

[R1L], [R2] and [R1] populations as a function of the ligand concentration [L] at 

stoichiometric concentrations of [R1]0 and [R2]0 are presented in Figure 7. Similarly 

to the situation, where ligand crosslinks identical receptors, the receptor crosslinking 

curve for non-identical receptors is also bell-shaped. At low ligand concentration, 

bound ligand can crosslink many unoccupied receptors and preferably will be present 

in R2LR1 state. When the ligand concentration continues to increase unoccupied 

receptor R2 or R1 can bind ligand L from solution or they can be crosslinked by 

singly bound receptor-ligand complex R2L and R1L. As [L] continues to increase, 3-

dimensional binding will more and more dominate over 2-dimensional crosslinking, 

and finally only monovalently bound R2L and R1L complexes will be present. As can 

be seen from the Figure 7B and proven mathematically [69], peak of ligand induced 

R2 and R1 crosslinking appears at ligand concentration sqrt(K1
3D*K4

3D). Initial binding 

of L to the membrane is governed by the high affinity interaction with R2 (K1
3D) self-

inhibition of receptor crosslinking is governed by low affinity interaction K4
3D between 

L and R1. So at [L]= sqrt(K1
3D*K4

3D) these effects are balanced and the concentration 

of RLR is maximal. 
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Figure 7 Dependence of the concentration of the R2LR1 complex, expressed as 
a fraction of the maximum theoretical value, on the ligand concentration 
for a value [R1]0=[R2]0= 10*K2

2D and K1
3D=0.01 K4

3D. (A) Schematic of 
the dominant receptor states at different ligand concentration. (B) The 
ligand concentration that produces maximal level of RLR and therefore 
defines the peak of the bell shaped curve is equivalent to square root of 
(K1

3D*K4
3D), the width at half maximal R2LR1 is designated as WHM. 

(C) The same simulation as shown in (A), but showing how each of the 
forms of the receptor, R2LR1 (black), R1L (red), R2L (green), R1 (blue) 
and R2 (cyan) varies with the ligand concentration. 

Homo- and heterodimerization curves share similar features. For example, at 

fixed K2
2D, K3

2D and [R2]0=[R1]0 increasing or decreasing K1
3D and K4

3D by the same 

factor shifts the mid point of the crosslinking curve without altering the amplitude and 

width at half maximum (Figure 8A). Similarly, at fixed K1
3D, K4

3D and [R2]0=[R1]0, 

decrease of K2
2D increases the amplitude and WHM of the crosslinking curve without 

altering the mid point (Figure 8B) 
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Figure 8 Influence of equilibrium dissociation constants on the shape of the 
R2LR1 crosslinking curves. (A) For the fixed values of K2

2D, K3
2D and 

[R2]0=[R1]0=10*K2
2D, increasing or decreasing K1

3D and K4
3D by a factor 

of 10 causes the mid point to shift to correspondingly higher or lower 
ligand concentrations. The width and the amplitude of the curve are 
unaffected. (B) For fixed values of K1

3D, K4
3D and [R2]0=[R1]0, 

decreasing K2
2D by increments of 10 over the range of values [R1]0/ 

K2
2D = 1 (black); 10 (red); 100 (green) increases the width and 

amplitude of the crosslinking curve without altering the mid point.  

However, there are a few important differences between ligand induced homo- 

and heterodimerization. At fixed 2-dimensional equilibrium dissociation constants and 

receptor surface densities, the rise of the bell shaped curve is dominated by the 

affinity towards the high affinity receptor R2. The second part, crosslinking self-

inhibition, is dominated by affinity towards low affinity receptor R1. Therefore, WHM 

can be effectively varied by decreasing K1
3D and increasing K4

3D (Figure 9A). The 

broader the WHM, the lower the maximum response sensitivity to ligand 

concentration. The position of the mid point is not affected and the amplitude is only 

slightly higher for different combinations of K1
3D and K4

3D (Figure 9A).  

Another important difference between homo- and heterodimerization is that the 

fraction of crosslinked receptors can be maximized by increasing the 2-dimensional 

concentration of only one of the subunits (Figure 9B). For example, an excess of R1 

in comparison to R2 shifts the K2
2D equilibrium towards ternary complex. Additionally, 

self-inhibition at high ligand concentrations will be buffered by excess R1 and higher 

[L] will be required to compete 2-dimensional interaction between receptors by 3-

dimensional ligand binding from solution (Figure 9B).  
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Figure 9 Influence of equilibrium dissociation constants on the shape of the 
R2LR1 titration curves. (A) For fixed value of K2

2D, K3
2D and 

[R2]0=[R1]0=10*K2
2D, decreasing K1

3D and increasing K4
3D by a factor of 

10 or 100 increases WHM of the crosslinking curve without altering the 
mid point. The amplitude is almost unaffected. (B) For fixed values of 
K1

3D, K4
3D and [R2]0=K2

2D, increasing [R1]0 by increments of 10 over the 
range of values [R1]0/K2

2D = 1 (black); 10 (red); 100 (green) increases 
the WHM and amplitude of the crosslinking curve without altering the 
mid point. An identical result would be obtained if [R2]0 was increased 
at constant [R1]0. 

6.4. Concluding remarks 

The dependency of the ligand-induced receptor crosslinking on logarithm of 

ligand concentration is a bell shaped curve. The position of the mid point is effectively 

varied by 3-dimensional equilibrium dissociation constants. The amplitude and width 

at half maximum are mainly governed by 2-dimensional interactions. Significant 

amounts of ternary complexes are achieved only if receptor density on the 

membrane is much higher than 2-dimensional equilibrium dissociation constant. This 

situation is readily realized in case of membrane anchored proteins. The relatively 

low number of receptors on the membrane or membrane microdomain is needed to 

reach situation, where average distance between receptors gets comparable with 

their dimensions. This situation is very hard to achieve in solution.  

Ternary complex between different receptors gives additional flexibility to the 

system and provides possibility to manipulate the shape of the crosslinking curve. If 

ligand affinity towards R2 and R1 is different by several orders of magnitude, the 

amount of crosslinked receptors in the area of few log units around the mid point will 

be essentially independent on the ligand concentration. This is an attractive feature 
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for pharmaceutical applications. Large excess of one of the receptors has a buffering 

effect, which leads to a increased amplitude and WHM of the crosslinking curve.  

The crosslinking of the cell surface receptors by interaction with cytokines has 

been shown to be an important event in triggering cellular responses. It is very likely 

that cells use above-described crosslinking properties to optimize their 

communication and transmembrane signaling. For example, it can explain how 

differential signaling is realized by different cytokines through shared receptors. High 

affinity ligands will crosslink more receptors and initiate stronger cellular responses in 

comparison to low affinity ones. If different threshold values of receptor crosslinking 

are required to initiate different responses, lower concentrations of high affinity 

ligands will be required to activate them. It should be emphasized that amount of 

receptor crosslinking can not be higher than maximum value determined by receptor 

densities on the membrane and 2-dimensional equilibrium dissociation constants. 

Therefore some low affinity ligands will not be able to initiate responses, which 

require high crosslinking threshold; no matter how much ligand concentration (dose) 

is increased. Additionally, different densities of receptors in the membrane can 

explain why different cells or cells at different stage of differentiation respond 

differently to the same cytokine. For a given ligand concentration, the amount of 

receptor crosslinking will depend on the 2-dimensional density of receptors on the 

membrane. Different cells can have different receptor densities and will start different 

responses or same responses with different signaling intensity.  

Thus, it is essential to measure 2-dimensional interaction rate and equilibrium 

dissociation constants in order to understand receptor crosslinking and differential 

signaling. Experimental observation of membrane receptors in vitro and in vivo, 

differentiation between free and crosslinked state is of primary importance in the field 

of cellular signaling.  

7. Experimental techniques to study interactions on membranes 

In recent years, the combined advances in fluorescence labeling, imaging 

methods and technical equipment provided the possibility for detecting and analyzing 

protein-protein interactions on membranes in real time with high sensitivity and high 

temporal as well as spatial resolution. Cost-effective computing resources have 

become available to handle large amounts of data, and powerful software packages 

are easily obtainable for analyzing digital information. Therefore, biomolecular 
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interactions and translocations on membranes now can be routinely observed in 

living cells or on model membranes.  

7.1. Diffusion and mobility techniques 

Fluorescence recovery after photobleaching (FRAP) [40,70-77], fluorescence 

correlation spectroscopy (FCS) [29,40,77-90] and single particle tracking (SPT) [91-

97], belongs to the family of methods that yield rates of diffusion and active transport 

from measurements of spontaneous thermally driven microscopic fluctuations in the 

positions of molecules or their local densities. The diffusion coefficient (D) of the 

freely diffusing membrane protein is dominated by the high viscosity of the 

membrane and the radius of the transmembrane segment. The aqueous portion 

usually does not significantly contribute to the D value [98]. Protein–protein 

interactions or binding to a scaffold may slow down or immobilize a protein, and 

collisions with other membrane-anchored receptors hinder free diffusion. Commonly, 

above-mentioned techniques allow to determine whether protein mobility is rapid or 

slow, whether binding interactions are present, whether an immobile fraction exists, 

or how a particular treatment (such as ligand binding or a mutation in the protein of 

interest) affect these properties. Proper interpretation of the data also yields 

information about binding interactions of fluorescently tagged molecules, including 

the number of binding states and the binding strength of each state. 

 

Figure 10 Mechanisms that reduce the mobility of membrane proteins. (a) An 
unrestricted membrane protein freely diffuses in the lipid bilayer of the 
membrane. (b) Membrane proteins bound to an immobile matrix (e.g. 
cytoskeleton) become immobilized. (c) Large multimeric protein 
complexes diffuse at significantly reduced rates within the bilayer 
compared with monomeric proteins with small transmembrane radii. (d) 
Corralling of a membrane protein by aggregated or matrix bound 
membrane proteins effectively reduces the long distance mobility of the 
protein. (taken from [40]) 
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However, it is rather challenging and imprecise to determine interaction rate 

constants and equilibrium constants based on diffusion coefficients of membrane 

proteins. First, the unknown geometry of the membrane leads to a uncertainty in 

protein mobility by a factor of two or more. Second, the diffusion of membranes is 

often anomalous and measurement usually does not permit to distinguish between 

subdiffusion (Figure 10d) and a mixture of fast moving monomers and/or slow 

moving complexes (i.e. multiple populations having different diffusion coefficients) 

(Figure 10a and c).  

7.2. Direct interaction detection using spectroscopic probes 

Interaction between membrane proteins can be sensed more reliably by labeling 

both proteins with the spectroscopic probes or fluorescent proteins. Interactions can 

be detected using various experimental approaches. (i) During the course of the 

interaction both fluorescent labels are colocalized in the same membrane area and 

can be detected by standard fluorescence microscopy. However, colocalization does 

not necessarily mean interaction. (ii) Dual-colour cross-correlation analysis 

[78,81,89,99], a conceptual modification of FCS using two spectrally separable 

fluorescent labels, yields a considerable improvement in signal specificity for 

heterogeneous systems where molecular interactions of different species are to be 

observed. In principle, any molecular association and dissociation can be studied by 

simultaneous detection of two spectrally separated fluorophores, following the 

amplitude of the cross-correlation function in real time during the reaction. (iii) 

Fluorescence resonance energy transfer (FRET) [80,100-102] is one of the most 

elegant methods to quantify protein-protein interactions by measuring the rate of non-

radiative transfer from the excited state of a fluorophore attached to one protein 

(donor) to another fluorophore attached to a binding partner (acceptor). The rate of 

energy transfer strongly depends on the distance between the donor and acceptor 

probes and their relative orientation. The FRET efficiency is usually determined by 

measuring the quantum yield or the fluorescence lifetime of the donor probe in the 

absence and presence of the acceptor probe, respectively. FRET proved particularly 

suitable for detecting dimerization and complex formation events in signaling 

networks [103-109]. FRET techniques usually provide qualitative information about 

dimerization events. Experimental limitations such as relatively high background of 

cellular autofluorescence, direct excitation of the acceptor, sensitivity to 
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photobleaching frequently biases the interaction experiments and require extensive 

correction factors [110-112]. 

8. Problem of quantitative detection 

The interaction between receptor chains on the cell surface is constrained to the 

2-dimensions of the membrane and thus the DK  has a dimension [molecules/µm²] or 

[mol/µm²]. Parameterization of receptor concentration on the membrane is a 

necessary requirement for quantitative studies. Different mathematical ways were 

suggested how to relate 2-dimensional interaction rate constants with readily 

measurable 3-dimensional rate constants. These are: (i) Introducing dimensionless 

rate constants [19] and corresponding equilibrium dissociation constants [113]; (ii) 

introducing 3D to 2D conversion coefficient [13,23,58,59]; (iii) use of interaction rate 

constant dimension [s-1] for 2-dimensional association rate constant [62,114] or 3-

dimensional units like [M-1] for species placed in vesicles or cells, which are 

dispersed in aqueous solution [115]. Therefore, theoretical results concerning 

interactions in 2-dimensions were hardly confirmed experimentally. The complexity of 

in vivo systems usually does not allow drawing solid conclusions about determinants 

of protein-protein interactions on membranes. The requirement to parameterize 2-

dimensional concentrations of interacting proteins as well as their complex was a big 

obstacle to determine 2-dimensional equilibrium dissociation constants (Eq.4). 

Fluorescent standards and correlation with radioimmunoassay are not readily 

available and does not offer real time monitoring.  

Quantitative understanding of how membrane proteins function requires that the 

interactions of their components are monitored as they occur. Perturbations of the 

environment in which they operate, either before, during or after their assembly, may 

also give mechanistic insight. The possibility not only to monitor, but also to change 

2-dimensional concentrations of receptors during the course of the experiment would 

be a powerful approach to dissect interactions on membranes. A systematic study of 

protein-protein interactions in well defined in vitro lipid bilayer would provide a firmer 

basis for the interpretation of experimental results in cells. Solid phase detection 

techniques, measuring time-resolved kinetics on a surface or in a layer, allow 

questions of size, valency, orientation and receptor density to be experimentally 

addressed. 
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9. Objectives 

Protein-protein interactions on and within biological membranes play crucial roles 

in variety of cellular processes, and in particular in signal transduction. Despite 

advances in experimental techniques little has been done to quantitatively asses 

determinants of protein-protein interactions in two dimensions. The objective of this 

work was to establish detection techniques for studying ligand induced receptor 

assembling on a mechanistic and quantitative level in vitro. Based on this approach, 

the role of dimensionality and receptor orientation on interferon (IFN) induced 

interferon receptor (ifnar) crosslinking was quantitatively addressed. This study can 

be divided into following steps: 

● Establishing an optical solid phase detection approach to quantitatively study 

lateral interactions on model lipid membranes in vitro. 

● Applying this detection technique to study type I interferon (IFN) induced 

heterodimerization of the interferon receptor (ifnar) extracellular domains.  

● Development of the mechanistic model for IFN induced ifnar assembling and 

determination of the 2-dimensional interaction rate and equilibrium dissociation 

constants involved in complex assembling.  

● Exploring the influence of ifnar orientation on the 2-dimensional interaction rate 

and equilibrium dissociation constants. 
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10. Biological model system 

10.1. Ifnar and differential signaling 

Type I interferons (IFNs), first discovered by Isaacs [116,117], are a family of 

cytokines which act early in the innate immune response. IFNs initiate different signal 

transduction pathways leading to a pleiotropic response with antiviral, antiproliferative 

and immunmodulatory effects [118-129].  

 

Figure 11 Schematic of type I interferon signaling. Binding of IFN crosslinks its 
common receptor chains, ifnar2 and ifnar1, and induces trans-
phosphorylation of cytoplasmic domains, JAK kinases and associated 
STAT transcription factors. This leads to the activation of several signal 
transduction pathways.  

The type I IFN receptor (ifnar) consists of 2 subunits: the high affinity subunit 

ifnar2 and the low affinity subunit ifnar1 (Figure 11). Ligand binding induces the 

assembling of the active receptor complex, which leads to the phosphorylation of 

tyrosine residues located in the intracellular domain of each receptor chain. These 

tyrosine phosphorylation events are carried out by Janus kinases (JAKs), JAK1 and 

TYK2, which are themselves activated by tyrosine phosphorylation. The subsequent 

substrates of the JAK1 and TYK2 are the signal transducer and activator of 
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transcription (STAT) proteins that are recruited and phosphorylated at the 

phosphotyrosines located at the cytoplasmic tail of receptor. Modified STATs are 

released from the cytoplasmic region of the receptor subunits to form homo- or 

heterodimers. Dimerized STATs are rapidly translocated to the cell nucleus and 

interact with specific regulatory elements to induce target gene transcription. The 

interferon-induced heterodimerization of ifnar2 and ifnar1 appears to have two 

purposes: to bring the JAKs into proximity and allow transphosphorylation, and to 

form a scaffold for the binding of STAT proteins. 

10.2. Differential signaling 

There are more than 10 different type I interferons [121] and all of them initiate 

different activity patterns by recruiting the same pair of receptor subunits. Different 

cell lines or cells at different stages of differentiation respond differently to the same 

interferon. Type I interferons do not enter the cell, so ifnar receptor crosslinking is 

essential in determining which signal transduction pathway will be initiated [13,130-

132]. Initially it was suggested that different interferons form structurally different 

complexes with its shared receptor. The ifnar subunits crosslinked with different 

interferons bring cytoplasmic domains to different degree of proximity and orientation 

against each other. This results in different tyrosine phosphorylation pattern and 

different times will be required to phosphorylate them. Finally, different STATs will be 

recruited and different cellular responses initiated. Additionally, signaling complexes 

with different stoichiometry of ligand and receptor subunits have been suggested to 

be responsible for differential signaling. Also it was found that in some cases after 

receptor crosslinking large signaling complexes are formed on the intracellular side 

with scaffold, signaling, docking and effector proteins. Different combinations of these 

proteins were proposed to initiate different signals. Each cell can have a different set 

and different concentration of these proteins, which would define signaling specificity 

[131,133-136] and explain why different cell lines respond differently to the same 

interferon. However, the crystal structures of different interferons appeared to be very 

similar and the main difference between them were different affinities and interaction 

rate constants towards receptor subunits. Therefore, kinetics and equilibrium 

properties of crosslinking dynamics on membranes were suggested to be responsible 

for differential signaling. Signaling intensity is proportional to the amount of 

phosphorylated STATs and probably different threshold concentrations are required 

to initiate different responses. The amount of phosphorylated STATs depends on the 
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amount of crosslinked receptor. As it was presented in chapter 5.3, it depends on 

ligand concentration in solution, concentrations of the receptor subunits on the 

membrane and corresponding 3- and 2-dimensional equilibrium dissociation 

constants. Having receptors in different compartments with different densities could 

help to code the response to ligand concentration. Membrane compartments with 

high and low receptor density will have different amounts of crosslinked receptors at 

the same ligand concentration [137-139]. The kinetics of receptor assembling and the 

lifetime of the ternary complex explain differential signaling in terms of kinetic 

proofreading [140-144]. The cytoplasmic receptor domains must undergo a series of 

modifications before generating a productive signal. If a ligand dissociates before 

these modifications are completed, the generation of a productive signal is 

prevented. When many steps are involved, then slowly dissociating ligands will 

generate stronger cellular responses than rapidly dissociating ones. In case of fewer 

modification steps ligands with different kinetic properties may trigger similar 

responses or even responses in which the expected sensitivity to ligand-receptor 

binding kinetics is reversed. In conclusion, the 2-dimensional interactions between 

ifnar subunits can be largely responsible for defining specificity of differential 

signaling. Therefore, investigation of IFN induced ifnar crosslinking is important not 

only from fundamental understanding of 2-dimensional interactions point of view, but 

it is also a prerequisite for systematic manipulation of receptor mediated responses in 

therapeutical applications. 

10.3. Model in vitro system 

Several striking features make the IFN-ifnar interaction a particularly suitable 

model system for studying 2-dimensional interactions: First, the receptor subunits 

interact independently from each other with the ligand, and do not interact in the 

absence of the ligand as proposed for other cytokine receptors. Second, only a 

heterodimeric ternary complex was detectable, involving ifnar2, ifnar1 and IFN in a 

1:1:1 stoichiometry. Thus, the receptor heterodimerization is triggered by a ligand 

binding from solution and 2-dimensional interactions can be probed by the 

dissociation kinetics of the ligand away from the membrane.  

There is no interaction between ifnar intracellular and extracellular domains. One 

transmembrane helix allows reducing overall complexity to only the extracellular 
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domains (Figure 12). A decahistidine-tag was fused to the C-terminus instead of the 

transmembrane helix for tethering the proteins to the membrane (see chapter 11).  

 

 

Figure 12 Model in vitro system to study IFN induced ifnar assembling.  

11. Solid phase detection 

2-dimensional concentrations of the biomolecules on surfaces are quantitatively 

detected in a straightforward manner by solid phase label-free detection techniques. 

These techniques sense changes in optical or acoustic properties at the interface 

layer above the surface induced by molecules binding to or dissociating from the 

surface, and are particularly suitable to study interactions between soluble and 

membrane-anchored proteins. 

Solid phase detection of molecular interactions offers a substantial advantage 

over investigations in bulk solution. If a receptor is immobilised on the sensor 

surface, the subsequent binding of the ligand is detected by a change of the optical 

or acoustic properties of the sensor surface, without an additional separation step. 

From the practical point of view, additional important advantages come into play. 

These techniques can be combined with modern fluid handling devices, thus not only 

equilibrium signals, but also interaction kinetics can be measured and quantitatively 

analyzed. Measurements require minimal sample volumes and receptor quantities 

and furthermore can be fully automated resulting in a substantial increase of 

sensitivity and reproducibility of signal detection. 

Different physical phenomenons are employed to detect molecular binding to the 

surface, which will be discussed in more detail in the following chapters.  
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11.1. Quartz crystal microbalance with dissipation monitoring 

The quartz crystal microbalance with dissipation monitoring (QCM-D) [145,146] 

measures mass and viscosity changes in processes occurring at or near surfaces, or 

within thin films. The instrument measures the resonance frequency and energy 

dissipation of a piezoelectric quartz crystal. The resonance frequency changes 

linearly with the amount of biomolecules deposited on the crystal surface. The energy 

dissipation at the resonance frequency changes with the viscosity / elasticity of the 

material in contact with the crystal surface. Adsorbed biomolecular film may consist 

of a considerably high amount of water, which is sensed as an additional mass. By 

measuring the dissipation it becomes possible to judge if the adsorbed film is rigid or 

water rich (soft) which is not possible by detecting at the frequency response alone. 

The amount of water may be very different depending on the kind of molecule and 

the type of surface studied.  

QCM-D is one of the few solid phase detection techniques, where kinetics of 

protein adsorption and subsequent structural rearrangements can be directly 

measured and analyzed simultaneously in real time [147]. However, the resonance 

frequency and the energy dissipation are not independent parameters. The 

resonance frequency is dependent on the buffer viscosity and conformational 

changes change not only the dissipation but also the resonant frequency. 

Commercial QCM-D devices have lower detection limit of 50 pg/mm² and can detect 

submonolayer surface coverage by small molecules or protein films. At the upper 

end, they are capable of detecting whole cells bound to the surface [148] or 

biomolecular layers with thicknesses up to 10µm. 

11.2. Optical reflectometric techniques  

Optical techniques are relatively simple, non-destructive and non-invasive, do not 

require vacuum and can be applied in any transparent media and are the natural 

choice to study real time protein-protein interactions in vitro and in vivo. Optical label-

free detection is based on the fact that biomolecules have different refractive index 

than aqueous solution. Proteins, bound to the surface, replace the buffer and change 

effective refractive index of the solid-liquid interface. This refractive index change is 

the main parameter which is used to sense biological interactions by variety of optical 

detection schemes. Additionally, the thickness of the biomolecular layer and the 
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absorption of adsorbed molecules can be used as readout to monitor biomolecular 

interactions in real time. 

11.2.1. Ellipsometry 

Historically ellipsometry was the first method introduced to quantitatively 

investigate thin layers of adsorbed biomolecules at solid-liquid interfaces. 

Ellipsometry is a technique that can be used to measure the thickness and refractive 

index of the thin transparent or semi-transparent films [149]. The technique utilizes 

the polarization change of light upon reflection from a surface (Figure 13). The 

polarization change is defined by the ratio of the total reflectance coefficients, Rp and 

Rs, for light polarized parallel (p) and perpendicular (s) to the plane of incidence, 

respectively.  

 

Figure 13 Principle of ellipsometry. Properties of biomolecular film are calculated 
by measuring polarization changes before and after reflection from the 
surface.  

This ratio can also be expressed in terms of ellipsometric angles Ψ and ∆. 

)exp(tan ∆⋅Ψ= i
R
R

s

p     Eq. 15 

In short, ∆ is the difference in phase shift between p-wave and s-wave of the light 

before reflection from the surface minus the difference in the phased shift after 

reflection from the surface. TanΨ is the corresponding amplitude ratio of Rp and Rs. 

Ellipsometry is not a direct technique. Thickness and refractive indexes are 

calculated from measured ellipsometric angles Ψ and ∆ using optical models. The 

final result depends on the model used for data evaluation.  

The surface mass density, Γ, for an adsorbed protein layer can be calculated 

from the thickness and refractive index using de Feijtert’s formula [150]: 
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=Γ      Eq. 16 

where d is the thickness of the layer, n1 is the refractive index of the adsorbed 

layer, n2 is the refractive index of the solution and dn/dc is the refractive index 

increment of the solute. For proteins, dn/dc is 0.18 cm³g-1 and for lipid layers 

0.16 cm³g-1 [151].  

The traditional technique used in real-time ellipsometric studies is null 

ellipsometry presented in Figure 14. Positions of the polarizer, compensator and 

analyzer (another polarizer) are adjusted to get minimum (null) signal to the detector 

and these values are used to calculate the ellipsometric angles [149] and the 

corresponding thickness of the biomolecular layer.  

 

Figure 14 Schematic of a nulling ellipsometer. The optical components are 
adjusted to minimize (null) the signal reaching the detector. 

In more advanced studies such parameters as tilt angle of molecules in a 

monolayer, density of a protein layer, mass distribution (density gradient) over a 

protein layer, lateral mass distribution (surface clustering) can be determined. Such 

studies require state of the art spectroscopic and imaging ellipsometers [152,153] as 

well as advanced optical modeling.  

11.2.2. Interferometry 

Reflectance interferometry (RIf) measures the intensity of the reflected light, 

which is modulated by the thin layer interference (Figure 15A) [154-158]. 

For perpendicular incidence and a single non-absorbing layer the reflected 

intensity I is equal: 

)/nd4cos(II2III 2121 λπ++=    Eq. 17 
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where I1 and I2 are the reflected intensities from the bottom and top interfaces of 

the thin film, d is the physical thickness of the film, n is the refractive index and λ is 

the wavelength of the incident light.  
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Figure 15 (A) Principle of the detection of affinity interactions by reflectance 
interferometry. n and d are the refractive index and the average 
physical thickness of the layer, respectively, I1 and I2 are the intensities 
of the light beams, reflected at the interfaces of the layer. (B) Spectral 
reflectance pattern due to constructive and destructive interference of 
the reflected radiation (green). Upon ligand binding, interference pattern 
shifts to the longer wavelengths (blue). The interaction is detected by 
monitoring the position of the extremum (horizontal arrow) of the 
interference pattern or by change in intensity at a given wavelength 
(vertical arrows).  

A typical spectral interference pattern showing the modulation of intensity with 

cos(1/λ) is presented in Figure 15B. During the protein deposition on the surface, the 

optical thickness (n*d) of the interference layer increases and interference pattern 

shifts to longer wavelengths (Figure 15B). This shift can be detected by measuring 

the position of the interference pattern maximum or by change in intensity at given 

wavelength. 

Interferometric detection can be readily realized with standard light sources, 

detectors and fiber optic components (Figure 16A). White light from a tungsten 

halogen lamp is delivered to the surface via a bifurcated optical fiber. The intensity of 

the reflected light is detected by a spectral or non-spectral detector. Flow through 

conditions allows real time detection of binding kinetics. Spectral shifts or intensity 

changes, monitored in real time, are converted into a binding curve (Figure 16B). 
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Figure 16 (A) Schematic of reflectance interferometric detection. (B) Typical 
example of the binding curve.  

11.3. Evanescent field techniques 

When light reaches the interface between two mediums, it is reflected and 

refracted. The incidence and refraction angles are related by Snell’s law: 

2211 sinnsinn θθ =     Eq. 18 

If the refractive index of the first medium is higher than for the second, n1>n2, 

then θ1<θ2. The incidence angle when θ2=90° is called the critical angle θc.  

)n/n(sin 12
1

c
−=θ     Eq. 19 

If the angle of incidence is higher than θc, then the light is totally internally 

reflected and does not propagate into the second medium. Even so, some of the light 

still penetrates the medium of lower diffractive index as an electromagnetic field 

called the “evanescent wave” [159,160]. A key characteristic of the evanescent wave 

is that it propagates parallel to the interface, vanishing exponentially with distance. 

The decay length (dp) of the evanescent wave along the depth of field depends on 

the incident angle (θ), the wavelength of the excitation beam (λ) and the diffractive 

indices of both media: 
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It should be emphasized that when the incident light is s-(perpendicular) polarized 

the evanescent field is purely transverse to the direction of propagation. In the p-

(parallel) polarization case, the evanescent field has two non-zero components with a 
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phase difference equal to π/2. Therefore the extremity of the field vector will describe 

ellipse as time evolves. 

An evanescent field can be generated also by diffraction from a sub wavelength 

size aperture or a grating. The smaller the diameter of the aperture, the large the 

bending of the diffracted beam. When the width of a slot is equal to λ/2, the emerging 

beam fills the entire half space (Figure 17). If the aperture size is reduced below this 

value evanescent waves will be generated at the interface and their intensity will 

decay exponentially with the distance from the interface. 

A B C D

 

Figure 17 The systems generating an evanescent field. (A) total internal reflection 
of a light beam; (B) diffraction of a beam from an aperture; (C) 
diffraction from the grating; (D) evanescent field of a guided mode. 
(Adapted from [160]) 

The phenomenon of TIR, it be generated by a prism or by a waveguide, is highly 

sensitive to all parameters involved, namely to the wavelength, refractive indices of 

the media, surface roughness, etc. This sensitivity has given rise to the production of 

several different types of sensors, especially in the field of optics and 

nanobiotechnology. The exploitation of evanescent properties of light has led to 

impressive progress in such areas as fibre optics, near-field microscopy and 

biomolecular interaction analysis.  

11.3.1. Evanescent field interferometric techniques 

The evanescent wave velocity is sensitive to the refractive indices of both 

materials at the interface. This effect was used to construct interferometric sensors. 

The basic principle of fiber optic Mach-Zehnder type interferometer is depicted in 

Figure 18. A linear waveguide (I) is divided into two arms at a Y junction (II), where 

light is distributed equally between the waveguides (III) and (IV). Branch (III) presents 

locally a depression where the waveguide is in contact with the buffer. Upon protein 

binding to the waveguide, the refractive index at the waveguide-buffer interface will 

change and will be different from the one in branch 2 (IV). For the same geometrical 

distance travelled inside the waveguide, the optical path in each branch will be 
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different. After the second Y junction (V), the two modes recombine. Depending on 

the phase difference they will produce constructive or destructive interference, which 

is used as the readout for binding or dissociation events from the waveguide surface. 

 

Figure 18 Evanescent field Mach-Zehnder interferometer. (taken from [160]) 

11.3.2. Resonant mirror. 

Resonant mirror is a optical biosensor design [161,162], which uses the 

evanescent wave associated with a dielectric resonant structure to probe binding 

events occurring in a sensing layer, deposited within few hundred nanometers of the 

device surface (Figure 19). The evanescent field, generated upon light reflection from 

the prism is perturbed by a high refractive index waveguide layer. Light may couple 

to the resonant layer via the evanescent field. Efficient coupling occurs only for 

certain incident angles, where phase matching between in incident beam and the 

resonant modes of the high index layer is achieved. At the resonant point, light 

couples into the high refractive index layer and propagate some distance along the 

sensing interface before coupling back to the prism. The resonant angles are 

different for p and s polarisations. Therefore interference between them is used for 

readout. Binding of the protein to the sensing layer increases the angle of incidence, 

at which resonance coupling occurs.  
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Figure 19 Structure of the resonant mirror biosensor (taken from [160]) 

11.3.3. Internal reflection spectroscopy 

Another application of great importance concerns the possibility of producing 

spectroscopic measurements by total internal reflection. Evanescent light, like 

propagating light, can be absorbed, depending on the material deposited at the 

interface where it arises. This property is used to obtain absorption spectrums of the 

deposited materials. Sensitivity can be enhanced by using multiple internal 

reflections in optical fibers, waveguides or other optical elements and by means of 

Fourier transforms. Binding of the proteins to the interface can be followed as an 

increase in the absorption at a specific wavelength in the infrared. This combination 

is also widely used to detect conformational state and conformational changes of the 

proteins adsorbed to the interface or to biological membrane.  

11.3.4. Surface plasmon resonance-based detection 

When there is a thin gold (or other noble metal) layer at the interface between two 

dielectric materials then the evanescent field interacts with free electrons and a 

charge density wave, also called surface plasmon is generated. Under resonance 

conditions, the energy from the evanescent light is efficiently transferred to these 

charge oscillations, which cause drastic reduction in the intensity of the reflected 

light. The resonance angle, at which the intensity minimum occurs, is a function of 

the refractive index of the solution close to the gold layer (Figure 20). 

As biomolecules are immobilized on a sensor surface, the refractive index at the 

interface between the gold surface and a solution flowing over the surface changes, 
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altering the angle, at which reduced intensity light is reflected from a supporting glass 

plane. The change in the resonance angle, caused by binding or dissociation of 

molecules from the sensor surface, is proportional to the mass of bound material. 

Surface plasmon resonance detection is the most sensitive and most popular 

commercially available label free solid phase detection technique today. 

 

Figure 20 Surface plasmon resonance (SPR) detects changes in the refractive 
index in the immediate vicinity of the surface layer of a sensor chip. 
SPR is observed as a sharp decrease in the reflected light from the 
surface at an angle that is dependent on the mass of material at the 
surface. The SPR angle shifts (from I to II in the lower left-hand 
diagram) when biomolecules bind to the surface and change the mass 
of the surface layer. This change in resonant angle can be monitored 
non-invasively in real time (taken from [163]).  

11.3.5. Total internal reflection fluorescence spectroscopy (TIRFS) 

Fluorescent molecules in the medium with the lower refractive index that are on or 

near interface are selectively excited by the evanescent illumination (Figure 21A) 

[164-171]. This type of excitation is particularly suitable to analyze interactions at 

membranes because only fluorophores at the interface will be excited and others in 

solution remain dark. This feature drastically reduces the background level, and even 

single molecule fluorescence detection becomes possible [96,171,172]. TIR is 

realized with different prism (Figure 21B) [173-180] and objective type [168,171,181] 

optical geometries and can be combined with many fluorescence detection modes 

like FRAP [182,183], FCS [82,184], and FRET [174].  
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Figure 21 (A) Principle of total internal reflection fluorescence spectroscopy. (B) 
Schematic of prism based TIRFS detection. 

In contrast to the relatively constant fluorescence emission rates in free solution, 

it is known that the radiative emission rates can be modified by placing the 

fluorophores at suitable distances from metallic surfaces and particles [185-190]. The 

effects of metallic surfaces are complex and include quenching at short distances, 

spatial variation of the incident light field, and change the fluorescence lifetime rates. 

The evanescent field, amplified by the surface plasmons will enhance fluorescence 

intensity of the fluorophores at the interface. Due to fluorophore dipole interaction 

with free electrons in the thin metal layer, normally isotropic emission is converted 

into highly directional emission at a well-defined angle from the normal axis (Figure 

22). Therefore, surface plasmon enhanced and directional fluorescence emission 

increases signal to noise, simplifies detection and provides numerous opportunities 

for new approaches in surface sensitive fluorescence spectroscopy. 

 

Figure 22 Cone of the surface plasmon coupled directional fluorescence emission 
of the fluorophores at the surface of the thin metallic film. (taken from 
[188]) 
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11.4. Combined label and label-free solid phase detection 

Label free detection allows absolute quantification of adsorbed biomolecules on 

the surface. However, the response is directly related to the molecular mass of the 

species bound to the sensor surface, and it is difficult or sometimes impossible to 

detect small analytes or do measurements at very low surface concentrations of the 

immobilized receptor. The sensitivity of signal detection is in general far below that of 

fluorescence measurements. Fluorescence detection is very sensitive, and with 

modern detectors single fluorophore sensitivity can be achieved. However, the 

amplitude of fluorescence signal is difficult to quantify absolutely because it depends 

on the excitation power, the light collection efficiency, the excitation and the detection 

filters, the labeling degree and other experimental parameters. In complex receptor-

ligand interactions it is not always possible to have all interacting proteins labeled 

and to exclude that labeling has no effect on protein function. Therefore the 

combination of fluorescence and label free-techniques is an ideal solution to study 

ligand induced receptor crosslinking. Label-free detection allows to absolutely 

quantify the amount of interacting proteins on the surface and simultaneously 

provides possibility to convert arbitrary fluorescence signal into absolute units like 

ng/mm² or mol/mm². Simultaneous fluorescence detection allows to measure 

interaction kinetics with high signal to noise ratio and automatically solves sensitivity 

the problem associated with label free detection. Additionally, effects of local probe 

environment on the fluorescent probe brightness and energy transfer between donor 

and acceptor probes can serve as the readout for receptor crosslinking and allow 

differentiating between different conformational states.  

Typical experiment of combined label and label free detection is showed in Figure 

23. All steps of surface architecture formation are detected by label-free detection: 

vesicle fusion on the surface, bilayer conditioning, immobilization of the receptor. 

None of these molecules are labeled, so fluorescence channel shows no signal. The 

labelled ligand binding to surface anchored receptor is simultaneously detected on 

both channels. Due to higher sensitivity, the fluorescence signal provides much 

higher signal-to-noise ratio.  
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Figure 23 Course of a typical binding experiment on supported lipid bilayers as 
detected by label-free (black) and fluorescence (green) detection. 
Injection of (1) vesicle fusion, (2) and (3) – membrane conditioning, (4) 
receptor immobilization and (5) binding of the fluorescently labeled 
ligand. 

From technical point of view, the combination of fluorescence and label-free 

detection techniques is a straightforward approach. The same light beam can be 

used to probe refractive index changes due to protein binding to the surface and 

excite fluorophores which are present at the interface. Fluorescence can be emitted 

directly to the optical fiber or waveguide and later spectral detector will be used to 

independently detect changes of refractive index and measure fluorescence intensity 

(Figure 24).  
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Figure 24 Combination of evanescent field fluorescence and label free detection 
techniques. The same light beam (blue) is used to probe the amount of 
proteins on the surface and to excite fluorophores present at the 
interface. The fluorescence is emitted to the same optical fiber or 
waveguide (green) and both signals are independently detected by 
spectral detector (not shown).  

Another detection scheme would be to use interferometric, resonant mirror or 

surface plasmon resonance biosensors and collect fluorescence signal from the top 

of the surface (Figure 25). Combination of evanescent field excited fluorescence with 
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SPR, called surface plasmon field-enhanced fluorescence spectroscopy, has been 

shown to be a powerful tool for characterizing processes at interfaces (Liebermann 

and Knoll, 2000; Neumann et al., 2002).  
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Figure 25 Combination of fluorescence and label-free detection techniques. The 
same light beam (cyan) is used to probe the amount of proteins on the 
surface and excite fluorophores present at the interface. Fluorescence 
is collected from the top of the surface. (A) Interferometric – 
epifluorescence approach; light beam comes perpendicular to the 
surface. Optical thickness of the biomolecular layer is probed 
interferometrically by RIf detection. Fluorescence is detected from the 
top of the surface. (B) Combined SPR or resonant mirror and TIRFS 
approach. Changes in refractive index are probed by measuring 
intensity of the reflected light. Evanescent field excited fluorescence is 
collected and detected from the top of the surface.  

All presented detection schemes use the same light source for fluorescence 

excitation as for label-free detection, thus limiting the flexibility of each technique. 

Additionally, absorption by the fluorophores affects the intensity and phase difference 

of TIR beam, thus, introducing a crosstalk between the two detection techniques. The 

refractive index close to the absorption band differs from the one far from absorption 

peak; it has a different absolute value and a sharp negative dispersion profile. 

Furthermore, strong light intensity required for label-free detection can bleach 

fluorophores and complicate fluorescence experiments. The metal layers required for 

SPR are furthermore disadvantageous due to their strongly surface distance-

dependent fluorescence quenching. Ideally, combined fluorescence and label-free 

detection should be simultaneous, independent and without crosstalk. 

We combined reflection interferometry (RIf) and total internal reflection 

fluorescence spectroscopy (TIRFS) detection techniques into a single experimental 
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set-up which fully implements above-mentioned features and is schematically 

presented in Figure 26. Fluorescence excitation and emission were kept independent 

of RIf illumination by implementing monochromatic RIf detection in the near infrared 

region. Complete spectral separation of the two techniques proved valuable as high-

power illumination for optimum RIf detection could be applied without photobleaching 

the fluorophores absorbing in the visible region. This allowed us to fully eliminate 

crosstalk between two techniques by using proper combinations of detection filters. 

Flow through conditions allowed real-time detection of ligand binding and receptor 

crosslinking events.  

 

Figure 26 Schematic of combined reflectance interferometric and total internal 
reflection fluorescence spectroscopic detection.  

12. Solid-supported lipid bilayers 

It is known that membrane environment is important, if not essential, for 

membrane receptor function and reconstitution of membrane proteins in model lipid 

membranes is a necessary requirement to study their interactions in vitro. The 

combination of optical biosensor (label and label free) techniques with fluid lipid 

membranes fused on a solid support [191-197] offers the advantages of surface 

sensitive solid phase detection with keeping membrane proteins in their natural 

environment. Small unilamelar vesicles (SUV) fused on hydrophilic surfaces form 

solid supported bilayer with well-defined composition, electrostatic and fluidic 

properties. SUV fusion and bilayer formation was intensively studied with many 

techniques including QCM-D [198,199], ellipsometry [200], interferometry [201], 

surface plasmon resonance [202], fluorescence microscopy [203] and atomic force 
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microscopy [204,205]. Solid supported membranes offer the platform to reconstitute 

membrane receptors and quantitatively study effects of dimensionality, fluidity and 

electrostatics on 2-dimensional interactions under defined conditions. 

Specific and oriented tethering of C-terminal decahistidine-tagged extracellular 

domains of ifnar2 and ifnar1 was achieved using lipid molecules which carry 

covalently attached chelator bis-nitrilotriacetic acid (bis-NTA) groups (figure 26A) 

[206]. The formation of the decahistidine and bis-NTA complex is highly specific. 

Furthermore it is fully reversible upon addition of a competitive ligand (imidazole), 

protonation of the histidines, or removal of the metal ions by EDTA complexation. 

FRAP measurements confirmed that bis-NTA lipids do not phase segregate and 

bilayer fluidity is not affected by bis-NTA attachment or decahistidine tagged protein 

immobilisation (figure 26B). 
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Figure 27 (A) structure of bis-NTA lipids. (B) FRAP experiment confirm bilayer 
fluidity and homogeneity of bis-NTA lipid bilayer.  

13. Approach summary 

Solid supported lipid bilayer provided 2-dimensional interaction environment for 

membrane receptors. Ifnar2-EC and ifnar1-EC were reconstituted in the specific, 

oriented and stable yet reversible manner on fluid lipid bilayer via decahistidine and 

bis-NTA interaction. The 2-dimensional concentrations were absolutely quantified by 

label-free interferometric detection and ligand induced receptor crosslinking kinetics 

were sensitively and simultaneously detected by total internal reflection fluorescence 

spectroscopy. Binding curves were fitted with 2-step interaction model and 2-

dimensional dissociation and association rate constants of ifnar crosslinking were 

independently determined. Detection system allowed parameterizing all variables in 

the model leaving 2-dimensional interaction rate constants the only variables during 

the fitting. 



 57

14. Papers 

14.1. Paper I.  

Lamken P, Lata S, Gavutis M Jacob Piehler: Ligand-induced Assembling of 
the Type I Interferon Receptor on Supported Lipid Bilayers. Journal of Molecular 

Biology, 2004, 341: 303-318 

This paper presents the in vitro approach to study type I interferon (IFN)-induced 

crosslinking of its receptor subunits, ifnar2 and infar1. SOPC lipid vesicles doped with 

bis-NTA chelator groups were fused on to silica transducer surface and formed fluid 

solid supported lipid bilayer. Membrane fluidity was confirmed by FRAP experiments. 

The extracellular domains of the interferon receptor subunits ifnar2-EC and ifnar1-EC 

carrying C terminal decahistidine tag were anchored to solid-supported membranes 

via C-terminal decahistine tag and bis-NTA chelator interaction. The high stability and 

specificity of this interaction ensured stable and oriented reconstitution of receptor 

subunits. Interactions on solid supported membrane were optically detected using 

novel combination of two solid phase detection techniques: label-free reflectance 

interferometry (RIf) and total internal reflection fluorescence spectroscopy (TIRFS). 

Flow through conditions allowed monitoring of interaction events in real time. 

Main results: 

● Equilibrium dissociation constants and association / dissociation rate constants 

of individual interactions between IFNα2 and individual subunits were measured and 

parameterized. 

● No interaction between the receptor subunits in absence of the ligand was 

detected. 

● The stoichiometry of the ternary complex between ligand and receptor subunits 

was estimated to be 1:1:1.  

● Stoichiometric coimmobilization of receptor subunits on solid supported 

membrane decreased observed ligand dissociation rate constant 2-200 times 

depending on 2-dimensional concentrations of the membrane-anchored receptor 

subunits. 

● Dissociation rate constant of fluorescence labelled IFNα2 is increased in 

presence of nonlabelled ligand indicating kinetic nature of interactions between 

membrane anchored ifnar subunits. 



 58

● Based on experimental data an IFN-induced 2-step ifnar assembling model was 

proposed. 

14.2. Paper II.  

Gavutis M, Lata S, Lamken P, Müller P, Piehler J: Lateral Ligand-Receptor 
Interactions on Membranes Probed by Simultaneous Fluorescence-Interference 
Detection. Biophysical Journal, 2005, 88: 4289–4302 

This paper describes in detail simultaneous, real-time RIf-TIRFS detection, 

introduced in paper 1 and its potential for quantitative studying interactions on 

membranes. RIf and TIRFS techniques were combined in single experimental setup 

and allowed simultaneous real-time detection of both signals without crosstalk 

between them. This was achieved by using separated excitation and detection 

modules for both techniques and spectrally separating them. RIf detection was 

performed in NIR and TIRFS in VIS spectral regions. Flow-through conditions 

allowed to monitor binding assays in real time. 

Main results: 

● The RIf-TIRFS setup was characterized and calibrated with respect to noise 

and detection limits using Oregon Green 488 labelled lipid bilayer and Oregon Green 

488 fluorophore solution as a model systems. Detection limits were determined to be 

10 pg/mm² for RIf and 10 fluorophores/µm² for TIRFS. The flow through system 

allowed measuring interaction rate constants up to 5 s-1. 

● Sensitive fluorescence detection allowed measuring binding kinetics at very low 

surface concentrations of immobilized receptor subunits. Dissociation rate constants 

of IFNα2 were found to be 0.013 s-1 and 1 s-1 for ifnar2-EC and ifnar1-EC 

respectively. 

● The observed ligand dissociation rate constant depends on absolute as well as 

relative 2-dimensional concentrations of co-immobilized receptor subunits ifnar2-EC 

and ifnar1-EC on the membrane 

● 2-step dissociation model based on an interaction model presented in paper 1 

was used to fit the ligand dissociation curves at different stoichiometric amounts of 

immobilized receptor subunits. The detection system allowed parameterizing all 

variables in the model except the 2-dimensional association rate constant ka
T 

between ifnar1-EC and binary complex between ifnar2-EC and IFNα2. 



 59

● ka
T was found to be 16 mm²fmol-1s-1 and the corresponding 2-dimensional 

equilibrium dissociation rate constant KD
T 0.06 fmol/mm². Experiments with IFNα2 

mutants M148A and R144A showed that deviations from the model appear when 

association rate constants of IFN towards the individual ifnar subunits gets 

comparable. 

14.3. Paper III  

Lamken P, Gavutis G, Peters I, Van der Heyden J, Uzé G, Jacob Piehler: 

Functional Cartography of the Ectodomain of the Type I Interferon Receptor 
Subunit ifnar1. Journal of Molecular Biology, 2005, 350: 476-488 

In this paper, the role of ifnar1-EC subdomains with respect to ligand binding and 

receptor crosslinking was investigated using the experimental approach described in 

paper 1 and 2, and by FACS analysis. Different C and N terminal decahistidine 

tagged Ifnar1-EC fragments were expressed in Sf9 insect cells and purified to 

homogeneity.  

Main results: 

● From binding assays with IFNα2 and IFNβ it was concluded that all the three N 

terminal ifnar1-EC subdomains are involved in ligand binding.  

● IFNα2 and IFNβ bind competitively to ifnar1-EC and the fragments with three N 

terminal subdomains indicating the same binding site for both IFNs.  

● The role of orientation in ternary complex assembling was qualitatively 

compared for different constructs by comparing observed ligand dissociation rate 

constant at similar (e.g. same surface concentrations of receptor subunits on the 

membrane) conditions. N terminal ifnar1-EC was crosslinked with ifnar2-EC with 

much lower efficiency in comparison to C terminal ifnar1-EC. Deletion of the 

membrane-proximal domain increased the observed ligand dissociation rate costant 

even more and no difference was observed for C and N terminal constructs. 

● The membrane proximal subdomain, SD4, is not involved in ligand binding, but 

is important in IFN-induced receptor assembling and signal transduction in vivo. Cells 

expressing ifnar1 without membrane proximal domain were not able to transmit the 

cellular signal. 
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14.4. Paper IV 

Lata S, Gavutis M, Piehler J: Monitoring the Dynamics of Ligand-Receptor 
Complexes on Model Membranes. submitted 

This letter describes the synthesis of bis-NTA lipids and presents binding assay 

to calculate 2-dimensional dissociation rate constant of ifnar2-EC leaving ternary 

complex using the experimental approach described in paper 1 and 2. 

Fluorescence from donor (OG488) labelled ifnar2-EC is quenched upon ternary 

complex formation with acceptor (Cy3) labelled IFNα2 and unlabeled ifnar1-EC. 

Upon pulse-chasing the ternary complex by rapidly tethering an excess of unlabeled 

ifnar2-EC to the membrane, donor-labeled ifnar2-EC is competed out of the complex, 

leading to a recovery of the fluorescence. The rate-limiting step of donor 

dequenching is the 2-dimensional dissociation rate constant of labelled ifnar2-EC 

from the ternary complex. 

Strikingly, the 2-dimensional dissociation rate constant was about 5 times lower 

than the corresponding 3-dimensional dissociation rate constant. The reasons for this 

could be slower diffusion of the proteins in the membrane, the reduced degree of 

freedom affecting the reaction coordinate or cooperative interaction with ifnar1-H10. 

14.5. Paper V 

Gavutis M, Jaks E, Lamken P, Jacob Piehler: Determination of the 2-
dimensional interaction rate constants of a cytokine receptor complex. 
Biophysical Journal, accepted  

This paper describes binding assays, based on the experimental approach 

presented in paper 1 and 2, to independently determine 2-dimensional association 

and dissociation rate constants of ifnar2-EC and ifnar1-EC crosslinking.  

Main results: 

● Ligand dissociation from the ternary complex is a 2-step process with 

sequential dissociation of ifnar1-EC and ifnar2-EC from IFN. The concentration of the 

receptor subunits on the membrane and their affinity towards the ligand define, which 

subunit will dissociate first.  

● The 2-dimensional dissociation and association rate constants of ifnar2-EC with 

ifnar1-EC-IFN complex were determined comparing IFN dissociation into solution at 

10 fold excess of ifnar1-EC on the membrane in presence and absence of the high 
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affinity competitor IFNα2 HEQ. Dissociation traces were fitted with a 

monoexponential function and the 2-step dissociation model described in paper 2. 

Strikingly, the 2-dimensional dissociation rate constant was 3-5 times slower than the 

corresponding 3-dimensional rate constant which was in good agreement with FRET 

based binding assay described in paper 4.  

● The same type of binding assay with 10 fold excess of ifnar2-EC was 

performed to calculate 2D dissociation and association rate constant between the 

ifnar1-EC and the ifnar2-EC-IFN complex.  

● The 2-dimensional interaction rate constants were determined for several 

combinations of IFNα2 and ifnar2-EC mutants and ifnar1-EC tethered to the 

membrane via C and N terminal decahistidine tag. In contrast to the interaction in 

solution, the association rate constants depended on the orientation of the receptor 

components. Furthermore, the large differences in association kinetics observed in 

solution were not detectable on the surface. The key roles of orientation and lateral 

diffusion on the kinetics of protein interactions in plane of the membrane are 

emphasized and discussed. 
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Ligand-induced Assembling of the Type I Interferon
Receptor on Supported Lipid Bilayers

Peter Lamken†, Suman Lata†, Martynas Gavutis and Jacob Piehler*

Institute of Biochemistry
Johann Wolfgang
Goethe-University, Biocenter
N210, Marie-Curie-Straße 9
60439 Frankfurt am Main
Germany

Type I interferons (IFNs) elicit antiviral, antiproliferative and immuno-
modulatory responses through binding to a shared receptor consisting of
the transmembrane proteins ifnar1 and ifnar2. Differential signaling by
different interferons, in particular IFNas and IFNb, suggests different
modes of receptor engagement. Using reflectometric interference spec-
troscopy (RIfS), we studied kinetics and affinities of the interactions
between IFNs and the extracellular receptor domains of ifnar1 (ifnar1-
EC) and ifnar2 (ifnar2-EC). For IFNa2, we determined a KD value of
3 nM and 5 mM for the interaction with ifnar2-EC and ifnar1-EC, respect-
ively. As compared to IFNa2, IFNb formed complexes with ifnar2-EC as
well as ifnar1-EC with substantially higher affinity. For neither IFNa2
nor IFNb was stabilization of the complex with ifnar1-EC in the presence
of soluble ifnar2-EC observed. We investigated ligand-induced complex
formation with ifnar1-EC and ifnar2-EC being tethered onto solid-
supported, fluid lipid bilayers by RIfS and total internal reflection fluor-
escence spectroscopy. We observed very stable binding of IFNa2 at high
receptor surface concentrations with an apparent kd value approximately
200 times lower than that for ifnar2-EC alone. The apparent kd value was
strongly dependent on the surface concentration of the receptor com-
ponents, suggesting kinetic stabilization. This was corroborated by the
fast exchange of labeled IFNa2 bound to the receptor by unlabeled
IFNa2. Taken together, our results indicate that IFN first binds to ifnar2
and subsequently recruits ifnar1 in a transient fashion. In particular, this
second step is much more efficient for IFNb than for IFNa2, which could
explain differential activities observed for these IFNs.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: type I interferon receptor; protein–protein interaction; solid-
supported lipid bilayer; reflectometric interference spectroscopy; total
internal reflection fluorescence spectroscopy*Corresponding author

Introduction

Signaling induced by type I interferons (IFNs)
plays a key role in host innate response to viral

infection by eliciting a pleiotrophic response
including antiviral, antiproliferative and
immunmodulatory activities. Because of these
activities, type I IFNs are attractive for clinical
applications in different fields.1 Although type I
interferons are already used successfully in the
treatment of several diseases, the complexity of
their action interferes with a pharmacologically
controlled administration. Thus, better under-
standing of the receptor recruitment by IFNs and
the following downstream events is required for
fully exploiting the therapeutical potentials of
IFNs.

All type I interferons (13 different IFNas, 1 IFNb
and 1 IFNv) exert their activity through binding to
the same receptor components, ifnar1 and ifnar2.2

Upon ligand binding, tyrosine kinases associated
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with the cytoplasmic domains are activated by
auto-phosphorylation, followed by phosphoryl-
ation of several tyrosine residues on the receptor
and other effector molecules, which are mainly
members of the STAT family. It appears, however,
that the function of different type I IFNs is not
fully redundant, and differential signaling by
different IFNs has been observed.3 – 8 In particular
between IFNa subtypes and IFNb, substantial
differences have been observed on the level of
receptor phosphorylation3 and STAT recruitment,9

as well as on the level of gene induction.10,11 As so
far no further receptor component has been identi-
fied, these differences need to be explained
through the mode of interaction of IFNs with the
extracellular domains of ifnar1 and ifnar2 (ifnar1-
EC and ifnar2-EC, respectively). Therefore, a com-
prehensive structural, biophysical and mechanistic
picture of how the receptor domains are recruited
in time and space is required for understanding
the specificity of signal propagation through the
membrane. In the absence of structural data, the
recognition of IFNs by the receptor components
has been intensively investigated by mutagenesis.1

The high-affinity interactions between ifnar2-EC
and different IFNs have been investigated in
detail,12 – 14 and a model for the complex between
IFNa2 and ifnar2-EC based on double mutant
cycle analysis has been reported.15,16 However, the
differences in affinity, binding kinetics and orien-
tation, which have been so far observed for the
interaction of IFNa2 and IFNb with ifnar2-EC are
only minute,13,15,17 and therefore can hardly explain
the functional differences. The low-affinity inter-
action of IFNs with ifnar1 has been much less well
characterized and the KD value was estimated to
be in the micromolar range. Compared to cells
expressing ifnar2 alone a 10–40-fold decrease in
the KD value has been reported. By using neutraliz-
ing antibodies, the binding site for IFNs on ifnar1
was mapped to the Ig-like domains 2 and 3 of
ifnar1.18 This observation was confirmed by several
studies with bovine ifnar1,19,20 which binds human
IFNas with high affinity. These results indicated
that the ligand binding site of ifnar1 does not
correspond to a classical cytokine binding module.
In vitro, a stable ternary complex of IFNb with
ifnar1-EC and ifnar2-EC was observed by size-
exclusion chromatography.21 As no stable complex
between IFNb and ifnar1-EC was detectable
under these conditions, this result indicated that
cooperative interaction leads to stabilization of the
ternary complex. For members of the class I
cytokine family, contacts between the two extra-
cellular receptor domains apparently contribute to
the stability of the ternary complex,22 – 26 and
pre-association of the receptor chains has been
proposed for several receptors.25,27,28 For the IFNg-
receptor as a member of the class II cytokine
receptor family, a similar mechanism was
suggested recently.29 However, the role of stem–
stem contacts between the extracellular receptor
domains has not been clearly resolved so far,

because lateral interactions between membrane-
anchored proteins are difficult to study: cellular
assays with the full-length receptors do not
provide the experimental control required for
analyzing inter-receptor interactions properly;
binding studies with the extracellular receptor
domains in solution do not provide the biophysical
constraints of protein–protein interaction within
biological membranes such as the reduced number
of degrees of freedom (reduced dimensionality)
and the reduced diffusion rates.30

Here, we have analyzed the interactions at the
extracellular domains of ifnar involved in the for-
mation of the active ternary complex for both
IFNa2 and IFNb. We furthermore present a novel
approach for studying ligand-induced receptor
assembling by combining full experimental control
of an in vitro reconstituted system with mimicking
two-dimensional protein–protein interactions
within the plane of the plasma membrane.
Through their C-terminal histidine tags, we
tethered ifnar1-EC and ifnar2-EC in an oriented
manner onto supported fluid lipid bilayers con-
taining lipids carrying high-affinity chelator head
groups. We evaluated the interaction of IFNs to
the receptor components reconstituted on fluid
lipid bilayers by reflectometric interference
spectroscopy (RIfS) and total internal reflection
fluorescence spectroscopy (TIRFS). Based on these
results, we discuss a biophysical model of the tern-
ary complex formation and for differential receptor
recruitment by IFNs.

Results

Expression and purification of ifnar1-EC

Ifnar1-EC with a C-terminal decahistidine-tag
was expressed in Sf9 cells infected with a baculo-
virus harboring the gene of mature ifnar1-EC
fused to the secretion sequence of the baculoviral
protein gp67. The protein was purified to homo-
geneity from the supernatant by IMAC and size-
exclusion chromatography (Figure 1A). In SDS-
PAGE, a molecular mass of approximately 57 kDa
was observed (Figure 1A), suggesting substantial
glycosylation of the protein. Removal of the
glycans with PNGaseF yielded a protein with an
apparent molecular mass of 48 kDa (Figure 1B) cor-
responding to the expected molecular mass of the
polypeptide chain. Under non-reducing conditions
the band of ifnar1 was shifted to a lower molecular
mass compared to the reduced protein, indicating
internal disulfide bridge formation (Figure 1B).
Glycosylated ifnar1-EC proved to be a stable
protein, which was stored frozen at 280 8C. After
one cycle of freezing and thawing, only insignifi-
cant loss of monomeric protein was observed by
size-exclusion chromatography (Figure 1C). For all
the following binding experiments, the glycosyl-
ated protein was used, because it was more stable
than the deglycosylated protein.
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We first characterized the interaction of ligands
(IFNa2 and IFNb with each of the receptor com-
ponents (ifnar1-EC and ifnar2-EC) separately, in
order to precisely determine affinities, rate con-
stants and stoichiometries. These measurements
were carried out by immobilizing either ifnar1-EC
or ifnar2-EC via their C-terminal His-tag on the
planar surface of the PEG polymer brush in an
oriented fashion using high-affinity chelator head
groups. Under these conditions, lateral interactions
between the surface-attached proteins are mini-
mized due to the short, covalently bound PEG
chains. Protein binding was monitored label-free
by RIfS detection. All binding data obtained from
these measurements are summarized in Table 1.

Interaction of IFNs with ifnar2-EC

Binding of IFNa2 to immobilized ifnar2-tl has
been studied before on different surfaces.31 IFNa2
interacted specifically with ifnar2-EC immobilized
via its C-terminal His-tag (Figure 2A) and the
stoichiometry as determined from the relative
binding amplitudes was 1 : 1. From concentration-
dependent binding curves, a kd value of
0.010(^0.002) s21, a ka of 3(^1) £ 106 M21 s21 and a
KD of 3(^1) nM were determined. These values
are in excellent agreement with the values obtained
for ifnar2-tl immobilized via monoclonal
antibodies.31 The association phase was signifi-
cantly biased by mass transport limitation as
indicated by the systematic deviation from the
model (Figure 2C). Also the dissociation phase
deviated significantly from a single-exponential
decay indicating rebinding (Figure 2C) in agree-
ment with that reported.31 The interaction of IFNb
with immobilized ifnar2-EC had been investigated

only at increased ionic strength in order to over-
come its otherwise strong non-specific binding to
the surface.13 At the PEG polymer brush surface
used in this study, no significant non-specific bind-
ing of IFNb was detectable at physiological ionic
strength after fully blocking the chelator head
groups with MBP-H10 (Figure 2A). Under these
conditions, IFNb bound substantially tighter to
ifnar2-EC compared to IFNa2 (Figure 2A), while
from the relative signals, a 1 : 1 stoichiometry
between ifnar2-EC and IFNb was confirmed. The
dissociation was very slow with an estimated kd

value of 0.0005 s21. From the I47A mutant of
ifnar2-EC, IFNb dissociated with a rate constant
of 0.005(^0.002) s21 (Figure 2B). From this value,
the kd of approximately 0.0005 s21 was confirmed
for the wild-type complex, assuming the same ten-
fold difference as observed at high ionic strength.13

Thus, the half-life of the complex with ifnar2-EC is
probably about 20-fold higher for IFNb compared
to IFNa2. The observed association was strongly
mass transport limited (Figure 2D), indicating that
the association rate constant, ka, is well above
5 £ 106 M21 s21. The high ka value can be explained
by electrostatic rate enhancement, as IFNb is posi-
tively charged and ifnar2-EC is strongly negatively
charged at physiological pH.

The strong dependence of the complex stability
on the ionic strength suggests that electrostatic
forces also stabilize the interaction of IFNb with
ifnar2-EC. This effect, however, could also be due
to rebinding on the surface, which is dependent
on the ka, value and thus also on the ionic strength.
We therefore investigated the contribution of
rebinding by injecting ifnar2-tl at high concen-
tration (10 mM) during the dissociation phase
(Figure 2E and F). In both cases, a significant faster

Figure 1. Purification and bio-
chemical characterization of ifnar1-
EC. A, SDS-PAGE of the purified
protein: elution fraction from
IMAC (lane 1) and fractions from
size-exclusion chromatography
(lane 2–8). B, SDS-PAGE of purified
ifnar1-EC after deglycosylation
with PNGaseF under non-reducing
and reducing conditions in com-
parison to the non-deglycosylated
protein. C, Size-exclusion chroma-
togram (Superdex 200 HR10/30) of
purified ifnar1-EC after freezing
and thawing (E, exclusion volume;
B, bed volume).
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Table 1. Rate and equilibrium constants of the interaction with ifnar1-EC and ifnar2-EC determined for different IFNs and different mutants

Ifnar2-EC Ifnar1-EC Ifnar2-EC/Ifnar1-ECa

IFN ka (M21 s21) kd (s21) KD (nM) ka (M21 s21) kd (s21) KD (nM) ka (M21 s21) kd (s21) KD (nM)

IFNa2 wt (3 ^ 1) £ 106 0.012 ^ 0.002 3 ^ 1 – .0.5 5000 ^ 2000 (3 ^ 1) £ 106 ,0.0001 ,0.03
IFNa2 S136Cb (3 ^ 1) £ 106 0.013 ^ 0.002 3 ^ 1 .0.5 ,5000 (3 ^ 1) £ 106 ,0.0001 ,0.03
IFNa2 wtc n.b. n.b. n.b. – .0.5 4000 ^ 2000 n.b. n.b. n.b.
IFNa2 wtd (3 ^ 1) £ 106 0.20 ^ 0.04 60 ^ 20 – – – – 0.0012 ^ 0.0002 –
IFNa2 R149A – ,2 500 ^ 100 – .0.5 5000 ^ 2000 – 0.010 ^ 0.003 –
IFNb .5 £ 106 ,0.001 ,0.1 (3 ^ 2) £ 105 0.017 ^ 0.004 50 ^ 30 – ,0.0005 –
IFNbc n.b. n.b. n.b. (4 ^ 2) £ 105 0.019 ^ 0.004 50 ^ 30 n.b. n.b. n.b.
IFNbe .5 £ 106 0.003 ^ 0.001 ,0.6 – – – – – –
IFNbd .5 £ 106 0.005 ^ 0.002 ,1 – – – – ,0.0005 –

Mean values and standard deviations were determined from at least three independent experiments. n.b., no binding detectable.
a Co-immobilized on lipid bilayers at high surface concentration.
b Labeled with OG-488 or AF-488 at the additional cysteine residue.
c In stoichiometric complex with ifnar2-tl.
d With the mutant ifnar2-EC I47A.
e At 500 mM NaCl.



dissociation was observed resulting in corrected
dissociation rate constants of 0.012(^0.003) s21 for
IFNa2 and ,0.001 s21 for IFNb, respectively.

Interaction of IFNs with ifnar1-EC

Binding of IFNa2 to immobilized ifnar1-EC was
only detectable at concentrations above 300 nM
and rapid dissociation was observed (Figure 3A).
This interaction was entirely specific as confirmed
by control experiments without ifnar1-EC on the
surface (data not shown). From the equilibrium
responses, Req, observed for IFNa2 at concen-
trations between 100 nM and 100 mM, titration
curves were obtained (Figure 3B). A KD value of
5(^2) mM was determined by fitting a Langmuir
isotherm. Hence, the affinity of IFNa2 towards
ifnar1-EC is about three orders of magnitude

lower than for ifnar2-EC. The maximum binding
signal, Rmax, obtained from such titration corre-
sponded to a 1 : 1 interaction between ifnar1-EC
and IFNa2 assuming full activity of the immobi-
lized ifnar1-EC. The same experiment was carried
out with a stoichiometric complex of IFNa2 with
ifnar2-tl. This complex with a life-time of ,100 s
can be assumed static during the time-scale of the
interaction with ifnar1-EC. Binding curves for the
0.1 mM and 10 mM IFNa2–ifnar2-tl complex are
shown in Figure 3E. The relative binding signals
obtained from a full titration (results not shown)
confirmed a 1 : 1 stoichiometric ratio between the
IFNa2–ifnar2-tl complex and immobilized ifnar1-
EC. A KD value of 4(^2) mM was obtained, which
was not significantly different from the KD deter-
mined for IFNa2 alone. This result suggests that
the ternary complex of ifnar1, ifnar2 and IFNa2 is

Figure 2. Interaction of IFNa2 and IFNb with ifnar2-EC on a PEG polymer brush. A, Binding curve for 50 nM IFNa2
(· · ·· · ·) and 50 nM IFNb (—) to ifnar2-EC in comparison to 50 nM IFNb exposed to immobilized MBP-H10 (- - - -).
B, Dissociation of IFNa2 (· · ·· · ·) and IFNb (—) from immobilized ifnar2-EC I47A. C, Fit and residuals for association
and dissociation of IFNa2 shown in A. D, Fit and residuals for association and dissociation of IFNb shown in A.
E and F, dissociation of IFNa2 (E) and IFNb (F) from immobilized ifnar2-EC in the absence (—) and in the presence
(· · ·· · ·) of 10 mM ifnar2-tl.
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not stabilized by additional interactions between
ifnar1-EC and ifnar2-EC.

The interaction of IFNb with immobilized ifnar1-
EC was much more stable compared to the binding
of the IFNa2 (Figure 3C). Association and dis-
sociation phases were well fitted by mono-
exponential models (Figure 3D). From the fitting, a
ka value of 3(^2) £ 105 M21 s21 and a kd value of
0.017(^0.004) s21 were obtained. The binding signals
corresponded to a 1 : 1 stoichiometry between IFNb
and ifnar1-EC. Similar to IFNa2, no significant differ-
ences in the binding rates were observed for ifnar2-
tl-bound IFNb compared to free IFNb (Figure 3E
and F). Also a 1 : 1 stoichiometric ratio was con-
firmed. For free as well as ifnar2-tl-bound IFNb a KD

value of 50(^30) nM was obtained. The interaction

of the IFNb–ifnar2-tl complex with ifnar1-EC was
also investigated in solution by a binding inhibition
assay (data not shown). The KD value obtained from
this experiment was 30(^10) nM, i.e. in good agree-
ment with the KD value determined for the inter-
action at the surface. Thus, the affinity of ifnar1-EC
for IFNb is two orders of magnitude higher than for
IFNa2. Intriguingly, the association rate constant of
IFNb binding to ifnar1-EC is at least an order of mag-
nitude lower compared to the binding to ifnar2-EC.

Complex formation on lipid bilayers

In order to analyze how the ternary complex is
stabilized by lateral interaction on the membrane
we investigated ternary complex formation on

Figure 3. Binding of IFNs to immobilized ifnar1-EC on a PEG polymer brush. A, Binding of IFNa2 in various con-
centrations (100 nM, · · ·· · ·; 1 mM, –·–·–, 10 mM, – – – –; 100 mM, —) to immobilized ifnar1-EC. B, Equilibrium
response of IFNa2 binding to ifnar1-EC versus concentration and the fitted Langmuir isotherm. C, Binding of 50 nM
IFNb to immobilized ifnar1-EC. D, Monoexponential fit to the association and dissociation shown in C. E, Binding of
100 nM IFNb–ifnar2-tl, 100 nM IFNa2–ifnar2-tl and 10 mM IFNa2–ifnar2-tl to immobilized ifnar1-EC in comparison
(normalized to the amount of ifnar1-EC on the surface). F, Fit of single exponential models to the association and dis-
sociation phase for the interaction of 100 nM IFNb–ifnar2-tl with ifnar1-EC as shown in E, and the residuals of the fit.
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solid-supported membranes. We tethered ifnar1-
EC and ifnar2-EC to the surface of a solid-
supported fluid lipid bilayer doped with chelator
lipids using their C-terminal histidine-tags. When
ifnar1-EC or ifnar2-EC were individually immobi-
lized on solid-supported lipid bilayers, the binding
curves obtained for IFNa2 and IFNb binding to
ifnar2-EC (Figure 4A and B) and ifnar1-EC
(Figure 4C and D), respectively, were very similar
to the corresponding measurements on the non-
fluid polymer brush support. The rate and equi-
librium constants obtained from these curves
matched the rate constants determined from the
measurements on non-fluid support. Neither for
IFNa2 nor for IFNb was significant non-specific
binding detectable on the solid-supported lipid
bilayers (Figure 4A, C and D).

Upon co-immobilization of ifnar1-EC and ifnar2-
EC the binding kinetics of IFNa2 drastically
changed (Figure 5A and B). No significant dis-
sociation was observed within 15 minutes, and a
second injection of IFNa2 did not give any signifi-
cant signal (data not shown). Also the association
kinetics was changed (Figure 5C–E): a constant
binding rate until saturation was observed indicat-
ing highly diffusion-controlled binding. No dis-
sociation of IFNa2 was discernible only if a 1 : 1
molar ratio for ifnar1-EC and ifnar2-EC was strictly
maintained. With a molar excess of ifnar1-EC, we
observed partial fast dissociation of IFNa2, and

the amount of stably bound ligand corresponded
to the amount of tethered ifnar2-EC (data not
shown). With a molar excess of ifnar2-EC, we
observed partial dissociation with a rate constant
corresponding to the ifnar2–IFNa2 interaction,
and the amount of stably bound ligand corre-
sponded to the amount of ifnar1-EC on the bilayer
(results not shown). These results confirmed that
with IFNa2 a complex with a stoichiometry of
1 : 1 : 1 (or multiples thereof) was formed. For-
mation of a stable stoichiometric ternary complex
was observed only on fluid supports (Figure 5B),
confirming that orientation and lateral reorganiz-
ation of the receptor domains were required to
obtain maximum binding affinity. In order to
characterize the lateral distribution of the immobi-
lized proteins, laser scanning confocal fluorescence
microscopy was carried out using ifnar2-EC-S35C
labeled with OG-488 as a probe. Homogeneous
lateral distribution of ifnar2-EC was observed on
both polymer brush and supported membrane.
The lateral diffusion of the receptor was investi-
gated by FRAP experiments (Figure 6). No FRAP
was observed for the polymer brush support (data
not shown), while full FRAP was observed for the
supported lipid bilayers (Figure 6A and B). For
ifnar2-EC tethered to the chelator lipid, a diffusion
constant of 1(^0.5) mm2/s was determined,
which is very similar to the diffusion constant
of GPI-anchored proteins in living cells.32 No

Figure 4. Ligand binding to ifnar1-EC and ifnar2-EC tethered on solid-supported lipid bilayers as detected by RIfS.
A, Interaction of 50 nM IFNa2 (· · ·· · ·) and 50 nM IFNb (—) with ifnar2-EC in comparison to 50 nM IFNb exposed to
a surface loaded with MBP-H10 (- - - -). B, Fit of the association and dissociation curves shown in A. C, Interaction of
10 mM IFNa2 (—) with immobilized ifnar1-EC in comparison to 10 mM IFNa2 exposed to a surface loaded with
MBP-H10 (· · ·· · ·). D, Interaction of 100 nM IFNb (—) with ifnar1-EC in comparison to 100 nM IFNb exposed to a
surface loaded with MBP-H10 (· · ·· · ·).
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significant change in recovery time was observed
upon co-immobilization with ifnar1, while binding
of IFNa2 clearly reduced the recovery rate by a
factor of 2 (Figure 6C). These results also confirmed
that no substantial interaction between ifnar1-EC
and ifnar2-EC takes place in the absence of the
ligand.

Since for the wt proteins no dissociation from the
ternary complex was observed, we investigated
several mutants of ifnar2-EC and IFNa2 forming
relatively less stable binary complexes with each
other compared to their wild-type counterparts
(Figure 7A and B). IFNa2 dissociates from ifnar2-
EC I47A with a rate constant of 0.2 s21 (20-fold
higher than wt ifnar2-EC). Upon co-immobilization
of ifnar-1EC, a kd value of 0.0012(^0.0002) s21 was
observed (Figure 7C). For IFNa2 R149A (KD,
500 nM, kd < 2 s21), a dissociation rate constant of
0.01(^0.003) s21 in the presence of tethered ifnar1-
EC was observed (Figure 7D). From these experi-
ments it was estimated that in the presence of
ifnar1-EC the apparent affinity is approximately
200-fold higher compared to the affinity towards
ifnar2-EC alone.

All these measurements, however, were carried
out at very high receptor surface concentrations
(approximately 20–40 fmol/mm2, i.e. 20–40% of a
monolayer). The stability of the ternary complex
at lower receptor concentration was studied using

TIRFS because of the higher sensitivity of fluor-
escence detection compared to RIfS. Binding of
fluorescent IFNa2 (S136C labeled with AF-488) to
the receptor on lipid bilayers was measured at
different surface concentrations of the receptor
(Figure 8). At a high surface concentration of
ifnar1-EC and ifnar2-EC, fluorescence detection
principally showed similar dissociation phase as
did RIfS (Figure 8A). However, a decay of the sig-
nal while rinsing was observed. This was not due
to ligand dissociation, as stable binding was con-
firmed by simultaneous RIfS detection (data not
shown), but can be ascribed to photobleaching.
With a decreasing surface concentration of ifnar1-
EC and ifnar2-EC we observed a decreasing
stability of the ternary complex (Figure 8B). The
dissociation curves were fitted by a single-expo-
nential decay (Figure 8B and C), and increasing kd

values were obtained with decreasing surface con-
centrations. In Figure 8D, the dissociation rate
constants were plotted as a function of receptor
surface concentration, the corresponding values
are listed in Table 2. At the lowest receptor
surface concentration of approximately 0.3 fmol/
mm2 (,200 molecules/mm2), the stability of the
ternary complex was only three times higher than
for ifnar2-EC alone. For surface concentrations of
2–4 fmol/mm2 we determined kd values corre-
sponding to the affinities that have been

Figure 5. Ligand binding to ifnar1-EC and ifnar2-EC co-immobilized on solid-supported, fluid lipid bilayers.
A, Immobilization of ifnar2-EC and ifnar1-EC in stoichiometric ratio, and interaction with 50 nM IFNa2. B, Dis-
sociation of IFNa2 from the ternary complex with ifnar1-EC and ifnar2-EC on lipid bilayers (—) and on polymer brush
support (- - - -), compared to the dissociation from ifnar2-EC alone (· · ·· · ·). C, Comparison of the association phases for
binding of 50 nM IFNa2 to ifnar1-EC and ifnar2-EC on supported bilayers (—) and to ifnar2-EC alone (· · ·· · ·). D and E,
Mono-exponential fit and residuals of the associations phases shown in C (with the same coding of the curves).
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Figure 6. FRAP experiment with ifnar2-EC S35C labeled with OG488 tethered to chelator lipids in a solid-supported
lipid bilayer. A, Fluorescence images of ifnar2-EC OG-488 tethered to a solid-supported lipid bilayer before and after
bleaching of a circular spot (the time after bleaching is indicated in the lower left corner of each image, the bar
represents 20 mm). B, Fluorescence intensity in the bleached spot as a function of time (—) compared to a non-bleached
reference spot (· · ·· · ·). C, Recovery curves of ifnar2-EC OG-488 in the presence of ifnar1-EC before (—) and after (· · ·· · ·)
addition of 100 nM IFNa2.

Figure 7. Dissociation of IFNa2 from both ifnar1-EC and ifnar2-EC on lipid bilayers (—) compared to ifnar2-EC
alone (· · ·· · ·) observed for ifnar2-EC I47A with wild-type IFNa2 (A) and for wild-type ifnar2-EC with IFNa2 R149A
(B). C and D, Fit of a mono-exponential decay to the dissociation from the ternary complex shown in A (C) and B
(D), and the residuals.
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observed in binding assays with living cells.33 The
association phases of the binding curves
normalized to the saturation signal are shown in
Figure 8E. At receptor surface concentrations
below 8 fmol/mm2, the association curves over-
layed. These curves were fitted well by a pseudo-
first-order model (Figure 8F) and gave association
rate constants very similar to the interaction of
IFNa2 with ifnar2-EC alone (Table 2). At a higher
surface concentration, significant lower association
rate constants were obtained and systematic
deviations from the model, as well as from the
other binding curves were observed (Figure 8F).

This was probably due to mass transport
limitations at these high receptor surface concen-
trations, which have already been observed for the
interaction of IFNa2 with ifnar2-EC alone.

The dependence of the complex stability on the
receptor surface concentration suggested that the
ternary complex is not static, but stabilized by fast
re-association, the kinetics of which depends on
the receptor surface concentration. This was
further corroborated by the observation that stable
ternary complexes were formed at low surface
concentrations of ifnar2-EC but high surface con-
centrations of ifnar1-EC (results not shown). In

 

 

Figure 8. The IFNa2 interaction with ifnar1-EC and ifnar2-EC tethered onto supported lipid bilayers as detected by
TIRFS. A, Binding of 100 nM AF-488-labeled IFNa2 at different surface concentrations of ifnar2-EC and ifnar1-EC in
a stoichiometric ratio (black, 12 fmol/mm2; red, 8 fmol/mm2; green, 4 fmol/mm2; blue, 2 fmol/mm2; brown, 1 fmol/
mm2; orange, 0.5 fmol/mm2). B, Dissociation phases of the binding curves shown in A normalized to the signal at the
beginning of dissociation (same color coding as for A) including the fit curve of a mono-exponential decay (black
lines). C, Residuals for fitting curves shown in B (same color coding as for A). D, Dissociation rate constant as a func-
tion of the surface concentration of the receptor. E, Association phases of binding curves shown in A normalized to
the saturation signal (same color coding as for A). F, Residuals of a first-order association model fitted to the curves
shown in E.
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order to analyze this kinetic stabilization, we
challenged the apparently stable ternary complex
formed with fluorescently labeled IFNa2 (S136C
with OG-488) by injecting unlabeled IFNa2 or
ifnar2-tl (Figure 9A). Already at a concentration
of 1 mM unlabeled IFNa2, an exchange rate of
0.002 s21 was observed. At the same time the total
amount of bound IFN did not change as simul-
taneously detected by RIfS (data not shown). In
contrast, no significant change in dissociation
kinetics was observed when ifnar2-tl was injected,
even at a concentration as high as 10 mM
(Figure 9A). Furthermore, even at much lower sur-
face concentrations of ifnar2-EC (,0.5 fmol/mm2),
fast exchange was observed in the presence of
1 mM unlabeled IFNa2 (Figure 9B). These experi-
ments confirm that the ligand does not dissociate
from the surface and re-associates (rebinding-
effect), because then ifnar2-tl should interfere as
efficiently as does IFNa2, and the effect should be
much less pronounced at low surface concen-
trations. The fact that the ligand is exchanged
much faster than the apparent dissociation rate
furthermore corroborates the kinetic stabilization
of the ternary complex.

Binding assays with ifnar1 and ifnar2
co-immobilized on lipid bilayers were also carried
out with IFNb. However, very stable binding was
observed already for the interaction with ifnar2-
EC alone, and thus no substantial difference in
stability could be observed in the presence of
ifnar1-EC. Upon challenging the ternary complex
formed with IFNb by injecting fluorescently
labeled IFNa2, no exchange could be observed
(data not shown), confirming the anticipated high
stability of the ternary complex. Since the already
formulated IFNb could not be labeled appropri-
ately, binding assays at low surface concentration
were also not feasible.

Discussion

In this study we dissected the individual contri-
butions of the different interactions between
ifnar1-EC, ifnar2-EC and IFNs involved in for-
mation of the ternary complex. For understanding
their role for ligand-induced receptor assembling,
we investigated the ternary complex formation by
tethering the extracellular receptor domains in an
oriented fashion on supported membranes. Based
on combined fluorescence and label-free detection
we studied receptor assembling on a mechanistic
level, which may help to explain how differences
in receptor engagement by IFNa2 and IFNb result
in differential signaling.

Interaction between ifnar1 and ifnar2

Interaction between receptor components cross-
linked by binding to different sites of a ligand is
the basic paradigm for cytokine receptor activation.
Yet the mode of its induction is currently under
controversial debate, and probably different
modes apply for different systems.34,35 Increasingly,
pre-association of the receptor chains,27,29,36 and
their activation by ligand-induced conformational

Table 2. Rate and equilibrium constants of IFNa2 bind-
ing at different stoichiometric surface concentrations of
ifnar1-EC and ifnar2-EC on supported lipid bilayers

Ifnar1-EC
(fmol/mm2)

ka

(106 M21 s21)
kd

(1023 s21)
KD

(nM)a

12 ^ 3 1 ^ 0.3 0.5 ^ 0.1 0.17 ^ 0.06
8 ^ 2 1 ^ 0.3 0.5 ^ 0.1 0.17 ^ 0.06
5.5 ^ 1 3 ^ 1 0.6 ^ 0.1 0.21 ^ 0.07
4 ^ 1 4 ^ 1 0.8 ^ 0.2 0.28 ^ 0.1
2 ^ 0.4 5 ^ 2 1.4 ^ 0.2 0.46 ^ 0.16
1 ^ 0.2 3.5 ^ 1 2.1 ^ 0.2 0.70 ^ 0.24
0.5 ^ 0.1 3 ^ 1 3.3 ^ 0.3 1.11 ^ 0.4
0.3 ^ 0.1 4 ^ 1 4.4 ^ 0.4 1.48 ^ 0.5
0 4 ^ 1 12 ^ 1 4 ^ 1.5

a Calculated using the average ka of 3(^1) £ 106 M21 s21.

Figure 9. Chase experiments with fluorescent-labeled IFNa2 bound to ifnar2-EC and ifnar1-EC co-immobilized on
supported lipid bilayers. A, Dissociation of OG-488-labeled IFNa2 (—) at high surface concentrations of both ifnar2-
EC and ifnar1-EC, in the presence of 1 mM (- - - -) and 10 mM (– – – –) ifnar2-tl, and in the presence of 1 mM unlabeled
IFN (· · ·· · ·). B, Dissociation of OG-488-labeled IFNa2 from the ternary complex at low surface concentration of ifnar2-
EC in the absence (—) and in the presence (· · ·· · ·) of 1 mM unlabeled IFNa2.
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changes have been postulated. In the case of class I
cytokine receptors, namely growth hormone
receptor,37,26 interleukin-4 receptor23 and inter-
leukin-6 receptor,24 stem–stem contacts between
the membrane-proximal, extracellular receptor
domains have been shown to be important for the
formation of stable ternary complexes. Though the
affinities of such receptor–receptor interactions
have not been quantified yet, stabilization by
cooperative inter-receptor and ligand-receptor
contacts was clearly shown. Gel-filtration assays
carried out with recombinant ifnar1-EC, ifnar2-EC
and IFNb indicated a similar scenario for the type
I interferon receptor.21 For both IFNa2 and IFNb,
we could clearly exclude such co-operative inter-
action, as we did not detect a significant difference
in the affinity of ifnar1-EC for free compared to
ifnar2-tl-complexed ligand. Furthermore, no direct
interaction between ifnar1-EC and ifnar2-EC was
detectable, neither by solid-phase detection nor by
FRAP. These results suggest a different mode of
interaction for this member of the class II cytokine
receptor superfamily compared to the members of
the class I family mentioned above. This is in
good agreement with the observation that the
binding site for IFNa is not located on the mem-
brane-proximal tandem Ig-like domains, but at the
hinge between the two extracellular tandem Ig-like
domains of ifnar1-EC.18,20

Kinetic stabilization of the ternary complex
with IFNa2

In order to understand the contributions of the
individual interactions towards the stability of the
ternary complex on the cell surface, we studied
complex formation with ifnar1-EC and ifnar2-EC
tethered onto solid-supported membranes. IFNa2
binding was extremely stable at high surface con-
centrations of ifnar1-EC and ifnar2-EC, decreasing
the apparent kd value compared to ifnar2-EC alone
by approximately 200-fold. The dependence of the
complex stability on the surface concentration of
the receptor and the possibility of exchanging the
bound ligand with much faster rates than the
apparent dissociation rate constant suggest kinetic
rather than static stabilization of the complex. The
kd value of .0.5 s21 for the interaction between
ifnar1-EC and the IFNa2–ifnar2-tl complex implies
that the life-time of an individual ternary complex

is of the order of a second. Since we could not
observe direct interactions between ifnar2-EC and
ifnar1-EC, we propose a two-step assembling
mechanism as shown in Figure 10 after binding of
IFNa2 to ifnar2 (k1), ifnar1 transiently associates in
a second step to the complex. Owing to the short
life-time of the IFNa2–ifnar1 interaction, the com-
plex dissociates (k22) and re-associates (k2) in a fast
manner (on a sub-second scale). Thus, depending
on the receptor surface concentrations, only part
of the bound ligand is involved in the ternary com-
plex. This fraction is defined by the equilibrium
dissociation constant for the interaction of the
ifnar2-EC–IFN complex with ifnar1-EC on the sur-
face K2 ¼ k22=k2: Since direct dissociation of IFNa2
from the ternary complex is very unlikely (at least
200-fold slower than from ifnar2-EC alone), the
apparent kd value reflects the fraction of ifnar2-
EC–IFNa2 not in complex with ifnar1-EC. In cellu-
lar binding assays, a 10–40-fold decrease in KD

caused by ifnar1 has been observed for IFNa2.33

Assuming that the biophysical environment is in
principle mimicked appropriately, our results
have several important implications for the mech-
anism of receptor assembling. (i) The formation of
a stable pre-formed receptor-complex by inter-
actions mediated via the extracellular domains as
suggested for other receptors25,27,28 is very unlikely.
(ii) The receptor components are in some way
co-localized on the surface of the plasma mem-
brane, as random distribution of several hundred
receptors on the plasma membrane would not be
sufficient for gaining 20–40 times increased
stability. This is in line with the observation that
ifnar1 and ifnar2 are located in caveolae,38 leading
to a higher effective concentration. (iii) Different
receptor concentrations not only lead to different
apparent binding affinities, but also different frac-
tions of IFN involved in the ternary complex. This
could explain the different actions and relative
activities of IFNs on different cell types.

Differential signaling

One striking observation of this study was the
much higher affinity of IFNb compared to IFNa2
not only towards ifnar2-EC, but even more
dramatically towards ifnar1-EC. This result is con-
sistent with the observation that ifnar1 co-immuno-
precipitated with ifnar2 in presence of IFNb, but

Figure 10. Scheme of a two-step
formation and kinetic stabilization
of the ternary complex upon IFN
binding.
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not IFNa2.5,8 The higher affinity of ifnar1-EC
towards ifnar2-EC and ifnar1-EC has two main
consequences: first of all it implies that IFNb
binds to the cellular receptor with more than one
order of magnitude higher affinity than IFNa2.
For IFNa2 mutants, a clear correlation between
affinity towards ifnar2-EC and anti-viral activity
has been shown.14 The antiviral activity of IFNb is
only by a factor of 2 to 4 higher than for IFNa2,
and not by orders of magnitude. However, satur-
ation of activity has also been observed for human
growth hormone upon enhancing its binding
affinity substantially.39 While the reason for this
saturation is not fully clear, it is plausible, that this
effect is different for different types of responses.
Second, the higher affinity of IFNb towards ifnar1
implies more efficient ternary complex formation
at low receptor surface concentrations and longer
stability of individual ternary complexes compared
to IFNa2. Such differential efficiencies in the
engagement of ifnar1 (and ifnar2) by IFNb com-
pared to IFNa2 could then explain several features
of differential signal activation by IFNs: (i) com-
pared to IFNa, IFNb shows additional gene acti-
vation at lower (i.e. physiological) concentrations,
while at higher concentration similar activities
were observed;11 (ii) differential signaling is depen-
dent on the cell type,9 which may be related to
(local) receptor concentrations. Further studies,
and in particular binding experiments with full
transmembrane proteins in living cells, will be
required to test this hypothesis fully. Strikingly,
the important role of the surface affinity K2 (cf.
Figure 10) for the formation of the IL4 receptor
complex has been demonstrated in living cells.40

Materials and Methods

Materials

IFNb (formulated Rebif 22 mg and 44 mg) was a gift
from Serono GmbH, Unterschleißheim, Germany.
Oregon green 488 (OG-488) maleimide and Alexa Fluor
488 (AF-488) maleimide were purchased from Molecular
Probes Europe BV, Leiden, Netherlands. Synthetic
stearoyl-oleoyl phosphatidylcholine (SOPC) was pur-
chased from Avanti Polar Lipids, Alabaster, USA. The
vector pACgp67B and the BaculoGold baculovirus kit
were purchased from BD Biosciences GmbH, Heidel-
berg, Germany. The vector pMAL-c2x and PNGaseF
were purchased from New England Biolabs, Frankfurt
am Main, Germany.

Protein expression, purification and labeling

IFNa2, IFNa2-R149A and tag-less ifnar2-EC (ifnar2-tl)
were expressed in Escherichia coli, refolded from
inclusion bodies and purified by anion-exchange and
size-exclusion chromatography as described.41 The wt
ifnar2-EC carrying a C-terminal decahistidine-tag and
its mutant I47A were expressed and purified in the
same manner. The ifnar2-EC mutant S35C and the
IFNa2 mutant S136C were refolded and purified as
the wt. After size-exclusion chromatography, the pro-

teins were labeled by adding a threefold molar excess of
OG-488 maleimide or AF-488 maleimide at 4 8C for 18
hours. Finally, they were further purified by desalting
and anion-exchange chromatography. Binding experi-
ments confirmed that the interaction properties of both
proteins were not affected by mutagenesis and labeling.
OG-488 and AF-488 labeled proteins showed very simi-
lar properties in terms of fluorescence intensities and
bleaching rates. Ifnar1-EC with a C-terminal His-tag
was cloned into the vector pACgp67B and expressed in
Sf9 insect cells using the baculovirus system (Baculo-
Gold). The supernatant was harvested three to four
days after infection and ifnar1-EC was purified by
immobilized metal chelate affinity chromatography
(IMAC) and size-exclusion chromatography. The protein
was analytically deglycosylated using PNGaseF.
MBP-H10 was expressed using the pMal-c2x vector and
purified by IMAC and size-exclusion chromatography.
All purified proteins were more than 95% homogeneous
and monomeric as detected by non-reducing SDS-PAGE
and size-exclusion chromatography.

Solid phase detection techniques

Receptor immobilization, lipid bilayer assembling and
protein interactions were monitored by RIfS. This label-
free detection technique monitors binding on the surface
of a thin silica interference layer,42,43 and therefore is
compatible with fluorescence detection. Furthermore,
background signals due to changes in the bulk refractive
index as observed by evanescent field detection are
much less critical in RIfS-detection.31 Binding curves
were obtained from the shift of the interference spectrum
of the silica layer: a shift of 1 nm corresponds to approxi-
mately 1 ng/mm2 protein on the surface. Measurements
were carried out in a flow chamber with an acquisition
rate of 1 Hz under continuous flow-through conditions
as described.31,42

Binding of fluorescence-labeled proteins was moni-
tored by TIRFS using a home-built setup. A 25 mW
argon ion laser was used for fluorescence excitation at
488 nm. Typically a low excitation power of 2–3 mW
focused onto an area of ,1–2 mm2 was used in order to
minimize photobleaching. Fluorescence was collected by
an optical fiber and detected by a photomultiplier tube
through a bandpass filter. The same transducer slides as
for RIfS detection were used as substrates, and all pro-
cesses on the surface were monitored simultaneously by
single-wavelength RIfS detection at 800 nm. The com-
bined TIRFS-RIfS set-up will be described in more detail
elsewhere. Continuous flow-through conditions were
maintained for all experiments. Data were acquired
with a time resolution between 1.5 s and 16 s, depending
on the kinetics of the process. Photobleaching was mini-
mized by closing the shutter of the excitation source
between the measurements.

Surface modification

For probing the interactions between individual
proteins involved in the formation of the ternary com-
plex, the silica surface of the transducer was modified
with a two-dimensional molecular polymer brush of
poly(ethylene glycol) (PEG) as described.44 For oriented
immobilization, a chelator head group carrying nitrilo-
triacetic acid (NTA) moieties was covalently coupled to
the PEG polymer brush. This chelator head group binds
decahistidine-tagged proteins with high stability
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allowing complete blocking of excessive binding sites. Its
synthesis and characterization will be described
elsewhere.

Solid-supported lipid bilayers were obtained by
vesicle fusion on the bare silica surface of the transducer
as described.45 SOPC in chloroform was mixed with
1–5 mol% of a chelator lipid based on the same chelator
head group mentioned above. After removing the
solvent in vacuo and resuspension into buffer, small
unilaminar vesicles (SUV) were prepared by probe
sonication. The transducer surface was incubated for
30 minutes in a freshly prepared mixture of two parts
30% (v/v) hydrogen peroxide and three parts concen-
trated sulfuric acid. After extensive washing with water,
the transducer was mounted immediately into the flow
cell. SUVs at a concentration of 250 mM were injected
and bilayer formation was followed by RIfS-detection.

Binding assays

All binding assays were carried out in 20 mM Hepes
(pH 7.5) and 150 mM NaCl. The chelator head groups
were loaded with Ni ions by injecting 15 mM nickel(II)-
chloride in running buffer. Depending on the targeted
surface concentrations, the histidine-tagged receptor pro-
teins were injected at concentrations between 2 nM and
1 mM for 100–400 s. Excessive binding sites were blocked
by injecting 1 mM decahistidine-tagged maltose-binding
protein (MBP-H10). Immobilized proteins were removed
with a pulse of 200 mM imidazole (pH 8.0). Ligand bind-
ing experiments and their evaluation were carried out as
described.31 Protein solutions were diluted at least five-
fold into the running buffer to avoid background
signals. As a control for specificity, the highest protein
concentration was applied either without immobilized
protein or after immobilizing MBP-H10. Complex
stoichiometries were estimated from the relative satur-
ation signals taking the molecular masses of the proteins
into account. In the case of rate constants below 0.3 s21,
association and dissociation rate constants were deter-
mined by fitting a single-exponential function and
assuming a 1 : 1 interaction stoichiometry. Low-affinity
interactions with kd . 0:3 s21 were investigated by deter-
mining the equilibrium response at various ligand con-
centrations. The equilibrium dissociation constant KD

was determined from dose-response curves by fitting
the Langmuir equation. For studying the interaction of
complexes of IFNs and ifnar2-EC with immobilized
ifnar1-EC, ifnar2-tl was added in stoichiometric
amounts, and formation of the stoichiometric complex
was verified by analytical gel-filtration.41 The KD value
of the interaction of ifnar1-EC with IFNb–ifnar2-EC
complex in solution was determined by a binding
inhibition assay with 20 nM IFNb–ifnar2-EC and ifnar1-
EC at concentrations between 10 nM and 1 mM. The
initial slope versus ifnar1-EC concentration in solution
was plotted and the KD value determined by fitting the
exact solution of the law of mass action as described.46

Fluorescence recovery after photo-bleaching (FRAP)

Fluorescence imaging and recovery experiments were
carried out with a laser scanning confocal microscope
(LSM 510; Zeiss, Jena) equipped with a 25 mW argon
ion laser. Bilayer assembling and receptor attachment
were carried out in a flow cell with automated sample
handling. The ifnar2-EC mutant S35C labeled with OG-
488 was immobilized as described above. A circular

spot with a diameter of 20–30 mm was bleached by scan-
ning for 9 s at 75% laser power. Immediately afterwards
images were acquired at 0.1–0.4% laser power by scan-
ning for 1.9 s with a time interval of 5–10 s. Diffusion
constants were calculated from the t1=2 determined from
the recovery curves as described47 using a g-factor of 1.
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Labeled IFNa2 was prepared by Pia Müller. We
thank Bernd Otto, Fraunhofer IGB, Hannover for
helpful discussions. This work was supported by
the Deutsche Forschungsgemeinschaft within the
Emmy-Noether Program for young investigators
(PI-405/1-1,2), by the Human Frontier Science
Program (RGP60/2002) and by Stiftung P.E:
Kempkes (10/2000). The support from the labora-
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Lateral Ligand-Receptor Interactions on Membranes Probed by
Simultaneous Fluorescence-Interference Detection

Martynas Gavutis, Suman Lata, Peter Lamken, Pia Müller, and Jacob Piehler
Institute of Biochemistry, Biocenter N210 Johann Wolfgang Goethe-University, 60439 Frankfurt am Main, Germany

ABSTRACT We describe an experimental approach for studying ligand-receptor interactions in the plane of the membrane.
The extracellular domains of the type I interferon receptor subunits ifnar1-EC and ifnar2-EC were tethered in an oriented fashion
onto solid-supported, fluid lipid bilayers, thus mimicking membrane anchoring and lateral diffusion of the receptor. Ligand-
induced receptor assembling was investigated by simultaneous total internal reflection fluorescence spectroscopy and
reflectance interferometry (RIf). Based on a rigorous characterization of the interactions of fluorescence-labeled IFNa2 with
each of the receptor subunits, the dynamics of the ternary complex formation on the fluid lipid bilayer was addressed in further
detail making use of the features of the simultaneous detection. All these measurements supported the formation of a ternary
complex in two steps, i.e., association of the ligand to ifnar2-EC and subsequent recruitment of ifnar1-EC on the surface of the
membrane. Based on the ability to control and quantify the receptor surface concentrations, equilibrium, and rate constants of
the interaction in the plane of the membrane were determined by monitoring ligand dissociation at different receptor surface
concentrations. Using mutants of IFNa2 binding to ifnar2-EC with different association rate constants, the key role of the asso-
ciation rate constants for the assembling mechanism was demonstrated.

INTRODUCTION

Lateral interactions between membrane proteins play a key

role for activation and propagation of cellular signaling.

These lateral interactions are not static in nature and are often

triggered or stabilized by interactions with further, soluble

interaction partners such as ligands, effectors, and binding

proteins from the matrices adjacent to the lipid bilayer. Thus,

ligand-induced interaction between two or more transmem-

brane proteins has been recognized as the basic principle for

signal transduction through receptor tyrosine kinases,

(Ullrich and Schlessinger, 1990) as well as cytokine recep-

tors (Cunningham et al., 1991). Although recent studies have

challenged this model for several cytokine receptors and

more complex mechanisms for interreceptor interactions

have been proposed (Gent et al., 2003; Grotzinger, 2002;

Remy et al., 1999; Sebald and Mueller, 2003; Stroud and

Wells, 2004), simultaneous interaction of the ligand with

several transmembrane proteins is still believed to be the

cause of receptor activation. The interactions involved in the

formation of these complexes have been characterized in

solution to much detail. To conclude their consequences for

signaling, a better understanding of the biophysical princi-

ples governing ligand-induced assembling of the signaling

complex on the cellular membrane is needed. After ligand

binding, the subsequent interactions take place in the plane

of the membrane. This reduction in dimensionality has been

proposed to have important physicochemical consequences

(Adam and Delbruck, 1968; Axelrod and Wang, 1994;

DeLisi, 1980; Vanden Broek and Thompson, 1996; Wang

et al., 1992). Therefore, lateral rate and affinity constants

cannot be readily deduced from the interaction parameters

determined in solution. Furthermore, the coupling of ligand

binding with the lateral interactions makes deconvolution of

the two processes difficult as subtle interactions undetectable

in bulk phase could still affect the complex formation on the

surface of the membrane.

Recently, we have established detection means for as-

saying the interaction of type I interferons (IFNs) with their

soluble receptor domains ifnar1-EC and ifnar2-EC tethered

onto solid-supported membranes (Lamken et al., 2004).

Although only three components are involved, the assembly

process could be considerably complicated. Thus, surface-

sensitive techniques suitable for deconvoluting different

facets of the assembling process in real time are required.

Total internal reflection fluorescence spectroscopy (TIRFS)

has been frequently used for monitoring ligand binding at

surfaces and solid-supported membranes (Axelrod et al.,

1984; Schmid et al., 1998; Thompson et al., 1997, 1993;

Thompson and Lagerholm, 1997). High sensitivity of TIRFS

makes binding events detectable even at very low surface

concentrations, and provides the versatility of fluorescence
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experiments. However, absolute quantification of the ad-

sorbed molecules without a reference/standard is not possible.

By exclusive detection of the fluorescent molecules, high

signal/background ratios are achieved, but only a very

limited picture of all binding events at the surface is

obtained. As an alternative, label-free detection of surface-

adsorbed molecules by optical techniques (Haake et al.,

2000), e.g., surface plasmon resonance (SPR), grating couplers

or resonant mirror, as well as by nonoptical techniques, e.g.,

quartz crystal microbalance (Marx, 2003) or surface acoustic

waves (Gizeli et al., 1997) has been described. These

techniques detect and quantify all adsorbed materials in real

time, but lack the specificity and sensitivity of fluorescence

detection. Thus, TIRFS would be ideally complemented

with label-free detection. Combination of TIRFS with SPR

(surface plasmon field-enhanced fluorescence spectroscopy)

has been shown to be a powerful tool for characterizing

processes at interfaces (Liebermann and Knoll, 2000;

Neumann et al., 2002). This technique uses the same light

source for fluorescence excitation as for SPR detection, thus

limiting the flexibility of each technique. The metal layers

required for SPR are furthermore disadvantageous due to

their strongly surface distance-dependent fluorescence

quenching.

Here, we describe a novel combination of TIRFS with

reflectance interferometry (RIf) at a thin silica layer for

studying lateral interactions at supported lipid bilayers.

Spectral RIf has proven rugged and powerful for label-free

detection of cytokine-receptor interactions (Piehler and

Schreiber, 2001). The interaction of fluorescence-labeled

IFNa2 with the extracellular domains of its receptor subunits

ifnar1-EC and ifnar2-EC tethered onto solid-supported, fluid

lipid bilayers containing chelator lipids (Dorn et al., 1998;

Schmitt et al., 1994) was used as a model system. Based on

simultaneous fluorescence and mass sensitive detection, we

deconvoluted the interactions of this ligand with its receptor

components on the lipid bilayer. Assuming a two-step

kinetic complex assembling and disassembling model, we

determined the association rate constant and the equilibrium

dissociation constant of the lateral interaction of ifnar1-EC

with IFNa2 bound to ifnar2-EC on the lipid bilayer surface.

Further mechanistic aspects of receptor assembling were

demonstrated by using mutants of IFNa2 binding to ifnar2-

EC with different association rate constants.

MATERIALS AND METHODS

Proteins expression and purification

IFNa2, ifnar2-EC carrying a C-terminal decahistidine tag and tagless ifnar2-

EC (ifnar2-tl) were expressed in Escherichia coli, refolded from inclusion

bodies, and purified by ion exchange and size exclusion chromatography as

described before (Piehler and Schreiber, 1999). In the structure of the ifnar2-

EC-IFNa2 complex obtained by NMR and distance-constrained docking

(Chill et al., 2003; Roisman et al., 2001), the residue S136 of IFNa2 was

found proximal, yet not in contact with ifnar2-EC. This residue was mutated

to a cysteine residue for site-specific fluorescence labeling. IFNa2-S136C,

IFNa2-S136CR144A, and IFNa2-S136CM148A were refolded and pu-

rified as the wt, and labeled with Alexa Fluor 488 (AF488) maleimide or

Oregon Green 488 (OG488) maleimide (both from Molecular Probes,

Eugene, OR). After the labeling reaction, the labeled protein was further

purified by a final step of anion exchange chromatography (HiTrap Q,

Amersham Biosciences, Buckinghamshire, UK), by which the fluorescence-

labeled species was further enriched. In a final desalting step (HiTrap

desalting, Amersham Biosciences), residual fluorescence dye was removed.

Typical labeling degrees were 60–80% as estimated from the absorbance

spectra. These fluorescence-labeled IFNs will be referred to as AF488IFNa2,
AF488IFNa2-M148A, and OG488IFNa2-R144A, respectively. Ifnar1-ECwith

a C-terminal decahistidine tag was expressed in Sf 9 insect cells and purified

from the supernatant by immobilized metal affinity chromatography and by

size exclusion chromatography as described earlier (Lamken et al., 2004).

All binding assays were carried out with the glycosylated protein, which had

an average molecular mass of 57 kDa as determined by mass spectrometry.

Simultaneous TIRFS-RIf detection

The experimental setup was implemented as schematically shown in Fig. 1.

The beam of a 488-nm Argon ion laser (162LGA/LGL, LG Laser Tech-

nologies, Kleinostheim, Germany), equipped with an electrical shutter

(Uniblitz, Vincent Associates, Rochester, NY), was coupled into a 50-mm

core diameter optical fiber (Ocean Optics, Duiven, The Netherlands).

Excitation power was attenuated by misaligning the laser-to-fiber coupling.

The light from the fiber output was focused onto the sample surface with

an adjustable collimator lens (OFR-CSMA-5-VIS, Optics for Research,

Verona, NJ) through a custom-made glass prism (Berliner Glas KGaA,

Berlin, Germany) with a 2.8-mm hole in the center. This hole was used for

attaching the fiber optics for fluorescence detection as well as for reflectance

interferometry (c.f. Fig. 1 C) using a custom-made optical fiber bundle

(Ratioplast, Löhne, Germany), which is depicted in Fig. 1 B. The 600-mm

fiber in the center was used for fluorescence detection. After passing an

infrared cutting filter (Linos Photonics, Göttingen, Germany) the appropri-

ate spectral range was selected with a 532-nm interference filter (Edmund

Optics, Blackwood, NJ) mounted in a motorized filter wheel (AB-303, CVI

Laser, Albuquerque, NM) and detected by a photomultiplier module

(H7711-02, Hamamatsu, Herrsching, Germany). For reflectance interfer-

ometry, the surrounding 200-mm fibers of the fiber bundle were used: half

of them were combined into a fiber bundle for illumination, whereas the

other half was combined into a fiber bundle for detecting the reflected light.

The transducer element (10 nm Ta2O5 and 400 nm silica on a glass

substrate, custom-made from AMP Dünnschichttechnik GmbH, Tornesch,

Germany) was optimized to give a spectral interference pattern with the

inflection point at 800 nm upon perpendicular illumination (Fig. 1 D).

White light from a tungsten halogen lamp (Avantes, Boulder, CO) was

monochromatized using an 800-nm interference filter (Edmund Optics) and

a 780-nm-long pass filter (LOT Oriel, Darmstadt, Germany), and was

coupled into the illumination fibers. The reflected light collected by the

detection fibers passed a second 800-nm interference filter (Edmund Optics)

and was detected with a photomultiplier tube (H7711-02, Hamamatsu). The

spectral characteristics of the detection system are shown in Fig. 1 D,
demonstrating the strict spectral separation of fluorescence and interference

signals.

The transducer was mounted to a flow cell with a 1-mm wide and

100-mm deep flow channel. Sample handling was carried out in a flow-

through format using a syringe pump (Microlab 541C) with two 250-ml

syringes and a four-way distribution valve (MVP) (both from Hamilton,

Bonaduz, Switzerland) as in principle described before (Piehler and

Schreiber, 2001), which were combined with an autosampler (PS 60, MLE

GmbH, Radebeul, Germany). With this system, flow rates between 1 and

500 ml/s can be employed. Sample handling and data acquisition were

controlled with software written in LabVIEW (National Instruments,

Munich, Germany).
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Lipid bilayer assembling, receptor reconstitution,
and binding assays

The fluorescent vesicles used for characterization of the setup were prepared

by doping SOPC with the fluorescent lipids as obtained by reacting SOPE

with OG488 N-hydroxysuccinimide ester (Molecular Probes). The lipids

were homogeneously mixed in the appropriate proportion by dissolving in

chloroform. The solvent was then removed in vacuo and the thin lipid film

was suspended in the buffer. The translucent solution was intermittently

probe sonicated in a water bath at 4�C for 15 min followed by centrifugation

to obtain small unilaminar vesicles (SUV) in the supernatant. For protein

tethering to the lipid membrane, the vesicles were prepared in an identical

fashion as for the fluorescent vesicles, except, SOPCwas doped with 5 mol%

of a chelator lipid based on a novel chelator headgroup containing two NTA

moieties (termed bis-NTA). This chelator headgroup binds decahistidine-

tagged proteins with substantially increased stability compared to the

conventional mono-NTA, and no significant dissociation of decahistidine-

tagged ifnar2-EC was detectable (i.e., kd , 0.0005 s�1) even at low surface

concentrations of chelator headgroups (Lata and Piehler, 2005). To avoid

phase segregation, this chelator lipid contained one unsaturated alkyl chain.

Its synthesis and characterization will be detailed in a forthcoming article.

Before vesicle fusion, the transducer was incubated for 30 min in a freshly

prepared 2:3 mixture of two parts 30% hydrogen peroxide and three parts

concentrated sulfuric acid. After extensive washing with water, the trans-

ducer was dried in a nitrogen stream and mounted immediately into the flow

cell. Bilayer assembling, immobilization of the receptor domains and ligand

binding assays were carried out with 20 mM HEPES, pH 7.5, and 150 mM

NaCl as the running buffer. Solid supported lipid bilayers were obtained by

injecting SUVs at a lipid concentration of 250 mM on the surface of the

transducer. Protein immobilization and binding assays were in principle

carried out as described earlier (Lamken et al., 2004). For tethering the

histidine-tagged proteins to the supported membranes, the chelator head-

groups were loaded with Ni21-ions by injecting 10 mM nickel(II)chloride in

the running buffer for 150 s followed by a 150-s injection of 200 mM

imidazole to remove nonspecifically attached lipids. Depending on the

targeted surface concentrations, the histidine-tagged receptor proteins were

injected at concentrations between 2 nM and 1 mM for 100–400 s. For

coimmobilization of ifnar1-EC and ifnar2-EC, the proteins were injected one

after the other to quantify the amount of each of the receptor components.

The ligand was then injected at concentrations between 100 and 200 nM for

150 s with a flow rate of 1 ml/s, followed by a wash with 10 ml/s. Maximum

flow rates of 250 ml/s were applied for measurement of fast kinetics. After

a set of ligand binding experiments, all attached proteins were removed by

a 150-s pulse of 200 mM imidazole, and the subsequent binding assays were

carried out on the same lipid bilayer.

Data evaluation

Data were analyzed using Origin (Microcal Software), Biaevaluation 2.1

(Biacore), or Berkeley Madonna (UCB) software packages. If necessary, RIf

curves were corrected for a linear drift based on the signals before tethering

the proteins and after regeneration with imidazole. Different models were

used for data evaluation of individual ligand-receptor interaction and for

ligand binding and dissociation to ifnar1-EC and ifnar2-EC coimmobilized

on supported lipid bilayers.

Pseudo-first-order binding model

Ligand binding to individual receptors was fitted with standard pseudo-first-

order kinetic models for association (Eq. 1) and dissociation (Eq. 2)

(Eddowes, 1987):

RðtÞ ¼ Reqð1� e
�ðka 3 c1kdÞ 3 ðt�t0ÞÞ (1)

RðtÞ ¼ R0 3 e�kd 3 ðt�t0Þ: (2)

R(t) is the signal at time t, Req is the equilibrium signal, R0 is the signal at

t ¼ t0, ka and kd are association and dissociation rate constants, respectively,
and c is the ligand concentration. The equilibrium dissociation constant KD

was determined from the rate constants of the interaction according to Eq. 3:

KD ¼ kd=ka: (3)

FIGURE 1 (A) Schematic of the setup for simultaneous TIRFS-RIf

detection (details in the text). (B) Cross section of the fiber at the interface to

the transducer: The 600-mm fiber in the center was used for fluorescence

detection. The surrounding 200-mM fibers where used for RIf illumination

and for RIf detection. (C) Enlarged view of the coupling of the light beam

for fluorescence excitation into the RIf transducer, and the fibers for RIf

illumination (1), RIf detection (2), and fluorescence detection (3). (D)

Spectral separation of RIf and TIRFS detection: reflectivity of the RIf

transducer at perpendicular illumination (dashed line) and transmission of

the interference filter used for RIf detection (dotted line), in comparison to

the fluorescence emission spectrum of AF488 (solid line).
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Ternary complex formation and dissociation

No interactions between the extracellular domains of the receptor subunits

have been detectable by several techniques (Lamken et al., 2004), and

therefore preassembling of the receptor could be excluded under the

experimental conditions employed in this study. Furthermore, no co-

operative effect of ifnar2-EC/IFN complex formation on the IFNa2-ifnar1-

EC interaction has been observed (Lamken et al., 2004). Therefore, the

formation and the dissociation of the ternary complex on supported lipid

bilayers was modeled as a two-step process (Whitty et al., 1998) as depicted

in Fig. 2. After binding ligand of IFNa2 (L) to the high-affinity receptor

ifnar2-EC (R2) on the membrane surface to form the binary IFNa2-ifnar2-

EC-complex (B), ifnar1-EC is recruited by lateral interaction on the surface

into the ternary complex (T). The rate constants kBa and kBd are the solution

association and dissociation rate constants of the IFNa2-ifnar2-EC inter-

action with the volume-related equilibrium constant KB
D. The rate constants

kTa and kTd are the surface association and dissociation rate constants,

respectively, of the formation of the ternary complex from the binary com-

plex and ifnar1-EC, and KT
D the corresponding surface-related equilibrium

dissociation constant. The following set of differential equations (as derived

in more detail in the Appendix) was used for fitting the dissociation phase:

d½T�
dt

¼ k
T

a 3 ½B� 3 ð½R1�0 � ½T�Þ � k
T

d 3 ½T�

d½B�
dt

¼ �k
T

a 3 ½B� 3 ð½R1�0 � ½T�Þ1 k
T

d 3 ½T� � k
B

d 3 ½B�

½S� ¼ ½T�1 ½B�: (4)

[R1]0 and [R2]0 were initial surface concentrations of ifnar1-EC and

ifnar2-EC, respectively. [S] was the total surface concentration of the ligand,

which was detected in a time-resolved manner by the TIRFS signal and

converted into an absolute surface concentration using a calibration by RIf.

Because [T] and [B] at t ¼ 0 could not be parameterized, we assumed

[T]¼ [R2]0 and [B]¼ 0 as starting parameter for the fitting. Owing to the fast

exchange kinetics, the actual values for [T] and [B] were reached within a few

seconds—much faster than the dissociation of the ligand. The parameters

[R1]0 and [R2]0 were estimated from the RIf signal of the respective

experiment, whereas the values for kBd and kTd were taken from the binding

assays with the individual receptors. The only fitted parameter was kTa . The
surface dissociation constants KT

D were determined from kTa and kTd ;

according to Eq. 3. Ligand association and ternary complex assembling

kinetics was simulated using Eq. A5 using the experimentally determined

parameters.

RESULTS

Characterization of the detection system

Solid-supported lipid bilayers are reproducibly formed by

vesicle fusion on glass-type surfaces (Brian and McConnell,

1984), and have been characterized in detail with various

techniques (Nagle and Tristram-Nagle, 2000; Sackmann,

1996). We therefore used lipid bilayer formation to assess

the performance of TIRFS-RIf detection setup. SUVs con-

taining OG488-labeled lipids were injected onto hydrophilic

silica surfaces and fusion was monitored simultaneously on

the fluorescence (TIRFS) and the interference (RIf) channels

(Fig. 3 A). Upon a complete bilayer formation, a total de-

crease of (6.76 0.2) % in the light intensity was measured in

the RIf channel. Assuming a surface density of 5 ng/mm2 for

a lipid bilayer (Keller and Kasemo, 1998), the RIf signal was

calibrated to a mass loading of 0.7 ng/mm2 per percentage

decrease in intensity. By comparing the signals obtained for

vesicle fusion by RIf and by spectral RIf, for which the mass

sensitivity has been determined with radioactively labeled

proteins (Hanel and Gauglitz, 2002), this mass sensitivity

was also confirmed for proteins (data not shown). For clarity

sake, the RIf signal converted into surface mass loading will

be shown in the measurements to follow (Fig. 3 B). Based on
this calibration, a typical rms noise of 10 pg/mm2 was deter-

mined for the RIf signal at a data acquisition rate of 1 Hz.

This value is ;53 higher than the rms noise of optimized

spectral RIf systems under similar conditions of data acqui-

sition (Piehler and Schreiber, 2001). In contrast to the un-

altered RIf signal, the fluorescence signal for a full bilayer

FIGURE 2 (A) Structure of the bis-NTA lipid used for tethering the

extracellular receptor domains on supported lipid bilayer in a stable, yet

reversible manner (B). (C) Illustration of the two-step mechanism assumed

for the formation and dissociation of the ternary complex. (D) The

corresponding interaction scheme with the identifiers used in the equations.
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varied with the molar fraction of the fluorescent lipids in the

vesicles (Fig. 3 C). At concentrations below 1 mol%, the

signal observed for a full lipid bilayer linearly correlated with

the fraction of the labeled lipids. Assuming an area of 70 Å2

per lipid molecule (Nagle and Tristram-Nagle, 2000), a

detection limit of ;0.1 fmol/mm2 was reached with an

excitation power of ;3 mW/mm2 (Fig. 3 D). Consequently,
by increasing the excitation power, considerably lower

surface concentrations than;0.1 fmol/mm2 should be detect-

able. Yet all further experiments were carried out at this low

a power so that the binding curves were least biased by

photobleaching. For the same reason, shutter-triggered data

collection was applied while monitoring slow dissociation

processes. An important feature of this setup is that the two

optical techniques are spectrally separated: the light intensity

of the RIf channel was several orders of magnitude higher

than the typical fluorescence intensity, yet no cross talk be-

tween the channels was detected. This holds true also for

yellow-fluorescent dyes, which were also successfully used

with this setup using a frequency-doubled Nd-YAG laser

(532 nm) for excitation (data not shown).

To assess the ability of measuring transient interactions by

TIRFS, the contribution of the background fluorescence

from the bulk was investigated by injecting OG488 dye at

different concentrations (Fig. 4 A). These experiments were

carried out on solid-supported lipid bilayers containing

chelator lipids. The signal from bulk fluorescence was above

the noise level at dye concentrations of 200 nM and higher.

The signals were fully transient and their amplitudes cor-

related linearly with the dye concentrations (Fig. 4 A). We

used the dye injections to estimate the upper limit of the

determinable rate constants. For the rise as well as the decay

of the concentration in the flow cell, rate constants of;5 s�1

were obtained by fitting monoexponential curves (Fig. 4 B).

IFNa2 interaction with ifnar2-EC and ifnar1-EC

The interaction of wild-type IFNa2 with its receptor subunits

ifnar1-EC and ifnar2-EC was previously described in detail

(Lamken et al., 2004). Here, we used the IFNa2 mutant

S136C with an additional cysteine, to which the fluorophore

AF488 was coupled site specifically (AF488IFNa2). To ex-

clude that these modifications of the protein affected its

binding properties, we characterized the interaction with

each of the receptor subunits. The interaction parameters ob-

tained from these measurements are summarized in Table 1.

Fig. 5 shows TIRFS and RIf signals during the course of a

typical binding assay that includes the following main steps:

bilayer formation by fusion of vesicles containing 5% bis-
NTA lipids (1); tethering of the high-affinity receptor

component ifnar2-EC through their C-terminal decahistidine

tags (4); binding of the fluorescently labeled ligand (5), and
removal of the bound proteins with imidazole (6). Each of

these steps was monitored quantitatively by RIf, confirming

stable tethering of ifnar2-EC. The binding of the labeled

ligand, was also detected on the TIRFS channel with sub-

stantially higher signal/noise ratio in comparison to the RIf

channel. An overlay of the signals obtained by TIRFS and by

RIf for the injection of AF488IFNa2 is shown in Fig. 6 A. For
both the association and the dissociation phase, very similar

shapes of TIRFS and RIf signals were observed. The dis-

sociation curves were fitted by a monoexponential decay

(Eq. 2) yielding a dissociation rate constant kd of (0.010 6

0.002) s�1 for both signals. An association rate constant ka of
;3 3 106 M�1s�1 estimated from a monoexponential fit of

the association phase (Eq. 1). Both ka and kd obtained for the
AF488IFNa2 were in good agreement with the data obtained

with wild-type IFNa2 (Lamken et al., 2004; Piehler and

Schreiber, 2001) under similar experimental conditions, con-

firming that the mutation and the coupling of a fluorophore

FIGURE 3 Characterization of simultaneous TIRFS-RIf

detection. (A) Fusion of unilaminar vesicles containing

fluorescently labeled lipids simultaneously detected by RIf

(solid line) and TIRFS (dotted line). (B) Overlay of the

curves shown in panel A after RIf intensity change was

converted into surface mass deposition. (C) RIf (h) and

TIRFS (d) signals observed for a full lipid bilayer at

different fractions of labeled lipids. (D) RIf (solid line) and

TIRFS (dotted line) signals at a fraction of 10�4%

fluorescent lipids.
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did not affect the binding properties. However, the associa-

tion and dissociation curves indicated mass transport effects,

which have been frequently observed for interactions at the

solid-liquid interface at high surface concentrations (Glaser,

1993; Lagerholm and Thompson, 1998; Schuck and Minton,

1996). Therefore, ligand binding at lower surface concen-

tration of ifnar2-EC was investigated (Fig. 6 B), which was

possible because of the higher signal/noise ratio of fluo-

rescence detection. At ifnar2-EC surface concentrations

below 150 pg/mm2 (6 fmol/mm2), association and dissoci-

ation phases basically unbiased by mass transport limitation

were observed. Furthermore, dissociation of AF488IFNa2 in

the presence of 1 mM IFNa2 was measured (Fig. 6 C), which
gave a very similar dissociation curve as obtained at low

ifnar2-EC surface concentrations (Fig. 6 D). From these

experiments, an average kd of 0.013 6 0.002 s�1 was deter-

mined for the molecular interaction of AF488IFNa2 with

ifnar2-EC. Furthermore, a strict 1:1 interaction between

ifnar2-EC and IFNa2 on the lipid bilayer was confirmed. No

differences in binding properties were observed between
AF488IFNa2 and OG488IFNa2 (data not shown).

For the interaction of IFNa2 with ifnar1-EC, a KD of

5 mM has been previously determined, which is three orders

of magnitude higher than the KD of the interaction of IFNa2

with ifnar2-EC (Lamken et al., 2004). Dissociation of the

ligand was too fast to be resolved by RIf. Owing to a higher

signal/noise ratio, dissociation of AF488IFNa2 from ifnar1-

EC could be resolved by TIRFS detection at low receptor

surface concentration (i.e., unbiased by rebinding). To mini-

mize background signals, the ligand was injected at a con-

centration of 200 nM. The fluorescence signal upon ligand

injection is shown in (Fig. 6 C). From these experiments, a kd
of (1 6 0.3) s�1 was determined by fitting Eq. 2. Thus, the

IFNa2-ifnar1-EC complex is ;100-fold less stable than the

IFNa2-ifnar2-EC complex (Fig. 6 D). The ka could not be

reliably determined from these curves. However, a similar

KD of ;5 mM was concluded for AF488IFNa2 as for wild-

type IFNa2 by comparing the equilibrium amplitudes

determined by RIf at different ligand concentrations (data

not shown). From these values, a ka of ;2 3 105 M�1s�1

was estimated for this interaction using Eq. 3. Thus, the

ligand binds .10 times faster to ifnar2-EC than to ifnar1-

EC. The same binding experiment was carried out with

AF488IFNa2 in stoichiometric complex with ifnar2-tl (data

not shown). A dissociation rate constant of ;1 s�1 was

determined, confirming the similar affinity of IFNa2 and the

IFNa2-ifnar2-EC complex for ifnar1-EC (Lamken et al.,

2004). Thus, the interaction of ifnar2-EC with IFNa2 does

not significantly affect the binding affinity of IFNa2 toward

ifnar1-EC. The same binding experiments were carried out

with the fluorescence labeled mutants AF488IFNa2-M148A

and OG488IFNa2-R144A, which bind with altered affinity to

ifnar2-EC. Also for these proteins, the S136C mutation and

coupling of the fluorophore did not affect the binding prop-

erties (see below).

Ligand-induced receptor assembling

To study ligand-induced receptor assembling, both ifnar2-

EC and ifnar1-EC were tethered sequentially to the lipid

bilayer. The absolute amounts tethered to the surface were

quantified by RIf detection. Then, 100 nM AF488IFNa2 was

injected for ensuring maximum coverage of the high-affinity

component ifnar2-EC, and the interaction was monitored

simultaneously by RIf and TIRFS. A set of experiments with

different absolute and relative surface concentrations of

ifnar2-EC and ifnar1-EC is shown in Fig. 7. At high sur-

face concentrations of both the receptor components in

stoichiometric amounts (;12 fmol/mm2), ligand dissociated

very slowly (Fig. 7 A). When the surface concentrations of

both receptor components were reduced by a factor of ;6,

considerably faster dissociation was observed (Fig. 7 B).
However, when only the surface concentration of ifnar2-EC

was low (;2 fmol/mm2), and the surface concentration of

ifnar1-EC was high (;12 fmol/mm2), the ligand dissociated

at a comparably slow rate (Fig. 7 C). With a stoichiometric

excess of ifnar2-EC on the surface, a biphasic decay with a

high offset of stable-bound IFNa2 was observed (Fig. 7 D).
The kd of the faster decay matched the kd of the IFNa2-

ifnar2-EC interaction, whereas the remaining amount of

IFNa2 confirmed a 1:1:1 stoichiometry of the complex of

IFNa2 with ifnar2-EC and ifnar1-EC. The association phases

for these experiments are compared in Fig. 7 E. Again, mass

transport limitation was observed at high surface concen-

trations of ifnar2-EC (.4 fmol/mm2). At low surface con-

centrations, the association phase perfectly matched the

FIGURE 4 Background signals and time resolution. (A)

Background fluorescence signals from OG488 dye in

solution. The inset shows the linear dependence of the

signal on the fluorophore concentration. (B) Concentration
profile obtained from bulk fluorescence measurements and

fit of the rise and decay phases by monoexponential

functions.
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association observed for ifnar2-EC alone, and the same ka
was obtained by fitting Eq. 1.

The striking differences in the dissociation kinetics

observed in these experiments support a kinetic stabilization

of the ternary complex, and underscore the importance of

quantifying receptor surface concentrations. The dynamic

nature of the ternary complex was furthermore corroborated

by challenging the ternary complex formed with AF488IFNa2

with unlabeled IFNa2 (Fig. 8 A). This experiment was

carried out at relatively low receptor surface concentration,

thus excluding bias of the dissociation kinetics by rebinding.

Fast exchange of the labeled ligand was observed with much

higher rate constant than the dissociation of the unchallenged

ligand. Chasing with tagless ifnar2-EC did not accelerate

ligand dissociation (data not shown), excluding that this

effect was due to rebinding. We explain this fast exchange of

the ligand by additional binding of the unlabeled ligand to

unoccupied receptor subunits, which could even be detected

by RIf (Fig. 8 B). This fast ligand exchange strongly supports
a dynamic equilibrium between ternary and binary com-

plexes.

Interaction in plane of the membrane

With stoichiometric amounts of ifnar1-EC and ifnar2-EC,

we assumed a simplified two-step mechanism for receptor

formation and dissociation as depicted in Fig. 2 because of

the higher affinity and association rate constants of IFNa2

binding to ifnar2-EC. Under these conditions, the rate of

ligand dissociation from the surface in the presence of

ifnar1-EC is a probe of the dynamic equilibrium between

binary (ifnar2-EC/IFNa2) and ternary complex on the

membrane. We therefore determined this surface dissoci-

ation constant of this lateral interaction by evaluating

ligand dissociation at various stoichiometric surface

concentrations of ifnar2-EC and ifnar1-EC at stoichiomet-

ric ratio. For calculating the signals into surface concen-

trations, the fluorescence signal was calibrated against the

mass-sensitive signal. A linear correlation of the maximum

ligand binding fluorescence signals with the receptor

surface concentration as determined by RIf was observed

(Fig. 9 A). This calibration allowed: i), conversion of the

fluorescence signals, as observed during ligand binding

and dissociation, into mass loading (Fig. 9 B), and ii),

precise assessment of absolute receptor surface concen-

trations even at low surface coverage. To determine the

association rate constant kTa of the interaction of ifnar2-EC-

bound IFNa2 with ifnar1-EC on the bilayer surface, Eq. 4

was fitted to the ligand dissociation phase with kTa as the

only fitting parameter, whereas all the other parameters

were fixed at the values determined in the previous

measurements: kBd was parameterized with the rebinding-

corrected kd of the ifnar2-EC-IFNa2 interaction (0.013

s�1); kTd was parameterized with the kd of the interaction of

the ligand with ifnar1-EC from solution (1 s�1), assuming

that tethering the complex on the membrane did not affect

the complex lifetime. The receptor surface concentrations

[R1]0 and [R2]0 were determined directly from the RIf

signals. Despite the constrained parameterization, very

good agreement of the fit was observed for all the

measured curves (Fig. 9, C and D), which was

significantly better than a monoexponential fit (Lamken

et al., 2004). The kTa determined at different surface

concentrations and the corresponding surface dissociation

constant KT
D are listed in Table 2. Strikingly, similar values

for kTa were obtained for all dissociation curves, resulting

into an average kTa of (16.5 6 1.6) mm2fmol�1s�1 or

;0.027 mm2molecules�1s�1. From the surface rate con-

stants, a surface equilibrium dissociation constant KT
D of

0.061 6 0.006 fmol/mm2 or ;36 mol/mm2 was de-

termined using Eq. 3.

FIGURE 5 Course of a typical binding experiment on supported lipid

bilayers as detected by RIf (solid line) and TIRFS (dashed line). Injection of

(1) SOPC SUVs, (2) 10 mM nickel(II)chloride, (3) 200 mM imidazole, (4)

300 nM ifnar2-H10, and (5) 100 nM AF488IFNa2.

TABLE 1 Parameters of the interaction with ifnar2-EC and ifnar1-EC for IFNa2 and the mutants used in this study

Ifnar2-EC Ifnar1-EC

IFNa2* ka [M
�1s�1] kd [s

�1] KD [nM] kd [s
�1] KD [mM] ka [M

�1s�1]

wt (3 6 1) 3 106 0.013 6 0.002 4 6 2 1 6 0.3 ;5 ;2 3 105

M148A (3 6 1) 3 106 0.3 6 0.05 100 6 40 1 6 0.3 ;5 ;2 3 105

R144A (3 6 1) 3 105 0.04 6 0.005 130 6 50 0.9 6 0.3 ;5 ;2 3 105

*All species carried the S136C mutation and were site-specifically labeled with OG488 or AF488.
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The roles of the association rate constants

Based on these results we simulated the assembling kinetics

at different receptor surface concentrations (Fig. 10 A) and
different stabilities of the ligand complex with ifnar2-EC

(Fig. 10 B). These simulations showed that ligand associa-

tion to ifnar2-EC is the rate-determining step in ternary

complex assembling (Fig. 10 A). Consequently, assembling

mechanism should be primarily determined by the faster

association of the ligand to ifnar2-EC compared to ifnar1-

EC, and not by the stability of the complex with ifnar2-EC

(Fig. 10 B). Owing to the principle of microscopic re-

versibility, this faster interaction of the ligand with ifnar2-EC

should also dictate the dissociation mechanism. To test this

hypothesis, the dissociation from the ternary complex was

probed with the mutants IFNa2-M148A and IFNa2-R144A.

These mutants bind ifnar2-EC with 25–30-fold lower affinity

than the wild type, but with very different rate constants

(Piehler et al., 2000): for IFNa2-M148A, the ka is unchanged
compared to the wild type, whereas for IFNa2-R144A, the ka
is decreased by one order of magnitude. These mutants were

site-specifically fluorescence labeled with AF488 (M148A)

and OG488 (R144A) through the S136C mutation as the

wild-type protein (AF488IFNa2-M148A and OG488IFNa2-

R144A, respectively), and the interaction with ifnar2-EC

was characterized by TIRFS-RIf detection. The dissociation

of these IFNa2 mutants from ifnar2-EC are compared in Fig.

11 A. The rate constants obtained for the mutants (Table 1)

were in good agreement with the published values, while

binding to ifnar1-EC was unchanged compared to the wild

type (data not shown).

With ifnar2-EC and ifnar1-EC coimmobilized on lipid

bilayers, for both OG488IFNa2-R144 and AF488IFNa2-

M148A significantly faster ligand dissociation compared to
AF488IFNa2 was observed (Fig. 11 B). For AF488IFNa2-

M148A, however, the dissociation at different receptor sur-

face concentrationswas still fitted well by the samemodel and

the stringent parameterization as used for AF488IFNa2 (Fig.

11, C and D). Moreover, a surface association rate constant

kTa of (18 6 1) mm2fmol�1s�1 was obtained, resulting into

a surface equilibrium dissociation constant KT
D of 0.056 6

0.004 fmol/mm2 (i.e., 33molecules/mm2). These values are in

very good agreement with the values obtained for
AF488IFNa2. In contrast, considerable systematic deviation

of the fit was obtained for OG488IFNa2-R144A (Fig. 11,E and

F), and a significantly lower kTa of (96 1) mm2fmol�1s�1 was

obtained, resulting into a higher apparent KT
D of 0.11 6 0.01

fmol/mm2. (i.e., 67 molecules/mm2).We conclude from these

results that the model shown in Fig. 2 holds true only for the

FIGURE 6 Interaction of AF488IFNa2 separately with

each of the receptor subunits ifnar2-EC (A–D) and ifnar1-

EC (E and F) tethered to supported lipid bilayers. (A)

Ligand binding (100 nM) to ifnar2-EC and dissociation as

detected simultaneously by TIRFS (red) and RIf (black).

(B) Interaction of 100 nM ligand with ifnar2-EC at

different ifnar2-EC surface concentrations (20 pg/mm2,

blue; 150 pg/mm2, green; 500pg/mm2, red; and 1000 pg/

mm2, black) as detected by TIRFS. The signals were

normalized to the maximum signal, which at this ligand

concentration corresponds to Rmax. (C) Chasing of
AF488IFNa2 bound to ifnar2-EC by injection of 1 mM

unlabeled IFNa2 as detected by RIF TIRFS (red) and RIf

(black). (D) Comparison of the dissociation curves at high

ifnar2-EC surface concentration (black), at low ifnar2-EC

surface concentration (blue), and for chasing with un-

labeled IFNa2 (orange). (E) Binding of 200 nM
AF488IFNa2 with (black) and without (orange) immobi-

lized ifnar1-EC, and the fit of the dissociation curve (red).
(F) Comparison of the dissociation of IFNa2 from ifnar1-

EC (black) including the fit curve (red) with the

dissociation from ifnar2-EC (blue).
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case that the ka of the interaction with ifnar2-EC substantially

exceeds the ka the interaction with ifnar1-EC.

DISCUSSION

Simultaneous TIRFS-RIf detection

Precise quantification of the interacting species is a key re-

quirement for studying biomolecular interactions in a quan-

titative manner. For studying protein-protein interaction on

solid supported membranes, we incorporated label-free de-

tection by RIf into a prism-based TIRFS setup. Mass-

sensitive detection by RIf enabled for monitoring and

quantifying all binding events on the surface including lipid

bilayer fusion and receptor reconstitution, thus adding

important features in comparison to exclusive fluorescence

detection: i), fluorescence labeling of several components

can be avoided, reducing signal cross talk and possible

effects on protein function; ii), surface concentrations are

directly determined and their changes are monitored, which

is extremely important in case of sensitive multicomponent

surface architectures; iii), straightforward calibration of

fluorescence signals with respect to surface coverage. The

RIf transducer element—a silica layer on top of a glass

substrate—is fully transparent and does not quench surface-

proximal fluorophores, unlike noble metal surfaces required

for detection by SPR, and therefore is ideally compatible

with TIRFS. At the same time, its silica surface is ideally

suited for preparing solid-supported fluid lipid bilayers. RIf

detection is based on directional reflection, providing several

advantages over other detection techniques (Hanel and

Gauglitz, 2002): i), compared to evanescent field interroga-

tion, background signals due to changes in the refractive

index or buffer properties are much lower; ii), strict mass

sensitivity independent on the distance from the surface or

changes in shear forces; iii), simple and rugged fiber-based

interrogation with no moving parts. Fluorescence excitation

and emission were kept independent of RIf illumination by

implementing monochromatic RIf detection in the near

infrared region. Thus, we realized a simple and rugged setup

for simultaneous mass sensitive and fluorescence detection

without compromising the flexibility of either technique.

Complete spectral separation of the two techniques proved

valuable as high-power illumination for optimum RIf de-

tection could be applied without photobleaching the

fluorophores absorbing in the visible region. By further

optimizing the detection, the rms noise of the RIf signal of

currently 10 pg/mm2 could be improved down to 1–2

pg/mm2, which is comparable to spectral RIf detection

(Hanel and Gauglitz, 2002). No significant cross talk be-

FIGURE 7 Interaction of 100 nM AF488IFNa2 with

ifnar1-EC and ifnar2-EC coimmobilized onto supported

lipid bilayers at different absolute and relative amounts.

The signals detected by TIRFS (dotted line) and by RIf

(solid line) during sequential tethering of ifnar2-EC and

ifnar1-EC followed by injection of the ligand are shown in

panels A–D. (A) Ifnar2-EC (25 kDa) and ifnar1-EC (57

kDa) (12 fmol/mm2 of both). (B) Ifnar2-EC and ifnar1-EC

(2 fmol/mm2 of both). (C) Ifnar2-EC (2 fmol/mm2)and

ifnar1-EC (10 fmol/mm2). (D) Ifnar2-EC (8 fmol/mm2)and

ifnar1-EC (5 fmol/mm2). (E and F) Fluorescence traces of

association (E) and dissociation (F) of AF488IFNa2 shown

in panels A (black), B (green), C (red), and D (blue), in

comparison to the interaction with ifnar2-EC alone

(orange).
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tween the two techniques was detectable: fluorescence ex-

citation with different excitation sources and different

excitation power was possible without compromising RIf

detection (data not shown). Vice versa, the performance of

the TIRFS setup was completely independent of RIf illu-

mination. Even at a low excitation power (2–3 mW/mm2)

a detection limit of 107 fluorophores/mm2 (i.e., 10 fluo-

rophores/mm2) was reached, and thus fluorescence detection

could be carried out without significantly photobleaching the

flurophores.

Ligand-induced receptor assembling

We have applied simultaneous TIRFS-RIf detection for mea-

suring ligand-receptor interactions within the plane of the

membrane. The extracellular domains of the two subunits of

the type I interferon receptor were tethered via C-terminal

histidine tags in an oriented fashion onto supported lipid

bilayers using chelator lipids (Dorn et al., 1998; Schmitt

et al., 1994). Here, we used bis-NTA chelator headgroups,

which bind decahistidine-tagged proteins very stably (Lata

and Piehler, 2005), ensuring that the interacting proteins

were tightly tethered to the membrane. Thus, oriented an-

choring and lateral diffusion of the receptor in the plasma

membrane was mimicked while the receptor surface concen-

trations could be varied in a straightforward manner. Homo-

geneous distribution of ifnar2-EC tethered on these bilayers,

and fast lateral diffusion with a diffusion coefficient of

1 mm2/s has been previously shown by laser scanning

microscopy (Lamken et al., 2004). This is comparable to the

local receptor mobility on the plasma membrane as de-

termined by single particle tracking (Ritchie et al., 2003).

The formation of a complete lipid bilayer and its integrity

during the experiments was monitored by RIf, thus ensuring

full experimental control. Furthermore, the amounts of

ifnar2-EC and ifnar1-EC tethered to the bilayers were

quantified in each binding experiment. Site-specifically fluo-

rescence-labeled IFNa2-S136C was used to dissect and

study the interactions involved in ternary complex formation

by monitoring ligand binding simultaneously by TIRFS and

FIGURE 8 Ligand exchange in the ternary complex.

Ternary complex was formed with 2 fmol/mm2 ifnar2-EC

and 10 fmol/mm2 ifnar1-EC tethered on the lipid bilayer,

followed by an injection of 100 nM AF488IFNa2. (A)

Decay of the fluorescence signal in absence (solid line) and

in presence (dotted line) of 10 mM unlabeled IFNa2. (B)

Fluorescence (dotted line) and interference (solid line)
signals during injection of 10 mM unlabeled IFNa2.

Additional binding of the nonlabeled IFNa2 during this

injection was detected by RIf.

FIGURE 9 Evaluation of ligand dissociation kinetics

from the ternary complex at different receptor surface

concentrations. (A) Correlation between saturation ligand

binding signals (fluorescence) and molar surface concen-

tration of ifnar2-EC as determined from the RIf signal. (B)

Dissociation phase at a receptor surface concentration of 1

fmol/mm2: fluorescence signal correlated with the mass

loading (solid line) and fit of Eq. 4 (dotted line). (C)

Normalized dissociation phase (solid line) at different

receptor surface concentrations (black, 12 fmol/mm2; red,

8 fmol/mm2; blue, 4 fmol/mm2; green, 2 fmol/mm2; orange,
1 fmol/mm2; brown, 0.3 fmol/mm2) with fit curves (dotted

line). (D) Residuals from the curves shown in panelC (same

color coding as in C).
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RIf. Although the interaction properties of this ligand were

very similar to the interaction properties previously de-

termined for wild-type IFNa2 (Lamken et al., 2004), we

furthermore succeeded to determine the rate constants of

the very transient interaction with ifnar1-EC by fluorescence

detection. All results supported the previously proposed two-

step assembling mechanism of the ternary complex and a

dynamic equilibrium between binary and ternary complex on

the membrane. Furthermore, possible cooperative effects in

the ternary complex, which have been observed for other

cytokine-receptor complexes, could not be detected for the

IFNa2-ifnar interactions.

We used ligand dissociation kinetics for probing this

dynamic equilibrium between binary and ternary complex.

We assumed ligand association to ifnar2-EC as the first step

(Fig. 2), thus simplifying the mathematical treatment

compared to the general model (Thompson and Axelrod,

1983). The possibility of i), readily varying the receptor

surface concentrations by reversible tethering, and ii),

quantifying absolute surface concentrations by RIf turned

out to be of key importance. Thus, we were able to precisely

parameterize the system. The ligand dissociation kinetics

was fitted well by the model with a single parameter being

adjusted: the association rate constant kTa of the interaction

between the IFNa2-ifnar2-EC complex and ifnar1-EC in

plane of the membrane. Despite this very constrained fitting

procedure, this kTa turned out to be independent on the

surface concentration of the receptor subunits. Even for the

IFNa2-mutant M148A, which dissociated from ifnar2-EC

nearly as fast as from ifnar1-EC, the ligand dissociation

kinetics was properly described by the model. Strikingly,

a very similar kTa was obtained for this mutant, confirming

that the IFNa2-ifnar1-EC interaction was probed by ligand

dissociation. In the case of the IFNa2-mutant R144A with

a similar ka toward ifnar2-EC and ifnar1-EC, however, the

model did not properly fit the observed dissociation kinetics,

and a significantly lower kTa was obtained as compared to

IFNa2 wild type and IFNa2-M148A. These two mutants,

which bind ifnar2-EC with very similar affinity, impressively

demonstrate the role of the association rate constants for the

assembling mechanism and the dynamics of the ternary com-

plex on the membrane.

Interaction in two and three dimensions

The interaction of IFNa2 with ifnar1-EC in solution and

on the surface can be compared based on these results:

the equilibrium dissociation constant of 36 mol/mm2 as de-

termined for the interaction on the surface corresponds to a

KD of 5 mM (or 3000 mol/mm3) with the ligand in solution.

At the concentrations corresponding to these respective KD,

the same numbers of association events per time unit take

place on the surface as in solution, assuming the same dis-

sociation rate constants. The average distance between the

molecules at these concentrations are;200 nm on the mem-

brane and ;100 nm in solution. Under these conditions, the

probability of random collision between the two particles

should be 10–100-fold higher in solution than on the

membrane as estimated by the collision laws for diffusion in

three and two dimensions (Hardt, 1979) taking the different

diffusion coefficients in solution (;100 mm2/s, (Kreuz and

Levy, 1965) and on the membrane (1 mm2/s) into account.

Collisions must, therefore, be 10–100 times more productive

when the proteins are tethered to the membrane. This sub-

stantially higher efficiency could be ascribed to a longer

TABLE 2 Surface association rate constants kT
a and surface

dissociation constants K T
D determined from the fit of the

ligand dissociation kinetics from the ternary complex

IFNa2 ifnar1 [fmol/mm2] kTa [mm2fmol�1s�1] KT
D [fmol/mm2]

wt 12.0 19.2 0.076

7.8 16.8 0.047

4.7 17.7 0.040

3.8 16.6 0.063

2.2 14.8 0.087

1.0 15.5 0.085

0.3 14.7 0.069

Average 16 6 2 0.061 6 0.006

M148A 16.0 18.0 0.056

7.4 19.0 0.053

2.2 17.5 0.057

Average 18 6 1 0.056 6 0.004

R144A 8.5 8.2 0.12

3.9 8.5 0.12

1.6 9.8 0.10

Average 9 6 1 0.11 6 0.01

FIGURE 10 Simulation of ligand association and ter-

nary complex formation kinetics based on the experimental

rate constants of the interaction with ifnar1-EC on the

membrane (ligand concentration of 100 nM). For compar-

ison, all curves were normalized to the equilibrium signal.

(A) Comparison of the ligand association kinetics (black)
and the ternary complex formation (gray) at different

receptor surface concentrations (left, 10 fmol/mm2; right, 1

fmol/mm2). (B) Comparison of the ligand association

kinetics (black) and the ternary complex formation (gray)
at different stabilities of the ligand interaction with ifnar2-

EC (left, 0.01 s�1; right, 1 s�1).
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lifetime of the encounter complex due to slower diffusion in

the membrane (Gutfreund, 1995), suggesting that a decrease

in collision rate on the membrane is essentially compensated

by an increase in successful collisions. Furthermore, pre-

orientation of the membrane-tethered proteins should also

contribute to higher encounter efficiency.

Receptor recruitment on the plasma membrane

Our data also implicate functional consequences, as the sur-

face equilibrium and rate constants determine the formation

and the lifetime of the ternary signaling complex. The

apparent ligand dissociation rate constant (and also the

apparent equilibrium dissociation constant) can be used for

assessing the equilibrium on the cellular plasma membrane.

Thus, 10–20% free binary complex can be estimated for

IFNa2 by comparing our results with published cellular

binding data (Cutrone and Langer, 1997). Indeed, very

similar numbers were concluded from cellular binding data

for the IL-4-receptor (Whitty et al., 1998), where the binding

affinities are well comparable to the IFNa2-ifnar interaction

(Letzelter et al., 1998). A surface equilibrium constant of

36 mol/mm2, however, is not sufficient for such effective

recruitment in case that the typically few 1000 receptors

are uniformly distributed on the total cell surface (;1–10

mol/mm2). This suggests preorganization of the receptor

proteins at higher local concentration within membrane do-

mains, which have been shown to play an important role in

cytokine signaling (Sehgal, 2003; Takaoka et al., 2000). The

efficiency of ternary complex formation and its dynamics

could well be an important parameter determining the

responsiveness of different cell types. Differential respon-

siveness of different cells types toward different IFNs could

also be explained in terms of the efficiency of recruiting

ifnar1, because very different affinities have been observed

for IFNa2 and IFNb (Lamken et al., 2004).

APPENDIX

The proposed assembling mechanism shown in Fig. 2 can be described by

the following set of differential equations:

d½T�
dt

¼ k
T

a ½B�½R1� � k
T

d ½T�

d½B�
dt

¼ �k
T

a ½B�½R1�1 k
T

d ½T� � k
B

d ½B�1 k
B

a ½R2�½L�; (A1)

where [B] and [T] are the surface concentrations of the binary and the ternary
complex, respectively; [R1] and [R2] are the surface concentrations of free

FIGURE 11 Binary and ternary complex formation

analyzed for the IFNa2 mutants M148A and R144A. (A)

Dissociation of OG488IFNa2-R144A (dotted line) and
AF488IFNa2-M148A (dashed line) from ifnar2-EC in

comparison to AF488IFNa2 (solid line) as detected by

TIRFS. (B) Dissociation of OG488IFNa2-R144A (dotted

line) and AF488IFNa2-M148A (dashed line) from ifnar2-

EC and ifnar1-EC (both 5–7 fmol/mm2) in comparison to
AF488IFNa2 (solid line) as detected by TIRFS. (C)

Normalized dissociation phases for AF488IFNa2-M148A

at different receptor surface concentrations (red, 16 fmol/

mm2; blue, 7.4 fmol/mm2; orange, 2.2 fmol/mm2) with fit

curves (dotted line). (D) Residuals from the curves shown

in panel C (same color coding). (E) Normalized dissoci-

ation phases for OG488IFNa2-R144A at different receptor

surface concentrations (red, 8.5 fmol/mm2; blue, 3.9 fmol/

mm2; orange, 1.6 fmol/mm2) with fit curves (dotted line).

(F) Residuals from the curves shown in panel E (same

color coding).
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ifnar1-EC and ifnar2-EC, respectively; [L] is the (volume) concentration of

the free ligand; kBa and kBd are the association and the dissociation rate

constant of ifnar2-EC-IFNa2 complex formation; kTa and kTd are the surface

association and dissociation rate constants of the interaction of ifnar1-EC

with the ifnar2-EC-IFNa2 complex on the surface. The total surface-bound

ligand is monitored, i.e., the sum of both complexes [S]:

½S� ¼ ½T�1 ½B�: (A2)

The total amount of ifnar2-EC on the membrane [R2]0 is given by the sum of

the amount of free ifnar2-EC, the binary complex and the ternary complex:

½R2�0 ¼ ½R2�1 ½B�1 ½T�: (A3)

The total amount of ifnar1-EC [R1]0, is given by the sum of the amounts of

free ifnar1-EC and the ternary complex.

½R1�0 ¼ ½R1�1 ½T�: (A4)

[R1] and [R2] from Eqs. A2 and A3 are inserted into Eq. A1:

d½T�
dt

¼ k
T

a 3 ½B� 3 ð½R1�0 � ½T�Þ � k
T

d 3 ½T�

d½B�
dt

¼ �k
T

a 3 ½B� 3 ð½R1�0 � ½T�Þ1 k
T

d 3 ½T�

� k
B

d 3 ½B�1 k
B

a 3 ð½R2�0 � ½T� � ½B�Þ 3 ½L�
½S� ¼ ½T�1 ½B�: (A5)

During dissociation ligand concentration equals 0, ½L� ¼ 0 and Eq. A5 can

be simplified to

d½T�
dt

¼ k
T

a 3 ½B� 3 ð½R1�0 � ½T�Þ � k
T

d 3 ½T�

d½B�
dt

¼ �k
T

a 3 ½B� 3 ð½R1�0 � ½T�Þ1 k
T

d 3 ½T� � k
B

d 3 ½B�

½S� ¼ ½T�1 ½B�: (A6)
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Ligand-induced cross-linking of the type I interferon (IFN) receptor
subunits ifnar1 and ifnar2 induces a pleiotrophic cellular response. Several
studies have suggested differential signal activation by flexible recruitment
of the accessory receptor subunit ifnar1. We have characterized the roles of
the four Ig-like sub-domains (SDs) of the extracellular domain of ifnar1
(ifnar1-EC) for ligand recognition and receptor assembling. Various sub-
fragments of ifnar1-EC were expressed in insect cells and purified to
homogeneity. Solid phase binding assays with the ligands IFNa2 and IFNb
revealed that all three N-terminal SDs were required and sufficient for
ligand binding, and that IFNa2 and IFNb compete for this binding site.
Cellular binding assays with different fragments, however, highlighted the
key role of the membrane-proximal SD for the formation of an in situ IFN–
receptor complex. Even substitution with the corresponding SD from
homologous cytokine receptors did not restore high-affinity ligand
binding. Receptor assembling analysis on supported lipid bilayers
in vitro revealed that the membrane-proximal SD controls appropriate
orientation of the receptor on the membrane, which is required for efficient
association of ifnar1 into the ternary complex.
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Introduction

Type I interferons (IFNs) elicit a potent,
pleiotrophic antiviral, antiproliferative and
immunmodulatory response as an innate first-line
defense against viral infection. All human type I
IFNs (12 IFNa subtypes and several allelic variants,
1 IFNb,1 IFN3, 1 IFNk and 1 IFNu1) exert activity
through binding to the same receptor components,
ifnar1 and ifnar2.2 It appears, however, that the
function of these different IFNs is not fully
lsevier Ltd. All rights reserve
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ing author:
redundant, but that differential signaling by differ-
ent IFNs can be observed.3–9 In particular between
the IFNa subtypes and IFNb, substantial differences
have been observed on the level of receptor
phosphorylation3 and effector recruitment,10 as
well as on the level of gene induction.11 As no
further receptor component has yet been identified,
these differences need to be explained through the
mode of interaction of IFNs with the extracellular
domains of ifnar1 (ifnar1-EC) and ifnar2 (ifnar2-
EC). The high-affinity interactions between the
ifnar2-EC and different IFNs have been investigated
in detail,9,12–14 and a model for the complex
between IFNa2 and ifnar2-EC, based on double
mutant cycle analysis, has been reported.15,16

However, the structural differences which have
been identified for the interaction of ifnar2-EC with
IFNa2 and IFNb are only minute,13–15 and therefore
cannot explain their functional differences.

The interaction between ifnar1 and IFN has been
reported to be of much lower affinity, and its
contribution towards complex formation is less
well characterized. Cellular binding and activity
d.



Figure 1. Purification of ifnar1-EC and the sub-
fragments. (a) Schematic of the ifnar1-EC fragments
used for localizing the IFN binding site, and their
attachment to surfaces via N and C-terminal H10-tags.
(b) SDS-PAGE of the purified subfragments after purifi-
cation by immobilizedmetal affinity chromatography and
size-exclusion chromatography. (c) Analytical SEC of the
purified subfragments on a Superdex 200 HR10/30
column. (d) SDS-PAGE of the purified subfragments
after deglycosylation with PNGaseF. (e) Analytical SEC of
the purified subfragments after deglycosylation with
PNGaseF under native conditions.
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assays are limited by the fact that the properties of
cell surface receptor such as affinity and
competition are dominated by the (high-affinity)
interaction with ifnar2. Sequence alignment has
predicted that ifnar1-EC is composed of four Ig-like
domains,17 suggesting two potential cytokine
binding modules, but so far only 1:1:1 complex
stoichiometries have been detected both in vivo18

and in vitro.19,20 Time-resolved binding assays have
detected very transient binding of IFNa2 to ifnar1-
EC with a dissociation constant KD of 5 mM, while
for IFNb a considerably lower KD value of 50 nM
was determined.20 Furthermore, no contacts
between ifnar1-EC and ifnar2-EC stabilizing the
ternary complex have been detected.20 The binding
site for IFNs was mapped to the Ig-like domains 2
and 3 by using neutralizing antibodies against
ifnar1-EC.21 These studies also indicated differen-
tial recognition of IFNa2 and IFNb by ifnar1. The
important role of domains 2 and 3 for ligand
binding was confirmed by direct in vivo binding
assays with bovine ifnar1, which binds human
IFNas with high affinity.22 Several residues on these
two domains critical for binding IFNa2 have been
identified.23,24 These results indicated that the
ligand-binding site of ifnar1 does not correspond
to a classical cytokine binding module and a more
complex architecture of the functional complex.
Cellular binding assays, however, could neither
clearly define which of the Ig-like domains of
ifnar1-EC form the binding site for different IFNs,
nor resolve the role of different ligand–receptor
stoichiometries. Therefore, more detailed character-
ization of the interaction of ifnar1 with different
IFNs is crucial for a better understanding of
differential receptor recruitment.

We have used subfragments of ifnar1-EC contain-
ing different Ig-like domains for confining the
binding site for type I IFNs. The proteins were
expressed, purified and characterized in detail.
Binding of IFNa2 and IFNb was studied in vitro
by solid phase detection; namely, reflectance inter-
ference (RIf) and total internal reflection fluor-
escence spectroscopy (TIRFS) in different assay
formats. Furthermore, ternary complex assembly
was investigated for different ifnar1 constructs in
living cells, and by ligand dissociation measure-
ments in vitro on supported lipid bilayers.
Results

Expression and purification of ifnar1-EC and its
subfragments

For identification of the Ig domains required for
ligand binding, ifnar1-EC with a C-terminal deca-
histidine-tag (SD1234-H10) and with N and
C-terminal decahistidine-tag (SD1234-DT), as well
as the subfragments H10-SD123, SD234-H10, H10-
SD12 and SD34-H10 (Figure 1(a)) were expressed in
Sf9 insect cells. All proteins were secreted into the
medium and efficiently purified by immobilized
metal affinity chromatography (IMAC). In the
subsequent size exclusion chromatography (SEC)
all proteins eluted within a single protein peak,
while only minor quantities of higher molecular
mass aggregates were observed. An SDS-PAGE and
the SEC chromatograms of the purified proteins
(both carried out under non-reducing conditions)
are shown in Figure 1. In all cases, homogeneity
was O95% as judged by SDS-PAGE (Figure 1(b))
and analytical SEC (Figure 1(c)). For all species the
yield of purified protein was 0.5–2 mg from 200 ml
of cell culture. The proteins, stored at physiological
pH and ionic strength, were stable (monomeric) for
several weeks at 4 8C. Upon shock-freezing in liquid
nitrogen and thawing, more than 90% of the
monomeric protein was retained for all species as
determined by analytical SEC.

All ifnar1-EC fragments were glycosylated and
properly folded

Yields, stability and monomeric nature of the
subfragments under non-reducing conditions



Table 1. Properties of the ifnar1-EC fragments used for defining the IFN binding site

Name SD1234-H10 SD1234-DT H10-SD12 SD34-H10 H10-SD123 SD234-H10

Sequencea K1-K409 K1-K409 K1-N207 E199-K409 K1-N311 P95-K409
H10-tagb C C, N N C N C
Total no. of aa 424 436 224 226 326 325
Glycos. sitesc 9 9 5 4 7 5
MM (expected) (kDa) 49.0 50.6 25.8 26.2 37.9 37.4
MM (found)d (kDa) 57.3 – 31.1 29.4 45.3 42.2
MM (deglyc.)e (kDa) 49 50 29 30 40 39
b-Sheet/a-helix/RCf 84/2/14 78/2/20 70/4/26 77/01/22 76/3/21 75/2/23

a First and last amino acid (aa) according to the predicted mature sequence of ifnar1.
b Terminus, to which the decahistidine-tag was fused.
c Potential glycosylation sites as predicted by the NetNGlyc 1.0 server.
d Mean mass determined by MALDI-MS.
e Estimated from SDS-PAGE.
f As determined by circular dichroism spectroscopy.
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indicated appropriate folding, which was further
corroborated by a more detailed protein-
biochemical analysis. Since the proteins were
expressed and secreted in eukaryotic cells, glycosyl-
ation of some of the overall nine potential glycosyl-
ation sites of ifnar1-EC was expected (Table 1).
Accordingly, the apparent molecular mass observed
in SDS-PAGE was substantially higher than the
expected mass for all proteins (Table 1): for SD1234-
H10 and SD1234-DT a single, yet broadened band
corresponding to a molecular mass of approxi-
mately 57 kDa was observed in SDS-PAGE
(Figure 1(b)) compared to 49 kDa expected for the
polypeptide chain. For the subfragments, similar
shifts as well as band broadening and even multiple
bands were observed (Figure 1(b)). To confirm
glycosylation the proteins were deglycosylated in
analytical amounts using PNGaseF. The SDS-PAGE
analysis of deglycosylated SD1234-H10, SD1234-DT
and their subfragments is shown in Figure 1(d). For
all proteins the apparent molecular mass shifted
to the expected mass (Figure 1(d) and Table 1).
A similar, yet less pronounced effect was observed
in analytical SEC (Figure 1(e)). The rather broad,
asymmetric peaks observed for the glycosylated
proteins (Figure 1(c)) became more sharp and
symmetric, and slightly shifted towards higher
elution volumes after deglycosylation
(Figure 1(e)). No significant differences were
observed in the elution volumes of SD1234-H10
and SD1234-DT. In contrast H10-SD123 eluted with
substantially higher apparent molecular mass than
SD234-H10, despite the very similar molecular
mass observed in SDS-PAGE (Figure 1(d)). This
difference suggests a different spatial arrangement
or a different flexibility of the three Ig-like domains
in these two proteins. Also between H10-SD12 and
SD34-H10, a small, but reproducible and significant
shift was observed, indicating different organiz-
ation of the Ig-like domains within these two
potential CBMs. Under non-reducing conditions
the band of the different ifnar1-EC species was
shifted to a lower molecular mass compared to the
reduced proteins (data not shown) indicating
internal disulfide bridge formation. The anticipated
secondary structure of mainly b-sheet (70–84%) was
furthermore confirmed for all subfragments by
circular dichroism spectroscopy (Table 1) corrobor-
ating appropriate folding of the protein.

The three N-terminal domains of ifnar1-EC are
required for IFN binding

For all the following binding experiments the
glycosylated proteins were used because they were
more stable than the deglycosylated ones. We
probed the interaction of IFNa2 and IFNb with
the immobilized subfragments by solid phase
detection. The proteins were immobilized on a
polymer brush via their H10-tags using high-affinity
multivalent chelator head groups providing
oriented and homogeneous attachment.25 Both
ifnar1-EC and ifnar2-EC fully retained their ligand
binding activity on these surfaces and non-specific
binding of IFNa2 and IFNb to these surfaces was
shown to be negligible upon blocking excess
binding sites with histidine-taggedmaltose-binding
protein.20,25 For ifnar1-EC (SD1234-H10) KD values
of 5 mM and 50 nM were found for the interaction
with IFNa2 and IFNb, respectively, while a 1:1
stoichiometry was indicated by the relative ampli-
tudes.20 Virtually the same equilibrium dissociation
constants were obtained for IFNa2 and IFNb in
complex with tag-less ifnar2-EC, implying that the
interactions of IFNs with ifnar1-EC and ifnar2-EC
are non-cooperative.20 In order to exclude that the
additional N-terminal decahistidine-tag of SD1234-
DT affected the interaction with IFNs, ligand
binding assays with SD1234-DT tethered onto
surfaces through both histidine-tags (Figure 1(a))
were carried out. The reduced surface binding
capacity observed for SD1234-DT compared to
SD1234-H10, as well as imidazole-induced dis-
sociation experiments (data not shown) confirmed
that indeed both histidine-tags were involved in
tethering the protein to the surface. Binding of
IFNa2 and IFNb to immobilized SD1234-DT is
shown in Figure 2. The KD value of the interaction
with IFNa2 was determined from the equilibrium
response, while the rate constants of the interaction



Figure 2. (a) and (b) Binding of
(a) 1 mM IFNa2 and (b) 100 nM
IFNb to SD1234-DT immobilized
on a polymer brush surface as
detected by RIfS (the bar marks
the injection period). SD1234-DT
was site-specifically tethered to the
surface through interaction of its
histidine-tags with covalently
attached multivalent chelator
head groups. (c) Dissociation of
AF488IFNa2 (200 nM) from SD1234-
DT (—) as detected by TIRFS in
comparison to the same experiment
carried out with SD1234-H10 (/).
(d) Dissociation of IFNb (100 nM)
from SD1234-DT (—) in compari-
son to the same experiment carried
out with SD1234-H10 (/).
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with IFNb were determined by fitting exponential
functions to association and dissociation phase of
the binding curves. Furthermore, the kd value of the
dissociation of IFNa2 from immobilized SD1234-DT
was determined by total internal reflection fluor-
escence spectroscopy. IFNa2-S136C site-specifically
labeled with the fluorescence dye Alexa Fluor 488
(AF488IFNa2) was used, which was shown to
interact with ifnar2-EC and ifnar1-EC as wild-type
IFNa2.26 All equilibrium dissociation constants and
rate constants obtained for IFNa2 and IFNb (Table
2) were in agreement with the values observed for
SD1234-H10.

In the same manner, binding of IFNa2 and IFNb
was assessed for the subfragments. Up to concen-
trations of 10 mM IFNa2 and 200 nM IFNb, no
specific binding was detectable for H10-SD12 and
SD34-H10, as well as SD234-H10 (Figure 3(a)–(c)).
Thus, the KD values of these subfragments were
Table 2. Affinities and rate constants of the interaction wi
constructs

Ifnar1 IFNa2

Fragment ka (M
K1 sK1)b kd (sK1) KD (mM)c

SD1234-H10 w2!105 1.0G0.3 w5

SD1234-DT w2!105 1.0G0.3 w6

H10-SD123 w2!105 1.3G0.4 w8

a Ifnar1-EC constructs co-immobilized with ifnar2-EC on fluid lipi
b Calculated from kd and KD.
c Determined from equilibrium response.
d Calculated from ka and kd..
O100 mM for IFNa2 and O2 mM for IFNb. In
contrast, uncompromised binding of both IFNs
was observed for H10-SD123 (Figure 3(a)–(c)). The
interaction constants determined from these curves
were very similar to the values observed for
SD1234-H10 (Table 2). Furthermore, H10-SD12
and SD34-H10 were co-immobilized in stoichio-
metric amounts onto solid-supported, fluid lipid
bilayers in order to allow simultaneous interaction
with the ligand (Figure 3(d)). Still, neither for IFNa2
(Figure 3(e)) nor for IFNb (Figure 3(f)) was
significant binding detectable, indicating that the
linkage between H10-SD12 and SD34-H10 is
required for the formation of an intact binding
site. In order to confirm that loss of binding
activity was not due to denaturation of the protein
during immobilization on the surface we devised
another assay to assess binding. Ifnar2-EC was
immobilized on the surface and followed by
th IFNa2 and IFNb determined for different ifnar1-EC

IFNb

IFNa2
(L30A)/
ifnar2-ECa

ka (M
K1sK1) kd (sK1) KD (nM)d kd (sK1)

(3G2)!105 0.015G0.005 50G20 w0.0001
(0.015G0.003)

(3G2)!105 0.015G0.005 50G20 w0.0001
(0.017G0.004)

(3G2)!105 0.020G0.006 70G20 w0.0002
(0.025G0.003)

d bilayers at high surface concentrations (20–40 fmol/mm2).



Figure 3. Binding of IFNa2 and IFNb to the different subfragments immobilized on the transducer surface.
(a) Response during injection of 1 mM IFNa2 to SD1234-H10, H10-SD123, H10-SD234, H10-SD12, SD34-H10 in
comparison (color coding as shown in the inset). Signals were normalized to the molar surface concentration of the
immobilized protein. (b) Response during injection of 1 mM (/) and 10 mM (—) IFNa2 onto H10-SD123 and SD234-H10
in comparison. (c) Response during injection of 50 nM IFNb onto SD1234-H10, H10-SD123, SD234-H10, H10-SD12, SD34-
H10 in comparison (same color coding as in (a)). (d) Co-immobilization of H10-SD12 (I) and SD34-H10 (II) on solid-
supported lipid bilayers. (e) Response during injection of 1 mM IFNa2 onto H10-SD12 and SD34-H10 co-immobilized
(/) on solid-supported lipid bilayers in comparison to SD1234-H10 (—). (f) The same experiment as shown in (e) carried
out with 50 nM IFNb.
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binding of IFNb, which binds nearly irreversibly to
ifnar2-EC (Figure 4(b)). Subsequently, binding of
SD1234-H10 and the subfragments to ifnar2-EC-
bound IFNb was studied (Figure 4(b)). In Figure
4(c) binding of the subfragments is compared with
binding of SD1234-H10. Again, specific binding was
only detectable for the subfragment H10-SD123. All
these experiments confirmed that the N-terminal
Ig-like domains 1, 2 and 3 on a single polypeptide
chain were required for the formation of an intact
binding site for IFNa2 and IFNb.

IFNa2 and IFNb bind competitively to ifnar1-EC

Since the analysis of different subfragments did
not indicate different binding domains in ifnar1-EC
Figure 4. Binding of ifnar1-EC
species to the complex of immobi-
lized ifnar2-EC and IFNb.
(a) Schematic of the sandwich
assay: after immobilization of
ifnar2-EC excess chelators are
blocked with MBP-H10 (not
shown); then, IFNb binds irre-
versibly to ifnar2-EC, followed by
binding of the respective ifnar1-EC
variant. (b) Typical binding of
IFNb (I) to immobilized ifnar2-
EC, followed by an injection of
50 nM H10-SD12 (II) and of 50 nM
SD1234-H10 (III). (c) Binding
curves for SD1234-H10 and the
subfragments in comparison
(50 nM each; the color coding is
shown in the inset).
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for both IFNa2 and IFNb, we investigated whether
these two IFNs actually bind competitively to an
overlapping epitope. Binding of AF488IFNa2 was
monitored in real-time by simultaneous TIRFS-RIf
detection, which combines label-free detection with
fluorescence detection.26 Both the fluorescence and
the mass-sensitive signal monitored in real-time
during a typical experiment are shown in
Figure 5(a): after immobilization of ifnar1-EC, first
1 mM AF488IFNa2 was injected, followed by an
injection of 1 mM AF488IFNa2 mixed with 100 nM
unlabeled IFNb. Subsequently, only 100 nM IFNb
was injected for comparison. The fluorescence
signals during the first two injections are compared
in Figure 5(b). Fast, transient binding of IFNa2 was
detectable in the fluorescence channel with a similar
characteristic as observed for unlabeled IFNa2, as
shown in Figure 3(a). The sensitivity of Rif
detection is too low to detect binding at this
IFNa2 concentration, because of the rather low
surface concentration of SD1234-H10 used for these
measurements. When IFNa2 was injected together
with IFNb a decay of the fluorescence signal after
the initial fast rise was observed (Figure 5(a) and
(b)). This transient binding of IFNa2 during injec-
tion may be ascribed to labeled IFNa2 being
exchanged for unlabeled IFNb, which binds more
stably to ifnar1-EC. IFNa2 binds much faster than
IFNb because of its higher concentration in the
mixture and the similar association rate constants of
IFNa2 and IFNb.26 Binding of IFNb with its typical
association and dissociation characteristics was
simultaneously detectable on the RIf-channel
(Figure 5(a)). For the injection of IFNb without
IFNa2 a very similar binding curve was detected for
IFNb on the Rif channel while no signal was
detectable on the fluorescence channel. More
detailed analysis of the binding curves at different
concentrations confirmed that the rate constants of
the interaction did not change, corroborating
competitive binding of IFNa2 and IFNb to ifnar1-
EC. The same experiment was carried out with H10-
SD123 immobilized on the surface. A comparison of
the curves for 1 mM IFNa2 in the presence and
absence of 100 nM IFNb is shown in Figure 5(c).
Very similar shapes of the curves as for ifnar1-EC
were obtained, confirming that IFNa2 and IFNb
bind to an overlapping epitope formed by the three
N-terminal Ig-like domains of ifnar1-EC.

Ternary complex formation on supported lipid
bilayers

The direct interaction assays revealed that the
binding affinity towards IFNa2 and IFNb decreased
by a factor of more than 20 in cases H10-SD12,
SD34-H10 and SD234-H10, while nearly full bind-
ing affinity was maintained for H10-SD123. Owing
to the already low affinity of IFNs towards ifnar1-
EC, the residual binding affinity could not be
established by these assays. Furthermore, the effects
of subdomain deletion on ternary complex for-
mation remained unclear. We therefore investigated
ligand binding to ifnar2-EC co-immobilized with
ifnar1-EC or its subfragments onto a solid-
supported, fluid lipid bilayer (Figure 6(a)). It was
shown that with stoichiometric amounts of ifnar2-
EC and SD1234-H10 at high surface concentrations
(w25–50 fmol/mm2) IFNa2 binds at least 100 times
stronger than to ifnar2-EC alone.20 The course of a
Figure 5. Competition of IFNa2
and IFNb for the ifnar1-EC binding
site. (a) Interference signal (—) and
fluorescence signal (/) during
injection of AF488IFNa2 (1 mM)
alone (I), mixed with 100 nM IFNb
(II) and injection of IFNb alone
(III) on immobilized SD1234-H10.
(b) Overlay of the fluorescence
signals of injections I (—) and II
(/). (c) Overlay of the fluorescence
signals of injections I (—) and II
(/) for the same experiment
carried out with immobilized
H10-SD123.
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typical binding experiment with SD1234-H10 is
shown in Figure 6(b). After tethering ifnar2-EC and
ifnar1-H10 in stoichiometric amounts, diffusion-
controlled association of IFNa2 was observed and
no significant dissociation from the ternary complex
(Figure 6(c)). The dissociation curves of IFNa2 from
ifnar2-EC co-immobilized with different ifnar1-EC
variants is compared in Figure 6(d). In the case of
SD1234-DT, the ligand dissociation kinetics were
indistinguishable from the kinetics observed for
SD1234-H10 (Figure 6(d)), suggesting that the
formation of the ternary complex was not affected
by the additional tethering through the N-terminal
His-tag. For the subdomains H10-SD12, SD34-H10
(data not shown) and SD234-H10 (Figure 6(d)) no
significant difference in the dissociation kinetics
was observed compared to the dissociation from
ifnar2-EC alone. Also upon co-immobilization of
H10-SD12 and SD34-H10 with ifnar2-EC, no change
in the dissociation kinetics was observed
Figure 6. IFNa2 binding to ifnar2 co-immobilized with d
bilayers. (a) Schematic of the assay: ifnar2-EC and ifnar1-EC w
in a stoichiometric ratio, followed by injection of the ligand. (b
concentrations of ifnar2-EC and SD1234-H10 as detected by
(d) Dissociation kinetics for SD1234-H10 (black), SD1234-DT (
SD12/SD34-H10 (red) co-immobilized with ifnar2-EC (/) i
(e) Dissociation of IFNa2-L30A from SD1234-H10 (black) an
dotted lines are the mono-exponential fits of these curves.
(Figure 6(d)). This binding assay is even more
sensitive to low affinities, since the ligand is
captured by the high-affinity interaction with
ifnar2-EC, and a subtle lateral interaction on the
surface would be reflected by a decrease in the
dissociation rate constant. From these assays, a loss
of affinity by more than two orders of magnitude
can be concluded for the subfragments H10-SD12,
SD34-H10 and SD234-H10. In contrast, a strong
decrease in the apparent kd value was observed for
SD123 co-immobilized with ifnar2-EC (Figure 6(d)),
almost as strong as for ifnar1-EC. A kd value of
0.0002 sK1 was estimated by an exponential fit, i.e.
two orders of magnitude slower than the dis-
sociation from ifnar2-EC alone. The stability of the
ternary complex formed upon co-immobilization
with ifnar2-EC was compared in more detail for the
variants SD1234-H10, SD1234-DT and H10-SD123
applying the IFNa2 mutant L30A, which binds
w500 times weaker to ifnar2-EC (kdw5 sK1). The
ifferent ifnar1 subfragments onto solid-supported lipid
ere sequentially tethered onto the supported lipid bilayer
) Binding of IFNa2 at high, stoichiometric receptor surface
RIfS. (c) IFNa2 binding and dissociation as shown in (b).
magenta), H10-SD123 (blue), SD234-H10 (green) and H10-
n comparison to the dissociation from ifnar2-EC alone.
d H10-SD123 (blue) co-immobilized with ifnar2-EC. The
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curve observed for SD1234-DT (data not shown)
was indistinguishable from the curve obtained for
SD1234-H10 (Figure 6(e))with a kd value of 0.015 s

K1.
In the case of H10-SD123, slightly faster dissociation
was observed (kdZ0.025 sK1). Thus, only small
differences in ternary complex stability were
observed for H10-SD123 compared to SD1234-H10
at these high receptor surface concentrations,
confirming that ternary complex formation was
possible without SD4.
No high-affinity binding of IFNa2 to ifnar1
variants without SD4 in vivo

In cells ifnar1 has been shown to increase the
apparent binding affinity by tenfold to 20-fold
compared to ifnar2 alone,18,27 which is ascribed to
the formation of the ternary signaling complex. In
order to study the effect of sub-domain deletion on
ternary complex formation in vivo, ligand binding
was analyzed in HEK293T cells overexpressing
ifnar2 with different constructs of ifnar1-EC fused
to the ifnar1 transmembrane and cytoplasmic
domains (TMCD). The binding of IFNa2 and
ifnar1 surface expression was quantified by fluor-
escence-assisted cell sorting (FACS) (Figure 7).
Ifnar1 and the fragments were overexpressed by
one to two orders of magnitude higher than
endogenous ifnar1 without significantly affecting
the expression level of overexpressed ifnar2 (Figure
7(a)). The amount of ligand bound to the cell surface
receptor was quantified by FACS using AF488IFNa2.
The amount of receptors presented at the cell
surface was determined by FACS using monoclonal
antibodies. A linear increase in ligand binding was
observed with increasing cell surface concentration
of wild-type ifnar1. As expected, for SD234-TMCD
no increase in ligand binding was detectable, but
also for SD123-TMCD no high-affinity ligand bind-
ing was observed (Figure 7(b)). In order to exclude
that steric hindrance due to direct linkage of SD3 to
the plasma membrane was responsible for this
effect, two constructs were made, where SD4 of
ifnar1 was substituted by the corresponding
domains from two other class II cytokine receptors:
the IL10 receptor 2 chain (SD123IL10R2D2-TMDC)
and the interferon l receptor (SD123LRD2-TMDC).
However, high-affinity ligand binding could
not be recovered with these receptor proteins
(Figure 7(b)) suggesting that SD4 has an important
function for the assembling of the ternary complex
in vivo.
Orientation of ifnar1 affects ternary complex
assembling

In order to better understand this role of SD4, we
studied ternary complex assembly with several
ifnar1-EC fragments and variants in more detail
in vitro. SD123LRD2 with a C-terminal H10-tag
(SD123LRD2-H10), as well as SD1234 with an
N-terminal H10-tag (H10-SD1234) and SD123 with
a C-terminal H10-tag (SD123-H10) (Figure 8(a))
were expressed in Sf9 insect cells and purified to
homogeneity. As expected from the previous
analysis, direct binding of IFNa2 and IFNb was
unaltered compared to SD1234-H10 for these
proteins (data not shown). Ternary complex
assembling was studied by TIRFS-RIf detection
with AF488IFNa2 at receptor surface concentrations
of w3 fmol/mm2 of the ifnar1-EC construct. This
surface concentration is representative for the cell
surface receptor density,20 and more than one order
of magnitude lower than the receptor surface
concentrations used in the ternary complex for-
mation assays described above. A comparison of
ligand dissociation curves for different fragments is
shown in Figure 8(b). For SD1234-H10, significantly
faster ligand dissociation was observed compared
to the curve shown in Figure 6(b), as expected for
less efficient kinetic stabilization at these lower
receptor surface concentrations.20,26 Under the
same conditions, substantially faster dissociation
was observed for SD123LRD2-H10 than for SD1234-
H10, in agreement with the low affinity observed for
this variant on the cell surface. The dissociation
kinetics, however, was still four to five times slower
than from ifnar2-EC alone, indicating that the
ternary complex still assembled, yet with a much
lower efficiency. In order to test the role of
orientation on surface affinity, we investigated
ligand dissociation from ternary complexes formed
Figure 7. Cell surface binding of
IFNa2 on HEK293T cells over-
expressing ifnar2 and different
amounts of ifnar1. HEK293T cells
were co-transfected with plasmids
encoding EGFP, ifnar2 and ifnar1.
The EGFP positive population was
analyzed in FACS for (a) the cell
surface expression level of ifnar1
and ifnar2 and (b) for specific
binding of AF488IFNa2. The binding
of AF488IFNa2 is expressed relative
to the binding level measured on
cells transfected with EGFP and
ifnar2 alone (open circles).



Figure 8. (a) Schematic of the
constructs SD123LRD2-H10, H10-
SD1234 and H10-SD123 and their
attachment to the lipid bilayer.
(b) Dissociation of IFNa2 from
ifnar2-EC co-immobilized with
different constructs of ifnar1-EC
on lipid bilayers (receptor surface
concentration w3 fmol/mm2).
(c) Dissociation of IFNa2 from
ifnar2-EC co-immobilized with
H10-SD123 (red) and SD123LRD2-
H10 (blue) at different surface
concentrations (continuous line:
w7 fmol/mm2; dotted line:
w3 fmol/mm2). (d) Dissociation
of IFNa2 from ifnar2-EC co-
immobilized with SD1234-H10
(blue), H10-SD1234 (red), and
SD1234-DT (black) on supported
lipid bilayers (receptor surface
concentration w4 fmol/mm2).
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with H10-SD1234, SD123-H10 and H10-SD123
under the same conditions (i.e. receptor surface
concentrations). Strikingly, also for H10-SD1234,
substantially faster ligand dissociation from the
ternary complex was observed than for SD1234-
H10. For both H10-SD123 and SD123-H10 ligand
dissociation from the ternary complex was similarly
fast as observed for SD123LRD2-H10. However, by
increasing the receptor surface concentration, the
decrease in ligand binding affinity could be com-
pensated (Figure 8(c)). Interestingly, tethering
ifnar1-EC through both the N and C terminus
onto the membrane (SD1234-DT) had only a minor
effect on ligand dissociation (Figure 8(d)). Taken
together, these results indicate that SD4 and its
anchoring to the lipid bilayer plays a key role for the
efficiency of ifnar1 recruitment into the ternary
complex without being responsible for ligand
recognition.
Discussion

Characterization of the binding site of human
ifnar1 in vivo has been hampered by the extremely
low affinity towards its ligands: the high-affinity
interaction with ifnar2 dominates binding to the
cellular receptor, while binding to ifnar1 alone is too
transient to be detectable. Thus, structure–function
studies of IFN recognition by ifnar1-EC in vivowere
performed either in the presence of ifnar2-EC,21,24

or with bovine ifnar1, which binds human IFNas
with much higher affinity.22,23 We analyzed for the
first time ligand binding to different subfragments
of human ifnar1-EC in vitro in order to dissect
contributions towards ligand recognition and tern-
ary complex assembly. The architecture of ifnar1-EC
with its four Ig-like domains suggests potentially
two cytokine binding modules. By direct ligand
binding assays we could clearly show that these
potenial CBMs, SD12 and SD34, separately do
not interact with IFNa2 or with IFNb. Even when
co-immobilized on a fluid support, which allowed
lateral rearrangements, the binding site was not
restored. Hence, the covalent linkage between SD2
and SD3 is absolutely critical for ligand binding.
Out of the two subfragments containing three Ig-
like domains (i.e. with an intact linkage between
SD2 and SD3) SD123 retained nearly full ligand-
binding activity while no ligand binding was
detectable for SD234. Interestingly, SD123 and
SD234 also appeared to be different in their
apparent molecular size in SEC, indicating an
asymmetric architecture of the four Ig-like domains
of ifnar1 and not simply two, linked symmetric
CBMs. No differences in terms of subdomains
required for ligand recognition were found for
IFNa2 and IFNb, which have been suggested to
bind to different epitopes on ifnar1.21 By direct
competition experiments we could show that the
binding sites of IFNa2 and IFNb are at least
overlapping, if not congruent.

SD4 does not seem to play a substantial role for
ligand recognition, and is also not required for
ternary complex formation with ifnar2-EC. In cells,
however, no high-affinity ligand-binding site was
observed in the absence of SD4 or when it was
exchanged by a corresponding domain of homo-
logous cytokine receptors. More detailed analysis of
these constructs in vitro indicated that ternary
complex formation is still possible, but recruitment
efficiency is substantially impaired if SD4 is absent
or exchanged. Strikingly, the orientation of ifnar1-
EC was shown to play a key role for stable
complex formation on supported lipid bilayers, as
tethering of ifnar1-EC only at the N-terminal
domain significantly decreased the stability of
the ternary complex. We have recently shown that



Figure 9. Kinetically controlled two-step receptor assembling mechanism, and the role of the appropriate orientation
of ifnar1-EC. Recruitment of ifnar1 into the ternary complex depends on the (surface) affinity constant K2 and the
receptor surface concentration. Reduced complex stability without SD4 anchored to the membrane suggests that K2

depends on the orientation of the receptor.
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IFN-induced receptor assembling occurs in two
steps as depicted in Figure 9, and that the
equilibrium dissociation constant of the ifnar1/
IFNa2 interaction at the surface (K2) governs kinetic
stabilization of the ifnar2/IFNa2 complex.20,26 The
decrease of ligand binding stability observed for
N-terminally attached or impaired ifnar1 constructs
reflects a decrease in K2. We ascribe this drop in
surface binding affinity to a decrease in the surface
association rate constant k2; recently, we have
shown that this association rate on the membrane
is enhanced by tenfold to 100-fold in terms of
successful collisions compared to the interaction in
solution,26 which can be ascribed to pre-orientation
of the interaction sites. Non-optimal orientation of
the ligand binding site of ifnar1 on the membrane
probably reduces the rate of productive collisions,
and thus reduces the surface association rate
constant and the surface affinity constant. While
this effect was clearly detectable by mimicking
membrane anchoring of the receptors in vitro, it
could contribute even stronger in the case of the
probably much more rigidly oriented trans-
membrane proteins on the cell surface. This could
explain the complete loss of a high-affinity binding
observed for the chimeric ifnar1 constructs in living
cells. Strikingly, these effects only play a role if K2

limits ternary complex formation (i.e. at low
receptor surface concentrations). This is very likely
to be the case for the IFNa2–ifnar complex20 and has
been shown to be the case for the IL4 receptor
in vivo.28 We suggest that SD4 plays a key role for
properly orientating the binding site of ifnar1 at
SD123 on the membrane for highly efficient
collision with the ifnar2–IFNa2 complex. Appro-
priate orientation apparently is finely adjusted for
different members of the class II cytokine receptor
family, as exchange of homologous domains
abolished high-affinity ligand binding. For some
cytokine receptors orientation of the extracellular
domains have been shown to be critical for signal
activation.29,30 We have provided evidence that an
appropriate orientation of the interaction sites on
the membrane is crucial for efficient receptor
assembling. This insight is particularly important
for the de novo design of cytokine-like molecules for
therapeutic application.
Materials and Methods
Protein expression and purification

IFNa2 and ifnar2-EC were expressed in Escherichia coli,
refolded from inclusion bodies and purified by anion-
exchange and size-exclusion chromatography as
described.31 The IFNa2 mutant S136C was site-specifi-
cally labeled with Alexa Fluor 488 (AF488) maleimide
(Molecular Probes), and was further purified by desalting
and a final step of anion-exchange chromatography.
Ifnar1-EC and its subfragments and variants
(Figure 10(a)) were expressed in insect cells using the
baculovirus system. The gene of mature ifnar1-EC
(GenBank accession number NM_000629; amino acids
from KNL until TSK) with an additional stretch of
nucleotides coding for a C-terminal decahistidine-tag
(SD1234-H10) was cloned into the transfer vector
pAcGP67B (BD Biosciences) via the BamHI and PstI
restriction sites. An additional N-terminal extension
ADLGS is expected from the cleavage site of the gp67
secretion sequence in the vector. SD1234-DTwas obtained
by inserting a linker coding for an H10-tag at the N
terminus of SD1234-H10 into the BamHI site, resulting in
a total N-terminal extension of ADLGSH10RS. This linker
was designed so that only the N-terminal BamHI site
was retained. The subfragments were subcloned based
on this SD1234-DT construct. Baculoviruses were
obtained by co-transfection with linearized baculoviral
DNA (BaculoGold, BD Biosciences) into Sf9 cells.
For protein expression, fresh Sf9 cell cultures (200 ml)
were infected with the respective baculovirus. The
supernatant was harvested three to four days after
infection, adjusted to TBS (20 mM Tris (pH 8.0), 200 mM
sodium chloride) and thoroughly dialyzed against the
same buffer. After centrifugation, the supernatant was
applied to a 5 ml chelating Sepharose column (HiTrap
chelating; Amersham Biosciences) loaded with Zn2C.
After washing with TBS, the proteins were eluted with
a gradient from 0 mM to 500 mM imidazole in TBS.
Pooled fractions were further purified by size-exclusion
chromatography in TBS (Superdex 200-16/60; Amersham
Biosciences).



Figure 10. (a) Sequence of ifnar1-EC and the different subfragments, which were expressed and purified. The arrows
indicate the three proline-rich regions of the transition between two Ig-like domains. (b) Sequence alignment of SD4 of
ifnar1-EC with LRD2 and IL10R2D2.
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Protein biochemistry

Proteins were deglycosylated at room temperature on
an analytical scale using PNGaseF (New England Biolabs)
according to the manufacturer’s instructions at room
temperature. Analytical size-exclusion chromatography
was carried out with a Superdex 200 HR10/30 column
(Amersham Biosciences) with TBS as the running buffer.
Typically, 500 ml of a 2 mM protein solution was injected.
For circular dichroism spectroscopy, proteins at 20 mM–
40 mM concentration were extensively dialyzed against
20 mM phosphate (pH 8), 150 mM sodium fluoride.
Circular dichroism spectra were recorded at 22 8C on a
Jasco J-810 circular dichroism spectrometer equipped
with a Jasco PTC-423S Peltier temperature control system
using quartz cuvettes with 0.2 mm path lengths. The
secondary structure composition was calculated using the
estimation software Jasco Spectra Manager version
1.53.00.
In vitro binding assays by solid phase detection

Label-free binding assays by reflectometric interference
spectroscopy (RIfS) were carried out as described20,32
using a home-built set-up.33 Simultaneous total internal
reflection fluorescence spectroscopy (TIRFS) and reflect-
ance interference (RIf) detection were carried out as
described.26 All measurements were carried out in HBS
(20 mM Hepes (pH 7.5), 150 mM NaCl). For monitoring
the interaction with IFNa2 and IFNb, ifnar1-EC and its
derivatives were immobilized onto PEG-modified
surfaces using multivalent chelators for stable immobil-
ization as described.20,25 Excess coordination sites were
blocked with decahistidine-tagged maltose-binding pro-
tein (MBP-H10) to avoid non-specific binding. Ternary
complex formation was measured with ifnar2-H10 and
the ifnar1-EC proteins tethered onto supported lipid
bilayers via chelator lipids as described.20,26 Ternary
complex assembly at high receptor surface concentrations
was probed by RIfS using IFNa2 as a ligand. Ternary
complex assembly at low receptor surface concentrations
was probed by TIRFS using AF488IFNa2 as a ligand.
Construction of plasmids encoding transmembrane
ifnar1 variants

Ifnar1 cDNA (GenBank accession number NM_000629)
was inserted into an expression vector after the SRa
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promoter. The deletion or substitution of subdomains
(SD) was carried out with a PCR-based site-directed
mutagenesis kit ExSite (Stratagene). Ifnar1 deletion
mutants SD123-TMCD and SD234-TMCD lack amino
acid residues P307 to S408 or K1 to P104, respectively.
Substitution mutant SD123-LRD2-TMCD was derived
from the deletion mutant SD123-TMCD by insertion of
the amino acid sequence P127 to N226 from the human
IFN-l receptor (IL28R1; GenBank accession number
AAN28266), at the site of the SD4 in ifnar1 wild-type
(Figure 10(b)). Amino acids P115 to V218 from the human
IL10R2 (GenBank accession number AAP7216) were
inserted at the same position in mutant SD123-
IL10R2D2 (Figure 10(b)). Numbering of IFN-l receptor
and IL10R2 includes the leader peptide.

Cell cultures and transfection

HEK293Tcells were cultured in DMEMwith 10% (v/v)
fetal calf serum (FCS) and transfected by the use of
Lipofectamine (Invitrogen). The total amount of trans-
fected DNA (1.22 mg/500,000 cells in 9.6 cm2) was
maintained constant with the empty expression vector.
EGFP and ifnar2 expression plasmids were transfected at
1/50 and 1/12, respectively, of the total DNA. In order to
get different ifnar1 expression levels, the ifnar1 plasmids
were co-transfected at 1/1.1 to 1/120 of the total DNA.

FACS assays

Receptor levels at the cell surface and ligand binding
was measured by fluorescence-assisted cell sorting
(FACS). Cells were detached with PBS 0.5 mM EDTA
48 hours after transfection and collected in the same
buffer containing 3% FCS. Cells were incubated at 6 8C in
5 nM AF488IFNa2 with or without a 30 times molar excess
of unconjugated IFNa2. After 90 minutes cells were
pelleted by centrifugation and fixed with 4% (v/v)
paraformaldehyde (Becton Dickinson). Amplification
was achieved by the binding of rabbit anti-Alexa IgG
(Molecular Probes), followed by biotinylated donkey anti-
rabbit (Jackson ImmunoResearch) and streptavidin-
allophycocyanin conjugate (SAv-APC) (Pharmingen).
Detached cells were incubated with monoclonal antibody
(mAb) EA1234 for quantification of ifnar1 or with mAb D5
for quantification of ifnar2 (both D5 and EA12 were a
generous gift of from Dr L. Runkel). The signal was
amplified with biotinylated rat anti-mouse IgG (Jackson
ImmunoResearch) and SAv-APC. Fluorescence was
measured in a FacsCalibur dual laser FACS system (BD
Biosciences). EGFP fluorescence was captured in FL1 and
APC fluorescence in FL4. Cells were gated for single cells
by FCS and SSC and for high expression of EGFP. Results
are expressed as the mean APC fluorescence of gated
cells.
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Ligand-induced receptor oligomerization has been shown to be 
a general principle for signal propagation across the plasma 
membrane common to many cell surface receptors.1 Reduction in 
dimensionality upon ligand binding onto the membrane has been 
proposed to have important physicochemical consequences on 
receptor recruitment and signaling efficiency.2-4 Therefore, 
elucidation of the biophysical mechanisms governing the 
dynamics of ligand-receptor complexes on membranes is a 
prerequisite for understanding and for systematic manipulation of 
signal activation. Owing to a lack of suitable experimental tools, 
however, the 2-dimensional interaction kinetics of ligand-receptor 
complexes with appropriately mimicked biophysical constraints 
including membrane anchoring and membrane fluidity has hardly 
been studied quantitatively. Here, we describe an in vitro 
approach for determining a 2-dimensional dissociation rate 
constant of a cytokine-receptor complex. 

Chelator lipids incorporated into lipid bilayers have been 
shown to be powerful tools for tethering histidine-tagged proteins 
onto solid-supported membranes in an oriented and reversible 
fashion.5 A drawback of the traditional chelator lipids based on a 
single nitrilotriacetic acid (NTA) moiety, however, is its low 
intrinsic affinity towards the oligohistidine-tag, leading to 
transient and ill-defined attachment.6,7 Measurement of 2-
dimensional interactions kinetics between membrane-anchored 
proteins requires stable tethering of a receptor ectodomain by a 
single histidine-tag, and therefore tethering through traditional 
chelator lipids is not appropriate. 

Recently, we have reported molecularly stable tethering by 
multivalent chelator head groups.8 Here, we have synthesized a 
lipid-analogue based on a chelator head group comprising two 
NTA moieties (bis-NTA), which binds histidine tagged proteins 
with multivalent interactions (Figure 1a). High mobility in the 
membrane was ensured by conjugating bis-NTA to a saturated 
and an unsaturated alkyl chain (octadec-9-enyl-octadecylamine). 
This bis-NTA lipid was incorporated into silica-supported, fluid 
lipid bilayers (Figure 1b). Thus, interactions at the bilayer surface 
can be studied by surface-sensitive detection while maintaining 
lateral mobility of proteins attached to the bis-NTA head group. 
This experimental approach was employed to explore the 
dynamics of ligand-induced ternary complex formation of the 
type I interferon (IFN) receptor. The extracellular domains of the 
receptor subunits ifnar1 and ifnar2 fused to a C-terminal 
decahistidine-tag (ifnar1-H10 and ifnar2-H10, respectively) were 
tethered onto solid-supported membranes (Figure 1b), and 
complex formation upon binding of the ligand IFNα2 was 
monitored in real time by fluorescence and mass-sensitive 
detection. The dynamics of the ternary complex in plane of the 
membrane was probed by a pulse-chase approach based on 
fluorescence resonance energy transfer (FRET) between IFNα2 
and ifnar2-H10 (Figure 1c,d). 

The interaction of IFNα2 with the two receptor subunits has 
been studied in detail earlier, and a two-step assembling 
mechanism was established.10  
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Figure 1 The chemical structure and schematic representation of bis-
NTA lipid (a), which binds histidine-tagged proteins by multivalent 
interaction. b) Silica-supported lipid bilayers doped with bis-NTA lipid 
were used for stable and controllable tethering of ifnar2-H10 (blue) and 
ifnar1-H10 (green), and ternary complex formation was induced by 
binding of IFNα2 (orange). c) Structure of ifnar2-EC (blue) in complex 
with IFNα2 (red) and a model of ifnar1-EC (green). The residues mutated 
for labeling are colored in orange (ifnar2-EC) and green (IFNα2). d) 
Principle of surface kinetics measurements by FRET (top view onto the 
membrane): Donor fluorescence from ifnar2-H10 (blue) is quenched upon 
ternary complex formation with acceptor-labeled IFNα2 (orange) and 
unlabeled ifnar1-H10 (green). Upon pulse-chasing the ternary complex by 
tethering rapidly an excess of unlabeled ifnar2-H10 to the membrane, 
donor-labeled ifnar2-H10 is competed out of the complex, leading to a 
recovery of the donor fluorescence. 

Here, ligand interaction with ifnar2-H10 was monitored by 
FRET using simultaneous total-internal reflection fluorescence 
spectroscopy and reflectance interference (TIRFS-RIf) detection.9 
The interaction of IFNα2 S136C site-specifically labeled with 
Cy3 (Cy3IFNα2) with membrane-tethered ifnar2-H10 S35C site-
specifically labeled with Alexa Fluor 488 (AF488ifnar2-H10) is 
shown in Figure 2a. Ligand binding was detected by a drop in the 
donor fluorescence signal due to FRET from AF488ifnar2-H10 to 



 

bound Cy3IFNα2. During ligand dissociation, the fluorescence 
signal recovered, confirming ligand-specific fluorescence 
quenching. As the interaction between IFNα2 and ifnar2-H10 at 
surfaces was shown to be strongly biased by mass transport 
limitation,9 ligand dissociation unbiased by rebinding was 
measured by pulse-chasing the receptor-ligand complex with 
1 µM non-labeled IFNα2 in solution, and by tethering an excess 
of non-labeled ifnar2-H10 to the surface (Figure 2b). Similar 
dissociation kinetics with a kd of 0.05 ±0.005 s-1 was observed.  
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Figure 2 Surface kinetics measurements by FRET. a) Donor 
fluorescence detected by TIRFS (upper panel) and mass signal detected by 
RIf (lower panel) for tethering of AF488ifnar2-H10 (60 nM) onto lipid 
bilayer followed by binding of Cy3IFNα2 (100 nM). b) Dissociation of 
Cy3IFNα2 from AF488ifnar2-H10 upon chasing with IFNα2 (black) and upon 
a pulse-chase injection of ifnar2-H10 (red) as monitored by FRET (top 
panel: normalized fluorescence curves; bottom curves: mass deposition as 
detected by RIf). For comparison, the dissociation of Cy3IFNα2 from 
ifnar2-H10 upon chasing with IFNα2 as detected by direct excitation of 
Cy3 is shown. c) Interaction of Cy3IFNα2 with AF488ifnar2-H10 and ifnar1-
H10 tethered in stoichiometric amounts onto the lipid bilayer as detected 
by donor quenching. d) Binding of Cy3IFNα2 (100 nM) to AF488ifnar2-H10 
and ifnar1-H10 tethered in stoichiometric amounts onto the lipid bilayer 
followed by a pulse chase injection of ifnar2-H10. e) Binding of Cy3IFNα2 
(detected by direct excitation of Cy3) to ifnar2-H10 and ifnar1-H10 
tethered in stoichiometric amounts followed by a pulse chase injection of 
ifnar2-H10. f) Comparison of the exchange kinetics as detected by the 
pulse-chase experiment shown in d) (red) with the dissociation of 
Cy3IFNα2 from AF488ifnar2-H10 alone as shown in b) (blue) and the 
dissociation of Cy3IFNα2 from the ternary complex as shown in e) (black). 

Based on the FRET between Cy3IFNα2 and AF488ifnar2-H10, the 
formation and the dynamics of the ternary complex with ifnar1-
H10 tethered onto the bilayer were studied. Ifnar1-H10 binds 
IFNα2 with a very low affinity (~5 µM) and a kd of ~1 s-1.9 
Previous extensive binding studies have shown that the 
interaction of IFNα2 with ifnar1-H10 is independent on the 

interaction with ifnar2.10 After sequentially tethering AF488ifnar2-
H10 and ifnar1-H10 onto the lipid bilayer in a 1:1 molar ratio, 
Cy3IFNα2 was injected, and the interaction with AF488ifnar2-H10 
was monitored by FRET (Figure 2c). Dissociation of the ligand 
was very slow compared to the interaction with ifnar2-H10 alone, 
which can be ascribed to the formation of a ternary complex by 
simultaneous interaction of IFNα2 with ifnar2-H10 and ifnar1-
H10. This ternary complex, however, is in dynamic equilibrium 
with the binary complexes of IFNα2 with each of the receptor 
subunits. In order to probe the surface kinetics of the interaction 
with ifnar2-H10, the ternary complex was pulse-chased by 
tethering a 10-fold excess of non-labeled ifnar2-H10 over 
AF488ifnar2-H10 onto the surface within ~10 s (Figure 2d). Under 
these conditions, the rise in fluorescence intensity indicated 
AF488ifnar2-H10 dissociation from Cy3IFNα2. No ligand, however, 
dissociated from the surface under these conditions as confirmed 
in a control experiment with direct excitation of Cy3 (Figure 2e). 
Thus, the change in fluorescence was solely due to exchange of 
OG488ifnar2-H10 in the ternary complex by unlabeled ifnar2-H10, 
confirming the dynamic nature of the ternary complex. The 
kinetics monitored by donor fluorescence recovery therefore 
represents the dissociation kinetics of the AF488ifnar2/Cy3IFNα2 
complex in plane of the membrane. Strikingly, significantly 
slower dissociation was observed under these conditions with a kd 
of 0.012 ± 0.003 s-1 (Figure 2f). The reasons for the slower 
dissociation could be slower diffusion of the proteins in the 
membrane, the reduced degree of freedom affecting the reaction 
coordinate or cooperative interaction with ifnar1-H10. Further 
studies are required to resolve this issue decisively. 

The substantial effect of protein tethering to the membrane on 
the dissociation kinetics, however, highlights the key importance 
of mimicking the properties of the membrane for studying ligand-
receptor dynamics. Here, we have succeeded to directly 
determine the dissociation rate constant of an important cytokine-
receptor complex in plane of the membrane. The novel, high-
affinity bis-NTA lipid provided the key prerequisites of such an 
endeavor: stable tethering of the proteins to the membrane in an 
oriented manner, and the possibility to rapidly change the 
receptor surface concentration. In combination with powerful 
surface-sensitive techniques for controlling and probing 
interaction this provides means for experimentally addressing the 
role of lateral interaction at the membrane in signaling processes. 
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Abstract. Ligand-induced cross-linking of cell surface receptors is a basic paradigm of signal activation by many 
transmembrane receptors. After ligand binding, the receptor complexes formed on the membrane are dynamically maintained 
by 2-dimensional protein-protein interactions on the membrane. The biophysical principles governing the dynamics of such 
interactions have not been understood, mainly because measurement of lateral interactions on membranes so far has not 
been experimentally addressed. Here, we describe a generic approach for measuring 2-dimensional dissociation rate 
constants in vitro using a novel high-affinity chelator lipid for reconstituting a ternary cytokine-receptor complex on solid-
supported membranes. While monitoring the interaction between the ligand and one of the receptor subunits on the membrane 
by fluorescence resonance energy transfer, the equilibrium on the surface was perturbed by rapidly tethering a large excess of 
the unlabeled receptor subunit. Exchange of labeled by un-labeled protein in the ternary complex was detected as a recovery 
of the donor quenching. Since the dissociation of the ligand-receptor complex in plane of the membrane was the rate-limiting 
step under these conditions, the 2-dimensional rate constant of this process was determined. Strikingly, the 2-dimensional 
dissociation was much slower than ligand dissociation into solution, suggesting that membrane tethering significantly affects 
the dissociation process. This result highlights the importance of studying ligand-receptor complexes tethered to membranes 
for understanding the principles governing signal activation by ligand-induced receptor assembling. 
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Abstract 
Ligand-receptor interactions within the plane of the plasma membrane play a pivotal role for 
transmembrane signaling. The biophysical principles of protein-protein interactions on lipid 
bilayers, though, have hardly been experimentally addressed. We have dissected the 
interactions involved in ternary complex formation by ligand-induced cross-linking of the 
subunits of the type I interferon (IFN) receptor ifnar1 and ifnar2 in vitro. The extracellular 
domains ifnar1-EC and ifnar2-EC were tethered in an oriented manner on solid-supported 
lipid bilayers. The interactions of IFNα2 and several mutants, which exhibit different 
association and dissociation rate constants towards ifnar1-EC and ifnar2-EC, were monitored 
by simultaneous label-free detection and surface-sensitive fluorescence spectroscopy. Surface 
dissociation rate constants were determined by measuring ligand exchange kinetics, and by 
measuring receptor exchange on the surface by fluorescence resonance energy transfer. 
Strikingly, approximately 3-times lower dissociation rate constants were observed for both 
receptor subunits compared to the dissociation in solution. Based on these directly 
determined surface dissociation rate constants, the surface association rate constants were 
assessed by probing ligand dissociation at different relative surface concentrations of the 
receptor subunits. In contrast to the interaction in solution, the association rate constants 
depended on the orientation of the receptor components. Furthermore, the large differences in 
association kinetics observed in solution were not detectable on the surface. Based on these 
results, the key roles of orientation and lateral diffusion on the kinetics of protein interactions 
in plane of the membrane are discussed. 
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Introduction 
Protein-protein interactions within the plane of cellular membranes play a key role for many 
biological processes and in particular for transmembrane signaling. These lateral interactions 
are not static and are typically triggered or stabilized by interactions with further interaction 
partners such as ligands, effectors and binding proteins from the matrices adjacent to the lipid 
bilayers. A prominent example is the ligand-induced cross-linking of receptor tyrosine 
kinases (1,2) and cytokine receptors (3), where 2-dimensional interaction between receptor 
subunits have been recognized to be important for regulating signaling (4-7). The 
fundamental importance of such coupled interactions for cell-surface receptor activation has 
stimulated numerous theoretical studies (8-13). The underlying concept of these models is the 
reduction in dimensionality upon ligand binding to a membrane anchored receptor (14). The 
binding of ligands to individual surface receptors can be determined by standard techniques, 
and rate constants and equilibrium constants are measured in the same units as for interaction 
in solution. In the second step, however, lateral interactions take place in the plane of the 
membrane, i.e. in two instead of three space dimensions. For several reasons, the kinetic 
parameters of these interactions cannot be readily deduced from the rate constants of the 
same interaction in solution: (i) Anchoring of the proteins into the membrane reduces the 
translational and rotational freedom, and results in a preferred orientation of the interaction 
partners to each other along the normal of the surface. Hence, the reaction diagram and the 
reaction coordinate of the interaction are different from the interaction in solution. (ii) Lateral 
and rotational diffusion of the membrane-anchored protein is much slower than in solution, 
while the dynamics of the amino acid side chains mediating the interaction between the 
proteins are not affected. The consequences of these constraints have been subject of 
numerous speculations and theoretical consideration, but to date only very few semi-
quantitative (4) or quantitative (15,16) experimental approaches towards characterizing 2-
dimensional interactions on membranes have been reported. 

Recently, we have reported an experimental approach for reconstituting and analyzing 
membrane-anchored proteins on solid-supported lipid bilayers. The extracellular receptor 
domains of the type I interferon (IFN) receptor subunits ifnar1 (ifnar1-EC) and ifnar2 (ifnar2-
EC) were tethered in an oriented manner onto solid-supported lipid bilayers providing well-
defined and homogeneous diffusion kinetics. The interaction of the membrane-anchored 
receptor subunits with the ligand IFNα2 was studied by using simultaneous surface-sensitive 
fluorescence and interference detection (17). This approach enables to monitor and vary the 
concentrations of the receptor subunits on the lipid bilayer, and the absolute surface 
concentrations can be quantified. A rigorous analysis of all possible interactions between the 
three partners established ternary complex formation by independent interaction of ifnar1 and 
ifnar2 with the ligand IFNα2 (17,18). A general mechanism describing the two possible 
pathways of ternary complex formation and dissociation is depicted in Figure 1. Altogether, 4 
separate interactions have to be considered: two of them (described by K1 and K4) involve 
ligand binding from solution to the surface receptor subunits. The affinity of IFNα2 towards 
ifnar2-EC (K1: 5 nM) is about three orders of magnitude higher than the affinity towards 
ifnar1-EC (K4: ~5µM) (18). In contrast, the interactions of the binary complexes on the 
surface with the second receptor subunits (described by K2 and K3) are 2-dimensional 
interactions. Despite its inherent 3-body complexity, several striking features make this 
interaction a particularly suitable system for studying surface interactions: First, the receptor 
subunits interact independent from each other with the ligand, and do not interact with each 
other as proposed for other cytokine receptors. Second, only a heterodimeric ternary complex 
was detectably involving ifnar2-EC, ifnar1-EC and IFNα2 in a 1:1:1 stoichiometry. Thus, the 
surface interaction is triggered by a ligand binding from solution and the equilibria K2 and K3 
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between binary and ternary complex on the surface K2 and K3 can be probed by the 
dissociation kinetics of the ligand from the surface (17). Since receptor surface 
concentrations can be absolutely quantified in the reconstituted system, this provides the 
means for determining the equilibrium dissociation constants of these 2-dimensional 
interactions. 

Because ligand binding to ifnar2-EC (k1) is at least 10-times faster than to ifnar1-EC (k4), 
pathway 1 has been assumed to be substantially favored both for formation and for the 
dissociation of the ternary complex at stoichiometric surface concentrations of the receptor 
subunits. For an IFNα2 mutant with reduced k1, however, pathway 2 has been proposed to 
considerably contribute, which may hold true also for other members of the type I IFN family 
(17). Here, we have employed the features of this system to explore the biophysical principles 
governing protein interactions in plane of biological membranes. By using different chasing 
and pulse-chasing assays, as well as IFN-mutants with different affinities and different 
association and dissociation rate constants of the interaction with ifnar1-EC and ifnar2-EC, 
each of the 2-dimensional rate constants of the two interaction pathway depicted in Figure 1 
were determined. Furthermore, the role of electrostatic rate enhancement and the relative 
orientation of the receptor subunits on the surface association rate constants were 
investigated. Based on these data, we compare the determinants of protein interaction kinetics 
in 3 and 2 dimensions. 

Materials and Methods 

Protein expression and purification 

IFNα2, IFNα2 HEQ, ifnar2-EC with a C-terminal decahistidine-tag (ifnar2-H10), ifnar2-H10 
I47A and tag-less ifnar2-EC (ifnar2-tl) were expressed in Escherichia coli, refolded from 
inclusion bodies and purified by anion-exchange and size-exclusion chromatography as 
described (19). For site-specific labeling, an additional cysteine was introduced by the 
mutations S136C (IFNα2) and S35C (ifnar2-H10). These proteins were expressed, refolded 
and purified as the wild-type proteins. After size exclusion chromatography, these proteins 
were incubated with a 3-fold excess of Alexa Fluor 488 (AF488) maleimide or Oregon Green 
488 (OG488) maleimide as FRET donors, and Alexa Fluor 568 (AF568) maleimide as an 
FRET acceptor (all from Molecular Probes, Eugene, OR). After the labeling reaction, the 
proteins were further purified by anion exchange chromatography. Binding experiments 
confirmed that the interaction properties of both proteins were not affected by mutagenesis or 
labeling. Ifnar1-EC with a C-terminal decahistidine tag (Ifnar1-H10) and with a N-terminal 
decahistidine tag (H10-ifnar1) were expressed in Sf9 insect cells, and purified from the 
supernatant by immobilized metal affinity chromatography followed by size exclusion 
chromatography as described earlier (20). 

Simultaneous fluorescence interference detection 
Two dimensional interactions were detected with a home-built set-up for simultaneous 
reflectance interferometry (RIf) and total internal reflection fluorescence spectroscopy 
(TIRFS) detection as described previously in more detail (17). An argon ion laser was used 
for fluorescence excitation at 488 nm at an excitation power of 2–3 µW focused onto an area 
of 1 mm² in order to minimize photo-bleaching. Fluorescence was collected by an optical 
fiber and detected by a photomultiplier tube through bandpass filters. FRET measurements 
with donor and acceptor fluorescence detection were carried out by changing the emission 
filters by means of a filter wheel. Mass deposition onto the surface was monitored 
simultaneously by RIf detection at 800 nm. Both TIRFS and RIf were acquired with a time 
resolution of 1.2-1.5 s. Sample handling was carried out in a flow-through format using a 
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syringe pump as described (21). With this system, flow rates between 1 and 500µl/s can be 
employed. Sample handling and data acquisition were controlled with software written in 
LabVIEW (National Instruments). 

Lipid bilayer assembling, receptor reconstitution and binding assays 
The transducer surface was incubated for 30 min in a freshly prepared mixture of two parts 
30% (v/v) hydrogen peroxide and three parts concentrated sulfuric acid. After extensive 
washing with water, the transducer was dried in a nitrogen stream and mounted immediately 
into the flow cell. Solid supported lipid bilayers were prepared by fusion of small unilamelar 
vesicles (SUVs) obtained by probe sonication. Synthetic stearoyl-oleoyl phosphatidylcholine 
(SOPC, Avanti Polar Lipids, Alabaster, AL) lipids were doped with 5 mol% lipid containing 
bis-NTA chelator head (17). The unsaturated alkyl chain of both matrix and chelator lipid 
prevented phase segregation and ensured bilayer fluidity. 

All binding studies were carried out with 20 mM HEPES, pH 7.5, and 150 mM NaCl as the 
running buffer. Solid-supported lipid bilayers were obtained by injecting SUVs at a lipid 
concentration of 250 µM on the surface of the transducer. Protein immobilization and 
binding assays were in principle carried out as described earlier (18). For tethering the 
histidine-tagged proteins to the supported membranes, the chelator head groups were loaded 
with Ni2+ ions by injecting 10 mM nickel(II)chloride in the running buffer for 150 s and 
conditioned by a 150 s injection of 200 mM imidazole. Depending on the targeted surface 
concentrations, the his-tagged proteins were sequentially injected at concentrations between 
2 nM and 1 µM for 20–60 s. The ligand was then injected at a concentration of 50 nM for 
150-300 s with a flow rate of 1 µl/s, followed by a buffer wash with 10 µl/s or injection of 
2 µM ifnar2-tl, 1 µM IFNα2 or 1 µM IFNα2 HEQ at a flow rate of 1µl/s for 300-450 s. For 
pulse-chase experiments 1µM ifnar2-H10 was injected for 20 s, followed by a buffer wash 
with a flow rate of 10µl/s. After a set of ligand binding experiments, all attached proteins 
were removed by a 150 s pulse of 200 mM imidazole, and the subsequent binding assays 
were carried out on the same lipid bilayer. 

Data evaluation 
Binding curves were analyzed using Origin (Microcal Software, Northampton, MA) or 
Berkeley Madonna (UCB, Berkeley, CA) software packages. If necessary, RIf curves were 
corrected for a linear drift based on the signals before tethering the proteins and after 
regeneration with imidazole. Two different models were used to evaluate ligand dissociation 
curves. Dissociation rate constants were obtained by fitting a mono-exponential function: 

 ( ) ( )0

0
ttkdeRtR −⋅−⋅=  (Equation 1) 

2-dimensional association rate constants were determined by fitting a two step dissociation 
model describing one of the two pathways shown in Figure 1 as in principle described before 
(17). For determination of k2 (pathway 1), the following set of differential equations was 
fitted: 
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For determination of k3 (pathway 2), the following set of differential equations was fitted: 
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[R1]0 and [R2]0 were initial surface concentrations of ifnar1-EC and ifnar2-EC, respectively, 
which were determined from the RIf signals. [S] was the total surface concentration of the 
ligand, which was detected in a time-resolved manner by the TIRFS signal and converted into 
a absolute surface concentration using a calibration by RIf. The 2-dimensional dissociation 
rate constants k-2 and k-3, respectively, were determined independently by chasing 
experiments. The respective 2-dimensional association rate constant was the only parameter 
varied in the fitting procedure. 

Simulations 
Ligand dissociation kinetics through both pathways was numerically simulated using the 
following set of differential equations: 
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concentrations of the receptor subunits, 2 or 22 fmol/mm² were assumed. 

The populations of pathway 1 and pathway 2 were simulated according to the equations 
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Results 
The interaction kinetics of ifnar2-EC and ifnar1-EC with IFNα2 has been previously studied 
in detail, and numerous mutants with different interaction rate constants have been described 
(18,22-25). Here, we used several mutants of IFNα2 and ifnar2-EC, as well as different 
variants of ifnar1-EC. The rate constants of the mutants applied for further characterization of 
the 2-dimensional interaction involved in ternary complex formation were verified by ligand 
binding assays with the site-specifically fluorescence labeled IFNα2 species using TIRFS 
detection (Table 1). 

Pathways of receptor assembling and dissociation 
IFN-induced two-step assembling and dissociation of the ternary complex with ifnar1-EC and 
ifnar2-EC can occur by two different pathways (Figure 1). For the interaction of IFNα2 with 
ifnar2-EC and ifnar1-EC at stoichiometric concentration, pathway 1 has been considered to 
determine both complex formation and dissociation, because of the faster association rate 
constant k1 compared to k4 (17). This holds obviously true for the complex formation, since 
ligand binding from solution is the rate-limiting step of the assembling process (17), which is 
~10-fold faster to ifnar2-EC than to ifnar1-EC. Dissociation of the ternary complex, however, 
is determined by the 2-dimensional rate constants k2, k-2, k3 and k-3, which have been 
assumed to scale relatively as the corresponding rate constants in solution. This assumption 
was qualitatively tested by rapidly changing the receptor surface concentration after 
formation of a stoichiometric ternary complex (Figure 2). Ifnar1-EC and ifnar2-EC carrying a 
C-terminal decahistidine-tag (ifnar1-H10 and ifnar2-H10) were site-specifically tethered in 
stoichiometric concentrations onto silica-supported lipid bilayers doped with bis-NTA lipids. 
The dissociation kinetics of fluorescence-labeled IFNα2 (AF488IFNα2) was monitored before 
and after tethering additional ifnar1-H10 onto the membrane (Figure 2B, C). As expected, 
slower ligand dissociation kinetics was observed upon loading additional ifnar1-H10, 
indicating a shift of the equilibrium K2 towards the ternary complex (cf. Figure 1). 
Surprisingly, however, a similar effect was observed when the ifnar2-H10 surface 
concentration was rapidly increased under the same conditions (Figure 2D, E). Since only 
pathway 2 depends on the surface concentration of ifnar2, this result indicates that this 
pathway is significantly involved in the dissociation of the ternary complex. Properly 
describing the receptor dynamics therefore requires dissection of all four 2-dimensional rate 
constants involved in ternary complex formation. 

2-dimensional dissociation kinetics measured by FRET 
The dissociation rate constant of the 2-dimensional interaction between ifnar2-H10 and the 
IFNα2 complexed by ifnar1-H10 was directly measured using a pulse chase approach, which 
is schematically depicted in Figure 3A. After ternary complex formation of AF568IFNα2 with 
AF488ifnar2-H10 and ifnar1-H10, a substantial excess of unlabeled ifnar2-H10 was rapidly 
tethered onto the membrane, and the exchange of AF488ifnar2-H10 from ternary complex with 
unlabeled ifnar2-H10 was monitored by the decaying FRET between AF568IFNα2 and 
AF488ifnar2-H10. A typical experiment is shown in Figure 3B. Donor fluorescence from 
AF488ifnar2-H10 was quenched upon ternary complex formation with acceptor-labeled 
AF568IFNα2, which was accompanied by an increase in sensitized fluorescence. During 
rinsing, slow recovery of the donor fluorescence and likewise and decay of the acceptor 
fluorescence due to ligand dissociation was observed. Upon pulse-chasing the ternary 
complex by rapidly tethering an excess of unlabeled ifnar2-H10 onto the membrane, much 
faster recovery of the donor fluorescence and decay of the acceptor fluorescence where 
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observed. Under these conditions, ligand dissociation was hardly detectable (Figure 3C and 
Figure 2D), confirming that indeed the kinetics of the exchange of AF488ifnar2-H10 against 
unlabelled ifnar2-H10 on the surface was monitored by FRET. The normalized traces for 
donor and acceptor fluorescence were in excellent agreement (Figure 3C). The rate constant 
of this exchange is determined by the 2-dimensional dissociation rate constant of the ifnar2-
H10/IFNα2 complex k-3, which is the rate-limiting step in this process. The rate constants 
obtained by a mono-exponential fit to the two FRET signals were in good agreement and an 
average k-3 of 0.007 ± 0.001 s-1 was determined from multiple experiments at different 
receptor surface concentrations. Strikingly, k-3 is ~3-times lower than the k-1 of 0.02 s-1 for the 
dissociation of IFNα2 from ifnar2-H10 into solution (cf. Figure 3C and Table 1). Extensive 
ligand binding studies with the soluble receptors domains have excluded cooperative binding 
of the receptor subunits to IFNα2. Thus, the difference between k-1 and k-3 results from 
anchoring the complex onto the membrane. 

Determination of 2-dimensional rate constants by ligand chasing 
In order to confirm this effect on the dissociation kinetics, the 2-dimensional dissociation rate 
constants were assessed by ligand chasing experiments. The principle of this assay is depicted 
in Figure 4A. Here, a high excess of ifnar1-EC compared to ifnar2-H10 was tethered onto the 
membrane, and the ternary complex was formed by injecting AF488IFNα2. The excess of 
ifnar1-H10 remained free due to the low affinity of wild-type IFNα2 to ifnar1-H10 and its 
fast dissociation from ifnar1-H10 (kd: ~1 s-1). By injection of 1 µM unlabeled IFNα2 HEQ, 
which binds to ifnar1-H10 with 20-fold higher affinity (25), these free ifnar1-EC molecules 
are rapidly saturated with ligand. The labeled ligand in the ternary complex is first exchanged 
against unlabeled IFNα2 HEQ by 2-dimensional dissociation of the ifnar2-H10/IFNα2 
interaction, followed by dissociation from excess ifnar1-H10 into solution (cf. Figure 4A). 
Because of the fast dissociation of labeled IFNα2 from excess ifnar1-H10 into solution, the 
rate-limiting step of this exchange process is the dissociation of the ifnar1-H10/IFNα2 
complex from ifnar2-H10, which is again the 2-dimensional dissociation rate constant k-3. A 
typical course of such an experiment is shown in Figure 4B. After tethering the receptor 
subunits in appropriate surface concentrations, AF488IFNα2 was injected and spontaneous 
dissociation was monitored. Fast dissociation from excess ifnar1-H10 within a few seconds 
was followed by very slow dissociation (comparable to the ligand dissociation kinetics in 
Figure 2A after loading excess of ifnar1-H10). The same injection of AF488IFNα2 was 
repeated, but ligand dissociation was monitored in presence of tag-less ifnar2-EC (ifnar2-tl) 
in order to suppress mass-transport dependent rebinding (26,27), which has to be considered 
at these receptor surface concentrations. After the third injection of AF488IFNα2, unlabeled 
IFNα2 HEQ was injected and the exchange kinetics was monitored. Rapid saturation of the 
excess ifnar1-H10 by binding of IFNα2 HEQ was verified by the RIf signal. The normalized 
dissociation curves are compared in Figure 4C with the ligand dissociation from ifnar2-H10 
into solution. Again, substantially slower 2-dimensional dissociation of ifnar2-H10 from 
IFNα2 bound to ifnar1-H10 was observed compared to the 3-dimensional dissociation. A rate 
constant k-3 of (0.0044±0.001) s-1 was obtained, which is in good agreement with the value 
obtained by pulse-chasing with ifnar2-H10. 

From the spontaneous ligand dissociation kinetics, the 2-dimensional association rate 
constant was determined, assuming that dissociation through pathway 1 can be neglected at 
this high excess of ifnar1-EC. Since spontaneous dissociation was indeed biased by rebinding 
(Figure 4C), the dissociation curve in presence of 2 µM ifnar2-tl was used. A 2-step 
dissociation model (equation 3) was fitted taking into account the appropriate 2- and 3-
dimensional rate constants k-3 and k-4, respectively, as well as the surface concentration of 
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ifnar2-H10 as quantified from the RIf signal. A 2-dimensional association rate constant k3 of 
3.3×1016 mm2mol-1s-1 was obtained from the fit. Thus, a 2-dimensional equilibrium 
dissociation constant (K3) of 0.004 fmol/mm² or 2.3 molecules/µm² was obtained for the 
IFNα2/ifnar2 interaction. 

The same experiment was carried out with the ifnar2-H10 mutant I47A, which binds IFNα2 
with ten-fold lower affinity, but with the same association rate constant. Much faster 
spontaneous ligand dissociation from the ternary complex was observed at similar receptor 
surface concentrations used for wt ifnar2-H10 (Figure 4D). Upon chasing with IFNα2 HEQ, 
the labeled ligand was exchanged within a few 10 seconds. Comparison of 2- and 3-
dimensional dissociation kinetics (Figure 4E), however, again yielded a ~2-fold lower rate 
constant for the interaction in plane of the membrane (k-3 = 0.11s-1) compared to the 
dissociation of the ligand from the surface (k-1 = 0.2s-1). In contrast, the 2-dimensional 
association rate constant k-3 obtained from fitting the spontaneous dissociation kinetics with a 
2-step dissociation model (Equation 3) was 2.8×1016 mm2mol-1s-1, i.e. very similar to the k3 
obtained for the interaction of IFNα2 with wild-type ifnar2-H10 interaction. These consistent 
results confirmed that the surface dissociation kinetics is affected by tethering the receptor 
subunits to the membrane, and the robustness of the experimental approach to determine 2-
dimensional rate constants. 

The 2-dimensional interaction involved in pathway 2 was furthermore characterized by 
applying the IFNα2 mutant R144A (data not shown), which binds ifnar2-H10 with a 10-fold 
lower association rate constant than wild-type IFNα2 (cf. Table 1). Again, ~3-times slower 
dissociation in plane of the membrane (k-3 = 0.012s-1) was observed compared to the 
dissociation from the surface (k-1 = 0.044s-1). More importantly, however, a slower 2-
dimensional association rate constant (k3 = 9.1×1015 mm2mol-1s-1) was obtained, which was 
~3-fold slower than the 2-dimensional association rate constant of wild-type IFNα2. Thus, the 
10-fold difference of the ka in solution was not maintained on the membrane surface, 
suggesting that the slower diffusion on the membrane may affect association kinetics. 

The 2-dimensional rate constants of pathway 1 
In order to determine the 2-dimensional rate constants of the interaction between ifnar1-H10 
and IFNα2 in the ternary complex we studied the ligand dissociation pathway 1 by a similar 
set of experiments. In order to ensure that 2-dimensional dissociation is rate limiting, ifnar2-
H10 I47A was used in combination with IFNα2 HEQ, which dissociates from ifnar1-EC with 
a rate constant of 0.05 s-1. The ligand chasing experiment were carried out at an excess of 
ifnar2-H10 I47A, and wild-type IFNα2 was used for chasing (Figure 5A). A typical 
experiment is shown Figure 5B: After formation of the ternary complex with AF488IFNα2 
HEQ, spontaneous dissociation was monitored in presence of 2 µM ifnar2-tl to suppress 
rebinding of the ligand. After a second injection of AF488IFNα2 HEQ, ligand exchange in 
presence of unlabeled wild-type IFNα2 was monitored. In Figure 5C, the dissociation kinetics 
in plane of the membrane is compared with the dissociation from the surface. Again, 
significantly lower dissociation rate constant was obtained for 2-dimensional dissociation (k-

2: 0.026s-1) was observed compared to the dissociation into solution (k-4: 0.047s-1). Based on 
this 2-dimensional dissociation rate constant, the spontaneous ligand dissociation kinetics 
was fitted by a 2-step model (Equation 2). A 2-dimensional association rate constant of 
1.3×1016 mm2mol-1s-1 was obtained for the interaction of IFNα2 HEQ with ifnar1-H10 (k2). 
These measurements were also carried out with different combinations of wild-type and 
mutant IFNα2 and ifnar2-H10. All results are summarized in Table 2. In all combinations, 
similar values of ~1×1016 mm2mol-1s-1 were obtained for k2, very similar to the k3 obtained for 
IFNα2 R144A. Interestingly, also the 3-dimensional association rate constants k1 and k4 are 
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very similar for this mutant (cf. Table 1). Furthermore, a ~2.5-fold lower k-2 compared to k2 
was confirmed for all combinations, confirming the decrease in the dissociation rate constant 
by tethering the complex onto the surface. Based on these consistent observations, we 
estimated a k-2 of 0.4 s-1 for wild-type IFNα2. 

The role of orientation in 2-dimensional interactions 
Orientation and flexibility of membrane-anchored proteins have been suggested to be key 
parameters in the kinetics of 2-dimensional interactions on membranes. In order to study the 
role of orientation on ternary complex formation, we tethered ifnar1-EC through an N-
terminal decahistidine tag (H10-ifnar1) onto the membrane. For this protein, very similar rate 
constants as for ifnar1-H10 were obtained by conventional ligand binding assays (Table 1). 
The 2-dimensional rate constants were determined using ligand chasing experiments as 
described above. The results are summarized in Table 2. No significant effect on the surface 
dissociation rate constants k-2 and k-3 was observed upon changing the orientation of ifnar1-
EC. The effect on the 2-dimensional association rate constants, however, was substantial: for 
k2 (pathway 1), a ~3-fold decrease was observed compared to the rate constant obtained with 
ifnar1-H10. For k3 (pathway 2), the effect was even stronger with a ~5-fold decrease 
compared to the rate constant obtained with ifnar1-H10. Thus, we could demonstrate the key 
role of receptor orientation on surface association kinetics and affinity by mimicking oriented 
attachment to the membrane in vitro. 

Population of the dissociation pathways 
Based on the experimentally determined rate constants, the population of the two dissociation 
pathways was compared at experimentally relevant receptor surface concentrations by 
numerically simulating ligand dissociation (Equation 4 and 5). The ligand dissociation curves 
for both pathways together and individually are compared for the wild-type proteins and two 
mutants in Figure 6. At stoichiometric concentration of the receptor subunits, pathway 1 is 
clearly dominant in case of the wt proteins (Figure 6A), and also for ifnar2-I47A (Figure 6B). 
However, a substantial contribution of pathway 2 to ligand dissociation is observed, which is 
in line with the only ~3-fold higher 2-dimensional association rate k3 compared to k2. For 
IFNα2 R144A (k3 ≈ k2), both pathways are similarly populated at stoichiometric receptor 
concentrations, confirming the key role of the relative surface 2-dimensional association rate 
constants on the dissociation pathway. At 10-fold excess of ifnar2 or ifnar1, only pathway 1 
or pathway 2, respectively, is responsible for ligand dissociation. 

Discussion 
Cellular signaling by cytokine receptors is initiated by ligand-mediated cross-linking of two 
or more receptor subunits. Thus, the 2-dimensional interactions between the ligand and its 
cognate receptor subunits determine the dynamics of the receptor complex on the plasma 
membrane, which has been proposed to play a critical role for signaling and its regulation . 
Here, we have for the first time parameterized the rate constants of a ternary cytokine-
receptor complex on model membranes. By exchange experiments based on chasing the 
ternary complex with additional receptor or ligand, we succeeded to reliably determine the 2-
dimensional dissociation rate constants. The two possible pathways were studied separately 
by using excess concentrations of one of the receptor subunits. Based on several mutants and 
variants of the interacting proteins, the effect of different rate constants and protein 
orientation on the complex dynamics was studied. Thus, we have identified several critical 
features of 2-dimensional interactions on membrans, which cannot be readily concluded from 
solution binding assays. The first surprising observation was that the dissociation rate 
constants were generally 2-3-fold lower for the interaction in plane of the membrane 
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compared to the interaction in solution. This difference was not due to cooperative binding of 
the receptor subunits, which was confirmed by extensive ligand binding studies. Surface 
anchoring limits the degree of freedom, which may affect the reaction coordinate, but the 
dissociation kinetics in plane of the membrane was hardly significantly affected by the 
orientation of ifnar1-EC. The environment of the interaction interface is not affected by 
membrane anchoring, but the separation of the interaction partners by lateral diffusion, is 
~100-fold slower on the membrane than in solution, which may account for the slower 
dissociation. Furthermore, more efficient rebinding of the membrane-anchored proteins prior 
to full dissociation may be caused by reducing rotational freedom. The first explanation 
implies that the dynamics of ligand-receptor complexes may depend on the diffusion 
properties of the receptor in the membrane, which are known to be locally rather variable due 
to the microdomain structure of the plasma membrane. By partitioning of receptor complexes 
in microdomains with low fluidity such as caveolae, which has been reported for several 
tyrosine kinases and cytokine receptors (28,29) including ifnar (30), the stability of 
oligomeric complexes would be substantially enhanced. This could be a simple mechanism 
for increasing receptor recruitment efficiency at low receptor surface concentration. However, 
more detailed analysis of the dependence of the 2-dimensional kd on membrane fluidity would 
be required, as well as confirmation for other ligand-receptor complexes. 

Assessment of the association rate constants in plane of the membrane and towards the 
receptor subunits revealed further striking features of interactions on membranes. More than 
10-fold faster association of IFNα2 with ifnar2 compared to ifnar1-EC suggested that 
pathway 1 dominates both formation and dissociation of the ternary complex. On the 
membrane, though, a less than 3-fold difference in the 2-dimensional association rate 
constants was observed. For the IFNα2 mutant R144A, which binds to ifnar2-EC with a 10-
fold lower association rate constant than wild-type IFNα2, similar 2-dimensional association 
rate constants were obtained for both pathways. It was shown earlier that the association 
kinetics of IFNα2 to ifnar2 is accelerated by electrostatic attraction (19). Electrostatic 
association rate enhancement has been explained by a stabilization of the encounter complex 
and by steering of the proteins into appropriate orientations (31-34). Our results suggest that 
this electrostatic rate enhancement is not as effective on the membrane. This could be 
ascribed to changed electrostatic properties by tethering the interacting proteins onto the 
membrane. Another reason could be that the association kinetics is limited by the slower 
diffusion on the membrane. While electrostatic steering did not seem to be as important as in 
solution, receptor orientation was shown to strongly affect the 2-dimensional association rate 
constants. Interestingly, even more similar values were observed for both k2 and k3 upon 
tethering ifnar1-EC through the N-terminus. Compared to the rate constants obtained with 
ifnar1-EC tethered in its natural orientation both k2 and k3 were substantially decreased. 
Orientation has been proposed to play a key role for 2-dimensional interactions on 
membranes (35); the strong effect, though, is somewhat surprising because tethering through 
the histidine tag to the membrane is expected to provide substantial flexibility, which should 
counteract pre-orientation. Furthermore, ifnar1-EC comprising four Ig-like domains is 
probably rather flexible in itself. However, our results suggest that steering of association by 
oriented anchoring in the membrane is more critical for 2-dimensional association kinetics 
than electrostatic steering. We have shown here that membrane anchoring through histidines 
can in principle mimic some determinant of ligand-receptor interaction on membranes. The 
importance of lateral diffusion kinetics, orientation and flexibility underscore the importance 
of assessing transmembrane proteins interactions under conditions, which mimic the 
properties of membrane anchoring even more appropriately.  
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Tables 
Table 1 Parameters of the individual interactions between IFNα2 and the receptor subunits. 

IFNα2 Ifnar2-H10 Ifnar2-H10 I47A Ifnar1-H10/H10-ifnar1 

 
ka (k1) 
[M-1s-1] 

kd (k-1) 
[s-1] 

KD (K1) 
nM 

ka (k1) 
[M-1s-1] 

kd (k-1) 
[s-1] 

KD (K1) 
nM 

ka (k4) 
[M-1s-1] 

kd (k-4) 
[s-1] 

KD (K1) 
nM 

wt 3×106 0.02 7 3×106 0.2 70 2×105 1 5000 

R144A 3×105 0.044 150 3×105 0.5 1700 2×105 1 5000 

HEQ 3×106 0.02 7 3×106 0.2 70 2×105 0.05 250 

In brackets, the identifier of the constants as introduced in Figure 1 are given. All IFNα2 
species were site-specifically fluorescence labeled with OG488 or AF488 by incorporating the 
additional mutation S136C. 

 

Table 2 2-dimensional interaction rate constants determined for different combinations of 
receptor and ligand variants 

 Pathway 1 Pathway 2 

Ifnar2-H10/IFNα2/ 
ifnar1-EC 

k2 
[mm²fmol-1s-1] 

k-2 
[s-1] 

K2 
[fmol/mm²] 

k3 
[mm²fmol-1s-1] 

k-3 
[s-1] 

K3 
[fmol/mm²] 

I47A/wt/C-term a 16.5 ± 3.3 ~0.4 c 0.024 28.2 ± 5.1 0.11 ± 0.02 0.004 

I47A/R144A/C-term a 9.6±2.0 ~0.4 c 0.042 11.3±2.2 0.2±0.02 0.018 

wt/R144A/C-term a 9.1 ± 1.8 ~0.4 c 0.044 9.1±2.0 0.012±0.001 0.0013 

wt/wt/C-term a    33±5.5 0.0044±0.001 0.00013 

wt/HEQ/C-term a     0.004  

I47A/HEQ/C-term a 13.1±2.8 0.026±0.002 0.002    

wt/wt/N-term b    5.2±1.2 0.007±0.002 0.0014 

I47A/wt/N-term b 4.0 ± 0.8 ~0.4c 0.100 5.0±1.0 0.070±0.005 0.014 

I47A/HEQ/N-term b 4.0 ± 0.9 0.033±0.004 0.008    
a ifnar1-EC tethered to the membrane by a C-terminal H10-tag. b ifnar1-EC tethered to the 
membrane by a N-terminal H10-tag; c estimated by comparison with IFNα2 HEQ. 
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Legends to figures 

Figure 1 Schematic of the dynamic equilibria of solution and surface interactions involved in 
the 2-step formation and dissociation of the ternary IFN-receptor complex on a 
membrane (details in the text). 

Figure 2 Relevance of the two possible dissociation pathways of the ternary complex. (A) 
Schematic of the experiments: ternary complex on fluid lipid membrane was formed 
by sequential tethering of ifnar2-H10 (1) and ifnar1-H10 (2) in stoichiometric 
amounts, followed by binding AF488IFNα2 to form the ternary complex (3). After the 
second injection of AF488IFNα2, additional ifnar1-H10 (top) or ifnar2-H10 (bottom) 
was rapidly tethered onto the membrane, and dissociation was monitored (4). (B) 
Course of a typical experiment as monitored by simultaneous TIRFS (top) and RIf 
(bottom) detection with addition loading of ifnar1-H10. (C) Overlay of ligand 
dissociation curves with (red) and without (black) free ifnar1-H10 on the 
membrane. (D) Course of a typical experiment as monitored by simultaneous TIRFS 
(top) and RIf (bottom) detection with addition loading of ifnar2-H10. (E) Overlay of 
ligand dissociation curves with (red) and without (black) free ifnar2-H10 on the 
membrane. 

Figure 3 Monitoring 2-dimensional dissociation kinetics by pulse-chasing the ternary 
complex. (A) Principle of surface dissociation rate constant determination as 
detected by FRET: The ternary complex on fluid lipid membrane is formed by 
sequential injection of AF488ifnar2-H10 (1), ifnar1-H10 (2) and AF568IFNα2 (3). 
Equilibrium is then perturbed by rapidly tethering an excess of non-labeled ifnar2-
H10 onto the membrane (4), which exchanges the labeled ifnar2-H10 in the ternary 
complex (5). (B) Course of a typical experiment monitoring donor fluorescence 
(green) and acceptor (red trace) fluorescence by TIRFS and the mass loading by RIf 
(black). (C) Comparison of the surface dissociation rates from donor (green) and 
acceptor (red) channels with the dissociation of AF568IFNα2 from ifnar2-H10 alone 
(blue). A control experiment carried out the same way, but with unlabeled ifnar2-
H10 in (1) and with direct excitation of AF568IFNα2 confirmed negligible ligand 
dissociation from the surface (black). The residuals from monoexponential curve fits 
are shown in the bottom. 

 

Figure 4 Determination of 2-dimensional dissociation rate constants by ligand chasing. (A) 
Schematic of the assay: Ternary complex on fluid lipid membrane was formed by 
sequential injection of ifnar2-H10 (1), a large excess of ifnar1-H10 (2) and 
AF488IFNα2 (3). The excess of ifnar1 was then loaded with an unlabeled competitor 
(4), which binds ifnar1 with high affinity (IFNα2 HEQ) and exchanged the labeled 
ligand in the ternary complex (5). (B) Typical experiment carried out with the wild-
type proteins as detected by TIRFS (green) and by RIf (black). After the second 
injection of AF488IFNα2, 2 µM ifnar2-tl was injected to eliminate rebinding. After 
the third injection of AF488IFNα2, 1 µM unlabeled IFNα2 HEQ was injected. (C) 
Overlay of the normalized AF488IFNα2 dissociation curves from B: spontaneous 
dissociation during washing with buffer (black) and with 2µM ifnar2-tl (red), as 
well as dissociation while chasing with IFNα2 HEQ (green). Dissociation from 
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ifnar2-H10 alone is shown for comparison (blue). The residuals from the curve fits 
are shown in the bottom. (D) Same experiment as in B carried out with ifnar2-H10 
I47A. (E) Overlay of the dissociation curves from D (same color coding as in C) 
with comparison of AF488IFNα2 dissociation from ifnar2-H10 I47A alone (blue). The 
residuals from the curve fits are shown in the bottom. 

Figure 5 Determination of 2-dimensional rate constants for pathway 1. (A) Schematic of the 
assay: ternary complex on fluid lipid membrane was formed by sequential injection 
of ifnar1-H10 (1), excess ifnar2-H10 I47A (2) and AF488IFNα2 HEQ (3). Upon 
loading the excess binding sites of ifnar2-H10 with unlabeled IFNα2 (4), labeled 
IFNα2 in the ternary complex was exchanged (5). (B) Course of a typical 
experiment as detected by TIRFS (green) and RIf (black). During spontaneous 
ligand dissociation, 2 µM ifnar2-tl was maintained in the background in order to 
eliminate rebinding. After the second injection of AF488IFNα2 HEQ 1 µM unlabeled 
IFNα2-wild-type was injected. (C) Overlay of the normalized dissociation curves: 
spontaneous dissociation from the ternary complex (red) and ligand exchange 
kinetics washing with 1µM IFNα2 HEQ (green). Dissociation from Ifnar1-H10 
alone is shown for comparison (blue). The residuals from the curve fits are shown in 
the bottom. 

 

Figure 6 Population of the dissociation pathways under different conditions. Ligand 
dissociation was numerically simulated based on the experimentally determined 2- 
and 3-dimensional rate constants for the following species of ifnar2/IFNα2/ifnar1: 
wt/wt/wt (A); I47A/wt/wt (B); wt/R144A/wt (C). In all cases, 2 fmol/mm² of both 
ifnar2 and ifnar1 were assumed to form ternary complex under three different 
condition: no excess of either of the receptor subunits (top panel), with an excess of 
20 fmol/mm² ifnar1 (middle panel), and with an excess of 20 fmol/mm² ifnar2 
(bottom panel). 
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