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Abstract

Ultrarelativistic Quantum Molecular Dynamics is a physics model to describe the transport,
collision, scattering, and decay of nuclear particles. The UrQMD framework has been
in use for nearly 20 years since its first development. In this period computing aspects,
the design of code, and the efficiency of computation have been minor points of interest.
Nowadays an additional issue arises due to the fact that the run time of the framework
does not diminish any more with new hardware generations.

The current development in computing hardware is mainly focused on parallelism.
Especially in scientific applications a high order of parallelisation can be achieved due
to the superposition principle. In this thesis it is shown how modern design criteria
and algorithm redesign are applied to physics frameworks. The redesign with a special
emphasise on many-core architectures allows for significant improvements of the execution
speed.

The most time consuming part of UrQMD is a newly introduced relativistic hydrodynamic
phase. The algorithm used to simulate the hydrodynamic evolution is the SHASTA. As
the sequential form of SHASTA is successfully applied in various simulation frameworks for
heavy ion collisions its possible parallelisation is analysed. Two different implementations
of SHASTA are presented.

The first one is an improved sequential implementation. By applying a more concise
design and evading unnecessary memory copies, the execution time could be reduced to
the half of the FORTRAN version’s execution time. The usage of memory could be reduced
by 80% compared to the memory needed in the original version.

The second implementation concentrates fully on the usage of many-core architectures
and deviates significantly from the classical implementation. Contrary to the sequential
implementation, it follows the recalculate instead of memory look-up paradigm. By this
means the execution speed could be accelerated up to a factor of 460 on GPUs.

Additionally a stability analysis of the UrQMD model is presented. Applying metapro-
gramming UrQMD is compiled and executed in a massively parallel setup. The resulting
simulation data of all parallel UrQMD instances were hereafter gathered and analysed.
Hence UrQMD could be proven of high stability to the uncertainty of experimental data.

As a further application of modern programming paradigms a prototypical implementa-
tion of the worldline formalism is presented. This formalism allows for a direct calculation
of Feynman integrals and constitutes therefore an interesting enhancement for the UrQMD
model. Its massively parallel implementation on GPUs is examined.
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1. Introduction

1.1. Molecular Dynamics and Relativistic Quantum
Molecular Dynamics

Molecular Dynamics (MD) is a computational approach to study the collective movement
and interaction of particles, such as molecules. In each time step the potentials and
equations of motion for each particle are calculated. The resulting future position of
each particle is calculated in discrete time steps. Molecular Dynamics (MD) is used
in theoretical chemistry, biology and materials science. This model aims mainly, from
a particle physicist’s point of view, at macroscopic objects and their interacting and
forming forces. First ideas of MD are mentioned in [6]. Nowadays MD is applied for
medical research, e.g. protein folding, and the investigation of new surface structures in
materials science [38],[36]. Due to the pressing need of compute power in research and
development the usage of modern many-core architectures like GPUs is widely present in
MD applications [64} 22} 32} [65].

Relativistic quantum molecular dynamics, e.g. UrQMD, is an effective model for
simulations of nuclear collisions and scatterings. It combines approaches of different
branches of physics. Starting from relativistic motions and the Boltzmann ansatz, it
includes pQCD phenomenology, hadron physics, and a multitude of smaller models. The
principal goal of relativistic quantum molecular dynamics (RQMD) is the study of matter
under extreme conditions. The single most referred state is the Quark-Gluon-Plasma
(QGP), a special state of matter that only existed at the very beginning of the Universe.
The reproduction of the QGP is a goal of heavy ion collision experiments.

Simulation frameworks like the Frankfurt UrQMD framework have to incorporate these
different approaches and areas of physics in order to provide a realistic description of
the complex processes taking place in particle collisions. These frameworks obey a
certain evolutionary process, as new findings from experimental data as well as new
ideas from theoretical physics have to be integrated and often even have to substitute
older approaches and algorithms. As always in physics, a model is only as good as its
predictions, hence the results of software frameworks are compared to experimental data
and thereby validated (and not verified) on their predictive outcome.
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Figure 1.1.: The process of modelling and implementation. For a successful redesign of
legacy systems (like UrQMD) on many-core architectures the implementation
side is not the most crucial part. In order to gain significant benefits of
modern architectures new models on the computational side, i.e. algorithms
suited to hardware and physics model, must be examined.

In the next section I will outline the physics simulated in the Frankfurt UrQMD framework.
In order to port legacy frameworks, like the UrQMD framework, to modern architectures

an in-depth understanding of the underlying physics principles is crucial.

1.1.1. The underlying physics of MD and RQMD

In MD the modelled particles are often molecules or atoms. Usually MD simulations
include an ensemble of empirical potentials. These potentials, such as the Lennard-Jones
potential, are often calculated for each pair of participating particle in the simulation.
The resulting potentials are used to compute the acting forces on all particles and finally
provide the acceleration for the underlying Newtonian motion of these particles. The
origin of this empirical potentials can be seen in quantum electrodynamics (QED), i.e. the
theory of the electrical force.
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On the other side, the modelled particles in RQMD are the constituents of atoms, i.e.
protons and neutrons, and more general, all hadrons. Although QED has to be integrated
into RQMD simulations, the dominating potentials between hadrons result from quantum
chromodynamics (QCD), i.e. the theory of the strong force.

Although in both models first principal calculations, i.e. calculations directly with QED
or QCD are possible for individual systems, this approach is hardly used in bigger systems.
The simulation of bigger systems, e.g. protein folding in MD or the collision of lead-ions
in RQMD, is carried out by so called effective models. Effective models apply empirical
potentials or theoretical approximations to the full quantum field theoretical description
of the potentials. Nevertheless the differences between QED and QCD necessitate the usage
of completely different computational approaches.

1.1.2. A brief overview of QED and QCD

Quantum electrodynamics is the theory for the interaction of electrical charged particles,
e.g. electron and its heavier partner the muon. The carrier of all forces, the gauge boson,
is the (virtual) photon. Photons do not interact with each other directly. Self interaction
by a splitting into virtual proton and electron pairs ete™ is possible in higher order,
though. The Feynman diagram in figure shows this reaction. However, it is suppressed
by the electroweak coupling aey. The left side shows an incoming photon which splits up
into an electron and a positron in the first vertex. They meet again in the second vertex
and produce the outgoing photon. It is because of the non-interaction of photons that
optics is linear, i.e. can be handled by geometrical optics.

Quantum chromodynamics is the theory of particles with colouy'] charge. These are
e.g. the six quarks: up, down, strange, charm, top, and bottom. Each one of the quarks
carries a fractional electric charge and one of three colour charges: red, green, and blue.
The two lightest quarks, up and down, build the protons and the neutrons. However, in
particle collisions additional hadrons are produced, consisting of various combinations of
quarks.

The gauge bosons responsible for the forces between the quarks are the gluons. Contrary
to the QED case, where the photon does not carry electrical charge, in the QCD case the
gauge bosons carry a colour charge. This implies an additional complexity of this theory.
In the QED case electrical charged particles do act on each other due to photon exchange.
The photons however are not charged and rest unaffected of any electrical charge.

*Of course the “colour” in QCD is a different matter than the visible colour, as the size of the quarks
makes them invisible to observable light.
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Due to the colour charge of the gluons and their possibility to change their colour, four
kinds of interactions have to be modelled:

e Quark with quark.
e Quark with gluon.
e Gluon with gluon.
e Gluon with itself.

Not only the increased number of gauge bosons renders QCD more complicated than
QED, but a whole class of new interactions has to be modelled additionally. The basic
case of this self interaction is shown in figure On the right side such a process for
an incoming gluon is shown. Here the gluon splits up into two gluons in the first node.
They join again in the second node producing an outgoing gluon. The coupling constant
measures, the interaction strength at each vertex. The vertices in QCD (figure right
side) couple by a factor of 137 stronger than the vertices in QED (figure left side).
Therefore the rare case of photon self interaction (via intermediate electron - positron
pairs) can be neglected more easily than the gluon self interaction.

Another difference is given by the long range potentials in both theories. While single
electric charges (e.g. single electrons) can be studied, single colour charges (e.g. quarks)
never occur. They occur in white triplets and form the nucleons like protons and neutrons,
or coupled with the respective anti-quark forming a meson. To examine the interaction
purely between quarks, and not between protons and neutrons, big accelerator experiments
like the LHC at CERN and FAIR at GSI are build. Only at high momentum transfers (i.e.
temperatures) or at extreme densities the quarks within nuclei behave freely and one can
study their interaction. This phenomenon is called asymptotic freedom. Due to the high
collision energy, a simulation automatically has to cope with a high particle multiplicity
and relativistic effects. Another entanglement in RQMD contrary to MD is given by the
spacial extension of the systems. While most quantum effects average out on macroscopic
objects, like molecules, they have to be carefully integrated to simulations concerning
objects of the size of a proton or smaller. In addition to the high multiplicities created by
the nuclei of atoms, any excess energy can create further particles during a collision. The
complexity of accelerated and colliding nuclei is, for today’s computers, far too high to be
simulated by first-principle calculations, like real time Lattice-QCD.

Effective models on the other hand try to simulate the collective behaviour of many
particles at once. For instance the collision of two lead ions taking place in the LHC. In
order to cope with the combinatorical explosion due to high multiplicitie’] the effective
models apply different physical principles. The non interacting movements of particles

*Even the detection and analysis is a computationally demanding problem, as can be seen in [31].
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O =

Figure 1.2.: Photon self interaction is only possible via intermediate electron-positron de-

composition, which is suppressed by ﬁ Gluons can interact with themselves
due to colour charge.

can be modelled with relativistic mechanics, the particles’ position in the phase space can
be modelled by multidimensional Gaussians. The empirically found branching ratios, i.e.
the probability of a particle to decay into other particles, can be implemented together
with a bookkeeping and a pseudo random number generator in order to simulate the
cascading scatterings and decays in a nucleus-nucleus collision. A part of the collision can
be modelled by relativistic hydrodynamics, going back to a famous paper of Landau [g].

All these different approaches make use of a wide selection of algorithms and numerical
methods. When simulating different energy regimes and phases of a particle collision
different processes are dominating the reactions. Therefore these different processes have
to be orchestrated very carefully to assure stability of the model and efficiency of its
computation. An additionally important point is the extensibility and flexibility of the
full integrated model. New results and theoretical developments should be integrated
quickly into the model, and falsified approaches should be substituted by more accurate
approaches.

Unfortunately many implementations lack the needed modularity, as they are created on
the fly, when new approaches have to be tested out quickly. Often though, the prototypes
reside in the model and become deeply entangled in the core routines over time. This
leads to inconsistencies in interfaces. They are often not designed in order to encapsulate
functionality, but in order to get the desired data out as fast as possible. Particularly
the usage of common blocks in FORTRAN in this way leads to an humongous memory
requirement of simulation software. Often these common blocks are enhanced by various
fields which are of interest for a current project and later on relied on as recyclable
memory region. This leads to the situation that the total size of all common blocks is

limited only by the system’s maximal stack size.

1.2. The Frankfurt urQMD Framework

The Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model 8 0] is a simulation
framework for heavy ion collisions. It originates in the Quantum Molecular Dynamics
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model of J. Aichelin and H. Stocker [, [62]. To enhance the applicable energy regime it
includes the PYTHIA framework [61]. A recent addition was a hydrodynamic module [52].
Hence, in more than twenty years of development a multitude of physical approaches,
and accordingly algorithmic solutions, has been implemented. UrQMD is a valuable
asset to the Frankfurt physics community and under constant development. However,
recent developments in hardware and software design have not been implemented in the
UrQMD core framework. Due to the usage of FORTRAN 77 with a rather “goal-oriented
programming approach”, a well planed redesign down to the algorithmic approach is
necessary.
In my thesis I concentrate on four aspects of this redesign:

e The analysis and implementation of an approach for quantum field theoretical
calculations based on the direct calculation of Feynman integrals. Using a separate
hybrid Python and OpenCL code-base the worldline formalism [g7] is analysed
specially for its parallelisation capabilities on many-core architectures.

e A stability analysis of the UrQMD model. By application of an metaprogramming
approach the stability of UrQMD is tested against variations of the experimental
input data.

e An object oriented approach using C++. Carried out in the hydrodynamic subsystem
of UrQMD, it illustrates how object orientation can help to maintain a high readability

even in complex physics frameworks.

e A hardware oriented redesign of the hydrodynamic calculation in C++ and OpenCL
which applies metaprogramming, object oriented design, and many-core specific
optimisations.
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1.3. Legacy Code

As many other packages in theoretical physics UrQMD is entirely coded in FORTRAN 77.
The transition from the problem oriented coding used in UrQMD to structured programming
[18] or even object oriented programming is aggravated by the numerous usage of common
blocks and entangled gotos which leads to the infamous “spaghetti code”.

In order to benefit from new developments in hardware architecture, a redesign to a
more structured algorithm is necessary. An aim of this thesis is to demonstrate how
legacy code, like UrQMD, benefits from such a structured redesign. The benefits are not
only to be found in the optimised maintainability and extensibility of the code basis. In
fact, only the redesign enables the usage of modern many-core architectures, like GPUs.

Different approaches can be taken to redesign a present code basis. The high performance
(HPC) community relies heavily on FORTRAN-code. Therefore significant endeavours have
been made in order to provide the compute power of GPUs even for legacy FORTRAN
systems, e.g. a FORTRAN compiler of the Portland Group [53] suited to the usage of
NVIDIA’s compute uniform device architecture (CUDA). Additionally automated approaches,
like £2¢ from FORTRAN to C++, are investigated, e.g. to port computational fluid dynamic
(CFD) codes to CUDA with python-parsers [15].

However, these automated procedures can not provide the full spectrum of optimisations
and often parallelise the simplest loop structures only. This is due the lack of knowledge
of the underlying problem to the optimiser. The compiler can only work on the given
source code, describing one possible implementation. To the programmer, on the other
hand, the complete description of the physics model is known. He has therefore the choice
of redesigning even on the complete algorithmic level and not only on the implementation
level. Additionally the source codes generated by automated methods lack readability,
as their generation is laboured to be correct for the compiler and often does not foresee
any interaction with a programmer. Therefore the maintainability of partially converted
simulation frameworks decreases further. Hence the first step towards the usage of GPUs
is the redesign of legacy codes, which hinder parallelisation due to their nested structures
[63]-

In its continuous development different modules of UrQMD have been devised for parts
of the simulation. These range from bookkeeping tasks over the interface routines for
PYTHIA to various subroutines for string fragmentation and other quantum mechanical
mechanisms. An overview of the necessary modules can be seen in figure The
introduction of the hydrodynamic module has posed an optimal starting point for the
redesign of UrQMD. As can be seen in figure [1.3} the hydro module is self contained
(1fluid.f) and does not interfere with other sub-modules of UrQMD.

Additionally the profiling information of UrQMD reveals that the hydrodynamic calcula-
tion dominates the execution time, as shown in figure and figure [1.5] Therefore, as a
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Figure 1.3.: The organisation chart of UrQMD on file level [51].



1.4. Heterogeneous Computing

consequence of Amdahl’s law, the parallelisation of onefluid() in figure is the most
promising candidate to gain an overall speedup for UrQMD.

The redesign of legacy frameworks, like UrQMD, including the developments of algorithms
suited to the physics models and modern hardware architectures, is clearly an endeavour
of several years of scientific work. However, this thesis will outline the analysis, redesign
process, and integration of new features for different core aspects within the UrQMD
framework under the consideration of many-core architectures.

1.4. Heterogeneous Computing

The usage of modern computer architecture poses a major challenge to legacy systems,
like UrQMD. Notwithstanding that frameworks for parallel design of algorithms have been
used widely in HPC applications of theoretical physics, the classic approaches of using
MPI or even OpenMP are not sufficient to benefit from the vast choice of modern computer
architectures.

Over the last years the increase in performance of computing hardware has not been
realised by higher frequencies of the chips but by an increase of parallelisation (see
figure . In its original form Moore’s law is still correct and the increase of the
transistor count still results in a gain of computational power. However, nowadays this
computational power is accessible only by the usage of parallel algorithms.

Additionally the vast selection of different hardware types, not only different vendors, but
completely different computing models poses a heavy burden to any possible refactoring
attempt. Depending on the necessities different hardware types can be used:

e Different CPUs, with a number of virtual or real cores, accompanied by sophisticated
hardware routines for branch prediction, pipelining, out-of-order execution etc. .

e GPUs, with a multitude of cores, optimised for floating point operations, and a
distinct memory hierarchy. (A development driven mainly by the demands of
modern computer games).

e FPGAs, that can be programmed to fit perfectly to the desired execution stream of
the needed programs.

e Cell broadband engines, featuring a low latency interconnect.

o Accelerators like Intel Many Integrated Core (Intel MIC), designed only to fit the
needs of the HPC community, offering large vector sizes.
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Figure 1.4.: The call graph of UrQMD without hydrodynamics for a 3 GeV Au+Au collision.
Methods that consume less than 0.5% of time are suppressed. Due to the

time consumption of the hydrodynamic routines in figure a finer-grained
resolution is gained in this graph.
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Figure 1.5.: The call graph of UrQMD with hydrodynamics for a 3 GeV Au+Au collision.
Methods that consume less than 0.05% of time are suppressed. Each node
contains the name of the method, the part of the execution time spend within
this method (or below), and in parentheses the time exclusively spend in the
method. The colour of the node is coded in a blue to red scheme according to
the execution time. The edges of the graph are labelled with the percentage
of calls to the child nodes.
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Figure 1.6.: Moore’s law in its original form states the doubling of the transistor number
of an integrated circuit every two years. (Figure taken from [66].)
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‘ Single Data  Multiple Data
Single Instruction single-core CPU GPU

Multiple Instruction — multi-core CPU

Table 1.1.: Flynn’s taxonomy.

Often a mixture of different devices offers the best capabilities for the needs of research
groups?l In this heterogeneous compute architecture the choice of language and parallel-
isation concept is crucial. For this reason the Open compute language (OpenCL) is designed
to put the necessary abstraction layers onto the physical existent hardware. Designed
by a non profit industry consortium, OpenCL is devised to be a royalty-free and open
standard. Thus a possible vendor lock-in can be avoided.

However, even before the development of state of the art programming frameworks, the
promising performance in number crunching of GPUs was sought-after. Noteworthy in
the high-energy physics community are the Lattice-QCD calculations by [1g]. But only
the usage of programming frameworks like OpenCL allows to rely on a clear algorithmic
design of physics models, without the unnecessary obfuscation by complicated graphics
operations.

The rather smooth transition from multi-core to many-core programming can best be
characterised not by the mere number of compute cores, but by the capabilities of these
cores. On the one hand, classic processors are equipped with different arithmetical-logical-
units (ALUs) responsible for floating point and integer calculations. They use sophisticated
cache structures, complex branching hardware (including branch predictions), efficient
pipelines, out-of-order execution, and (comparatively) small vector registers. On the
other hand, many-core hardware, like GPUs, makes use of highly efficient floating point
ALUs, with small cache structures supporting an hierarchy of shared memories. Here the
execution stream is grained, i.e. fixed groups of ALUs work always together and execute
the same operations per cycle. Within Flynn’s taxonomy the present GPU hardware
can be seen as best suited for the single instruction multiple data (SIMD) case (compare
table . As modern GPUs are more flexible than the classical SIMD definition, the
term single program multiple data (SPMD) has been coined. This is due to the fact that
the execution stream is not totally parallel on modern GPUs. Within a (model specific)
granularity the execution streams of GPUs may deviate from each other.

Although for UrQMD I concentrate mainly on the usage of GPUs, the usage of OpenCL has
allowed to execute the redesigned programs on other hardware types too. The performance
details are discussed in chapter [5}

3The Frankfurt LOEWE-CSC is a realisation of this heterogeneous computing paradigm using AMD
CPUs and GPUs.
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Figure 1.7.: A schematic diagram of an AMD GPU. (Figure taken from [1] and slightly
modified.)

1.4.1. The OpenCL Abstraction of GPUs

The structure of GPUs still changes rapidly from model to model and from vendor to
vendor, hence the nomenclature is often to be called blurry. I will follow mainly the
nomenclature of current AMD GPUs, which deviates slightly from the NVIDIA nomenclature.
OpenCL provides the compute capabilities of GPUs through an abstraction to the actual
hardware. A common structure among all devices, cores, ALUs, and memory types is
assumed in the OpenCL standard. Additional features of the actual hardware maybe
accessed with hardware specific extensions to the standard. However the usage of this
extensions comes at the price of reduced portability. To ensure the maximal portability I
have avoided any hardware specific extension in the following.

The Platform Model

In figure a schematic view of an AMD GPU is depicted. The shown structure is typical
for all modern GPUs. A GPU consists of a number of compute units which are controlled
independently by a scheduler, called ultra-threaded dispatch processor (UTDP) in AMD’s
nomenclature. The scheduler is responsible for the mapping of the tasks of the parallel
program to the different compute units and processing elements on the GPU.
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1.4. Heterogeneous Computing

The compute units are subdivided into processing elements. A processing element can
be seen as a (virtual) scalar core. However, it may be composed of different ALUs and
offer e.g. instruction level parallelism.

The OpenCL standard defines an independence between different compute units, hence
compute units must be able to work with different instruction streams in parallel. Within
a compute unit, though, the standard allows both: a SIMD or a SPMD structure.

All processing elements within one compute unit can be executed in a lockstep manner,
i.e. all elements in one unit execute the exact same instructions at the same time. In this
case, a compute unit realises a SIMD architecture. In the other extreme, every processing
element maintains an independent program counter, this realises a SPMD architecture
even within one compute unit. However, often the ALUs within one compute unit are
grouped to small functional units and are equipped with an independent program counter.
The granularity given by this grouping is called a wavefront. A wavefront exhibits the
finest granularity, in which the execution stream of a program may deviate from a pure
lockstep execution of instructions, within the wavefront a pure SIMD behaviour is realised.

The present hardware in a compute node is managed through the OpenCL platform
model, as shown in figure [1.8] Typically a classical C or C++ program uses the OpenCL
framework to manage one or more compute devices. The compute devices can be different
GPUs in one system, or even the present CPU. The management program is executed
in the typical manner on the used node, called host, and makes the different compute
devices available. The AMD implementation of the OpenCL standard allows the usage of
the present (AMD) GPUs together with the CPUs of the node.

Device
Com .
o < ol Device ‘
e Conl pevice
g Compute unit |
Compute unit
Compute unit

 E—|

e p
E

Figure 1.8.: The OpenCL Platform Model. (Figure from [23].)
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The Execution Model

The host program, responsible for the management of the compute devices, provides the
necessary context for the OpenCL computations. The context consists of the compute
devices, memory objects, program objects, and command queues. It determines the
environment of the executed program. All data transfers and calculations shall reside
within the same context. The code responsible for the computations on the devices
is organised in so called kernels. These kernels are programmed in the actual OpenCL-
language, a derivation from the C99-language. Usually kernels are directly compiled before
execution, this guarantees the high portability of OpenCL-programs to different hardware
types. To launch the computation on the GPU, the kernels are enqueued in the command
queue with a geometrical description of their computing range. This description spans an
index space and the instances of the kernel, called work-items are executed for each point
of the index space. Each work-item is attributed with an identifier, the global ID, which
gives the position in the index space.

The geometrical description of the index space is given by the NDRange-argument
(N-dimensional range). The simplest case is giving solely the number n of kernel instances
without any additional structure. In this case, n work-items, instances of the kernel, are
executed in parallel on the GPU. The index space may be one, two, or three dimensional.
Therefore the dimension best suited to the domain of the physical model can be chosen
and the global ID can be used to carry suitable geometrical information.

Additionally to the geometric structure of the index space, the work-items can be
subdivided into work-groups. Each work-group is bound onto one compute unit. Therefore
the execution stream of work-groups is quite uniform. A further subdivision into work-
groups is often very beneficial for the performance of the executed program. Constraints
are depending on the actual hardware used and its wavefront length. A schematic overview
of the NDRange structure is shown in figure

The Memory Model

The OpenCL memory model defines a hierarchical structure of memory on the compute
devices, see figure Four different memory regions exhibit different access limitations:

e Global Memory. Every work-item has a read/write access to the global memory.
o (Constant Memory. Every work-item has a read only access to the constant memory.

e Local Memory. Only work-items within the same work-group have read/write access
to the local memory.

e Private Memory Each work-item has exclusive read/write access to its private
memory.
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Figure 1.9.: Work-items can be enqueued with a three dimensional organisation by the
NDRange argument. (Figure taken from [1].)

On graphics cards these memory regions provide significantly different access latencies.
The fastest access is possible to the registers of the processing elements. Depending on
the needed resources, private memory may be mapped onto these registers. However, if
a kernel makes extensive use of private memory, it physically resides within the global
memory with its reduced access speed. A small amount of memory is usually present
on each compute unit. This amount of memory, called local data store (LDS) in AMD’s
nomenclature, is shared between all work-groups that are executed in parallel on a
compute unit. The global memory has the slowest access speed. It can be accessed from
all work-items independent of the work-group or compute unit. The constant memory
usually resides within the global memory. Special cache structures can increase the access
latencies. Often the constant memory has a privileged caching structure.

The memory management must be carried out with the appropriate API calls in the
host program. The allocation of global memory, as well as all dynamic allocations of all
memory types, must be handled on the host side. Static allocations of local and private
memory are managed on the device side. Allocated sections of global memory used for
computation are called buffers. Data transfer from host to device and vice versa must be
handled by the host program.
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Figure 1.10.: The OpenCL Memory Model. (Figure taken from [23].)

Consistency and Synchronisation

In OpenCL a relaxed consistency scheme is realised, i.e. consistency can be enforced with
special barrier and synchronisation points. Private memory is always consistent. Local
memory read- and write-consistency can be enforced within a work-group with special
barrier functions. The same holds also for all work-items within the same work-group
and their access to the global memory. However, no consistency can be enforced for
work-items of different work-groups.

All memory transfers and executions are controlled in command queues, which are
assigned to one compute device only. However, different command queues can be assigned
to the same compute device. Therefore the execution of independent different kernels or
memory copies can be maintained independent. Kernels can be executed in order, i.e.
each kernel waits for the completion of the preceding kernel in the queue. Additionally
kernels can be executed out-of-order. In this case the execution of the kernel can be
controlled by a dependency-list. The execution of each kernel generates an event object,
which can be used to control the command queue.
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2. Parallel computation of the Casimir
Effect

2.1. Experimental Prototyping

The present chapter, and the according algorithms in the appendix, are mostly based
on our paper [g], which was elaborated during a research stay at the university of
Southampton. Contrary to the article, I will discuss the design criteria and their relevance
for other fields of physics more thoroughly here.

During the research stay with an interdisciplinary team of physicists, computer scientists,
and mathematicians the goal was to investigate on a novel approach in computational
quantum theory, the worldline approach [28, g7, [26]. Not only the predictive power of
the model has been of interest, but also its viability for massively parallel calculation of
quantum phenomena. Rapid prototyping allowed to implement this approach to quantum
field theory for Casimir forces in the three months the team stayed together. Instead of a
redesign or incorporation into the UrQMD model, different code bases were created:

1. A Python prototype including all features, but too slow in execution for a fine

grained grid.

2. A Scheme implementation strongly oriented to the Python implementation with the
full feature spectrum and fast enough to produce numerical results on a workstation.

3. A Python + OpenCL hybrid version limited to selected geometries which is able to
fully harvest the parallel computing capabilities of the LOEWE-CSC supercomputer.

Within this project we were able to explore new algorithms and important optimisations
for the quantum field theoretical calculations. Experimental prototyping often allows
only for a very small subset of desired features. Nevertheless various geometries could be
studied with the Scheme implementation and the existence of frameworks like PyOpenCL
[39] has allowed us to do massive parallel simulations on GPUs for selected geometries.
Thus, numerical issues and artefacts could be estimated with concrete data of simulations
and the efficiency of GPUs for this kind of algorithm could be examined.
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2. Parallel computation of the Casimir Effect

2.2. Introduction to Path Integrals

Path integrals can be seen as an alternative approach to quantum mechanics and quantum
field theory. They are used to calculate the probability amplitude and have a rather
geometric viewpoint compared to the more standard Schrédinger approach. I will follow
[20] for the heuristic introduction in this section.

In classical mechanics there is typically a unique path a particle describes. This path
depends on boundary conditions, e.g. an electrical potential acting on an electron. The
path can be found by applying the principle of least action. On the unique path, a
quantity called action has its minimum. For the free particle this path, the classical
trajectory, is a straight line. The principle of least action is described by the action

integral
tp
S= /L’()'(,X,t) dt . (2.1)
ta
Which leads to the classical Lagrangian equation of motion:
d /oL oL
dt(&b)_axzo : (2:2)

This equation is of course a merely informal description and has significance only, if x
and & are given by a curve I'(t) which is parameterised by ¢.

The path integral approach can be motivated by the double slit experiment for electrons.
The typical setup, shown in figure consists of an electron emitter, a double slit, and a
wall with an electron detector.

The detector is measuring the well known interference pattern at plane B. This pattern
can be described by interference calculation considering the de Broglie wavelength of
electrons. Instead of calculating the interference patterns by the Huygens-Fresnel principle,
the path integral approach assigns a probability amplitude depending on the action of
each path an electron describes. However, as the interference pattern vanishes as soon
as it is known whether an electron passes slit 1 or slit 2 the idea is to calculate as if an
electron passes both slits.

Thus to calculate the correct probability amplitude, the path integral approach abandons
the idea of exact one path per particle. The next step is a mere limit process by putting
more and more masks between emitter and detector, and punching more and more wholes
into this masks, as shown in figure Reconsidering again the double slit experiment, all
possible paths leading through the two given slits and the initial mask give a contribution
to the final probability amplitude. A selection of possible paths can be modelled by
Brownian motion, as shown in figure
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2.2. Introduction to Path Integrals

-8

B___ __________ _

A C B

Figure 2.1.: Typical setup of the double slit experiment, consisting of an electron emitting
coil S with a mask A to generate an electron ray with the wall C in the middle
having two holes. At plane B the detector measures the arriving electrons
and their distance to the central axis. (Figure taken from [20].)

C B

Figure 2.2.: Considering more masks in between emitter and detector and adding more
slits into the masks. Again the interference pattern changes if the information
about the actual way of the electrons can be gained. Thus all possible
combinations have to be considered at once. (Figure taken from [20].)
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2. Parallel computation of the Casimir Effect

Figure 2.3.: The classical double slit setup with an central double slit mask. The red
paths are a selection of possible paths of one electron originating in the
centre of the left mask and hitting a detector on the right wall, the paths are
modelled with a Brownian motion.

In the double slit experiment only paths leading through the initial mask, the double
slit, up to their first impact onto the final detector wall are feasible. Following the path
integral approach, all these paths contribute to the final calculation of the probability
amplitude by the action equation which is path dependent. The sum over all paths is
referred by the new notation as:

b
o — / eFSBPDy () (2.3)

Of course this integral has to converge and be well-defined, which is assured by special
kernels suitable to the kind of Lagrangian applied. Additionally in a Monte Carlo
simulation the ensemble of exemplary paths has to be representative for all possible paths,
and again the question for the right measure is important. However for the simulation
of the Casimir effect, the worldline approach uses the ensemble of closed loops within
e.g. two parallel plates and uses as border conditions pure geometrical intersections with
these two plates. Our simulation results mirror e.g. the effects measured between parallel
plates.

The resulting attracting force between the plates in figure is the integral over the
contribution of the action of each loop. The loops are modelled by Brownian motion.
As the length of each loop itself is infinite, a suitable measure is the variance of the
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Figure 2.4.: The experimental setup for the parallel plates geometry. Between two parallel
perfect conductors (black) loops of different length (coloured) are modelled
by Brownian motion.
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2. Parallel computation of the Casimir Effect

underlying distribution. The distribution of the possible lengths is discussed in as it
is crucial to the accuracy of the integration. The following overview of the physics model

and the applied algorithms is taken from our article [g].

2.3. The Numerical Method of Worldline Numerics

Casimir forces are forces arising due to quantum effects in geometries with boundary
conditions. They have first been predicted via theoretical considerations by Casimir
in 1948 [13], and have since been verified experimentally to 1% accuracy [g5]. At present,
one major obstacle to research is that Casimir force calculations are often computationally
very demanding. Nevertheless, the development of theoretical tools and methods must
go hand in hand with progress in nano scale manufacturing, for it is clear that a sound
understanding of the role of Casimir forces in nano machines will become increasingly
important as we learn to manufacture on shorter length scales.

One approach to the calculation of Casimir forces is based on the worldline approach
developed by Gies, Klingmiiller, Langfeld and Moyaerts [28, 17, [26]. This approach
has mostly been used to study simplified field theoretical models with massless scalars
instead of vector gauge bosons (photons). Nowadays alternative methods are available to
directly calculate electrodynamic effects even with frequency-dependent optical properties
of materials |59, @4]. However, the worldline approach is interesting for a number of

reasons:

e Due to the probabilistic nature of the method, it is sometimes computationally
comparatively cheap (depending on the geometry) to obtain a rough estimate of

Casimir forces.

e The calculation can be modified in such a way that it simultaneously gives all the
forces on a number of bodies, making it potentially attractive for problems requiring
a geometric shape optimisation approach.

e Finally, it is formulated in a way that is suggestive of a remarkably intuitive

interpretation.

2.3.1. Monte Carlo Integration over Loops

The Casimir energy for a static geometry that can be modelled by a position-dependent
potential V' (z) is given as the quantum effective action per unit time:

I'V]
ECasimir = m . (24)

T=T_
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2.3. The Numerical Method of Worldline Numerics

The worldline numerics formalism by Gies, Langfeld, and Moyaerts is developed in [2g]
uses the Lagrangian:

1 1 1
L= 50,00u6 + 5m*¢* + SV (x)¢* (2.5)
for a real scalar field ¢ coupled to a potential V(z). The quantum effective action for the
potential V' is given by:

1 ~0% +m? + V(x)

ryv] = iTr In 7 m? (2.6)

The trace operator is re-expressed as a Feynman path integral. This leads, for a real
scalar field of mass m interacting only with the external potential V| to an expression
for the effective action that is numerically tractable via Monte Carlo methods. The key
expression from [29] is:

1 1 [dr _,
T3 (n)? T3¢ 2T/d45'5 |:<WV[y;x7T]>y - 1} ; (2.7)
1/A2

LalV] =

where an UV cut-off regulator A has been introduced. Here, the expectation value (-),
is the ensemble average over all closed loop (c.l.) Gaussian random walks y : [0;1] —
R,y(0) = y(1) of Wilson loops rescaled to proper time T'. Let the statistical weight of

t=1
ply] = exp (— / dt?)(t)2/4) ; (2.8)
t=0

DyWyly,x, T
<WV[ZU§$>T]>y = fyc.l. fy l‘;)[;/p{y] 2y J (2.9)

where Wy, depends on the path y and on position shift  and proper time 7"

the loop y be

then:

t=1
Wy y; z, T| = exp (—T / atV(z + \/Ty(t))) . (2.10)
t=0

From this expression for the effective action of a free scalar interacting with a potential,
Casimir forces can be obtained by using the position dependency of the potential V(x)
to model the geometry, and calculating energy changes associated with changes to the
geometry.

While the applicability of this model for the calculation of real Casimir forces is
questionable (even for perfect conductors) as the physics of photons is quite different
from that of a scalar field, the remarkable conceptual simplicity of the above expressions
certainly warrants a deeper investigation of its properties and potential utility, for it
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2. Parallel computation of the Casimir Effect

might actually allow a (yet undiscovered) generalisation to the photon case. For the
electromagnetic case, one would naturally want to start with investigations of perfect
conductor surfaces, and the (obvious) scalar pendant of this is a potential V(z) that
suppresses all quantum fluctuations inside the given bodies. It is not difficult to see that
one may alternatively restrict the potential to have non-zero values only close to the
surfaces of bodies, taking

Viz) = )\/d20(53(1: —z5) (2.11)
5

and considering the limit A — co. Then, Wy [y; x, T] reduces to:

1
1 Loop pierces a surface
exp —T/dtV(.CL‘ +VTy(t)| = PP . (2.12)
0 0 Loop does not pierce a surface

Substituting s = v/T to eliminate the square root, and using translation invariance of
the integral to ensure all loops have centre of gravity at the origin, the expression for the
geometry-dependent regularised Casimir energy is:

(e o]

M= | FlOvnal, (2.13)

1/A

where the mean value is over all unit loops, sy is the loop y(t) scaled pointwise around
its centre of gravity y by the factor s, and

0 Loop does not pierce a surface
Ov(sy,z) = _ . (2.14)
1 Loop pierces a surface

The problem with this approach is that the Casimir energy attributed to the surface of
any single body goes to infinity as we send the energy regulator A to infinity, due to the
contribution from very short loops close to the surface. (This is, of course, a non-physical
artefact related to the geometry much larger than atomic scales approximation.) In
order to predict Casimir forces between different objects we are only interested in the
dependency of the energy on the relative position of these objects. Therefore, it makes
sense to modify this scheme in a way that (i) the contribution of each loop is taken into
account relative to a configuration in which all objects are at infinite separation from one
another, and (ii) the Casimir energy contribution attributed to loops piercing only one
object surface (hence, belonging to that object) is taken as zero.

Consider n objects with potentials Vi,...,V,. Then the total potential is V = V; +
Vo + ...+ V, and we use the freedom to shift the absolute energy level to define the
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2.3. The Numerical Method of Worldline Numerics

interaction Casimir energy E as in [2g] as the energy difference relative to a configuration
in which every body is at an effectively infinite distance from every other body:

E=T[V]-T[WV]-T[W]—...-T[V,]) /AT . (2.15)

Using this, we get

B 1 T ds
B =y | 0wy (210)
1/A
with © given by
0 Re-scaled loop does not pierce any surface

O(sy, ) = C (2a7)

1 —n Re-scaled loop pierces the surfaces of n > 1 objects

If n objects come close to one another, every loop that pierces all of them can be
regarded as the image of n loops, each to be considered as being attached to (and moving
with) that body. Hence, when objects are in proximity, we count a loop once that would
have been counted n times instead for separated objects. (Note that the counting weight
of both a loop that pierces no surface, and a loop that pierces only one surface, is zero.)
If the objects are now spatially separated the integral flofA %(@(sy,x»y is finite and
well behaved for A — 0, so we can safely set A = 0. One is easily convinced that this
is indeed the correct expression by considering a simple geometry (such as two parallel
flat slabs) and requesting that the Casimir force does not change if one object is instead
thought of as being made of two adjacent bodies. The counting weights are dictated by
the convention for the zero energy configuration.

For each loop y, the weight ©, as a function of the rescaling factor s, is piece-wise
constant. The s-integral hence can easily be performed analytically. Rather than being
only a convenient simplification that saves computing time, this property plays a crucial
role for the efficient simultaneous computation of multi-body forces.

2.3.2. Loop Generation

When trying to evaluate Equation one naturally would try to discretise the loop
as consisting of a finite number of straight sections. Taking the procedure literally,
the presence of complicated curved geometries would mandate computationally fairly
expensive ray-surface intersection checks. In many cases, a better investment of the
computational effort may be to instead make the number of discretisation points on the
loop sufficiently large to ensure that simple inside/outside checks applied to each point
give a reasonably close approximation. Still, generic ray/surface intersection checks can
become useful, especially if the complicated multiple integral in Equation m (over loop
shapes, loop sizes, and loop centres of gravity) can partially be evaluated by analytic, or
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2. Parallel computation of the Casimir Effect

rather semi-analytic means that involve numerical approximation of integral boundaries.
This is relevant for the discussion in section [2.3.4] and may make major computational
improvements of the method possible.

In order to generate a properly distributed random sample of loops, we first generalise
the problem to finding a process that produces piecewise straight paths with Gaussian
length distribution (of given standard deviation) for a given starting and end point (not
necessarily coincident). This problem can be rephrased as finding pairs of such paths, each
with its own starting point but at first without any constraint on their endpoints, and
imposing the condition that they meet at their endpoints. Concatenating the first path to
the reverse of the second solves the problem of finding a path with the correct distribution
between two given points. One easily sees that the distribution of the midpoint is still
Gaussian (being the product of two Gaussian distributions). Hence, we can sample a loop
by recursively sampling an intermediate point in the interval between a given start and
end point.

This method, known as the d (‘doubling’) loop algorithm [30], manages to generate
closed loops with the desired distribution with very little effort.

Rather than choosing starting points randomly in space and then determining the
location of the halfway-round-the-loop point, it makes sense to perform stratified spatial
sampling on a lattice. To do so, we choose the first point to be the lattice point and
take the halfway point to be Gaussian distributed with mean the first point and standard
deviation a characteristic length. We then continue sampling a loop of that length
and later scale it around the midpoint between the first point and the halfway point
appropriately to obtain a unit loop. In that way, the midpoint is Gaussian distributed
around the lattice point with a given length scale.

If we want unbiased integration by taking loops for each lattice point, the lattice
points have to be representative for loops sampled in their vicinity, with a characteristic
length being that of the grid. This is certainly true if the grid is fine compared to any
characteristic length of the geometry. However, the same can be achieved for arbitrary
grids, if we take the characteristic length in the just described stratified sampling to be
that of the grid.

A different kind of lattice effects has to be taken into account for methods computing a
force as a difference in energy for two given geometries. Such methods would typically
put a fixed set of loops on each lattice point and add up their energy contributions. Then
they would do the same for the same geometry with one object moved in a particular
direction. The difference in energy is then proportional to the force component on the
moved object in the given direction.

To focus on the net effect, as we do with symmetries (see , one typically would
use the same set of loops for both geometries. Also, to have for each loop a corresponding
shifted loop, the amount the object is moved has to be a multiple of the grid length
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2.3. The Numerical Method of Worldline Numerics

(in this direction). While doing otherwise would not necessarily yield a bias, doing so
significantly improves the convergence speed of this method.

For our purposes, we typically only ask simple questions about each loop, such as which
objects does it hit?, or (at most) for what scaling intervals does this loop, centred at Tem
but rescaled in size, hit object O, ? In order to answer these, only very little information
needs to be stored when visiting the loop point by point. So it is possible to implement
the relevant algorithms in such a way that the loop is generated on the fly, and we never
have to store the entire loop in memory—the number of points we have to remember
is about the binary logarithm on the loop length. This yields an algorithm with a very
small memory footprint and attractive characteristics for computing architectures that
emphasise a high degree of parallelism between very simple cores.

2.3.3. Numerical Integration over the Scaling Factor

One approach to obtain energies—and so ultimately, by comparing energies for different
geometric configurations, forces—is to directly evaluate the integral in Equation
numerically. Naively, one would have to, for various values of s, estimate (©(sy, z)), and
summing up. Since the order of summing up does not matter, we can as well compute
the expectation value of the following process:

e Choose s uniformly at random from the interval [a, b].
e Randomly generate a loop sy of size s.
e Count (1 —n)/s” if the loop hits n > 2 objects, and 0 otherwise.

Here [a, b] is an interval big enough so that integrating over that interval does not differ
noticeably from integrating over all positive reals.

Looking at that random process more closely, one notes that the information about the
random loop we use is the number of objects it hits. We have to pay particular attention
to short loops that are just long enough to barely touch multiple objects, as they give
the largest contribution to the sum. One should note that it is not possible to attribute
a useful physical meaning to absolute differences in loop scaling factors s: for a loop
that hits (at least) two objects, the effect of changing s to s 4+ 0.1 very much depends
on what the magnitude of s is. As relative changes of the scaling factor hence are more
important than absolute changes, we much prefer a distribution, when sampling loops,
that handles all orders of magnitude equally. In other words, we prefer a distribution
where the logarithm of s is uniformly distributed on [In(a), In(b)].

When changing the distribution of s, we also have to transform the weight attributed
to each sample accordingly. Taking the logarithm of s to be uniformly distributed, rather
than s itself, each value s will be 1/s times as likely as before. To still get the same
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expectation, we have to multiply each value by s. Hence, we are finally left with estimating
the expectation of the following process:

e Chose o = In s uniformly at random in the interval [In(a), In(b)].
e Randomly generate a loop of size €.

e Count (1 —n)e % = (1 — n)s~* if loop hits n > 2 elements, and 0 otherwise.

2.3.4. Symbolic Integration over the Scaling Factor

It makes sense to try to perform at least part of the integration needed to evaluate eq.
symbolically, for two independent reasons. While this may on the one hand help to
simplify the problem, it also gives us a much more useful handle on problems that involve
changing geometries. As we are much more interested in Casimir forces (and moments)
than just energies, this is obviously desirable.

In particular, we can, as in [27], typically perform the integration over the loop scaling
factor [°, %9(53/, x) symbolically.

If we have sampled a loop y, we can compute for each sampling point the values of s
for which this sampling point is inside a given object. Often, this is just an interval, or at
worst the union of a few intervals. By merging these intervals for each sampling point,
we can compute the set of s values for which the loop hits the given object. Now, as ©
counts the number of objects hit by the loop, it is piecewise constant on the partitioning
so obtained; if ©® = n for T € [a, b], we have ff ‘j—? O(sy,z) = n(a™* —b=*)/4.

Note that this means that we also do not need to specify the region of s which we want
to sample, i.e. our method does not need to know a geometric length scale.

2.3.5. Numerical improvements

In a typical geometry, essentially the whole energy or force is contributed by few, com-
parably small regions. These are typically the regions where two objects come closely
together. While we still have to sample loops in such a way that we integrate over all
of the relevant region of space, it is worthwhile to focus effort mainly on these highly
contributing areas, as the absolute uncertainty of our Monte Carlo estimation is much
higher there. We achieve this in the following way: We first specify an absolute accuracy
to which we want the density estimated to at every point. When later sampling the
density at a given point, we first take a specified minimum of samples. From that we
estimate the (unbiased) variance of our sampling at this point. We continue sampling
until a pre-defined (95%) confidence interval for the sampling mean is smaller than the
prespecified accuracy. This adaptive sampling scheme reduces significantly the execution
time, while guaranteeing the necessary accuracy.
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Figure 2.5.: The “cylinders with sidewalls” geometry and the dependency of the attractive
scalar Casimir force between the cylinders on the Position of the plates. At
position 1.0, the plates would touch the cylinders.

Some geometries, like the “cylinders with sidewalls” geometry studied in [54], show a
high degree of symmetry. While perfect symmetry helps to reduce the computational
effort as the calculation can be restricted to a fundamental domain, slightly non-symmetric
configurations often are a problem if we want to compute the force on an object that
gets pulled in different (perhaps opposing) directions: most of the contributions cancel,
giving rise to a small residual force. A naive approach would compute the contribution at
both sides of the object separately and then add up. This, however, would yield a huge
variance for a comparably small resulting value. Fortunately, the force contribution of a
loop and its mirrored image are highly correlated in these situations. Often, one is the
negative value of the other. So we have a better way of estimating the contribution by
estimating the expectation of the following process:

e Randomly pick a loop and also consider its mirror image under the symmetry.

e Add up the force contributions of both these loops.

By this mirroring method, we do not change the expectation value of the sum, but, due
to the correlation, the variance is much smaller. Hence, it is possible to compute force
contributions where a naive approach would require excessive effort due the huge variation,
as in the system discussed in the next section.
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2.3.6. Parallel Cylinders between Plates, revisited

The “cylinders with sidewalls” geometry studied in [57] (figure on the left) has been
shown to nicely demonstrate that Casimir forces are essentially multi-body forces. It
is given by two parallel, infinitely long cylinders between two parallel infinite plates.
Focusing on the attractive force between cylinders, one finds that this depends in a fairly
subtle way on the distance between the plates. In figure the energy densities of two
different configurations are shown. On the left side, the parallel plates are near enough to
suppress almost completely any energy contribution. When the distance of the plates is
increased, the loops in the centre contribute significantly to the energy.

For the calculation whose results are shown in figure [2.5, the cylinders used have
radius 1.0 and centres at (z, y)-coordinates (—2.0,0.0) and (2.0,0.0), respectively. The
plates are given by the equation z = p, where p is varied in the range 1.02...2.50. The
calculation of the force on the left cylinder used the scaling method, sampling around
a grid with spacing 0.05 and exploiting the mirror method (section by taking a
reflection-symmetric loop ensemble w.r.t. the plane z = —2.0 to reduce the variance due
to cancellation. This sampling was done in an adaptive manner (section . In total,
between 1.9 - 107 and 3.9 - 107 loops of 2!3 points were sampled for each geometry.

The results are shown at the right-hand side of Figure As opposed to methods
such as the proximity force approximation, we do see a dependency of the forces on the
cylinders on the plate distance. We however could not find the non-monotonic behaviour
reported in the literature [54] for the photon case. So, once again, we have an example
where scalars behave in a qualitatively different way than photons [33].

2.3.7. Significance of Worldline Numerics for Engineering

From a microsystems engineering perspective, the worldline numerics have a number of
attractive properties, such as the ability to quickly give crude estimates, considerable
potential to solve geometric optimisation related problems, and of course its conceptual
simplicity and intuitiveness that make it a useful educational tool with the potential
to give a simple yet quantitatively correct mental model of the origin of Casimir forces.
Quite remarkably, the operational procedure can be explained using very simple concepts
only—in fact, even without having to use much linear algebra.

At present, the biggest obstacle to its utilisation for engineering applications is the
method’s inability to handle photons in the presence of conducting boundaries instead of
scalar particles in the presence of Dirichlet boundary conditions. As we have demonstrated
in section through an example calculation, the problem is that any attempt to use
scalars in order to approximate photon Casimir forces is questionable as this can easily
give predictions that are wrong already at the qualitative level.
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Energy density [a.u.
Energy density [a.u.]

(a) A compact plates and cylinders configuration. (b) A loose plates and cylinders configuration.

Figure 2.6.: The Casimir energy density in the plates and cylinders geometry in arbitrary
units. The region in the centre shows no energy contribution in the dense
configuration on the left side (a). The loose configuration (b) on the right
side shows a significant energy contribution of the loops which are situated
in the centre.

2.4. Implementation

2.4.1. Design

The design decided upon in the Python prototype was later used in the Scheme version.
As the Scheme version and the Python prototype aimed on a multitude of geometries,
the basic building blocks (solid bodies) were designed as shown in figure The OpenCL
version, on the other side, applies a more specialised design concentrating on fewer
geometries and massive parallel computation. Therefore the more general approach using
the oset-calculations has been substituted by the direct Monte Carlo integration shown
in section The construction of the loops is encapsulated in the generator class
HostGen, which provides the necessary format of loops, as well as the possibility to
save and restore the state of the Pseudo Random Number Generator (PRNG). For each
specialised geometry an extra module and kernel is devised. This is due to the need of
different buffers holding the spacial information of the examined geometry.
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Figure 2.7.: The geometry in the Python prototype was realised by n-dimensional half-
spaces and n-dimensional spheres (balls). With the Translated-class differ-
ent approaches calculating force and energy could be studied. The classes
Translated, Ball, and Halfspace implement the interface provided by
Solidbody.

2.4.2. Many-Core implementation

In the worldline formalism the calculation of contributions to the total energy (or force)
can be performed independently for each grid point. Also, for each grid point, the
contribution of each loop to the energy (or force) does not depend on the contribution of
the other loops. Thus the problem can be calculated in a massively parallel approach.
Furthermore the basic component—processing a loop — does not require overly complex
calculations (in the sense of memory requirements and deep branching). As the worldline
method is a probabilistic approach, the accuracy of the calculation can be increased
increasing the number of grid points, number of loops, and the number of points per loop
in an appropriate way.

As the computation for each point and loop follows the same algorithm, this approach
fits the single program, multiple data (SPMD) processing approach very well and under
the prospect of using the LOEWE-CSC an implementation in OpenCL was a natural choice.
This was specially interesting, as the PyOpenCL framework allowed us to combine the
rapid-prototyping facilities of Python with the needed OpenCL in order to address the
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GPUs.

On account of local memory size limitations, we have developed a version of the d-loop
algorithm that generates, for each loop, the loop points on the fly—without ever storing
the entire loop in memory. As OpenCL in its current specification [37] does not support
recursion directly, it is advantageous to instead manage a stack of arcs yet to be split
in half, as sketched in listing [1] This manages to reduce the memory footprint of loop

while (stacksize > 0) {

pop(StartPos, EndPos, level);

if (level > 0){
MidPos = (StartPos + EndPos) / 2
+ gauss_normal (0, sigma(level));
push(MidPos, EndPos, level-1);
push(StartPos, MidPos, level-1);

}

else calc_contribution(StartPos);

3

Listing 1: Schematic structure of the code managing a stack of yet-to-be-split arcs.

generation and processing from O(N) to O(log(N)), N being the number of loop points.
Therefore it is possible in principle to shift loop generation to GPU cores even for loops
too large to fit into the GPU memory. Regrettably this comes at the cost of intensive
branching and it depends highly on the used hardware, whether this version of the d-loop
algorithm is efficient or not.

The generation of loops on the GPU depends additionally on a reliable fast PRNG. Here
the usage of CLRANLUX, as proposed for Lattice-QCD [7], might be a possibility. In our
case, however, we found it more appropriate generate loop shapes on the CPU with the
Python provided Mersenne twister and subsequently upload them GPU global memory,
thereby relying on a thoroughly tested PRNG.

The domain decomposition can follow directly the investigated geometry, as the energy
(and force) contribution of each grid point is independent of the surrounding grid points.
As the resulting energy (and force) is assigned only to the grid points, it is possible to
calculate tiles of the geometry separately and compose the resulting forces in a post-
processing step.

An additional level of parallelism can be achieved by running the Monte Carlo integration
with different seeds on different GPUs. This comes only with a small risk of biased
statistics, because of the period size of the built-in Mersenne twister (219937 — 1) and the
comparatively small number of generated loop-points (< 240).
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After the initial setup of the GPU, including the buffers needed for loops and energies,
the host-code subsequently produces new sets of loops and uploads them onto the GPU
global memory, see figure . This is done during the calculation of the (partial) energy
contribution of the current loop-set to the total energy, hence an additional level of
parallelism can be used.

The kernel, shown in listing [15] found in the appendix, loops over all loops of a current
loop-set. Each work-item changes then the underlying geometry (i.e. the plates are
translated instead of all the loops) and performs the intersection checks and calculates
the corresponding partial energy difference under an additional shift in the direction of
the examined force. Thereby the contribution of each loop to the forces acting on the
current pixel is computed. Using the same set of loops at all grid points also helps in
terms of statistics as there then can be direct cancellation between opposing forces arising
from similar geometric structures. (See also the discussion in section M)

We have used GPUs mainly with the direct numerical Monte Carlo integration method
described in section [2.3.3] The symbolic integration with scaling intervals has been
applied to the plate-plate geometry on the GPU and showed a better convergence than
the direct numerical integration. However, the direct integration is more suited for
parallelisation and can be applied to several geometries. The direct integration method
requires a fixed number of sampling points, depending only on the desired accuracy. The
symbolic integration, though, requires a different number of scaling intervals for different
geometries.

The worldline formalism, used here to study a simplified field theoretical model, does
not yet provide all the quantum mechanical effects (see section , desired for more
complex simulations. However, as our many-core implementation proves, the worldline
formalism is suitable to a massively parallel computation on modern hardware. Hence
more complicated versions of the worldline formalism pose promising candidates for
quantum mechanical calculations on large scales.
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Figure 2.8.: The host program initialises the GPU, modifies by metaprogramming the given
OpenCL source according to user specified parameters and generates an initial
set of loops. Thereafter subsequently new sets of loops are generated and
loaded onto the GPU during the computation of the partial energy contribution
of the preceding loop-set.
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3. Stability Analysis

Parts of this chapter have been previously published in [27]. In addition to the publication’s
results, regarding the implications for UrQMD, the computational approach is examined
in greater detail here.

3.1. Model Analysis by Metaprogramming

Apart from the experimental difficulties, a major obstacle to pin down the properties
of strongly interacting matter is the unambiguous interpretation of the experimental
results. Unfortunately, first principle lattice QCD calculations are currently only feasible
in thermal equilibrium and for very moderate ug/T values (T being the temperature and
pp being the baryo-chemical potential). Therefore, transport approaches like UrQMD are
employed to link the final state observables to the physics properties of the hot and dense
stage of the reaction.

All transport models have in common that they rely as input on measured quantities
like the hadron masses, the hadron decay widths, individual branching ratios and cross
sections. Unfortunately, these quantities are very often not exactly known, as one can see
from an inspection of the Particle Data Group (PDG) [48] tables.

In this chapter the dependence of UrQMD to the variation of some of these parameters
is explored systematically. In the long run, these investigations will allow to obtain the
systematic error of the simulations, which is needed to quantify the quality of the model
results. Although applied on the UrQMD-model, the method is also transferable to other
transport models based on similar physics assumptions.

As shown in chapter [1] the UrQMD-model contains various interacting subsystems.
Hence performing parameter scans on single routines gives only small insights on the
overall impact of varied parameters. Because of the intrinsic dependencies of the routines,
responsible for distinct physical behaviours, the model has to be examined as a whole.

In a classically grown software package, like UrQMD, it is quite cumbersome to introduce
the necessary variations with new routines or parameters. It does not suffice to change
the main calling routine, or the configuration parameters; instead one would have to
rewrite parts of the whole simulation framework. This lack of flexibility led to one of the
starting ideas to object oriented design (OOD).
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Although a complete rewrite and redesign of UrQMD is planned] it is possible to conduct
the necessary studies with the current code base. The necessary degree of freedom can
be achieved by considering the source code itself as a variable. Variations of the source
code, controlled by a metaprogram, can then be compiled and tested. This approach by
metaprogramming is usable to a certain extend with many legacy systems.

The usage of a metaprogram offers the possibility to examine systematically slight
modifications of programs, e.g. in their constant settings. Thus, not only the stability of
simulation frameworks can be tested, but also variations within physical theories can be
examined. Therefore existing (legacy) simulation models can be reused to check their
consistency with varied physics parameters, even if this possibility is not foreseen in the
code base.

The combination of a metaprogram in Python with the target program UrQMD in
FORTRAN benefits of the rich possibilities in text manipulation of a scripting language
(Python), with the high execution speed in numerical calculations of a compiled language
(FORTRAN). In addition, using this approach, the varied constants are variables only to
the metaprogram and hence remain constant to the FORTRAN compiler, allowing it more
aggressive optimisations.

3.2. Computational Setup

The main modifications within UrQMD is the variation of the hard-coded hadron masses
and widths with automatically generated tables with varied parameters. Then a sufficient
number of simulations is performed and evaluated. The activity diagram and data flow
is shown in figure To this aim, the analysis framework parses the up-to-date data
from PDG web page [48] and generates intervals according to the PDG-data and user
parameters. Thereafter the analysis framework automatically rewrites the UrQMD-source
code according to these intervals. On the LOEWE-CSC the different variations of UrQMD
are compiled and employed to carry out a systematic parameter scan and to check the
stability of the model. After the computation the data files from different UrQMD runs
are parsed and compressed to statistics files, which can easily be interpreted on local
desktop systems.

In the following, the dependence of the UrQMD results on the particle data, within the
estimated errors provided by the PDG is shown. Where possible the variation range is
extended up to +10% of the PDG-mass and width values. Separate scans for variations
of mass and width of each baryon family are performed. Typically 10000 events are
simulated to stay clear of statistical errors.

*With the redesign of SHASTA as a first step.
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Figure 3.1.: The analysis framework compiles the varied sources of UrQMD and instantiates
them in parallel on the LOEWE-CSC. After completion the simulations’ results
are gathered and put into compressed statistic files.

3.3. The Stability of the urQMD-model

3.3.1. Cross Sections

Let us start by investigating the total pion-nucleon cross section as a function of energy.
This cross section is of special importance for the dynamics of nuclear matter at interme-
diate energies. It also serves as direct benchmark to adjust the parameter sets since it is
well measured experimentally. The total cross section is given by

O-};\?;CT: Z <jN7mN7j7T7m7THJR)MR>
R=A,N*

" 25gp +1 ™ I'roNaltot (3.1)
(2Sn + 1)(25: + 1) piyss (Mg — \/5)2 + %
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Figure 3.2.: (a): Total pion-nucleon cross section as a function of /s for a systematic

variation of the nucleon resonance masses. The full line depicts the PDG
averages, the dotted line shows a variation of the PDG parameters by +10%,
the dashed line a variation by —10%. (b): Total pion-nucleon cross section as
a function of /s for a systematic variation of the nucleon-resonance widths.
The full line depicts the PDG averages, the dotted line shows a variation of
the PDG parameters by +10%, the dashed line a variation by —10%.
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3.3. The Stability of the UrQMD-model

with the total and partial decay widths 't and I'g_s n, if the mass dependence of
the widths is neglected®} Thus, the cross section depends on the widths and masses of all
nucleon- and Delta-resonances N* and A, Figure (a) depicts the total pion-nucleon
cross section 0T as a function of the centre of mass energy /s for a systematic variation
of the nucleon-resonance masses. The full line depicts the PDG averages, the dotted
line shows a variation of the PDG parameters by +10%, the dashed line a variation by
—10%. One clearly observes that the 7N cross section varies strongly if the resonance
masses are changed. In turn, however, this allows to pin down the resonance masses
rather precisely. In contrast a change of the resonance widths leaves the cross section
unaltered. Figure (b) shows the total pion-nucleon cross section as a function of /s
for a systematic variation of the nucleon-resonance widths. The full line depicts the PDG
averages, the dotted line shows a variation of the PDG parameters by +10%, the dashed
line a variation by —10%.

Figure (a) depicts the total pion-nucleon cross section as a function of /s for a
systematic variation of the A masses. The full line depicts the PDG averages, the dotted
line shows a variation of the PDG parameters by +10%, the dashed line a variation by
—10%. Figure|3.3| (b) shows the total pion-nucleon cross section as a function of /s for a
systematic variation of the A widths. The full line depicts the PDG averages, the dotted
line shows a variation of the PDG parameters by +10%, the dashed line a variation by
—10%. One clearly observes that a variation of the nucleon-masses has a drastic effect on
the pion-nucleon cross sections especially in the A(1232) region. In comparison to the
available experimental data, strong constraints on the model parameters can be obtained.
In fact, the employed parameters are based on the PDG data and re-adjusted within the
limits of the PDG ranges.

3.3.2. Pion Production
3.3.3. Pion Yields

Let us next turn to the investigation of full Pb+Pb collisions and focus on the FAIR energy
range of 2A GeV and 30A GeV. Here we investigate the total pion yield for a systematic
variation of all nucleon-resonance masses my+ by up to 10%. We show the deviation of
the pion yield compared to a UrQMD calculation with the mean values of the PDG data
files. Figure (a) shows the relative pion yield in Pb+Pb collisions at 2A GeV beam
energy for a systematic variation of the masses and widths of the nucleon-resonances by
+10%. Figure (b) shows the pion yield in Pb+Pb collisions at 30A GeV beam energy
for a systematic variation of the masses and widths of the nucleon-resonances by +10%.

*The full UrQMD simulation includes the mass dependence of the widths.
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Figure 3.3.: (a): Total pion-nucleon cross section as a function of /s for a systematic

variation of the A masses. The full line depicts the PDG averages, the dotted
line shows a variation of the PDG parameters by +10%, the dashed line a
variation by —10%. (b): Total pion-nucleon cross section as a function of
/s for a systematic variation of the A widths. The full line depicts the PDG
averages, the dotted line shows a variation of the PDG parameters by +10%,
the dashed line a variation by —10%.
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Figure 3.4.: (a): Relative pion yield in Pb+Pb collisions at 2A GeV beam energy. For a
systematic variation of the masses and widths of the nucleon-resonances by
+10%. (b): Relative pion yield in Pb+Pb collisions at 30A GeV beam energy.

For a systematic variation of the masses and widths of the nucleon-resonances
by £10%.
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Figure 3.5.: (a): Relative pion yield in Pb+PDb collisions at 2A GeV beam energy. For a
systematic variation of the masses and widths of the A resonances by +£10%.
(b): Relative pion yield in Pb+Pb collisions at 30A GeV beam energy. For a
systematic variation of the masses and widths of the A resonances by +10%.
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3.3. The Stability of the UrQMD-model

Even at the lowest energy, which is strongly dominated by resonance dynamics, the
model results do at worst vary linearly with the variation of the model parameters. At
30A GeV, the model results are stable against a variation of the resonance parameters.
The variation of the particle widths has no significant effect on the model results.

Figure [3.5] investigates the pion production as a function of varying masses of the
Delta-resonances ma and their widths I'o. The masses of all Delta-resonances have been
scaled with the same factor. Here we limit the variation to —8% — +10%, because the
code becomes unstable for too low masses. Again a variation of the width leaves the
results unchanged. The variation of the A®) masses, however results in a strong variation
of the pion yield at 2A GeV. This effect is mainly attributed to the A(1232) resonance that
is pushed toward the kinematic limit (ma1232) — mp + myz). At 30A GeV, the variance
of the yield stays generally moderate. However, the pion yield shows a pronounced step
if the masses are shifted by ~ 1.8% upward. While the magnitude of the effect is small
it indicates that complex simulation models may exhibit discontinuous behaviours. The
dip at ~ 8.3% however is a purely statistical effect, which can be seen in the production
processes. Let us now have a closer look into the origin of the step.

For further analyses, we group different production processes into five classes, discrim-
inating the decay of Delta-resonances (A), the decay of nucleon-resonances (N*), the
decay of strange baryons (accounting for all unstable baryons not included in the former
two classes) (Bs), the decay of meson resonances (m) and scatterings (XY — 7+ R). In
Figure (a) one observes that at Fj,, = 2A GeV, the number of pions from scatterings
stays constant as a function of Delta-mass, while the production of pions from Delta
decays rises linearly. At very low Delta-masses (less than —6% of the standard value), the
formation of Deltas absorbs on average more pions than are being produced by the decays
thereof, while at higher Delta-masses, the opposite is true. The increase of pion production
from Deltas is counteracted by a decrease of pion production from nucleon-resonances
N*, which start to be net-absorbing above +6% of the standard (Delta-)masses. This
can be explained in a picture of detailed balance: When the Delta-resonances produce
more pions, the equilibrium value of pion- and N*-multiplicity is shifted toward the N*.
Thus, the N*-phase space is populated more quickly than it is depleted. The same effect,
though much weaker and not turning around completely, can be seen in the decrease of the
number of pions from mesonic decays. In total, the rise of pions from Deltas counteracts
the fall of pions from N*, thus leading to a weak overall rise of the pion production.

At 30A GeV we focus now on the step like behaviours at a A-mass shift of ~ +1.8%.
Figure[3.6](b) shows the contributions of different A-resonances to the final number of pions
for varying Delta masses between 0 and +10% at high impact energy Ej.;, = 30A GeV.
In an analysis similar to the one from Figure (a), we trace the step to the Delta
contribution. The step we discovered earlier consists of an increased pion production (less
absorption) from the Ajgso-resonance, which rises from —20 to 0, and a corresponding
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Figure 3.6.: (a): Pion yield in Pb+PDb collisions at 2A GeV beam energy itemising different
production processes. (b): Pion production from various A resonances in

Pb-+-Pb collisions at 30A GeV.
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decreased production (increased net absorption) from the Ajggg-resonance, which drops
from 0 to —16. The /s-distribution of the underlying 7N collision remains essentially
unchanged as a function of ma. Therefore, at the point of the discontinuities, the Ajgog
takes the role that Ajgs9 had at lower masses. Since the branching ratios Ajgog — mA 1239
and A1gs0 — mA1932 differ by a factor of 2 (40% vs. 20%), the number of Aj932 and thus
the number of pions are changed over a small mass interval. We find a similar behaviours
at ~ +5%, where the pion production from Ajg5¢ decreases, while the production from
Aqgqo increases. Superimposed is an approximately linear rise of pion production from
the lowest Delta-resonance Aqa39.

3.3.4. pr-spectra of 7"

Finally, we discuss the transverse momentum distributiong’] Here we investigate the pions
transverse momentum distributions in Pb+PDb collisions at 2A and 30A GeV. Figure [3.7]
(a) shows the deviation of the pion transverse momentum spectra (p;) in Pb-+Pb collisions
at 2A GeV for variations of the nucleon-resonance masses.

At 2A GeV, a decrease of the nucleon-resonance masses shifts the pions to lower py,
while an increase of the masses shifts it to higher transverse momenta. However, variations
of the yields at higher p; maybe up to £20% for a variation of +5%.

Figure (b) displays the deviation of the pion transverse momentum spectra (p;) in
Pb+Pb collisions at 30A GeV for variations of the nucleon-resonance masses. Figure
(a) shows the deviation of the pion transverse momentum spectra (p;) in Pb-+Pb collisions
at 2A GeV for variations of the A resonance masses. Again, we do not observe and effect
on the calculations at Ej,;, = 30A GeV is within the statistical fluctuations. Figure (b)
displays the deviation of the pion transverse momentum spectra (p;) in Pb+Pb collisions
at 30A GeV for variations of the A resonance masses.

The effect of variations in Delta-resonance masses is strongly nonlinear. Both at high
beam energies and at low beam energies, we can distinguish three transverse momentum
regions. Pions from intermediate transverse momentum 0.2 < p; < 0.6 GeV are being
shifted to low transverse momentum p; < 0.2 GeV, if the masses are decreased and vice
versa, if the masses are increased. This is expected, since the available kinetic energy in a
Delta decay decreases with decreasing Delta-mass. At higher transverse momenta, lower
masses lead to higher pion yields, while higher masses lead to lower pion yields, which
is a reversal from the behaviours observed from varying the nucleon-resonance masses.
Furthermore, we observe the effects to be a lot stronger in low-energy collisions. Also the
variation of the A masses by +5% results in modifications of the pion yield by +20% in
given p; regions.

3We also analysed the rapidity spectrum distributions, but found no significant deviation.
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Figure 3.7.: (a): Deviation of pion transverse momentum spectra (p;) in Pb+PDb collisions
at 2A GeV for variations of the nucleon-resonance masses. (b): Deviation of
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variations of the nucleon-resonance masses.
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3.3.5. Consequences of the Stability Results

In light of the upcoming high precision experiments at FAIR, it is highly desirable to
obtain better estimates on the systematic errors of transport simulations. As shown, this
question could be addressed by using the UrQMD transport approach in nucleus-nucleus
reactions in the FAIR energy regime from 2A to 30A GeV. We have analysed elementary
cross sections in pion-nucleon reactions, as well as lead-lead collisions for various sets
of input parameter variations of the hadron masses and widths. Although the analysed
quantities show globally only a weak dependence, discontinuities like in Figure (b)
may occur and influence predictions made by the applied models. The dependence is
strongest in low-energy collisions, where the collision dynamics is dominated by resonance
production and decay. Here, one may encounter systematic errors on the order of £20%.
At higher energies, the systematic errors are much smaller. One should note, that we
have explored a worst case scenario where all parameters were shifted simultaneously in
one direction. The error on the masses (and widths) are however uncorrelated and should
therefore induce smaller systematic bias into the simulations as compared to this study.
Therefore, we conclude that the predictive and analysis power of the present approach is
better than a systematic error of 20%.

The method described in section can be applied to other simulation frameworks in
this field. Therefore stability analyses of these frameworks can be performed before start
of the impending experiments at FAIR, without the need of a complete redesign of the
frameworks.
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The usage of a relativistic hydrodynamic approach to describe heavy ion collisions goes
back to an idea of Landau [g]. It is motivated by the fact that the mean free path of
particles is small compared to the size of a system consistent of two colliding nuclei.

4.1. Theoretical Foundations: the Euler Equations

Experimental data, e.g. the elliptical low observed in RHIC experiments, show that even
at today’s highest energies the dynamics of strongly interacting matter can be modelled
with (ideal) hydrodynamics. The UrQMD hybrid model applies after an initial collision
calculation hydrodynamics and uses a transport approach as afterburner [52]. The two
borders of a hybrid model are the transition from the transport model (microscopic model)
to the hydrodynamic model (macroscopic model) and after the hydrodynamic propagation
the transition back again to the transport model. In UrQMD (version 3.3) the transition
to the hydrodynamic model is carried out immediately after the initial baryon currents
have decoupled, i.e. after t = ,YZC—}EA with R being the radius of the nuclei and youm the
Lorentz-factor for the centre of mass system.

In the hydro phase different equations of state can be applied in different phases of the
propagation, e.g. depending on the energy regime currently present in regions of the grid.
The importance of different equations of state is shown in [58] 37]. According to certain
criteria, e.g. average energy density, chemical potential, or merely propagation time, a
transition back to the microscopic model is carried out. This process is called freeze-out.
Let us explore the hydrodynamic phase in detail in the following.

After the transition from particles to fluid volumes certain quanta should be conserved:
e FEnergy,

e Momenta, and

e Quantum Numbers.

The classic concept of mass conservation is handled by the baryon number conservation,
which is more suitable to simulations at this level. Neglecting thermal transport as well
as viscosity leads to the Fuler equations of fluid dynamics.
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(a) Particles (picture from [g3]). (b) Fluid parcels.

Figure 4.1.: After the initial phase UrQMD makes a transition from particle degrees of
freedom to fluid degrees of freedom.

As explained in section neither the mass nor the number of particles are a conserved
quantity, when considering relativistic effects. However the baryon number is conserved
even in collisions, where relativistic effects take place. The following derivations follow
closely [42] and [17]. The conservation form of the Euler equations is the most suitable for
the later computational approach. The equations can be derived from a Lagrangian or an
Eulerian viewpoint. The Lagrangian approach follows an arbitrary but fixed fluid parcel
during the movement, while the Eulerian approach fixes a volume in space and evaluates
the changes of quantities within this volume during the flow. These different viewpoints
are mirrored in the differential operators % (the partial time derivative, which keeps the
place fixed), and 2 (the total or material derivative). If the fluid is transported by a
velocity field u relative to the fixed (Eulerian) volume, these operators have the following

relationship:

D 0
th—a"Fu'V . (4.1)

Where the left summand % describes the local temporal change, and the right summand
u - V the change due to advection.

4.1.1. Baryon Conservation

The conserved baryon number resembles the net number of baryon charge in a certain
fluid volume. Albeit the baryon density is subject to relativistic effects the net number is
a conserved quantity. For a non-relativistic case it can best be compared to the mass of
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Figure 4.2.: Energy density as a function of time in a typical relativistic heavy ion collision.
Different lattice equations of state are compared to the model developed in
[34] (solid line). (Figure taken from [34])

the propagated fluids. Let p(x,t) € R be the baryon density, such that for an arbitrary
Volume V the total baryon number at time ¢ is:

R:/p(x, t)ydx . (4.2)
\%

As no baryons are created or destroyed the baryon number of volume V' changes only by
the flux of baryons across the border AV of the volume. If n is the outward normal vector
on the surface of the volume, then the baryon flux is given by pu - n. Therefore:

gt/p(x,t)dx—i—/pu-nds:o . (4.3)
\% ov
The volume V is independent of time ¢ and we can assume the border 9V is sufficiently
smooth and the velocity field is continuously differentiable. With the Gaussian integration
theorem follows:

/ (gtp(x’t) +V- (p(x,t)u)> dx=0 . (4-4)
1%

As this must hold for arbitrary volumes V' the integrand has to vanish. Therefore we
derive the continuity equation:

gtp +V-(pu)=0 . (4-5)
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4.1.2. Conservation of Momenta

The equation for the conservation of momenta is often simply called Euler equation, as it
was Euler’s proposal to describe the movements of ideal fluidq"] The model of ideal fluids
neglects the viscosity of fluids. Similar to the case of the continuity equation not only the
local changes of momentum due to pressure, but also the flux of momentum has to be
considered. The local change on the momentum N within a volume V is due to the force
acting on the surface of the volume and the flux. Therefore:

ON = gt/p(x,t)udx (4.6)
v

_ —/pnds—/(p(x,t)u)u-nds . (4.7)

ov )%

Again with the Gaussian integration theorem follows:

‘/gt<pu)+v.(p1+pu®u) dx=0 . (4.8)

With T being the identity tensor of rank 2 and the divergence (V-) extended to rank 2
tensor fields. Hence the differential form of the Euler equation is:

9 -
a(pu) +V. (pI +pu® u) =0 & (4.9)
0

a(pu)—l—v- (pru®@u)+Vp=0 . (4.10)

The conservation of momentum is a direct consequence of Newton’s second law of
mechanics F = N. Similarly F = ma can be used to derive the total change of the fluid
velocity vector:

Du
PD7t+Vp—0 ; (4.11)
0
p{at—i—u'V}u—i—Vp:O ) (4.12)
ou 1
a—l—(u-V)u—i—;Vp—O . (4.13)

The derivation of the integral form, using the material derivative applies Reynold’s
transport theorem to bridge between the immutable Fulerian volumes and the time

dependent Lagrangian fluid parcels.

*Feynman describes this as dry water [21].
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4.1.3. Conservation of Energy

The equation for the conservation of energy for adiabatic processes was formulated by
Laplace. The conservation of energy is derived applying the Gibbs relation:

1
dw:TdS—i—;dp . (4.14)

For the enthalpy w, temperature T', entropy 5, pressure p, and density p. Supposing
isentropic fluids one obtains
dp=pdw . (4.15)

For a fixed volume V the total energy within this volume is:

E= Ekin + Einner < (4-16)
1
E:§(u-u)+f~: ) (4.17)

For the isentropic case the lack of T'dS leads to the simpler derivatives for the kinetic

and inner energy:

0 u? u? u?

&<p2> —_QV'(PU)_PU'V<2+W) ) (4.18)
0 _ Op
a(/’é‘) = wa : (4.19)

For u? = u-u. The inner energy relates here to the enthalpy by w = ¢ + Lp). The local
change within a fixed volume V' is thereby determined by two quantities, the flux of
energy and the work done by the pressure:

1 1
i/P(Q(U'u)—Fs) dX:—/pu<2u-u+5>-nds—/pu'nds . (4.20)
ov ov

7
Which holds as differential form:

BV u(E+p)=0 . (421)

4.1.4. Coordinate Form of Euler Equations

The Euler equations in differential form:

%p +V-(pu)=0 |, (4.22)
%(pu)+v.(pu®u)+Vp:0 , (4.23)
%EJrV-[u(EH?)]:O : (4-24)
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are, formulated in coordinate form, almost identically implemented in the explicit solver
analysed in chapter [4.4}

P pu pv pw
A pU ) A p+ pu2 . A puv . A puw . ( )
— -— -— — = .2
At pu Az puv Ay P+ pv A pvw , ) 4.25

pw puw poLw P+ pw

E u(E + p) v(E +p) w(E + p)

with u = (u, v, w)T.

4.2. Relativistic Hydrodynamics

Collisions take usually place at an energy regime subject to significant relativistic effects,
e.g. two protons colliding with a centre of mass energy of /s = 2 GeV have increased their
mass by about 10%. A more exhaustive explanation of relativistic hydrodynamics can be
found in [16] and |50]. I will follow these references in the next section’s elaboration. In
the formulation of special relativity used here, Greek indices count from 0 to 3 while Latin
indices count from 1 to 3. I follow the Einstein summation convention, i.e. in terms with
doubly used indices as super- and subscript, the summation of these terms is meant. If
not otherwise stated in the following let v = |v| = 1/>7_; v? be the norm for the velocity

three-vector v.

4.2.1. Relativistic Conservation of Baryon Number

Fundamental changes due to relativistic effects are the contraction of volumes and the
increase of mass. A conserved quantity is the baryon number B = % (ng — ng), with ng
being the number of quarks and ng the number of anti-quarks. Hence the baryon density

is subject to relativistic corrections. Let v be the velocity, then
1
7= Vi—oZ
is the so called Lorentz-factor. Instead of the non-relativistic density p the conserved
quantity is then A = vp therefore:

%NnLV-(NV):O : (4.26)

It is common to use tensor notation in special relativity. The relativistic equation of
baryon conservation is therebyf}

0

?Using the Einstein summation convention.
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For the four-vector N# = put defined by the four-velocity u* = (v,yv). Because of

) 5.0

= —_— [ —_—

0 83:“N Za NH (4.28)
*NO (4.29)
B,
8t(7p)+v (vpv) (4-30)

the equations and are equal. They are the relativistic counterpart to
equation 1}
4.2.2. Conservation of Energy-Momentum-Tensor

In the relativistic case, there is a flux between the momenta and the energy of a fluid
volume. This is because the energy of a particle changes with its velocity. Hence
momentum and energy are not independent, as in the non-relativistic case, but put
together in the so called energy-momentum-tensor T#”. The components of T*" are:

o 7% the energy density,

e 7Y% the density of the momentum in T; axis,

o T the flux of energy in z; axis, and

e T the flux of the xj-momentum to the z; axis.

The energy-momentum-tensor is in its simplest form when calculated in the local rest
frame, i.e. the frame where the fluid volume is at rest:

T{rr = (4-31)

O O O ™
oo o
o O O

o O O

p

As the energy-momentum-tensor is symmetric in the local rest frame, it has to be
symmetric in all frames§3] Transforming into the computational frame one obtains:

(e+p)V*—p qua(e+p)  yuy(e+p)  yu:(c+p)
qur _ | Yua(E+p) ui(e+p)tp weuy(e+p)  ugus(e+p) (4.32)
oF Yuy (e +p)  uguy(e+p) ul(e+p)+p  uyz (e +p)

Yu. (e+p)  uguy(e+p)  uyur(e+p) ui(e+p)+p
= (e + p) uu” — pg"” . (4.33)

3The symmetry is invariant under Lorentz-transformations.
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4. Hydrodynamics

While the non-relativistic momentum density is given by pv in the relativistic part it is
determined by the energy density and additionally by the pressure (e + p)v. Thus, the
conservation of energy and momentum together reads:

0

o
il =0 - (4-34)

4.2.3. Similarity to non-relativistic Euler Equations

For w = € + p the energy-momentum-tensor can be written as:

T = wy*vw; +pdij (4-35)
7% = wyv; , (4.36)
T = (e+p?)y? . (4-37)
Setting then:
N = pY , (4-38)
M = wy?v ,and (4-39)
E= (e+p?P)y? (4-40)

the relativistic Euler equations take the form similar to the non-relativistic differential

equations (4.22)), (4.23)), and (4.24):

%N—FV-(Nv) =0 , (4.41)
0 _
MYV (Mv+pI) =0, (4.42)
0
5 TV (vE+p) =0 . (4.43)

4.3. Algorithm Types for Hydrodynamics

Computational fluid dynamics is a widely studied field in applied mathematics. The vast
choice of algorithms, ranging from explicit Eulerian solvers to implicit multigrid methods
is the fruit of mathematical research ranging back to the works of d’Alembert, Euler,
Lagrange, and Laplace. In the twentieth century different numerical methods solving
partial differential equations have been developed. The selection of an appropriate solver
for hyperbolic differential equations, depends on the boundary conditions of the underlying
physics model. Although pure finite volume methods are well suited to transport problems,
in the case of ideal relativistic hydrodynamics in [57] the SHASTA is shown to provide
solutions best suited to physics conditions present. The SHASTA introduced in [12] is
classified as a fluz-corrected transport algorithm. Boris and Book derive their results
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4.4. The SHASTA

from Eulerian finite difference algorithms which they enhance by subsequent correction
steps. The authors introduced with their paper [12] the family of fluz-corrected transport
methods. However the relationship of the SHASTA is certainly seen closer to the finite
volume methods than to finite difference methods in modern nomenclature.

I concentrate in the following on the redesign and optimisation of the SHASTA. Nev-
ertheless the optimisations seldom take advantage of special properties of the SHASTA.
Hence, they can be applied in general to all explicit solvers and most of them even to
implicit solvers. For our purpose, however, explicit methods are in the centre of interest.
They allow a direct access to all physics quantities within each time step, instead of a
more abstract iteration step. This direct access allows for a further development of in
situ functions, like the relativistic corrector or the calculation of derived quantities for
possible freeze-out routines.

4.4. The SHASTA

The invention [g0] of flux-corrected transport algorithms dates back to 1971 and was
widely presented in [12] with the Sharp and Smooth Transport Algorithm (SHASTA). Since
then various algorithms have been derived using the original ideas of [12]. In UrQMD a
relativistic implementation [57] of SHASTA is used. It is composed of five phases:

1. Geometric transport.

2. Anti-Diffusion.

3. Flux limiter.

4. Relativistic correction.

5. Relativistic calculation of the equation of state.

The SHASTA is specified for one dimensional transport. Although otherwise stated [12],
its direct extension to three dimensions in its classic form is not possible. The major
obstacle is the search for optima in three dimensions to compensate for nonphysical flows.
The most straight forward approach to this problem is by dimension splitting, though
numerical artefacts are produced with this approachff]

4.4.1. Geometric Transport

In the geometric transport phase the algorithm makes a transition from the Eulerian grid
to Lagrangian fluid parcels that are transported following a geometric scheme. In figure[4.3|

4The problem of quadratic fireballs was a returning issue in presentations of the SHASTA authors [g0].
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! j-2 ! j-1 ! J ! jt1 ! Jt2 !

Figure 4.3.: The area of each rectangle, between two big lines on the scale, resemble the
content of a cell in the Eulerian grid. The trapezoids, resembling Lagrangian
fluid parcels, have the same area as their two underlying half rectangles.

each rectangle represents the content of a cell in the Eulerian grid, e.g. if the height is the
mass density and its area is the mass attributed to a cell. As a consequence of the intercept
theorem each trapezoid has the same area as the two underlying halves of the rectangles.
Identical angles and same side lead to congruent trianglesA and B and therefore these
triangles have the same area. Each trapezoid (and therefore Lagrangian fluid parcel)
is now transported. This is done by moving the trapezoids’ y-parallel sides with the
velocities of the corresponding cells. In figure [4.3] the dotted trapezoid’s side in cell j with
v; and the side in cell j + 1 with vj;1. As the velocities are not necessarily identical this
leads to a distortion of the trapezoid’s baseline. To guarantee the conservation of cell’s
content, the trapezoid has to maintain the same area as before the movement, hence each

y-parallel side is scaled by the geometrical factor:

B Ax
r= Az + At (Uj+l — Uj)

(4.44)

Assuming ’vi%‘ < % for all cells 4, the scaling of the trapezoids is sufficient to guarantee

positivity after the propagation step. Positivity is equivalent to:

0< o e (4-45)
Az + At (vjy1 — vj)

0 < Az + At (vj41 — vj) & (4.46)

1> 1}-ﬁ —vj At . (4.47)
N THUA L 4-47
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Figure 4.4.: The trapezoids are moved and scaled. The areas of the trapezoids residing in
a cell are interpreted as the new content of a cell.

Using the assumption UZ%’ < % twice:

At At

UJE - Uj-‘,—lﬂ < (448)
1 At
S =V < (4.49)
2 Az
1 1
5~ <—2> =1 . (4.50)

One can see the strict inequality holds because of Az > 0, hence positivity
is guaranteed. After the movement of the trapezoids (see figure their area is
reinterpolated to the underlying Eulerian cells. As all trapezoids and cells can be handled
independently, this suggests first parallelisation possibilities. I will elaborate on that in
chapter[s] The interpolation is done by calculating a convex combination of the trapezoids’
area for each cell. The authors of SHASTA propose the usage of different approximations
for the cell velocity [12]. In the relativistic case the centred time approach is used [57]f}
Combining the interpolation and geometric factors leads to:

Q iyt (4:51)
+ = 1 T ) 4.51
L+ (2 A—v 2.
1 n+3
5+, A
2T Y
Q- o il , (4-52)
1= (v - A—v; 2 )

for A = %, and the velocity v.

5Thus making use only of a staggered grid in time and not in space.
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Figure 4.5.: One dimensional propagation of a square wave with v = 0.5, A = 0.4, and
T = 100 time steps. The diffusion occurring in the pure geometric propagation
is almost completely suppressed when the phoenical antifluz is applied.

For an arbitrary density p7 at time-step n the propagated and interpolated cell content

ﬁ?“, without any source terms, takes the following form:

A 1 1
= B0 () 0 () r @@

4.4.2. Anti-Diffusion and Flux Limiter

Unfortunately the geometric transport in equation (4.53) generates inherently a numerical
errmﬂ(see figure l4.5). This can easily be calculated for the constant velocity v = 0 case,
as the factors (J+ both evaluate to Q+ = %:

1

An+1

P =ri + 3 (Per =207 +07-1) (4-54)
whilst the analytical solution for the linear advection equation with velocity v = 0 is of
cause ,07]-1Jrl = p;. Hence the quantity ,6;7+1 can be seen as the correct quantity p;-”l plus

an erroneous numerical diffusion flux composed of an incoming flux f; and an outgoing
flux fj_;.
R S (4-55)

5This error is often called numerical diffusion because of its form similar to the differential quotient used
to express the second derivative. Although analogous (due a second derivative) to physical diffusion,
this is a purely numerical artefact.
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Figure 4.6.: One dimensional propagation of a square wave with v = 0.5, A = 0.4, and
T = 100 time steps.Without the flux limiter the phoenical antiflux creates
significant over- and undershoots. These are mitigated by the flux limiter.

Therefore in [12] and [11] different anti-diffusion correctors are examined, to mitigate the
erroneous flux between the cells. The relativistic implementation [57] makes use of the so
called phoenical anti-diffusion:

h 1
A :(Aj_

3 (Ajr1—24; + Aj—l)) : (4.56)

With A = pj4+1 — p; and Aj = pj+1 — pj- Regrettably the anti-diffusion fluxes can
not simply be added to compensate for the numerical diffusion, as they might lead to non
positive results (compare ﬁgure. For physical concerns the application of anti-diffusion
fluxes must not generate any new optima, nor emphasise existing optima in the density
distribution. Thus, the anti-diffusion itself is corrected by a flux limiter depending on a
neighbourhood of points: the final density after the application of anti-diffusion must not
be higher than the density of neighbouring cells. Hence the flux limited anti-diffusion is
defined by:

h
o = sgn (A? ) , (4-57)
Aj = 0 - max {O, min {UAj+1, A?h ,UAj_l}} y (458)
and the transported and corrected quantity by:
Pt =t — A+ A (4-59)




4. Hydrodynamics

4.4.3. Relativistic Amendments

The numerical scheme can lead to spurious energy densities in cells, i.e. the physical
constraint M| < |€] can be violated, as energy and momenta are transported independ-
ently, but are closely entangled as seen in section Following [57] this is corrected by
symmetrically downscaling M ; until | M| = |€]| if it exceeds the energy content. As an
additional stabiliser, all contents smaller than a fixed threshold are set to zero. Although
this influences the conservation of momenta, the overall effect has proven to be negligible.

To gain the thermodynamic quantities, like pressure p(e, p), baryo-chemical potential
u(e, p), and also the propagation velocity v(p, M, E), the quantities £, M, and N have
to be boosted to their respective eigenframe. Nevertheless it is not necessary to invert
the equations , , and completely. As stated in [57], the following fixed
point scheme can be applied.

Starting from Equation the baryon density in the eigenframe is simply given by

p =~ 'N. From equation ([4.40|) follows:

&= (6 + U2p) 2 (4.60)

€+v2p €+p—p—|—vzp

_ — (4.61)
1—0v2 1—0v2

1 — 2

_ 2

=+ — 3P (4.62)

=(+p)V’—p (4.63)

Deriving the norm of the momentum vector (equation (4.39))):

M= |M|= ‘waV‘ (4.64)
= wy*v = (e + p) v (4.65)
=v[(e+p)V? —p+p| =v(E+p) (4.66)

the energy density in the eigenframe can be obtained:

E-Mv=E—v*(E+p) (4.67)
=(c+p)P—p—?[c+p)V —p+p] (4.68)
€ —(1=v})p—22(e
_(et+p-( 1_3}5 (+p) (4.60)
5—1}28
:1_71)2: (4.70)

Thus the pressure can be calculated as € and p are determined.
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4.4. The SHASTA

The velocity vector v points to the same direction as the momentum vector M, hence
it suffices to calculate its norm. This can be done by the fixed point equation:

M

) (4.71)

v

As M < £ and p > 0 the conditions of Banach’s fixed-point theorem are met.
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5. Implementation of the SHASTA

This chapter is mostly based on our paper [25]. The SHASTA has been used to enhance
UrQMD to a hydrodynamics and transport hybrid model [52]. The implementation used
is based on [57] and contains the necessary amendments for relativistic effects. As seen in
the profiling shown in chapter [1] the hydrodynamic stage of the hybrid model is the most
time demanding part of UrQMD and therefore the ideal candidate for optimisation and
design studies. The implementation of the numerical scheme described in chapter [4] was
completely revised in order to gain two important improvements:

1. The new implementation follows the criteria of good software design, in order to
facilitate further improvements, optimisations, and to guarantee a higher usability.

2. The new implementation is more efficient and benefits from developments of new
hardware architecture, namely the usage of accelerators like GPUs.

5.1. Software Design

The transition of the classic implementation of SHASTA (realised with FORTRAN) to the
OpenCL-SHASTA (realised in OpenCL and C++) proceeded with two essential intermediate
step-stones: At first different FORTRAN-C++ hybrid versions were built. The mixture
between FORTRAN routines and C++ functions enabled a smooth transition with continuous
testing. The second step was a full C++ version which supports all features of the FORTRAN
version. The C++ version finally was used to design a many-core enabled OpenCL version.

A major issue was certainly the design transition from a very problem-oriented or
classic implementation (see figure in FORTRAN to an implementation following the
object oriented design paradigm in C++. OpenCL in its current version [37] does not
support class structures on the GPU side, hence the EoSClass and GridClass are not
used in OpenCL-SHASTA. Nevertheless the organisation on the host-side of devices, buffers,
queues, and the orchestration of kernels is done with a class structure, implemented in
the GPUClass. The first step using a hybrid implementation was merely a prototype to
test numerics directly, by mimicking the behaviours of the full classic SHASTA. I will come

to this later in section
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readeos1() readeos2()

tinit()

‘ prop3d()

‘gysﬁc ‘- init()
Ly
o() \ signum()

) press() lambda()

e

eqofst |

indpoi

grstate

Figure 5.1.: Dependency in the FORTRAN 77 version of SHASTA. Methods (blue) do not only depend on each other but are
also entangled by the usage of common blocks (red), hence variables with a global scope. Obviously this hidden

dependencies lead to different pitfalls in any parallelisation attempt.

propag
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% calculate propagatlon

Simulator
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- Ioad |nputf||e set time constraints save frozen quantltles

Figure 5.2.: The C++ implementation of SHASTA offers the selection of an equation of
state from a fixed set.

5.1.1. From FORTRAN-SHASTA to C++-SHASTA

The main objective of the C++ version was to demonstrate object oriented design criteria
in physics frameworks and to lay the foundations for the subsequent OpenCL version. The
structure of the implemented methods mimics the numerics of the FORTRAN routines as
closely as possible. Although the exact mimicking of the numerics imposed constraints
to the program structure, the C++ implementation emphasises a clear encapsulation
with classes. The functionality of the FORTRAN version is implemented (figure |[5.2)
almost completely. Two methods: the changegrid()-method, responsible for dynamic
grid changes if necessary, and the freezeout () (omitted in figure as implemented
in main() ), responsible for the transformation from fluid parcels to particles have been
omitted. In the course of a modular redesign, the parts of the program responsible for the
freeze-out should be excluded from the parts responsible for the hydrodynamic calculation.
This is necessary, as different physics models and algorithms can be used for the freeze-out
and are matter of further research in this area. Therefore the output of C++-SHASTA has
the same format, as its input: the densities in a fixed grid. As shown in figure the
C++ version allows the user the choice of time parameters, input files and the desired
equation of state. The propagated quantities are saved and can be loaded into UrQMD.
The full integration is planned for a future release of UrQMD. The equations of state are
chosen by a configuration file. They are implemented as objects that inherit all necessary
methods from their abstract base class and are set before the computation starts (see
listing . Therefore the rather complicated call-scheme in the FORTRAN version (listing
and figure is substituted by the class structure shown in figure The constructor
handles the necessary input by parameters or analytic equation.

In the FORTRAN version the parameter determining the selected EoS is accessed various
times, not only in the control logic in listing [3} but also later within the read-in routines,
e.g. in listing[7} For the read-in case, the performance issues are negligible, as the reading
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// initialise equation of state

// depending on choice in init-file

EqofState *EOS;

switch(Data->eos)q{
case 1: EOS = new EqofStatel(); break;
case 2: EOS = new EqofState2(); break;
case 3: EOS = new EqofState3(); break;
case 4: EOS = new EqofState4(); break;
case 5: EOS = new EqofState5(); break;
default: EOS = new EqofStatel(); break;

Listing 2: In the C++ version the EOS Object is declared to be from the abstract EqofState
class and initialised to the class chosen by Data->eos.

from tables on the hard disk clearly dominates the execution time. Nevertheless, also
in the calculation of thermodynamic quantities, like pressure, temperature, or chemical
potential, branchings according to the EoS occur. This superfluous branchings, like in
listing [4] are completely avoided in the C++ version due the class structure of the EoS

(listing [8).

As SHASTA is implemented with a dimension split approach, the neighbour relation
between cells differs with every time step. The index arithmetic is hidden in the ray-
methods of GridClass and Oriented. In listing [f] the accessor method of the fastCube-

objects is shown.

The method depends on the internal state of stepsize and offset. The member
variables are set according to the current propagation direction in the propagation routines.
Each ray is handled separately, as can be seen in listing [l The step-size depends on the
propagation direction and is set immediately at the beginning. Subsequently all cells
have to be calculated, therefore the one dimensional subsets, or rays, are propagated with
the halfstep procedure. The starting point, called offset, is calculated and passed
to the object representing the grid. Therefore the accessor-method respects exactly the
neighbourhood and the halfstep procedure is exactly the same for all directions and
starting points.
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@ EqofState

< tables

© chem()
© schem()
o temp()
@ entro()
© lambda()
@ press()

@ EqofState2

@ EqofStatel

@ EqofState3

@qufStateS © chem() @ chem() @ chem()
© schem() @ schem() @ schem()

@ entro() © temp() o temp() @ temp()

© press() © entro() @ entro() @ entro()
© lambda() @ lambda() @ lambda()
© press() @ press() @ press()

@ EqofState4

© chem()
© schem()
o temp()

Figure 5.3.: Different equations of state vary often only in a small subset of methods. All
methods are purely virtual in the abstract base class EqofState. Only the
visibility of the tables in the abstract base class (A) is restricted and set to
protected (denoted by the yellow diamond) all other methods in the different
classes (C) are public (denoted by the green circles).
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if (eos.eq.2) then

call readeos1()

else if (eos.eq.3) then
call readeos2()

else if (eos.eq.4) then
call readeos3()

else if (eos.eq.5) then
call readeos3()

end if

Listing 3: In the FORTRAN version the EoS is chosen according to the eos variable.
Nevertheless there is an ambiguity for the EoS 4 and 5 which is further handled
in the radeos3() method, shown in listing @

if (eos.eq.1) then
chem = 040
else if (eos.eq.3) then
elsEiL ((eos.eq.4).or.(eos.eq.5).or.(eos.eq.2)) then
if (e.1t.400.0d0) then
if((e.1t.0.1d0) .and.(n.1t.0.02d0)) then

Listing 4: In the FORTRAN version the routine chem() is responsible for the chemical
potential of the underlying EoS. A complicated branching pattern has to cope
for the different EoS within the calculation, resulting in unnecessary operations.

5.1.2. OpenCL-SHASTA

While the aim of C++ version of SHASTA was to demonstrate that the usage of OOD the
main goal of the OpenCL-SHASTA was to demonstrate the performance and reliability
of GPUs for numerical calculations in heavy-ion physics. While a lot of classical fluid
dynamical simulations have been carried to GPUs and even some relativistic calculations
of astronomers exist, the heavy-ion community requires special properties which are not
yet present on GPUs.

Unfortunately the present implementation [37] of OpenCL does not yet allow the usage of
00D on the device-sidd’] Nevertheless, there are C++-bindings on the host-side, allowing
for a well organised core of the GPU program.

*The C++ Static kernel language introduced recently by AMD [60], which supports a subset of the
OOD potential of C++, was not used due to the desired independence of any vendor.
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@ Oriented
@ fastCube
O VX, vy, vz
O data o mx, my, mz
@GridClass O len O stepsize, offset
0 stepsize O len
O elab, r, n =) Gl o setoffset()
oep N © raySet() o setstep()
- o rayGet() o reset()
g ;r;\;gs;ferg?;a() o setstep() o vx(), vy(), vz()
o setoffset() © getstep() © mx(), my(), mz()
el o setoffset() o set_vx(), set_vy(), set_vz()
o reset() o set_mx(), set_my(), set_ mz()
© coordinate_get() © get_vxray(), get_vyray(), get_vzray()
© coordinate_set() © get_mxray(), get_myray(), get_mzray()
o &operator() o set_vxray(), set_vyray(), set_vzray()
o set_mxray(), set_myray(), set_mzray()

Figure 5.4.: The GridClass is aggregated of the fastCube class and contains scalar
variables. While the Oriented class consists of vector variables It can not
be aggregated by fastCube, as the reset method also permutes the velocity
vector. Only the member variables of fastCube and Oriented are private
(denoted by red boxes), other member variables and methods are public
(denoted by green circles) to enable the usage of the getters and setters of
the underlying data-type.

inline float ray_get(int i){
return( datal[i*stepsize+offset] );

};

Listing 5: The get-method for grid elements depends on the member variables stepsize
and offset, which are set with accessor-methods.

The fundamental hardware configuration is contained in the BasicGPU class, while
derived classes are used for profiling, testing and productive usage (see figure . Further
classes can be derived and enhanced by the necessary methods to handle viscosity and
other equations of state.

Although the kernels can not fully benefit of the OOD, the modularity and the structure
of the C++ version has been maintained as far as applicable on the GPU. Different equations
of state can be implemented with small additional kernels, without major modifications
to the host code. Use cases for the OpenCL version have been separated further, as shown

in figure [5.6]

75



5. Implementation of the SHASTA

[er\
@ Kernel @ Buffer @ Event @ CommandQueue @Sources @ Program @ Platform

\ \ | /
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g E;':I‘eerlss Choice between CPU and GPU
Profiling and Debugging classes
© pushData() are derived here
© pullData()
© assignKernelVariables()
© runProgram()

BasicGPU

< platforms, context, devices
< queue, source, program, event

@ buildProgram()

std

@ vector

Figure 5.5.: Using the C++ implementation of OpenCL the classes BasicGPU and GPU
are used to control the execution stream. The internal member variables of
GPU and BasicGPU are protected (denoted by yellow diamond) as they are
used only for the device management and should not be accessed from outside
the classes. Public methods (green circle) allow for a controlled access of the

buffers and kernels.
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Figure 5.6.: The first implementation of OpenCL-SHASTA aims on two different levels of
usage: the OpenCL-SHASTA included in the UrQMD simulation framework is
designed for current state hydro+cascade simulations. Additionally OpenCL-
SHASTA allows for an extensive model research by adding kernels to the

OpenCL code base.
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Grid->setstep(step);

Vector->setstep(step) ;

for (int k = 0; k < size; ++k) {

for (int i = 0; i < size; ++i) {

position = k*size*size + 1i;
Grid->setoffset(position);
Vector->setoffset(position);
halfstep(Grid, Vector, EOS, Data);

Listing 6: The control member variables of the Oriented and GridClass objects are
configured according to the propagation direction before passing the objects
to the halfstep function. Within the halfstep function no further difference
between the propagation direction is necessary.

5.1.3. Testing

The first step from the FORTRAN 77 version of SHASTA to a C++ hybrid version was
accompanied by a continuous acceptance test. The FORTRAN subroutines have been
refactored in C++ and gradually substituted as symbols on the linker level. Therefore it
was possible to cope very early with common pitfalls: line versus column addressing, start
indices at zero or one etc.. Although these are not automated unit tests, a fine granularity
of testing could be preserved, as only small subroutines had to be changed at a time. The
resulting data was checked manually with feedback of participating physicists. Very soon
the differences between C++ and FORTRAN in the handling of mathematical expressions
showed their effects in slight variations of the numerical results. Unfortunately the creation
of suitable unit tests needs a significant knowledge of the underlying physics. Only with
this knowledge one can estimate the sustainable level of numerical approximations in
comparison with the errors introduced automatically by the physics model used.

5.1.4. Algorithm Design

The usage of GPUs had been of great interest to the field of high energy physics even before
state-of-the-art programming frameworks, like CUDA or OpenCL, have been developed [1g].
In order to harvest the best performance of GPUs, one has to understand the architectural
constraints of these devices explained in section This implies often a very different
approach compared to classical CPU programming. The presented SHASTA implementation
is designed in OpenCL and fitted to an AMD Radeon HD 5870 GPU. Therefore certain
optimisations are also different [17] to typical optimisations carried out on NVIDIA GPUs.
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Although designed for this special kind of GPU the implementation still shows significant
speed-up on CPU-only systems. Here additional optimisation, respecting caching and
memory layout, e.g. interleaving the three dimensional grid variables, would mitigate
the losses due to cache misses when propagating in y or z direction and allow for further
significant accelerations.

The OpenCL-SHASTA consists of a C+4-part, managing the memory allocation and
enqueueing of the kernels.

The approach to parallelisation on GPUs must bear in mind, that the running program
at the end consists not of a few parallel threads, but merely thousands of concurrent
execution streams. Yet most of this streams are computing almost the same, which ranks
this approach as a SPMD approach. In order to organise these thousands of execution
streams the first, and arguably most important steps, are the problem decomposition and
domain decomposition. Both points are somewhat entangled, still to a first order they can
be handled separately.

Problem Decomposition

Firstly the data flow of the algorithm has to be analysed. Not only the physical quantities,
that are resulting from the algorithm description, but also the steps in between and
intermediate results of the computation are important. In figure [5.7] the dependencies
within each time step are illustrated. Before each quantity can be calculated, all the
quantities pointed to, have to be computed. The data flow, i.e. the spacial and causal
dependencies of variables, determines the constraints to any possible parallel computation.
The SHASTA performs the propagation of the energy-momentum-tensor and the net
baryon current. Therefore five physical quantities (£, M, and N') are propagated
(equations , , and ) The full propagation of each quantity is done by
the subsequent steps from equations (4.52) and (4.53) for the pure geometric transport

to equation (4.56)) for the phoenical antiflux and equations (4.58|) and (4.59) for the flux
corrected quantity. Subsequently relativistic corrections have to be applied, as well as the

calculation of the thermodynamic quantities in their eigenframe.

As illustrated in figure the propagation of each quantity, including the anti-diffusion
and flux corrector, is calculated independently. As the relativistic corrector needs the
propagated state of all quantities (see also figure , the execution of the relativistic
corrector and the calculation of the equation of state is scheduled after all five kernels,
propagating the quantities independently, have finished computation. This is realised by
the orchestrating method runProgram() of the class GPU (listing .
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Relativistic Corrected Quantity

All Physical Quantities

Flux Corrected Quantity

Limited Flux Corrector
Phoenical Antiflux
Geometric Propagated Quantity

Base Quantity Source Quantity

Propagation Velocity

Figure 5.7.: Variable dependencies in data flow, time and space indices are omitted. Each
arrow reads as depends on.
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Parallel execution

Geometric
transport

Geometric Geometric Geometric Geometric
transport transport transport transport

Antiflux Antiflux Antiflux Antiflux Antiflux Relativistic Corrector

Relativistic EOS

Figure 5.8.: Problem decomposition and data flow in OpenCL-SHASTA.

Another possible decomposition we have investigated, is using the kernels firstly to calcu-
late all the geometric propagated quantities (equation (4.53))) in parallel and subsequently
applying new kernels for the anti-diffusion step. Thereby one kernel can calculate more
than one geometric propagated quantity (e.g. all the momenta together) which favours
the usage of the vector units of GPUs and modern CPUs. However, this approach makes
extensive usage of the global memory, by storing intermediate results to the global memory
and reloading it in the anti-diffusion kernels later. Thus, different kernels have to be
enqueued to serialise the task.

Domain Decomposition

For every grid based algorithm the domain decomposition is often suggested by the grid
structure. Though, the exact mapping of the number of work-items to the grid size
depends on hardware and algorithm type. The current implementation of OpenCL-SHASTA
uses one kernel per physical quantity and hence one work-item per quantity for each of the
eight million grid cells. This choice is suitable for GPUs, as it fits their hardware design
with the aim of calculating a multitude of voxels in parallel. Optimisations aimed mainly
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-3 j-2 j-1 j j+1 | j+2 j+3

Figure 5.9.: The neighbourhood used to compute the propagated quantity in cell j (black)
spans seven different cells. To compute the flux corrected value for cell j the
geometric transport for cells (5 —2)... (5 + 2) (grey) is needed.

on multi-core CPUs would do more efficiently using work-items responsible for more than
one cell or more than one physical quantity per cell. Depending on the algorithm type,
the dependencies within each grid cell might lead to even more work-items per grid cell
on GPUs. The (3 + 1)-dimensional problem of relativistic hydrodynamics is perfectly
suitable to the three dimensional NDRange arguments in OpenCL. In order to implement
the (3 4 1)-dimensional propagation of the energy-momentum-tensor, we use a dimension
split approach. Therefore each work-item needs for its calculation only a one dimensional
neighbourhood. The size of the 1-D differential stencil still depends on the applied scheme,
nevertheless this is a significant reduction of the buffer size needed.

In this implementation each work-item computes independently the geometric flux of
all neighbouring cells in order to calculate its flux corrector and save the flux corrected
value. In figure [5.9] the needed neighbourhood of each cell is illustrated: to compute
the flux corrected value for cell j (black) each work-item has to calculate the geometric
propagated quantity in cells (j—2)...(7+2) (grey). In order to calculate all (uncorrected)
propagated quantities, additionally the cells j — 3 and j + 3 have to be used. This is done
in the for-loop serially and buffered in the flux[]-variable. However, the loop increases
the computational workload of each kernel significantly, as each geometric flux has to be
computed five times more often than in the serial implementation.

An additional overhead is caused by the calculation of both limited antifluxes, i.e. A;
and A;_; from equation in the variables ea and eb of listing @7 hence this step
doubles the workload compared to the serial implementation. Although the alternative
problem decomposition avoids the multiple calculation of geometric fluxes and antifluxes,
its overall performance proofed to be lower due to the additional memory usage. This is
because the additional computations allow less each work-item to compute the propagated
quantity independently from all other work-items, and thus no serialisation e.g. between
the geometric propagation and the anti-diffusion step is needed.

For each quantity a specialised kernel (similar to listing @ is enqueued. To use the
full capacity of a GPU, the kernel size must be chosen carefully. If the kernel’s active
working set is too big, only few work-items can run concurrently, as they must share
the available memory per compute unit. Not only the neighbourhood (figure of
the propagated quantity is necessary, but additionally each work-item needs to access
a similar neighbourhood of velocity, pressure, and different control variables. On the
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other hand, if too many kernels are needed to compute the propagation, the increased
number of enqueued kernels imposes an additional orchestrating overhead. The use of
mid-weight kernels, computing all needed fluxes of a neighbourhood but propagating
only one quantity per kernel, allows for an efficient usage of the underlying hardware (all
processing elements in parallel) without overly increasing the orchestration overhead.

Branching Free Execution Flow

We have designed the components of OpenCL-SHASTA in a modular way and implemented
different kernels and auxiliary functions. This allows shorter development cycles and
ensures good validation of the algorithm. Additionally the kernels and auxiliary functions
can be substituted even at run time leaving the choice of different antiflux functions,
different source terms, and even different equations of state. In listing [g] the constant diff
allows a fine controlled application of numerical viscosity. The value of the constant as
well as the selection of more sophisticated or faster anti-diffusion routines are controlled
by metaprogramming. As the kernels are compiled and loaded onto the GPU at run-time
the choices do not infer additional branchings, which would slow the execution down.
Nevertheless a free selection of the desired numerical hydrodynamics realisation is possible.
Therefore a wide variety of calculations can be carried out by the suggested implementation
without the need of complicated branching patterns within the computational relevant
parts of the program.

Let us stress the importance of avoiding (unnecessary) branching in GPU programs:
if the number of work-items per branch falls under the wavefront length, the execution
stream is serialised. (As stated in [17] up to a loss of 30% of the execution speed.)
To avoid branchings we have designed specialised kernels for all quantities in OpenCL-
SHASTA. The kernels vary according to their propagated quantity, source terms and
propagation direction. For example the kernels responsible for the momenta parallel to
the propagation direction have an additional source term, whereas momenta perpendicular
to the propagation direction are transported source free. Since complicated indexing
methods not only imply branchings but often a very inefficient memory access, we use a
number of halo cells to avoid it. Therefore the cells at the border of the grid in the finite
difference scheme are handled equivalently to the inner cells, whilst special correction
steps assure the desired behaviour by controlling the data in the halo cells. The kernel
operates only within the boundaries of the inner grid, limited by grid size (GS) and halo
size (HS). For stability reasons the code has been implemented based on a half-step method.
The different half steps are implemented without a branching control structure, instead
additional kernels change underlying control variables like the Courant-Friedrich-Lewy
number. We use a special double buffering scheme to spare expensive memory copies.
Instead of copying onto different grids, we have designed to each kernel call an adjunct
kernel call, which reverses the used buffers. The adjunct kernel calls are orchestrated in
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the launcher method (listing of the GPU-class.

All different governing equations have been implemented in different kernels in order
to stay clear of any branches within the execution flow. The orchestration of this set
of 30 different kernel calls, is done by the execution method on the host (listing .
Accordingly, the GPU can start the computation, while further kernels are still enqueued
into the command queue. The control flow is almost completely managed by the C++
methods at the host side.

Memory Aware 3-D Calculation

Due to the dimension split scheme each operation is executed only in one dimension
at a time. This reduces the amount of registers needed for each kernel drastically, as
only 1-D differential stencils (figure have to be calculated. This reduces the needed
memory size to a third compared to a full 3-D stencil implementation. The propagation
direction follows a fixed permutation of the three axesP] After the initial copy of all
needed quantities to the private memory in local scope, the kernel (listing |§[) does not
need any access to global memory for its calculations. Contrary to the classical FORTRAN
implementation no differentials have to be stored in extra data structures. Intermediate
results, like the geometric flux, anti-diffusion, and flux-limiter can be held in registers.
The functions yielding the necessary geometric factors (gpt () and gmt ()) and the antiflux
(antiflux()) are inlined functions. They are calculated exactly when needed (figure
and need not to be calculated in advance. (The former mentioned alternative problem
decomposition (section needs additional global memory for the geometric fluxes,
antifluxes, and flux limiters.)

According to the permutation scheme only the propagation speed v parallel to the
actual propagation direction is calculated beforehand, which limits the global memory
usage to only one field for the propagation speed. This approach underlines again the
recompute instead of memory lookup paradigm which holds for various applications on
many-core architectures [35]. The global memory footprint is determined by the seven
quantities residing on a 2002 cell grid. As only single precision is needed to represent
these quantities, the total memory consumption has been further reduced: including the
double buffering memory scheme, the total consumption is less than 500 MB. This allows
to run the code even on commodity GPUs. By limiting the working set to a minimum and
concentrating on recompute instead of expensive memory lookups, the remaining memory
can be used to increase the grid size, enhance precision or to hold more complicated
(tabled) equations of state, or even to enhance SHASTA with the necessary tables to
calculate viscous hydrodynamics [46], 19].

*We found this approach more stable than a Monte Carlo approach.
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Figure 5.10.: Total execution time for the expanding ball of r = 2 fm with constant energy
density. The exact same OpenCL code is used on all devices. For comparison
the execution time of the FORTRAN implementation is shown too [52} 57]

5.2. Results

The OpenCL version has been tested on NVIDIA Tesla C1060 GPUs, AMD Radeon HD 5870
GPUs, AMD Opteron 6172 processors (24 core), and on AMD Radeon HD 7970 GPUs. The
most extensive testing was done on the LOEWE-CSC with the AMD Radeon HD 5870 GPU.

Test cases included classic test problems, spheres of different metrics, and realistic
initial conditions generated by UrQMD. For realistic cases the physics simulation time is
on the order of 10 — 20 fm/c which transforms to 200 time steps (equalling to 16 fm/c in
the current setup).

The measured accelerations depend slightly on the geometry of the input. The best
acceleration is achieved for the realistic UrQMD input files. Here the overall computing
time for a physics running time of ¢ = 8 fm/c for an Au-+Au collision is reduced to less
than 30 seconds on the AMD Radeon HD 5870 GPU and less than 10 seconds on the AMD
Radeon HD 7970 GPU. Compared to the classic FORTRAN implementation [52] [57] which
needs 1 hour and 15 minutes, we find an acceleration of more than a factor of 160 on the
AMD Radeon HD 5870 and more than a factor of 460 on the AMD Radeon HD 7970.

In figure and figure the total execution time for two different initial geometries
is depicted. Figure shows the total computation time for the spherical setup (ball,
| - |l2 ) of radius 2 fm on different devices. Figure shows the comparison between the
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Figure 5.11.: Total execution time for an Au+Au collision with /syn = 200 GeV. The
exact same OpenCL code is used on all devices. For comparison the execution
time of the FORTRAN implementation is shown too [52, 57

FORTRAN and the OpenCL implementation on CPU/GPUs for the UrQMD initial configuration
of an Au+Au collision at /syy = 200 GeV with impact parameter b = 7 fm.

Figures and summarise the increasing speed-ups of the OpenCL-SHASTA
execution on different devices. The difference between the geometries is caused by the
better distribution of computations to work-items and finally processing elements. In
the spherical symmetric case (denoted as ball) the initial geometry is concentrated in
the centre of the grid. Due to the domain decomposition scheme, mapping grid cells to
work-items, at the beginning all the workload is concentrated on few work-items. During
the execution more cells are filled with non-zero values. As each quantity in each cell is
computed separately in a work-item, a sparse grid is not very efficient, while a full grid
makes best use of all the processing elements of a GPU.

Even without a GPU at hand the OpenCL implementation provides a significant speed-up
on CPUs. As shown in figure the code scales well up to 24 cores with a parallel
efficiency of F = % = (0.83. However, the OpenCL implementation for one core is slower
than the classic serial FORTRAN implementation. Hence the total acceleration for 100
time steps on the AMD Opteron 6172 processor (24 cores), is by a factor of ten compared
to the classical implementation (single-core). Additionally, it is notable that the classical
implementation is simply not executable in parallel. The memory consumption of the
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ball of » = 2 fm with constant energy density. Here again the exact same
code is executed on CPU and GPU.

500

400

300

200

100

@ @ Opteron 6172
@ @ TeslaC1060
@&-@® Radeon HD 5870

= 0O Radeon HD 7970

100
Time steps

The acceleration of the execution speed on different devices for an Au+Au
collision with /syny = 200 GeV. Here again the exact same code is executed
on CPU and GPU.
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Figure 5.14.: The scaling of OpenCL-SHASTA on the Opteron 6172 processor with 24 and
48 cores. The scaling is measured for the expansion of a spherical symmetric

system for ten time steps.

standard implementation is more than five times higher than the consumption of the

OpenCL implementation, which limits the number of parallel instances significantly.

Over the above the exact same OpenCL implementation is executed on GPUs and
CPUs. Though, the program design allows to choose appropriate kernels and environment
variables for their execution, depending on the provided architecture (see section
and , enabling further speed-ups on CPUs.

In figure the average time consumption for the computation of one time step with
different initial geometries on the AMD Radeon HD 5870 is shown. We observe the initial
cost of the memory transfer to the GPU, which is compensated after a small number
of time steps. Nevertheless time consumption increases again later, especially for the
spherical symmetric initial geometry. One observes the impact of the complex antiflux
function on the average execution time. Without the complex antiflux no increase can be
observed and the acceleration, due filling of the grid, takes fully place.

The latter increase of time consumption is dominant for the ball geometry case. In
figure only a slight increase of the execution time for the Au+Au collision can be
observed on all devices. However, for the expansion of the ball this effect is strongest on
the AMD Radeon HD 5870 and the NVIDIA C1060, as shown in figure

In figure the average time consumption of the antiflux function for the ball
geometry is isolated. In SHASTA the antiflux is corrected by a flux limiter. This flux
limiter is calculated by a search of maxima and minima of the surrounding cells and fluxes
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Figure 5.17.: Average time consumption for one time step in the expansion of a ball of
r = 2 fm with constant energy density measured on different GPUs.
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Figure 5.18.: Average time consumption of the pure antiflux calculation per time step in
the expansion of a spherical symmetric system on different devices.
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Figure 5.19.: Normalised average time consumption of the pure antiflux computation per
time step in the expansion of a spherical symmetric system. The average
time is normalised to the time consumption for ten time steps.

Name Tesla C1060 Radeon HD 5870 Radeon HD 7970
Compute Units 30 20 32
Processing Elements 240 1600 2048
Peak Performance [GFLOP/s| 933 2720 3789
Wavefront length 32 64 16

Table 5.1.: Parameters of the different GPUs in the experimental setup.

towards this cells (see equation ) In this calculation branching is inherent and takes
also place within different wavefronts. Therefore all branches within these wavefronts are
calculated serially by the device and the correct results are gained by masking the wrong
branches out. Hence the execution time is increased significantly, when the flux limiter is
not uniform.

In figure the normalised time consumption of the isolated antiflux function is
shown. The average time consumption is normalised to the average time consumption
for ten time steps, to compensate for the overall performance differences of the used
GPUs. One can observe the different slowdowns for the used devices, which correspond to
the wavefront sizes of the GPUs. The strongest slowdown of the antiflux calculation is
measured on the AMD Radeon HD 5870 with its wavefront size of 64. The NVIDIA C1060
has a wavefront size of 32 and therefore the slowdown is smaller.
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Figure 5.20.: Comparison between FORTRAN and OpenCL propagation for realistic initial
conditions of an Au+Au collision with /syy = 200 GeV and impact para-
meter b =7 fm at t = 8 fm/c provided by UrQMD. (The asymmetry present
in both implementations is due to fluctuations in the initial state.)

The slowdown effect is compensated almost completely on the AMD Radeon HD 7970
which provides a wavefront size of 16 and a more modern scheduler, see table [5.1]

Finally figure shows the direct comparison between the present single precision
implementation (full line) and the standard FORTRAN double precision implementation
(dotted line). For the realistic initial setup of a /sy = 200 GeV Au-+Au collision
provided by UrQMD we find only minor differences between both implementations. This
differences originate in the different ordering of the calculation of the thermodynamic
quantities and not in the single precision usage. The serial C++ implementation allows
for a simple switching between single and double precision usage. The single precision
and corresponding double precision calculation for a /syn = 200 GeV Au+Au collision
differ only negligibly.
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5.3. Summary and Outlook

On current hardware, like the AMD Radeon HD 5870, or the AMD Radeon HD 7970 GPU,
double precision calculations come with a slowdown of a factor of five or four respectivelyP]
Additionally a full double precision approach doubles the memory consumption. We
conclude: a single precision implementation allows for fast calculations, as well as the
enhancements of the underlying physics model, e.g. by adding calculations of viscosity
[29, [46]. If numerical instabilities occur, e.g. in the calculation of the Lorentz-boost v we
suggest the usage of mixed precision implementations.

The OpenCL-SHASTA has been designed to work on commodity GPUs, nowadays present
in almost every computer. The OpenCL implementation allows for the usage of GPUs,
accelerators, as well as classical multi-core processors. Therefore OpenCL-SHASTA can
be included in bigger frameworks, that need to be executed on a variety of different
architectures. Due to the tremendous speed-up it resolves the problem of a computationally
demanding hydrodynamic phase in hybrid models, like UrQMD, and allows for better
statistics, stability analyses [27], and unprecedented event-by-event simulations.

3A special setup is needed to use double precision as well as the increased memory consumption. These
setups are highly hardware dependent and future hardware may be more suited to double precision
calculations.
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The redesign of physics frameworks, like UrQMD, not only provides better execution time
and statistics, but—under the light of hardware development—yposes the only possibility
to use these frameworks in the future. The lessons that can be learned do not only concern
the redesign of software. New simulation frameworks should not only include the current
state of physics, but also the best practices of software design and the knowledge of the
underlying hardware. Firstly research groups should agree upon use-cases, design criteria,
and tests before the actual coding begins. Thus, the whole process of redesigning a whole
framework can be evaded at all.

Under the light of the complete redesign of UrQMD the possibilities of new quantum
mechanical algorithms were tested. The prospective usage of a direct massively parallel
calculation of Feynman-Path-Integrals is of high interest. It was explored by using a
rapid-prototyped parallel implementation. The usage of Python as glue code with OpenCL
for the parallel execution allowed for a rapid testing of new physics ideas. In addition to
the test of the predictive power the usability on modern hardware was demonstrated.

The UrQMD framework was analysed and profiled. The stability of the simulation
towards variations of the experimental parameters was verified by a massively parallel ex-
ecution, applying metaprogramming techniques. Following the consequences of Amdahl’s
law, the most time consuming phase of the UrQMD hybrid model, the hydrodynamic evol-
ution, was redesigned entirely in order to harvest the benefits of massively parallelisation
on modern many-core architectures.

Starting with the mathematical description of the underlying physics, independent
variables, due to the superposition principle, were separated. In the subsequent analysis
of the SHASTA the dependency of additional intermediate variables was analysed which
opened further ways of parallelisation. As the extend and benefit of parallelisation
depends strongly on the underlying hardware, not all possible parallel calculations were
also implemented in parallel. A massively parallel branching on current GPUs is not
beneficial at all. Therefore, it was evaded in the final implementation. In contrast to classic
sequential programming techniques, the best approach in the parallel implementation was
to calculate all quantities needed for further computation directly and almost never rely
on a memory look-up.

Explicit caching of complex calculations, e.g. saving differential quotients in extra
arrays, had been beneficial in former architectures. Modern hardware architectures,
however, offer hierarchical cache structures and have a comparatively high latency for a
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non-cached memory access. Therefore, recalculations of even complex functions come at
a much lower cost than memory look-ups.

The presented parallel implementation of SHASTA is explicitly optimised for many-core
architectures, such as modern GPUs. However, the usage of an vendor independent
language, namely OpenCL, allows for the application to run also on multi-core CPUs with
a significant speedup. By an acceleration of up to a factor of 160 on the LOEWE-CSC
and up to a factor of 460 on additional test systems, a completely new range of event-by-
event analysis of UrQMD-simulations in a hybrid-hydro approach can now be executed.
Additionally the stability, which has been proven for the non hydro-hybrid execution, can
now be tested.

The optimised OpenCL-SHASTA is re-integrated in the UrQMD framework for immediate
event-by-event analyses. Furthermore it is devised as an integral part of the Dynamical
Description of Heavy lon Reactions at FAIR project, which works on a novel transport
model for the description of the impending experiments at the FAIR facility. Influenced
by the analyses of UrQMD provided in this thesis it aims at a full object oriented design
and modular approach.

However, the methods shown in the previous chapters are applicable for other heavy
ion simulation models too: OpenCL-SHASTA has been chosen to provide the fundamental
hydrodynamics part of the Computational Jet Tomography (CJET) project |55, 56] at the
Oak Ridge Leadership Computing Facility in the Oak Ridge National Lab.

Because of its modular design it is easily integrated in the CJET project. Due to
its formulation in OpenCL it could be executed directly on TITAN [2], the world’s most
powerful super computer [3].
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A. Kernel Performances

Kernel Name FLOPs Time HD 5870 [ms| Time HD 7970 |ms]|

Generic_X 256 2.8 1.7
Impulse_X 268 5.2 1.9
Energy_X 271 5.2 2.0
Generic_Y 268 2.8 1.7
Impulse_Y 280 5.2 1.9
Energy_Y 283 5.2 2.0
Generic_Z 268 4.0 2.8
Impulse_Z 280 6.2 3.8
Energy_Z 283 5.8 3.8

Table A.1.: Floating point operations and initial execution time of the propagation kernels.
The execution time is profiled on the targeted platforms AMD Radeon HD
5870 and HD 7970.

Kernel Name Performance on Radeon HD 5870 Performance on Radeon HD 7970

Generic_X
Impulse_X
Energy_X

740 GFLOP/s
410 GFLOP/s
420 GFLOP/s

1189 GFLOP/s
1140 GFLOP/s
1080 GFLOP/s

Generic_Y
Impulse_Y
Energy_Y

776 GFLOP/s
432 GFLOP/s
438 GFLOP/s

1228 GFLOP/s
1195 GFLOP/s
1122 GFLOP/s

Generic_Z
Impulse_Z
Energy_Z

Table A.2.: Approximate (initial) performance of the profiled propagation kernels.

540 GFLOP/s
363 GFLOP/s
389 GFLOP/s

761 GFLOP/s
594 GFLOP/s
595 GFLOP/s
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B. Listings

B.1. SHASTA Implementation Details

Listing 7: Within the readeos3()-routine the ambiguity between EoS 4 and EoS 5 is
resolved.

subroutine readeos3()

real*8 t,mu,e,p,n,s,mstar,lam,mus

real*8 ptab(0:2000,0:400),ttab(0:2000,0:400) ,lamtab(0:200,0:239)
real*8 mutab(0:2000,0:400),stab(0:2000,0:400) ,msttab(0:2000,0:400)
real*8 ptab2(0:200,0:200),ttab2(0:200,0:200)

real*8 mutab2(0:200,0:200),stab2(0:200,0:200) ,msttab2(0:200,0:200)
real*8 mustab(0:2000,0:400) ,mustab2(0:200,0:200)

real*8 cstab(0:2000,0:400),cstab2(0:200,0:200)

real*8 ptab3(0:200,0:200),ttab3(0:200,0:200)

real*8 mutab3(0:200,0:200),stab3(0:200,0:200) ,msttab3(0:200,0:200)
real#*8 mustab3(0:200,0:200),cstab3(0:200,0:200)

integer in, ie, j, eos

common /eqofst/ eos,stabil,anti
common /eos/ ptab,ttab,mutab,stab,lamtab,ptab2,ttab2,mutab2,stab2,
mustab,mustab2,cstab,cstab2,cstab3,ptab3,ttab3,mutab3,stab3,mustab3

open(unit=51, file=’eosfiles/chiraleos.dat’)
open(unit=52, file=’eosfiles/chiralsmall.dat’)
open(unit=56, file=’eosfiles/chiralmini.dat’)

do 1109 in = 0,400,1
j =51
do 1110 ie = 0,2000,1
read(j,7777) t,mu,e,p,n,s,mstar,lam
ptab(ie,in) = p
ttab(ie,in) = t
mutab(ie,in) = mu
stab(ie,in) = s
msttab(ie,in) = mstar
cstab(ie,in) = lam
110 continue
109 continue
close(51)
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do 1209 in = 0,200,1
j = 52
do 1210 ie = 0,200,1
read(j,7777) t,mu,e,p,n,s,mstar,lam
ptab2(ie,in) = p
ttab2(ie,in) t
mutab2(ie,in) = mu

stab2(ie,in) = s
msttab2(ie,in) = mstar
cstab2(ie,in) = lam
210 continue
209 continue
close(52)

do 1509 in = 0,200,1
j = 56
do 1510 ie = 0,200,1
read(j,7777) t,mu,e,p,n,s,mstar,lam
ptab3(ie,in) = p
ttab3(ie,in) t
mutab3(ie,in) = mu

stab3(ie,in) = s
msttab3(ie,in) = mstar
cstab3(ie,in) = lam
510 continue
509 continue
close(56)

if (eos.eq.5) then
open(unit=53, file=’eosfiles/hadgas_eos.dat’)
open(unit=54, file=’eosfiles/hg_eos_small.dat’)
open(unit=55, file=’eosfiles/hg_eos_mini.dat’)

do 1669 in = 0,400,1
j =53
do 1616 ie = 0,2000,1
read(j,7777) t,mu,e,p,n,s,mus,lam
ttab(ie,in) = t
mutab(ie,in) = mu
mustab(ie,in) = mus

616 continue
669 continue
close(53)

do 1769 in = 0,200,1
j = 54
do 1716 ie = 0,200,1
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read(j,7777) t,mu,e,p,n,s,mus,lam
ttab2(ie,in) = t

mutab2(ie,in) = mu

mustab2(ie,in) = mus

716 continue
769 continue
close(54)

do 1869 in = 0,200,1
j = 55
do 1816 ie = 0,200,1
read(j,7777) t,mu,e,p,n,s,mus,lam
ttab3(ie,in) = t
mutab3(ie,in) = mu
mustab3(ie,in) = mus
816 continue
869 continue
close(55)
endif
return

777 format(2(1x,f8.3),6(1x,e15.7))

end
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B.2. C++-SHASTA Implementation Details

Listing 8: The abstract EqofState-class avoids branching patterns within the thermody-
namical functions.

class EqofState{
protected:
typedef float BIGSIZE[DOUBLE_EOS_SIZE] [BIG_EO0S_SIZE];
typedef float SMALLSIZE[SMALL_EO0S_SIZE] [SMALL_EOS_SIZE];
BIGSIZE ttab, mutab, ptab, stab, mustab, cstab;
SMALLSIZE ttab2, mutab2, ptab2, stab2, mustab2, cstab2;
SMALLSIZE ttab3, mutab3, ptab3, stab3, mustab3, cstab3;
float lamtab[240] [201];
public:
EqofState () {
for(int j = 0; j < BIG_EOS_SIZE; ++j)
for (int i = 0; i < DOUBLE_EOS_SIZE; ++i) {
ttab[i] [j] = 0.f;
mutab[i] [j] = 0.f;
ptab[il[j] = 0.f;
stab[i] [j] = 0.f;
mustab[i] [j] = 0.f;
cstab[i] [j] = 0.f;
¥
for(int j = 0; j < SMALL_EOS_SIZE; ++j)
for (int i = 0; i < SMALL_EO0S_SIZE; ++i) {
ttab2[i] [j]1 = 0.f;
mutab2[i] [j] = 0.f;
ptab2[il [j] = 0.f;
stab2[i] [j] = 0.f;
mustab2[i] [j] = 0.f;
cstab2[i] [j] = 0.f;
}
for(int j = 0; j < SMALL_EOS_SIZE; ++j)
for (int i = 0; i < SMALL_EOS_SIZE; ++i) {
ttab3[i] [j1 = 0.f;
mutab3[i] [j] = 0.f;
ptab3[il [j1 = 0.f;
stab3[i] [j] = 0.f;
mustab3[i] [j] = 0.f;
cstab3[i] [j] = 0.f;
}
for(int j = 0; j < 201; ++j)
for (int i = 0; i < 240; ++i)
lamtab[i] [j] = 0.f;
};
virtual float chem(float e, float n)=0;
virtual float schem(float e, float n)=0 ;
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virtual float
virtual float
virtual float
virtual float

temp(float e, float n)=0 ;

entro(float e, float n)=0 ;
lambda(float e, float n)=0 ;
press(float e, float n)=0 ;
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B.3. OpenCL-SHASTA Implementation Details

Listing 9: A generic kernel propagating source free quantities in x-direction.

__kernel void generic_X( __global float* In, __global float* Out,
__global float* v, __global float* outcfl)

uint idx = get_global_id(0);

uint idy = get_global_id(1);

uint idz = get_global_id(2);

uint myid = idx + idy * DY + idz * DZ;

if ( (idx >= HS) && (idy >= HS) && (idz >= HS) && (idx < GS - HS)

&& (idy < GS - HS) && (idz < GS - HS) ){

const float cfl = *outcfl ;

const float diff = 1.0f;

__private float basis[7] = {In[myid-3], In[myid-2], In[myid-1],

In[myid], In[myid+1], In[myid+2],
In[myid+3]};

__private float flux[5];

__private float velocity[7]= {vImyid-3] ,v[myid-2], v[myid-1],
v[myid], v[myid+1], v[myid+2],
v[myid+3]};

for (short i = 0; i < 5; ++i){

const float gpt = gp( velocity, i+1, cfl );

const float gmt = gm( velocity, i+1, cfl );

flux[i] = 0.5f * gpt*qpt * (basis[i+2]-basis[i+1])
- 0.5f * gmt*qmt * (basis[i+1]-basis[i]) + (qpt+qmt)
* basis[i+1];

}

const float ea = antiflux(flux, basis, 0, diff);

const float eb = antiflux(flux, basis, -1, diff);

Out [myid] = flux[2] - ea + eb;

} else Out[myid] = In[myid];
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Details

Listing 10: A part of the enqueueing routine.

const int branch[] = {0,1,2, 0,2,1, 2,0,1, 2,1,0, 1,2,0, 1,0,2};
for (int round = 0; round < steps; ++round) {
i = branch[round 7 18];
if (i==0){
queue. enqueueNDRangeKernel (untangT, cl::NullRange,
cl: :NDRange (GS,GS,GS), cl::NullRange,
NULL, NULL);
queue.enqueueNDRangeKernel (half_cfl, cl::NullRange,
cl::NDRange(1,0,0), cl::NullRange,
NULL, NULL);
queue.enqueueNDRangeKernel (propX_e, cl::NullRange,
cl: :NDRange (GS,GS,GS), cl::NullRange,
NULL, NULL);
queue. enqueueNDRangeKernel (prop_parallel_mx, cl::NullRange,
cl: :NDRange (GS,GS,GS), cl::NullRange,
NULL, NULL);
queue . enqueueNDRangeKernel (propX_my, cl::NullRange,
cl::NDRange(GS,GS,GS), cl::NullRange,
NULL, NULL);
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B.4. Worldline Implementation Details

Listing 11: The loop-methods in the Python prototype recursively generate the midpoints
of loop-archs and directly compute the calculation of a predicate (e.g. hits
object) on the loop-points.

def _loop(depth, start=zero, end=None, variance=1.0,
gaussdist=random.gauss, sample=[],
observer=None) :

mmn

internal function
nmnn
if not end:

end = start

if depth == O:
return [ f(observer,start) for f in samplel

mid = gauss(midpoint(start,end),variance,gaussdist=gaussdist)
if not observer:
observer = midpoint(mid,start)

firsthalf = _loop(depth-1, start, mid, variance=0.5*variance,
gaussdist=gaussdist, sample=sample,
observer=observer)

secondhalf = _loop(depth-1, mid, end, variance=0.5*variance,
gaussdist=gaussdist, sample=sample,

observer=observer)
return [ left.union(right) for (right,left) in
zip(firsthalf,secondhalf) ]
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Listing 12: The analogous code in Scheme uses explicit typing of variables and operators,
allowing the Gambit-C' compiler a more aggressive optimisation than the
Python interpreter.

(define (loop depth start
#!key (end ’()) (s 1.0) (length 1.0) (sample ’()))
(declare (fixnum depth)
(flonum length s))
(define (walk depth start end s observer)
(declare (fixnum depth)
(flonum s))
(if (fx= O depth)
(map (lambda (f) (f observer start)) sample)
(let* ((mid (random-gauss-vector (midpoint start end) s))
(obs (if (null? observer) (midpoint start mid) observer))
(firsthalf (walk (fx- depth 1) start mid
(f1* 1/sqrt2s) obs))
(secondhalf (walk (fx- depth 1) mid end
(f1x 1/sqrt2 s) obs)))
(map oset-union firsthalf secondhalf))))
(map (lambda (oset) (oset-scale oset length))
(walk depth start (if (null? end) start end) (flx s length)
>0

Listing 13: The OpenCL code is reduced to a pointwise checking of the predicate (here
loop hitting the parallel plates). The loops are generated in the host-code and
subsequently uploaded to the GPU. Host and device can compute in parallel,
i.e. during the (partial) energy computation on the device, the host is able to
generate more loops, in order to provide better statistics.

float loop_ener(__global float2* Loop, float uplatey, float dplatey) {
float sigma = Loop[0].x;
bool cutA = false;
bool cutB = false;
for (int i = 1; i < LENGTH; ++i) {
cutA = cutA || cut_uplate(Loop[i].y, uplatey);
cutB = cutB || cut_dplate(Loop[il.y, dplatey);
}
float part = 0.f;
if (cuth && cutB) {
part = 1.f/(sigma*sigma*sigma*sigma);
}

return part;
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Listing 14: The loop_ener () method calculates the scaling intervals used for the semi-
analytic evaluation of the Feynman-integral. It is tailored to the specific
plate-plate geometry. The usage of the special OpenCL vector type float2
allows the GPU to make better usage of the underlying hardware within the
processing elements. The function energy () is inlined and provides a scaling
according to the distribution function of the loop length.

float loop_ener(__global float2+ Loop, float uplatey, float dplatey){
// first analyze upper plate
// Intervals are of the form (0, inf) to (inf, inf)
float min_upper, min_lower;
if ( (uplatey >= 0.f) && (0.f >= dplatey) ) {
min_upper = INF;
min_lower = INF;
for (int i = 1; i < LENGTH; ++i) {
const float POINT = Loop[il.y;
if (POINT < 0) min_lower = min(min_lower, dplatey / POINT);
if (POINT > 0) min_upper = min(min_upper, uplatey / POINT);
}
}
if (dplatey > 0.£){
INF;
min_lower = 0;

min_upper

//barycentre is within hyperspace {x<=d}
//=> Loop intersects allways D
for (int i = 1; i < LENGTH; ++i) {
const float POINT = Loopl[i].y;
if (POINT > 0) min_upper = min(min_upper, uplatey / POINT);
}
}
if (uplatey < 0.£){
min_upper = 0O;
//barycentre is within hyperspace {z>=u}
//=> Loop intersects allways U
min_lower = INF;
for (int i = 1; i < LENGTH; ++i) {
const float POINT = Loop[il.y;
if (POINT < 0) min_lower = min(min_lower, dplatey / POINT);
}
}
float a = max(min_lower, min_upper) ;
return( energy(a) );

}
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Listing 15: A kernel tailored to the parallel plate geometry. It is responsible for a tile of
the whole geometry. It calculates the contribution of the current set of loops
to all points within its domain.

__kernel void calc_energy(__global float2* Loops,
__global float* platey, __global uint* rank, __global float* Forces){
const int gidl = get_global_id(0);
const int gid2 = get_global_id(1);
const float2 OF = (float2) (LLIMIT + PIXELS #* L * (*rank J/ TILES),
ULIMIT + PIXELS* L * (*rank / TILES));
// offset for tile
const float2 POS = (float2)(gidl * L, gid2 * L) + OF;
// global position within tile
__private float myEnergie = 0.f;
float uplatey = *platey - PO0S.y;
float dplatey = (-1) * *platey - POS.y;
const float dy = DX *(0.5f) ;//central differential quotient
for (ulong run = 0; run < NUMLOOPS; ++run) {
myEnergie += loop_ener (&(Loops [run*(LENGTH)]), uplatey+dy,
dplatey)
- loop_ener (&(Loops [run* (LENGTH)]), uplatey - dy, dplatey);
}
Forces[gidl + PIXELS * gid2] = myEnergie/(NUMLOOPS) ;
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Summary

Ultrarelativistic Quantum Molecular Dynamics is a physics model to describe the transport,
collision, scattering, and decay of nuclear particles. It allows to simulate complex processes,
like particle collisions in the LHC and the upcoming FAIR experiments. The physics needed
to describe this kind of reaction is multi-faceted. Simulation frameworks, such as the
Frankfurt UrQMD framework use therefore different ideas, models and algorithms ranging
from relativistic mechanics, realised by linear equation solvers for particle trajectories, up
to quantum mechanical effects, implemented by Monte Carlo approaches depending on
pseudo-random number generators.

The UrQMD framework has been in use for nearly 20 years since its first development.
Over this years different approaches have been implemented, used to generate data and
predictions, and thereafter refined respecting new experimental results or rejected due to
clear falsification by the experiments.

In this period computing aspects, the design of code, and the efficiency of computation
have been—at best—minor points of interest. The widely common maxim

“If the software is not fast enough, it is sufficient to wait only for the next
generation of computers to make it work.”

has in many places delayed the use of modern hardware capabilities, because the software
has just been considered a means to an end. As in many big software systems code-entropy
has grown over years, making parts of the source inaccessible without a prior deep research.
Changes within the code base can lead to unexpected side-effects, therefore parts of the
source are declared as terra prohibita to newcomers. Comments advise researchers to leave
parts of the source unaltered and therefore prohibit any major change or introduction of
new ideas.

Nowadays an additional sorrow is due to the fact that the run time of the framework
does not diminish any more with new hardware generations, contrary to the above cited
maxim. The time of spending Moore’s dividend] with free lunches is over. While Moore’s
law seems still unbroken, it is only unbroken in its original formulation: the number
of transistors in integrated circuits doubles every two years. Though, the velocity or

*James Larus, Microsoft Research

111



C. Summary

frequency of operation of those integrated circuits does not increase significantly any
more. At the current state, it is not yet due to physical constraints: current CPUs are
produced with 22 nm structures but research has provided 3nm transistors [g1]. The
clock rate of current CPUs ranging between 2 and 3 GHz is still significantly lower as the
records (around 8 GHz) realised even with standard CPU$] It is mostly due to economic
reasons current development in computing hardware is mainly parallelism oriented.

Especially for scientific applications often a high order of parallelisation can be achieved
due to the superposition principle. The need of computing power and the existence of
highly parallel problems in physics has lead early to the usage of vector processors up to
the adventurous use of GPUs, by transforming the physics algorithms to graphics handling
and a back transforming after the computation on the GPUs, see e.g. [19].

In this thesis I show how modern design criteria and algorithm redesign is applied to
physics frameworks. The redesign with a special emphasise on many-core architectures,
allows for significant improvement of the execution speed. In order to harvest all possibil-
ities of modern hardware, algorithms have to respect both: the design of the hardware
and the nature of the physics behind the model. The first chapter describes the physics
of UrQMD. As only a thorough understanding of the physics allows for major changes, the
gained information about the structure of UrQMD allowed for a deep analysis of the model
as such, which culminated in an unprecedented stability analysis of the whole model
[22]. The computational approach and the results of the numerical analysis are described
in chapter [3] By applying metaprogramming techniques, the UrQMD source could be
modified, compiled and executed in a massively parallel setup. The resulting simulation
data of all parallel UrQMD instances were hereafter gathered and analysed. Hence UrQMD
could be proven of high stability to the uncertainty of experimental data, which is in light
of the upcoming experiments at the FAIR facility of uttermost importance.

Chapter [2] describes an implementation of the Worldline Method. A numerical method
for the calculation of quantum fluctuations, e.g. the Casimir effect. The Casimir effect is
a quantum mechanical effect, which is e.g. responsible for an attracting force between
two perfectly conducting plates in an absolute vacuum. This effect, once only a curiosity
in theoretical physics, is today experimentally measured and an effect to be considered
in the construction of nano mechanical devices. This poses a serious pressure onto the
search of fast computation possibilities. The efficient simulation of quantum mechanical
effects is of crucial importance to effective models. The computation of the Casimir effect
has allowed to test a new method directly without interfering into the existing UrQMD
framework. Due to rapid prototyping we could perform simulations with scalar photons
and test the predictive power of this approach. Additionally different code bases have
been used to investigate the possibility of a massively parallel calculation, which was then
performed on the LOEWE-CSC.

*The record (dating back to 01.11.11) is held by Andre Yang with approximately 8.71 GHz.
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The most time consuming part of UrQMD is a newly introduced relativistic hydrodynamic
phase. Following Amdahl’s law it is a natural choice to start here the parallelisation.
Hence, chapter [4] explains the principles of hydrodynamics and the distinctive features
of the relativistic hydrodynamics. The algorithm used to simulate the hydrodynamic
evolution, SHASTA, is described in section [f.4l As the sequential form of SHASTA is
successfully applied in various simulation frameworks for heavy ion collisions its possible
parallelisation is analysed. In chapter [5| two different implementations of SHASTA are
presented. The first one is a sequential implementation, which mimics the FORTRAN
implementation currently used in UrQMD as closely as possible. However, the C++
implementation is a standalone simulation program following the object oriented design
criteria, the structure of the program is presented in different UML diagrams. By applying
a more concise design and evading unnecessary memory copies, the execution time could
be reduced to the half of the FORTRAN version’s execution time. The usage of memory
could be reduced by 80% compared to the memory needed in the original version.

The second implementation concentrates fully on the usage of many-core architectures.
Therefore its implementation is in OpenCL, which allows to harvest the compute power
of different architectures by various vendors. The implementation is fully oriented on a
massively parallel processing and deviates significantly from the classical implementation.
Contrary to the sequential implementation, it follows the recalculate instead of memory
look-up paradigm. By this means the execution speed could be accelerated up to a factor
of 460 on GPUs. This allows now for extremely fast event-to-event simulations, which
enable completely new approaches and unprecedented analyses.
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Zusammenfassung

Das urQMD Modell

Ultrarelativistische Quantenmolekulardynamik ist ein so genanntes effektives Modell zur
Beschreibung von Transport, Kollision und Zerfall von Hadronen. Es dient zum Beispiel zur
Simulation der komplexen Prozesse, die im LHC stattfinden und in den FAIR Experimenten
erwartet werden. Zur Beschreibung dieser Prozesse werden verschiedene Bereiche der
Physik herangezogen. Angefangen bei den Bewegungsgleichungen der relativistischen
Physik, die mit linearen Gleichungssystemlosern berechnet werden, bis hin zu Modellen aus
der Quantenphysik, die mit Zufallszahlengeneratoren im Monte Carlo Ansatz modelliert
werden.

Das UrQMD System wird seit fast 20 Jahren stdndig genutzt und weiterentwickelt.
Immer wieder wurden in dieser Zeit neue Ansétze aus der theoretischen Physik getestet
und, falls die Vorhersagen mit den experimentellen Daten iibereinstimmten, weiter genutzt,
oder falls die Vorhersagen den Daten widersprachen, verworfen.

Das Programm selbst war dabei als Mittel zum Zweck zu verstehen. Moderne Paradig-
men zur Klarheit und Struktur des Programms wurde zwar nicht vollig ignoriert, standen
aber auf der Prioritdtenliste weit unten. Die Frage der Laufzeit oder Fragen zur Effizienz
der Algorithmen wurden, wie haufig, durch die lange giiltige Maxime:

SWenn das Programm nicht schnell genug lauft, muss man nur auf die néchste

Prozessorgeneration warten.

beantwortet. Das Problem zu langer Laufzeit erledigte sich sozusagen von selbst. Wie
iiblich bei groften Softwaresystemen, ist die Code-Entropie seit Jahren stiandig gewachsen.
Teile des Quelltextes sind zu unzugénglich und gleichen mit ihren Nebeneffekten wahren
Minenfeldern: jede Anderung in diesen Zeilen hat unvorhersehbare Konsequenzen im
Gesamtablauf.

Die Entwicklung der Hardware in den letzten Jahren hat mittlerweile auch obige Maxime
iiberholt. Zwar gilt das Moorsche Gesetz, sieche Abbildung heute immer noch, aber
es gilt in seiner urspriinglichen Formulierung, die Anzahl der Transistoren betreffend, und
nicht in der abgeleiteten Formulierung, die Taktrate betreffend. Die Rechenmdglichkeit
heutiger Prozessoren ergibt sich nicht mehr durch die hohe Taktrate, sondern vor allem
durch die Moglichkeit viele Rechnungen parallel durchzufiihren.

Die Entwicklung der Prozessoren ist dabei noch nicht am Ende des physikalisch Mogli-
chen angekommen. Moderne Prozessoren nutzen zur Zeit dieser Arbeit 22 nm Struktur-
konstanten und werden mit etwa 2-3 GHz betrieben, erste Prototypen kénnen im Labor
bereits mit 3nm Struktur hergestellt werden [71] und selbst ,,Heimprozessoren* werden
mit bis zu 8 GHz betrieben] Der momentane Stand stellt jedoch ein Optimum in ckono-

3Der momentane Rekord in der ,Ubertaktungszene® wird von A. Yang mit ca. 8,71 GHz gehalten.
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mischen Sinne dar und es bleibt zu erwarten, dass sich der Trend zu mehr Parallelisierung

auch noch die nachsten Jahre fortsetzt.
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Abbildung C.1.: Das Moorsche Gesetz in seiner Originalfassung sagt eine Verdopplung der

Transistoranzahl auf einer IC innerhalb zweier Jahre voraus. (Abbildung

von [66].)

Gerade wissenschaftlichen Simulationen profitieren stark von der effizienten Nutzung
moderner Hardware. Durch das Superpositionsprinzip sind viele Probleme der Naturwissen-
schaften in sich schon parallel gestellt. Nichtsdestotrotz ist die klassische Herangehensweise
in wissenschaftlichen Programmen ungeeignet die Leistungsfahigkeit moderner Hardwa-
re zu nutzen. Gerade im Hinblick auf parallele Berechnungen hat sich eine besondere
Moglichkeit durch die Nutzung von Grafikkarten ergeben. Diese Karten wurden in erster
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Linie entwickelt um Computerspielern moglichst realistische visuelle Eindriicke darzu-
stellen. Hierzu ist vor allem das massiv parallele Berechnen vieler Pixel notwendig. Die
Pixel unterliegen dabei héufig identischer oder fast identischer Operationen, weshalb
Grafikkarten gerade in diesem Gebiet mit enormer Rechenkraft hervortun. Zudem ist der
Markt fiir Grafikkarten einem massiven Evolutions- und Preisdruck ausgesetzt, was die
Moglichkeiten zur kostengiinstigen parallelen Berechnung massiv befordert hat.

In dieser Arbeit zeige ich, wie ein Physik Framework (UrQMD) von einem Redesign
unter Beriicksichtigung moderner Ansédtze aus Software Design und paralleler Algorithmen
profitiert. Die hier aufgezeigten Methoden sind dabei nicht allein auf UrQMD anwendbar,
sondern im wesentlichen fiir jeden wissenschaftlichen Code, der sich mit Transport, Zerfall
und Kollision von Teilchen beschéftigt.

Die Physik in UrQMD

Gerade im Hinblick auf Parallelisierung finden sich mittlerweile einige Softwarepake-
te zur Molekulardynamik, die massiv parallel rechnen und sogar die Rechenkraft von
Grafikkarten nutzen. Die Ansétze aus diesen Softwarepaketen lassen sich jedoch nicht
ohne Weiteres auf UrQMD {ibertragen. Dies liegt vor allem daran, dass die zugrunde
liegende Physik in der Molekulardynamik, wie sie in der theoretischen Chemie und den
Materialwissenschaften genutzt wird, auf der Elektrodynamik basiert. Die, von vielen
als erfolgreichste physikalische Theorie angesehene, Quantenelektrodynamik beschreibt
das Verhalten von elektrisch geladenen Teilchen sowie elektrische und magnetische Fel-
der. Prinzipiell geniigt die Quantenelektrodynamik vollstdndig zur Beschreibung aller
chemischen Prozesse. Fiir grofere Systeme sind jedoch Simulationen auf der Basis der
Quantenelektrodynamik aufgrund der kombinatorischen Komplexitdt zur Zeit nicht mog-
lich. Zusétzlich folgen aus den rdumlichen Dimensionen der betrachteten Systemen weitere
Unterschiede. Wahrend die Molekulardynamik Molekiile und Atome modelliert, muss
UrQMD inneratomare Prozesse beriicksichtigen. Hierzu muss UrQMD prinzipiell die Kréfte
zwischen Quarks modellieren. Die zu Grunde liegende Quantenchromodynamik ist jedoch
in wesentlichen Punkten verschieden von der Quantenelektrodynamik. Zum einen gibt es
in der Chromodynamik mehr Austauschteilchen, die so genannten Gluonen, zum anderen
zeigen diese farbgeladenen Teilchen eine wesentlich kompliziertere Dynamik. Resultierend
aus diesen Unterschieden benétigt man auch im Experiment enorme Energiedichten,
weshalb zusétzlich relativistische Effekte zu beriicksichtigen sind. So wie in der Moleku-
lardynamik werden auch in der Ultrarelativistischen Quantenmolekulardynamik nur sehr
kleine Systeme direkt mit der Quantenelektrodynamik oder der Quantenchromodynamik
simuliert. Die im Einsatz befindlichen effektiven Modelle weisen aber, da die zugrunde
liegenden Kréfte so unterschiedlich sind, substantiell verschiedene Effekte auf, die zu
vollkommen unterschiedlichen Algorithmen fiihren.
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C. Summary

Die Berechnung des Casimir Effekts

Im Rahmen eines Forschungsaufenthalts an der Universitdt Southampton entstand ein
Softwarepaket zur Berechnung des Casimir-Effekts auf Grafikkarten. Der Casimir-Effekt
ist ein rein Quantenmechanischer Effekt und sollte unter Verwendung von rapid proto-
typing untersucht werden. In der einfachsten Konfiguration, zweier paralleler Platten
im Vakuum, ergibt sich eine anziehende Kraft. In der Worldline-Methode erfolgt die
Berechnung der resultierenden Kréfte durch geschlossene Schleifen im Vakuum, deren
geometrische Eigenschaften die Gewichtung in einer Monte-Carlo Integration ergeben,
vergleiche Abbildung [C.2l Im Rahmen des Forschungsaufenthalts wurde ein speicher-

Abbildung C.2.: Geometrische Veranschaulichung der Simulation des Casimir-Effekts zwi-
schen zwei parallelen perfekt leitenden Platten im Vakuum. Zur Simula-
tion werden geschlossene Schleifen unterschiedlicher Grofe (verschiedene
Farben) durch Brownsche Bewegung modelliert. Die Schnitte zwischen
den modellierten Platten (schwarz) und den geschlossenen Schleifen
bestimmen die Starke des Effekts.

sparsamer Algorithmus fiir die Worldline-Methode entwickelt. Dazu konnte mit Hilfe
eines Python Prototyps sowohl eine generelle Scheme Implementierung, als auch eine
spezialisierte OpenCL Implementierung fiir Grafikkarten entwickelt werden. Dieser Ansatz
erlaubt die Analyse des physikalischen Modells und seiner zugehorigen Algorithmen gerade
auch im Hinblick auf ihre Parallelisierbarkeit.
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(a) Teilchen (Abbildung von [73]). (b) Volumen Elemente.

Abbildung C.3.: Nach einer initialen Phase schaltet UrQMD von Teilchen-Freiheitsgraden
auf Flissigkeits-Freiheitsgrade um.

Die Modell-Stabilitat von urQMD

Ausgehend von der grundlegenden Analyse von UrQMD wurde unter Hilfe von Metapro-
grammierung ein Framework geschaffen, das die zugrunde liegende Physik in UrQMD im
Rahmen von experimentellen Daten validiert. Die hierbei erzeugten variierten Versionen
von UrQMD konnten auf dem LOEWE-CSC massiv parallel genutzt werden. Die resultieren-
den Simulationsdaten konnten analysiert werden, um das Verhalten des Transportmodells
unter Variation der Teilchendaten zu Untersuchen. Die hierbei angewandte Methode ist
prinzipiell auf andere Transportmodelle ausdehnbar und erlaubt deren Validierung. Als
Ergebnis konnte erstmals ein Transportmodell auf seine Stabilitét untersucht werden. Das
UrQMD Modell weist, selbst fiir ein Szenario bei dem alle Parameter einen korrelierten
systematischen Fehler haben, ein lineares Fehlerverhalten auf, weshalb der maximale
systematische Fehler auf weniger als 20% abgeschétzt werden kann.

Hydrodynamik in UrQMD

Eine der neuesten Erweiterungen von UrQMD stellt die Einbeziehung einer so genannten hy-
drodynamischen Phase dar. Nach einer initialen Kollisionsberechnung, wird das Verhalten
von Atomkernen als Fliissigkeit modelliert, wie in Abbildung [C.3| dargestellt. Gegeniiber
klassischer Hydrodynamik miissen hier aber relativistische Effekte beriicksichtigt werden.
Dieses Modell ist, obgleich ausgezeichnet zur Beschreibung von Effekten wie des ellipti-
schen Flusses, leider enorm zeitaufwendig. Mit Fluid Dynamik benétigt UrQMD bis zu
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C. Summary

mehreren Stunden zur Berechnung eines einzigen Fvents; um statistische Fehler auszu-
schlieffen werden aber zehntausende Events benétigt. Durch genaue Analyse der zugrunde
liegenden Physik der relativistischen Fluid Dynamik sowie des verwendeten sequentiellen
Algorithmus, konnte ein massiv paralleler Algorithmus fiir Grafikkarten entwickelt werden.
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Abbildung C.4.: Laufzeit einer Au+Au Kollision mit /syy = 200 GeV. Auf allen Grafik-
karten wurde der gleiche OpenCL Code, ohne spezifische Optimierungen,
ausgefithrt. Zum Vergleich ist die Laufzeit der klassischen FORTRAN
Implementation [52, [57] mit angegeben.

Obwohl es mittlerweile eine starke Forschung iiber Fluid Dynamik auf Grafikkarten
gibt, ist der im Rahmen dieser Arbeit entwickelte OpenCL-SHASTA, der erste Algorithmus
auf GPUs fiir die Art von Fluid Dynamik, die in der Schwerionenforschung benétigt wird.
Die Berechnungen mit OpenCL-SHASTA sind im Vergleich mit der klassischen FORTRAN
Implementation um den Faktor 460 schneller, siche Abbildung [C.4
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