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Abstract

The CBM experiment at future accelerator facility FAIR will investigate the prop-
erties of nuclear matter under extreme conditions. The experimental programm is
different from the heavy-ion experiments at RHIC (BNL) and LHC (CERN) that
create nuclear matter at high temperatures. In contrast, the study of the QCD
phase diagram in the region of the highest net baryon densities and moderate tem-
peratures that is weakly explored will be performed with high precision. For this,
collisions of different heavy-ion beams at the energies of 10–45GeV/nucleon with
nuclear target will be measured.

The physics programme of the CBM experiment includes measurement of both
rare probes and bulk observables that originate from various phases of a nucleus-
nucleus collision. In particular, decay of particles with charm quarks can be reg-
istered by reconstructing the decay vertex detached from the primary interaction
point by several hundreds of micrometers (e.g., decay length cτ = 123 µm for
D0 meson). For this, precise tracking and full event reconstruction with up to
600 charged particle tracks per event within acceptance are required. Other rare
probes require operation at interaction rate of up to 10MHz. The detector sys-
tem that performs tracking has to provide high position resolution on the order of
10 µm, operate at high rates and have radiation tolerant design with low material
budget.

The Silicon Tracking System (STS) is being designed for charged-particle track-
ing in a magnetic field. The system consists of eight tracking station located in
the aperture of a dipole magnet with 1T field. For tracks with momentum above
1GeV, momentum resolution of such a system is expected to be about 1%. In
order to fulfill this task, thorough optimization of the detector design is required.
In particular, minimal material budget has to be achieved.

Production of a detector module requires research and development activities
with respect to the module components and their integration. A detector module
is a basic functional unit that includes a sensor, an analogue microcable and front-
end electronics mounted on a support structure. The objective of the thesis is
to perform quality assurance tests of the prototype module components in order
to validate the concept of the detector module and to demonstrate its operation
using radioactive sources and particle beams.

Double-sided silicon microstrip detectors have been chosen as sensor tech-
nology for the STS because of the combination of a good spatial resolution,
two-dimensional coordinate measurement achieved within low material budget



(0.3%X0), high readout speed and sufficient radiation tolerance. Several gener-
ations of double-sided silicon microstrip sensors have been manufactured in order
to explore the radiation hard design features and the concept of a large-area sen-
sor compatible with ladder-type structure of the detector module. In particular,
sensors with double metal layer on both sides and active area of 62×62mm2 have
been produced. Electrical characterization of the sensors has been performed in
order to establish the overall operability as well as to extract the device param-
eters. Current-voltage, capacitance-voltage characteristics and interstrip parame-
ters have been measured.

Readout of the sensors has been done using self-triggering front-end electronics.
A front-end board has been developed based on the n-XYTER readout chip with
data driven architecture and capable of operating at 32MHz readout rate. The
front-end board included an external analog-to-digital converter (ADC). Calibra-
tion of the ADC has been performed using both 241Am X-ray source and external
pulse generator. Threshold calibration and investigation of temperature depen-
dence of chip parameters has been carried out.

Low-mass support structures have been developed using carbon fibre that has
the rigidity to hold the detector modules and introduce minimal Coulomb scat-
tering of the particle tracks. Analogue microcables have been produced with alu-
minium traces on a polyimide substrate, thus combining good electrical connection
with low material budget. Microcable structure includes several layers optimized
for low trace capacitance and thus low-noise performance.

A demonstrator tracking telescope has been constructed and operated in several
beam tests including 2.5GeV proton beam at COSY synchrotron (Jülich). Three
tracking stations have been complemented with several beam hodoscopes. Analysis
of the beam data has yielded information on analogue and timing response, beam
profile. Tracking and alignment information has been obtained. Beam stability
has been evaluated using specially developed monitoring tools.

As a result of conducted studies, performance of the module components have
been evaluated and requirements to the detector module have been formulated.
Practical suggestions have been made with respect to the structure of the detector
module, whereas precise definition of the final detector module design was outside
of the scope of this thesis.



Kurzfassung

Das CBM-Experiment an der zukünftigen Beschleunigeranlage FAIR wird die Ei-
genschaften von Kernmaterie unter extremen Bedingungen untersuchen. Das ex-
perimentelle Programm unterscheidet sich von den Schwerionen-Experimenten an
RHIC (BNL) und LHC (CERN), die Kernmaterie bei hohen Temperaturen er-
zeugen. Im Gegensatz dazu kann die Untersuchung des QCD-Phasendiagramms,
im Bereich der höchsten Nettobaryonendichten und moderaten Temperaturen, die
nur schwach untersucht wurden, mit hoher Präzision durchgeführt werden. Hier-
zu werden Kollisionen der verschiedenen Schwerionenstrahlen, bei Energien von
10-45GeV/Nukleon, mit nuklearem Target gemessen.

Das physikalische Programm des CBM Experimentes umfasst die Messung so-
wohl der seltenen Sonden als auch der Mengenobservablen, die aus verschiedenen
Zeitphasen des Zusammenstoßes der Kerne stammen. Insbesondere kann der Zer-
fall von Teilchen mit Charm-Quarks durch Rekonstruktion des Zerfallsvertex, ver-
setzt von dem primären Wechselwirkungspunkt um mehrere hundert Mikrometer
(z.B. cτ = 123 µm für D0 meson), registriert werden. Hierzu ist präzises Tracking
bei voller Ereignisrekonstruktion, mit bis zu 600 Spuren der geladenen Teilchen
pro Ereignis innerhalb der Akzeptanz, nötig. Andere seltene Sonden erfordern den
Betrieb bei einer Wechselwirkung von bis zu 10MHz. Das Detektor-System, dass
Tracking durchführt, muss eine hohe Ortsauflösung, auf der Ebene von 10 µm lei-
sten, mit hohen Arbeitsgeschwindigkeiten zu betreiben sein und ebenso ein strah-
lungstolerantes Design mit geringem Materialbudget besitzen.

Das Silicon Tracking System (STS) wurde entwickelt um die Spuren geladener
Teilchen in einem Magnetfeld zu rekonstruieren. Das System besteht aus acht
Tracking Stationen, die sich in der Öffnung eines Dipolmagneten mit 1T Feld
befinden. Bei Spuren mit Impulsen über 1GeV, beträgt die Impulsauflösung bei
einem solchen System etwa 1%. Um diese Aufgabe erfüllen zu können, ist eine
sorgfältige Optimierung des Detektordesigns erforderlich. Insbesondere muss ein
minimales Materialbudget erreicht werden.

Die Herstellung eines Detektor-Moduls erfordert Forschungs- und Entwick-
lungsaktivitäten mit Bezug auf die Modul-Komponenten und deren Integrati-
on. Ein Detektor-Modul ist eine grundlegende funktionelle Einheit, die einen
Sensor, ein Analog-Mikrokabel und Front-End-Elektronik umfasst, montiert auf
einer Trägerstruktur. Das Ziel der Arbeit ist es, die Qualitätssicherungstests
der Prototyp-Modulkomponenten, zur Bestätigung des Detektor-Modul-Konzeptes
durchzuführen, und um seinen Betrieb mit radioaktiven Quellen und Teilchenstrah-



len zu demonstrieren.
Die doppelseitigen Silizium-Mikrostreifendetektoren wurden als Sensortechnik

für den STS, aufgrund der Kombination einer guten Ortsauflösung, einer zweidi-
mensionalen Koordinatenmessung mit geringem Materialbudget (0.3%X0), der ho-
hen Auslesegeschwindigkeit und ausreichender Strahlungstoleranz gewählt. Mehre-
re Generationen von doppelseitigen Silizium-Mikrostreifendetektoren wurden zur
Erkundung strahlenharter Konstruktionsmerkmale und des Konzepts, eines groß-
flächigen Sensors und dessen Kompatibilität mit der Leiter-Struktur des Detektor-
Moduls, hergestellt. Insbesondere wurden Sensoren mit doppelter Metallschicht auf
beiden Seiten und aktivem Bereich von 62 × 62mm2 produziert. Die elektrische
Charakterisierung der Sensoren wurde durchgeführt, um die gesamte Bedienbar-
keit sowie die Extrahierung der Geräteparameter feststellen zu können. Strom-
und Kapazitäts-Spannungs-Charakteristiken sowie Interstreifenparameter wurden
gemessen.

Das Auslesen der Sensoren wurde mithilfe einer selbstgetriggerten Front-End-
Elektronik getätigt. Ein Front-End-Board wurde auf der Grundlage eines n-
XYTER-Auslesechips mit datengesteuerter Architektur entwickelt, der geeignet
ist bei Auslesegeschwindigkeit von 32MHz betrieben zu werden. Die Front-End-
Platine enthält einen externen Analog-zu-Digital-Wandler (ADC). Die Kalibrie-
rung des ADC wurde unter Verwendung von sowohl 241Am Röntgenquelle als auch
eines externen Impulsgenerators vorgenommen. Die Schwellenkalibrierung und
Untersuchung der Temperaturabhängigkeit der Chip-Parameter wurden durch-
geführt.

Die ultraleichten Halterungsstrukturen wurden aus Kohlefaser entwickelt,
diese haben die Steifigkeit, die Detektor-Module halten, und die minimale
Coulomb-Streuung der Teilchenspuren einbeziehen zu können. Es wurden Analog-
Mikrokabel mit Aluminiumleiterbahnen auf einem Polyimidsubstrat produziert,
also eine Kombination von guter elektrischer Verbindung und geringem Material-
budget. Die Mikrokabelstruktur umfasst mehrere Lagen optimiert für die niedrige
Kapazität der Leiterbahnen und den damit verbundenen geräuscharmen Betrieb.

Es wurde ein Demonstrator-Tracking-Teleskop gebaut und in mehreren Strahl-
tests, einschließlich 2.5GeV Protonenstrahl an COSY Synchrotron (Jülich), be-
trieben. Drei Tracking-Stationen wurden mit mehreren Hodoskopen ergänzt. Die
Datenanalyse ergab Informationen über Analog- und Zeitverhalten sowie Strah-
lenprofil. So wurden Tracking- und Alignmentinformationen erhalten. Mit speziell
entwickelten Monitoring-Tools wurde die Strahlstabilität bewertet.

Als Ergebnis der durchgeführten Studien, wurde die Leistung der Modulkompo-
nenten bewertet und die Anforderungen zum Detektormodul formuliert. Praktische
Vorschläge wurden im Hinblick auf die Struktur des Detektormoduls gemacht. Die
genaue Definition des endgültigen Detektormoduldesigns jedoch, war außerhalb
des Geltungsbereichs dieser Arbeit.
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Chapter 1

Introduction

According to the present understanding of the earliest moments of the evolution of
the universe, matter existed at very high temperatures and densities presumably in
the form of a so called quark-gluon plasma (QGP). The equation of state (EoS) of
nuclear matter relates pressure to the temperature and chemical potentials of the
constituent particle species. In heavy-ion collisions, pressure is a key component
for the description of the collective behavior of a QGP within a hydrodynamic ap-
proach, e.g., flow. In cosmology, the precise knowledge of pressure or the equation
of state is necessary for the description of the evolution of the predicted primor-
dial gravitational waves [1], density of dark matter candidates [2] or the interior
structure of neutron stars [3].

Collisions of heavy ions at high energies will enable the investigation of a phase
transition from partonic degrees of freedom (where chiral symmetry is restored
and quarks are in a deconfined state) to hadronic degrees of freedom (with broken
chiral symmetry). It is conjectured that this phenomenon can occur at matter
densities several times larger than normal nuclear density. This state of matter,
the quark-gluon plasma, is believed to be the dominant form of matter in the
universe at the time scale of the order of a few microseconds after the Big Bang.

Employing heavy-ion collisions at (ultra-)relativistic energies aims at creating
“mini Big Bangs” in the laboratory. This enables performing studies of funda-
mental aspects of QCD thermodynamics such as the equation-of-state of strongly
interacting matter. It is expected that the properties of hadronic states are changed
in a nuclear environment. The studies aim at the structure of the strongly interac-
tion matter as a function of temperature and baryonic density in order to localize
the phase transition between hadronic and partonic phases.

It is believed that at high baryon-chemical potentials matter undergoes a first
order phase transition from a deconfined to a hadronic state, while at small µB a
crossover occurs. This indicates the existence of a critical point at the end of the
transition line. The phase boundary between quark-gluon plasma and hadronic
matter is widely studied within the lattice QCD framework. Significant progress
in the QCD calculations have recently lead to the consolidation of the critical
temperature. Lattice QCD calculations agree on a critical temperature at around
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175MeV at µB = 0 [4]. However, the existence or non-existence of a critical point
at finite µB is still subject of a hot dispute [5].

The region of low beam energies is of great interest, because critical point and
first order phase transition are potentially accessible there. Experiments were
started in the early 1980s [6, 7]. Later on, experiments at RHIC (e.g., STAR [8],
PHENIX [9]) turned to studying the properties of QGP matter at very high tem-
peratures and low baryon densities, i.e., high beam energies. At LHC, the dedi-
cated heavy-ion experiment ALICE, but also CMS and ATLAS have started the
exploration of heavy-ion collisions at even higher energies. Recently, experimental
programmes at low beam energy range have been taken up at RHIC (Brookhaven,
New York) (“beam energy scan”) and again at SPS (CERN, Geneva) (NA61 exper-
iment). New experimental programmes are being prepared at NICA [10] (JINR,
Dubna) and FAIR (GSI, Darmstadt). Different models of the hot and dense matter
have been developed to understand signal which could characterize the QGP. Some
of them are modification of characteristics short-lived states, e.g., invariant mass,
width, cross-section (strangeness enhancement, charm suppression). The usual
way of presenting these observables illustrating QGP properties is to compare
their behavior in matter and in vacuum. Experimentally, one compares measure-
ments in heavy-ion collisions and in collisions of light systems, e.g., proton-proton
collisions.

These studies, extensively developing at the LHC experiment ALICE [11], have
resulted in claiming that partonic degrees of freedom prevail in the early phase of
the fireball evolution. Among the interesting features observed in ALICE, is jet
suppression in di-jet events [12].

The phase diagram of QCD matter is presented in Fig. 2.1 and further dis-
cussed in the next chapter. The accessible region of RHIC and LHC experiments
is located at high temperatures and low baryo-chemical potentials. The impor-
tant feature of this diagram is the critical temperature and the first order phase
transition line separating the hadronic phase from the partonic one phase. In or-
der to search for features like the critical endpoint, the predicted first-order phase
transition and the chiral phase transition, moderate temperatures and high baryo-
chemical potentials must be achieved and experimentally accessed [13]. This is
going to be realized in the experimental programme of the Compressed Baryonic
Matter (CBM) experiment at the SIS-300 and initially the SIS-100 synchrotrons at
FAIR. The Facility for Antiproton and Ion Research (FAIR) [14] is now (July 2012)
under construction at GSI (Darmstadt, Germany). The CBM experiment will per-
form measurements of hadronic and leptonic channels. The observables, including
rare probes, require novel experimental techniques such as a high-throughput free-
streaming data acquisition concept with online event selection, and low-mass, fast
and radiation hard detectors. The development of components for one of the de-
tector systems, the Silicon Tracking System for the trajectory measurement of all
charged particles and their momentum determination, is in the focus of this paper.



Chapter 2

Physics of the Compressed
Baryonic Matter experiment

The goal of the heavy-ion experiments is to investigate the properties of strongly
interacting nuclear matter. The state of matter is represented in terms of the
QCD phase diagram that can be explored in the ultra-relativistic heavy-ion col-
lisions towards higher temperatures and net baryon densities. The observables of
the phase transition between deconfined and hadronic matter are discussed and
requirements to the detector are formulated.

2.1 The QCD phase diagram

The state of the nuclear matter is described in terms of thermodynamical pa-
rameters temperature (T ) and baryochemical potential (µB). At normal nuclear
density and temperature, quarks are combined into hadrons (baryons or mesons)
according to the confinement principle. At high temperature and density, hadrons
“dissolve” into a mixture of quarks and gluons that can move freely. This state
of matter where effective degrees of freedom change from hadrons to partons is
referred to as quark-gluon plasma (QGP). Baryochemical potential is a measure
of net baryon density. Due to large energy scale, particle creation is possible and
number of particles is not conserved as opposed to the net number of baryons.

The current understanding of the QCD phase diagram has reached advanced
level. A sketch of the phase diagram is shown in Fig. 2.1 [15]. Along with the
basic features such as the first order phase transition, critical point and crossover
region that separate hadronic and the QGP phase, existence of additional phases
is predicted theoretically.

The nature of the phase transition depends on the path on the diagram. In the
region of low net baryon densities and high temperatures explored in lattice QCD
calculations, transition is expected to be a smooth crossover. At moderate tem-
peratures and high net baryon densities, first order phase transition is predicted.
Change of the transition nature between these two regimes of the phase transition
is denoted by a critical point where strong fluctuations of the physical parameters
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occur.
Apart from the deconfinement phase transition, chiral phase transition is pre-

dicted. Transition from chirally symmetric matter at high temperatures and net
baryon densities to the state with broken chiral symmetry is associated with con-
version of the light (“massless”) quarks into massive hadrons. Chiral and decon-
finement phase transitions are not necessarily equivalent. Chirally restored and
confined matter is referred to as quarkyonic matter.

Figure 2.1: Schematic view of the phase diagram of strongly interacting matter
represented in the plane of temperature and baryochemical potential. Different
phases are shown in different colours. Lines denote phase transitions of different
types.

A further phase transition is anticipated at low temperatures and net baryon
densities. Matter in this form is represented by the nucleons that are bound into
atomic nuclei. As temperature increases, nucleons cannot be held together by the
binding forces. This is described as a transition of the matter from the liquid to
the gas phase.

At low temperatures and net baryon densities well above nuclear density, quarks
are conjectured to form Cooper pairs that condensate. Due to analogy with su-
perconductivity in metals, this state of matter, possibly existing in the interiors of
the neutron stars, is called colour superconducting condensate.

Observables are necessary to study the properties of strongly interacting matter
in the region of the phase transitions. The CBM experiment at FAIR is designed
to explore this region. The CBM experiment will enter a new era of nuclear matter
research by measuring rare diagnostic probes never observed before, and thus has
a unique discovery potential. In order to obtain a complete picture, a compre-
hensive set of observables will be measured in proton–proton, proton–nucleus and
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nucleus–nucleus collisions over the FAIR energy range. At SIS-100, collision energy
will reach

√
sNN = 1.8− 4GeV and at SIS-300

√
sNN = 4.9− 9GeV. Particularly

at the SIS-300 energies, the creation of the densest collision systems is predicted.

2.2 Observables

The key observables for the CBM experiment are discussed in this section. The
in-depth description of the CBM physics programme is given in [16]. The signals
for possible formation of quark-gluon plasma and potential for their measurement
at CBM are discussed in [17].

2.2.1 Strangeness production

The first proposed phase transition signals were related to the enhancement of
strange particles yield [18, 19]. Strange quarks, which are not present in the
initial nuclei, are formed by the reaction. Therefore the formation of strange
particles has substantial information about the environment formed during
the nucleus-nucleus collisions. The basic idea is to compare yields of strange
(especially multi-strange) particles in the nucleus-nucleus collisions with those
in proton-proton or proton-nucleus collisions. Experimental data from SPS
and RHIC [20–23] have confirmed these predictions. However, interpretation of
the observed data remains controversial. Papers [24] and [25] present different
explanation of that phenomena.

Experimental measurements of K/π ratio as a function of the centrality are re-
quired for clarification whether this enhancement is associated with thermalization
or whether other mechanisms are responsible for it (including QGP formation). In
particular, the beam energies at SIS-100/300 can provide the opportunity to make
detailed studies of this value.

The experiments on strangeness production at GSI [26, 27] demonstrated how
kaons can be used as diagnostic probes both for the properties of compressed
nuclear matter and for the modifications of hadrons inside the dense medium. It
turned out that the sensitivity of the kaon probe to medium properties is strongly
enhanced if the beam energy is below the kaon production threshold energy in
nucleon-nucleon collisions. Dynamical transport models play a crucial role in the
extraction of the relevant physics information from the heavy-ion data. Transport
calculations have shown a reasonable degree of consistency concerning K+ meson
production and dynamics. The comparison of theory to experiment concerning
total yields, momentum distributions, and the collective flow pattern supports
the existence of a slightly repulsive in-medium K+N potential of VK+ = 25 ±
5MeV at nuclear saturation density as predicted by chiral dynamics. This result
is supported by data on K+ meson production in proton-nucleus collisions [28,29].
It was demonstrated thatK+ mesons provide information on the compressibility of
nuclear matter at densities up to 2-3 times saturation density. In proton-nucleus
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collisions – where the strangeness exchange process πY → K−N , where Y =
Λ,Σ, is strongly suppressed – the measured K−/K+ ratio can be reproduced with
an attractive in-medium K−N potential of VK− = −80 ± 20MeV at saturation
density [29, 30].

Microscopic coupled-channel calculations based on a chiral Lagrangian predict
a dynamical broadening of the K-meson spectral function in dense nuclear mat-
ter [31, 32]. Off-shell transport calculations using K− meson spectral functions
have been performed [33]. The ultimate goal of the calculations is to relate the
in-medium spectral function of K− mesons to the anticipated chiral symmetry
restoration at high baryon density.

2.2.2 Charm production

Another observable considered as a candidate for physics signal of the QGP is
related to charm production [34,35]. Due to the difference of dissociation temper-
ature of different states of the charmonium, it is expected that sequential melting of
ψ′ and J/ψ might serve as a signal of the onset of deconfinement. The in-medium
modification of D-mesons opens the decay of ψ′ mesons into DD̄ pairs, and, hence,
contributes to the suppression of ψ′ mesons. Within the statistical hadronization
model (SHM), in-medium mass modifications of open charm hadrons can be con-
sidered at the phase boundary.

As far as the radii of charm mesons are comparable with the average distance
between partons in QGP (about 0.2–0.5 fm) at temperatures around few hundred
MeV, the cross-section of the charm production is considered as a possible probe
of the determination of the stage of the deconfinement. Paper [36] indicates that
a high density of gluons in a QGP originating from the ultra-relativistic heavy-ion
collisions would destroy all charmonium created beforehand, similarly to Debye
screening in electromagnetic plasma. In this way, charmonium suppression has
been proposed as a signal of the quark gluon plasma. However, there are theoret-
ical models which are able to reproduce experimental observation of charmonium
suppression [37] as charmonium absorbtion by nuclear environment and breakup
by comoving hadrons [38–40]. Therefore, the interpretation of the data on char-
monium suppression remains ambiguous and studies of charmonium production
are subject to future investigation at the CBM. A precise measurement of the
excitation function of the ψ′ to J/ψ ratio in central Au+Au collisions will shed
light on the charmonium absorption processes in dense matter. A smooth excita-
tion function is expected for comover absorption, whereas sequential charmonium
melting in the QGP would cause a structure in the excitation function of the ψ′

to J/ψ ratio.

Further progress requires new data on the yields and phase-space distributions
of charmonia, charmed mesons, and charmed baryons as function of beam energy
and collision centrality in p+A and A+A collisions. The measurement of ratios of
hadrons containing charm quarks as a function of beam energy may provide di-
rect evidence for a deconfinement phase transition. For instance, Fig. 2.2 depicts



2.2. OBSERVABLES 21

the ratio of J/psi over the sum of D and D̄ mesons (for central Au+Au colli-
sions) as a function of available energy in the nucleon-nucleon system as predicted
by the HSD [41] hadronic transport model, and by the statistical hadronization
model [42]. The SHM assumes complete dissociation of charmonium in the quark-
gluon plasma, followed by statistical production of J/ψ mesons (and particles with
open charm) during hadronization.

For a typical FAIR beam energy of
√
sNN = 7GeV the hadronic transport

model (HSD) predicts a J/ψ over D + D̄ ratio which is about 5 times larger than
the result of the statistical hadronization model (see Fig. 2.2).

Figure 2.2: Ratio of J/ψ over D+D̄ mesons as a function of center-of-mass energy
in the nucleon-nucleon system predicted for central Au+Au collisions by the HSD
transport model and by the statistical hadronization model SHM which assumes
a QGP initial state. For the vector mesons (ρ, ω, φ, J/ψ, ψ′) decay into lepton
pairs was assumed, for D mesons the hadronic decay into kaons and pions.

2.2.3 Low-mass vector mesons

One reason for the high interest in studies of light vector mesons (ρ, ω and φ
mesons) resulting from heavy ion collisions is the fact that the specific properties
of some light vector mesons, such as short lifetime and dilepton decay modes, allo-
cate them as a unique class of samples for the study of different segments of time,
hot and dense medium, which was formed as a result of a collision. Photons and
lepton pairs are not involved in strong interactions and their spectra practically
are not affected by final state interactions. Therefore they bear information about
the hot and dense matter phase. The ability to compare dilepton decay channels
to hadronic decay channels will enable the understanding what processes domi-
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nate at different stages of fireball evolution. Leptonic decay products will test
the hypothesis of chiral symmetry restoration, which probably occurs during the
formation of strongly coupled QGP.

2.2.4 Elliptic flow

Collective flow of matter that expands appear in the spectra of emitted hadrons
and strongly depend on the properties of strongly interacting dense matter, ie
the equation of state. In the analysis of experimental data distinguishes between
several types of flow: elliptic azimuthally asymmetric flow arising from the initial
almond shape overlap area of two nuclei in noncentral collisions, as well as radial
flow. Transverse collective flow which was one of the first observables, proposed
as probes of hot and dense matter [43, 44]. The data from RHIC [45] show a
“saturation” of elliptic flow between

√
s = 63 and 200GeV, which was proposed

as a signal of strongly interacting quark-gluon plasma. Another important issue is
whether or not hadron elliptic flow “remembers” its partonic origin. As suggested
by data obtained at RHIC, the observed strength of elliptic flow scaled not with
hadron masses but with the number of constituent quarks, regardless of content
of quark flavors. Is this scaling violated below certain beam energy? This is a
question to be determined by the CBM experiment. To answer this question one
needs to scan the elliptic flow of pions, kaons, φ-mesons, charmonium and nucleons,
(multi) strange hyperons and charmed hyperons (including their antiparticles) as
a function of energy. Such studies are planned in the CBM experiment.

2.2.5 Fluctuations

A phase transition from a quark-gluon plasma can cause fluctuations of certain ob-
servables such as particle multiplicities, yield ratios, transverse momenta, rapidity,
etc. To a certain extent, these effects are not destroyed by subsequent thermaliza-
tion in the hadron gas. This can signal the effects of the phase transition.

Experimentally, only a small difference is observed in terms of dynamic fluctu-
ations of transverse momentum pt in AA collisions relative to pp after scaling the
number of participants of the collision and the average transverse momentum of
particles [47,48]. Measurements by the STAR collaboration of dynamic pt fluctua-
tions in AA collisions do not provide any evidence of the expected strong increase
of fluctuations near the critical point [49]. However, in view of predictions of the
critical point in the energy range 10 ≤ √

sNN ≤ 60GeV [50,51] it can be expected
that a larger reduction in net charge fluctuations at low energies which will be
investigated in the CBM experiment can serve as guidance for a QGP formation
threshold above the critical point. If the freeze-out in strongly interacting system
occurs near the critical point, the observed fluctuations in non-statistical distri-
butions in the momenta of particles and correlations among baryons can increase.
This has been observed at SPS (CERN)for theK/π yield ratios in central collisions
of lead nuclei at energies ranging between

√
sNN = 6.3GeV and 17.3GeV [52]. The
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microscopic hadron/string transport model UrQMD [53] does not reflect a signal
increase that may indicate the emergence of new sources of fluctuations. Non-
monotonic appearance and then disappearance of any fluctuations will be strong
evidence of the critical point. A simultaneous observation the non-statistical fluc-
tuations for different observables measured event-by-event for the low energies can
be considered an unequivocal evidence of the discovery of the critical point.

2.3 Experimental requirements

In order to meet its physics goals, the CBM detector will have to reconstruct bulk
observables as well as rare signals, e.g., open charm and low-mass vector mesons
in a high multiplicity and high rate environment. This challenge is illustrated in
Fig. 2.3, where tracks from one Au+Au collision at beam energy of 25AGeV are
shown. In order to reconstruct up to 1000 charged tracks created in such collisions,
the CBM detector has to feature high granularity and a low-mass design of the
tracking and vertexing detectors.

Figure 2.3: Particles produced in a central Au+Au collision at 25 AGeV. Particle
properties are simulated with UrQMD event generator and transported through
the detector geometry using Geant3 code.

The yields of the particles created in a Au+Au collision at 25AGeV beam energy
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are shown in Fig. 2.4. Data points below the line correspond to particles that have
not yet been measured at the highest baryon densities. The rare observables drive
the requirement of the high interaction rate. Thus, the CBM experiment needs to
have fast readout and radiation hard detectors.

Figure 2.4: Multiplicity - branching ratio product for particles produced in mini-
mum bias Au+Au collision at 25 AGeV.

The measurement procedure consists of track reconstruction with a high-
granularity detector, reconstruction of particle decay vertices and measurement
of yields for identified particles. As a result, the detector has to reconstruct par-
ticles and their properties (mass, momentum, particle type, etc). The mass of
the particles has to be reconstructed with a precision high enough to be sensitive
to the predicted mass shifts. The yields have to be measured with high signal-
to-background ratio. The secondary vertex resolution has to be about 50 µm to
provide reliable separation of detached vertices from the primary vertex. In order
to fulfill the experimental requirements, the CBM detector has to provide track-
ing, vertexing, particle identification for the charged particles as well as energy
measurement for photons.

Tracking and vertexing detectors have to operate in the magnetic field to provide
particle momentum measurement with about 1% momentum resolution. A dipole
magnet with 1Tm bending power is required for this. Measurement of photons
will be provided by an electromagnetic calorimeter.

Measurement of rare processes requires experimental operation at high interac-
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tion rates. This leads to the requirement of high segmentation in order to reduce
channel occupancy and pile-up probability, in particular for the detectors located
close to the interaction point, e.g., STS and MVD. As a consequence of high inter-
action rates reaching up to 10MHz, radiation hardness of the silicon detectors has
to be sufficient to stand fluence up to 4× 1014 neq/cm

2 which will be accumulated
in 6 years of operation. Fast tracking requires front-end electronics with shaping
time of about 20 ns (for fast channel). Due to random interaction times in a DC
beam, the event reconstruction is based on four-dimensional tracking [54], which
requires explicit event association with time stamp precision of 1 ns.

The requirement on momentum resolution δp/p ∼ 1% limits the material budget
of the silicon tracking detector modules to < 1%X0. For the vertexing detector,
open charm measurement requires even lower material budget of < 0.3%X0.
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The CBM detector

In order to realize the physics goals presented in the previous section, experimen-
tal setup has to allow measurements of flow of protons, pions, kaons, hyperons,
hadronic resonances, light vector mesons, charmonium and open charm. One has
to measure multiplicities, phase-space distributions, their correlations and event-
by-event fluctuations in heavy-ion collisions. This introduces a new challenge to
the CBM experiment: to identify both, hadrons and leptons, and to filter out rare
probes at reaction rates of up to 10MHz with charged particle multiplicities of
up to 1000 per event. This technical specification cannot be matched by earlier
developed detectors based on, e.g., Time-Projection Chambers (TPC) or similar
devices. One has to build fast and radiation hard detector modules which have to
provide lepton identification, high-resolution secondary vertex determination and
at speed compatible with the high rate requirements.

Studies presented in this dissertation are related to the Compressed Baryonic
Matter (CBM) experiment, planned for the construction at Facility for Antiproton
and Ion Research (FAIR). Layout of the FAIR facility is shown in Fig. 3.1. The
heavy-ion beam energies range from 10 GeV/nucleon to 45 GeV/nucleon. Studies
of the QCD phase diagram will be performed exploring main physical observables
as well as properties of rare decays (e.g., light vector mesons). Besides the studies
of the QCD phase diagram at high baryonic densities, it is expected to get informa-
tion on the properties of dense nuclear matter as well as first order phase transition
from partonic to hadronic matter. It is necessary to identify signals from the par-
tonic phase, coexistence of phases or critical point which survive passing through
hadronization phase. It is clear that those species which are created at early stage
of the fireball evolution and are weakly interacting with any participants are the
most suitable candidates for such signals. Among them are excitation functions
and flow of strangeness, charm, low mass lepton pairs, modification of elliptic flow
as well as fluctuations and correlations.
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Figure 3.1: Layout of the FAIR facility. The double synchrotron SIS-100/300
directly provides the nuclear beams for the CBM experiment. In parallel operation,
it transports the secondary beams of antiprotons or rare nuclear isotopes from
a production target to the new fragment separator (super FRS). These beams
are subsequently stored and further manipulated in special purpose storage rings,
such as the HESR for antiproton research at the PANDA detector or for nuclear
structure and atomic and plasma physics investigations at the other rings.

The layout of the CBM experiment which is expected to be efficient for fulfilling
such specification is shown in Figs. 3.2 and 3.3 [55]. The central task in the experi-
ment belongs to tracking. This will be provided by Silicon Tracking System (STS)
and Micro Vertex Detector (MVD). Evaluation studies of earlier built experiments
has brought an idea to build STS based on silicon microstrip detectors (single- and
double-sided). Since CBM is going to measure rare probes, one has to reconstruct
physical events in the environment of huge background with high accuracy of track
reconstruction. That implies that one has to build a low-mass tracking system.
STS will consist of low-mass silicon microstrip detectors which have to provide un-
ambiguous space point measurement. The STS allows track reconstruction with
a precision of about 15 µm in a wide momentum range from about 100 MeV/c
up to more than 10 GeV/c with a momentum resolution of about 1%. The Micro
Vertex Detector will be used for determination of secondary vertices with precision
better than 5 µm, for instance to identify charmed mesons [56]. The MVD will be
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constructed from ultra-thin and highly-granulated Monolithic Active silicon Pixel
Sensors (MAPS) which are placed in close vicinity to the target.

Figure 3.2: The CBM detector in electron-hadron configuration.

Figure 3.3: The CBM detector in muon configuration.

Electrons (momenta below 8–10 GeV/c) identification will be provided by Ring
Imaging Cherenkov detector (RICH) in combination with transition radiation de-
tectors (TRD). Muons features will be measured by an active hadron absorber sys-
tem and muon tracking chambers (MuCh). For muon measurements, the MuCh
will be moved to the position of the RICH.
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Charged hadron identification will be performed by a time-of-flight (TOF) mea-
surement with a wall of resistive plate chambers (RPC) located at a distance of
10 m behind the target. Information about photons and neutral particles will be
provided by Electromagnetic Calorimeter (ECAL). Additional component of the
setup is Projectile Spectator Detector (PSD) needed for the determination of the
collision centrality and the orientation of the reaction plane. CBM experiment data
acquisition is aimed at online event selection. This requires free streaming read-out
electronics and fast algorithms running on computer farms based on future many-
core architectures [57]. Performed simulations [58] show that measurement of the
observables for different particle species requires detector to include different sub-
systems. For instance, for identification of pions, kaons and protons experimental
setup will include the STS, RICH, TRD, TOF and PSD. For electrons and open
charm mesons, the information comes from the MVD, STS, RICH, TRD, TOF,
and PSD detectors.

The technical characteristics of the CBM detector setup have been formulated
by performing simulation studies where detector resolution and granularity are
implemented in a generic way not yet taking into account the detailed structures
and the supporting material using CbmRoot framework [59].
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The Silicon Tracking System

The CBM experiment will measure rare observables with complex decay topology.
This requires fast tracking and system design with minimal material budget that
would enable inter alia the measurement of open charm decays with high statistics.

Double-sided silicon microstrip detectors are well suited for the particle tracking
due to high granularity and speed of operation. In this chapter, layout of the
Silicon Tracking System are described based on the requirements with respect to
granularity, speed, radiation hardness, etc (Sect. 4.1).

In this chapter, prototype module components are described. The operation
principle of the silicon microstrip detectors and STS prototype sensors are dis-
cussed in Sects. 4.2 and 4.3. An alternative module design based on the single-sided
microstrip detectors is considered as a fallback solution. Prototype developments
of the front-end electronics and low-mass module components are presented in
Sects. 4.4 and 4.5, respectively.

4.1 Task, radiation environment and system

concept

The physics goals of the experiment discussed in Chapt. 2 affect the technical
design to the Silicon Tracking System that needs to accommodate conflicting re-
quirements. Thus, the detector system has to be made of fast, radiation hard and
thin silicon sensors.

The first part of the section includes the mission statement and radiation envi-
ronment description. The use of self-triggering front-end electronics and radiation
hard silicon sensors is motivated.

In the second part, the R&D strategy for the individual detector components
is discussed as well as a concept of system mechanical integration. It will be
shown that double-sided silicon microstrip detectors represent the best compromise
between all the requirements. For the cases where the use of double-sided sensors is
restricted (e.g., due to radiation hardness constraints), alternative solution based
on single-sided detector modules is described.
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4.1.1 Task

The Silicon Tracking System (STS) of the CBM experiment is being designed for
charged-particle tracking in a magnetic field. Its task is to provide track recon-
struction and standalone determination of the event multiplicity. The system will
operate in the magnetic field in order to determine momentum of the particles
from the track curvature. Calculations described in [60] show that magnetic field
affects the the charge carrier transport, in particular leading to the increase of
probability of charge sharing due to Lorentz shift [61]. The trajectories of the
particles have to be identified with high efficiency, and their momenta have to
be measured with high resolution (δp/p ∼ 1%). A prerequisite for this is hit re-
construction with efficiency ε > 95%. The detector system has to be installed
in the start-up phase of the CBM physics programme at SIS-100 with ion beam
energies between 2AGeV and 11AGeV, and protons up to 29GeV, and later at
SIS-300 with ion beam energies up to 45AGeV and protons up to 90GeV. The
readout of the STS has to be capable of following interaction rates up to 10MHz
without event pile-up. The typical track multiplicity reaches up to 600 per central
gold-gold collision at 25AGeV in the aperture of 2.5◦ < θ < 25◦.

(a) (b)

Figure 4.1: (a) Schematic view of the STS system in the magnet. (b) Tracks from
a central 25AGeV gold-gold collision overlaid with geometry of the STS tracking
stations in the GEANT simulation.

The STS extends about 1m along the beam and will be installed in a ∼ 1m3

volume in a 1T dipole magnet to generate sufficient bending power for momentum
measurement and suppress the low-energy δ-electrons. It will be built around a
section of the vacuum beam pipe inside of the thermal enclosure, with an upstream
window facing the vacuum vessel with the target and the Micro Vertex Detector
(MVD), and a downstream window facing either the RICH or the MUCH de-
tector systems. The tracking performance will allow extrapolating tracks into the
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MVD to distinguish between primary and short-lived decay vertices (e.g., D-meson
decays), and for standalone identification of decay topologies within the STS vol-
ume (e.g., K and Λ decays). Some physics observables (e.g., J/ψ decays) require
the detection of high-momentum tracks with little curvature; others involve also
low-momentum tracks, e.g., the leptonic decays of low-mass vector mesons which
are strongly bent in the field. The horizontal extent of several upstream tracking
stations is therefore enlarged with respect to the nominal aperture. A schematic il-
lustration of the STS installed in the superconducting magnet is shown in Fig. 4.1a.
A UrQMD-simulated central gold-gold collision at 25GeV per nucleon and tracks
transported in a GEANT [62] study of the STS are shown in Fig. 4.1b.

4.1.2 Radiation environment

The radiation environment of the tracking system has been calculated using the
FLUKA [63] code and double-checked with UrQMD generated nuclear reactions
transported through Virtual Monte Carlo (CbmRoot) simulation code for particle
transport and interactions with matter. FLUKA covers an extended range of appli-
cations spanning from proton and electron accelerator shielding to target design,
calorimetry, activation, dosimetry, detector design, Accelerator Driven Systems,
cosmic rays, neutrino physics, radiotherapy etc. It is capable of calculating from
the impinging beam and a geometrical description of the apparatus: ionization
dose (Gy/year), non-ionizing energy loss (NIEL [64] expressed in 1-MeV equiva-
lent neutrons cm−2/year), high-energy hadron flux (cm−2/s), and dose rate after
irradiation (µSv/h) relevant for radiation protection of staff. Flux of high-energy
hadrons includes both charged and neutral particles with energy above 20MeV.

A simplified CBM geometry was realized in FLUKA, comprising the massive
components in the cave and a number of detector stations of interest. Several two-
dimensional grids of voxels (“scoring planes”) in the positions of detector systems
were filled with the calculated fluences of different particles (charged hadrons, neu-
trons, electrons), expressed for 1-MeV neutron equivalent in silicon, and the ioniz-
ing dose in Gy. For the calculations, the FLUKA internal event generator has been
used. A 35AGeV Au beam on a Au target of 1% interaction length (corresponding
to 250 µm thickness) was adjusted. The normalization of the data obtained is for
one CBM run year equivalent to 2 months of beam time (5.1× 106 seconds) at
beam intensity 109 Au ions/s leading to 5× 1015 beam particles that pass through
target. Calculations involving the MVD detector system assume a reduced beam
intensity of 107 Au ions/s.

The radiation damage of the silicon detectors has been studied by the ROSE
collaboration [65, 66] and continued within the RD50 collaboration [67, 68]. The
effects of non-ionizing (bulk) damage of the sensors are the increase of the leakage
current, change of the effective doping concentration and increase of the charge
carrier trapping. All of these effect are detrimental to the performance of the STS
microstrip sensors. In particular, change of the effective doping concentration leads
to the change of full depletion voltage. In case full depletion voltage is limited,
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e.g., by the sensor breakdown condition, the detectors may operate under-depleted.
For double-side sensors, this would mean the loss of sensitivity on one side of the
sensor. The increase of the leakage current leads to the increase of the shot noise
contribution in the readout electronics and increase of the power dissipation in the
system that may lead to the thermal runaway condition. Charge carrier trapping
reduces the charge collection efficiency [69, 70] and hence the signal-to-noise ratio
for the detector system.

The ionizing damage alters the silicon sensor performance due to the forma-
tion of defects in the silicon oxide and its interface to the bulk silicon that trap
positive charge. As a result, positive oxide charge induces negative charge at the
interface between silicon and silicon oxide (electron accumulation layer). The elec-
tron accumulation layer alters the device properties, such as isolation between
n+-implants (i.e., n-side electrodes), interstrip capacitance, electric field distribu-
tion at the surface. The value of the interstrip resistance affects the sharing of the
signal charge between neighboring electrodes. Parasitic capacitance between the
strips is a dominant contribution to the noise in the detector system. The effect
of radiation on the interstrip parameters and their measurement are described in
Sect. 5.1. Electric field configuration at surface defines the breakdown voltage of
the sensor [71]. Another effect of the surface oxide is generation of the surface
current [72] that becomes prominent for large area devices.

ROSE and RD50 collaborations have achieved understanding of the role of the
damage effects in the macroscopic detector behavior (defect engineering) [73] and
developing radiation hard silicon detectors. Different detector materials have been
studied for radiation hardness [74]. Among them, diffusion oxygenated float-zone
(DOFZ) silicon has shown lower change of the depletion voltage with neutron
fluence with respect to standard float-zone silicon [113]. Methods for obtaining
the oxygenated silicon have been developed [76]. Operation and characterization
of the heavily irradiated silicon sensors is described in [77–79].

Conducted R&D studies are of great importance for the construction of the
STS. The choice of sensor material as well as detailed scenario for defect annealing
and reverse annealing [80] during the system operation at different temperatures
will be based on the obtained results. A separate task to be fulfilled within the STS
project is to achieve high voltage stability of the sensors. The sensor design has
to optimized in order to reach high surface breakdown voltage, e.g., by optimizing
the guard ring structure [81].

The radiation field in the STS volume causes cumulative damage and stochastic
failures. Cumulative damage comes from energy deposition (ionizing dose) and
lattice displacements (normalized to 1-MeV equivalent neutron fluence) in the
detector material. Stochastic failures, also known as single event upsets (SEU), are
changes of state in microelectronic devices due to charge deposition in a sensitive
node or a logic element. The mechanism of charge deposition is often erroneously
attributed to dE/dx ionization losses. With modern sub-micron transistor sizes,
deposited charge would not be enough to cause a change of state in a transistor.
In fact, single event upsets occur as a result of inelastic interaction between a high-
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energy particle and a nucleus in the electronic device. Such an interaction causes
spallation of the target nucleus followed by localized emission of energy (O(MeV)).
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Figure 4.2: Radiation profiles in the most upstream and downstream STS sta-
tions. For orientation, rectangular outlines of the stations are superimposed on
the figures.

The radiation profiles are shown in Fig. 4.2. For ionizing dose and non-ionizing
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Detector Normalization Dose, Gy/year
max. value min. value

MVD 5× 1013 beam particles 104 50
STS 5× 1015 beam particles 8× 104 50

MUCH 1 ” 103 50

Detector Normalization NIEL, neq/cm
2/year

max. value min. value

MVD 5× 1013 beam particles 2× 1013 5× 1010

STS 5× 1013 beam particles 2× 1013 5× 1012

MUCH 1 ” 8× 1013 5× 1012

Detector Normalization High-energy hadron flux, cm−2/s
max. value min. value

MVD 107 beam particles/s 1× 106 5× 103

STS 109 beam particles/s 1× 106 5× 104

MUCH 1 ” 8× 105 5× 104

Table 4.1: Minima and maxima of ionizing and non-ionizing dose as well as the flux
of high-energy hadrons in the STS and its neighboring detector systems. Normal-
ization denotes number of beam particles that pass through the target during one
CBM run year or beam intensity for high-energy hadron flux. The beam intensity
for MVD has been taken as 1% of the nominal beam intensity.

energy loss, otherwise monotone distributions decreasing towards station periph-
ery, have additional components from δ-electrons. Their contribution can be seen
in the middle left part of the histograms. The minimum and maximum values for
NIEL fluence, ionizing dose and high-energy hadron flux are then summarized in
Table 4.1 putting the radiation load on the STS system into context with the other
detectors just up and downstream of the STS. Minimum and maximum values do
not necessarily correspond to the inner and outer radii of the stations.

In the detector configuration with MUCH detector, the last STS station will
be exposed to additional radiation load due to albedo neutrons reflected from
massive absorbers in the MUCH detector. To mitigate this effect, neutron shield-
ing has been considered. Recent FLUKA calculations with a 5 cm thick borated
polyethylen layer in front of the MUCH detector system show that the neutron
fluence at the last STS station is reduced by a factor of about 2.5. A 10 cm thick
layer yields a reduction factor of about 3.5.
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4.1.3 Layout of the detector system

The STS will consist of 8 planar tracking stations covering the aperture between
the polar angles 2.5◦ < θ < 25◦. Installed in the gap of the dipole magnet,
they extend from about 30 cm to 1m downstream of the target. The number of
tracking stations is a tradeoff between precision of a track fit on one hand and
spacial constraints as well as requirement of minimal material budget to reduce
distortion of tracks by multiple Coulomb scattering. The arrangement of the
tracking stations is schematically shown in Fig. 4.3.

The conceptional layout of a tracking station and nomenclature for its com-
ponents are illustrated in Fig. 4.4. The building block of the STS is a module
comprising an individual double-sided silicon microstrip sensor or a set of daisy-
chained sensors, two multi-layer flat readout cables attached to one edge of either
side of the detectors, and two front-end electronics boards. Sensors of three sizes
will be used corresponding to the regions with different hit occupancy. The num-
ber of senor sizes is kept low in order to simplify production and maintenance.
A set of daisy-chained sensors forms a sector. Daisy chaining of the sensors in
low occupancy regions reduces the number of required readout channels. Due to
spatial constraints, up to 5 front-end boards can be used for readout of one side of
the half ladder. Modules of different type will be built, differing in their detector
size, number of detectors used, and lengths of the readout cables. The front-end
electronics is the same for all modules. A front-end board with 8 chips will read
out 1024 channels.

Figure 4.3: (Left) Concept of STS tracking stations covering the polar angles
between 2.5◦ and 25◦ around the beam pipe. Positions along the beam axis and
radii of the stations are indicated. (Right) Schematic view of the beam pipe with
vacuum vessel and STS stations with realistic sensor arrangement, including gaps
and overlaps. Stations are shown in different colours.
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Figure 4.4: Conceptional layout of the tracking stations and their building blocks.
Sensors of three different sizes are used (shown in blue). Front-end electronics at
the periphery of the station is shown in black. Daisy-chained sensors form sectors
that are connected to the readout electronics via microcables.

The modules will be arranged on carbon fibre ladders, allowing them to be
mechanically and electrically integrated into the tracking stations. A ladder will
be populated to form two half-ladders, with the readout directions oriented towards
the top and bottom part of the STS. The ladders will be mounted on a super frame
to form a tracking station. A station may be built from half-stations, each realized
by a staggered downstream and upstream part, to cover gaps between neighboring
ladders on a super frame.

Design of the STS tracking stations will be optimized for ultra-low material
budget not exceeding 1%X0 per tracking station, where X0 is the radiation length
of silicon1. Such material budget is needed to minimize multiple Coulomb scat-
tering and achieve momentum resolution at the level of 1%. For this, module
support structures will be made of low-Z material carbon fibre with large radia-
tion length (25 cm) of the composite and low material budget (25mg/cm2 in the
active area) [148]. Microcables with low mass design comprising polyimide films
with aluminium traces have material budget of < 0.17%X0 (see Sect. 4.5). Mate-
rial distribution for a tracking station at Z = 60 cm is shown in Fig. 4.5. Material
budget is minimal in the center of the station and increases towards the periphery
due to microcables. The outer edges of the ladders located outside of the accep-
tance are populated with readout electronics and cooling blocks. The remaining
vertical space in the magnet aperture will be filled with data acquisition electronics
(see Sect. 4.4.4).

1Radiation length of silicon XSi
0

= 21.82 g/cm2 or 9.36 cm. Silicon sensor thickness of 300µm
corresponds to about 0.3%X0.
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Figure 4.5: Material distribution in a tracking station expressed in the units of
radiation length X0.

In order to optimize the ladder production and facilitate maintenance of the
system, STS stations will be composed of 8 ladder types only. This is depicted
in Fig. 4.6. Ladders with different structure (i.e., length) are shown in different
colours. A ladder of a given type is used in several stations. For example, modules
used in the central part of the first station (shown in dark blue in the figure) are
used at the same time in four subsequent stations. Some of the ladders will require
a layout adapted to the hole around the vacuum beam pipe. Such a ladder will be
missing an innermost sensor.

Figure 4.6: Layout of the STS stations optimized for minimal number of ladder
types. A set of 8 stations is realized with 8 different ladder types (indicated by
different colours). Several stations are horizontally enlarged in order to increase
the acceptance for low-momentum particleas in the magnetic field.
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Engineering models of carbon fibre ladder support structures and their arrange-
ment into the detector system are shown in Fig. 4.7. A station sideview is shown
with staggered orientation of the neighboring ladders. A closeup of the schematic
front-end electronics block is shown with inclined front-end boards. The sketch
of the whole system is shown with one tracking station for illustration. The sys-
tem design is being elaborated, including the placement of services, electronics for
data aggregation and copper-to-optical conversion of signals as well as thermal
enclosure. Inside of the enclosure, sensors will be cooled using circulation of dry
nitrogen. For the front-end boards, liquid or bi-phase CO2 cooling options are
considered.

Figure 4.7: Engineering model of carbon fibre ladders and their arrangement into
the detector system: (left) ladder with FEE blocks on the top and bottom ends,
(middle) closeup of the FEE block of the station, (right) model of the STS with a
tracking station.

4.1.4 Silicon microstrip detectors

The technical specifications of the microstrip sensors are based on the require-
ments of the STS with respect to tracking performance, radiation hardness, rate
capability and stability of operation.

For the accurate track reconstruction with momentum resolution of about 1%,
high position resolution and low-mass design of the system are required. A readout
strip pitch of about 60 µm provides position resolution of about 25 µm that is
dominated by the multiple scattering. Therefore, material budget of the system has
to be as low as possible, keeping the readout electronics outside of the acceptance.
System with material budget of the sensors 0.3%X0 and realistic implementation of
the detector module with material budget not exceeding 1%X0 has been assessed
in the simulations and yielded momentum resolution of about 1.5%.

Reliable long-term operation of the system requires hit reconstruction efficiency
well above 95%. In order to meet this condition, signal-to-noise ratio of the detector
system has to exceed 10 consistently during the detector lifetime, as the signal
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degrades due to radiation damage [83].

Relativistic heavy ion collisions with multiplicity up to 600 charged particle
tracks at interaction rates of up to 10MHz cause hit rates up to 30MHz/cm2 in
the innermost part of the STS. At the periphery of the stations, hit rates decrease
by two orders of magnitude. Silicon sensors of different lengths and daisy chaining
of the sensors are used to accommodate the detector granularity to the highly
non-uniform distribution of the hit rates.

In order to reduce the probability of event pile-up, fast self-triggering front-end
electronics with shaping time of about 20 ns is required.

The innermost regions of the STS will accumulate during the experiment life-
time a neutron fluence of 4× 1014 cm−2. For this, sensors with radiation tolerant
design have to be used. In order to retain high charge collection efficiency, sensors
have to be biased up to 500V. The operation temperature has to be −7 ◦C or
lower in order to suppress the radiation damage to the the sensors and reduce the
leakage current.

The requirement of high spacial resolution at the level of 10 µm can be fulfilled
either by pixel or by strip detectors. The pixel sensors have the advantage of true
2D space point measurement that comes at the expense of high number of readout
channels. The microstrip detectors require less channels but have the ambiguity in
signal assignment due to the projective topology (fake hits) at high multiplicities.
This problem is handled in the track finding algorithm. The use of the microstrip
sensors is preferred for the STS due to relatively large total area of the tracking
stations (about 4.2m2).

The silicon tracker ladders can, in principle, be populated with either double-
sided or single-sided silicon micro-strip detectors. Double-sided microstrip detec-
tors would have the advantage of the (projective) space-point determination using
two times less sensitive material for this task. On the the other hand, single-sided
sensors are preferable taking into account the performance during the lifetime of
the detectors in the radiation field. The space point determination in double-sided
detectors requires that the full detector thickness is depleted of free charge carriers
so that the strip implants on both detector sides are able to collect the transient
charges created by the passage of the particles emitted as an effect of the nuclear
collision on the target. An under-depletion of the detector will leave one detec-
tor side unable to collect the charge and thus a 2-dimensional space point cannot
be reconstructed. If n-type silicon is considered, the material undergoes type-
inversion after about 1013 equivalent neutrons per cm2 depending on the material
resistivity. The reverse bias voltage required for full depletion increases contin-
uously after type inversion and reaches finally practical limits dictated by power
dissipation due to leakage current or by the the high-voltage breakdown. The
operation of the irradiated double-sided silicon microstrip detectors biased up to
500V has been demonstrated in [84], however due to more complicated layering
and sequence of fabrication processes their operation voltage is normally limited
to several hundred volts.

Single-sided detectors can typically stand higher operation voltages, which is
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partly due to their relatively simple manufacturing steps and a predictable stable
behavior of the electrical fields. In addition, they do not need to be reverse biased
to the extent that the full detector thickness depleted. The width w of the depletion
layer in a pn-junction biased to voltage Vbias is given by

w =
√

2ερµVbias, (4.1)

where ε and ρ are permittivity and resistivity of the sensor material, respec-
tively. The built-in voltage that is much less than typical bias voltages is neglected.

For the single-sided sensors, it is sufficient to have the electrical field at the
segmented side. Provided that the depletion layer is still thick enough, a charge
pulse can be detected on the this side. Since a pair of detectors is used mounted
back-to-back the space-points can be still reconstructed despite the harsher con-
ditions at which full sensor depletion cannot be achieved. The material budget
doubles in this case, unless the use of thinner sensors is considered.

The operation voltage as a function of the NIEL equivalent neutron fluence in
the detector system can serve as one criterion to discriminate between possible
use cases of different detector technologies in the STS tracking stations along with
other criteria described at the beginning of Sect. 4.1.4.

Fluence distribution in the most downstream STS station for one standard
CBM year, obtained with the FLUKA code is shown in Fig. 4.8a. Sensors in the
peripheral part of the station accumulate fluence less than 1013 n/cm2 and have
depletion voltage less than 100V. Sensors located close to the beam pipe, will see
higher fluences and may require single-sided technology. For illustration, regions
with different fluences are projected onto the station in Fig. 4.8b.

(a) (b)

Figure 4.8: (a) Radiation pattern in the most downstream STS station with
the muon detector system present. (b) Several fluence limits are projected onto
the tracking station to establish different radiation regions. Solid box indicates
the magnet opening. The circles mark the regions with different fluence ranges:
beam pipe (inner circle); region with Φ > 1013 n/cm2; region with fluences about
1013 n/cm2; fluence not leading to type inversion.
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Data available from the performance studies of various types of silicon and
growth processes in radiation fields (see Fig. 4.9) yield the required depletion
voltages and leakage current per unit volume in the devices. Up to fluences of
∼ 1× 1013 neq/cm

2 the depletion can be achieved with 100V, considering the sil-
icon resistivity of about 3–4 kΩ cm. In the STS stations this technology will be
able to cover at least 70% of the total area, i.e., all the outer part beyond the
radius of about 16 cm. The region close to the beam line will see higher fluences,
in particular if several years of operation are considered as the time-of-life crite-
rion for the silicon detectors. For the inner part of the STS, single-sided silicon
detectors should be explored. They can be of either n or p-type bulk material [85]
and, with about 300 µm individual thickness, resulting in two times the material
budget comparing to their double-sided counterpart.

(a) (b)

Figure 4.9: (a) Depletion voltage and (b) current per unit volume in silicon detec-
tors exposed to neutron irradiation (courtesy of F. Hartmann).

The detector topology proposed the STS ladders foresees a strip orientation
of 7.5◦ with respect to the vertical detector edge, and a fully vertical orientation
on the back-side of the sensor (alternatively also the negative angle as compared
with the front side). The detector geometry is described in details in Sect. 4.3.
The stereo angle is a trade-off between the number of combinatorial space points
and the space point measurement error in the horizontal plane. It has to be
kept reasonably low since the horizontal resolution strongly affects the momentum
measurement in the bending plane of the dipole magnet. The problem of the stereo
angle has been solved in LHCb Silicon Tracker by tilting the individual detector
ladders with single-sided sensors under a certain angle within the station [86]. This
approach is not applicable for the STS due to spacial constraints in the magnet
aperture. In order to be compatible with a sector construction out of several daisy-
chained sensors, including the above mentioned stereo angle, a double metallization
is connecting the AC coupled readout strips of a corner region to their partner
strips in the opposite corner of the detector. Daisy chaining of the sensors allows
to reduce the granularity at the periphery of the stations, where hit rate is low,
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and thus reduce the amount of readout channels. It is also necessary because of the
spacial constraints: the amount of detector modules that are readout by a front-
end hybrid is limited to five per half-ladder. The use of double metal interconnects
and daisy chaining of the sensors are schematically illustrated in Fig. 4.10. The
advantage of the double metallization is the readout of a given full sensor side
from one edge only, thus achieving minimal material budget. The downside of this
approach is, however, the increased complexity of the sensor fabrication, increased
capacitance contribution form additional metal layer and longer signal propagation
path. Without double metallization, the readout of a sensor implies the use of two
microcables to access the strips from both top and bottom edges of the sensor.
This option leads to the increased material budget and complexity of a detector
module. Another option would be not to read out the short corner strips that
correspond to region III in Fig. 4.10a.

The total number of readout channels in the STS is about 2.1 million, that poses
challenge for placement of the readout electronics within the magnet aperture and
its cooling. Figure 4.11 depicts the first prototype detector that was realized in
cooperation of GSI and CiS, Erfurt. The parameters for current detector develop-
ments are summarized in Table 4.2.

(a) (b)

Figure 4.10: (a) Schematic double-sided microstrip detector shown with the strips
under a stereo angle of 7.5◦ on the front (p) side. Three different strip regions are
shown: Corner regions (I) and (III), and central region (II). In order to realize a
readout in the vertical direction (blue arrow), a connectivity problem in the corner
region (III) of the stereo side shall be avoided by interconnecting the AC layers
of pairs of the readout strips through horizontal metal lines. (b) The situation is
shown for two daisy-chained detectors.
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Figure 4.11: Prototype sensor CBM01 realized in cooperation of GSI and CiS,
Erfurt, Germany. The double-sided sensor features a design with a strip pitch of
50.7 µm, AC coupled readout strips (seen as slanted lines in the photo) and a metal
interconnects between pairs of corner strips (horizontal lines).

detector dimensions: three types of the same structure, differing in strip length:
a) 6.2 cm width, 6.2 cm height
b) 6.2 cm width, 4.2 cm height
c) 6.2 cm width, 2.2 cm height

wafer resistivity ~ 5 kW

crystal orientation <111>

wafer thickness ~ 300 mm

wafer material · n type

· polished on 2 sides

· float zone silicon

Processing · double-sided

· AC-coupling on both sides

· double metallization on p-side due to a 7.5 deg stereo
angle of strips, interconnecting the “corner strips”

· thick first and second metal: 1 mm

bias structure poly silicon ~ 1 MW

number of strips per 6.2 cm
width

1024

strip width ~ 20 mm

strip pitch (i.e. pitch of AC pads) 58 mm, staggered on two rows

interstrip capacitance · 2 pF/cm (ohmic side)

· 1 pF/cm (junction side)

surface or interstrip resistance ~ 5 GW (at no irradiation)

strip orientation · 7.5 deg on p side

· 0 deg on n side

pads · 4 AC pads per strip (2 per upper/lower edge), dimensions

~ 40 mm × 200 mm

· at least one DC pad per strip

· 2 bias pads in every corner

strip numbering from 0 to 1023

guard rings if possible on both sides, ca. 10 per side

geometrical tolerance of masks
between junction and ohmic
sides

· not so critical, ca. 5 mm

· alignment marks important for position survey

operating voltage 200 V

Table 4.2: Parameters of double-sided silicon microstrip detectors currently under
preparation for production.
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4.1.5 Mechanical integration of a detector module

The integration of the silicon microstrip detectors into the basic operational unit,
the module, is being explored. Module design is driven by the requirement of
minimal material budget of the STS. For this, modules will be mounted on a
rigid low-mass support structure (ladder). Sensors along the ladder, are grouped
into sectors by daisy chaining. A sector side (p or n) is read out from one edge
only in order to minimize the number of microcables. Concept of a detector
module is sketched in Fig. 4.12. In the figure, double-sided sensor is read out via
long microcables. Interconnect technology chosen for module integration is TAB
bonding2. Thus, on one end microcable is TAB-bonded to a microstrip sensor and
on the other – to a front-end hybrid. The problem of high-density interconnect
layout of the front-end board, where signals form 1024 channels are routed to 8
analogue microchips, is addressed in [87].

Figure 4.12: Schematic view of the detector module (without support structure).
Silicon microstrip sensor with 1024 channels is read out by a front-end hybrid with
bump-bonded low power chips via stacked microcable optimized for low-noise and
low-crosstalk operation.

The first prototype components of a detector module have been realized in
order to test crucial design aspects, e.g., TAB bonding technology and feasibility
of manufacturing microcables with length up to 60 cm (see Sect. 4.5).

2TAB – tape-automated bonding
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4.2 Microstrip detector basics and operation

principle

Semiconductor detectors have been extensively applied to ionizing radiation de-
tection since the middle of the 20th century due to their superior spectroscopic
properties. Adaption of the planar process to the fabrication of silicon detectors
opened a way to creation of position-sensitive devices that made use of the fine
segmentation of detector channels. After the invention of silicon microstrip detec-
tors their development has been boosted by application in particle physics that
required position measurement with approximately 10 µm precision and operation
at high rates needed for measurement of rare particles. Due to relatively long life-
times (10−13 to 10−12 seconds), these rare signals form a specific tracking topology
with decay vertex detached from the point of primary interaction with target.

One of the first applications of silicon microstrip detectors in high-energy physics
experiments dates back to the early 80s. In NA11 experiment, strip detectors have
been applied to flavor tagging, namely vertex reconstruction of particles containing
c-quark. Close integration with miniature electronics allowed for the construction
of large-scale detector systems with barrel-type geometry. At LEP and Tevatron,
strip detectors have been employed for particle decay vertex reconstruction along
with gas detectors that provided tracking. Examples include DELPHI MVD [88]
and CDF [89]. At high-luminosity environment of the LHC experiments (AT-
LAS [90], CMS [91]), vertexing has become a task for pixel sensors due to their
high granularity and 2D hit information, avoiding ambiguity of projective topol-
ogy inherent to the strip detectors. The strip detectors, in turn, have been used
to build large area silicon detectors used for tracking. Evolution of the silicon
detectors in high energy physics is summarized in [92].

Silicon trackers placed in the magnetic field provide the most accurate measure-
ment of particle momentum. Over the years, they have been extensively applied in
high-energy physics experiments with a trend towards higher detector areas with
CMS topping out at around 200m2 of silicon. Comparing to that, CBM Silicon
Tracking System will have microstrip detector area of around 4.2m2 constrained
by the aperture of the dipole magnet but instead excel in channel density.

In order to make a solid-state device operational during a long period of time
with its signal being fast and proportional to the energy deposited by the particles,
its detecting material has to fulfill the following requirements:

• low energy required to create an electron-hole pair

• absence of charge recombination and trapping

• high carrier mobility with close values for electrons and holes

• high electrical resistivity

Detector material that has all the necessary properties doesn’t exist. However,
silicon offers the best compromise to the listed requirements. Comparing to the



4.2. MICROSTRIP DETECTOR BASICS AND OPERATION PRINCIPLE 47

other detector materials (Ge, GaAs, diamond), it has low energy needed to gen-
erate an electron-hole pair (Ee-h = 3.6 eV). Table summarizing the properties of
different detector materials can be found in [93]. Specific energy loss of a minimum
ionizing particle in silicon is

(

dE

dx

)Si

MPV

= 0.29 keV/µm (4.2)

that equals approximately 80 electron-hole pairs. Thermal current generation is
essentially suppressed at room temperature due to large band gap (kT = 26meV <
Egap = 1.12 eV). Thus, little or no cooling is required during the operation. Due
to the fact that silicon is an indirect semiconductor, transition of the electrons
from the conduction band to the valence band requires additionally momentum
transfer to the crystal lattice such that direct recombination of the charge carriers is
suppressed. This property results in relatively long charge carrier lifetimes (∼ 1ms
for preirradiated silicon).

In order to to detect particles reliably, fluctuation of charge carrier number has
to be much less than this number itself (e.g., ∆N/N = 10−3). As elaborated
in [94], this condition requires material with resistivity beyond practical limits
(∼ 1010Ωcm). In order to make silicon a suitable detector material, one has
to exclude free carrier exchange between the electrodes and semiconductor by
increasing its resistivity.

Decrease of carrier injection form the electrodes is reached by creating barrier
contacts based on junction properties of semiconductors with different types of
conductivity (pn-junction). At the interface between p and n-doped regions, po-
tential gradient emerges (built-in voltage Vbi) and space charge region is created.
By applying external voltage to the electrodes, space charge region is extended.
Since free charge carriers are almost completely removed from the space charge
region, its resistivity is much higher than that of material outside of the junc-
tion. Thus, pn-junction plays a major role in applying silicon to charged particle
detection. Junctions patterned in form a long strips provide positional sensitivity.

A charged particle passing through the sensitive volume generates pairs of mo-
bile charge carries of the opposite sign (electrons and holes). External voltage ap-
plied to the electrodes creates electric field in the crystal which causes the charge
carriers to drift towards the electrodes. As the charge carriers move, they induce
a mirror charge in the electrodes. Current pulse induced by moving charges at the
electrodes is used to detect a particle. A simplified detector scheme is shown in
Fig. 4.13. On the scheme, the pn-junctions are shown as diodes. Charge sensitive
amplifiers (CSA) read the signals out via coupling capacitors Ccoupl form the diode
terminals that correspond to p+ or n+-strips. Biasing resistors that connect every
strip to a corresponding bias rail on the n or p-side are shown as RbiasN,P . The bias
rails of a sensor are connected to a high voltage source via limiting 1MΩ resistors.
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Figure 4.13: Operation principle of a double-sided silicon microstrip detector.

Typical structure of a microstrip sensor is shown in Fig. 4.14. Every strip con-
sists of an implant with a metal strip on top separated by a coupling dielectric.
The dielectric prevents the detector leakage current from flowing into the readout
electronics, thus implementing the AC coupling. A stack of several dielectric ma-
terials (SiO2 and Si3N4) is sometimes used to provide better high voltage stability
of the coupling capacitors. AC and DC contact pads are integrated on the strip for
readout and probing (e.g., during the quality assurance). Every strip is connected
to the bias ring with external voltage applied to it. For a long-term stability of
operation, proper edge termination of sensor has to be provided. Due to the me-
chanical damage caused by the cutting procedure, the sensor edge becomes highly
conductive due to introduced lattice damage. Thus, electric field should not reach
the sensor edge in order to avoid generation of additional leakage current and edge
breakdown. For this purpose, a guard ring or often a set of floating guard rings
is introduced in order to gradually reduce the potential in the region between the
strips and the sensor edge. The sensor surface is passivated with a SiO2 layer with
openings for contact pads in order to protect it from the contamination.

On the n-side of the sensor, additional design effort has to be made to isolate
the n-strips that are otherwise shorted by the electron accumulation layer. Special
mitigation techniques to break the electron accumulation layer are described in
Sect. 4.3.1 (part “Wafer type CBM02”).

Silicon sensors with double metal layer offer an advantage of routing the signals
not along the implanted strips. Thus, sensor designs optimized for a particular
detector module structure become possible. The isolation between the two metal
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layers is done using SiO2 or polyimide (Kapton) layer. The disadvantage of the
double metal layer is the increased complexity of sensor production and crosstalk
between readout and routing lines. In the STS silicon microstrip sensors, double
metal layer is used to connect the short corner strips that appear due to stereo
angle (see Sect. 4.1.4). In this case, due to less number of microcables, module
design with a minimal material budget is achieved.

Figure 4.14: Structure of a silicon microstrip detector (courtesy of F. Hartmann).

Types of silicon detectors

Silicon detectors differ in their applications mainly due to the segmentation of
the electrodes (see Fig. 4.15). Devices with largely asymmetric electrodes (few tens
of µm wide and several cm long) are called strip detectors. Fine segmentation of
the electrodes provides precision of the position measurement as good as 5–10µm.
Strip sensors have large active area with strip length up to 10 cm [95]. Microstrip
sensors with double-sided structure can provide 2D position information using the
same amount of material as the single-sided ones. Often, the coupling capacitance
and the bias resistor are implemented on every strip of a sensor, thus providing
the AC-coupled readout.

Devices with approximately equal dimensions of electrodes are called pad or
pixel detectors. Pad detectors with coarse or no segmentation are used for low-
multiplicity particle tracking or event sampling (e.g., in calorimeters). The elec-
trode dimension of the pixel sensors range from several hundreds to several tens
of micrometers. Such sensors provide true two-dimensional position measurement
without fake hits that are inherent to the projective topology. Due to the high
channel density, pixel detectors are applied in the high track density environments,
e.g, at positions closest to the interaction point of an experiment.
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In silicon drift detectors (SDD), a sideward depletion of the bulk is achieved
in combination with an electric field parallel to the wafer surface. Thus, signal
electrons drift in a potential valley towards the anode. The silicon drift detectors
can be used to obtain position and energy information from the drift time and
amplitude of the signal. In case of a segmented n+-strip anode, two-dimensional
position information is obtained. Due to the low capacitance of the collecting
electrode (10–100 fF) and hence low noise, SDDs with radial geometry are applied
for the X-ray spectroscopy. A silicon drift detector has been applied for particle
tracking in the ALICE experiment as a part of Inner Tracking System [96].

p+n+

strip

pixel/pad

drift

Figure 4.15: Types of silicon detectors.

Requirements to the physics performance of the STS favour the use of double-
sided silicon detectors for tracking purposes due the best compromise between
material budget, channel density and speed of operation. Fabrication of the double-
sided silicon microstrip sensors for the STS is a complex task due to their double-
sided layout, large area (up to 62× 62mm2) and the use of the double metal layer
on both sides. For the production, 19 photolithographic masks will be required.
The design ensures full geometric efficiency of the sensor (no “dead” corners) and
compatibility with detector module structure that has minimal material budget.
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4.3 Development of CBM silicon microstrip sen-

sors

The CBM experiment will operate at high interaction rates in a radiation environ-
ment of up to 4× 1014 1-MeV neqcm

−2 in 6 years of operation. Defects introduced
into the silicon lattice due to irradiation lead to a formation of charge traps and in-
crease of leakage current. This causes a degradation of charge collection efficiency
on one hand and increase of noise on the other. Therefore, radiation tolerant design
of the double-sided microstrip sensors for the STS is required to achieve sufficient
signal-to-noise ratio S/N > 10 for > 95% of hits and a robust detector breakdown
performance as the particle fluence increases during the detector operation.

Wafer type Description

CBM01 First full-size prototype sensor compatible with the construc-
tion of a low-mass module featuring 15◦ stereo angle and dou-
ble metal interconnects of the short corner strips at p-side

CBM02-SPID Technology wafer to explore radiation tolerant design ele-
ments, i.e., n-side strip isolation structures, guard rings, bulk
doping concentration etc

CBM03 Wafer design with full-size sensor with ±7.5◦ stereo angle at
both sensor sides. Double metallization is likewise used for
interconnecting of the short corner strips. Detector is opti-
mized for the module design where analogue signals are read
out via microcables from two detector edges only.

CBM03′ Intermediate single-sided wafer based on CBM03 p-side de-
sign to investigate the high-voltage stability issues with AC
coupling capacitors (described in ). Introduced improvements
include combinations of thicker dielectric layers (oxide-nitride
or oxide-nitride-oxide) and polysilicon buffer layer.

CBM04-FSD Second technology wafer dedicated to exploring radiation tol-
erant design features with emphasis on the n-side strip iso-
lation. Novel isolation technique based on Schottky barrier
effect is introduced. Main emphasis during the characteriza-
tion is put to verifying the efficiency of strip isolation and its
radiation-damage susceptibility.

CBM05 Resubmission of the CBM03 wafer with similar geometrical
design but deep modifications towards high voltage stability,
noise reduction and ease of use. Production has been started
in parallel at CiS and Hamamatsu.

Table 4.3: Wafer generations of microstrip sensors for the Silicon Tracking System.
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Stringent requirements to the material budget of the detector require place-
ment of the front-end electronics at the periphery of the tracking stations. In
this case, the signals from the detector are read out via long analogue microca-
bles whose length reaches up to 60 cm. Capacitance of a microcable along with
detector capacitance3 thus becomes a dominant noise source in the preamplifier of
the front-end chip and reduces the signal-to-noise ratio. In order to preserve suffi-
ciently high signal-to-noise ratio one may increase the amount of a signal charge by
employing thicker sensors. Successfully applied in the LHCb Silicon Tracker [97],
this approach is limited in case of STS due to dramatic influence of extra mate-
rial in the detector acceptance on the momentum resolution of the reconstructed
particles [98]. Therefore, sensor thickness is restricted to about 300 µm.

This section describes existing prototype wafers with microstrip sensors for the
STS produced in cooperation with CiS Institute for Microsensor Systems and Pho-
tovoltaics (Erfurt, Germany). Four wafers designed and produced from 2007 till
2011 have included the design changes towards higher radiation hardness and geo-
metrical parameters corresponding to the ladder structure of the detector module
(see Table 4.3).

In the context of this work, double-sided microstrip detectors have been char-
acterized in order to establish general electrical functionality, measure interstrip
parameters, channel yield as well as some other technological parameters.

4.3.1 Double-sided radiation tolerant microstrip detectors

The major part of the STS will be populated with the detector modules based on
double-sided silicon microstrip sensors. The sensors will be mounted on low-mass
carbon fibre support structures and read out via long microcables by the front-
end electronics placed outside of the detector acceptance. Structure of the sensors
including double metallization on both sides to connect the short corner strips is
in line with the low-mass design of the detector modules. The following section
describes five subsequent generations of the wafer design, including underlying
sensor technology and steps for the full-size prototypes towards the final design.

Wafer type CBM01

The first dedicated wafer layout CBM01 [99] manufactured by CiS, Erfurt con-
tains a full-size prototype sensor compatible with the construction of a low-mass
module of the STS, as well as further smaller test sensors (see Fig. 4.16). The
double-sided design is needed to achieve minimum material budget within the de-
tector aperture. They were produced on 4” wafers of 285 µm thickness made of
n-type float-zone silicon with 3–4 kΩ cm resistivity. The full-size sensor (CBM01)
is being used for detector module prototyping where the issues of mechanical in-
tegration, cooling infrastructure and long analogue readout cable are to be ad-
dressed. Sensors with smaller sizes (CBM01B1 and CBM01B2 types) are suitable

3Detector capacitance “seen” in the readout channel comprises contributions from the back-
plane capacitance and capacitance to the neighboring channels.
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for testing of radiation tolerance and the construction of test systems with proto-
type front-end electronics. The strips on all sensors on the wafer are biased via
punch-through structures [100] and are read out in the AC mode through inte-
grated coupling capacitors. In order to avoid shorting of the strips on the n-side,
p-spray isolation has been used. Some of the geometrical sensor parameters are
summarized in Table 4.4.

Figure 4.16: First prototype wafer with full-size sensor and smaller test sensors.

The CBM01 sensor addresses specific connectivity issues of the detector module
with ladder structure where sensors need to be daisy chained. The prototype
features a 15◦ stereo angle between the p and the n-side strips. On both sensor
sides, 1024 contact pads are arranged near the top and bottom edges in a staggered
manner. Their pitch of 50.7 µm matches the input of the n-XYTER chip that
is used during the initial prototyping phase. On the stereo (p-implanted) side,
unconnected corners are avoided by linking the metal of every short strip with its
matching partner in the opposite corner through a line on the second metal layer.

Two other sensor types called CBM01B1 and CBM01B2 are nicknamed as big
and small baby sensors, respectively. Both sensors have 256 orthogonally oriented
strips at each side placed with a pitch of 50.7 µm and 80 µm. Additionally, extra
rows of AC-pads for testing purposes and DC-pads for probing the strip implants
have been added.

The close-ups of the sensor corners shown in Fig. 4.17 and Fig. 4.18 illustrate
the arrangement of the strips and their biasing principle. The CBM01B2 type
sensors have a row of DC-pads and a redundant row of AC pads that can be
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Parameter CBM01 CBM01B1 CBM01B2

Strips per side 1024 256 256

Pitch, µm 50.7 80 50.7

Width, µm 18 40 18

Stereo angle, ◦ 15 90 90

Chip size, mm2 54.9×53.9 22.4×22.4 14.9×14.9

Pads per strip 2 AC pads 4 AC + 2 DC pads 4 AC + 1 DC pads

Table 4.4: Geometrical parameters of the CBM01 sensors.

contacted by the probes needles leaving the readout pads intact. The bias rail on
the N-side is represented by a solid metal stripe without guard rings. Likewise,
the CBM01 type sensor has guard ring structures on the p-side only (shown in
the photograph). Due to the stereo angle, only one row of AC pads can fit the
available area. The thin horizontal metal lines seen in the photo are made using
the second metal layer to interconnect the short strips in the sensor corners to the
matching strips in the opposite sensor edge. Both sensors have a punch-through
type biasing. For this reason, the strip implants need to reach just up to the bias
rail with a gap between the bias rail and strip implant equal to 7 µm.

Figure 4.17: N-side of CBM01B2 type
sensor with two rows of AC pads and one
row of DC pads.

Figure 4.18: P-side of CBM01 full-
size sensor with one row of AC pads
and 10 guard rings.

Wafer type CBM02-SPID

Further sensor prototyping activities were aiming at the exploration of radi-
ation tolerant design features. Wafer type CBM024 has been designed at CiS,

4Project supported by German Federal Ministry of Economics and Technology (BMWI),
project INNOWAT SPID.
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Erfurt carrying 2 pixel sensors, 18 strip sensors and various test structures includ-
ing PIN diodes [101]. The layout of the 4” wafer is shown in Fig. 4.19. The largest
structures are the double-sided microstrip sensors with orthogonal 256 AC-coupled
strips per side and 50 µm and 80 µm pitch. Every sensor is different and includes
either structures for punch-through biasing, polysilicon biasing, or a combination
of both. On the n-side, the strip insulation was realized using p-stop, p-spray and
field plate techniques. Some sensors were implemented with a combination of dif-
ferent isolation techniques. Comparing to CBM01 sensors, edge isolation has been
improved by introducing five additional guard rings with larger spacing preserv-
ing the outer dimensions of the sensors. A batch of 18 wafers has been produced
using 285 µm thick n-type float-zone material, every wafer with a different doping
concentration of isolating structures on the n-side.

Figure 4.19: Layout of the CBM02 wafer with double-sided microstrip test sensors
and other test structures for manufacturing process control.

The choice of biasing scheme is one of the elements of radiation tolerant sensor
design. This becomes important at high accumulated fluences when charge collec-
tion efficiency decreases due to the trapping of signal charge and sensor needs to be
operated with overbias. Two mostly used methods are punch-through and polysili-
con biasing. The first one is based on the punch-through effect in p+np+ structures
where potential of the strips is set by the voltage of the bias line separated by a
small gap (typically of the order of 10 µm) [102]. This method offers significant
simplification of production since it doesn’t require additional lithographic steps
to form the bias resistor. However, punch-through resistance that reaches GΩ level
creates a substantial voltage drop reaching up to few tens of Volts. Voltage drop
depends on the strip current which in its turn strongly depends on irradiation and
detector bias. These circumstances make it difficult to control the actual voltage
across the detector.
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Another way to bias the strips in the detector is using bias resistor made of
doped polysilicon. Such resistor is usually fabricated as a thin line with a meander
shape in order to create a compact structure. The actual value of the resistance is
achieved by modifying the polysilicon trace width which is, however, kept above
certain minimum length (about 10 µm) to make the resistance value less susceptible
to process variations. Typical sheet resistance of the implanted resistor is of the
order of few kΩ/sq5 yielding the final value of the resistance ranging from few
MΩs to few tens of MΩs [103]. Naturally, polysilicon resistors introduce dead area
into a sensor and increase the complexity of its fabrication comparing to punch-
through biased sensors. Nevertheless, high-intensity applications favour the use of
polysilicon biasing due to its better radiation tolerance [104]. Moreover, additional
noise contribution related to the punch-through current has been reported in [105].
It is worth mentioning that certain sensor characteristics, e.g., interstrip resistance
are impossible to measure with polysilicon biased sensors in a non-destructive way.
Therefore, special test sensors with punch-through biasing should be placed on the
silicon wafer along with main sensors. Two techniques may be combined within
one sensor, where strips are biased with a polysilicon resistor at normal conditions
and a punch-through structure is connected in parallel [106].

In double-sided silicon strip detectors, electrons generated in the bulk are col-
lected by the n+-electrodes. For the detectors made of n-type silicon, such strips
form n+-n-n+ structures. This side of the sensor is called an ohmic side. A com-
monly known problem for the operation of the detector n-side as well as for n-in-n
type pixel sensors is presence of positive charge and traps in the overlying oxide
layer. Several contribution to this effect include [107]:

• interface trapped charge Qit present due to the traps at the Si-SiO2 in-
terface that have energy levels deep in the band gap. The traps act as
generation-recombination centers and originate from unterminated bonds of
silicon atoms and impurities.

• fixed oxide charge Qf located close to the Si-SiO2 interface (within few nm).
The charge is trapped due to ionic Si and uncompensated Si-Si or Si-O bonds.

• oxide trapped charge Qot that comes due to the defects in the SiO2 crystal
lattice. Presence of this type of charge is negligible in newly produced oxide
but it increases with ionizing radiation (e.g., X-rays) or due to hot carrier
injection into the dielectric.

• mobile ionic charge Qm (e.g., Na, K) that may move in the oxide at extreme
field or temperature conditions. This kind of charge affected the early stages
of MOS structures and is not considered an issue nowadays.

5Sheet resistance is a measure of resistance for thin films with even thickness. Dimension-
wise, the units of sheet resistance are ohms, but for the sake of unambiguity “ohms per square”
(denoted as Ω/sq or Ω/�) are also used.
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Certain amount of positive charge is present even in the fresh oxide. Its density
is increased by the ionizing radiation that creates electron-hole pairs. Most of these
pairs recombine and among those which don’t recombine holes are trapped with
higher probability due to their much lower mobility in SiO2 compared to electrons
(µp = 2× 10−5 cm2 V−1 s−1 vs. µn = 20 cm2 V−1 s−1).

Positive oxide charges attract electrons from the silicon bulk and thus lead to
a formation of electron accumulation layer under the oxide. This layer creates a
conductive path between the n-strips and essentially shorts them leading to the loss
of coordinate sensitivity. In order to interrupt the accumulation layer p-implants
and fieled plates are used:

• p-stop: intermediate floating p-type strip between the readout strips. The
design task for p-stop isolation is to find optimal implant width and geometry
(e.g., single implant between two strips vs. individual implant surrounding
every strip.)

• p-spray: large-area and low-dose surface doping. Advantageous, because no
additional mask is required for patterning the implants. For pre-irradiated
sensor, high-field region builds up at the strip edges, therefore p-spray dose
has to be chosen carefully in order to prevent electrical breakdown.

• moderated p-spray: combination of the two approaches mentioned above.
Medium dose p-spray is combined with relatively wide p-stop in the middle.

• field plate: MOS gate structure biased negatively with respect to the n+-
strips. Inconvenience related to this type of isolations comes from the neces-
sity to have additional bias for the field plate.

Type of isolation technique has to be chosen depending on the radiation hard-
ness and high voltage requirements [108]. The final design choice is a tradeoff
between interstrip capacitance and detector breakdown voltage. Thus, for the
p-spray, breakdown voltage increases and interstrip capacitance decreases with
irradiation [109]. This happens because oxide charge compensates the p-spray
charge. Surprisingly enough, both of these trends are beneficial for the detector
operation, therefore annealing of the ionizing radiation defects is detrimental in
this case.

Comparing to p-spray, p-stop implants feature higher doping concentration that
leads to formation of high-field regions at the implant edges. Potential of the p-
implant is set by the neighboring n+ electrodes. When certain maximum potential
difference between the strip and p-implant is reached, breakdown happens in the
silicon bulk. p-stop potential is higher for wide implants, that is why narrow
p-stops are preferred for higher breakdown voltages. This is equivalent to the
statement that p-stops have to be placed further away from the n-strips for better
breakdown performance (in case of more complex p-stop configuration than just a
single p-stop between two strips). However, due to the fact that electron accumu-
lation layer acts as an extension of the n+-strip narrow p-stops give rise to higher
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Name Pitch, µm Biasing N-side Guard

scheme isolation rings

Twpsp12 80 punch p-spray p-side

Twpsp13 80 punch + poly-Si p-stop p-side

Twpsp14 80 punch p-spray p-side

Twpsp15 80 poly-Si p-spray p-side

Twpsp2 50 poly-Si p-spray p-side

Twpsp22 50 punch p-spray p-side

Twpsp23 50 punch + poly-Si p-stop p-side

Twpsp24 50 punch + poly-Si field plate p-side

Twpsp25 50 punch p-spray both sides

Table 4.5: Technology variations within the CBM02 sensor family.

interstrip capacitance. As the surface oxide charge increases with irradiation, in-
terstrip capacitance also increases.

Finally, the combination of p-stop and p-spray (also called moderated p-spray)
allows to have sufficiently high initial breakdown voltage before irradiation due to
medium dose p-spray and low interstrip capacitance after irradiation due to wide
p-stop.

A value that quantifies the quality of interstrip isolation is interstrip resistance
that reaches O(GΩ) for well isolated n-strips. Measurement procedure for in-
terstrip capacitance, resistance, breakdown voltage, etc., are described later in
Sect. 5.1.

Table 4.5 shows technology variations within CBM02 detector family. Apart
from applying various isolation techniques for different sensors within a wafer,
different wafers from the batch had different p-implant dose and implantation
energy: (1.1 − 2.0)× 1013 cm−2 at 70 keV for p-stops and (3.5 − 5.0)× 1012 cm−2

at the energies of 80–115 keV for p-spray.

Wafer type CBM03

Based on the first prototype CBM01 and experience with the technology wafer
CBM02, the new design CBM036 realizes a large double-sided sensor with the
strips under a stereo angle on both sides [111]. This design is favoured for aspects
of the module assembly but requires interconnecting the short corner strips on
both edges through lines on a second metal layer in order to read out the sensor
from one edge per side only. In total, the wafer requires 19 masks for production.
The CBM03 design has the following features (see Fig. 4.20 for wafer layout):

6Developed within EU Project ULISI, FP7 HadronPhysics2.
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Figure 4.20: Layout of the CBM03 wafer
(4” diameter) with the main sensor in the
center and various test structures.

Figure 4.21: Photo of a front side of
the CBM03 main sensor with strips
under ±7.5◦ stereo angle and double
metal interconnections of the corner
strips.

• n-type float-zone silicon material

• double-sided layout

• 1024 strips per side

• stereo angle ±7.5◦

• 58 µm strip pitch

• AC-coupled readout

• 1 DC pad and 4 AC pads per strip

• poly-silicon resistor plus punch-through biasing

• p-spray isolation on the ohmic side

• two metal layers per side

• 10 guard rings

• outer dimensions 6.2× 6.2 cm2

Symmetric design of the p- and n-side of the sensor, in particular with respect to
contact pads geometry, allows to facilitate the production of analogue microcable
which disfavours the kinks in the conducting lines needed to read out the strips
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at stereo angle as large as 15◦. The use of twice smaller stereo angle at both sides
(i.e., ±7.5◦) allows to rotate the contact pads with respect to the strip orientation
as shown in Fig. 4.21, thus keeping the conductor lines at microcable straight.
Apart from that, similar cable structure for both sides of the sensor reduces the
effort for module production.

Additionally to the main sensor, CBM03 wafer includes smaller test sensors as
well as company test structures. Baby sensors typically used for simple tests such
as determination of full depletion voltage or breakdown voltage have the following
geometrical parameters:

• 50 µm strip pitch

• 90◦ stereo angle

• 192 strips

• 20 µm strip width

• sensor size 1.18× 1.18 cm2

• single level metallization

Close-up of the corner of a baby sensor is shown on Fig. 4.22.

Figure 4.22: Photo of the CBM03 baby sensor corner with 10 guard rings and
mixed polysilicon + punch-through biasing.

Wafer type CBM03′

In preparation of the next full-size prototype microstrip sensor CBM05, short
circuits in the AC coupling layer have been addressed in the intermediate design
CBM03′. Discovered problems with the coupling capacitors in a prototype sensor
CBM03 are described in section 5.1.2 (part “Coupling capacitance”).
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Measurements indicate that thin oxide layer was shorted in certain areas. This
may be due to the complex structure of the detector. The processing steps for 19
masks, including the two metal layers per side, may have introduced stress there.
A more sturdy layout including a slightly increased thickness of some of the layers
has been proposed for the next prototype.

Technological tests have been prepared, reusing the masks of layout CBM03 for
the production of a single-sided prototype CBM03′. After testing the intermediate
prototype, production will be started for a batch of the next double-sided full-
size prototype CBM05. Like the previous prototype, it comprises 2 × 1024 strips
of 58 µm pitch arranged under a stereo angle of ±7.5◦ on an area of 62mm by
62mm. The detector is laid out for readout connections at its top and bottom
edge, involving double metal interconnections of the corner strips so that sectors of
daisy-chained detectors can be built and arranged on the Silicon Tracker’s ladders.

Modifications implemented in the CBM03′ wafer are summarized in Table 4.6.
First evaluations have identified the design improvements that eliminate the short
circuits in the AC coupling capacitors. Optimized parameters will be used for the
production of the CBM05 sensors.

Table 4.6: Summary of the parameter space for an improved full-size sensor.

Wafer type CBM04-FSD

Double-sided silicon microstrip sensor R&D has been continued with the tech-
nology wafer CBM04-FSD7 that focuses on the investigation of radiation tolerant
design elements with particular focus on the isolation techniques on the ohmic
side of the sensor. Present design comprises novel isolation technique - Schottky
contact isolation, based on the barrier properties of metal-semiconductor interface.
Unlike blocking p-implants that cause high electric field either prior to or after ir-
radiation, Schottky barrier isolation promises low field intensity and low interstrip
capacitance providing still enough isolation to suppress the electron accumulation
layer between the neighboring n-strips. Another advantage of this type of isolation
is that no additional mask is required for patterning the p-implants between the
strips on the ohmic side.

7Supported by German Federal Ministry of Economics and Technology, project INNO-KOM-
Ost.
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Wafer batch produced of the n-type material with 〈111〉 crystal orientation has
resistivity in the range of 3.5–5.5 kΩ cm. Sensor thickness is 285 µm that is less
than the industry standard of 300 µm due to mechanical treatment of the raw
wafers. The first step in the production cycle, before photolithography and ion
implantation take place, is wafer polishing needed to guarantee the proper quality
of the sensor surface.

Figure 4.23: Layout of the CBM04-FSD wafer with two types of sensors. Different
isolation techniques for ohmic side are utilized for different sensors while keeping
the same contact pad pattern.

Out of many sensors present on the multi-project wafer CBM04-FSD (see
Fig. 4.23), two sensor types are relevant for CBM (seen on the layout as white
squares). The geometry of the sensors with respect to strip pitch, bonding pad
layout and sensor dimensions has been preserved from the wafer CBM02. The
difference in size between small and big sensors is dictated by the different pitch.
Apart from that, two sensor types feature different strip width to pitch ratio as
can be seen from the Table 4.7.

Typical views of the p-side and the n-side of the sensors are shown in Fig. 4.24
and Fig. 4.25, respectively. P -side of the bo4pr type sensor features guard rings
with variable width. Every even strip ends with a DC pad and a polysilicon resistor
connecting the strip implant and the bias rail, thus implementing the polysilicon
biasing. Every odd strip is separated from the bias rail by a narrow gap in order
to form a punch-through biasing structure. Design of the n-side of the bo5tb
sensor type does not include guard rings and polysilicon resistors so that only
punch-through mechanism is available to bias the strips. As seen in the photo, the
interstrip gaps are covered with a metal layer that implements Schottky barrier
isolation for the ohmic side.

Common to the design of both sides of the sensor are alignment marks in the
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Parameter Big sensor Small sensor

Pitch, µm 80 50

Strip per side 256 256

Strip width, µm 40 20

Chip size, mm2 23×23 15.3×15.3

Guard rings 15 15

Pads per strip 4 AC + 2 DC pads 4 AC + 1 DC pads

Sensors per wafer 4 5

Table 4.7: Geometrical parameter table of two sensor types from the CBM04-FSD
wafer.

Figure 4.24: Sensor type bo4pr (n-side)
with polysilicon + punch-through biasing
and variable guard ring spacing.

Figure 4.25: Sensor type bo5tb (n-
side) with no guard rings and pure
punch-through biasing.
Schottky barrier isolation is seen as a
metallization between the strips.

sensor corners as well as strip numbering that marks every 8th strip. For the
convenience of the user, sensor type and name of the side can be found on the
sensor using a microscope (not visible on the photo).

Despite the common geometry and bonding pad topology, all sensors have dif-
ferent structure. Variations of design parameters are summarized in Table 4.8. The
width of Schottky isolation electrodes and their passivation, type of sensor biasing
as well as presence of guard rings on the n-side of the sensor are the technological
variables implemented in the CBM04-FSD wafer design.

The use of novel isolation technique for the n-side of the sensor makes investi-
gation of the interstrip parameters of the irradiated sensors, e.g., capacitance and
resistance, the main goal of the characterization effort.
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Name Guard Biasing Poly- Schottky Schottky

rings resistor contact contact

width width passivation

bo5tb p-side punch no 21 open

bo4pr both sides poly-Si 5 no

bo4pa both sides poly-Si 5 18

bo4pw p-side poly-Si 5 18

bo4nx p-side poly-Si + punch 5 18 open

Table 4.8: Technology variations for different sensor types within the CBM04-FSD
wafer.

Wafer type CBM05

Wafer CBM05 has been planned as a reiteration of CBM03 wafer production.
Wafer material and geometrical parameters such as sensor dimensions, strip width
to pitch ratio, stereo angle and AC pad geometry have remained unchanged. Place-
ment and size of the DC pads also remained intact but additional DC pad will be
introduced, giving two DC pads per strip.

Complex design and numerous production steps involving 19 photolithographic
masks resulted in technology flaws detrimental for the yield of operational chan-
nels. Large fraction of the AC coupling capacitors has shown short circuits due
to defects in the capacitor dielectric material. Also, during the characterization
some other sensor parameters appeared to be not optimized for the use in long
ladder-type detector modules. For example, standard metal layer thickness for
both metallization levels turned out to be insufficient for long signal paths as in
the case of daisy-chained sensors. The problem arises from the series resistance
that contributes to noise of the preamplifier proportionally to the

√
R, where R is

the total series resistance attached to the front end. In the STS detector modules,
where up to three 6.2 cm long sensors may be daisy chained, noise contribution
from the series resistance (in the current CBM03 implementation) surpasses the
contribution from sensor strip capacitance and microcable trace capacitance.

These major modifications as well as smaller design improvements that came
up during the sensor characterization can be summarized in the following list:

• improved high-voltage tolerance of the AC capacitors by introducing thicker
or stacked dielectric layers

• thicker metal layers in the first and second metallization levels in order to
reduce noise contribution from the series resistance

• 2 bias structures and 2 DC pads per strip (1 DC pad at each end) for easier
probing
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• planar AC pads to provide bondable surface

• improved labeling for easier handling with respect to the complex module
integration requirements

Before starting the production of the CBM05 wafer some of the above mentioned
improvements will be implemented on the test structures in a separate production
run.

The sensor characterization routines and measurement results are presented in
Chapt. 5.

4.3.2 Single-sided microstrip detectors

Reconstruction of the two-dimensional space points can be done with a combina-
tion of two single-sided sensors mounted back-to-back. Detector modules based
on the single-sided sensors are considered as an alternative solution for the inner
part of the tracking stations. The choice of substrate material and operation volt-
age allow for operation of the sensors with acceptable charge collection efficiency
throughout the experiment lifetime.

The estimations of radiation environment for the STS detector (Sect. 4.1.2,
4.1.4) give for the central region the maximum fluence of about 4× 1014 neq/cm

2

accumulated in six years of operation. The full depletion voltage as a function
of proton fluence is shown in Fig. 4.26. The conversion between the proton and
equivalent neutron fluence is done using the relation

Φeq[neq/cm
2] = κΦp[p/cm

2],

where κ is a hardness factor. For the 23MeV protons available at Cyclotron facil-
ity (Karlsruhe, Germany) that is often used for irradiations of silicon microstrip
detectors, the value of κ = 2.0 has been reported [112]. The plot shows the fluence
dependence of the full depletion voltage VFD for silicon wafers manufactured us-
ing different technologies. For the standard technology VFD is significantly higher
than for the oxygen enriched silicon wafers. Operation the microstrip detectors at
lower bias reduces the leakage current leakage current and breakdown probability.
Therefore, diffusion oxygenated wafer technology is suitable for the high radiation
environment [113].
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Figure 4.26: Effective doping concentration and full depletion voltage as a function
of proton fluence for different wafer technologies (courtesy of M. Moll).

Performance of the single-sided sensors of p-on-n and n-on-p type have been
evaluated [114] using the double peak PTI model [115]. Collected signal charge
as a function of fluence is presented in Fig. 4.27a. At fluence of 4× 1014 neq/cm

2

both sensor types collect enough charge to remain operational, however collected
charge for the p-on-n type sensor is about 40% smaller than for the n-on-p type
sensor. Observed reduction in charge collection efficiency and discrepancy between
two cures can be explained in terms of a charge drift length, defined as Ldr = vdrτ ,
where vdr is drift velocity and τ is charge carrier lifetime. At fluence around Φ =
1015 neq/cm

2, the drift length becomes smaller than the sensor thickness. This leads
to the reduction of signal amplitude, thus both curves decline. The amplitude for
the n-on-p type sensor is higher because n+ electrodes collect electrons that have
higher mobility than the holes. Voltage dependence of the signal charge is shown
in Fig. 4.27b. The signal in n-on-p sensor rises with bias voltage and saturates at
about 400V, whereas signal saturation for p-on-n sensor is less pronounced.

In a sandwich detector module, bias voltage of at least 300V will have to be pro-
vided in order to collect sufficient signal charge during the whole detector lifetime
up to the fluence of Φ = 4× 1014 neq/cm

2.
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(a) (b)

Figure 4.27: Fluence dependence of signal amplitude at 300 V bias voltage (left)
and voltage dependence of the amplitude for p-on-n and n-on-p sensors at irradi-
ation fluence 4× 1014 neq/cm

2.

Potential structure of a detector module based on single-sided sensors is shown
in Fig. 4.28. The sensors are mounted back-to-back on the support structures.
Short corner strips are interconnected via a flat microcable glued to backside of the
sensor. Proposed approach offers simplification of the sensor structure by avoiding
the double metallization. Simpler sensor design is beneficial to the production
yield and stability of operation.

Figure 4.28: Structure of a detector module with single-sided sensors. The sensors
are shown in red and light blue. Flat microcables (shown in orange) are wire
bonded to the sensors.
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4.4 Development of front-end electronics

The Silicon Tracking System project aims at construction of a ladder-type detector
module integrated with a multi-chip block of front-end electronics. The detector
module serving as a building block for the construction of the system has to ful-
fill the requirements coming from the desired physics performance and operation
conditions. High channel density and spatial resolution of ∼ 15 µm in the bend-
ing plane are needed to provide particle momentum reconstruction with a typical
resolution of 1.5%. Associated with fixed-target collision geometry, highly non-
uniform hit distribution in the plane, perpendicular to the beam axis, requires a
variable channel granularity along the module. There is an additional constraint:
the STS detector including sensors, analogue readout cables, front-end electronics
and first stage of the data acquisition chain has to fit into the available space given
by the aperture of a dipole magnet.

Timing requirements to the front-end electronics are dictated by the beam con-
ditions and type of events to be triggered on. CBM will operate at a DC-beam that
excludes the possibility to use the synchronization of electronics readout with the
beam. The DC-beam offers the advantage of uniform distribution of the interaction
rate in time and thus a uniform load on the data acquisition system. The decay
topology of open charm hadronic decays, where secondary vertices formed by two
or three daughter particles at the distance of several hundred micrometers from the
primary vertex (cτD0 = 123 µm, cτD+ = 312 µm), requires full event reconstruction
to select an event. Time needed for a trigger decision in this case largely exceeds
the latency budget of a low-level trigger given by the front-end pipelines (typically
from 0.1 µs to few microseconds, 4 µs for the LHC experiments). Thus, on-line
triggering on detached secondary vertices at high interaction rates determines the
requirements to the experiment and its data acquisition system. Self-triggering
front-end electronics and free streaming data acquisition system running without
a central trigger are needed to fulfill this task.

Since the development of an ASIC requires big effort and time, it was decided to
explore an existing n-XYTER chip during the prototyping phase with subsequent
modifications implemented at a later stage. Front-end electronics has been being
developed using n-XYTER readout chip [133]. Sect. 4.4.1 and 4.4.2 discuss the
the purpose and design of the chip and various front-end boards based on it.

Front-end electronics has been read out by data acquisition chain described
in Sect. 4.4.3. Performance evaluation of the first detector systems has provided
important feedback on the module design with respect to the sensor structure,
connectivity of sensor and electronics, grounding, etc. Application of the prototype
systems in the laboratory and beam measurements is presented in Chapt. 5 and 6.

Outlook on the further development of readout ASIC and front-end electronics
is provided in Sect. 4.4.4.
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4.4.1 The self-triggering n-XYTER front end chip

The n-XYTER chip, developed within the EU FP6 NMI3 project DETNI [134]
dedicated to neutron applications, has been taken as a basis for the STS proto-
type front-end electronics. The chip is self-triggering and data driven due to the
statistical nature of neutron signals. It comprises 128 channels with low-noise de-
sign. Every channel has two shapers with different shaping times (fast and slow)
optimized for obtaining timing and energy information. The peak detect and
hold circuit attached to the slow shaper provides amplitude measurement using
an external ADC. A time stamp generator provides time walk corrected tempo-
ral reference to the signal. Timing and amplitude information allow to correlate
signals in different channels in order to relate adjacent hits to a cluster, hits on
different sides of a sensor to a space point and, finally, space points in different
stations to a track. The chip features test modes for calibration and testing, such
as test trigger mode and test pulse mode with variable pulse amplitude.

Originally developed for readout of microstrip detector employed for neutron
signal measurement at high rates, n-XYTER chip (see Fig. 4.29) was well suited
for construction of first prototype front-end boards due to its self-triggered archi-
tecture. The chip provides time and amplitude for signals of both positive and
negative polarity. High channel count of the chip at 50.7 µm pitch matches reason-
ably well that of the prototype microstrip sensors – 50–58µm. Dynamic range of
the chip is 120 ke− that corresponds to about 5 MIP signals generated in 300 µm
of silicon.

The final version of the readout ASIC for the STS will be better adapted for
the CBM requirements. This includes reduced power consumption, moderate ra-
diation tolerance, compatibility with a multi-chip front-end-board design (8 chips
per front-end board) as well as operational scenario for overload situations that
defines behavior of the front-end buffers in case of data lost.

Figure 4.29: Layout (left) and photo (right) of the n-XYTER readout chip.
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Chip design

The n-XYTER chip implemented in 0.35 µm CMOS process is a mixed signal
ASIC that comprises 128 channels with a common analogue and digital back-end
interface driven by a token ring arbitration circuit. The self-triggering front-end
architecture is implemented using fast and slow signal branches where analogue
signal triggers the time and amplitude measurement. Block diagram of an individ-
ual channel is shown in Fig. 4.30. Charge sensitive preamplifier based on a folded
cascode circuit splits the signal into the fast and the slow branches optimized for
time and amplitude measurement, respectively.

Fast shaper with 18.5 ns peaking time drives the timing-critical path where
temporal reference to a signal is created. A discriminator followed by a time walk
compensation circuit generates a trigger pulse that latches the time stamp and
amplitude of the pulse. Amplitude and time stamp are stored in a 4-cell deep ana-
logue and digital FIFOs (“first-in first-out” buffers) present in every channel. Fast
trigger pulse derived from the time walk compensation circuit is used additionally
to reset the peak detect and hold circuit, eliminating the need for external reset.
Thus, the system operates in a self-triggered mode.

Slow branch is driven by the two-stage slow shaper with 139ns shaping time
that is a result of a tradeoff between the noise performance and pile-up probability.
Second stage features fully differential design in order to feed a pulse of proper
polarity to the peak detect and hold circuit that accepts signals of positive polarity
only.
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Figure 4.30: Architecture of the n-XYTER readout chip.
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Token ring readout process

All 128 channels are read out by a single data readout channel using the token
ring concept (see Fig. 4.31). A token can be understood as an exclusive right of
a channel to use the data transmission channel at a given moment. The channels
with data are read out in a clock synchronous manner at 32MHz rate, whereas
empty channels are skipped asynchronously. Combination of the token ring and
individual channel FIFOs fulfills the derandomization of statistical signals that
arrive at random times allowing to use efficiently the full bandwidth. The inherent
features of a token ring readout are automatic zero suppression (sparsification) and
bandwidth focussing on the firing channels. Token ring readout provides significant
reduction of data volume and hence gives access to higher input data rates.

analog
FIFO
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digital
FIFO

analog
FIFO
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digital
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Figure 4.31: Token ring readout concept for automatic data sparsification.

A token is generated once the data appears in at least one channel. It starts
from the token manager circuit, goes through the channels and arrives back at the
token manager. When token stops at the channel that contains data, it generates
the read signal and transports the analogue (pulse amplitude) and digital data
(time stamp, channel number, data valid, pile up status, overflow signal) from the
FIFO buffers to the output drivers. In the next readout cycle token goes to the
next channel with data until it reaches the token manager. The token is released
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again and procedure is restarted once token manager identifies the data in the
FIFOs.

The chip architecture with individual channel FIFOs and token ring readout
scheme is able to process Poisson-distributed data at 32MHz average input rate
with dead time not exceeding 4%.

Slow control of the chip

The n-XYTER slow control is done via I2C interface. There are 46 8-bit registers
that can be read or written. The purpose of the registers is listed below:

• 16 mask registers with a mask bit for every channel

• 14 front-end adjustment registers for setting voltages and bias currents in
the analogue part of the chip

• 2 configuration/status registers

• 2 diagnostic counters: missing token counter and FIFO overflow

• 2 test-delay registers to generate delay of test pulse and test trigger

• 1 shift register 129 bytes deep for local channel threshold trimming (bit 0 to
4) and individual selectable analogue channel shutdown (bit 5)

• 3 clock delay registers

Front-end architecture of the n-XYTER is designed to accept pulses of both
positive and negative polarity. Slow shaper consists of two stages, with its second
stage being fully differential. The subsequent block in the slow channel branch –
peak detect and hold circuit – accepts only positive signals. Regardless of the
polarity of the input pulses, the output pulses of positive polarity are fed into the
peak detector using the switches. The switches are controlled by the configuration
registers. In addition to that, the DC-levels have to be adjusted to provide the
dynamic range for a pulse of a given polarity.

Change in the DC operating level in the slow shaper manifests itself as a shift
of the pedestal position. Since fast shaper is AC-coupled to the discriminator,
position of its DC level is of less importance and only has to fit the analogue
window to avoid clipping of the pulse. Position of the DC levels in fast and slow
shapers are controlled by several registers. Among them VbiasS and VbiasF are
of importance to configure the front-end of the chip during the routine usage.

4.4.2 Front-end boards

The first n-XYTER based front-end board (FEB) was developed to provide readout
for prototype detector systems of different types. A front-end board was designed
to be applied with silicon detectors as well as with gas detectors (GEM, RICH),
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provided that the signal was attenuated to fit into the n-XYTER dynamic range.
Signal amplitude from a gaseous detector may vary depending on the chosen high
voltage amplification and reaches up to ∼ 106 e−.

A general purpose board is equipped with one n-XYTER chip, one 12-bit ADC
and necessary power supplies to provide standard operating voltages of 3.3V and
1.8V to the electronic components. There are three separate power supplies for
analogue circuits, digital circuits and ADC in order to reduce interference between
different domains due to shared signal paths. The back-end communication of
the FEB contains control and data lines. High-speed LVDS connections are used
for data transfer, while SPI and I2C interfaces are used for slow control of the
n-XYTER and ADC, respectively.

Connectors on the FEB are compatible with those on the prototype readout
controller SysCore V2. Combined together, readout controller and front-end board
form a full data acquisition chain for testing the detector systems in the laboratory
and in the beam of particles.

Figure 4.32: n-XYTER front-end board (revision D) mounted on the cooling block
for temperature stabilization.

Production of the general purpose n-XYTER FEB has undergone several itera-
tions to improve manufacturability, stability of operation and introduce monitoring
tools. Front-end board revision D shown in Fig. 4.32 is an 8-layer printed circuit
board with physical size of (10.5 × 9) cm2. Some of the features implemented in
FEB rev. D based on the experience from the previous revisions are listed below:

• increased bond pitch

• 0.3V drop linear voltage regulators (LDOs) used
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• separate power supply regulators (analogue, digital, ADC)

• PT100 temperature sensor

• alternative connector pinout for separated LVDS and common mode signals

• test points for monitoring of signals and voltage levels

• I2C and SPI spike filter

Monitoring capability has been added for temperature, various supply currents
as well as reference voltages for fast and slow shapers in the test channel. Serial
non-volatile memory (EEPROM) has been added for storing data, e.g., unique ID
of the FEB, list of introduced modifications etc.

In order to stabilize the temperature of the chip at a constant value of 20 ◦C, a
massive aluminum cooling block with internal water circulation has been designed
complementary to the FEB. A small copper plate is fixed on the bottom of the
PCB to bring the chip into a thermal contact with the cooling block.

4.4.3 Data acquisition chain

Some of the CBM physics cases, e.g., in-medium modification of hadrons and
indications for deconfinement at high baryon densities require measurement of sig-
nals with low cross section such as D-mesons or J/ψ [139]. In order to measure
them with reasonable statistical significance, reaction products of heavy ion colli-
sions have to be measured at typical interaction rates of 10MHz. With up to 600
charged particles created in the detector acceptance, a significant part of the CBM
detectors, including STS, will have hit rate exceeding 10 kHz/cm2. In addition,
triggering on detached vertices of D-meson signals requires transport of large data
volumes from the detector to a trigger system over relatively large distance (tens
of meters). This calls for a high-throughput data acquisition system with data
push architecture.

In order to acquire data from the front-end boards, a readout controller with
basic DAQ functionality was required. The readout controller (ROC) is an inter-
face board between front-ends of different detectors and data transport lines. The
ROC is based on FPGA (field-programmable gate array), that enables gradual
development of the ROC functionality as opposed to ASIC (application-specific
integrated circuit) that requires long development time. The current version of
the ROC and its layout are shown in Fig. 4.33. Due to the radiation environment
conditions, FPGA-based ROCs cannot be used in all detector subsystems, there-
fore ASIC-based solutions will be provided for the part of the setup. However,
for laboratory applications, including beam tests with moderate beam intensities,
FPGA-based controllers provide a readout solution with high flexibility and rela-
tively short development times.

Up to now, several generations of readout controller have been developed [140],
[141]. The controller is based on the Virtex 4 FPGA and equipped with modular
firmware that provides the following functionality:
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• configure front-end electronics via I2C (n-XYTER) and SPI (ADC) interfaces

• readout the data from up to 4 n-XYTER chips and an ADC or alternatively
GET4 chips

• transfer data to the PC via copper (Ethernet) or optical connection using
special CBM-net protocol [142]

• perform time synchronization with other readout controllers: in case of Eth-
ernet connection via the exchange of synchronization messages with a sub-
sequent correction of time stamps in the offline analysis; in case of optical
lines by synchronizing the data bus

• accept logical signals (LVDS) and detect their edges with 2 ns resolutions.
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Figure 4.33: Photo (left) and layout (right) of the SysCore V2 readout controller.

The key component of the ROC is its firmware. The firmware has modular
structure and consists of the front-end module with a chip-specific logic and the
transport module that implements a communication logic. The interaction of mod-
ules is implemented according to the requirements of the CBM-net protocol and
provides a FIFO interface for data transport, slow control interface, and a deter-
ministic latency message mechanism needed for the synchronization of ROCs in
large-scale systems.

The first implementation of the firmware contained front-end module for n-
XYTER readout and transport module based on the embedded PowerPC core for
Ethernet communication. Later developments included GET4 front-end module
and transport module for communication via optical links. It was oriented at early
availability for the users and does not require any additional hardware components.
The data can be acquired on a standard Linux PC.
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The firmware module for the optical link communication implements a more
complete set of features. Running ROC with optical module requires additional
hardware – Active Buffer Board (ABB) [143]. The ABB is based on Xilinx FPGA
and features 4 optical connectors with 2.5Gbps data rate each. The board is
connected to a PC via PCI express interface and requires additional custom driver
software.

In order to scale up the data acquisition system and concentrate the data trans-
fer to the uplink, the Data Combiner Board (DCB) [144] has been developed.
Data acquisition software and on-board firmware are in continuous development.
Its main components Data Acquisition Backbone Core (DABC) [145] and RO-
Clib [150] library for low-level hardware communication have been developed and
tested in the laboratory measurements and beam tests. DABC software accept
data independently of the transport module installed in the ROC.

4.4.4 Outlook on the development of the CBM specific
front-end electronics

The requirements to the front-end ASIC are driven by the system design of the
STS. The challenges are related to the high channel density of the system and
noise load on the electronics due to detector module structure with long traces
in the microcables and strips in the daisy-chained microstrip sensors. In the final
ASIC, a tradeoff has to made between the power consumption, noise performance,
amplitude resolution and speed of operation.

A prototype ASIC utilizing the time-over-threshold method offered a solution
optimized for low power consumption [151,152]. The simple front-end architecture
of the chip, based on the charge sensitive amplifier of the folded cascode type and
a discriminator circuit, provided amplitude measurement at power consumption
of 1.2mW per channel.

In order to maintain the hit reconstruction efficiency at the required level ε >
95%, it is crucial for the detector modules to operate with the lowest possible
threshold. Such operation mode has been found incompatible with the developed
ASIC prototypes due to the long time-over-threshold response (few µs) at low
threshold which compromised the requirement of the high rate operation.

The design of the next prototype ASIC STS-XYTER with 128 channels has been
started with focus on a particularly low-noise performance. The block diagram of
a channel is shown in Fig. 4.34. The architecture implements separate channels
for time and amplitude measurement optimized independently for time stamp
precision and low-noise performance. For the reduction of noise occupancy at
low threshold, information from the slow shaper with better noise performance is
used to validate the hit occurrence in the fast shaper. The working specifications
for the currently designed ASIC include power consumption better than 10mW
per channel, linear range of input charge 1–12 fC and detector capacitance up to
30 pF. The submission of the STS-XYTER chip for production is expected in
summer 2012.
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Figure 4.34: Block diagram of a single channel of the proposed STS-XYTER
ASIC. The time measurement is validated by the energy measurement with higher
threshold (VthF < VADCmin).

The design options for the proposed architecture have been implemented in
separate ASICs exploring the design of shapers, discriminator, time walk compen-
sation circuit and trimming DAC circuit [153]. The FSDR16 test chip dedicated
for the silicon strip detectors was among them. The chip has been manufactured in
the UMC 180 nm CMOS process. The design includes two different shaper types
(CR-(RC)5 and nearly true Gaussian) with programmable shaping times.

Figure 4.35: Layout of the prototype ASIC FSDR16 for studying the design options
for the front-end architecture.

The FSDR16 block diagram and channel architecture are shown in Fig. 4.35.
Each of the 16 channels of the chip is built with an analogue part comprising
charge sensitive amplifier, pole-zero cancelation circuit and a shaper as well as
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digital part with shift register, 7-bit trimming DAC register for correcting the DC
voltage spread in the shaper output and output buffer. Measurement of the chip
has shown adequate operation of both shaper designs in fast and slow mode with
power consumption below 5mW per channel.

Currently considered architecture with separate channels for time and ampli-
tude measurements is expected to deliver better noise performance and timing
precision than the time-over-threshold approach at the expense of higher power
consumption.

The STS front-end chip will be compatible with the experiment DAQ chain
that is being developed for the readout of self-triggering front-end electronics and
online event selection without the use of low-level triggers. The implementation of
the final configuration of the DAQ chain requires new hardware developments so
as to implement the functionality of the DAQ system: data acquisition, transport,
processing and storage. The system concept is sketched in Fig. 4.36. Parts of the
system will be separated among three experimental sites. Front-end electronics
and data aggregation boards will be located next to the detector subsystems.
The copper data lines from the front-end links are combined by the HUB ASIC
responsible for data aggregation, synchronization and rate conversion [154]. The
data form the copper lines for clock distribution, data and control are translated
into the optical signals in the optical converter board that sends the data further
to the service building via multi-mode optical fibre lines.

Figure 4.36: Architecture of CBM data acquisition chain. Dashed lines separate
the experimental sites. Copper and optical connections are marked with different
colours.
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The aim of the data acquisition node located in the service building about
120m away from the detector is further data aggregation as well as detector
specific data processing. The Data Processing Boards (DPB) based on the FPGA
can be (re)programmed to access the local data, for instance, within one FEB or
a sensor, in order to change the data representation, e.g., by applying mapping,
sorting, cluster finding and other feature extraction algorithms. Data Control
System (DCS) is responsible for controlling the data flow from the detector to
the computing farm. The clock distribution, synchronization and control lines
come from the Experiment Control System (ECS). After the service building,
the data are transmitted to the First Level Event Selector (FLES) [155] over the
distance of about 700m via single-mode fibre optic cables. By design, FLES is
a supercomputer based on the hardware with a multi-core architecture for the
parallel processing of massive data sets. The bandwidth and computing power of
the FLES has to be high enough to enable full event reconstruction and selection
online. The FLES is interfaced to the data lines from the service building via
First Level Interface Boards (FLIB).

In the course of studies described in Chapt. 4 requirements to the components
of the detector module have been formulated. Double-sided silicon microstrip
sensors with radiation hard design connected with a microcable to the readout
electronics have been chosen as a basic structure of the STS detector module. For
module support structure, carbon fibre has been chosen as a low-mass material.
Few iterations in development of front-end boards have been done in order to
achieve finally its stable production quality and analogue response. Experience
with different modifications of front-end boards and results of testing have been
taken into account in the subsequent modifications.

4.5 Development of a low-mass detector module

for the CBM environment

Prototype microstrip cables have been manufactured as patterned aluminum layers
on polyimide carrier foils. Line pitches down to a few tens of micrometers are
feasible depending on the length of the cable to be realized. TAB bonding to a
sensor or readout electronics is done via openings in the polyimide foil.

First demonstrators manufactured with 14 µm thick, 20 µm wide aluminium
traces have been manufactured with 100 µm pitch and successfully tested in the
beam as a part of a prototype detector module.

Due to manufacturability reasons and for reduction of trace capacitance, signal
paths must be arranged in a staggered manner across two signal layers. Design
of the cable has been optimized using RAPHAEL package of Synopsis TCAD
framework yielding trace capacitance of about 0.3 pF/cm and material budget be-
tween 0.10%X0 and 0.17%X0 [146]. The structure of the cable layers and material
description is shown in Fig. 4.37.
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Figure 4.37: Detailed structure of the multilayer microcable with two signal layers
and a shielding layer.

Figure 4.38: Prototype module components. (Above) Microcables with 1024 chan-
nels and effective pitch of 58 µm are TAB bonded to the microstrip sensors. L-
shaped legs are attached to the sensors for mounting on the support structures.
(Below) Ladder with mounted daisy-chained sensors and microcable.

Produced detector module components are shown in Fig. 4.38. The goas was to
demonstrate the feasibility of TAB bonding with microcables attached to a single
sensor or a set of tree daisy-chained sensors. Similarly, daisy chain interconnects
are done using short TAB-bonded microcables. Ratio of defect connections was
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below 1% [147]. The sensors are fixed on carbon fibre support ladders with glass-
fibre L-shaped miniature fixtures. Sensor and cable assembly mounted on the
optimized version of the frame is shown in the same figure.

Crucial requirement to the support structures is mechanical rigidity to provide
precise and stable sensor position. The frames fabricated with the use of the
precision molds are linear within 100 µm. Their sides are flat within 50 µm. A
frame of 1000mm has a mass of 14 g.

An alternative design of the detector module for the STS with low mass de-
sign has been proposed in [148]. Module prototypes have been manufactured by
AEROPLAST (Kiev). A support structure is a three-layer frame composed of two
flat carbon fibre plates (0.25mm thick) with foam layer in between. The foam layer
with 1mm thickness has a density of 0.7 g/cm3. The prototypes have been man-
ufactured in three types to match sizes of sensor prototypes CBM01, CBM01-B1,
CBM01-B2 (described in Sect. 4.3.1).



Chapter 5

Quality assurance of the STS
prototype components

Characterization routines for double-sided silicon microstrip detectors are de-
scribed in this section. These are the elements of quality assurance program that
aims at establishing selection criteria of detectors for the STS based on radiation
hardness requirements and STS system design including front-end electronics and
data acquisition system. Parameters and performance of a silicon sensor have to
be controlled over the whole life-time: after multistage production process, af-
ter module construction and between the experiment physics runs to control the
effects of radiation damage to the sensors.

As a part of development of the quality assurance system for the detector
modules, prototype tests have been performed for double-sided silicon sensors
(current-voltage and capacitance voltage characterization), laser test stand for
module readout tests as well as trigger system for characterization of the readout
ASIC [116–121].

5.1 Characterization of double-sided silicon mi-

crostrip sensors

The task of the quality assurance is to check the correspondence of the sensors to
their specification that ensures their proper manufacturing and future operation
as a part of the detector module.

Silicon microstrip sensors for the STS are complex objects with their design
driven by the experimental requirements. Operation in the heavy-ion collision
environment at high interaction rates creates highly non-uniform track density
across STS detector planes that demands high granularity sensors with low ma-
terial budget. In addition, operation beyond the point of type inversion leads to
ever increasing full depletion voltage and thus ever increasing heat dissipation of
the silicon sensors. The main task of a microstrip sensor is to provide sufficient
coordinate resolution in the mixed radiation fields with normalized fluence of up
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to 4× 1014 neq/cm
2 and ionizing dose of up to 2Mrad. The optimal value of a

strip pitch, that serves as a main geometrical parameter of a sensor defining its
position resolution, is obtained from the STS detector performance simulations.
Furthermore, successful accomplishment of this task is conditioned by a number
of parameters that depend on the sensor material and design, fabrication technol-
ogy, front-end electronics and detector module integration as well as irradiation
conditions and annealing scenario. These parameters include signal-to-noise ratio,
full depletion voltage VFD, interstrip capacitance Cint and backplane capacitance
Cback, interstrip resistance Rint and number of dead channels, leakage current,
breakdown voltage, width-to-pitch ratio of a strip, coupling capacitance, biasing
resistors, etc.

Some of these parameters (e.g., full depletion voltage, interstrip capacitance
and resistance) depend on irradiation, the others are determined by the design or
technological process (e.g., number of dead channels). Signal-to-noise ratio S/N
is a property of a detector module rather than of a sensor. In the final version of
the STS during the long-term operation, operating temperature, grounding and
shielding will have influence on the noise performance of a system and thus on the
S/N ratio. Thorough optimization of these issues affects the module design and
poses an appreciable challenge to the system integration.

Full depletion voltage of a sensor is directly proportional to the effective doping
concentration Neff . This, combined with a fact that VFD is easy to measure via
current-voltage (IV) or capacitance-voltage (CV) scan, makes VFD a convenient
parameter to monitor the radiation induced changes and annealing effects in the
detector. Also, full depletion voltage is related to the bulk resistivity that can be
calculated knowing the nominal wafer thickness using formula 4.1:

ρ =
w2

2εµVFD
, (5.1)

keeping the same denotation as in Eq. 4.1. Resistivity calculated in such a way
reflects an average value over the wafer or sensor area disregarding the intra-wafer
resistivity variation that may reach up to 10-15% [122] unless special measures like
thermal treatment or neutron doping are taken [123].

Interstrip capacitance and backplane capacitance contribute to the total capac-
itance “seen” by the input preamplifier of the front-end electronics. Since noise
of the preamplifier is proportional to the input capacitance, interstrip and back-
plane contributions have to be kept as low as possible in order to achieve optimal
noise performance. Backplane capacitance of strip is given by the geometry and
material, namely sensor thickness and silicon dielectric constant. Backplane capac-
itance Cback contribution doesn’t depend on irradiation. On the contrary, interstrip
capacitance is sensitive to the ionizing irradiation that modifies the state of the
surface dielectric layer by depositing positive charge into it. In addition for the
n-strips, interstrip capacitance and its evolution, as the ionizing dose increases, is
dependent on the type of strip isolation employed. According to different values
of total strip capacitance for the p- and n-side of the sensor, the design values for
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the coupling capacitance have to be adjusted in order to satisfy the requirement
Ccoupl > 10×Cint. This rule of thumb ensures that the signal charge flows mainly
into the preamplifier of the readout chip and not into the parasitic capacitances.
Strip isolation techniques and their impact on interstrip capacitance are described
in Sect. 4.3.1.

Interstrip resistance is a measure of electrical isolation between the neighboring
strips that affects charge sharing. For a double-sided microstrip sensor, the value
of DC interstrip resistance differs significantly for the n- and p-side due to the
presence of electron accumulation layer at the interface between the silicon bulk
and the surface oxide. On the p-side, electron layer is advantageous for strip
isolation whereas for the n-side it would short-circuit all the strips unless special
isolation structures are applied. Interstrip resistance on the n-side depends on the
type and particular implementation of isolation structures. Their effectiveness in
turn depends on the irradiation.

Due to many factors that may lead to a defect detector channel, such as a
broken coupling capacitor, broken bias resistor or broken metal strip, particularly
important is the yield of the coupling capacitors formed by the strip implant and
readout electrode separated by the dielectric layer. In certain double-sided readout
schemes, high DC bias potential is applied to the strip implant, whereas readout
electrode has a potential of virtual ground set by the preamplifier of the front-end
chip. In this case, significant voltage stress is applied to the dielectric material
and capacitors show significant leakage current or electrical shorts. Such defects
may disrupt a readout channel or even a whole front-end chip. Therefore, all the
coupling capacitors in the sensor have to be tested for high-voltage compatibility
before detector module assembly. Another requirement to the coupling capacitors
is to have high capacitance value in order to provide good coupling of the signal
into the front-end preamplifier. A natural way to increase the capacitance is to
decrease the thickness of dielectric layer. This, however, conflicts with the high-
voltage tolerance of the capacitors.

Characterization routines to control the device parameters can be divided into
several groups:

• individual: to be controlled for every sensor

• collective: to be controlled for a few sensors out of the batch

• strip-wise measurements to determine operational channel yield

• destructive: conducted on a limited number of sensors of a given batch or
on test structures to determine breakdown voltage VBD of the sensor itself
or breakdown voltage of the coupling capacitors V AC

BD

• supplementary measurements performed on test structures to characterize
process quality, e.g., determination of the flat-band voltage VFB

1 that allows

1Flat band voltage VFB is a voltage applied to a MOS structure to reach the condition when
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to extract oxide charge density Qox or surface current that are measures of
SiO2 and Si–SiO2 interface quality, respectively. Also, measurement of the
implanted strip resistance, metal strip and double-metal interconnect resis-
tance may be related to the supplementary measurements that are not nec-
essarily needed for every batch. These measurements are usually addressed
during failure analysis to investigate the mistakes in technology process.

The quality assurance procedure defines a set of criteria that every sensor has to
comply with in order to be accepted for further integration into a detector module
and undergo readout tests. In order to compare the criteria with actual sensor
parameters, following measurements have to be performed:

• on every sensor:

⋄ sensor leakage current Ileak vs. bias voltage (IV-curve) up to the onset
of soft (reversible) breakdown

⋄ total backplane capacitance Ctot vs. bias voltage (CV-curve) to measure
the VFD

⋄ voltage stress test of coupling capacitance

⋄ strip leakage current Istrip measured at operational voltage Vop (different
from VFD)

• on a few sensors out of a batch or test structures:

⋄ interstrip resistance Rint

⋄ interstrip capacitance Cint

⋄ strip backplane capacitance Cb

⋄ coupling capacitance CAC

⋄ resistance of a polysilicon resistor Rb; alternatively: effective resistance
of a punch-through biasing structure Reff as a function of sensor bias
voltage

⋄ breakdown voltage of the dielectric material of the coupling capacitors
V AC
BD (destructive)

⋄ strip implant resistance Rp+, Rn+

⋄ metal (readout) strip resistance RAl

⋄ double metal interconnect resistance RDM

bands adjacent to the semiconductor-insulator interface remain flat as opposed to accumulation,
depletion and inversion conditions or when no voltage is applied across the MOS structure.
Physically, flat band voltage corresponds to the situation when no net charge is induced in the
semiconductor.
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Some of the above mentioned parameters such as Ileak, VFD and VBD or yield
of coupling capacitors depend on the properties and quality of a particular silicon
wafer and local defects introduced during the photolithographic steps. Although
a silicon wafer after production represents a single mechanical entity, images are
translated onto the wafer reticle per reticle. Therefore, possible defects have to be
checked for every individual sensor.

Other parameters reflect the quality of patterning, diffusion and deposition
that are the three classes of technological processes, usually same for all the wafers
within a batch. Such parameters as Ctot, Rint, Cint, Cb, CAC , Rb, V

AC
BD depend on

wafer doping and its uniformity, implantation of the readout strips and interstrip
isolation structures, patterning and doping of polysilicon to form a bias resistor,
growth of coupling dielectric layers and passivation with subsequent etching. These
measurements may be performed on a few sensors randomly selected from a batch.

5.1.1 Requirements, infrastructure and software for char-
acterization of microstrip sensors

Testing of the microstrip sensors requires specific environmental conditions typical
for testing of microelectronic components with additional requirements arising
from the peculiarities of the sensor structure. Measurements have been performed
in a clean room at constant temperature of 22 ◦C and relative humidity of 20%.
Test setup has been placed in a light-tight enclosure shielded from electromagnetic
interference.

Stable temperature is a particularly important requirement for current mea-
surements, since reverse bias current of a pn-junction depends on the temperature
as IR (T ) ∝ T 2 exp(−E/kT ), where activation energy E equals the band gap en-
ergy in silicon Eg = 1.12 eV for preirradiated sensors and 1.2 eV for the irradiated
ones [124]. This semiconductor property is used to renormalize the current mea-
sured at different temperatures to the one at standard temperature of 20 ◦C for
comparison purpose.

The basic element of the test stand for sensor characterization is a probe station
with moving chuck that allows strip-by-strip sensor testing in a (semi-)automatic
mode. Measurements presented in this work have been conducted on a probe
station Süss PA300 featuring full electromagnetic/RF shielding as well as a chuck
movable in X, Y, Z directions and rotatable by up to 7.5◦. For contacting the
sensor pads, probes equipped with tungsten needles with 8 µm tip radius have
been used. Such probe needles provide a reliable contact (low contact resistance)
with metal surface and enough probe force to break through the pad oxide layer
without damaging the surface too much. For the low-ohmic measurements where
needle contact resistance is critical (e.g., metal trace resistance measurement),
four-terminal sensing (also known as Kelvin sensing) is advisable in order to avoid
measurement errors due to the impedance contribution of the wiring and contact
resistance. Some of the measurements are performed on the sensor strips with bias
voltage applied when both sensor sides have to be contacted. For this purpose,
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special printed circuit boards have been developed that allow sensor biasing. The
assembly consists of two PCBs with openings for a sensor and bias traces on one
side only. Openings have a balcony milled out such that a sensor can be nested
between the two boards without using a glue. Bias traces on the PCB are wire
bonded to the sensor pads with 1-2 bonds per side leaving the sensor under test
virtually intact after testing. During the tests on a probe station the assembly is
fixed on a chuck and bias voltage connection is provided to it inside of the station
via feedthroughs. Strips under test are contacted by the needle probes.

Figure 5.1: Laboratory infrastructure for microstrip sensor characterization in
the clean room including shielded probe station, picoamperemeter, electrometer,
LCR-meter and an instructed operator.

A complete set of measurement devices for sensor characterization includes:

• high voltage power supply for detector bias with voltage up to 500V

• low voltage power supply for DC resistance measurement with voltage up to
10V (bipolar)

• LCR-meter for capacitance measurement in the range from 0.1 pF to several
nF at frequencies between 100Hz and 1MHz

• amperemeter for current measurement in the range between 0.1 nA and
10mA

• crossbar switch suitable for high voltage and low-capacitance applications in
order to reconfigure the setup without the need for re-cabling
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Current results have been obtained with a set of devices that include:

• Keithley 6487 picoammeter/voltage source with 10 fA resolution and HV bias
up to 500V

• Keithley 2410 high-voltage source-meter that measures current in 10 pA to
1A range with 0.012% basic measure accuracy and sources voltage up to
±1100V

• QuadTech 7600 LCR-meter with AC test voltage from 20mV to 5V at fre-
quency from 10Hz to 2MHz and external DC bias voltage up to 200V

Measurement routines have been implemented in NI LabVIEW2 and combine
the functionality to control multiple devices, visualize the measurement and store
the data in text format and as an image for quick reference. The devices are con-
trolled via GPIB or RS-232 interface for the reason of handling and programming
simplicity as opposed to high speed, that is usually not required for the laboratory
measurements.

Processing of the stored data has been done within ROOT3 analysis framework
using macros. This approach is helpful to tackle large amounts of data acquired
for different sensors and measurement routines. In particular, it allows to plot and
fit the data as well as to extract the curve features and store them in a separate
file.

5.1.2 Measurement routines and extracted parameters of
double-sided microstrip detectors

Current-voltage characteristic measurement

Leakage current of a microstrip detector comes largely due to the applied re-
verse bias with additional contributions arising from the bulk generated, surface
generated and avalanche breakdown current. It is, therefore, an important observ-
able to characterize overall electrical performance of the device. From the quality
assurance point of view, adequate current-voltage characteristic is a prerequisite
for a sensor to be accepted for further tests and vice versa allows to discard a
sensor at early stage in case of deviations from the expected behavior.

Device connection scheme for the measurement of sensor leakage current versus
bias voltage (IV-curve) is shown in Fig. 5.2. By contacting the terminals of the
measurement circuit to the bias pads on both sides of the sensor, total current
through all strips is measured. Current limiting 1MΩ resistances are introduced
into the circuit in order to protect the sensor from breakdown in case of uncon-
trolled increase of current.

2LabVIEW by National Instruments is a graphical programming environment used to develop
measurement, test, and control systems (http://www.ni.com)

3ROOT is an object oriented framework for large scale data analysis (http://root.cern.ch)
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Figure 5.2: Connection scheme for total leakage current measurement.

Typical IV-curve measured for the sensors from different wafers of the CBM03
type are shown in Fig. 5.3. At bias lower than full depletion voltage VFD, space
charge region expands from the junction side towards ohmic side and leakage cur-
rent follows a ∝

√
Vbias dependence. As the depleted region touches the structured

backplane of a sensor, additional small contribution from surface current adds to
the current (this effect is barely distinguishable at the plots). After reaching full
depletion condition, the current saturates or exhibits a small rise. Further increase
of the bias voltage leads to an avalanche breakdown that manifests itself as an in-
crease of the current by many orders of magnitude. At this point, breakdown
starts in high-field regions (e.g., pn-junction curvature or surface mechanical dam-
age) and is reversible (see Fig. 5.3b). In case of severe overvoltage, hard breakdown
occurs and leads to the destruction of the device.

One may extract two parameters out of the IV-measurement of a microstrip
detector: full depletion voltage VFD and breakdown voltage VBD. However, due
to a certain risk involved in VBD determination, one usually tests the detectors
up to a certain voltage that exceeds the expected operation voltage. Selection of
optimal operation voltage becomes a significant issue after irradiation that leads to
an increase of leakage current and decrease of charge collection efficiency. Increase
of leakage current may be dangerous for the device due to the thermal runaway.
In addition, local electrical breakdowns at high bias voltage increase the amount
of noisy channels. Thus, optimal operation voltage is determined by the power
dissipation and noise performance considerations.

Determination of VFD from an IV-curve is not always clearly visible or even not
possible, although leakage current may comply with sensor acceptance criteria.
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Figure 5.3: Current-voltage characteristics of the CBM03 type sensors (a) and
example of breakdown behavior at overvoltage condition (b).

In this case, VFD is obtained from the measurement of total detector capacitance
versus bias voltage.

Capacitance-voltage characteristic measurement

Capacitance-voltage characteristic (CV-curve) is used for a determination of full
depletion voltage VFD and for determination of backplane capacitance Cb contribu-
tion for a single strip along with the other methods of measuring Cb. Capacitance
of a pn-junction below VFD depends on the bias voltage as C ∼ Vbias

−1/2 and
stays constant above full depletion voltage. This kind of voltage dependence is
monotonous and thus doesn’t clearly show the point of full depletion. Dependence
1/C2 (Vbias) algebraically obtained from the CV-curve is linear below VFD and
constant above it. Full depletion voltage is then defined as a point of intersection
of two lines fitted to the linear regions of the dependence. Strictly speaking, this
argumentation is only applicable to a planar pn-junction. Due to the patterned
backside, CV-curve of a double-sided microstrip sensor shows additional features
that are translated to a 1/C2 plot. Nevertheless, 1/C2 technique allows unam-
biguous determination of the full depletion point for double-sided sensors. Device
capacitance has been measured using an LCR-meter based on the AC impedance
technique where a device under test is probed with AC voltage and resulting AC
current amplitude and phase are measured.

Measurement frequency should be selected carefully. This is particularly impor-
tant for irradiated sensors, where charge carrier concentration in the undepleted
bulk becomes relatively low and charge mobility decreases. In this case, free charge
carriers contribute less to the measured capacitance that manifests itself as weak
bias dependence of the bulk capacitance. For this reason, irradiated sensors have
to be measured at lower frequencies down to 100Hz.
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A measurement scheme for total backplane capacitance is shown in Fig. 5.4.
A high voltage power supply and a capacitance meter are connected to the bias
pads of the sensor in order to apply both DC bias voltage and AC test signal
will to the sensor. In this configuration, devices may interfere with each other,
i.e., unexpected current paths may be established: AC current will flow through
the high voltage power supply and DC current will flow through the capacitance
meter. In order to avoid interference, capacitors have been introduced into the
leads of the capacitance meter in order to block the DC current and resistors have
been introduced into the power supply leads in order to block the AC current.
Thus, both AC and DC currents will flow through the device under test.

DC-pads

AC-pads

poly-Si

1 MΩ

1 MΩ

HV power supply

backplane
bias pad

P-side

LCR

LCR-meter

4.7 nF

4.7 nF

bias pad

-
+

Figure 5.4: Connection scheme for a total backplane capacitance measurement.
HI and LO terminals of the capacitance meter can be exchanged, that is why they
are not labeled on the scheme.

Bias voltage dependence of total backplane capacitance of microstrip detectors
is shown in Fig. 5.5 for a single-sided test detector (CMS baby sensor) and a
double-sided one (CBM02 baby sensor). For the single-sided sensor (see Fig. 5.5a),
capacitance is a monotonous function of bias voltage and saturates at the value
of ∼ 115 pF. Similar behavior is observed for a double-sided sensor (see Fig. 5.5b)
below the full depletion. At a voltage close to VFD an additional drop in the
measured capacitance occurs when space charge region touches the backplane.
This effect is related to the fact that n-side is structured. Above VFD capacitance
saturates at ∼ 93 pF. The capacitance plot for two sensors shown in Fig. 5.5 should
not be compared quantitatively due to their unequal area and thickness.

Full depletion voltage can be determined from the 1/C2 plot shown in Fig. 5.6.
In case of a single-sided sensor (see Fig. 5.6a), VFD is obtained from the intersection
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Figure 5.5: Examples of capacitance-voltage characteristics for single-sided and
double-sided sensors. Monotonous for single-sided sensors, voltage dependence of
total backplane capacitance for double-sided sensors exhibits an additional drop
at full depletion voltage.

of two straight lines fitted to the branches of the curve. Due to complex structure of
the 1/C2 plot for double-sided sensors (see Fig. 5.6b), similar approach to extract
VFD is difficult to apply and bias voltage after which the curve saturates should
be considered as VFD.

Full depletion voltage is often monitored during the lifetime of experiment be-
cause it depends on the substrate doping concentration ND. Doping concentration
is strongly modified during the irradiation and annealing process. It has to be
monitored in order to operate the detector at optimal conditions, i.e., at minimal
full depletion voltage. The following expression relates VFD to the effective doping
concentration and wafer thickness:

VFD =
eNDd

2

2ε0εSi

where ε0 is the vacuum permittivity, εSi is the relative permittivity of silicon
(εSi = 11.68), Nd is the effective doping concentration and d is the sensor thickness.

Capacitance obtained from the CV-measurement can be used to extract the
bulk thickness applying the formula for a parallel plate capacitor:

C = ε0εr
A

d

where A is the area of the capacitor plate.

Assuming that the actual wafer thickness and VFD are known one may calculate
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the bulk resistivity:

ρ =
d2

2ε0εrµeVFD

where µe is the electron mobility and ρ is the material resistivity.
The parallel plate capacitor formula doesn’t take into account the fringe field

effects and can be applied only for orientation to the microstrip sensors, where
both capacitor plates are highly segmented. For this reason, the aforementioned
method of resistivity determination is often applied not to the sensors but to the
test structures (planar diodes) with well defined area.
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Figure 5.6: Examples of 1/C2-V plots for single-sided and double-sided sensors.
(a) For a single-sided sensor VFD corresponds to a point, where linear dependence
of 1/C2 on bias voltage changes to a constant value. (b) For a double-sided sensor
the curve makes a step-like change at VFD.

Interstrip capacitance

Interstrip capacitance comprises the main contribution to the input capacitance
of the front-end electronics and thus defines its noise performance. The ratio of
interstrip capacitance Cint to strip backplane capacitance Cb affects the charge
collection efficiency across the interstrip gap and thus position resolution of a
microstrip sensor. The actual value of the Cint depends on the sensor geometry as
well as on the material and fabrication process. Moreover, interstrip capacitance
depends on the irradiation that modifies the state of the Si–SiO2 interface at the
detector surface. Therefore, interstrip capacitance has to be measured in order to
estimate the noise performance of the system and its evolution during the lifetime
of the experiment.

Capacitance has been measured using balanced bridge type LCR-meter and
a probe station with up to four connections to a detector via needle probes.
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QuadTech 7600 LCR-meter provides a DC contact to the measured impedance.
During the measurements, strips on the n-side have been contacted via DC-pads,
although AC-pads are suited equally well for this task .

In order to avoid voltage drop in the cables, four-terminal sensing has been
employed and allowed using long cables between capacitance meter and device
under test without compromising the measurement accuracy. Close to the device
under test, terminals of the capacitance meter are connected to a high voltage
isolation box, inside which four wires are combined into two and passed through
capacitors to block the DC voltage from the sensor power supply. The value of the
blocking capacitance 4.7 nF is chosen such that is doesn’t influence the measured
value in the range of 1–100 pF. After the capacitors, HI and LO terminals are
branched and can accommodate up to tree probes each.

~ V

A

H pot

H cur

L pot

L cur

Cdec

Cdec

GND

to HI
probes

to LO
probes

GND

LCR-meter HV isolation box

Figure 5.7: Scheme of the LCR-meter connection via high voltage isolation box.
Decoupling capacitance Cdec = 4.7 nF is used. HI and LO terminals are branched
to allow up to tree probe connections each. Two ground connections are used in
some of the measurement schemes.

The measurement frequency was 10 kHz and the amplitude of the AC signal
was 50mV and 1V. LCR-meter sources an AC-signal and measures the resulting
current, voltage and phase shift between them to obtain the active and reac-
tive components of the impedance. These values do not provide an unambiguous
description of the real object under test. For an adequate interpretation, mea-
surement model has to be chosen that reflects the underlying impedance model.
The use of a series or parallel capacitor model depends on the capacitance value
and test frequency (i.e., on the reactance value 1

iωC
). Series equivalent circuit is

more adequate for low-impedance loads and parallel is suitable for high-impedance
ones [125]. For interstrip capacitance measurement, “CP–D” model has been cho-
sen, that corresponds to a capacitance CP connected in parallel with resistance
(parasitic component that denotes dielectric leakage resistance) and dissipation
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factor D = RS/XS (reciprocal of the quality factor that relates active and reactive
impedance of the circuit to each other or ratio of the energy lost to the energy
stored in the capacitor).

Capacitance-voltage characteristics have been measured as a function of bias
voltage up to 150V bias that is approximately twice higher than the full depletion
voltage of the studied CBM02 type sensor. Connection of the high voltage power
supply to the sensor corresponds to that on the scheme in Fig. 5.2. Resistors in the
bias connections block the high frequency signals such that impedance of the power
supply does not distort the capacitance measurement. The value of the blocking
resistors has to exceed the impedance of the capacitance at a given frequency. For
example, impedance of a 1 pF capacitor at 100 kHz frequency is about 1.6MΩ.

A single strip of a sensor is capacitively coupled to its neighbors and to the
backplane both directly and via neighboring strips. The task of the measurement
is to distinguish interstrip capacitance from different parasitic contributions to the
observed capacitance value or to eliminate the effect of those contributions. There
are two approaches to this problem:

• using grounding probes that compensate the effect of additional capacitance
contributions.

• conducting several measurements without grounding probes but with differ-
ent number and configuration of connected strips. An equivalent scheme can
be assigned to every configuration. A set of equations can be solved with
respect to the unknown capacitance contributions.

The model to describe capacitance contributions for a particular strip includes
three values: capacitance to an immediate neighbor Cs, capacitance of a strip to
the backplane Cb and capacitance to the backplane via neighboring strips Ca. Both
approaches with and without grounding probes allow to estimate the corresponding
contributions. Thus, a “straightforward” measurement of interstrip capacitance,
where terminals of the capacitance meter are connected to two neighboring strips
as shown in Fig. 5.8b gives a value

C = Cs + 1/2Cb + 1/2Ca

that is higher than the actual interstrip capacitance Cs provided that parasitic
contributions Cb and Ca are not negligible. A measurement scheme for backplane
capacitance Cb using grounding probes is shown in Fig. 5.8a. Capacitance con-
tributions Cs and Ca are suppressed by connecting the grounding probes to the
neighboring strips. Ground connection is provided by the shields of the LCR-meter
terminals. These shields are internally connected to an input of an operational am-
plifier (virtual ground) and are kept at constant potential. Thus, any grounded
electrodes will not affect the phase and amplitude of the probing AC signal, i.e.,
will not contribute to the measured capacitance. The drawbacks of the measure-
ment method with grounding probes are that its quality depends on the active
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resistance connected to the virtual ground leading to an incomplete compensation
of the capacitance. Apart from that, not all strips that do not participate in the
measurement can be grounded. An assumption that the effect of the ungrounded
strips is small leaves room for a systematic uncertainty.

C = Cb

backplane

Cb

GND

LCR

cable shield

(a) with grounding probes (b) without grounding probes

Figure 5.8: Schemes for capacitance measurement with (a) and without (b) ground-
ing probes. Grounding probes are used to compensate for parasitic components in
the measurement.

In this work, interstrip capacitance has been measured using a method without
grounding probes [126]. Six different connection schemes implemented in the mea-
surements and their corresponding measured capacitance contributions are shown
in Fig. 5.9. Equivalent circuits of all schemes, except scheme #1, use parallel com-
bination of capacitors that is preferable because electrostatic field in the detector
is not localized inside of the separate capacitors and neighboring strips affect each
other. Thus, in case of serial connection, individual conductors may distort the
measurement results.

Interstrip capacitance can be measured via AC or DC-pads. In general case
for an AC-coupled microstrip detector, there is a complicated capacitive network
that consists of capacitance between metal strips, between strip implants, between
metal of a given strip and implant of its neighbor as well as coupling capacitance.
Due to the fact that coupling capacitance is much larger than the other capacitive
components, its impedance vanishes in the frequency range of interest. As pointed
out in [132], this condition simplifies the equivalent circuit between adjacent strips
and has an important effect: capacitance measured via AC and DC-pads become
equal. For convenience, measurements have been conducted via AC-pads.

Figure 5.10 shows examples of bias voltage dependence for capacitance measured
according to scheme #1 and scheme #6. The corresponding values of capacitance

Cscheme1 = Cs + 1/2Cb + 1/2Ca

Cscheme6 = Cs + Cb + Ca

are dominated by the interstrip capacitance Cs and therefore should have close
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Figure 5.9: Measurement schemes used for determination of interstrip capacitance
and its parasitic contributions.

values. Instead of this, values are different almost by a factor of 2. For this reason,
scheme #1 has been excluded from the procedure of extracting the contributions
Cs, Cb, Ca.

Results of the measurements are summarized in Table 5.1. Every scheme was
measured on three different strips. Average values are shown in the table. Residual
capacitance of the LCR-meter after calibration procedure that takes into account
the effect of cables comprises ∼ 50 fF.

Table 5.1 contains an overdefined system of equations for finding three values
Cs, Cb, Ca. Spread of the values obtained from different equation sets served as an
estimate of the measurement error. Described method gives the following values
for capacitances per unit length:

Cs = 0.57± 0.02 pF/cm

Cb = 0.11± 0.04 pF/cm

Ca = 0.04± 0.04 pF/cm

Extracted value for Ca is comparable with zero within the measurement error.
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Figure 5.10: Measured capacitance vs. detector bias voltage for two connection
schemes involving different parasitic components.

Scheme # Equivalent scheme C, pF

1 Cs + Cb/2 + Ca/2 0.58

2 Cb + 2Ca 0.24

3 2Cb + 2Ca 0.45

4 3Cb + 2Ca 0.62

5 2Cs + Cb 1.81

6 Cs + Cb + Ca 1.10

Table 5.1: Summary table for interstrip capacitance measurement.

Such a low value is not expected for microstrip detectors with a CBM02 type
geometry (width-to-pith ratio w/p = 0.36) and requires further investigation.

Interstrip resistance

The interstrip resistance is a parameter that determines the integrity of a signal
charge induced in a particular strip. Presence of finite interstrip resistance allows
the charge to flow to the neighboring strips and leads to the signal reduction.
Signal contribution that appear in the neighboring strips due to the charge transfer
through the interstrip resistance should be distinguished from the one due to the
charge sharing (physical signal caused by the ionizing particles and shared between
several adjacent strips) and crosstalk (signal contribution that emerges at the
transmission stage due to capacitive and inductive coupling). Apart from the
interstrip resistance, the amount of charge that escapes from the strip depends on
the shaping time of the preamplifier. Thus, for short shaping times the effect is
less significant than for the long ones.

The interstrip resistance is usually different for the p and n-side of the sensors
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and additionally depends on the irradiation. Typical value of this parameter for a
preirradiated sensor is of the order of GΩ. With irradiation, interstrip resistance
decreases and, therefore, serves as one of the end of life criteria for microstrip
sensors. for microstrip sensors. For this reason, knowing the dependence of the
interstrip resistance Rint on the irradiation is necessary in order to predict the
sensor performance according to the irradiation scenario.

Device connection scheme for the interstrip resistance measurement is shown in
Fig. 5.11. Test voltage Vtest is applied between adjacent strips in the range from
−1V to 1V in steps of 0.1V. At the same time, detector under test is biased to
the operating voltage (beyond full depletion). Interstrip resistance defined as

Rint = ∆Vtest/∆I

is extracted from the slope of the test voltage sweep. Not all sensors are suitable
for the Rint measurement. Only sensors with strips biased via punch-through
structures allow a correct measurement due to their effective bias resistance of
∼GΩ and higher. Alternatively, specially prepared polysilicon biased sensors with
segmented bias rails [128] can be employed for the Rint measurement. An attempt
to measure Rint for the normal sensor with polysilicon biasing results in a value
that is equal to 2× Rbias, where Rbias is a bias resistor value. Another important
detail shown in the scheme is a ground connection of the two devices in order to
provide a reference potential for the low-voltage power supply. In general case, LO
terminal of the LV power supply should be connected to the bias rail of the side,
on which Rint is being measured.

A

R =1 Mlim Ω

R =1 Mlim Ω

HV power supply

Picoamperemeter
LV power supply

DC-pads

AC-pads

poly-Si

backplane
bias pad

-
+

HV

+

LV

-

Figure 5.11: Connection scheme for interstrip resistance measurement.
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Bias voltage dependence of the interstrip resistance measured on the ohmic side
(n-side) of the sensor is shown in Fig. 5.12. For bias voltage below full depletion,
Rint is low due to the presence of the free charge carriers in the undepleted bulk
region. As the free charge carriers are removed at full depletion, Rint shows a steep
increase. At bias voltages higher than VFD interstrip resistance doesn’t necessarily
saturates at a constant value. As seen from the plot, at bias voltage of 70V
interstrip resistance increases to ∼ 200MΩ, whereas VFD for this particular sensor
has been determined to be ∼ 45V.
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Figure 5.12: Interstrip resistance vs. bias voltage measured on the ohmic side
of the sensor. At low bias voltages, resistance is determined by the free charge
carriers present in the interstrip region. As the bias voltage reaches full depletion
condition, interstrip resistance develops a steep rise up to several tens of MΩs.

For the junction side (p-side) of the sensor, proper interstrip isolation is reached
already at low bias voltage (several Volts) and retains high value at higher bias
voltages.

Coupling capacitor yield

Microstrip detectors often have integrated coupling capacitors in their surface
in order to prevent the leakage current from flowing into the front-end chip. Read-
out in the AC-coupled mode increases the complexity of the sensor but on the
other hand reduces complexity of the front-end chip that otherwise would have to
include leakage current compensation circuit. Coupling capacitors need to have
high dielectric strength (maximum electric field the dielectric material can with-
stand without breakdown), high capacitance value that largely exceeds parasitic
capacitance contributions of the strip (e.g., interstrip, backplane etc.) and low
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dielectric leakage current. The requirement to have high dielectric strength is es-
pecially important in case of using grounded electronics when sensor bias voltage
is applied across the capacitor. An electric short in a single channel that appears
during the sensor operation may lead to a failure of the whole readout chip or
even the detector module. In case floating electronics is used, this requirement is
quite relaxed, except failure modes when capacitors have to endure up to half the
bias voltage for a short time (i.e., beam splash accidents). This leads to the strin-
gent requirements to the capacitor yield [127] according to which not more than
a few percent of broken capacitors can be accepted. From the manufacturability
point of view, complying with the requirement of high capacitor yield means that
almost a defect-free dielectric layer has to be created and patterned over the area
of 20–30 cm2 which is a challenging task.

Measurement scheme for testing of the coupling capacitors is shown in Fig. 5.13.
A fixed voltage difference of 10V is applied to a DC and an AC-pad of a strip under
test (thus to the plates of a capacitor formed by the metal strip and implant)
and leakage current is measured by a picoamperemeter. The key element of the
measurement scheme is a probe station that allows the probe needles to step
through the pads of the strips in an automated fashion. Every time the voltage
step is applied, picoamperemeter will measure the capacitor charge current that
usually lasts up to a few seconds. That is why a measurement delay has to be
introduced. After the delay, measured current drops below 1 nA, provided that a
coupling capacitor under test has no defects.

A

Power supply

Picoamperemeter

DC-pads

AC-pads

poly-Si

-
+

bias pad

10 V

Figure 5.13: Connection scheme for determination of coupling capacitor yield (di-
electric stress test).

Resistance of the defective capacitors with voltage applied across them may vary
in a broad range: from relatively low resistance to electrical short cut (pinhole). In
order to give an impression about the resistance of the dielectrics, measurements
have been conventionally sorted into four groups:
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• short cut: I > 150 µA
• low resistance: 10 nA < I < 150 µA
• intermediate resistance: 1 nA < I < 10 nA

• no defect: I < 1 nA

Results of the defect search in coupling capacitors of the CBM03 type sensor
are shown in Fig. 5.14. The X-axis of the plots shows the strip number, found
defects are color coded (see legend) and good strips are left blank. It can be seen
that the p-side has a lot more defects than the n-side. On both sides, short cut
is a dominant defect type. The reason for the observed situation might be in the
failure during production at the stage of depositing the dielectric layers or further
layers on top of them.

It is worth mentioning, that despite the visual effect produced by the figures,
defective strips comprise 15.2% on the p-side and 1.9% on the n-side.
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Figure 5.14: Defect map of the coupling capacitance dielectric in CBM03 sensor
(wafer #11). Insulation defects of different severity are marked with different
colors. Any color means a defective channel.

More information about the defects can be obtained from the current-voltage
scan of the coupling dielectric. Current measured in this way shows a weak depen-
dence on the applied voltage until dielectric breakdown voltage V AC

BD is reached.
In case stacked dielectric is used to form coupling capacitors, the value of V AC

BD

may provide information on whether some particular layer is broken, both layers
are broken or V AC

BD corresponds to the design value based on the thickness of the
layers and dielectric strength of the materials. Electrical reliability of the cou-
pling capacitors produced out of stacked dielectrics of different types (oxide-oxide,
oxide-nitride and oxide-nitride-oxide) is discussed in [129].
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The problem of the coupling capacitor yield has been addressed in the sensor
generation CBM03’. The proposed solution explored the options of thicker cou-
pling dielectric layers as well as additional layers, e.g., polysilicon buffer layer and
oxide-nitride-oxide (ONO) stacked dielectric. A batch of sensors with various com-
binations of the design parameters has been produced. The introduced changes
resulted in an improved capacitor yield (better than 1% broken capacitors) for
50% of the sensors (i.e., parameter combinations). The successful combinations of
the design parameters will be used in the further sensor prototypes.

Coupling capacitance

In order to provide a good coupling of signal to the readout electronics one
needs to maximize the coupling capacitance of the strips which can be increased
by reducing the thickness of dielectric material between a metal strip and a strip
implant as much as the productions yield allows. Once generated in the bulk,
the signal charge is divided between the preamplifier and parasitic capacitance.
In order to make sure that sufficient fraction of the signal is collected by the
preamplifier, the relation CAC/Cint > 10, where CAC is a strip coupling capacitance
and Cint is an interstrip capacitance, has to be fulfilled. In order to ensure this,
the value of the coupling capacitance has to be controlled on a few strips of several
detectors form the batch.

A measurement scheme for the coupling capacitance is shown in Fig. 5.15. Ter-
minals of the LCR-meter have been applied to the AC and DC-pads of a strip
under test. The measurement is performed at different frequencies between 500Hz
and 500 kHz.

DC-pads

AC-pads

poly-Si

LCR-meter

LCR

4.7 nF

4.7 nF

Figure 5.15: Connection scheme for coupling capacitance measurement.

The present method is prone to measurement errors, especially close to the
boundaries of the frequency range of the device. The reason for this is a distributed
resistance of the strip implant with typical values of 60 kΩ/cm for p+-strips and
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30 kΩ/cm for n+-strips. As a result, coupling capacitance in the equivalent scheme
is connected in series with implant resistance. Presence of this relatively high
resistance reduces the quality factor of the scheme and leads to poor measurement
accuracy. According to an alternative method described in [130] terminals of the
capacitance meter are connected to an AC-pad of the strip under test and a bias
pad of the backplane. In this scheme, capacitance meter measures a coupling
capacitance and a backplane capacitance connected in series. In order to exclude
the contribution of the backplane capacitance Cb detector has to be biased in
forward direction to ∼ 1V. Thus, the backplane contribution Cb becomes much
higher than CAC and their series combination is practically equal to CAC . Since
forward biased sensor conducts high current, the use of 1MΩ limiting resistor
(Rlim = 1MΩ) is advised.
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Figure 5.16: Coupling capacitance of 1.5 cm long strips of CBM04-FSD sensor as
a function of frequency. Notice that coupling capacitance for the p- and n-side of
the sensor are different by design.

Coupling capacitance measured as a function of frequency in several strips of a
CBM04-FSD type sensor are shown in Fig. 5.16. Observed capacitance shows no
significant frequency dependence below 10 kHz and falls off at higher frequencies.
In [131], position of the knee in the frequency dependence of CAC is related to
the RimpCAC time constant with CAC being a coupling capacitance in the low-
frequency limit and Rimp resistance of the strip implantation. The values that
correspond to the plateau regions in Fig. 5.16 amount to ∼ 51 pF for the p-side
and ∼ 39 pF for the n-side for the strip length of 1.5 cm or 34 pF/cm and 26 pF/cm
for the p and the n-side respectively.
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5.2 Performance of the front-end electronics

Characterization results for the n-XYTER chip are presented in this section. Some
of the design flaws have been revealed and studied in depth in order to be addressed
in the next production run. These include high temperature coefficient of the
analogue baseline, layout related powering problems that cause baseline shift across
the chip, non-linearity of the analogue response, etc.

5.2.1 ADC calibration

Characterization of the analogue response of the chip has become possible after
acquiring a minimal set of hardware to complete the data acquisition chain and
developing the necessary software. For this, an n-XYTER font-end board has been
connected to a single-sided silicon microstrip detector [135]. Test sensor had DC-
coupled strips with 10mm length. Due to the strip pitch of 300 µm the probability
of events with charge sharing between the neighboring strips was negligible. Signals
have been generated in the sensor using a sealed 241Am γ-source. Its spectrum
contains several lines with the energy below 1 MIP signal deposited in 300 µm of
silicon. This makes the source well suited for quantifying the analogue response
of the chip in the most relevant part of the dynamic range.
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Figure 5.17: 241Am gamma spectrum measured with the n-XYTER chip in self
triggered mode on a 300 µm microstrip detector. Several characteristic lines are
seen, the rightmost one corresponding to 59.5 keV. The fit of a Gaussian to it
reveals a resolution of 460 e−. The pedestal was added for reference through a
random trigger in the n-XYTER test trigger mode, which may be employed for
an alternative, triggered operation of the chip.
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Figure 5.17 shows the measured spectrum with identified γ-lines marked on it.
Four peaks have been identified with the strongest two being 26.3 keV (7.2 ke−

in silicon) and 59.5 keV (16.3 ke− in silicon). The ENC noise of the system has
been estimated from the width (sigma) of the peak with the highest energy and
comprised 460 e− which is in agreement with simulation considering a detector
capacitance on the order of 6 pF, but imprecisely known.
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Figure 5.18: ADC calibration line. Slope of the line gives an ADC conversion gain
of 110.6 e−/ADCcount.

The calibration line shown in Fig. 5.18 is derived from the peak positions of
the γ-lines and their corresponding energy. The slope of the line fitted to the
data points gives a conversion gain of 110.6 e−/ADCcount. The gain calibration
procedure described here has been done under assumption of uniform conversion
gain within the dynamic range. Using the obtained numbers charge collection effi-
ciency (CCE) for an unirradiated sensor comprises only 60%. Later measurements
have shown that energy gain dependence on the input charge has a structure,
particularly around 1 MIP charge (∼ 6.2 ke−). More accurate calculation of sig-
nal in strip clusters with revisited gain calibration yielded 95% charge collection
efficiency [136].

5.2.2 Dynamic range scan

In order to scan the dynamic range of the n-XYTER, signals of known amplitude
have been passed through attenuation circuit and a known capacitance. Thus,
calibrated voltage signals from a pulse generator have been converted into short
current pulses with known charge. The amount of the charge ∆Q generated by a
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pulse edge with amplitude ∆V passed through a capacitance C equals

∆Q = C∆V

The major challenge of this method applied to the n-XYTER comes from the
small amount of charge to be generated. Thus, generation of 1 fC charge requires
to pass a 1mV voltage step through a 1 pF capacitance connected in series. The
output pulses with 1V amplitude have been attenuated using external passive
BNC attenuators by a factor of 1000 to produce pulses of the desired amplitude
and preserve their initial signal-to-noise ratio. The small value of the capacitance
was likely to be affected by parasitic contributions. With nominal value being
1 pF, the actual capacitance value of 1.2 pF has been measured with a precision
LCR-meter.

The amplitude of the signals measured by the ADC versus corresponding signal
charge is shown in Fig. 5.19. Signals with charge between 1.3 fC and 50.4 fC have
been produced to scan the dynamic range. The range of amplitudes around 1 MIP
signal has been scanned in fine steps. The dependence is linear up to about 35 fC
and deviates from linear trend outside of the dynamic range.
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Figure 5.19: Amplitude of the peaks fed into the n-XYTER with a pulse generator
versus their corresponding charge.

Derivative of the dependence shown in Fig. 5.19 gives analogue-to-digital con-
version gain as a function of the input charge (see Fig. 5.20). In the interval 0–30 fC
average value of conversion gain is 40.0 ADC counts per fC. However, strong non-
uniformity is observed below 10 fC. This property of the chip may lead to incorrect
amplitude determination, in particular when summing up the amplitudes in the
strip cluster.
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Figure 5.20: ADC conversion factor versus input charge. Strong inhomogeneity is
observed in the region of 1 MIP charge (∼ 4 fC). Outside of the dynamic range
(∼ 30 fC) conversion factor declines.

5.2.3 Global threshold calibration

Operation of front-end electronics with the lowest possible threshold is crucial for
the physics performance of the STS, where sharing of the signal charge between
several strips is observed and degradation of the signal-to-noise ratio is expected
during the detector lifetime. As reported in [137], threshold value as low as 4 ke−

may be required in order not to compromise the physics performance. Threshold
calibration has been done to express the threshold level in units relevant for physics
analysis – electrons (e−) or femtocoulombs (fC).

The hardware setup with external pulse generator (see Sect. 5.2.2) was well
suited for global threshold calibration. Several individual channels of the chip have
been tested with calibrated charge pulses in the full threshold operating range up to
about 10 fC. Threshold position was determined using the S-curve method where
trigger efficiency is measured as a function of threshold level. Trigger efficiency is
defined as the ratio of the discriminator trigger rate to the input signal rate. Point
of 50% trigger efficiency allows to relate threshold level to the input charge.

The fast and slow branches of a channel in the n-XYTER chip are two par-
allel signal processing paths with different shaping times. The slow branch with
long shaping time is optimized for accurate pulse height determination with low
electronic noise. The fast branch with short shaping time is a time critical path
optimized for generation of a trigger signal and pileup detection. In the fast branch
noise manifests itself as spurious triggering activity and in the slow one as counts
in the low-amplitude part of the spectrum. During the calibration, threshold S-
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curve scans have been performed for pulses of different amplitude, i.e., threshold
response has been characterized using the information from the fast branch of the
channel.

The measured dependence of the threshold position expressed in arbitrary Vth
register units defined as a bending point of the S-curve is shown as a function of
the input charge in Fig. 5.21. The dependence is linear in the region of interest
(around 4 fC) with a slope of 21.2 Vth DAC register units per fC.
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Figure 5.21: Threshold calibration line measured in the fast channel of the chip
using the S-curve scans. Chip threshold setting is plotted versus input charge. For
orientation: 1 fC ≈ 6.2 ke−.

5.2.4 Pedestal position variation

Several defects identified during the work with the n-XYTER chip were observed
in positions of the pedestals. This includes large channel-to-channel variations as
well as a general trend of the pedestal positions over 128 channels of the chip.
The latter problem was assumed to originate from the layout aspects of the chip
and needed to be studied in detail. Particular suspicion fell on the power line for
analogue part of the chip. The line had to be designed with small cross section due
to space limitations in the chip layout, thus leading to high metal trace resistance.
As a result, substantial voltage drop may develop when high current flows through
the power line, e.g., at high triggering activity in the channels. Such a voltage drop
that increases from the periphery of the chip towards the inner channels would lead
to a corresponding shift of the channel pedestal positions.

The way to check the described hypothesis is to observe the pedestal positions
in the channels of the chip in cases with different total power consumption. Power
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Figure 5.22: Pedestal profiles over the n-XYTER channels with various power
consumption. Fraction of channel front-ends has been shut down thus reducing
the chip power consumption. Raw pedestal profiles (a) and differences relative
to the curves corresponding to the lowest power consumption at the lower power
consumption (b) are shown.

consumption in the chip has been manipulated by shutting down part of the chan-
nels via shut-down bits in the control registers. Pedestal position profiles have
been measured for four power consumption scenarios: with all channels on, with
1/2, 1/4 and 1/8 of the channels on. Measured profiles are shown in Fig. 5.22a.
For convenience, all four profiles start from the same point. In the figure, power
consumption increases from the bottom to the top, but due to high channel-to-
channel variations it is hard to draw any certain conclusion on the pedestal profiles.
To make the picture clear, relative differences of the pedestal positions are shown
in Fig. 5.22b with respect to the profile with the lowest power consumption (in
cyan). The figure allows to conclude that the “sag” in the pedestal positions profile
clearly depends on the power consumption. Also, the highest deviation is reached
for the central channels which proves the assumption of the design deficiency of
the analogue power line.

The discovered flaw in the chip design has been reported to the chip development
team and successfully eliminated in the engineering run.

5.2.5 Pedestal thermal drift

Stability of the n-XYTER parameters has been studied in a setup with several
chips operated simultaneously [138]. In this configuration with the total power
dissipation of 20W, thermal stability of the electronics becomes an important
issue and readout chips have to be cooled in order to keep the temperature rea-
sonably low. The chips have been sandwiched between the cooling blocks with
internal water circulation. Initially, due to periodic switching of the water chiller,
temperature of the cooling blocks exhibited a sinusoidal time dependence with a
period of∼ 20 minutes and amplitude of ∼ 3 ◦C. Temperature of the cooling blocks
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recorded within a span of several periods is shown in Fig. 5.23. Observed temper-
ature variation causes a drift of baseline in the read-out chip, revealing its high
temperature coefficient. Fig. 5.24 shows time dependence of the baseline position
as a result of temperature variation. The peak-to-peak amplitude of the baseline
drift comprises about 200 ADC counts, exceeding the signal amplitude of a MIP
particle. After this observation, the cooling system was exchanged with a more
stable device – Lauda4 RE 304 calibration thermostat. After thermal stabilization,
variation of pedestal position has been reduced to 4 ADC counts (∼ 3% of the
MIP signal in 300 µm of silicon). High temperature coefficient of the front-end chip
has been addressed in the n-XYTER engineering run and successfully eliminated.

Figure 5.23: Thermal cycling of the n-
XYTER chip due to periodic switching of
the water chiller recorded during several
periods.
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Figure 5.24: Sinusoidal drift of the
baseline position in the chip related
to the high temperature coefficient.

Characterization studies presented in this chapter have demonstrated expected
performance of silicon microstrip sensors connected with a low-mass microcable
to the n-XYTER readout chip. Quality assurance procedure for double-sided mi-
crostrip sensors have been developed both in hardware and software manner. Rou-
tines for measurement of the leakage current, total backplane capacitance, inter-
strip resistance and capacitance, coupling dielectric quality check, etc. have been
automated.

4http://www.lauda.de



Chapter 6

In-beam characterization of the
STS prototypes

Testing of the prototype system components has started with a small proof-of-
principle device [156]. Two detector boards with the CBM01 sensor were partially
read out with two n-XYTER front-end boards. Sensors and front-end boards have
been connected with a ribbon cable. Readout chain has been completed with a
SysCore V2 readout controller for communication between front-end boards and
DABC data acquisition system. The whole system has been commissioned us-
ing radioactive source. Amplitude spectra as well as correlations between equally
oriented (i.e., vertically or horizontally) strips of the two stations have been ob-
tained. Acquired data have been stored in binary list-mode data (LMD) files as
well as in a format compatible with FairRoot analysis framework. The beam test
has demonstrated operation of a full readout chain run in the self-triggered mode.
An important outcome of the test was identification of the shortcomings, such as
thermal stability of the system and stability of operation of the readout electronics
available by that time.

6.1 Prototype reference tracking telescope

The first attempt to develop a reference tracking telescope started with a prototype
tracking station featuring full readout of a 1.5 × 1.5 cm2 sensor with front-end
electronics integrated on the board. A compact object of 10 × 10 cm2 size placed
between the cooling plates comprised a beam tracking station – a constituent part
of a reference tracking telescope.

The reference tracking telescope consisting of three stations based on the double-
sided silicon microstrip detectors has been constructed and tested in a 2GeV
proton beam experiment in “Cave C” experimental site at GSI, Darmstadt. This
proof-of-principle device designed for charged particle track measurement with
high spatial resolution closely integrates silicon sensors with self-triggering front-
end electronics. Each station features the full double-sided readout of a CBM02B2
prototype sensor with 2×256 strips of orthogonal orientation and 50 µm strip pitch
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(see Fig. 6.1). Four self-triggering n-XYTER readout chips have been directly
wire bonded to the detector. A tracking station is realized on an 8-layer printed
circuit board. The detector is glued into a squared opening in the board resting
on a machined-in balcony structure of about 100 µm width. Two chips read out
one detector side. The 10 cm by 10 cm board also houses an external ADC and
DC power converters. The beam tracker board is connected to a CBM readout
controller with two high-density flat/twisted-pair cables. The detector bias is
provided through a coaxial cable.

Figure 6.1: A beam tracker board comprising a double-sided CBM02B2 prototype
detector wire-bonded to four n-XYTER readout chips, two per side.

The four readout chips dissipate up to 20W. The tracker board has therefore to
be cooled so as to avoid excessive temperature of the chips and silicon sensor that
would result in an unstable operation, high leakage current and noise, particularly
in a limited space like in an experimental setup. On the tracker board, the readout
chips are brought into a thermal contact with a copper inlay reaching to the back
side of the board. The board is then sandwiched between two aluminum plates
with built-in water cooling pipes as shown in Fig. 6.2. A compact object is created.

Advanced tools have been developed for offline analysis. As a first step, the
raw binary data files have been converted to the ROOT files. After conversion,
ROOT files are compatible with the current STS digitization and STS hit finding
algorithm, developed for the simulation of the full CBM setup. The hit finding
tools include charge sharing between neighboring strips, which provide position
resolution better than 15 µm [157]. As an example of reconstruction of the hit
distribution, the beam profile reconstructed in one of the detector stations is shown
in Fig. 6.3.
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Figure 6.2: Tracker board mounted between cooling plates.

Figure 6.3: Beam spot reconstructed in a tracker board.

Development and commissioning of the beam tracker boards has been impeded
by a number of issues. Among them are cooling that required a precision ther-
mostat and manufacturing complexity of a multilayer printed circuit board with
high density interconnects and production yield issues related to it. These aspect
have affected the stability of operation during the beam test. Thus, despite the
measured beam spot, no reasonable amplitude response could be obtained due to
the lack of thermal stability.

An important outcome of testing the tracking telescope in the beam was a
full-fledged test of the system that demonstrated operation of the whole data
acquisition chain including double-sided microstrip sensors, thermally significant
amount of the front-end chips, readout controller with chip specific firmware as
well as online monitoring tools for primary evaluation of the setup performance.
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6.2 Next generation of the prototype tracking

telescope

Experience with the first prototype tracking telescope resulted in changes in the
next telescope design. As learnt from the telescope operation, microstrip sensor
to be integrated into a printed circuit board of a tracking module has to pass
the quality assurance criteria and remain functional during routine operation and
maintenance. Since silicon sensor is wire bonded to the PCB, its replacement in
case of damage or poor performance is not feasible in practical terms. That is
why the second prototype telescope has been developed with a modular design.
Complexity of components integration within a tracking station is avoided by
separating a detector board from readout electronics. A station in this case consists
of individual modules with separated services, e.g., low/high voltage, water cooling,
etc. Thus, a telescope station is created with flexible design featuring replaceable
electronics and sensor thermally decoupled from the heat sources (readout chips).

A tracking station comprises double-sided silicon microstrip detectors, ultra-
thin readout cables, and self-triggering readout electronics (see Fig. 6.4). The
detectors SPID-CBM02 (see Sect. 4.3.1) originate from a cooperation with CiS,
Erfurt, and have 256 orthogonal strips per side with 50 µm strip pitch. The detec-
tors were integrated into the carrier boards at SE SRTIIE, Kharkov, Ukraine [158].
A detector board is a combination of a rigid carrier structure with a flexible board
on top of it. Flexible board is made of aluminized Kapton (polyimide film). Alu-
minum traces are connected to the sensor pads using ultrasonic TAB bonding.
The contact areas are additionally glued with a two-component epoxy for bond
protection. The front-end boards developed at GSI based on the self-triggering
n-XYTER chip are described in detail in Sect. 4.4.2. Double-sided readout has
been implemented using floating electronics, so as to exclude the high voltage be-
ing applied across the coupling capacitors. That is why for safety reasons, readout
controllers have been enclosed into isolated metal cages.

For thermal stability, aluminum blocks attached to the front-end boards are
cooled with water and kept under constant temperature. Digital and high-voltage
lines may be a source of noise for the front-end inputs due to signal pickup from
digital lines or electromagnetic interference coming from the mains. Therefore,
high-voltage line for sensor bias and digital lines for the n-XYTER data and control
(FEB-ROC cable) have been shielded.

The prototype Silicon Tracking System consisting of two stations has been
tested in the beam in December 2010 along with other CBM prototype detector
systems [159]. The test was focused on characterization of individual components
and their fine tuning. The activities included noise optimization, study of the
amplitude response and development of the online monitoring tools.

After testing of individual tracking stations the setup was ready to be extended
to three stations and to include tracking information from the other detector sys-
tems and beam monitors.
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Figure 6.4: Prototype tracking station with detector board and readout electronics.
Readout controllers are mounted on top.

6.3 Beam test at COSY, Jülich in January 2012

The beam test of January 2012 took place at COSY storage ring in Forschungszen-
trum Jülich, Germany. Silicon Tracking System and readout electronics have been
tested in a 3GeV/c proton beam. Present test was dedicated to the study signal
formation in the irradiated FSD prototype detectors. Since telescope configuration
included three stations, it was possible to do the particle tracking after incorpo-
rating information from the other detector systems under test.

Apart form the explicit goal of radiation tolerance assessment of silicon sensors,
the use of new strip isolation technique on the n-side of the FSD sensors required



6.3. BEAM TEST AT COSY, JÜLICH IN JANUARY 2012 117

thorough validation and thus called for a beam test. The main observables for this
are charge collection efficiency and cluster shape as a function of neutron fluence.
The sensors have been irradiated with fast neutrons at research reactor facility
in Ljubljana, Slovenia and stored at −20 ◦C temperature afterwards. During in-
tegration into detector modules and operation in the beam, sensors have been
kept at room temperature. Prepared detector boards with irradiated sensors are
shown in Fig. 6.5. The samples have accumulated fluence between 1012 neq/cm

2

and 1014 neq/cm
2 – values representative for the CBM irradiation scenario. One of

the samples was non-irradiated to provide reference for the measurements.

Figure 6.5: Detector boards with irradiated FSD01 sensors. Charge collection
efficiency and cluster properties are to be studied as a function of fluence and
incident angle.

The experimental area “Jessica” was equipped with infrastructure from GSI,
shown in Fig. 6.6, foreseeing the forthcoming CBM in-beam tests there on a regular
basis. Two stations (STS1 and STS3) equipped with previously tested CBM02
sensors were movable along the beam. The middle station (STS2) comprised one
of the several detector boards with irradiated FSD01 sensors and was additionally
rotatable, thus enabling the beam incidence angle scan. The detector boards with
irradiated sensors have been exchanged during the test to allow measuring sensor
properties as a function of neutron fluence. In order to provide additional reference
points for tracking, hit information from two fibre hodoscopes has been included
into analysis. Information from the neighboring systems under test such as a
gas electron multiplier (GEM) detector and a paddle scintillator was available for
analysis and could be used optionally.

By implementing proper shielding and grounding techniques, the electronic
noise was reduced to about 600 e−, which is dominated by the preamplifier noise.
The n-XYTER temperature was stabilized with water cooling, which abated the
problem of the baseline drift significantly. In addition, an automatic baseline cal-
ibration was implemented in the data acquisition software and run between the
beam spills. A detector control application based on the EPICS [161] framework
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Figure 6.6: Beam tracking telescope (above) consisting of three stations and beam
hodoscopes (one of the hodoscopes is seen in front of the STS1 mounted on the
scissors lift). Stations STS1 and STS3 are built with reference detectors with
studied properties. Detector under test is integrated into station STS2. Layout
of the beam test setup (below) is shown with indicated positions of the tracking
stations, beam hodoscopes and GEM detector setup tested in parallel.
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was developed and ran on a dedicated PC. All the auxiliary hardware, including
power supplies, stepping motors and the beam monitoring detectors, water cool-
ing units and temperature sensors were operated and monitored remotely. Some
of the measured process variables (STS bias voltages, positions of the stations,
temperatures) were periodically inserted into the data stream to study the de-
tector response as a function of those values and to allow for temperature and
high-voltage corrections in the on-line and off-line data analyses.
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Figure 6.7: Beam spots as measured by the scintillation hodoscopes (above) and
two reference tracking stations (below). The spots in the hodoscopes are bigger
due to larger fiducial volume.

Test beam data yield inter alia two-dimensional beam profiles. Figure 6.7 shows
beam spots as measured by the fibre hodoscopes and two tracking stations (station
labels are in the figures). Transverse size of the beam spots in the STS stations
is limited by the sensor size 1.5 × 1.5 cm2 that is much smaller than that of the
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hodoscope 6.4 × 6.4 cm2. Difference in sizes of the beam spots in the hodoscopes
illustrates beam divergence enhanced by multiple scattering in the the upstream
detectors. In particular, size of the beam spot in hodoscope H2 is affected by a
massive GEM station standing in front of it. Hit positions shown in histograms
are associated with tracks as opposed to hits measured by individual stations.

Test of the detector systems in the beam was compromised by the accelerator op-
eration in the first days. After a maintenance period that preceded the beam test,
accelerator went into operation with improper settings. This caused spontaneous
horizontal movement of the beam by up to several centimeters. Monitoring of the
beam hit positions as a function of time reveals unstable beam conditions. Beam
hit coordinates in one of the hodoscopes measured during several spills are shown
in Fig. 6.8. The beam position in the Y-coordinate remained unchanged during
the operation, whereas instabilities have been observed along the X-coordinate.
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Figure 6.8: Beam spot position in X and Y projection as a function of time. The
beam was unstable and showed horizontal oscillations within spills.

The discovered problem in the accelerator operation has been reported and
solved after clearing the quadrupole magnet failure, so the beam test could proceed
in normal mode.

Data analysis in the Go4 framework included elements of the tracking software
from the CbmROOT analysis framework that is used for offline simulations and
physics performance evaluation. Tracking has been implemented using information
from three STS stations and two beam hodoscopes. Occasionally, hit information
form the GEM detector has been used. With moderate beam intensities and
without magnetic field the problem of tracking is essentially reduced to the linear fit
problem. For simplicity, track finding criterion required a single hit in all stations
and hodoscopes. Examples of the obtained straight tracks in X and Y-projections
are shown in Fig. 6.9. Shown projections belong to different tracks, therefore
the left figure (6.9a) is missing a hit that belongs to the GEM detector. Error
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bars assigned to the hit positions reflect the intrinsic resolution of the detectors.
Since channel pitch for the fibre hodoscopes largely exceeds that of the silicon
microstrip detectors (1mm vs. 50 µm), error bars associated with STS stations
are much smaller than the error bars for hodoscopes. Alignment procedure and
evaluation of position resolution for individual tracking stations are described in
the next section 6.4.
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Figure 6.9: Projections of the tracks reconstructed in the setup consisting of three
tracking stations, two scintillation hodoscopes and GEM detector.

6.4 Beam setup alignment and tracking

Tracking stations have been aligned along the beam based on the assumption of
straight tracks. For a 2.5GeV proton beam and reasonable amount of material in
the beam, this assumption may be considered realistic. Straight charged particle
tracks create spatially and temporally correlated signals in the detector planes.
For a misaligned detector setup, spacial correlation is broken. Therefore timing
constraint on the detector hits has to be applied. Selection of hits within a certain
time window with respect to a low noise reference signal (beam tagging scintillator)
serves as a track finding criterion and allows to reduce the number of spurious hits
for identified tracks.

Initially, errors of the track hit positions are taken large due to misalignment.
As soon as tracking information is available, further step towards reducing the
coordinate errors is done by calculating the track residuals – difference between
the assumed hit position and the one obtained from the track fit. Ideally this
value has to be around zero. In practice, distribution of residuals has a Gaussian
shape peaking around the offset coordinate. Offsets measured in this way may be
removed by the mechanical adjustment of the sensor positions, however they are
commonly taken into account in the data analysis software.
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Figure 6.10: Track residuals for X (left) and Y-coordinates (right) measured by
the STS stations after removing the offsets with respect to the beam position in
the analysis software. Width of the distributions is attributed to the intrinsic
resolution of the detector and track fitting precision (minor contribution). Fit
parameters indicate worse resolution for the irradiated detector.
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Residual plots for the X and Y-coordinates of the first STS station are shown in
Fig. 6.10.

After finding the hits associated with a track, the alignment procedure for the
STS stations relied on the coordinates measured by the beam hodoscopes. A
straight line is drawn through the space points in two hodoscopes and residuals
are calculated for the three STS stations. In the next iteration space points in
the STS can be taken as a reference to align the hodoscopes. Intrinsic resolution
of the hodoscopes obtained in this way was ∼ 220 µm. Track residuals for the
stations STS1 and STS3 show position resolution of 30–35µm that is approaching
the intrinsic resolution of the sensors. Irradiated sensor in STS2 station shows
worse position resolution of about 50–55µm for a sensor with accumulated fluence
of 1× 1012 1-MeV neq/cm

2.

The alignment quality may be visualized and verified by plotting the two-
dimensional correlation plots. In the case shown in Fig. 6.11a, horizontal position
in station STS1 is plotted against horizontal position in station STS3. Similar
distribution is presented for the vertical strips (Y-coordinates). The distributions
have been obtained after software alignment. That is why both of them are located
on the diagonal of the plot. The length of the distribution along the diagonal is
attributed to the beam size, in case beam spot size is smaller than the sensor.
Locus length for the X-coordinates (Fig 6.11a) is much greater along the diagonal
then the locus for Y-coordinates. This observation is related to the shape of the
beam spot.

0

10

20

30

40

50

60

STS2 X-position, mm
-8 -6 -4 -2 0 2 4 6 8

S
T

S
1 

X
-p

os
iti

on
, m

m

-8

-6

-4

-2

0

2

4

6

8

0

20

40

60

80

100

STS2 Y-position, mm
-8 -6 -4 -2 0 2 4 6 8

S
T

S
1 

Y-
po

si
tio

n,
 m

m

-8

-6

-4

-2

0

2

4

6

8

Figure 6.11: Correlation between horizontal (left) and vertical (right) strips in the
stations STS1 and STS2. The vertical blank stripe in the left figure indicates a
dead channel.
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6.5 Analogue performance of the prototype de-

tector modules

Amplitude response defines the lifetime a microstrip detector module and quality
of the delivered data. Due radiation damage accumulated during the experiment
operation, signal measured by a silicon detector degrades due to a reduction of
the charge collection efficiency and noise increases due to the increase of leakage
current. This leads a reduction of the signal-to-noise ratio. For an operational
module, S/N ratio has to be above 10. One of the goals for the beam test, was to
study the analogue response in order to measure the charge collection efficiency
and the signal-to-noise ratio. Noise has been estimated for the detector modules
composed of the n-XYTER frontend electronics, analogue microcables and sensors
of different length in [162].

For the STS2 station of the tracking telescope, amplitude response has been
studied in the triggered mode. This method allows to trace the signal down to
the lowest amplitudes and estimate noise in the slow channel of the readout chip.
Obtained amplitude spectra are shown in Fig. 6.12. High amplitudes correspond
to the signal from a charged particle. Low amplitudes result from the baseline
sampling forced by a trigger signal. Trigger signal is derived form the beam ho-
doscopes.

Figure 6.12: Examples of 1-strip and 2-strip cluster event measured by detector in
triggered mode. The amplitude as a function of channel number is shown in 256
sensor channels. In case of a 2-strip cluster, signal amplitude is shared between
two neighboring channels.

Signal charge that is spread between several strips creates a hit clusters. For
a given channel within cluster, signal sharing means reduction of signal-to-noise
ratio. On the other hand, with analogue readout hit position resolution can be
improved by using cluster amplitude information as opposed to binary readout,
where precision is given by the channel pitch:

σX =
pitch√

12
. (6.1)
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The effect of digital and analogue readout on the position resolution and effi-
ciency of the silicon microstrip detectors are elaborated in [163].

Hit clustering information has been extracted from the amplitude distributions.
A cluster is defined as a group of hits correlated in space and time (hits in the
neighboring channels that appear within a time window of 50 ns). The aim of the
study was to quantify the collected signal charge and to study the width of the
signal clusters as a function of the beam incidence angle. The amplitude spectra
for single-hit clusters are shown in Fig. 6.13 for the p- and n-side of the sensor. The
signal generated by a MIP particle traversing the detector volume is proportional to
the deposited energy. For thin absorbers, energy deposited by minimum ionizing
particles varies according to the Landau–Vavilov distribution with asymmetric
shape. Apart form that, the measured charge experiences additional Gaussian
fluctuations due to the electronic noise and fluctuation of the number of charge
pairs. The Gaussian smearing results in a minor broadening of the distribution
and shift of the most probable value (MPV), i.e, the peak position.

After the data analysis, clustering information has been extracted that allowed
to quantify the collected signal charge. The amplitude distributions for single-hit
clusters as measured on the p- and n-side are shown in Fig. 6.13. The distributions
have been fitted with Landau-Gaussian convolution to extract the MPV values.
Obtained peak positions correspond to the collected charge of 22.6 ± 2.3 ke− and
21.6± 2.2 ke− for the p- and n-side, respectively. The expected amount of charge
is 22.8 ke− that comes from the specific energy loss of 80 electron-hole pairs perµm in silicon for a MIP and the sensor thickness of 285 µm.

Figure 6.13: Amplitude distributions for single-hit clusters measured on the p and
n-side of the sensor. The fit function is Landau-Gaussian convolution.

The cluster size distribution is important to estimate how much the signal is
shared between the neighboring channels. During the beam test, particles have hit
the sensors under approximately normal incidence angle. This condition doesn’t
favour the charge sharing as opposed to the measurement of inclined tracks. Thus,
most of the hits produced single-hit clusters.
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Figure 6.14: Beam incidence angle scan for the STS2 station: (a) percentage of
3-strip clusters and (b) total cluster amplitude.

In order to estimate the effect of the track incidence angle on the charge sharing,
the percentage of the 3-strip clusters has been estimated (see Fig. 6.14a). As the
tracking station changes its orientation form the normal one to 40◦ with respect to
the beam axis, the percentage of the 3-strip clusters changes from 12% to about
16%. Inclined tracks effectively traverse thicker layer of the detector material.
This leads to an increase of the cluster amplitude. In Fig. 6.14b, the MPV of the
amplitude distributions for 1-strip and 2-strip clusters is shown. Clusters labeled
as isolated, have been reconstructed with a threshold condition on the neighboring
strips in order to exclude the effect of highly asymmetric charge sharing. Theoret-
ical curves show the amplitude dependence expected from the amount of material
traversed by the beam particles. Also, it can be seen that the total amplitude in
the 2-strip clusters is systematically higher than that of 1-strip clusters, whereas
the amplitude of the isolated clusters has intermediate values.

6.6 Online monitoring and slow control

Detector and readout hardware development for the experiment requires testing
of individual components (e.g., for new hardware revisions) as well as performance
evaluation of the whole prototype data acquisition chain from a detector to data
storage. Apart from hardware, analysis procedures and data acquisition process
itself need to be tested and monitored. Online monitoring software compatible with
the CBM prototype data acquisition chain has to fulfill the following functions:

• select events of interest, e.g., by filtering the DAQ messages with respect to
a time window around reference message (beam tag)

• display detector specific information (hit geometry, correlations, tracking)



6.6. ONLINE MONITORING AND SLOW CONTROL 127

• provide fast online monitoring, interactive analysis tuning

Software used in the beam test consisted of two parts for data acquisition and
online monitoring. Data acquisition backbone core (DABC) [164] is a universal
modular DAQ system developed at GSI, Darmstadt to provide a common tool for
typical data acquisition tasks such as event building, data transport and connec-
tivity to external applications. It is compatible with various front-ends and suited
for high-throughput distributed event building networks. Online monitoring tool
Go4 [165] is an object oriented analysis framework based on ROOT with graphical
user interface based on Qt library (Nokia). Go4 provides services and interfaces
for the user-written analysis code and can be run in a batch mode (compiled or
interpreted) as well as in an interactive mode, both online and offline.

The mostly used, interactive mode offers the following key features:

• a non-blocking graphical user interface (GUI) to control and steer the anal-
ysis

• live monitoring (asynchronous graphics update from the analysis)

• adding user-specific GUIs using “Qt designer” tool

The software framework has found extensive application during the beam test
with experimental setup consisting of several detector prototypes in the same beam
line and various DAQ hardware components. Different detector groups contributed
to the collaborative software development with detector specific analyses.

DABC
MBS

container

DAQ

processor

MBS

ROC

EPICS

Unpacker step Detector step Tracking step
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Detector
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Figure 6.15: Analysis structure implemented in the Go4 monitoring tool. Data
processing is subdivided into steps. Event and processor classes are implemented
for every step.
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Software analysis structure used for the CBM beam tests is shown in Fig. 6.15.
Subsequent data generations are separated into analysis steps. Every step produces
a data structure (output event) that serves as an input for the next step in the
analysis chain. Event processors are implemented by a user and contain data
processing code. Composite event processors combine a code for individual front-
ends or detector systems.

The CBM beam test software consists of three steps. The “Unpacker” step
accepts data from DABC combined from different sources and transmitted in
generic data containers that are adopted from the legacy Multi Branch System
(MBS) [166] framework. Typical data sources are readout controllers, MBS-based
trigger system or EPICS slow control system. In the “Detector” step, system-
specific histograms are filled for the STS, GEM and hodoscope subsystems, signal
clustering information is extracted and channel mapping is applied. In the final
step, spatial and temporal correlations between different stations are calculated.
Tracking procedure is applied to the identified correlated space points. Trajectory
fits provide alignment information and allow to estimate a spacial resolution of
individual detector stations.

Figure 6.16: Go4 monitor graphical user interface. Individual analyses and sets of
histograms are available for different detectors taking part in the beam test.

The Go4 graphical user interface (GUI) is shown in Fig. 6.16. It offers a con-
venient way to browse the data structures filled during the analysis. Visualized
results can be updated asynchronously or with a given time period. The GUI



6.6. ONLINE MONITORING AND SLOW CONTROL 129

contains results of all steps and for all components of the beam setup. Conditions,
i.e., cuts can be applied to the histograms, thus implementing event an selection.
Interface screenshot shows beam spot in two STS stations as well as amplitude
spectra measured on both sides of the sensor in the first station.

Figure 6.17: EPICS slow control interface. Upper left graph shows variation of
data rate correlated with beam spill structure.

Another important component of the test beam software is slow control. EPICS
framework, designed for building distributed control systems to operate devices,
was used to control the detectors and infrastructure hardware. Visualization has
been implemented using the Control System Studio [167].

EPICS graphical user interface (see Fig. 6.17) integrates tools for run control,
temperature sensing as well as steering high/low voltage power supplies, step mo-
tors and cooling system. In order to be able to correlate detector data to slow
control events (e.g., for position, voltage or temperature scans) EPICS data are
included into the DAQ data stream and are available for online and offline analysis.

Beam tests described in this chapter and performed on a 2.5GeV proton beam,
have demonstrated feasibility of the module concept and operation of the detector
modules within specifications.



Chapter 7

Summary and outlook

Within this work, a prototype of the STS detector module has been evaluated
including sensors, readout microcables, front-end electronics and preliminary sup-
port structure. The module is conceived as an ultra-light support structure that
holds the silicon sensors, microcables and front-end electronics. Minimal material
budget between 0.3%X0 and 1.0%X0 is strived for in order to provide track mo-
mentum measurement with precision δp/p ∼ 1%. Methods have been developed
to assess the parameters of the module components. The prototypes of silicon
microstrip sensors and self-triggering front-end electronics have been used for the
construction of the detector modules. The modules have been employed for the
space-point measurement and track reconstruction in the beam test.

According to the physics goals described in Sect. 4.1, requirements to the com-
ponents of the detector module have been formulated. Silicon microstrip sensors
with radiation hard design provide double-sided readout with strips oriented at
stereo angle of ±7.5◦. Additional metallization layer has been introduced to in-
terconnect the short corner strips such that a given sensor side can be read out
from one edge only. Test of the irradiated sensors has demonstrated the radiation
tolerance up to 3× 1013 neq/cm

2.

Multilayer microcable prototype with aluminium traces and polyimide base has
been manufactured with material budget of about 0.1%X0 and effective channel
pitch of 58 µm matching that of the current sensor design (see Sect. 4.5). The
cable was designed to minimize material budget as well as noise contributions
from trace capacitance and series resistance. The cable prototypes have been used
for construction of a demonstrator module and tested in the beam.

The n-XYTER readout chip (see Sect. 4.4.1) used in the prototyping phase
featured a self-triggering architecture and shaping times of 18.5 ns and 139 ns for
fast and slow channel, respectively.

Carbon fibre has been chosen as a material for the module support structure.
A low mass support structure has been designed and produced to hold up to 5
detector modules.

One of the main objectives of this work was the development of quality assurance
procedures for the double-sided silicon microstrip sensors. For this, a test stand for
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sensor characterization has been created. Measurement setup includes hardware
(electrometers and an LCR-meter) and LabVIEW-based software. Routines for the
most of the required measurements have been developed, e.g., leakage current, total
backplane capacitance, interstrip resistance and capacitance, coupling dielectric
quality check, etc.

Characterization has been done for 4 sensor modifications, 1 n-XYTER readout
chip modification and 3 front-end board modifications based on it. Development
of several sensor generations was based on the performance characterization and
implementation of the radiation tolerant design features as well as the sensor ge-
ometry optimized for the ladder-type detector modules. Iterations in the front-end
board production were necessary to achieve a stable production quality and ana-
logue response. Measurements include electrical characterization of the sensors,
readout chip calibration and detector module readout tests with radioactive sources
and proton beams. Experience with different modifications of front-end boards and
results of testing have been taken into account in the subsequent modifications.

The final assessment of the system has been done by estimating the tracking
performance of the detector modules. Beam tests conducted on a 2.5GeV proton
beam have demonstrated operation of the detector modules within specifications.
This means that the aim of the work has been achieved.

After the assessment of the very first prototype components, definition of the
module concept can be started. The assessment of the design concept for the
detector modules and overall system was outside of the scope of this work. The
activities on system integration are now starting. They will address cooling and
powering of the detector modules and stations, design of the beam pipe in the STS
region and its integration with the Micro Vertex Detector inside of the magnet.

The project timeline includes writing of the technical design report (TRD) by
the end of 2012 as the first milestone. The appendices to the TDR the are to be
finished in 2013. The production and quality assurance of the STS components is
scheduled for 2015-2016. The construction of the CBM experiment is expected in
2017-2018.



Zusammenfassung

Motivation

Das Compressed Baryonic Matter Experiment (CBM), des zukünftigen Be-

schleunigeranlage FAIR, ist ein Fix-Target-Experiment, mit dem Ziel der Erfor-

schung der Eigenschaften von stark wechselwirkender Materie, erzeugt in den Kol-

lisionen der Schwerionen bei ultrarelativistischen Energien. Der Zustand dieser

nuklearen Materie wird in einem Phasendiagramm mit Bezug auf Temperatur und

Nettobaryonendichte dargestellt. Ergänzend zu den Physik-Programmen der Ex-

perimente am RHIC (BNL) und LHC (CERN), werden bei CBM die Messungen im

Bereich moderater Temperaturen und höchster Nettobaryondichten durchgeführt.

Ein Betrieb bei Strahlenergien von 10–45AGeV wird die Untersuchung des

Bereichs des Phasendiagramms, in dem der Phasenübergang von Quark-Gluon-

Plasma zu hadronischer Materie vorhergesagt wird, ermöglichen. Die Aufgabe be-

steht darin, Hadronen und Leptonen, darunter seltene Sonden wie Open-Charm-

Teilchen und Leptonenpaare, mit hoher Statistik und Präzision zu messen. Dafür

müssen die Ereignisse von physikalischem Interesse in Kern-Kern-Kollisionen mit

Multiplizitäten von rund 1000 geladener Teilchen pro Kollision bei der Reakti-

onsrate von bis zu 10MHz selektiert werden. Solche Messungen erfordern einen

schnellen und strahlungsharten Detektor zum Auslesen durch eine selbstgetrigger-

te Elektronik. Das freilaufende Datenaufnahmesystem mit hohem Durchsatz wird

die volle Online-Rekonstruktion und Selektion der Ereignisse bieten.

Die zentrale Komponente des Experiments – Silicon Tracking System (STS) –

wird für die Spurenrekonstruktion und Impulsmessung von geladenen Teilchen

in einem Magnetfeld entwickelt. Das System, bestehend aus acht Tracking-

Stationen basiert auf doppelseitigen Silizium-Mikrostreifendetektoren, wird sich

in der öffnung eines Dipolmagneten mit 1T Feld befinden um für Tracking der

geladenen Teilchen mit Impulsauflösung von etwa 1% zu sorgen. Die wichtig-

sten Voraussetzungen dafür sind hohe Ortsauflösung in der Größenordnung von

10 µm, sowie ein niedriges Materialbudget um die Mehrfachstreuung zu minimie-

ren. Ein Betrieb bei hohen Interaktionraten und großen Teilchenmultiplizitäten er-
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fordert strahlungstolerante Mikrostrieifensensoren und Front-End-Elektronik mit

adäquaten Auslesezeiten.

Der Schwerpunkt dieser Arbeit lag in der Entwicklung von Prototyp-

Komponenten für das STS und deren Integration. Ein Detektor-Modul ist ei-

ne grundlegende funktionelle Einheit, die einen Sensor, Analogmikrokabel und

Front-End-Elektronik, montiert auf einer Trägerstruktur, umfasst. Diese Prototyp-

Komponenten mussten charakterisiert werden, um ihre Eignung für die Konstruk-

tion eines Detektormoduls aufgrund der gewünschten Physikleistung des Systems

und der Anforderungen eines langfristigen Betriebs festzustellen. Dafür wurden

Studien bezüglich Qualitätssicherung und analoger Signaleigenschaften von Sen-

soren, Kalibrierung selbstgetriggerter Front-End-Elektronik und Systemintegrati-

onsaspekte durchgeführt. Dieses Modulkonzept musste durch den Bau eines De-

monstrators sowie der Auswertung seiner Leistung mit radioaktiven Quellen und

Beschleunigerstrahlen validiert werden.

Entwicklung der Prototypkomponenten

Das STS-Stationen müssen modular aufgebaut sein, es werden dort einzelne

Detektormodule in Leitern kombiniert. Eine Reihe von Leitern ergibt eine Station.

Das Layout der STS wurde, bezüglich der Anzahl von Tracking Stationen, de-

ren Positionen und Granularität, für eine effiziente Spurrekonstruktion optimiert.

Für eine hohe Impulsauflösung sorgt das minimierte Materialbudget der Station.

Um die Serienfertigung der Leiter und die Wartung des Systems zu vereinfachen,

wurde die Anzahl der verschiedenen Leiter-Typen minimiert. Das STS, ausgestat-

tet mit doppelseitigen Silizium-Mikrostreifen-Sensoren, wurde auf Tragstrukturen

aus Kohlenstofffaser mit sehr geringer Masse sowie hoher mechanischer Stabilität

montiert. Das Auslesen dieser Sensoren erfolgt über Front-End-Elektronik, welche

sich außerhalb der Detektorakzeptanz befindet, verbunden durch dünne mehrlagi-

ge flache Mikrokabel. Um sich dem Endsystem nähern zu können, muss nachge-

wiesen werden, dass die wichtigsten Spezifikationen durch Prototypkomponenten

erreichbar sind. Für die Anschließende Integration dieser Komponenten zu einem

Detektorsystem und dessen Betrieb in einem Strahl muss das Konzept eines De-

tektormoduls validiert werden.

Somit konnte das Mikrostreifen-Sensorlayout, kompatibel mit der Modulstruk-

tur, hergestellt werden. Dies beinhaltet die Ausrichtung der Streifen an einem

Stereowinkel und der Umsetzung der doppelten Metallisierung um die Sensoraus-

lesung von nur einer Kante zu ermöglichen. Die weiteren Anforderungen sind das

Materialbudget von 0.3%X0, das Erreichen einer Anzahl der guten Kanäle von

mehr als 98% sowie einer Strahlungshärte die mindestens 1014 neq/cm
2 ergibt. Die

Verwendung von Mikrokabeln mit bis zu 60 cm Länge erfordert eine Optimierung
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der Kabelgeometrie, um das Rauschen, assoziiert mit Kapazität und Serienwider-

stand der Signalspuren, zu minimieren. Außerdem musste die Durchführbarkeit

eines TAB Bonden für ein solches Kabel getestet werden. Die wichtigsten Anfor-

derungen an den Prototyp der Ausleseelektronik waren: der selbstgetriggerte sowie

geräuscharme Betrieb.

Doppelseitige Silizium-Mikrostreifensensoren

Die doppelseitigen Silizium-Mikrostreifendetektoren wurden als Sensortech-

nologie für den STS, aufgrund der Kombination einer guten Ortsauflösung,

einer zweidimensionalen (projektiven) Koordinatenmessung mit geringem Ma-

terialbudget (0.3%X0), der hohen Auslesegeschwindigkeit und ausreichender

Strahlungstoleranz gewählt. Mehrere Generationen von doppelseitigen Silizium-

Mikrostreifendetektoren wurden zur Untersuchung strahlenharter Konstruktions-

merkmale und des Konzepts, eines großflächigen Sensors und dessen Kompatibi-

lität mit der Leiter-Struktur des Detektormoduls, hergestellt. Insbesondere wurden

Sensoren mit 1024 Kanälen pro Seite, einem Pitch von 58 µm sowie einer aktiven

Fläche von 62 × 62mm2 produziert. Doppelmetallschichten auf beiden Seiten des

Sensors werden verwendet, um die kurzen Eckstreifen miteinander zu verbinden,

die aufgrund der Orientierung der Streifen unter einem Stereowinkel von ±7.5◦

entstehen. Die elektrische Charakterisierung der Sensoren wurde durchgeführt, um

die gesamte Bedienbarkeit sowie die Extrahierung der Geräteparameter feststel-

len zu können. Hierfür wurden unterschiedliche Kontaktflächen (Pads) mit feinen

Nadeln untersucht, welche an die Messausrüstung für Strom, Spannung oder Ka-

pazitätsmessung angeschlossen wurden. Im Rahmen der Sensorcharakterisierung

wurden Gesammtsensoreigenschaften (z.B. Stromspannung, Kapazitätsspannung)

sowie Intersteifen-Parameter gemessen. Das gleiche Hardware-Setup, eingesetzt auf

einer halbautomatischen Probestation, ermöglichte die Bestimmung der Anzahl

guter Kanäle beim Durchlaufen aller Pads.

Front-End-Elektronik

Das Auslesen der Sensoren wurde mithilfe einer selbsgetriggerten Front-End-

Elektronik getätigt, bei der kein externer Trigger erforderlich ist. Eine Front-End-

Board wurde auf der Grundlage eines n-XYTER-Auslesechips mit datengesteuerter

Architektur entwickelt, der geeignet ist bei der Ausleserate von 32MHz betrieben

werden zu können. Die Chip-Architektur verfügt über schnelle und langsame Ka-

nalzweige, um sowohl präzises Timing als auch Amplitude über ankommende Si-

gnale liefern zu können. Die Kanalauslesung wird gemäß dem Token-Ring-Prinzip

durchgeführt, welches ein reduziertes Datenvolumen und eine effiziente Nutzung
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der verfügbaren Bandbreite ermöglicht. Die Front-End-Board enthält einen exter-

nen Analog-zu-Digital-Wandler (ADC). Die Kalibrierung des ADC wurde unter

Verwendung von sowohl 241Am Röntgenquelle als auch eines externen Impulsge-

nerators vorgenommen. Die Schwellenkalibrierung und Untersuchung der Tempe-

raturabhängigkeit der Chip-Parameter wurden durchgeführt. Nach Stabilisierung

der Betriebstemperatur des Chips durch Wasserkühlung wurde die Variation der

elektronischen Basisline (Pedestal) in den Auslesekanälen, bis auf wenige Prozent

der erwarteten Signalamplitude vom minimal ionisierenden Teilchen, reduziert. Der

Temperaturkoeffizient des Front-End-Chips wurde im n-XYTER Engineering-Lauf

adressiert und erfolgreich beseitigt.

Ultraleichtes Detektormodul

Halterungsstrukturen mit geringer Masse wurden aus Kohlenstofffaser herge-

stellt, dies hat die Steifigkeit um die Detektor-Module halten zu können. Auf-

grund der geringen Kernladungszahl des Materials verwendet für den Bau, werden

geladene Teilchen minimaler Mehrfachstreuung ausgesetzt, die ein wesentlicher

Faktor ist, der die Impulsauflösung verschlechtert. Die Verwendung von leichten

Kompositmaterialien ermöglicht es eine Masse der Tragstruktur von nur 14 g pro

1000mm zu erreichen. Durch Ausnutzung der hohen Steifigkeit der Träger aus

Kohlenstofffaser, konnten die Halterungsstrukturen mit Planheit von 50 µm pro-

duziert wurden. Die Mikrokabel übertragen die analogen Signale von den Sensoren

an die Front-End-Elektronik an der Peripherie der Stationen außerhalb der Detek-

torakzeptanz. Aufgrund der Struktur eines Detektormoduls, wo die Mikrokabel

den größten Teil der Silizium-Sensoren decken, durchqueren Partikel unvermeid-

lich die Mikrokabel. Deswegen ist das geringe Materialbudget eine entscheidende

Designanforderung. Die Prototypmikrokabel wurden mit Aluminiumleiterbahnen

auf einem Polyimidsubstrat erzeugt. Polyimid verwendet als Trägermaterial bietet

eine hohe Strahlungstoleranz, gute elektrische Eigenschaften, wie z.B. eine niedrige

Dielektrizitätskonstante (ε = 3.5) und einen hohen spezifischen Widerstand. Das

Polyimid bleibt im breiten Umfang von Temperaturen mechanisch stabil, der weit

über die Betriebsbedingungen des STS reicht. Aluminumleiterbahnen ergeben ei-

ne gute elektrische Verbindung bei niedrigerem Materialbudget als beispielsweise

Kupfer. Die Mikrokabelstruktur enthält mehrere Lagen, optimiert für eine niedrige

Kapazität der Leiterbahnen und somit geräuscharme Leistung. Das Kabel bein-

haltet zwei Signallagen, Abstandhalter um kapazitives Übersprechen zu reduzieren

und eine Abschirmlage für geräuscharme Leistung. Die hergestellten Kabelproto-

typen haben ein Materialbudget von rund 0.1%X0. Aufgrund der Länge bis zu

60 cm, war ein weiteres Optimierungskriterium für die Mikrokabel die Reduktion

von Rauschanteil verbunden mit Kapazität und Serienwiderstand.
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Charakterisierung im Strahl

Es wurde ein Tracking-Teleskop-Demonstrator gebaut und in mehreren Strah-

lentests, einschließlich 2.5GeV Protonenstrahl an COSY Synchrotron (Jülich), be-

trieben. Drei Tracking-Stationen wurden ergänzt mit mehreren Hodoskopen, die

als Strahl-Referenz für die selbstgetriggerte Elektronik dienten. Alternativ konn-

te die Elektronik im Trigger-Modus betrieben werden und die Szintillatorsignale

als externen Trigger verwenden. Wenn Signale im Chip registriert werden, wer-

den Zeitstempel und Amplitude der gefeuerten Kanäle aufgenommen und in der

Offline- oder Online-Analyse verwendet um Tracking-Informationen und Korrela-

tionen zwischen verschiedenen Stationen zu extrahieren. Eine der drei Tracking-

Stationen wurde verwendet um den Einfallswinkel zu scannen und entsprechende

Signalamplitude zu studieren. Ebenso wurde dessen Sensor gegen die bestrahlten

ausgetauscht, um die potenzielle Verschlechterung der Ortsauflösung zu beobach-

ten.

Die Datenanalyse ergab Informationen über analoge und zeitliche Signaleigen-

schaften. Nach der Clustersuche, wurde die Informationen über die gesammel-

te Signalladung erhalten. Die Ergebnisse für die p- und n-Seite entsprechen in-

nerhalb der Fehler dem erwarteten Wert von 22800 Elektronen für ein minimal

ionisierendes Teilchen, das 285µm von Silizium durchdringt. Strahlprofile und

Tracking-Performance-Informationen in drei Stationen und zwei Hodoskopen wur-

den erhalten. Station, die mit bestrahltem Sensor ausgestattet wurde, zeigt die

Ortsauflösung von etwa 55 µm, deutlich schlechter als 30-35 µm für die unbestrahl-

ten Sensoren. Positionsstabilität des Strahls wurde anhand speziell entwickelter

Monitoring-Tools bewertet.

Schlussfolgerung

Als Ergebnis der durchgeführten Studien, wurden Microstripdetektormodul-

komponenten charakterisiert. Die experimentellen Anforderungen für das STS wur-

den formuliert und ihre Wirkung auf Modulstruktur und seine Komponenten be-

schrieben. Um die Modulkomponenten validieren zu können, wurde eine Reihe von

Demonstratorsystemen im Strahl charakterisiert.

Die durchgeführten Studien haben den Weg zur Integration der einzelnen Kom-

ponenten zu einem voll funktionsfähigen System dargestellt. Eine genaue Definition

des endgültigen Detektormoduldesigns war außerhalb des Geltungsbereichs dieser

Arbeit und muss noch erarbeitet werden. Der nächste Schritt wird die Systeminte-

gration sein. Zu den laufenden Aktivitäten gehören Studien bezüglich der Kühlung

und Stromversorgung der Detektor-Module und Stationen, Design des Strahlrohrs

im Bereich von STS und ihre Integration mit dem Micro-Vertex-Detektor im In-

neren des Magneten.
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microstrip detector prototypes for the CBM Silicon Tracking System, CBM
Progress report 2007, Darmstadt 2008, p. 32.

[100] K. Hara et al., Design of Punch-Through Protection of Silicon Microstrip De-
tector against Accelerator Beam Splash, Physics Procedia 37 (2012) p. 838-
843.

[101] J.M. Heuser, C.J. Schmidt, A. Lymanets, R. Röder, and L. Long, Devel-
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