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Kurzdarstellung 

 

Moderne computergestützte molekulare quantenchemische Studien, wie die vorliegende, 

verwenden in der Regel ein breites Spektrum theoretischer Methoden. Die letzteren sind oft 

sehr komplex und man sollte generell nicht erwarten, dass ein praxisorientierter 

Wissenschaftler im Bereich der physikalischen Chemie – ein potentieller Leser dieser Arbeit 

– mit all diesen Methoden vertraut sein muß. Um das Lesen dieser Dissertation in einem 

solchen Fall zu vereinfachen, und sie autark zu machen, ist sie mit einem Überblick über die 

verwendeten theoretischen Methodologien versehen (Kapitel 1). In diesem Überblick werden 

quantenchemische Grundbegriffe erläutert, auf die in der gesamten Arbeit immer wieder 

verwiesen wird, die theoretischen Grundlagen verwendeter Methoden dargelegt und deren 

Eigenschaften und Beschränkungen skizziert. Im Abschnitt 1.1 werden allgemeine Ansätze 

zur Lösung der molekularen Schrödingergleichung eingeführt, und in den Teilen 1.2 und 1.3 

werden spezifische Ansätze zur Lösung der elektronischen Schrödingergleichung zur 

Bestimmung des elektronischen Grundzustands und angeregter Zustände präsentiert. Teil 1.4 

ist der Beschreibung von Basissatzeffekten, die in Elektronenstrukturrechnungen im 

Allgemeinen auftreten, gewidmet. Dieser Abschnitt enthält eine Reihe von verschiedenen 

Einblicken und Konzepten, die im Rahmen dieser Arbeit vorgeschlagen werden, und welche 

den Experten in der Quantenchemie aufschlußreich sein können. 

 

Im Kapitel 2 wird das Phänomen der Katalyse von Aceton-Wasser Protonenaustausch 

durch selbstaggregierende Calix[4]hydrochinon (CHQ)-Nanotubes sowie durch amorphe 

Aggregate von CHQ, welche in NMR-Versuchen (Ref. X1X) beobachtet wurde, mit Hilfe von 

modernen quantenchemischen Methoden untersucht. Der erste Teil dieser Studie (Abschnitt 

2.3-2.7) betrachtet den konzertierten Protonentransfer, unterstützt von mehreren ursprünglich 

neutralen OH-Gruppen innerhalb der wasserstoffgebundenen Netzwerke der CHQ-Aggregate. 

Der zweite Teil der Studie (Abschnitt 2.8-2.13) ist dem dem schrittweisen Protonentransfer 

mittels Bildung von ionischen Zwischenprodukten infolge der CHQ- Prädissoziation 

gewidmet. CHQ-anwendungsspezifische Schlußfolgerungen, sowie allgemeine Aspekte, die 

für das Hauptthema dieser Dissertation relevant sind (i.e. Einfluß spezifischer 

Mikrosolvatation auf die betrachteten Protonentransferprozesse), werden im Abschnitt 2.1.4 

zusammengefasst. 
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Das Phänomen der dualen Fluoreszenz, das in Komplexen von 4-N,N-

Dimethylaminobenzoesäuremethylester (DMABME) und zwei Wassermolekülen in der 

Gasphase beobachtet wurde, wird im Kapitel 3 untersucht. Im Abschnitt 3.3 werden zunächst 

berechnete Grundzustandsinfrarotspektren verschiedener DMABME*2H2O Isomere 

präsentiert, die zum einen die Identifikation aller in der Gasphase vorliegenden Isomeren 

erlauben, und zum anderen vor allem die Charakterisierung des für das Auftreten der dualen 

Fluoreszenz verantwortlichen Isomer ermöglichen. Um weiter den Reaktionsmechanismus der 

dualen Fluoreszenz zu verstehen, wurden die Potentialenergieflächen der relevanten Isomere 

im angeregten Zustand entlang der sogenannten TICT-Koordinate (TICT: engl. twisted 

intramolecular charge transfer) berechnet und der Mechanismus der Energierelaxation dieser 

Komplexe erforscht (Abschnitt 3.4-3.5) (Ref. X3X). Eine kurze Zusammenfassung der 

wichtigsten Ergebnisse dieses Kapitels und die wichtigsten Schlußfolgerungen finden sich in 

Abschnitt 3.6. Zum Abschluß wird im Abschnitt 3.7 eine Vergleichsstudie der Qualität der 

Potentialenergieflächen von prototypischen wasserstoffgebundenen Systemen im 

elektronischen Grundzustand (Ammoniak-Wasser und Ameisensäure-Wasser) 

zusammengefasst, in der die Qualität der Potentialenergieflächen hinsichtlich des 

verwendeten atomaren Basissatzes, der Behandlung der Elektronenkorrelation und der 

Anharmonizität der Potentialflächen getestet werden. Vor allem wurde festgestellt, dass die 

zum Studium der IR-Spektren der hydratisierten DMABME-Komplexe verwendete Methode 

hinreichend genau ist, um die einzelnen Isomere zu unterscheiden und die experimentellen 

Spektren eindeutig zuzuordnen (Abschnitt 3.3). 
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Abstract 

 

Modern computational molecular quantum chemical studies, such as the present one, 

typically employ a wide range of theoretical techniques. The latter are often rather 

complicated and one should not generally expect that an experimental scientist in the area of 

physical chemistry, a potential reader of this work, should be familiar with all these 

techniques. To simplify the reading of the Thesis and to make it self-sufficient, it is supplied 

with an overview of the employed theoretical methodologies (Chapter 1). The overview 

explains basic quantum-chemical terminology referred to throughout the Thesis, introduces 

theoretical foundations of the methods and outlines their properties and limitations. In Part 

1.1 of Chapter 1, methods for the solution of the molecular Schrödinger equation are 

introduced, while in the subsequent Parts 1.2 and 1.3 methods for the solution of the 

electronic Schrödinger equation are presented to find the ground and excited states, 

respectively. Part 1.4 is dedicated to basis-set effects which are omnipresent in electronic-

structure calculations. It contains a number of unusual insights and concepts proposed by the 

author and, thus, may be insightful also to experts in quantum chemistry. 

 

In Chapter 2, the phenomenon of acetone-water proton exchange catalyzed by tubular as 

well as amorphous aggregates of calix[4]hydroquinone (CHQ) macromolecules, which has 

been observed previously in NMR experiments (Ref. D1D), is investigated by means of 

correlated quantum-chemical methods. The first part of the study (Section 2.3-2.7) considers 

concerted proton transfer, assisted by several initially neutral OH-groups in the hydrogen-

bonded networks of CHQ aggregates. The second part of the study (Section 2.8-2.13) is 

dedicated to a second mechanism of proton exchange: step-wise proton transfer via formation 

of ionic intermediates resulting from CHQ pre-dissociation. CHQ application-specific as well 

as general conclusions, relevant to the main topic of the Thesis (i.e. influence of specific 

microsolvation on the considered proton transfer processes), are presented in Section 2.14. 

 

The phenomenon of dual fluorescence observed in clusters of methyl 4-N,N-

dimethylaminobenzoate ester (DMABME) and two water molecules in the gas phase, is 

studied in Chapter 3. Experimentally, the dual fluorescence was detected in experiments 

combining optical and ground-state ion-depletion infrared spectroscopies in ultracold 

molecular beams (Ref. D2D). In Section 3.3, calculated ground-state infrared spectra are 

presented that allow to identify the structures of those isomers, which are present in the gas-
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phase, as well as the structure of the isomer responsible for dual fluorescence. To further 

understand the reaction mechanism of dual fluorescence, excited-state potential energy 

surfaces of the identified isomers were computed along the relevant twisted intermolecular 

charge-transfer formation coordinate and the mechanism of energy dissipation in these 

complexes was investigated (Section 3.4-3.5) (Ref. D3D). A brief summary of the main results of 

this chapter and conclusions are given in Section 3.6. Finally, in Section 3.7 a complementary 

benchmark study of the quality of ground-state potential energy surfaces of prototypical 

hydrogen-bonded systems (ammonia-water and formic acid-water dimers) obtained at the 

level of BSSE-corrected MP2 combined with moderate basis sets, has been conducted. The 

quality of potential energy surfaces was tested with respect to basis-set size, level of electron 

correlation and anharmonicity effects and the applied methodology to identify the IR 

spectrum of hydrated DMABME complexes (Section 3.3) has been found to be sufficient to 

uniquely assign the IR spectra. 
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Einleitung und Zusammenfassung 

 

Emergenz ist unvermeidlich... 

 

Die modernen Fortschritte in der chemischen Kinetik besagen, dass die so genannten  

elementaren Reaktionen wie Protonen- und Elektronentransfer oft durch Interaktionen der 

gelösten Substanz mit dem Lösungsmittel bestimmt (e.g. Ref. X4X, X5X, X6X, X7X, X8X, X9X, X10X, X11X) sind. 

Obwohl diese Interaktionen ungefähr um eine Größenordnung schwächer als kovalente 

Bindungen sind, können sie die Energie der Edukte und Produkte, Reaktionsraten und damit 

sogar die  zugrundeliegenden Reaktionsmechanismen beträchtlich ändern. Wenn das 

Lösungsmittel polar, protisch oder basisch ist, dann können seine Moleküle Komplexe mit 

dem gelösten Stoff bilden, oder höhere Aggregate, durch, zum Beispiel, dative oder 

Wasserstoff-Bindungen. Die geometrische oder elektronische Struktur von den Reagenten 

kann beträchtlich beeinflusst werden (Ref. X8X, X9X, X11X). Folglich kann das System elementare 

Reaktionsszenarien aufweisen, die sich von solchen in isolierten Molekülen oder im 

dielektrischen/polaren Kontinuum unterscheiden. Dies impliziert, dass Experimente an 

einzelnen Molekülen umgeben von einer geringen Anzahl an Lösungsmittelmolekülen, 

sogenannter Cluster, entscheidend sind für das Verständnis des direkten Einflußes des 

Lösungsmittels auf die Elementarreaktionen auf molekularer Ebene. Dieses Verständnis 

erlaubt dann oft Rückschlüsse auf die in der kondensierten Phase ablaufenden Reaktionen zu 

ziehen. Technisch gesehen, kann man solche Bedingungen durch Experimente an in 

Molekularstrahlen gebildeten Clustern bei niedrigen Temperaturen realisieren. Oft können 

aufwändige laserspektroskopische Verfahren die notwendige spektrale, temporale und 

strukturelle Auflösung liefern, um die Reaktionsmechanismen detailliert zu untersuchen, 

während quantenchemische ab-initio-Berechnungen oft komplementär sind und 

aussagekräftige Einblicke zur Interpretation von Versuchsdaten liefern können. 

Unter vielen anderen polaren Lösungsmitteln, spielt Wasser in Elementarreaktionen eine 

besondere Rolle. Erstens, da es in der Natur omnipräsent ist, ist Wasser in viele fundamentale 

chemische und biologische Prozesse involviert. Zweitens, Wassermoleküle sind bifunktionell, 

d.h. sie besitzen protonenabgebende sowie protonakzeptierende Gruppen, die unmittelbar in 

die Protonenübertragungsreaktionen involviert werden können (e.g. Ref. X8X, X9X, X12X, X13X, X14X, X15X, 

X16X). Solche Reaktionen treten normalerweise entlang der intra- oder intermolekularen 

Wasserstoffbrücken auf. In dieser Arbeit sind zwei Beispiele mittels moderner 



Introduction and Summary (German) 

 

x 

 

quantenchemischer Methoden untersucht worden, die die zentrale Bedeutung der 

Mikrosolvatation des Wassers demonstrieren. 

 

Das erste Beispiel (Kapitel 2) ist das Phänomen des Protonenaustauschs im Gemisch von 

Aceton, Wasser, katalysiert durch selbstaggregierende Nanotubes sowie amorpher Aggregate 

von Calix[4]hydrochinon (CHQ), welches in NMR Experimenten beobachtet werden konnte 

(Ref. X1X). Hier treten Protonenübertragungsreaktionen zwischen Wasser und Gast- 

Acetonmolekülen, eingelagert in den CHQ-Wirts-Molekülen, im elektronischen Grundzustand 

auf. Da das Phänomen in spezifischen wasserstoffgebunden Netzwerken auftritt, die durch die 

OH-Gruppen vom eingebetteten Wasser und CHQ gebildet werden, bedarf es einer expliziten 

Analyse der Mikrosalvation. Obwohl die Katalyse des Protonenaustauschs in der 

kondensierten Phase beobachtet wurde, gibt es Argumente dafür, dass sie dank der 

Desolvatationseigenschaft der CHQ Makromoleküle auftritt. Daher kann man davon 

ausgehen, dass die Protonentransferprozesse, die in wasserstoffgebundenen Netzwerken 

stattfinden, denen in Gasphasenclustern ähnlich sind. 

Zwei grundlegende Mechanismen des Protonenaustauschs wurden analysiert. Der erste 

Mechanismus ist die keto-enol-Tautomerie von Aceton durch konzertierten Protonentransfer, 

unterstützt von mehreren, ursprünglich neutralen OH-Gruppen innerhalb der 

wasserstoffgebundenen Netzwerken der CHQ-Aggregate. Es wird gezeigt, dass diese OH-

Gruppen tatsächlich den Protonentransfer katalysieren. Die Herkunft dieser Katalyse wurde 

dem kooperativen Effekt der
 
permanenten elektrischen Dipolmomente der bifunktionnellen 

OH-Gruppen zugeschrieben. Der zweite in Betracht gezogene Mechanismus ist der 

schrittweise Protonentransfer durch die Bildung von ionischen Zwischenprodukten, die aus 

der CHQ-Dissotiation resultieren (Ref. X17X). Die durchgeführten Rechnungen haben offenbart, 

dass die von der Dissoziation produzierten ionischen Intermediate: das Anion der CHQ, das 

Kation des protonierten Acetons und ein aus beiden letzeren bestehendes Zwitterion, den 

Protonenaustausch viel stärker katalysieren, als dies im Rahmen des konzertierten 

Mechanismus passiert. Das Zustandekommen der Katalyse wurde durch die Polarisierung der 

Reaktanden erklärt: durch die relevanten Protonentransfernetzwerke (anionischer 

Mechanismus), durch die Schwächung der CH-Bindung des protonierten Acetons 

(kationischer Mechanismus) und durch die Präsenz von unabgeschirmten Anionen und 

Kationen (zwitterionischer Mechanismus). 

Die spezifische Rolle der nicht-katalysierenden Wassermoleküle in wässriger Lösung wird 

aufgezeigt. Zum einen depolarisieren die permanenten Dipolmomente der 
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Lösungsmittelmolekülen diejenigen bifunktionnellen OH-Gruppen, die in den 

Protonentransfer involviert sind und mindern somit die Effizienz der Katalyse sowohl in 

konzertierten neutralen als auch in schrittweisen ionischen Transfermechanismen. Zum 

anderen wird durch vollständige Solvatation der geladenen Teilchen und vor allem der 

Protonen die Entstehung der effizienten katalytischen ionischen Intermediate verhindert.  

 

Ein zweites Beispiel für die Bedeutung der Mikrosolvatation für Moleküleigenschaften ist 

das Phänomen der dualen Fluoreszenz, welche zum Beispiel in mikrosolvatisierten  

Gasphasenclustern des 4-N,N-Dimehylaminobenzoesäuremethylesters (DMABME) (Ref. X2X) 

beobachtet wurde. DMABME gehört zu den berühmten push-pull Benzolderivaten, die nach 

Anregung in den ersten elektronisch angeregten Zustand intramolekularen Ladungstransfer 

(ICT) vollziehen. Diese Moleküle weisen typischerweise in wässrigen Lösungen eine 

anomale rotverschobene duale Fluoreszenz auf (Ref. X18X). Dagegen zeigen einzelne, isolierte 

Moleküle von DMABME keine duale Fluoreszenz in der Gasphase, erst nach 

Mikrosolvatation durch mindestens zwei Wassermoleküle (1:2) ist duale Fluoreszenz wieder 

beobachtbar. Die Infrarot (IR) Ion-Depletion Spektroskopie ermöglicht es grundsätzlich die 

IR-Spektren des Grundzustand-Vorläufers des 1:2 Komplexes zu erhalten, der für die duale 

Fluoreszenz verantwortlich ist (Ref. X2X).  

Tatsächlich sind jedoch zwei unterschiedliche Isomere des 1:2 Komplexes zu fast gleichen 

Mengen im Molekularstrahl gefunden worden, wobei jedoch nur eines rotverschobene 

Fluoreszenz zeigt. Um festzustellen welches Isomer für die rotverschobene Fluoreszenz 

verantwortlich ist und um den zugrundeliegenden Mechanismus zu untersuchen, ist eine 

gründliche theoretische Untersuchung unternommen worden (Kapitel 3, Ref. X3X). Die 

berechneten Grundzustand-IR-Spektren haben die Identifizierung der experimentell 

beobachteten Isomere möglich gemacht. In diesen Komplexen ist ein Wasserdimer entweder 

an den Carbonylsauerstoff der Esterfunktion oder an den Aminostickstoff des DMABME 

wasserstoffgebunden. Die Mikrosolvatation durch das Wasserdimer hat natürlich einen 

Einfluß auf die angeregten ICT-Zustände der Isomere: es kann sie abhängig vom 

Bindungsmuster stabilisieren oder destabilisieren. Dieser Effekt ist dem oben beschriebenen 

(Kapitel 2) Effekt des Wassers in Protonentransferreaktionen konzeptionell ähnlich. 

Noch erstaunlicher ist es, dass die Berechnungen gezeigt haben, dass das N-gebundene 

Isomer für die rotverschobene Fluoreszenz verantwortlich ist, obwohl der entsprechende ICT-

Stand durch das Wasserdimer destabilisiert wird. Um dieses überraschende Verhalten der 

Isomere zu verstehen, sind der Mechanismus der Bildung eines twisted intramolecular 

Charge-Transfer (TICT) Zustands und mögliche Energiedissipationwege ausführlich studiert 
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worden. Denn um rotverschobene fluoreszieren zu können, muß der N-gebundene Komplex 

imstande sein Energie abzugeben und sich in einer für die Fluoreszenz verantwortlichen 

TICT-Struktur stabilisieren. In der Gasphase kann das strahlungsfrei nur durch  

Photodissoziation passieren. Tatsächlich zeigen unsere Rechnungen, dass nur das N-

gebundene Isomer schnell genug in isoliertes DMABME und ein Wasserdimer dissoziiert, 

aufgrund der sofortigen Repulsion zwischen dem Aminostickstoff und dem Wasserdimer im 

TICT-Zustand. Im Gegensatz dazu wird das O-gebundene Isomer im ICT Zustand sogar 

stärker gebunden, da es zu zusätzlicher elektrostatische Anziehung im ICT-Zustand kommt. 

Dieses verhindert die Photodissoziation des O-gebundenen Isomers und somit auch die 

Bildung eines TICT-Zustands. Dieses Beispiel demonstriert eine andere wichtige, aber oft 

vergessene Eigenschaft der Lösungsmittelmoleküle, nämlich als Energieakzeptor in der Gas- 

und Flüssigphase zu dienen, was den spezifischen Verlauf chemischer Reaktionen entlang 

bestimmter Reaktionspfade erst möglich macht (Ref. X3X). 

 

Die beiden Beispiele der Kapitel 2 und 3 unterstützen uneingeschränkt die These, dass 

Ladungstransferreaktionen mit Hilfe von unterschiedlichen Mechanismen optimiert werden 

können, im Hinblick auf Anzahl und spezifische Bindungsmuster der involvierten 

Wassermoleküle. Die Ergebnisse von effizienteren Reaktionsszenarien könnnen nur in der 

Gasphase oder in wasserknappen makromolekularen Architekturen beobachtet werden, da die 

Szenarien in den wässrigen Lösungen durch die Gegenwirkung des Wassers als Lösungsmittel 

unterdrückt werden können. Im Allgemein können Elementarreaktionen, die in wässriger 

Lösung ablaufen, oft weder durch die Eigenschaften der einzelnen zu lösenden Moleküle noch 

durch Berechnungen in polaren Kontinuumsmodellen theoretisch beschrieben werden. 

 

Die theoretische Beschreibung von Ladungstransferreaktionen in Komplexen von 

Lösungsmittel und gelöstem Stoff benötigt im Allgemeinen eine quantenmechanische 

Untersuchung der elektronischen Struktur auf hoher theoretischer Ebene (Abschnitt 1.2.3). 

Derzeit ist die quantenchemische Berechnung mittelgroßer molekularer Systeme auf 

Methoden beschränkt, die hinsichtlich der Genauigkeit und des Rechenaufwandes mit der 

Møller-Plesset Störungstheorie zweiter Ordnung vergleichbar sind (Abschnitt 1.2.4). Es ist 

dabei zu beachten, dass bereits mittelgroße Systeme praktisch relevant sind, da sie oft 

grundlegende Eigenschaften von größeren realen (z. B. biologischen) Systemen abbilden. 

Die meisten der üblichen quantenchemischen Rechenmethoden verwenden atom-zentrierte 

Basissätze (Abschnitt 1.4.1). Dies beinhaltet einen zusätzlichen Berechnungsfehler – den 

sogenannten Basissatzsuperpositionsfehler (Engl. basis-set superposition error (BSSE)) 
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(Abschnitt 1.4.1), der durch die wechselseitige Erweiterung der Fragmentbasissätze innerhalb 

eines Komplexes zu Stande kommt. Zwangsläufig sind Wellenfunktion und damit
 

Moleküleigenschaften des Komplexes BSSE-kontaminiert, die absolute Energie des 

Komplexes wird zu negativ und die Potentialenergieflächen verfälscht. 

Potentialenergieflächen von Komplexen, die sogenannte nicht-kovalente Wechselwirkungen 

besitzen, sind besonders BSSE-empfindlich (Abschnitt 1.4.3) und zeichnen sich durch ein 

sogenanntes Overbinding aus. Bisher gab es bereits mehrere Beispiele, die demonstriert 

haben, dass die Berücksichtigung des BSSE die Qualität der Potentialenergieflächen von 

schwach gebundenen, insbesondere wasserstoffgebundenen Komplexen, die mit Hilfe der 

Møller-Plesset Störungstheorie zweiter Ordnung (MP2) (Abschnitt 1.2.4) (siehe Ref. X19X für 

Überblick) erhalten wurden, beträchtlich verbessert. 

Die Botschaft der vorliegenden Arbeit ist, dass die Qualität der MP2 

Potentialenergieflächen von wasserstoffgebundenen Komplexen nach der BSSE-Korrektur 

nicht nur höher wird, sondern praktisch gleich zu denjenigen BSSE-bereinigten Flächen wird, 

die mit genaueren und rechnerisch wesentlich anspruchsvolleren Methodologien berechnet 

wurden. Dies wurde anhand prototypischer wasserstoffgebundener Systeme im Rahmen einer 

Vergleichsstudie gezeigt (Abschnitt 3.7), die eine Grundlage zur Entschlüsselung des IR-

Spektrums der 1:2-Komplexen von DMABME geschaffen hat. Im Prinzip ist diese Aussage 

ziemlich intuitiv, wenn man realisiert, dass der fehlerhafte BSSE-Beitrag zur 

Stabilisationsenergie eines supermolekularen Komplexes normalerweise meist in etwa 

dieselbe Größe hat wie der der Elektronenkorrelation. Nichtsdestotrotz wurde diese Tatsache 

von der quantenchemischen wissenschaftlichen Gemeinschaft bislang nicht wahrgenommen. 
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Introduction and Summary 

 

Emergence is inevitable... 

 

Contemporary advances in chemical kinetics suggest that so-called elementary reactions 

such as proton and electron transfer are often determined by the interactions of solute with 

solvent (e.g. Ref. D4D, D5D, D6D, D7D, D8D, D9D, D10D, D11D). Although these interactions are about an order of 

magnitude weaker than covalent bonds, they can alter energy, rates or even underlying 

mechanisms of reactions considerably. When the solvent is polar, protic or basic, its 

molecules can form solute-solvent complexes, or larger aggregates via, for example, dative or 

hydrogen bonds. The geometric or electronic structure of the reagents can be affected 

significantly (Ref. X8X, X9X, X11X). Consequently, the system can exhibit elementary reaction 

scenarios, different from those in isolated molecules, or in dielectric/polar continuum. It 

proposes that the experiments on individual solute molecules, as well as on the solute 

molecules surrounded by a small number of solvent molecules, is the key for understanding 

the direct influence of solvent on the elementary reactions at a microscopic level. This 

understanding often allows to draw conclusions about the behaviour of the reactions in 

condensed phase. Technically, such conditions can be realized in the experiments on the gas-

phase molecular clusters formed in supersonic beams at low temperatures. Elaborate 

spectroscopic techniques can often provide sufficient spectral, temporal and structural 

resolution to investigate the reaction mechanisms in great details, whereas high-level ab-initio 

quantum-chemical calculations are often complimentary and can provide meaningful insights 

for the interpretation of experimental data. 

Among many other polar solvents, water plays a special role in elementary reactions. 

Firstly, since it is ubiquitous in nature, water is involved in many fundamental chemical and 

biological processes. Secondly, water molecules are bifuctional i.e. they possess proton-

donating as well as proton-accepting groups which can be directly involved in proton-transfer 

reactions in both ground and electronically-excited states (e.g. Ref. X8X, X9X, D12D, D13D, D14D, D15D, D16D). 

Such reactions normally occur along intra- or intermolecular hydrogen bonds. In the present 

Ph. D. Thesis, two examples which demonstrate the paramount importance of water 

microsolvation in charge-transfer processes have been investigated by means of high-level 

quantum-chemical methodology. 
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The first example (Chapter 2) is the phenomenon of acetone-water proton exchange 

catalyzed by tubular as well as amorphous aggregates of calix[4]hydroquinone (CHQ) 

macromolecules, observed in nuclear magnetic resonance experiments (Ref. X1X). Here, proton-

transfer reactions occur between water and guest acetone molecule trapped by the CHQ host 

macromolecules in the ground electronic state. Since the phenomenon occurred in specific 

hydrogen-bonded networks formed by the OH-groups of embedded water and CHQ, it 

required an explicit analysis of microsolvation. Although the proton exchange catalysis was 

observed in condensed phase, arguments are given that it occurs due to the desolvation 

property of CHQ macromolecules. Thus, the proton-transfer processes are taking place in the 

hydrogen-bonded networks of CHQ similar to those in gas-phase clusters. 

Two principle mechanisms of the proton exchange are analyzed. The first mechanism is 

keto-enol tautomerism of acetone via concerted proton transfer assisted by several, initially 

neutral, OH-groups in the hydrogen-bonded networks of CHQ aggregates (Ref. X1X). It is 

shown, that these OH-groups, indeed, catalyze proton exchange. The origin of the catalysis 

was attributed to the cooperative effect of permanent electric dipole moments of bifunctional 

OH-groups. The second considered mechanism is step-wise proton transfer via formation of 

ionic intermediates resulting from CHQ dissociation (Ref. D17D). The simulations revealed that 

the ionic moieties produced by the dissociation: the anion of CHQ, the cation of protonated 

acetone and the zwitterion comprising the latter two ions, catalyze proton exchange much 

stronger than in the case of the concerted mechanism. The nature of catalysis was then 

explained by polarization of the reagents by relevant proton transfer networks (anionic 

mechanism), by weakening the CH-bond of protonated acetone (cationic mechanism) and by 

the presence of unscreened anions and cations (zwitterionic mechanism). 

The specific role of the solvent water molecules in the catalysis is manifested. First, the 

permanent dipole moments of the solvent molecules depolarize bifunctional OH-groups 

involved in the proton-transfer reaction. They hence decrease the efficiency of catalysis by the 

reacting OH-groups and the CHQ-anions in the concerted as well as step-wise mechanisms, 

respectively. Furthermore, in the case of ionic catalysis, solvent water exhibits a less trivial 

property: large aggregates of solvent molecules, can abstract protons from the protonated 

species and therefore prevent the formation of cationic and highly efficient zwitterionic 

catalytic complexes. 

 

A second example for the importance of microsolvation on molecular properties is the 

phenomenon of dual fluorescence observed in the microhydrated gas-phase clusters of 4-N,N-

dimethylaminobenzomethyl ester (DMABME) (Ref. X2X). DMABME belongs to the famous 
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push-pull benzene derivatives which undergo intramolecular charge transfer (ICT) upon 

excitation in the first electronically excited state. These species are known to exhibit red-

shifted dual fluorescence in aqueous solutions (Ref. D18D). In contrast, single molecules of 

DMABME do not show dual fluorescence in the gas phase, while its hydration by two water 

molecules (1:2) induces dual fluorescence again. Infrared (IR) ion-depletion spectroscopy 

allowed to obtain IR spectra of the ground-state precursors of the particular isomer of 1:2 

complex, responsible for dual fluorescence (Ref. X2X). In fact, two different isomers of the 1:2 

complex were found in the molecular beam in nearly equal amounts, while only one of them 

induces red-shifted fluorescence. 

To identify which particular isomer is responsible for red-shifted fluorescence and to 

investigate the underlying reaction mechanism at a microscopic level, a thorough 

computational study is undertaken (Chapter 3, Ref. X3X). The calculated ground-state IR spectra 

made the identification of the experimentally observed isomers possible. In these complexes, 

water dimer is hydrogen-bonded either to the carbonyl oxygen of the ester function, or to the 

amino nitrogen of DMABME. Herein, the water dimer demonstrates a common property to 

stabilize or destabilize excited ICT states of the isomers, depending on its binding pattern, 

since water dimer polarizes or depolarizes the relevant electron donating or accepting groups 

of DMABME. This effect is conceptually similar to effect of water in the proton-transfer 

reactions in CHQ described above (Chapter 2). 

More surprisingly, the calculations revealed that the N-bonded isomer with the ICT state, 

destabilized by the water dimer, is responsible for the red-shifted fluorescence. To understand 

this unusual behavior of the isomers, the mechanism of twisted intramolecular charge-

transfer (TICT) formation and energy dissipation is studied in detail. In summary, in order to 

induce red-shifted fluorescence, the N-bonded complex must be able to dissipate energy and 

stabilize itself in the TICT structure responsible for the fluorescence. In the gas phase it can 

only happen nonradiatively via photodissociation. In fact, arguments are given that only the 

N-bonded isomer dissociates rapidly enough into free DMABME and a water dimer, as a 

result of immediate repulsion in the TICT state between the amino nitrogen and the water 

dimer. Contrarily, in the O-bonded isomer the hydrogen bond becomes even stronger by 

additional electrostatic attraction in the ICT state. It prevents the isomer from fragmentation 

and therefore its deposition into the TICT structure. This example demonstrate another 

important but often forgotten property of solvent molecules to serve as an energy acceptor in 

the gas and liquid phase, allowing chemical reactions to follow specific ways determined by 

the minimum energy pathways on their potential energy surfaces (Ref. X3X).  
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Both examples of Chapters 2, 3 readily support the thesis that charge-transfer processes of 

various mechanisms can be optimized with respect to the number and specific binding 

patterns of involved water molecules. The results of more efficient reaction scenarios can 

often be observed in the gas phase or in the water-deficient macromolecular architectures 

only, since in aqueous solutions the scenarios will be suppressed by counteraction of solvent 

water. Overall, elementary reactions involving bulk solvent water often cannot be described 

by individual solute molecules alone and neither by those of solute molecules in polar 

continuum. 

 

The theoretical description of charge-transfer processes in solute-solvent complexes 

generally requires a high-level correlated quantum treatment of the electronic structure 

(Section 1.2.3). At present, the application of correlated methodologies to medium-sized 

molecular systems is limited to those methods which are comparable, with respect to accuracy 

and computational cost, with second-order perturbation theory (Section 1.2.4). Note, that 

medium-sized systems are of practical interest since they can often reproduce essential 

properties of larger realistic (e.g. biological) systems. 

Most of the available high-level correlated methods operate with atom-centered basis sets 

(Section 1.4.1). This introduces an additional computational error in the calculations – the so-

called basis-set superposition error (BSSE) (Section 1.4.1), which arises due to the mutual 

augmentation of fragment basis sets within the complex. As result, wave function and 

molecular properties of the complex become BSSE-contaminated, the absolute energy too 

negative and the potential energy surfaces mutilated. Ground-state potential energy surfaces 

of the complexes with pronounced noncovalent interactions (e.g. solute-solvent complexes) 

are particularly sensitive to BSSE (Section 1.4.3). This is especially the case for the surfaces 

obtained at correlated level, which exhibits severe overbinding. To date, there are multiple 

examples which demonstrate that correction for BSSE significantly improves the quality of 

potential energy surfaces of weakly-bound, in particular – hydrogen-bonded, complexes, 

obtained at the level of second-order Møller-Plesset perturbation theory (MP2) (Section 1.2.4) 

(see Ref. D19D for review). 

The message of the present work is that the quality of the MP2 potential energy surfaces of 

hydrogen-bond complexes is not just improved by the BSSE-correction, but rather become 

nearly equal to BSSE-corrected surfaces obtained with more accurate and computationally 

demanding methodologies. That was shown on prototypic hydrogen-bonded systems in a 

benchmarking study (Section 3.7, supporting information of Ref. X3X), which laid the ground to 
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decipher the IR spectrum of the 1:2 complexes of DMABME. In principle, this statement is 

rather straightforward, if one realizes that the BSSE-contribution to the stabilization energy of 

a supermolemolecular complex in the vicinity of its equilibrium structure is usually of about 

the same order of magnitude as the correlation contribution for a wide range of atom-centered 

basis sets. However, until recently, this fact has been greatly overseen by the quantum-

chemical scientific community. 

 

 

 

 



1. Theoretical Methods 

1 

Chapter 1 

Theoretical Methods: an Overview 

 

Part 1.1 

Molecular Schrödinger Equation 

 

1.1.1 Molecular Wave-Function: General Form 

Since the introduction by Erwin Schrödinger of his famous non-relativistic quantum 

equation in 1926 (Ref. D20D), its solution in application to polyatomic and molecular systems 

constitutes the major task of quantum chemistry. In the time-independent case, this is an 

eigenvalue problem with the molecular Hamiltonian molĤ  
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Its eigenvalues E  corresponding to the eigenfunctions ),( Rr  provide the energy 

spectrum of molecular system. Here and further, the electronic coordinates of a molecule 

comprising n electrons and N nuclei are contained in the multiindices ),...,,...,,( 21 ni xxxxx   
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),...,,...,,( 21 NI RRRR  of the electronic and nuclear coordinates are designated by collective r  

and R , respectively. The terms within Hamiltonian X(1)X are the electronic Hamiltonian 
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the nuclear potential energy operator 

 

 

(3) 

 

and the nuclear kinetic energy operator 
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The parts of electronic Hamiltonian are the electronic potential energy operator 
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and electronic kinetic energy operator 
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(6) 

In the above formulas, i , I  are the gradient operators (vectors) with respect to the 

coordinates of i-th electron and I-th nuclei, respectively. Small terms in Hamiltonian X(1)X are 

usually referred to magnetic effects which are small in the case of systems, considered in the 

present work. The solutions of Eq. X(1)X comprise all quantum mechanical information about 

the stationary properties of molecular system. 

Two important remarks about the properties of molecular wave-functions should be made. 

1) None of the above-introduced operators within molecular Hamiltonian X(1)X depends on 

the electronic or nuclear spin. Within the non-relativistic quantum mechanics, there is no way 

to introduce spin of the particle from first principles. This is possible only by means of the 

relativistic quantum equation of Dirac (Ref. D21D). Thus, the existence of spin is postulated in 

the present nonrelativistic theoretical framework. Still, relativistic effects (e.g. spin-orbital 

coupling) can be often incorporated in the nonrelativistic Eq. X(1)X by inclusion of 

corresponding terms into Hamiltonian X(1)X, only when they are small enough compared to its 

main part (see e.g. Ref. D22D, D23D, D24D). 

2) An important constraint on the molecular wave-function imposes the Pauli principle 

(Ref. D25D) which is somewhat independent from the Schrödinger equation. It states that there 

are only two classes of particles in nature – fermions and bosons. The wave function of an 
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ensemble of n identical ferminos is antisymmetric with respect to the interchange 

(permutation) of coordinates (both spatial and spin) of any two particles 
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(7) 

Fermions possess half-integer spins and electron belongs to this class. Bosons have an integer 

spin and their ensemble wave function is symmetric with respect to the coordinates 

permutation 
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Unlike electron, nuclei can belong to both classes depending on their spin.  

The most general form of the molecular non-relativistic wave function would be the 

following product 
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Herein, x is antisymmetric with respect to the permutation of electronic coordinates, 
1R , 

2X ,… are either antisymmetric or symmetric with respect to the permutation of nuclear 

coordinates of the given sort 1X , 2X … . 

The fact that nuclear wave function can obey to the Pauli principle is often ignored in 

calculations. This can be justified in many cases since nuclear wave functions are usually 

much more localized as compared to the electronic ones and their identity is thus not a 

concern. However, this is not the case, for example, in systems comprising several hydrogen 

atoms, or protons. It will be shortly discussed in the end of next section. 

 

1.1.2 Adiabatic Expansion and Born-Oppenheimer Approximation 

In this section, different ways of solving the molecular Schrödinger equation will be 

reviewed. 

The famous approach, introduced by Oppenheimer (Ref. D26D) takes into account the fact of 

small mass ratio of electrons and nuclei (mel/Mnuc < 10
-3

). In many cases, the electronic 

degrees of freedom can be considered as responding instantaneously to the changes of nuclear 

configurations. This rationalizes a particularly convenient expansion of the molecular wave 

function into the basis set of stationary electronic wave-functions 
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The expansion coefficients of Eq. X(10)X depend on the nuclear geometries explicitly and define 

the nuclear wave functions )(X , associated with an electronic state  . The electronic 

wave functions }){,( Xx , forming the basis set, are the stationary solutions 

(eigenfunctions) of the time-independent Schrödinger equation with electronic Hamiltonian 

X(1)X (Sec. 1.1.1) 
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The eigenvalues )(X  define energies of the electronic levels of the system and depend 

parametrically on the “fixed” nuclear geometries. Due to the parametrical dependence, the 

electronic wave functions are usually referred to as adiabatic electronic wave functions. 

Using the product rule for differentiation, it is easy to check that 

  

   






















   II

I I

NNN
M

TTXXxT ,
2

)ˆ(ˆ)(}){,(ˆ
2

. 

(12) 

Multiplying both sides of Eq. X(1)X by the conjugate electronic wave-function and integrating 

over all electronic coordinates 



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
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
 



r

dx   , making use of Eq. X(12)X and orthonormality 

of the electronic wave functions 

  

   , 

(13) 

one arrives at the nuclear wave function Schrödinger equations 
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II
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NNN
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TETV . 

(14) 

The value ̂  herein is the so-called nonadiabaticity operator. Equation X(14)X can be 

interpreted as a stationary equation for the nuclear eigenfunctions and it is still formally exact. 

For the further analysis it is convenient to rearrange Eq. X(14)X as follows 
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

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






















 ˆˆˆˆ

)(ˆ

ETV N

RU

N 
. 

(15) 

Off-diagonal terms ̂  of the nonadiabaticity operator are termed nonadiabatic couplings. In 

fact, transitions between the electronic states in course of nuclear motion are caused by these 

couplings. The diagonal part ̂  of the operator is normally a small perturbation to the left-

hand side of Eq. X(15)X. The term )(ˆ RU  in the above equation can be considered as an 

effective potential corresponding to the nuclear motion of the system in its adiabatic electronic 

state. It determines a hypersurface in the space of nuclear coordinates – the adiabatic potential 

energy surface (PES), associated with a particular electronic state. Since molecular 

Hamiltonian X(1)X (Sec. 1.1.1) is independent on spin, PES is the function of nuclear Cartesian 

coordinates R  only. 

The solution of the coupled equations X(15)X for the expansion coefficients of molecular 

wave-function is a challenge, since it requires knowledge of all electronic adiabatic wave 

functions – for both ground and excited states, as well as the nonadiabaticity operator for all 

nuclear configurations covered during their motion. Hence, it is crucial to introduce 

approximations for solving Eq. X(15)X. 

The first straightforward approximation is to just neglect all the coupling terms. Under this 

assumption the nuclear Schrödinger equation becomes 

  

)()()ˆ)(( XEXTRU BOBOBO

N

BO

   , 

(16) 

with the adiabatic molecular wave function 

  

)(}){,(),( XXxXx BOBO

   .
 

(17) 

Eq. (16), (17) constitute the Born-Oppenheimer (BO) approximation (Ref. X26X) for the 

molecular Schrödinger equation X(1)X. 

The applicability of the BO approximation to a particular situation can be easily evaluated 

by means of perturbation theory with respect to the nonadiabaticity operator. In general, the 

second order corrections to the adiabatic energies of Eq. X(15)X have the form 
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BOBO

BO

EE
EE

2

)2(

ˆ

. 

(18) 

Obviously, a breakdown of the approximation will occur when the matrix element in the 

numerator is large compared to the energy difference in the denominator. This can happen in 

two cases. (1) When BO

 
ˆ  is not small for symmetry reasons. (2) When the system 

approaches a region in nuclear configuration space where the adiabatic potential energy 

surfaces approach each other and the denominator become close to zero. Therefore, the 

knowledge of adiabatic PES is of paramount importance for the understanding of 

nonadiabatic phenomena at a microscopic level. In most cases, only a few states are involved 

in such crossings where the BO approximation is not valid. In this case, the nonadiabatic 

couplings between only these electronic states are required. Even so, implementation of the 

couplings is a nontrivial computational task. Moreover, within linear response theory for the 

solution of the electronic Schrödinger equation, a standard tool to obtain excitation energies, 

nonadiabatic couplings between two excited states cannot be determined, since it requires the 

second-order response functions (Sec. 1.3.2) which is computationally much more 

demanding. 

Thus, the question arises whether it is possible to avoid such a complicated representation 

of the nuclear Hamiltonian. 

One alternative is to use electronic basis set ),( )0(Rr  where the positions of nuclei are 

fixed at some point )0(R  of configuration space. Such a point can be, for example, a stationary 

point on the adiabatic PES of an electronic state (see the next section for the classification of 

PES). Under this circumstance, nonadiabatic couplings vanish, whereas additional terms 

appear in the PES operator, what is usually easier to treat. Such basis sets are called diabatic 

ones. The diabatization procedure is described e.g. in Ref. D27D and the references herein. An 

undesirable consequence of the transition to fixed, with respect to the nuclear coordinates, 

basis set is slower convergence of the diabatic series, compared to the adiabatic ones. 

Another elegant alternative to an adiabatic expansion (Sec. 1.1.1) indeed exists. This is the 

so-called nuclear-electronic orbitals (NEO) approach (Ref. D28D, D29D, D30D, D31D). In this approach, 

the molecular wave function is represented by Eq. (9) (Sec. 1.1.1). The electronic and nuclear 

parts are then expressed in the basis of single-particle electronic and nuclear wave functions. 

Consequently, the same standard theoretical methodologies as for the electronic problem are 

applied to the solution of the molecular Schrödinger equation. In theory, this approach has 

clear advantages. First, it allows to solve the entire molecular problem in one pass avoiding 
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expensive adiabatic expansion and nonadiabatic couplings computations. Second, it allows for 

taking into account nuclear quantum effects (e.g. nuclear exchange) explicitly. Unfortunately 

in practice, in order to correctly describe electron-nuclear interactions (which are much 

stronger than the electron-electron and the nuclear-nuclear ones), the electron-nuclear 

distances must be included into the molecular basis functions explicitly (Ref. 32, 33, 34), e.g. 

by means of Gaussian geminals (Ref. 32). Their use leads to the exponential (with respect to 

the number of correlated electron-nuclear pairs) rise of matrix elements in the variational 

optimization (Sec. 1.1.2) of the molecular wave function and, for the moment, makes the 

technology compuatationally feasible only for small systems. 

 

1.1.3 Characterization of Adiabatic Potential Energy Surfaces 

Assume the adiabatic potential energy surface )(RU , corresponding to an electronic state 

 , is computed. The following two parameters of PES are of importance. First, the gradient 

vector towards the direction of steepest rise of PES 
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(19) 

Its negative value is the force along a particular direction in configuration space. Second, it is 

the force constant matrix, or, the Hessian matrix defined as 

  

)(
2

)(

, RU
RR

k
JI

JI 






 . 

(20) 

Since each nuclear coordinate XI comprises three Cartesian coordinates its dimension is 

(3N×3N). 

Often, chemical and physical properties of molecular systems are particularly important at 

the points )(R  of PES where the gradient vanishes 

  

0)( )(  
 RU , 

(21) 

referred to as stationary points. 



1.1.3 

8 

The nature of stationary points can be illuminated by analysis of the eigenvalues of the 

Hessian matrix calculated at a stationary point )(R . In general, any Hessian matrix has 6 

eigenvalues equal to zero since there are only (3N-6) independent coordinates necessary to 

determine the energy. If all the remaining eigenvalues are positively defined then )(R  is a 

minimum on PES – it corresponds to an isomer of the molecular system. If the Hessian matrix 

has one negative eigenvalue than the stationary point is a saddle point on PES, which 

corresponds to a transition state connecting two isomers. Higher order derivatives of PES are 

also important, and their relation to molecular properties can be found in Ref. D35D. 

For an efficient search for stationary points on PES, the knowledge of the gradient X(19)X at 

each step of the search is necessary. Moreover, for an efficient location of transition states, the 

Hessian matrix X(20)X is required and needs to be calculated at least in the initial step. Since the 

eigenvalue of the Hessian matrix corresponds to force constants its diagonalization is required 

to obtain infrared (IR) spectra (see the next section) of a molecular system. 

The gradient and Hessian of PES can be calculated on computers either numerically by 

means of the finite difference schemes, or analytically. Analytic derivatives are more difficult 

to implement – the higher the order of the derivatives (and the higher the theoretical level for 

the solution of the electronic problem), the more complicated the analytic expressions are. 

However, analytic derivatives are more accurate and much faster in computer calculations 

compared to the numerical ones. Thus, the availability of analytic gradients and second 

derivatives of PES is an important prerequisite for an efficient stationary-point search in 

quantum-chemical calculations. 

In the next section a common procedure for the solution of Eq. X(16)X around stationary 

points will be introduced. 

 

1.1.4 Harmonic Approximation and Beyond 

The Tailor expansion of potential )(ˆ RU  around a stationary point )(X , up to the second 

order yields 

  

))((
2

1
)()( 3)()(

1,

)(

,

)( RORRkRURU JI

N

JI

JI  
  



. 

(22) 

The first derivatives vanish at stationary points due to the condition X(21)X (Sec. 1.1.3). The 

Nuclear Hamiltonian in Eq. X(16)X (Sec. 1.1.2) then becomes 
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(23) 

A linear transformation of the coordinates according to 

  

)()()( 1 









 QA
M

R I

I

I  , 

(24) 

brings Hamiltonian X(16)X to the diagonal form  

  

 
  
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1
)0(   , 

(25) 

with the so-called normal mode Hamiltonian NMH
ˆ . The nomal mode coordinates )(

Q  and 

normal mode frequencies )(

  are introduced herein. 

Representation X(25)X is nothing but superposition of independent harmonic oscillators with 

the equilibrium configuration )(R  corresponding to 0)( 
Q  

  

)()(ˆ QEQH BO
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BO

N
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  . 

(26) 

Its analytical solution is well-known 
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(27) 

where 
NH are the Hermit polynomials (see e.g. Ref. D36D) and ...,2,1,0N  – the 

vibrational quantum numbers for mode ξ. Eigenvalues (energy levels) of Eq. X(27)X then read 

  

 













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2

1)( NE N  . 

(28) 

The procedure described above is known as the harmonic approximation (HA) for the 

nuclear problem. It determines total molecular wave functions within the adiabatic BO 

approximation. The eigenvalues X(28)X determine the infrared (IR) spectrum of a molecular 

system within HA. 

Let mention a few obvious but important implications for solving the nuclear problem 

within HA. First of all, according to Eq. X(28)X, the ground-state vibrational energy ( 0N ) 
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corresponding to an electronic adiabatic state   is nonzero, moreover it is positively defined. 

This energy is termed zero-point vibrational energy (ZPVE). The sum of electronic energy 

and ZPVE is referred to as zero temperature enthalpy of the molecule in the ground 

vibrational state (calculated within HA).  

Consider an isomerisation reaction on the PES of one electronic state. A typical example of 

such a reaction can be inter- or intramolecular hydrogen transfer in the ground electronic state 

via keto-enol tautomerism in acetone-water clusters as is studied in Chap. 2. The barrier of the 

reaction can be calculated at two levels of accuracy: as the difference of the energies between 

the minima and corresponding transition state obtained with and without ZPVE correction. 

The latter way is more computationally expensive as it requires second derivatives of the PES 

to be computed. In the transition state, the Hessian matrix X(20)X (Sec. 1.1.3) has one negative 

eigenvalue (see the previous section) and one normal-mode frequency is excluded from the 

series X(28)X, compared to the case of minima. As result, ZPVE in the transition state is usually 

smaller than in the minima. That is, taking to account ZPVE is of importance for accurate 

reaction energy barriers calculations, especially for the low-barrier reactions whose barriers 

can be modified by ZPVE considerably. 

Example for the importance of ZPVE can be found in calculations of stabilization 

enthalpies of molecular complexes. The stabilization energy of a complex is defined as the 

difference in energies between the complex and its isolated fragments, while stabilization 

enthalpy is the same difference taking ZPVE into account. Due to additional covalent or 

noncovalent bonds (e.g. hydrogen-bonds), ZPVE of the complex is typically larger than the 

sum of ZPVE of its isolated fragments. Therefore, as in the case of energy barriers, absolute 

value of stabilization enthalpy becomes smaller than that of stabilization energy. 

Further improvement of the nuclear energy calculated within HA is possible by means of 

perturbation theory. Assuming the solutions within HA as unperturbed and applying 

perturbation theory with respect to the higher order terms of Eq. X(25)X, one obtains the 

anharmonic correction to HA. The procedure thus generates anharmonically-corected PES. 

However, it requires high-order derivatives of PES and, hence, is computationally feasible 

only for small systems. 

Normally, nuclear energy, corrected for anharmonic effects, constitutes about 90% (Ref. 

D37D) of the harmonic ZPVE and can be taken to account by means of scaling by relevant 

constant factors. The latter can be derived from the high-level calculations on small model 

systems or from experimental data. 
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Part 1.2 

Electronic Schrödinger Equation: Ground State 

 

1.2.1 Wave function of Noninteracting Electrons 

In the present paragraph, methods for the solution of the electronic problem X(11)X (Sec. 

1.1.2) with the Hamiltonian X(2)X (Sec. 1.1.1) will be described. Beforehand, additional 

assumptions on the form of electronic wave function should be made 

In context of the nonrelativistic theory used in this work, spin of electron was 

“empirically” added to its coordinate: ))(;())(;,,( iiiii

z

i

y

i

x

ii srsrrrx   , where ir  is the 

spatial part, and )( iis   is the spin part as a function of symbolic spin variable i . Since 

electron spin is ½, the spin coordinate )( iis   comprises two spin functions )( i  and )( i , 

corresponding to spin-up and spin-down, respectively. Spin functions are complete and 

orthonormal 
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(29) 

– integration here is performed in a symbolic way. 

Since electronic Hamiltonian X(2)X does not depend on spin, the assignment of spin to the 

wave function does not bring any actual information. However, spin-dependence of the 

electronic wave function becomes immediately evident in context of the antisymmetry 

principle (Sec. 1.1.1). The latter requires antisymmetry with respect to the interchange of the 

coordinates of any two electrons, including both spatial and spin parts. 

A regular way to obtain the wave-function of the system of interacting electrons is to start 

from the wave function of the hypothetic system of non-interacting electrons which will be 

further improved by inclusion of interactions. The latter can be constructed from the one-

electron (single-particle) wave-functions – the solutions of one-electron Schrödinger 

equations 

 

  )()(),(ˆ)(ˆ)(ˆ
iiiiiiNieliielone xxRrVrTxH   . 

(30) 
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Compared to the electronic Hamiltonian of interacting electrons X(2)X, the potential energy 

operator X(5)X (Sec. 1.1.1) is excluded from the one-electron Hamiltonian above. Since these 

one-electron wave functions refer to single electrons in a molecule, they are often termed 

molecular orbitals (MO). For the i-th electron of the system its molecular orbital is read 

 

))(,()( iiiiii srx   . 

(31) 

Since molecular orbitals can depend on both spin and spatial coordinates, they are also named 

spin orbitals. As it was already mentioned, the nonrelativistic electronic Hamiltonian does not 

depend on spin, therefore molecular orbital can be separated to the product of spatially- and 

spin-dependent parts  

 

)()()( iiiiii srx   . 

(32) 

The spatially-dependent part )( ii r  is called spatial orbital, iii drr
2

)(  describes the 

probability of finding the electron i in the small volume element idr  around ir . 

The simplest expression for the waveunction of N noninteracting electrons, constructed 

from single-particle spin orbitals satisfying the antisymmetry principle, is the following 

determinant 
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(33) 

The factor 2/1)!( N  is the normalization factor of the wave function. The right-hand of the 

expression is a short-hand notation for the determinant – it displays its diagonal elements only 

and includes the normalization constant. This object is called Slater determinant (SD) (Ref. 

D38D). Interchange of the coordinates of two electrons corresponds to the interchange of two 

rows in SD. It corresponds to a sign change of the N-electron wave function, and SD hence 

fulfils the antisymmetry requirement. Occupation of the same spin orbital by more than one 

electron, corresponds to having at least two columns of the determinant equal, what makes it 

vanish. Therefore, not more than one electron in an N-electron system can occupy one spin 

orbital. Thus, SD naturally obeys the Pauli exclusion principle for fermions. 

One can see that the antisymmetry principle results in a very specific kind of interaction of 

electrons, which makes electrons with parallel spin correlated, in some way, even at the 
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absence of any interaction potentials between them. This kind of interaction is termed 

exchange correlation. Within this approximation, electrons with the same spins remain 

uncorrelated, therefore a single-determinant wave function is normally referred as an 

uncorrelated one. 

There are two types of Slater determinants used in electronic-structure calculations. 

1. Unrestricted determinants, formed from 2K unrestricted spin orbitals and having 2K 

different spatial orbitals for the different spins 
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(34) 

Herein, the sets of spatial orbitals with the same spin are assumed to be orthonormal 

 

ijjiji    , 

(35) 

but the sets with different spin are not 

 
  ijji S , 

(36) 

where 

ijS  is the overlap matrix. 

Conditions X(29)X for the spin parts can be generalized for the different spin orbitals i and j 
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(37) 

what provides that unrestricted spin-orbitals form an orthonormal set, despite the condition 

X(36)X. 

2. Restricted determinants, which are formed from 2K restricted spin orbitals and comprise 

K spatial orbitals, each spatial orbital i is shared by the spins   and   
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(38) 

The spatial orbitals are orthonormal 

 

ijji   . 

(39) 
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The conditions for the spin parts of restricted determinants are the same as for the unrestricted 

ones (Eq. X(37)X).  

Restricted determinants can be further classified according to the number of spatial orbitals 

that are singly occupied. The determinants in which each spatial orbital is doubly occupied are 

the closed-shell determinants. The open shell is a singly occupied spatial orbital. The open-

shell determinants can be described by the number of open shells they contain. In the 

restricted open-shell determinants one part of the electrons occupies closed-shell orbitals 

while another one is assigned to occupy the open shells. 

In many cases, the molecules containing even number of electrons are well-described by 

the closed-shell restricted determinants. However, they totally fail to describe dissociation of 

molecules into open-shell fragments. A classical example is the dissociation of the H2 

molecule. For the description of open-shell fragments one has to use either restricted open-

shell or unrestricted determinants. Both approaches have their advantages and disadvantages 

(see e.g. Part 2.5, Ref. D39D), but a more general approach would be to use even several 

determinants to represent the wave function. Such a representation gives rise to the 

generalized valence-bond (GVB) (Ref. D40D) and more general multiconfiguration self-

consistent field (MCSCF) (Ref. D41D) approaches. 

In the present work, only closed-shell systems have been investigated. Thus, most of the 

theoretical statements of the next sections will be formulated in terms of the general spin 

orbitals while some particular expressions can be presented in terms of the closed-shell spatial 

orbitals. 

 

1.2.2 Hartree-Fock Approximation 

Hartree-Fock (HF) is the simplest method to include interactions into the system of N non-

interacting electrons described by a Slater determinant. For the derivation of the HF equations 

it is convenient to represent the electronic Hamiltonian X(2)X (Sec. 1.1.1) in the following form 
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(40) 

1Ô  and 2Ô  are the single- and two-particle operators since they depend on coordinates of one 

and two electrons, respectively 
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with )(ˆ
ii rh , often termed core-Hamiltonian operator , and  
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Here and further, all the expressions are given in atomic units (AU) such that mass and the 

Plank constant are set to unit. 

It can be shown (see e.g. Part 2.4 Ref. X39X) that the expectation value of the electronic 

Hamiltonian for a single determinantal wave function, called Hartree-Fock energy, is given 

by the expression 
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(43) 

with one-electron integrals 
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and two-electron integrals 
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(45) 

Herein, a short-hand notation jiji   for the difference between the antisymmetrized 

two-electron integrals is introduced. The first term of the right-hand side of Eq. X(43)X comes 

from the kinetic energy and electron-nuclear attraction of all electrons. The second one is the 

classical Coulomb repulsion of two charge distributions. The last term is the so-called 

exchange energy which comes from the antisymmetry principle. Its form is such that it 

cancels the Coulomb energy for the system comprising only one single electron, the latter 

means that HF energy is self-interaction free. The expectation value of the single determinant 

X(43)X should then be minimized with respect to the variations of orbitals 

 

jijiji ,,,   , 

(46) 

with an additional constraint of the orthonormality of orbitals 
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ijji   . 

(47) 

It can be efficiently performed by constructing the following Lagrangian 
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which is the sum of the HF energy and (N×N) orthonormality conditions X(47)X. The Lagrange 

multipliers ij  are termed orbital energies. Minimization of L with respect to the orbitals 
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(49) 

yields the Hartree-Fock equations 

 

  























N

j

ijii

N

j

jjiij xxxKxJrhxf

HF

1

11

ˆ

1

1111 )()()(ˆ)(ˆ)(ˆ)(ˆ 



  

. 

(50) 

Here jf̂  is the Fock operator, defined as a sum of the core-Hamiltonian operator, Coulomb 

operator  
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(51) 

and exchange operator  
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(52) 

The difference HF̂  between the two latter operators is an effective one-electron potential 

operator often referred as Hartree-Fock potential. In contrast to the Coulomb operator, the 

action of )(ˆ
1xK j  on )( 1xi  implies an “exchange” of electrons 1 and 2 X(52)X. Since )(ˆ

1xK j  is 

therefore not a simple multiplicative potential uniquely defined at each point of the 1r  space, 

the exchange operator is a nonlocal operator. 
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Equation X(50)X can be brought to a more conventional form by the unitary transformation F

1
F 

of the spin orbitals 

 

)(´´)(´ˆ
11 rrf iiii   . 

(53) 

The unique set of spin orbitals obtained from the solution of the eigenvalue problem X(53)X with 

the diagonal matrix of Lagrange multipliers is called canonical orbitals. Since any single 

determinant obtained from the unitary-transformed spin orbitals differs by a phase factor from 

the original determinant, its expectation value will be invariant to the transformation. In this 

sense, the spin orbitals which minimize the HF energy are not unique and are defined up to a 

unitary transformation. 

For the further processing, the HF equations should be expressed in terms of spatial 

orbitals what can be done by integrating out the spin variables. In the case of a closed-shell 

determinant it leads to a singular set of equations for the spatial orbitals shared by spins   

and   

 

)()(ˆ
11 rrf iiii   . 

(54) 

In the spin-unrestricted case one obtains two sets of equations – one for each spatial orbital 

corresponding to spins   and  . 

In the case of atoms, the integro-differential equation X(54)X can in principle be solved 

numerically. However, for molecules, the numerical solution is impractical. Instead, by 

expanding spatial orbitals into a finite basis set of K known atomic basis functions 
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(55) 

the closed-shell equation X(54)X can be transformed to a set of algebraic equations. Inserting 

X(55)X into X(54)X and multiplying by    one arrives at the matrix equation  

 








 
K

ii

K

i CSCF
11 





  , 

(56) 

with the elements of the Fock matrix 

 

                                                 
1
 The matrix of a unitary transformation possess the property U

†
U=1, where U

†
 is the adjoint matrix. From there 

it follows that the determinant of a unitary matrix is defined within a complex phase factor: det (U)=e
iφ

). 
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(57) 

and, since the atomic basis functions are not necessarily orthogonal, the overlap matrix 

 

   S . 

(58) 

The procedure was proposed by Roothan and Hall (Ref. D42D, D43D), equation X(56)X bears their 

name. In the case of unrestricted HF equations, spin   and spin   sets of spatial orbitals are 

represented by their own bases. This consequently gives two sets of matrix equations of type 

X(56)X named Pople-Nesbet equations (Ref. D44D). 

Equation X(56)X is nonlinear, since the Fock matrix itself depends on the expansion 

coefficients (Eq. X(57)X) and therefore it must be solved iteratively. Starting from a trial set of 

the expansion coefficients, one calculates improved ones, forms a new Fock matrix and 

repeats the procedure as many times as the HF energy, expressed in terms of the coefficients, 

is converged to a specified criterion. The procedure is also termed self-consistent field (SCF). 

It generates K spatial orbitals, where K is the number of basis functions in the expansion X(55)X. 

In the closed-shell case, N/2 orbitals with lowest energies are referred to as occupied orbitals 

and the remaining (K-N/2) – as virtual orbitals. In the unrestricted case there are, of course, N 

occupied and (2K-N) virtual orbitals, as the spatial orbitals with different spin have different 

energies. 

Finally, it would be important to make a notice about the physical meaning of orbital 

energies. Assume one electron from an occupied spin orbital b  is removed. The energy 

difference between the initial N-electron system and the remaining (N-1)-electron system is 

called ionization potential. An opposite case is when one electron is added to one of the 

virtual orbitals p . The energetic of this case is described by the electron affinity which is the 

energy difference between the initial system and the new (N+1)-electron system. It can be 

shown that in the approximation that the spin orbitals of the new system remain unchanged 

(only the relevant orbitals are removed/added), the ionization potential is the negative orbital 

energy )( b  of the occupied orbital, while electron affinity is the negative energy of the 

virtual orbital )( p . This property is known as Koopmans’ theorem (Ref. D45D). 

 

1.2.3 Electron Correlation 
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The Hartree-Fock energy X(43)X expressed in terms of the optimized orbital coefficients (Eq. 

X(56)X, Sec. 1.2.2) calculated with an infinitely-large, i. e. complete basis set is called Hartree-

Fock limit. The difference between this energy and the exact nonrelativistic energy within the 

Born-Oppenheimer approximation is referred to as correlation energy (Ref. D46D), which is 

negatively defined. Although correlation energy is only a small fraction (normally ca. 1%) of 

the total energy, it is of paramount importance for the problems where accurate energy 

differences are required – in particular in chemical reactions. 

It was already mentioned that the HF energy contains exchange correlations which arise 

from the antisymmetry principle. Since, within the nonrelativistic framework, this kind of 

correlations does not come from any interactions of electrons, while the electron interactions 

are treated merely in an average way, the HF theory is commonly referred as an uncorrelated 

theory. 

There are two types of electron correlations incurring from the interactions of electrons – 

static and dynamic correlations (Ref. D47D, D48D). Dynamic correlations arise from the 

instantaneous interactions of electrons. Static correlations stem from near-degenerate effects 

where more than one determinant is necessary to describe the wave function. This kind of 

correlations is treated by the aforementioned multireference methods (Sec. 1.2.1). As the 

number of determinants employed for the description of static correlations increases, the 

border between static and dynamic correlations blurs. 

Although the HF approximation can often produce rather accurate structures and harmonic 

frequencies (i.e. around 0.01 Ǻ for bond lengths and 10% for harmonic frequencies) for 

covalently-bound systems, it totally fails to describe the dispersion part of the interaction 

energy. The latter is essential for intermolecular bonding of weakly-bound nonpolar 

complexes, in particular Van-der-Waals complexes. Dispersion interactions arise from the 

mutual polarization of electronic densities of the molecules or polyatomic complexes. 

Therefore, explicit inclusion of dynamic correlations is essential for an accurate description of 

such interactions. In the case of hydrogen-bonding (H-bonding), inclusion of the dispersion 

energy is important to describe the anisotropy of the system correctly and, in general, to 

obtain more reliable structures. 

Several major theoretical branches starting from the HF approximation are available for 

practical computations to include electron correlations. 

Within the configuration-interaction (CI) branch (e.g. Chap. 4, Ref. X39X), the electronic 

wave function of an N-electron system is expanded in terms of the determinants constructed 

from 2K > N spin orbitals – the solutions of Hartree-Fock equations, according to 
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Herein, excited determinants r

a , rs

ab , …, ...

...

rst

abc  are formed from the Hartree-Fock ground-

state wave function Ψ0 by replacement of one, two, ..., n occupied orbitals with virtual ones. 

These determinants and called singly-, doubly-, ..., n-tuply-excited determinants, respectively. 

The (a,b,c,...) and (r,s,t,...) indices sets, refer to the occupied and virtual orbitals, respectively. 

Applying the variational principle to the CI wave function X(59)X, yields equations for the CI 

expansion coefficients r

ac , rs

abc , …,. ...

...

rst

abcc . If all possible, for a given atomic-orbital basis set, 
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
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

N

K2
 determinants are used in the CI expansion X(59)X, the procedure is termed full-CI. Its 

limitation to the determinants of a specific maximal degree of excitation is named truncated-

CI. The lowest eigenvalue obtained from the solution of the CI equations is an upper bound to 

the ground-state energy of the system, whereas the higher eigenvalues will be upper bounds 

for the excited-state energies. As the basis set approaches completeness, the full-CI energy 

approaches the exact electronic energy within the Born-Oppenheimer approximation. 

Nevertheless, even with an incomplete basis, full-CI energy is considered as “exact” within 

the subspace spanned by a given basis. Unfortunately, the number of determinants arising in 

the full-CI procedure grows exponentially with system size (i.e. with respect to the number of 

electrons and hence – the basis functions) that its application is only feasible to small 

benchmarking systems. It is actually a niche for full-CI in quantum chemistry. On the other 

hand, with truncated-CI there is another severe problem: the correlation energy does not scale 

correctly with respect to the number of particles in the system , thus these methods are not 

size-consistent (Ref. D49D, D50D). Size-consistency is crucial for simulations of large systems since 

it provides correct extrapolation of results obtained for small- and medium-sized model 

systems to larger ones. Owing to the above reasons, CI methods were not used in this work. 

Fortunately, other viable alternatives to CI exist. Within many-body perturbation theory 

(MBPT), adopted in quantum mechanics as Rayleigh-Schrödinger perturbation theory 

(RSPT), the electronic Hamiltonian is partitioned into two parts: a zeroth-order part having 

known eigenfunctions and eigenvalues, and a perturbation part. The exact energy is then 

expressed as an infinite sum over contributions of increasing order of perturbation. Those 

contributions which are constructed from the products of n such matrix elements constitute n-

th order of perturbation theory. If the perturbation is small compared to zeroth-order energy, 

then the perturbation series converges fast and only a few orders are sufficient to represent the 
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energy of the system. Although MBPT is not variational, it is size-consistent to all orders. It 

was proved by several authors using various techniques, e.g. by Brueckner who employed 

order-by-order proof (Ref. D51D), by Goldstone and Hubbard using diagrammatic techniques 

(Ref. D52D, D53D) and by Coester, who proved it by induction (Ref. D54D). The famous linked-cluster 

theorem is indeed the most general proof of size-consistency of RSPT in each order 

employing a diagrammatic representation of RSPT, performed by Goldstone (Ref. X52X). 

 

In some problematic cases the convergence of perturbation series of MBPT is not 

provided. This typically occurs when the perturbation in the Hamiltonian is not small 

compared to the zeroth-order energy. In this case, one has to resort to nonvariational but size-

consistent coupled-cluster (CC) theory. CC theory evolved in debates on the existence and 

proof of the aforementioned linked-cluster theorem and was initially formulated by Coester 

and Kümmel in 1958 in application to the nuclear-matter problem (Ref. X54X, D55D, D56D). In 

quantum chemistry CC theory was introduced by Cizek and Paldus (Ref. D57D, D58D, D59D). Within 

the CC methodology, the exact groundstate wave function of a many-electron system is 

represented by an exponential operator containing the cluster operator T̂ , acting on some 

zeroth-order wave function 0  – usually the Hartree-Fock single-reference wave-function 
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(60) 

When the cluster operator nT̂  acts on the Hartree-Fock wave function, it produces the sum 

over all excitations of a given order n, analogously to the above CI expressions. Truncation of 

the cluster operator by an excitation of specific order n gives rise to the approximated CC 

schemes of increasing accuracy and computational cost: CCS, CCSD, CCSDT, CCSDTQ for 

the single, double, triple, quadruple excitations, respectively, included in the exponential 

operator. A special power of the CC approach is its rapid convergence in the cluster order n. 

The experience demonstrates that for a wide variety of many-body systems with pair 

interactions, about 99% of the correlation energy can be obtained at the 21
ˆˆˆ TTT   level 

(CCSD), while the remaining 1% is almost entirely covered by 3T̂  in 321
ˆˆˆˆ TTTT   

(CCSDT).This was shown for closed-shell nuclei (Ref. X56X), atoms (Ref. D60D, D61D) and 

molecules (Ref. X61X). Unlike truncated-CI, approximated CC schemes are all size-consistent, if 
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the reference wave-function is size-consistent (Ref. D62D). It is provided by the exponential 

form of the Te
ˆ
 operator. 

In summary, among correlated methodologies described in this section, CC appears to be 

the most systematic one and, still, a computationally accessible way to treat wide range of 

problems of chemical and nuclear physics. 

Another correlated methodology used in this work is density-functional theory (DFT) 

introduced by Hohenberg, Kohn and Sham (Ref. D63D, D64D). It is conceptually different from the 

three wave function-based correlated methodologies introduced above, but structurally, it is 

very similar to HF theory. In DFT, electron correlation is treated by virtue of the energy 

functional ][E  which has the one-electron density   as variable rather than the N-electron 

wave function. This is the reason why DFT is computationally so efficient. Unfortunately, 

with the present day’s functionals the theory fails to describe dispersion interactions. 

In conclusion of this section, the computational scalings of ground-state correlated 

methods, used throughout the study, are briefly discussed. Formal scaling formulas for DFT, 

MP2 and CCSD methods with respect to the number of particles N are C
DFT

N
4
, C

MP2
N

5
 and 

C
CCSD

N
6
, respectively (all the formulas include relevant prefactors C). For comparison, 

uncorrelated HF theory, as well as DFT, formally scale as N
4 

F

1
F. From a practical point of view 

it is important to realize that N
5
-scaling roughly corresponds to the limit of current 

mainstream computational resources for studies of medium-sized molecular systems 

containing up to several dozens of the first-row atoms. Additional approximations can 

improve either the prefactors or even the scaling formulas of HF and relevant correlated 

methods (see e.g. Ref. D65D, D66D, D67D and Sec. 1.4.2). 

Perturbation, coupled-cluster and density-functional theories will be described in more 

detail in the next sections. A particularly useful handbook on the subject which covers most of 

the aspects of wave function-based methods is Ref. X39X. Reviews on analytical nuclear 

derivatives (see Part 1.1) in connection to HF and correlated electronic energies can be found 

in Ref. D68D, D69D, D70D. 

 

                                                 
1
 This scaling of SCF is due to the necessity to calculate four-index integrals expressed in terms of a particular 

basis set (Eq. (57)). 
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1.2.4 Perturbation Theory 

In Rayleigh-Schrödinger perturbation theory (Ref. D71D), the exact Hamiltonian in the time-

independent Schrödinger equation is partitioned into a zero-order and a small perturbation 

part 

 

  iiii EVHH  ˆˆˆ )0(  , 

(61) 

where   is so-called smallness parameter which quantifies the magnitude of perturbation. 

The eigenvalues and eigenfunctions of the zeroth-order part are the known solutions of the 

eigenvalue problem 
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(62) 

with the constraint on the eigenfunctions to be orthogonal 

 

ijji  )0()0( . 

(63) 

Eq. X(61)X can be formally solved by expanding the wave function and eigenfunction of the 

perturbed system into a power series with respect to the smallness parameter, treating 

solutions for the unperturbed system as zeroth order 
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(64) 

An additional condition for the solution requires the exact wave functions of the perturbed 

system and of the unperturbed one to be normalized  
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(65) 

This property is referred to as intermediate normalization. It is always possible to fulfil it, 

unless )0(

i  and i  are orthogonal. Expanding the eigenfunction of the perturbed system into 

the power series X(64) 
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(66) 

and taking to account its validity for any   (see Eq. above), one obtains the following relation  
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Substitution of the expansion X(64)X into the Schrödinger equation X(61)X and collecting the terms 

at n  gives a system of equations for the wave functions at each order 
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(68) 

The equations above are not eigenvalue problems anymore but rather integro-differential 

equations. Multiplication by )0(

i  taking to account relation X(67)X yields equations for the 

energies at each order 
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(69) 

These equations are inserted into the equations X(68)X. The latter then can be solved by means 

of a linear expansion of )(n

i  in terms of )0(

i  
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(70) 

Due to the orthogonality of the unperturbed eigenfunctions X(63)X, the expansion holds the 

following property 
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Thus, the coefficients 0)( n

iic  and are omitted from the expansion X(70) 
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Substituting X(72)X into the wave function equations X(68)X, multiplying by )0(

k  and taking into 

account the orthogonality condition X(71)X yields, up to the second order, equations for the 

wave functions 
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By inserting these equations into Eq. X(69)X, one finally obtains the energy-corrections up to the 

third order, for example 
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Derivation of the higher-order expressions can be significantly simplified by use of the 

diagrammatic representation of RSPT (Ref. X52X, X53X), initially introduced by Feynman in the 

field of quantum electrodynamics. 

In quantum chemistry, RSPT is often used in the form of Møller and Plesset (MPPT) (Ref. 

D72D ) who applied it to the Hartree-Fock wave function treated as a zeroth order in Eq.X(62)X. It 

can be shown (Ref. X72X) that the Hamiltonian, whose eigenfunction is the HF wave function, is 

the sum of the Fock operators (Eq. X(50)X, Sec. 1.2.2) over all electrons 
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It is termed Hartree-Fock Hamiltonian and is treated as a zeroth order in X(61)X. The zeroth 

order energy is thus a sum of the HF orbital energies  
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The perturbation part of Eq. X(61)X hence can be represented as the difference between the exact 

electron-electron interaction and the sum of the HF potential 
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It can be further shown that the ground-state first- and second-order energy contributions can 

be expressed as  
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and 
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It is interesting to notice that the HF energy X(43)X is the sum of zeroth- and first-order 

corrections (Eq. X(76)X, X(78)X) of MP theory. The first correction to the HF energy (zero and first 

orders) is obtained in the second order i. e. it is MP2 energy. Thus, MP2 is often used to 

obtain correlated potential energy surfaces, as well as molecular properties resulting from its 

derivatives. 

In its canonic form, MP2 scales as N
5
 with respect to the number of basis functions in the 

system, although approximations giving better scaling are already available (e.g. Ref. X65X, X66X, 

X67X). MP2 theory is in principle capable to treat long-range interactions with sufficient 

accuracy, as well as dispersion, polarization, and covalent effects associated with hydrogen 

bonding. 

One well-known shortcoming of MP2 however is a significant overbinding of weakly-

bound complexes. However, numerous recent studies as well as benchmark calculations 

applied to typical H-bonded systems, performed in this study (Sec. 3.7), strongly indicate that 

the overbinding issue of MP2 can not only be related to the lack of method itself but rather to 

basis-set effects (Part. 1.4). 
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1.2.5 Coupled-Cluster Theory 

The operators nT̂  contained in the cluster operator X(60)X can be compactly represented in 

second-quantized form 
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As in the CI case (Eq. X(59)X, Sec. 1.2.3), the above equations imply summation over ordered 

sets of indices referred to n occupied orbitals 
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and n virtual orbitals 
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Here 

,...,, tsra , ,...,, cbaa  are the creation and annihilation operators, respectively. A short-hand 

notation for the sequence of these operators is introduced 
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Their action on the Hartee-Fock reference is the following 
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Thus, each nT̂  generates a sum over all n-tuply excited determinants with the CI-like 

coefficients n

n

R

At  called cluster amplitudes. Eq. X(60)X then can be explicitly written as 
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with 
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and so on. Herein, all excited determinants of n-th order are grouped within nĈ , for example 

 
ru

ad

da
ur

u

d

r

ad

da
ur

aur

u

d

r

a ttaaaattTT  


))((
))((

0

))((
))((

011
ˆˆ . 

(84) 

A few coments on the above procedure should be made First, Eq. X(83)X for nĈ  establishes 

an analytical connection between CI and CC methods. It brings transparent physical meaning 

to each term and conceptually simplifies the analysis of the equations. Second, even with low-

order operators nT̂  included in the cluster operator T̂ , higher-order excited determinants with 

corresponding coefficients are generated. This is the reason for the fast convergence of the 

cluster operator expansion X(82)X, at least for closed-shell references. Third, the operators nT̂  

describe linked clusters of n particles, since they cannot be written as products of lower-order 

operators. In fact, the essence of aforementioned linked-cluster theorem incurs from this 

property. 

Let finally outline the way of derivation of the CC equations. 

The ground-state coupled-cluster wave-function (Eq. X(82)X) obeys Schrödinger equation 
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(85) 

with the coupled-cluster ground-state energy CCE0 . As usual, the Hamiltonian includes one- 

and two-particle parts. To obtain equations for the cluster amplitudes one could naively 

multiply Eq. X(85)X by the singly-, doubly-, triply- , n-tuply-excited determinants. This allows 

for a convenient formal understanding of the CC methodology but brings severe 



1. Theoretical Methods 

29  

computational difficulties (Ref. D73D). Instead, multiplying X(85)X by inverse of the exponential 

operator Te
ˆ first, preceding the projections, leads to significant computational simplifications 
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(86) 

In particular, multiplying the above equation by 0  one obtains the equation for the 

coupled-cluster energy 
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while its projecting onto the excited determinants n

n

R

A  gives the cluster amplitudes 

 

0ˆ
0

ˆˆ
  TTA

R eHen

n
. 

(88) 

Herein, normalization of the ground-state determinant and orthogonality of the ground and 

excited determinants have been used to derive Eq. X(87)X and X(88)X, respectively. 

The first obvious advantage of the above procedure is that the inverse exponential operator 

in equations X(87)X and X(88)X decouples energy and amplitude equations – that drastically 

simplifies their solution. Second advantage is less straightforward but crucial. According to 

so-called Campbell-Baker-Hausdorf expression (Ref. D74D), operator TT eHe
ˆˆ ˆ  can be 

represented as a series of nested commutators of Ĥ  with the cluster operator, usually referred 

as Hausdorf expansion 
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(89) 

A special charm of the presented technique is that the series X(89)X is finite regardless of the 

number of particles in the system. It naturally terminates after the fifth term because Ĥ  

contains at most two-particle operators (Ref. D75D). It would not be an exaggeration to conclude 

that the cluster expansion of the wave-function X(60)X in combination with the finite Hausdorf 

expansion X(89)X for the TT eHe
ˆˆ ˆ  operator constitute the essence of coupled-cluster 

methodology. 

 

1.2.6 Density-Functional Theory 
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Consider a molecular system with the Hamiltonian X(40)X (Sec. 1.2.2). In this section it will 

be rewritten in the conventional notation used in DFT literature 
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Here )(ˆ
ii r  is the nuclear-electron attraction or, in general, other one-electron operators (see 

Eq. X(41)X, Sec. 1.2.2). Their sum )(ˆ r  is referred to as external potential in the DFT 

terminology. 

The essence of DFT is expressed in two statements. 

(1) There is one-to-one mapping between the ground-state electron density )(r , the 

external potential )(r , determined within an additive constant C, and the ground-state wave-

function ),...,,( 21 Nxxx  of any N-electron system, defined up to a phase factor e
iδ t
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The electron density (probability density) is defined as the expectation value of the density 

operator integrated over spin variables  
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Its integral over all spatial coordinates is equal to the number of electrons 
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Since the electronic energy is determined by the external potential and the wave function, 

therefore, it can be represented as a functional of the density  
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(94) 

Herein, ][eeV  and ][T  are the electron-electron interactions and kinetic energy of the 

system of interacting electrons, respectively. ][neV  corresponds to the nuclear-electron 

attraction (or other one-particle interactions). Ground-state expectation values of any quantum 

mechanical operators can be uniquely represented as a function of the density as well 
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(2) The energy X(94)X, associated with any non-negative trial density )(r , which integrates 

to the total number of electrons, cannot be lower than the exact ground state energy ][GSE  

with the ground state density )(r  
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This statement provides the ground-state density-functional variational principle 
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The Lagrange multiplier   guarantees conservation of the total number of particles N and can 

be interpreted as chemical potential of the system. 

Both statements are known as the first and second Hohenberg-Kohn (HK) theorems, 

respectively (Ref. X63X). 

Successful application of the variational principle to X(94)X requires explicit mathematical 

expressions for the electron-electron interaction functional as well as the kinetic energy 

functional which are generally unknown. However, it is known from Hartree-Fock theory that 

for the special case of N-electron single-determinant wave function, kinetic energy can be 

written explicitly (Eq. X(43)X, Sec. 1.2.2). To utilize this property, Kohn and Sham introduced a 

hypothetic system of non-interacting particles, moving in an effective potential KS , the 

density KS of which is to be equal to the density  of the corresponding interacting system 

(Ref. X64X). The existence of such a system is known as υ-representability. This system can be 

represented by the following Hamiltonian 
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The eigenfunction of the Hamiltonian is given as a single determinant constructed from spin-

orbitals, by the solving one-electron Hartree-Fock-type equations 
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These orbitals are referred to as Kohn-Sham (KS) orbitals in the DFT literature. The wave 

function is then represented as a single determinant constructed from the KS orbitals 
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According to Eq. X(92)X, KS orbitals are related to the density of the interacting system as 

follows 
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For the closed-shell case it can be written 
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with the spatial KS orbitals KS

i . The kinetic energy of the single determinant is then readily 

obtained by 
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The electronic energy X(94)X of the reference system and, hence, the energy of real system (by 

virtue of the first HK theorem) can then be rearranged, taking into account the explicit 

expressions for the expectation value of the Hamiltonian expressed in terms of single 

determinant X(100)X, to give 
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The second term describes the interaction of the electrons with the external potential (in 

particular – with the nuclei), the third term is the classical Coulomb interaction (Eq. X(43)X, Sec. 

1.2.2). The last term is the so-called exchange-correlation energy – it comprises exchange 

interaction and dynamic correlations. Variation of the energy with respect to the density (KS 

orbitals) leads to the set of orbital Kohn-Sham equations 
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with the so-called exchange-correlation potential defined as 
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Formally, the KS equations are similar to the HF equations X(50)X (Sec. 1.2.2) with the 

exception that the nonlocal HF exchange operator is replaced with a local exchange-

correlation potential xc . The Lagrange multipliers i  preserve the orthonormality of the KS 

orbitals and formally are similar to the HF orbital energies. However, they do not possess the 

same transparent physical meaning of ionization potentials and electron affinities for the 

negative values of occupied and virtual orbitals, respectively. Nevertheless, it can be shown 

that the maximal Kohn-Sham occupied orbital energy is the negative ionization energy (Ref. 

D76D). 

The original proof of the HK theorems assumes no degeneracy in the ground state. 

Moreover, it requires the density in the energy expression X(94)X to be υ-representable. Later 

on, a more general constrained-search formulation of the theorems was suggested by Levy 

(Ref. D77D). It drops the limitation of nondegeneracy on the ground-state density and does not 

require υ-representability. 

The flavor of KS theory is that, unlike in correlated wave function methods, electron 

correlation is gatheres in the exchange-correlation potential which is a functional of the one-

particle electron density. This provides computational efficiency comparable to that of HF 

theory with the formal scaling of N
4
 with respect to the number of basis set functions. 

However, the exact form of exchange-correlation functional is generally unknown, this has 

numerous implications. 

For example, the energy obtained from the KS equations is variational (i.e. it is an upper 

bound to the exact one), but only with the exact functional. 

As it was already noticed in Sec. 1.2.2, the HF energy is naturally self-interaction-free due 

to the cancellation of Coulomb and exchange terms. This is not the case in KS theory with 

approximate functionals, and special efforts are required to cope with the problem (Ref. D78D, 

D79D). This also has profound implications for the charge-transfer problem of the time-

dependent version of DFT (see Sec. 1.3.6). 

For closed-shell systems the exchange-correlation energy can be represented as follows 
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Here xcF  is a functional of the density and its higher spatial derivatives. In the simplest case it 

depends on the density alone, and constitutes the local-density approximation (LDA) which is 

derived from the uniform electron gas (Ref. D80D, D81D, D82D, D83D). The next class of functionals 

depends on the density and its gradient. This is known as generalized gradient approximation 

(GGA). Since it depends on the density gradient it simulates the two-electron character of the 

interactions. Inclusion of the higher-order density derivatives is in principle possible but 

makes all mathematic expressions and computer implementation very complicated. Even for 

the simplest exchange-correlation functionals, it is not possible to evaluate their integrals 

analytically, hence, numerical integrations must be carried out. 

Further improvement of the theory is based on the fact that the exchange contribution is 

about an order of magnitude larger than the correlation contribution. This suggests that the HF 

theory can be used to treat exchange, while DFT itself should be used to treat correlations. A 

number of researchers have argued that exchange and correlation effects might not be easily 

separated (Ref. D84D, D85D, D86D). Becke has shown (Ref. X85X) that Hartree-Fock exchange can be 

incorporated into DFT rather rigorously by means of the adiabatic connection method (Ref. 

D87D, D88D, D89D) giving rise to hybrid functionals. In particular, exact HF exchange can be 

combined with the gradient-corrected (GGA) energy functionals (Ref. X86X). Herein, the 

functionals can differ in the fraction of employed exact HF exchange and in the type of 

exchange-correlation functional. The most successful popular hybrid functionals with GGA 

exchange-correlation part is the B3LYP (Ref. X86X) functional. In many cases it describes H-

bonded systems very well. In the present work the majority of DFT calculations employed 

B3LYP. 

Unfortunately, the local character of existing functionals in combination with the single-

reference nature of the electron density prevents from a correct description of the dispersion 

energy. It has been shown in numerous examples that contemporary DFT methodology fails 

to describe potential energy surfaces of Van-der-Waals complexes where the dispersion part 

of the interaction is substantial (see e.g. Ref. D90D). Even for “normal” H-bonded systems, 

application of DFT requires its verification by electron-correlation methods introduced in the 

previous sections. 

 

Part 1.3 

Electronic Schrödinger Equation: Excited States 
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1.3.1 An Overview 

The interaction of molecular system with light induces electronic, in general – vibronic, 

transitions. Knowledge of the energies as well as structural and other molecular properties of 

excited states is necessary for the explanation and interpretation of electronic spectra of 

molecular systems, as well as for as understanding of the excited-state dynamics. Since the 

interaction of molecular system with electro-magnetic fields is essentially time-dependent, it 

requires complicated theoretical methodologies for the solution of time-dependent electronic 

problems. 

One of the primary goals of such calculations is to obtain the energies of excited states, or, 

alternatively, the energy differences between excited states and the ground state termed 

excitation energies. The latter are related to electronic spectra. Multireference methods (Chap. 

4, Ref. X39X), MCSCF (Ref. X41X), multireference-CI (MR-CI) (Ref. D91D, D92D) include a number of 

excited determinants into the wave function and, in principle, allow to obtain energies of both 

ground and excited states explicitly, as result of variational optimization. One of the major 

disadvantages of these techniques is the lack of size-consistency has been already mentioned 

in Sec. 1.2.3. Additionally, MCSCF methods are sensitive to the choice of relevant 

determinants what brings unnecessary complexity to the situations when the ground state is 

well described by a single reference 

Alternatively, the interaction of a molecular system with a time-dependent electro-

magnetic field can be treated by means of time-dependent perturbation theory (Ref. D93D, D94D) in 

terms of a power series in the field strength. The expansion coefficients of the power series 

determine so-called response functions characterizing the response of the system to the 

external perturbation. Such an approach has numerous advantages (Ref. D95D, D96D, D97D, D98D). For 

instance, when the external field is electric field, the linear, quadratic and cubic response 

functions have transparent physical meaning of frequency-dependent polarizability, 

hyperpolarizability and second hyperpolarizability, respectively. Additionally, the polesF

1
F of 

the linear response functions correspond to excitation energies, whereas the residues
.

F

2
F 

determine transition dipole matrix elements – the values which characterize transition 

probabilities between ground and excited states. Thus, excitation energies can be calculated 

within the same computational procedure as transition matrix elements and polarizibilties. 

Response theory combined with ground-state methodologies introduced in Part 1.2, 

constitute a well-developed tool for the calculation of excited states and their properties. 

                                                 
1
 A pole of order n of a complex function f(z)=g(z)(z-a)

-n
 is the singularity at z=a. 

2
 The residue of a complex function is the contour integral around its isolated singularity (such as pole). 
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Furthermore, even aforementioned multi-reference approaches which deliver excitation 

energies themselves, can be combined with response theory to obtain excited-state properties 

and transition matrix elements. Correlated ground-state coupled-cluster methods (CCSD, 

CCSDT, CCSDTQ) combined with response theory give a hierarchy of accuracies for 

excited-state calculations and preserves advantages of the ground-state CC theory, especially 

size-consistency. On the other hand, less accurate DFT combined with response theory allows 

for the calculations of quite large systems (up to thousands of basis functions). These two 

methods were used in the present study (Chap. 1, 2) and will be described in the next sections. 

There is also a possibility to obtain time-dependent molecular response properties (e.g. 

frequency-dependent polarizability) within the MP2 formalism (Ref. D99D). Unfortunately, the 

structure of the expressions in this case is in general not compatible with the structure of exact 

response functions (they will be introduced in the next section). This does not allow to obtain 

excitation energies and transition moments in one pass. 

Another important branch of excited-state methodologies is based on the Green’s functions 

formalism (Ref. X93X, X94X, D100D) and allows for a direct evaluation of response functions by 

means of their perturbation expansions. For example, algebraic diagrammatic construction 

(ADC) (Ref. D101D, D102D, D103D, D104D) is a computationally-efficient correlated technique which 

allows to obtain the whole electronic spectrum of molecular system. Unfortunately, the 

Green’s functions based methodologies are traditionally less popular in the chemist’s world 

than in the physicist’s one, but the situation tends to change and modern efficient 

implementations arrive (Ref. D105D). 

 

1B1.3.2 Introduction to Response Theory 

The time evolution of molecular system under time-dependent perturbations obeys the 

time-dependent Schrödinger equation 

 

)()(ˆ t
t

itH 



  . 

(108) 

In spirit of perturbation theory (Sec. 1.2.4), the time-dependent Hamiltonian can be 

represented as a sum of a time-independent part )0(Ĥ  and a time-dependent perturbation 

)(ˆ tV , also named interaction operator, multiplied by the smallness parameter   

 

)(ˆˆ)(ˆ )0( tVHtH  . 

(109) 
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Time-independent part of the Hamiltonian satisfies the egeinvalue equation  
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)0( EEH   

(110) 

for the ground state, and the equations set 

 

mmEEH mmmmm  )0()0()0()0()0(ˆ  

(111) 

for the excited states of the reference system F

1
F. At t=-∞ the time-dependent perturbation is 

switched off  

 
)0(ˆ)(ˆ HtH  , 

(112) 

and the system resides in its ground state 

 

0)( )0(

0  t . 

(113) 

It is convenient for computations to express the interaction operator in Eq. X(109)X via its 

Fourier transform V̂  

 


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  dtiVtV ])([expˆ)(ˆ . 

(114) 

The parameter   is a real positive small number, in mathematics called infinitezimal, it 

provides the perturbation is switched-on adiabatically. In the final expressions it is usually set 

to zero. The advantage of the representation of perturbation via its Fourier transform becomes 

evident when the external field comprise only several frequency components 1 , 2 , ... . In 

this case the interaction operator becomes the sum 

 

    ...])([ˆ])([expˆ])([ˆ])([expˆ)(ˆ
2211
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

tiVtiVtiVtiVtV   . 

(115) 

In the time-dependent case, the expectation value of any arbitrary operator Â  can be 

formally expressed as the power series in the field strength   

 

                                                 
1
 Further analysis again will be given in atomic units and the Plank constant will be set to unit in the expressions. 
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The quantities in the double-angle brackets are Fourier transforms of the linear and quadratic 

response functions (Ref. X100X, D106D), respectively 
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Herein, the linear response function, alternatively called two-time propagator, or Green’s 

function, is defined as follows F

1
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(119) 

The quadratic response function has the explicit form 
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(120) 

 

Notice, in the above and further expressions, the operator Â  is given in the interaction 

representation tHitHi AeeA
ˆˆˆ  , such that the explicit time dependence is moved to the 

exponential part. 

It can be shown (see e.g. Ref. D107D, D108D), that the spectral representation of the response 

functions in a formally complete set of eigenstates m  (Eq. X(111)X) can be written as 
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1
 Θ(t-τ) here is the Heaviside, or step function. 
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and 
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(122) 

These explicit expressions provide information about excitation energies and transition matrix 

elements of the corresponding operator Â  at presence of time-dependent perturbation V̂ , by 

means of their poles and residues. 

Let discuss it in more detail. In the present work optical properties i.e. the interaction of 

molecule with light have been considered. If the light is represented by a set of several 

monochromatic electro-magnetic waves of frequencies 1 , 2 , ... then, according to Eq. 

X(115)X, the interaction operator takes an explicit form 
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(123) 

where )ˆ,( 


i  is the scalar product of the electric dipole moment operator of the molecule and 

the relevant component of the electric field. In the nonrelativistic case, the force of the 

magnetic part of the electromagnetic wave is small compared to the electric one. Thus, 

magnetic terms can be excluded from the Hamiltonian since magnetic effects themselves are 

beyond the scope of this study. 

To assign optically-relevant physical meaning to the introduced quantities, here and 

further, operators Â , 1ˆV , 2ˆV  are referred to i̂ , j̂ , k̂  components of the electric dipole 

moment operator respectively, where i, j, k indices run over spatial coordinates x, y, z. 

Consider the case when the external field X(123)X contains only one monochromatic wave of 

frequency 1 . In this case the linear-response function X(121)X can be related to the i-, j-th 

components of the frequency-dependent dipole polarizability tensor. It describes excitation by 

a photon of energy 1  (absorption) and deexcitation of a photon of energy 1  (emission). 

First-order poles m  of the linear response function correspond to the excitation and de-
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excitation energies between the ground  0  and excited  m  states. First-order transition 

dipole matrix elements between the states 0  and m  can be obtained from the residues of 

the linear response function at its poles  m . In particular, the residue at  m  

corresponds to the absorption 
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(124) 

while the residue at  m  corresponds to the emission 
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Of particular interest is the following quantity termed oscillator strength 
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(126) 

It characterizes the probability of transition between the ground and an excited states, and can 

be interpreted as its “strength” (see e.g. Ref. D109D). The oscillator strength is related to the 

linear response function by means of Eq. X(124)X. Herein, the absorption and emission oscillator 

strengths can be distinguished. 

Although the present study is only concerned with first-order properties, i.e. properties 

derived from the linear-response functions, it will be informative to introduce the second-

order properties. Assume the external field X(123)X has two monochromatic components of 1  

and 2  frequency. The quadratic response function X(122)X in this case represents i, j, k 

components of the frequency-dependent dipole hyperpolarizability tensor at frequencies 1  

and 2 . In particular, it describes the absorption of two photons of frequency 1  and 2  and 

the emission of one photon of frequency  21   . The residues of quadratic-response 

functions at pole  m  determine second-order transition matrix elements between the 

ground and excited states (i.e. two-photon absorption transition matrix element) 
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Finally, the transition matrix element between two excited states m  and m  can be 

obtained from the residue at both poles  m  and  m  
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Now, the relation between the response functions expressed in terms of the exact wave-

function and excitation energies and transition matrix elements has been established. The next 

logical step is to specify a practical way to construct the response functions. This procedure is 

not unique and can be performed in several ways. 

One way is to employ time-dependent perturbation theory expanding time-dependent 

wave-functions into the power series  
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The expectation value of a relevant operator then becomes 
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Representing the expressions in parentheses via their Fourier transforms 
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(131) 

and comparing the terms of same order in   in both Eq. X(131)X, X(116)X, reveals that the 

expressions in square brackets are the Fourier transforms of linear- and quadratic-response 

functions. 

The second alternative for the derivation of response functions is the so-called phase-factor 

approach. It stems from the application of perturbation theory to the formal solution of the 
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time-dependent Schrödinger equation expressed in terms of the evolution operator (e.g. Ref. 

X93X) and further comparison of the terms of the same order in   with those in Eq. X(116)X (Ref. 

X107X, D110D, D111D). 

Both alternatives require the solution of time-dependent equations for the approximate 

wave functions associated with a particular quantum-chemical method, although the phase-

factor approach is only applicable to wave function-based methods. The procedure will be 

briefly discussed in the next sections in application to the coupled-cluster and density-

functional theories. 

 

2B1.3.3 Time-Dependent Coupled-Cluster Theory 

General form of the time-dependent coupled-cluster wave-function was initially proposed 

by Monkhorst (Ref. X110X) 
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herein, 0  is the ground-state variationally-optimized Hartree-Fock reference wave-

function, E0 is the ground state CC energy (Eq. X(85)X, Sec. 1.2.5) and )(t  is the time-

dependent phase factor. The action of cluster operator )(ˆ tT  is defined in Eq. X(80)X (Sec. 1.2.5) 

with the only difference that the cluster amplitudes contained in it are now time-dependent. 

As it was mentioned in the previous section, there are two main approaches to derive CC 

response functions. 

Within the first approach, the CC response functions can be derived directly from the 

coupled-cluster phase factor (Eq. X(132)X) (Ref. X110X, X111X). The later can be represented in 

perturbation manner by expanding it into the power series with respect to the field strength 

parameter 
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(133) 

The term at 0  in the above expression corresponds to the E0t term in the exponent of time-

dependent CC wave-function X(132)X and this fact is already taken to account there. In 

particular, for the external perturbation represented by a monochromatic wave of frequency 

ω1 (see Eq. X(115)X) the linear-response function can be calculated as  
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with infinitezimal   as defined in Eq. X(114)X (Sec. 1.3.2). 

The second approach, developed by Jorgensen and coworkers in application to the MSCSF 

and CC wave functions (Ref. X108X, D112D), is based on the analysis of the time evolution of the 

expectation value of a relevant operator (Eq. X(129)X, X(130)X). 

Both approaches require the solution of time-dependent CC equations for the phase factor 

and time-dependent cluster amplitudes. These equations can be obtained by substitution of the 

time-dependent CC wave function X(132)X into the time-dependent Schrödinger equation X(108)X 

(Sec. 1.3.2) 
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As usually, at t=-∞ the time-dependent perturbation is switched off and the system is 

described by the ground state CC wave-function (Eq. X(85)X, Sec. 1.2.5). Multiplying X(135)X by 
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 gives an intermediate equation 
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Its subsequent multiplication by 0  and taking into account the normalization of the 

reference function  100   yields a differential equation for the time-dependent phase 

factor 
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Projecting X(136)X onto each n-tuply excited determinant n

n

R

A  and assuming that each excited 

determinant is orthogonal to the Hartree-Fock ground state  00  n

n

R

A , yields the 

equations for the evolution of the time-dependent cluster amplitudes 
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Equations X(137)X, X(138)X can be solved using perturbation theory by expanding the phase factor 

according to X(133)X and the cluster operator as 
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(139) 

Herein, )0(T̂  corresponds to the time-independent cluster operator (Eq. X(60)X, Sec. 1.2.3 and 

Eq. X(80)X (Sec. 1.2.5)). The initial conditions for the solution of Eq. X(137)X, X(138)X are 
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This allows to obtain the equations for time-dependent cluster amplitudes and the phase 

factor. The explicit forms of the linear and quadratic response functions obtained within the 

phase-factor or the expectation-value approach can be found in Ref. X111X and X112X, 

respectively. 

 

3B1.3.4 Time-Dependent Density-Functional Theory: Formal Foundations 

Consider molecular system with the time-dependent Hamiltonian X(109)X (Sec. 1.3.2) written 

in the DFT manner 
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As usually, )(ˆ r  is the nuclear-electron attraction operator, or, in general, sum over other 

one-electron time-independent operators. ),(ˆ trV  is the sum of time-dependent one-electron 

operators, termed time-dependent external potential, analogously to time-independent DFT. 

The wave function ),( tx  of the system is determined by the time-dependent Schrödinger 

equation X(108)X with the initial condition 
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(142) 

Time-dependent density-functional theory (TDDFT) is formally constituted by two 

statements. 

(1) The first statement provides that the time-dependent electron density determines the 

time-dependent external potential ),(][ trV   within a spatially-independent the time-
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dependent constant C(t), therefore, the wave-function is defined within a time-dependent 

phase factor 
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This statement is known as the Runge-Gross (RG) theorem (Ref. D113D) which can be 

interpreted as a generalization of the first HK theorem (Sec. 1.2.6) for the time-dependent 

case. Since the time-dependent wave function determines the expectation value of any 

quantum mechanical operator, the latter can be represented as  
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In general, the expectation value X(144)X implicitly depends on the initial state 0  as well, so it 

is a functional of both   and 0 . However, for the non-degenerate ground state, )(][ tO   it 

is a functional of density alone, since in this case, 0  is a functional of the ground state 

density due to the first HK theorem. 

(2) An equivalent of a variational principle for the time-dependent case, is provided 

similarly to the second HK theorem for the ground state. From general quantum mechanics it 

is known, that the time-dependent wave-function ),( tx  – the solution of the time-dependent 

Schrödinger equation X(108)X (Sec. 1.3.2) corresponds to a stationary point 
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of the quantum-mechanical action integral 
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The latter is a functional of the time-dependent density by virtue of the RG theorem 
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The time-dependent density, can be then obtained from the Euler-Lagrange equation  
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combined with the relevant boundary conditions. 

The RG theorem and the time-dependent density variational principle establish a time-

dependent version of the Kohn-Sham formalism. As in the time-independent case, the main 

objective is to find mathematic expressions for the expectation value of the Hamiltonian 

operator in the action integral X(147)X. This, again, can be achieved by introducing the 

hypothetic reference system of non-interacting particles, placed into the external one-electron 

time-dependent potential TD , the time-dependent density TD  of which is equal to the 

density   of the interacting system. The existence of such a system is referred to as time-

dependent υ-represenatbility, and it is normally provided according to the later generalization 

of the RG theorem by Leeuwen (Ref. D114D). The wave function of the reference system is then 

represented by a single determinant constructed from the time-dependent spin orbitals 
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The latter are the solutions of an one-electron time-dependent Schrödinger equation, also 

referred to as time-dependent Kohn-Sham equation 
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The time-dependent density and the kinetic energy has the same form as in the time-

independent case (Eq. X(101)X, X(103)X, Sec. 1.2.6) with the only difference that time-independent 

KS orbitals are replaced with the time-dependent ones. Combining action integrals X(147)X, 

expressed in terms of the real and reference densities, which are assumed to be equal due to υ-

represenatbility, and taking into account single-determinant representation for the wave 

function, makes it possible to write the action integral explicitly (Ref. X113X). Finally, its 

variation with respect to the reference density TD  allows to express the external potential in 

the time-dependent KS equation X(150)X as 
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The third term here is the time-dependent Coulomb operator, AXC is the “exchange-

correlation” part of the action integral named exchange-correlation kernel (xc-kernel). Eq. 

X(151)X therefore can be compactly represented as 
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where TDF̂  is the time-dependent Kohn-Sham Fock operator comprising the kinetic energy 

operator and the external potential. Analogously to the time-independent KS counterpart, it 

simulates the effects of exchange and correlation on the time-dependent reference density. 

The exact form of time-dependent action integral is in general unknown, therefore, 

approximations should be introduced. The most straightforward approximation is appropriate 

when the density varies slowly with respect to the external field. In this case, referred as 

adiabatic local-density approximation (ALDA), the originally nonlocal, in time, xc-kernel is 

replaced with a local, in time, xc-functional from the ground-state DFT with the instant values 

of density at a given moment 
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In particular, hybrid GGA functionals with the HF exchange (Sec. 1.2.6) can be used in 

TDDFT. 

Time-dependent KS equations X(150)X, X(152)X can be expanded in a basis of M time-

independent (unperturbed) orthonormal Kohn-Sham orbitals with the time-dependent 

expansion coefficients 
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Inserting expansion X(154)X into the time-dependent KS equations for the spatial orbitals and 

multiplying by )( 1xKS

  , one obtains a differential equations for the expansion coefficients: 
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Herein, 
KSF   are the matrix elements of the time-dependent KS Fock operator in the basis of 

unperturbed orbitals. Notice, that since the external potential X(151)X depends on the time-
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dependent density, it also depends on the expansion coefficients and, therefore, as in the HF 

case, requires an iterative solution. 
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Many important aspects of TDDFT, can be found e.g. in review Ref. D115D. 

 

1.3.5 Time-Dependent Density-Functional Response Theory 

In order to obtain excited states within TDDFT one can either solve Eq. X(152)X numerically 

or construct the response functions according to the formalism introduced in Sec. 1.3.2. The 

former method is named time-dependent Kohn-Sham (TD-KS), the latter is time-dependent 

density-functional response theory (TD-DFRT) (e.g. Ref. D116D). Since TDDFRT operates with 

analytical expressions having transparent physical meaning and, moreover, is robust to the 

numerical errors, it is usually more preferable than TD-KS, although more difficult for 

computer implementation. 

To construct the response functions as outlined in Sec. 1.3.2, one has to notice, that due to 

the single-determinant representation X(149)X of the time-dependent wave function, the 

expectation value of an operator (in particular – electric dipole operator), required for the 

construction of the response function, depends on the time-dependent electron density 
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Therefore, the density response, and hence the response of the expansion coefficients due to 

the time-dependent perturbation 
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determines the response functions. Time derivatives of the expansion coefficients can be 

obtained from the time-dependent KS equation X(155)X perturbatively. In the present study 

(Chap. 2), only the first-order properties (i.e. excitation energies and oscillator strengths) have 

been of interest. They need the linear-response functions and, hence, only the first-order terms 

should be retained in the perturbation expansion of the coefficients. The derivatives, up to 

first order, can be expressed via the basis-set coefficients of the unperturbed system (zeroth 

order) 
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(158) 
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The matrix of coefficients kiU  is called response matrix. In the case when the zeroth-order 

coefficients are variationally optimized, only the elements of the response matrix with the 

virtual-occupied kiU  → raX  or occupied-virtual kiU  → arY  indices will be retained in the 

subsequent derivations. The reason is that the virtual-virtual and occupied-occupied blocks of 

the response matrix correspond to the orbital rotations within their subspaces and are inapt to 

produce new states. The property is known as idempotency condition for the density, while 

elements raX , arY  are termed TDDFT response amplitudes. This procedure allows to reduce 

the differential time-dependent KS equation X(155)X to a matrix equation with unknown 

response amplitudes. From this matrix equation, time derivatives X(158)X (expressed via 

response amplitudes) can be taken and inserted into Eq. X(156)X. Its subsequent Fourier 

transform determines the linear-response function X(117)X (Sec. 1.3.2) in the frequency domain. 

The poles of the linear-response function, when the operator corresponds to the electric dipole 

moment (Sec. 1.3.2), then yield the equation for the excitation energies, while the residues 

provide the transition dipole matrix elements. The latter are related to oscillator strength by 

means of Eq. X(126)X. In particular, the equation for the excitation energies has the following 

form: 
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The elements of the above matrices are defined as follows 
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Eq. X(159)X is a non-Hermitian equation with the response amplitudes treated as its 

eigenvectors. The second derivative of the the xc-kernel with respect to the density in Eq. 

X(160)X stems from the fact that time-dependent Kohn-Sham Fock operator depends itself on 

the time-dependent densities. 

The derivation of the linear response formalism in this section generally follows the same 

route as presented in Ref. X116X. 
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1.3.6 Time-Dependent Density-Functional Theory: Properties and Limitations 

The advantages of TDDFT are widely recognized. 

1. The response functions of TD-DFRT are comparable with the response functions for the 

exact wave-functions, what greatly simplifies their interpretation. 

2. TDDFT is a computationally inexpensive procedure, e.g. TD-DFRT in combination with 

ALDA scales as N
4
. 

3. TDDFT describes  low-lying valence excitations with good accuracy  – in many cases as 

good as wave function correlated methods. The reason for this is that the difference in the KS 

orbital energies in Eq. X(160)X is a good approximation for the excitation energies since, unlike 

HF theory, the KS orbitals are correlated. 

The limitations of TDDFT are well-known as well. 

1. The first group of difficulties of TDDFT originates from the ALDA approximation. 

The situations when ALDA is not valid, require a time-dependent xc-kernel. Examples of 

developments on time-/frequency-dependent xc-kernel within the TD-KS/TD-DFRT 

formalisms are given in Ref. D117D, D118D and D119D. Furthermore, time-dependent xc-kernel would 

allow to describe situations with double-excitation character, otherwise missing in the linear-

response TDDFT formalism (Ref. X117X, X118X). 

Further problems of the ALDA/TDDFT combination stem from the approximate character 

of the ground-state xc-functional. It transmits the approximate character of the ground-state 

DFT into TDDFT, making it dependent on the functional’s quality. For example, often 

inaccurate 1/r (r is the electron-electron distance) behaviour of the existing ground-state 

functionals at long and medium distances cause severe problems in the description of Rydberg 

statesF

1
F, valence states of extended π-systems (Ref. D120D, D121D) and charge-transfer (CT) statesF

2
F 

(Ref. D122D, D123D, D124D). 

In particular, it was understood that the failure of TDDFT in the description of CT states 

can be attributed to the lack of nonlocal HF exchange in the standard xc-functionals. It causes 

the electron-transfer self-interaction error (Ref. D125D, D126D). Therefore, the increase of the 

fraction of HF exchange in the hybrid ground-state DFT functionals is a straightforward 

remedy against the CT failure of TDDFT. More systematic approach would be to construct 

                                                 
1
 Rydberg states are the upper-lying excited states which converge to the ionic states. 

2
 CT excited states are the states which exhibit electron transfer from one fragment of a molecular complex to 

another one. 
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exact local Kohn-Sham exchange potential, the attempts of which are offered in Ref. D127D, 

D128D, D129D. 

2. Other limitations of linear-response TD-DFRT have implications for nonadiabatic 

nuclear dynamics. In fact, within the linear-response formalism (either wave function- or 

density-functional-based), only the ground-to-excited and excited-to-ground transition matrix 

elements (Eq. X(124)X, X(125)X, Sec. 1.3.2) of the nonadiabatic-coupling operators X(15)X (Sec. 

1.1.2) can be obtained (see Ref. D130D). The excited-to-excited matrix elements do require 

second-order response functions, what is computationally more demanding. This complicates 

the development of nonadiabatic dynamics involving transitions between excited states (Eq. 

X(128)X, Sec. 1.3.2) (Ref. D131D). The remedy would be to use TD-KS rather than TD-DFRT, but, 

again, this is less desirable due to the aforementioned sensitiveness to the numerical errors. 

3. Unlike the case of optical phenomena considered in this work, the essentially nonlocal 

character of magnetic fields makes a rigorous formulation of the magnetic response properties 

(static or dynamic) within the TDDFT framework problematic. To describe the nonlocal and 

velocity-dependent potentials correctly, the theory should operate with both densities and 

density gradients (current densities) as fundamental variables. Such an extension of the 

formalism has been proposed and it is known as current density-functional theory (CDFT) 

(see Ref. D132D). However, this methodology is more complicated and computationally 

demanding than TDDFT and, hence, it is not yet clear whether it is able to compete with 

correlated wave function methods. 

4. Finally, another interesting conceptual problem of TDDFT, which has been recently 

recognized (Ref. D133D, D134D) is worth to be mentioned. It was shown, that the phase-factor 

problem, arising from the transition from the wave function to the density, corrupts the 

definition of quantum-mechanical action integral (Eq. X(147)X). This deprives the time-

dependent formulation of DFT a strict variational principle, and, hence, its predictive power 

to obtain the time-dependent densities (Eq. X(148)X). Indeed, it can be illustrated by the fact that 

response functions for wave function based methods can be equally derived from the time-

dependent phase factor and expectation values of the relevant operators. That is not the case 

for TDDFT. Future will show what the real implications of this revision for the field are. 

In summary, there are ongoing efforts in the development of new xc-functionals or even 

alternative theoretical formulations (like CDFT) to diminish the described problems of 

TDDFT. However, no methodology describing all states equally well is proposed so far. 

Therefore, the application of TDDFT to a particular problem requires a careful examination, 

in the best case by comparison with correlated wave function methods. 
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Part 1.4 

Basis-Set Effects 

 

1.4.1 Basis-Sets Types and Basis-Set Errors 

From the formal quantum-mechanical perspective, many different functions can form a 

basis set in the expansion X(55)X (Sec. 1.2.2). However, three major types of basis sets are most 

common in electronic-structure calculations. They are the plane-waves, Slater-type functions 

(SF) and Gaussian-type functions (GF). The first are often convenient for periodic 

calculations, the latter two – for molecular and cluster calculations.  

For a given angular momentum, a Slater-type function can be written as 
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where SF

mN  is a normalization constant, ζm is the Slater orbital exponent and mx, my, mz are the 

exponents of the Cartesian components of the electron and nuclear coordinates. These 

numbers approximate the angular-momentum functions (i.e. the solutions of the angular part 

of Schrödinger equation for the hydrogen atom). 

Gaussian-type functions have the form 
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Again, GFN  is a normalization constant,   is the Gaussian orbital exponent and mx, my, mz 

are the exponents of the Cartesian components of the electron and nuclear coordinates. 

Orbital exponents for both types of functions are positive (nonzero) numbers. A larger 

orbital exponent determines a smaller denser function, a smaller one – a more broad function 

termed diffuse function. 

In contrast to isolated molecules and clusters, periodic systems can be described by 

repeated boxes called unit cells (Bravais lattices), containing the nuclei. The cells are 

characterized by three direct lattice vectors. Any wave function can be represented as a 

continuous set of plane-waves with their own wave-vectors. However, in periodic potentials, 

the continuous spectrum transforms to a discrete one. The wave function in this case can be 

expressed as a product of a cell-periodic part and a wave-like part. This property is known as 
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Bloch’s theorem. (see e.g. Ref. D135D). The radial part of the molecular orbital in a periodic 

potential can therefore be written as 
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where   is the volume of the unit cell and G


 are the reciprocal lattice vectors related to the 

direct lattice vectors by means of a linear transformation. 

In course of a variational optimization, coefficients of the basis set expansion X(55)X are 

optimized, while the parameters of the basis functions X(162)X, X(163)X, X(164)X remain constant. 

Skater- or Gaussian-type functions are often named atom-centered basis sets, the plane-

waves occupying the whole space are originless. 

Slater-type functions are more appropriate for electronic-structure calculations than 

Gaussian functions since the former have the correct asymptotic behaviour for atoms at large 

distances and hence require fewer terms in the basis set expansion X(55)X to reproduce the same 

quality of calculations. However, two-electron integrals (see Sec. 1.2.2) are much easier to 

calculate with GF than with SF. The reason is that the product of two Gaussian functions, 

centered on two different points A, B is another Gaussian, centered on the point C which lies 

on the line connecting A and B (see e.g. Sec. 3.5.1 of Ref. X39X). To exploit this advantage, 

Slater-type functions (or other appropriate basis functions) can be represented by a linear 

combination of Gaussian functions termed contracted Gaussian functions (CGF) 
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Here L is the number of Gaussian functions, called contraction length and pd  are the 

contraction coefficients. Contraction length, contraction coefficients and orbital exponents are 

normally obtained from calculations on atoms to reproduce desirable properties (e.g. to 

approximate the Slater-type functions). During the SCF optimization, expansion coefficients 

are optimized while the parameters of the contractions stay fixed. Even when each Slater-type 

function is constructed from several Gaussians, four-electron integral calculations are still 

several times faster than those with Slater functions. 

There exist the following strategies to construct basis sets from Gaussian-type functions. 

The minimal basis stets are the smallest possible sets to qualitatively reproduce chemical 

properties of atoms within a molecule. These sets normally contain one Slater-type function 

per occupied atomic orbital, one per each orbital from the partially occupied subshells and one 
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per valence p-type functions for the elements from the first two groups of the periodic table. 

Minimal basis sets are denoted as STO-LG, where L is the contraction lenth X(165)X to 

approximate each Slater function. 

Since each basis function of a given quantum number contains one Slater function, the 

minimal basis sets are often referred to as of single-zeta quality with “zeta” implying a Slater 

orbital exponent. Further improvement in this direction is to represent each atomic orbital by 

two or more Slater functions with their own coefficients (fixed during SCF): this gives rise to 

the double-, triple-, quadruple-zeta etc. quality basis sets. 

While forming a chemical bond, valence orbitals of atoms alter stronger than the core 

orbitals. It suggests that the valence orbitals should be represented by more Slater-type 

functions than the core ones. This strategy emerged into the split-valence basis sets of Pople 

and co-workers (Ref. D136D). 

For example, a common split-valence 6-31G basis set has six GF functions to approximate 

core single Slater functions, three Gaussian functions to represent the first Slater-type function 

and one Gaussian to represent the second Slater function for the valence orbitals. Thus, it can 

be seen as a double-zeta basis for the valence orbitals. Of course, there are triple-zeta split-

valence bases as well. In vast number of calculations these bases perform very well whereas 

being much more compact than true double- and triple-zeta sets. 

Aforementioned contracted basis functions are derived from the atomic HF calculations. 

Their further improvement can be reached by combining with polarization and diffuse 

functions. In general, polarization functions are functions having higher angular-momentum 

quantum numbers than those present in the occupied orbitals of a particular atom. Obviously, 

exponents for the polarization functions cannot be optimized from HF calculations on atoms, 

since they are not populated. Nevertheless, they can be derived from correlated calculations 

involving atoms. Addition of polarization functions to the basis sets reflects the fact that when 

atoms approach each other, they distort (“polarize”) their normally spatially-symmetric 

orbitals by means of induced dipole, in general, multipole interactions. In particular, atomic s-

type or p-type orbitals after chemical bonding behave rather like a superposition of s- and p-

types or p- and d-types, respectively. When p-type orbitals and s-type orbitals of the 6-31G 

basis set are augmented by d-type and p-type orbitals, respectively, it is termed 6-31G(d,p)F

1
F 

basis set. Thus, the polarization functions are important for the quantitative description of 

chemical bonds as well as the effects of atomic and molecular polarization. For example, 

Van-der-Waals forces on noble gas complexes stem from the breaking of spatial symmetry of 

                                                 
1
 The latter is also often designated as 6-31G**. 
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the orbitals of one atom by the other one what induces nonzero dipole moment on each atom. 

Consequently, the two atoms attain long-range dipole-dipole attraction. Since the long-range 

interactions can be properly taken into account by correlated methods only, the use of 

polarization functions is very important in correlated calculations. 

As it was mentioned above, diffuse functions have small orbital exponents and hence 

decay slowly with the distance from the basis-set centre. Therefore their use is again 

advantageous for the description of systems with long-range interactions (e.g. H-bonding and 

Van der Waals) as well as for anionic systems and in calculations of molecular properties (e.g. 

polarizabilities). Usually, diffuse functions are of s- or p-type, but diffuse polarization 

functions also exist. 

In the Pople basis sets notation, diffuse functions are indicated by “+”. For example, 6-

31+G(d,p) implies addition of diffuse s-type and p-type Gaussian functions with the same 

exponent to the heavy atoms, while 6-31++G(d,p) means additional augmentation of 

hydrogens by diffuse s-type functions. 

Finally there are so-called correlation-consistent basis sets of Dunning and coworkers 

(Ref. D137D). The bases have the same structure as described above, with the only difference 

that the parameters of the contracted Gaussians are optimized in correlated calculations on 

some atomic and molecular test sets and, by construction, include polarization functions. For 

instance cc-pVXZ, where “X” means triple-, quadruple-, quintuple-zeta etc., while aug-cc-

pVXZ means the same sets augmented by diffuse functions. The energies obtained with these 

basis sets have the property to converge to the basis-set limit (complete basis set) by means of 

extrapolation formulas connecting the values obtained with smaller to larger “zeta” basis sets. 

One of the important consequences of adding broad Gaussians to the standard basis sets is 

their ability to diminish basis-set superposition error (BSSE) (Ref. D138D, D139D). BSSE is a 

peculiarity of the atom-centered basis sets which originates from the mutual augmentation of 

the monomer’s basis sets within the supermolecule. As a result, absolute energy of the 

supermolecule becomes too low, while the wave function becomes BSSE-contaminated. 

Since BSSE corrupts virtual orbitals as well, whereas the latter are the building blocks of 

correlated methods (Sec. 1.2.3), at correlated level BSSE disappears very slowly with an 

increase of the basis set. The BSSE phenomenon will be described in detail in course of this 

and the next sections. 

Another kind of error in calculations with atom-centered as well as plane-wave basis sets 

introduced above is the so-called basis-set incompleteness error (BSIE). This error arises 

when a basis set does not describe the physical situation well i.e. contains insufficient, for a 
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particular combination of atoms in the molecule, amount of Slater exponents, polarization or 

diffuse functions. For a given finite basis set, BSIE leads to too high energies with respect to 

the complete basis set. In contrast, energies obtained with finite bases without BSSE 

correction are too low, compared to the BSSE-corrected results. 

Plane-waves are originless: in contrast to the atom-centred bases they do not depend on the 

positions of the nuclei and, hence, are BSSE-free by construction. Therefore, one might 

consider plane waves as a viable alternative to the atom-centered bases in correlated 

electronic structure calculations. The arguments given below will show that this is not the 

case. 

Compared to atom-centred bases, plane-wave sets are not compact. They require 

increasingly many components to resolve decreasingly small structures in real space. Most of 

chemical properties are determined by the valence electrons, while the core electrons remain 

essentially intact. It suggests that the latter can be in principle excluded from the explicit 

calculations whereas only the former should be represented by plane-waves. The core part, 

hence, can be replaced with smooth and nodeless effective potentials termed 

pseudopotentials. Introduction of pseudopotentials dramatically decreases the size of the 

plane-wave basis sets. Furthermore, pseudopetentials can be used in combination with atom-

centered sets as well. The reviews on the subject in context of periodic and atom-centred 

calculations can be found in Ref. D140D, D141D, D142D and D143D, D144D, respectively. Even with 

pseudoptentials, the plane-wave sets are large comparing to the atom-centered sets. 

Notice, in the case of plane-wave sets, a large number of waves describes an infinite 

number of replicas of the unit cell which may interact with each other. When a bulk, naturally 

periodic system is constructed from small- to medium-sized molecules, the computational 

cost due to the large noncompact plane-wave basis can in some cases be outweighted by the 

computational cost due to the increasingly large size of model cluster (and hence – the basis 

set) to reproduce continuum in calculations with atom-centered sets. In this case, i. e. when a 

small or medium molecule (or, molecular fragment) is contained in the unit cell, some 

advantage of the use of plane-waves can be gained. However, when the system is large 

enough (e.g. a macromolecule), when it is constructed from several weekly-bound fragments, 

when it is an isolated assembly of molecules F

1
F, or it has a defect in the crystal gridF

2
F, the unit 

cell size becomes increasingly large what produces huge plane-wave bases. 

                                                 
1
 To represent an isolated system in plane-wave calculations, its unit cell must be increased to prevent the 

interactions between the replicas of the system. 
2
 The presence of defects in periodic system leads to continuous (infinite) basis sets. In order to avoid it, the unit 

cell comprising the defect, should be increased. Thus, a periodic ensemble of defects, rather than a true defect 

can be represented by a finite plane-wave basis. 
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Since correlated wave function-based methods formally scale at least as N
5
 (Sec. 1.2.3) the 

use of plane-waves as a versatile basis for correlated wave function calculations is limited if 

not prohibited. On the other hand, the magnitude of the BSSE effect in electronic structure 

calculations with atom-centered bases is similar to the magnitude of the correlation energy, 

thus, its correction is a necessary prerequisite of reliable calculations at an affordable 

computational effort. In the next section the methods for BSSE correction will be introduced. 

 

1.4.2 Methods for Basis-Set Superposition Error Correction 

At present, there are three feasible directions for a BSSE correction with atom-centered 

basis sets. 

1. Local electron-correlation methods (Ref. X65X, X66X, X67X, D145D, D146D). The technology was 

initially designed to speed-up the calculations on large systems, while the decrease of BSSE is 

a side effect. The idea behind these methods is based on the fact that the contribution of 

dynamic correlation to the electron interaction decreases much faster, with respect to the 

interelectron distance, than the Coulomb repulsion. This suggests that the correlation 

contributions from neighbouring orbitals are dominant and should be taken into account in 

correlated calculations, whereas contributions from remote orbitals can be, to some extent, 

neglected. Utilization of the local-orbital approaches without the loss of physical correctness 

is nontrivial. A famous example of the drawbacks of early localization procedures (Ref. X65X, 

X66X, X67X) applied to correlated methods (Ref. D147D, D148D, D149D, D150D, D151D) is the discontinuity of 

potential energy surfaces (Ref. D152D), but, later on, procedures to avoid the discontinuities 

appeared (Ref. X145X, X146X). 

Local-correlated methods are always a compromise between computational efficiency and 

accuracy. In particular, in the ground state, the use of local orbitals eliminates not only BSSE 

but also some electron correlation energy. (see Sec. I.1.1.3 of Ref. X19X). In the excited-state 

calculations, the use of local orbitals can affect the quality in situations where double 

excitations are important. In fact, the neglect of double excitations is the reason for a better 

scaling of local-correlated methods, compared to canonical methods. Herein, the more double 

excitations are neglected, the better the scaling. Therefore, a careful adjustment of the amount 

of neglected doubles should be done to provide the balance between the computational 

efficiency and accuracy in those cases, where double excitations are essential (Ref. D153D). 

Turning back to BSSE, local correlation methods themselves cannot be considered as an 

ultimate solution to the problem. In fact, BSSE is present in the methods since the local 
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orbitals are normally obtained from BSSE-uncorrected HF calculations. When the error is 

large at the HF level, it automatically transmits to the results of local-correlated calculations. 

Since at the HF level BSSE vanishes much faster with an increase of the basis-set size than 

at the correlated level, some researchers suggest to use a combination of large basis sets (to 

diminish BSSE at the HF level) and local correlation methods which are BSSE-free. In my 

opinion, this approach is an impasse since for the large systems with large basis sets both the 

HF and local correlation steps become prohibitively expensive. In contrast, utilizing 

approaches which correct for BSSE at both HF and correlated levels, in combination with 

medium-sized bases which represent the physical situation wellF

1
F, is a rational way to get 

accurate results and to be feasible in terms of the computational effort in correlated 

calculations on medium to large systems. Of course, when BSSE is corrected at the HF level 

(see below), its combination with local-correlated methods (BSSE free) can give an additional 

speedup and can be a viable alternative to both DFT and canonical correlated methods for the 

studies on large system. 

2. Chemical Hamiltonian approach (CHA) introduced and developed by Mayer and 

coworkers (Ref. D154D). The approach is based on the decomposition of the electronic 

Hamiltonian X(40)X of a molecular complex into a sum of intramolecular and intermolecular 

interaction operators and further neglect of the terms responsible for BSSE in the 

intermolecular part. In fact, the terms introducing BSSE in SCF stem from the multi-center 

one- and two-electron integrals
2
. Such an analysis is easier to perform the Hamiltonian is 

expressed in terms of molecular orbitals in the second-quantized form (e.g. Ref. X94X). Since 

CHA removes BSSE not only from the energy but rather from the entire wave function, it can 

be treated is an a priory methodology for BSSE correction. At the moment, the approach 

seems to be the only systematic way to fully eliminate BSSE in atom-centered calculations. 

The CHA methodology is rather complicated to be described within the format of this 

thesis. From a practical point of view, though, there are two versions of CHA to be 

distinguished. The first one is the so-called CHA/F (and CHA-DFT) approach (Ref. D155D, D156D) 

in which the terms, responsible for BSSE, are excluded directly from the Fock matrix X(57)X 

(Sec. 1.2.2). The second one is the CHA-SCF approach (Ref. D157D), where the terms inducing 

BSSE are eliminated at the level of the molecular Hamiltonian expressed in second-quantized 

form. Herein, BSSE-free molecular orbitals are produced. It opens the way for the 

                                                 
1
 More precisely: the minimal, for a given system, basis set, which represents the physical situation adequately. 

2
 In CHA one- and two-electron integrals contain at most one- and two-center integrals (over atomic orbitals), 

respectively. The multi-center character of the wave functions is captured via the overlap integrals. The neglect 

of multi-center integrals in CHA also provides additional speed-up for CHA-based SCF. 
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development of correlated methods upon CHA (Ref. D158D, D159D, D160D). Very encouraging results 

on closed- and open-shell hydrogen bonded systems and Van-der-Waals complexes were 

obtained with the BBSE-free CHA-MP2 methodology (Ref. X159X, X160X). The major 

disadvantage of CHA-SCF is that the Fock matrix is non-Hermitian. Although it does not 

affect the computational performance of the methodology, it brings an additional complexity 

for the analytical formulation and implementation of correlated methods and gradients upon 

CHA. Probably, that was a reason of the continent perception of CHA in the quantum-

chemical community.  

3. The counterpoise correction (CP) procedure introduced independently by Boys and 

Bernardi (Ref. D161D) and Roos (Ref. X138X). Since the CP methodology is rather intuitive, it is 

very useful to illustrate the essence of BSSE. It will be done in detail in the next section. 

Finally, it is worth to mention that there is another promising alternative to conventional 

basis sets, introduced in the previous section, which is BSSE-free. This is the so-called 

generalized plane-waves defined in curvilinear coordinates (Ref. D162D, D163D). Hypothetically, 

these basis functions can solve the fundamental problem of compactness of conventional 

plane-waves while being BSSE free. Their use is supposed to be advantageous in the studies 

on continuous (but not necessarily periodic) systems. However, this basis set is uncommon 

and it needs a careful investigation to answer whether computer implementation of correlated 

methods with this set is practical. 

Historical overview of the developments as well as many other aspects of BSSE can be 

found in an excellent account on the subject (Ref. X19X) and in Ref. D164D. 

 

1.4.3 Counterpoise Correction for Basis-Set Superposition Error 

Suppose there are two interacting monomers A, B assembled into the complex AB. Of 

particular interest is the energy difference between the complex and the isolated monomers, 

constituting the complex 
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B

A

A
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ABstab  , 

(166) 

called stabilization energy. Here and further, )(XEZ

Y denotes energy of the system X at the 

geometry Y with the basis set Z. This quantity characterizes the energetics of the assembly 

reaction. When the energies are corrected by ZPVE and temperature effects, one deals with 

stabilization enthalpies and free energies instead. Obviously, with atom-centered basis sets 

there is a problem in the definition of the stabilization energy: energies of the complex and 



1. Theoretical Methods 

61  

monomers are defined within the different basis set subspaces. This is one well-known 

manifestation of BSSE. 

Expression X(166)X can be rearranged to gain more physical insight 
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Herein, the energies of the fragments A, B in their geometries within the complex are added. 

The term inE  in the final expression is termed interaction energy. It allows for a partition 

into the terms of different physical origin and, hence, for a physical interpretation of the 

interaction. The term relE  is the relaxation energy – it characterizes distortion of the 

monomer within the complex. If the fragment is an atom, its distortion is zero. Thus, 

interaction and stabilization energies are equivalent only for the complexes comprised from 

atoms. 

The idea of the counterpoise correction is to add ghost-orbitals, borrowed from the compex 

AB, to each monomer A, B within the complex. Technically, the orbitals are obtained by 

setting nuclear charges of other fragments within the complex to zero and omitting their 

electrons. The result of the procedure is the BSSE-corrected interaction energy 
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In Eq. X(167)X interaction energy is BSSE-contaminated while the relaxation energy is BSSE-

freeF

1
F. After the correction X(168)X, stabilization energy becomes BSSE-corrected as well 
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To get more involved interpretation of BSSE, let rearrange Eq. X(169)X as follows 
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1
 Of course, this is only true when the intramolecular BSSE for each monomer is neglected, this case is 

considered here. 
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The first term here is the BSSE-uncorrected stabilization energy, the second one is the energy 

difference between the fragments in their own bases and in the basis of ghost-orbitals. This 

quantity itself is often referred to as BSSE energy, or, shortly, BSSE. 

BSSE has the following properties. 

1. Since the basis-set space is larger with the ghost-orbitals (i.e. AB

AB

B

AB

A

AB EEE , ), for the 

variational energies BSSE is positively defined. In the limit of complete basis set, BSSE 

approaches to zero, however, since BSSE corrupts virtual orbitals, the convergence is much 

slower at correlated than at the Hartree-Fock level. 

2. Since uncorrected stabilization energies are too negative, BSSE induces overbinding. 

This is especially the problem for MP2 theory for which the correlation contribution is always 

negative. 

3. Since the ghost-orbitals employed for BSSE correction does depend on the geometry of 

the complex, the BSSE contribution to the stabilization energy is not additive with respect to 

the number of fragments 
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Let finally make a transition from the stabilization energy to the absolute energy of the 

complex. This can be done by setting the energies of isolated fragments to zero 0)( AE A

A , 

0)( BEB

B  in Eq. X(170)X. If BSSE was additive (i.e. independent on the geometry of the 

complex), it would be zero as a result of this procedure. However, this is not the case 
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and, therefore 
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Thus, with atom-centered basis sets, BSSE not only affects the stabilization energy of the 

complex, but rather its absolute energy. This very important consequence is often missed in 

common interpretation of BSSE. 

Since BSSE is positively defined, its addition to the total energy (Eq. X(170)X) produces a 

“vertical shift” in the potential energy surfaces. Moreover, since BSSE depends of the nuclear 

positions of the complex, its gradient with respect to its nuclear coordinates is nonzero 
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As a consequence, the gradients of the corrected and uncorrected PES at a given point are not 

equal 
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This means that the stationary points of BSSE-corrected and uncorrected PES are displaced 

(“horizontally shifted”) with respect to each other. Since any stationary point of stabilization 

energy surfaces coincides with the stationary point of potential energy surfaces, the same 

arguments are valid for the latter F

1
F. Potential energy surfaces, equilibrium structures, infrared 

spectrum, thermochemistry and other molecular properties employing energy derivatives can 

be affected by BSSE directly – like it is shown above, or indirectly – since BSSE is also 

presents in the wave function. 

The results of the CP correction converge fast to the results of CHA with the increase of 

the basis-set size (Ref. X164X). At correlated level, even with moderate basis sets, very accurate 

PES of hydrogen-bonded systems and Van-der-Waals complexes (open- and closed-shell) can 

be obtained (Ref. X159X, X160X). The validity of the CP procedure was proved rigorously for the 

full-CI level of theory (Ref. D165D). Furthermore, since CHA determines the terms in the 

Hamiltonian, responsible for BSSE exactly, it can serve as a methodological pattern for the 

validation of the CP procedure in application to BSSE (Ref. X159X). Another advantage of CP is 

its easy implementation which requires energy calculations of the fragments in the basis set of 

the complex. 

The pitfalls of the CP methodology are well-known. 

1. CP is an a posteriori approach – it corrects for BSSE at the energy level but not at the 

wave function level. Wave function-specific properties (densities, magnetic properties etc.) 

can be affected by BSSE even if PES is corrected by means of CP. 

2. Application of the CP correction to open-shell or charged complexes is often 

problematic. 

In fact, the ghost-orbital calculations for open-shell fragment should describe the same spin 

state as for the fragment in its own basis set. Since the symmetry, and therefore spin, of the 

wave function of the monomers can be changed in the composite ghost-orbital basis, this 

                                                 
1
 Any nuclear derivative of potential energy surface is equal to the derivative of the stabilization energy surface, 

since the derivatives of the energies of isolated fragments with respect to the nuclear coordinates of the complex 

are zero. 
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condition is not always automatically fulfilled. This is because the minimum-energy state in 

the composite basis set would not be necessarily of the same multiplicity as it is in the basis of 

the monomer. Consequently, the SCF procedure can be difficult to converge to the same 

electronic spin state. This is especially the case for the complexes having several electronic 

states of the same symmetry. 

In the case of charged, for instance, protonated complexes the charge can significantly shift 

electron density within the complex. Herein, the assignment of charge to the fragments 

(proton and the rest) to apply the CP procedure becomes ambiguous. 

As both of these situations are normally present in molecules, application of CP to 

molecules to diminish BSSE at the intramolecular level is complicated. Even in such 

pathological cases, CP correction is often possible, although it is assumed that it diminishes 

only a fraction of BSSE than in the normal case of well-separated fragments (Ref. X19X). 

3. The computational cost of the CP correction scales linearly with respect to the number 

of fragments n in the complex: the procedure requires (n+1) energy calculations in the 

composite basis set. This is in strong contrast to CHA which computation time is essentially 

independent on the number of fragments. Since the energy correction in this sense is additive, 

any property which requires energy derivatives (gradients, second derivatives etc.) needs 

(n+1) calculations as well. Moreover, when there are more than two monomers in the system, 

the definition of the fragments, necessary to apply the CP procedure, becomes ambiguous. For 

instance, if there are three monomers A, B, C in the complex ABC, there are four possible 

fragment definitions: A+B+C, AB+C, AC+B and BC+A within the complex. This ambiguityF

1
F 

can be circumvented by use of hierarchical CP, but this procedure readily becomes unfeasible 

with increase of the monomer number (Ref. X164X). Still, the “conventional” (i.e. nonhierarchic) 

CP correction, where each monomer is treated as a fragment, eliminates significant fraction of 

BSSE in the case of more than two monomers (Ref. X19X, X164X). 

In the last section of this part, important but rather unexplored implications of BSSE will 

be discussed. 

 

                                                 
1
 The phenomenon is sometimes referred in the literature as second-order BSSE. 
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1.4.4 Basis-Set Superposition Error: Uncommon Implications 

1. BSSE at the intramolecular level. 

Despite there are very encouraging examples of the BSSE correction at intermolecular 

level, applied to Van-der-Waals and hydrogen-bonded systems, not too many studies on 

intramolecular BSSE exist by far. This is partly due to the aforementioned difficulties to 

apply standard CP correction to individual molecules. Another reason is that due to the 

strength of a chemical bond, the influence of intramolecular BSSE on the chemical bonds 

distances is not always immediately observable as it is the case in weakly-bound complexes. 

For the latter, small changes in the intermolecular forces can yield large changes in the 

intermolecular geometries. Unlike the structures, molecular vibrations in principle should be 

substantially affected by intramolecular BSSE, since vibrational frequencies are essentially 

determined by BSSE-contaminated surfaces. 

Meanwhile, several successful attempts of the application of the CP correction to 

intramolecular BSSE demonstrate its paramount importance. 

In Ref. D166D, significant influence of itramolecular BSSE on reaction paths and energetics 

of chemical reactions of several organic complexes has been reported. It was shown that the 

CP correction applied to both minima and transition states considerably improves the results 

of the calculations with moderate basis sets, while its neglect can even lead to artificial 

transition states. 

Another prominent example of intramolecular BSSE is artificial distortion of benzene (Ref. 

D167D, D168D, D169D), planar arenes (Ref. X167X, D170D, D171D, D172D, D173D, D174D) and other nonrigid 

molecules (Ref. D175D) from planarity, observed at correlated level of theory (MP, CISD). 

Herein, the correct planar shapes were obtained after application of the CP correction (Ref. 

D176D). 

In view of these findings, one would expect significant presence of BSSE in proton 

affinities and stabilization energies (particularly deprotonation energies) of covalently-bound 

complexes as well. 

2. BSSE in calculations of ground-state molecular properties. 

Since BSSE is also a property of wave function and not of the energy only, it is expected to 

be present in calculations of molecular properties. Observation of BSSE in molecular 

properties, in general, requires BSSE-free reference (i.e. obtained with CHA). For example, a 

recent study indicates that CHA-SCF BSSE-free densities of hydrogen-bonded systems can 

significantly differ from those obtained with conventional SCF (Ref. D177D). Still, those 

properties which require derivatives of the energy can be improved by means of conventional 



1.4.4 

66 

CP correction, in particular, harmonic and fundamental vibrational frequencies (IR spectrum), 

as well as nuclear chemical shifts (NMR spectrum) (Ref. D178D, D179D). For instance, Ref. X179X 

indicates observable presence of BSSE in the nuclear chemical shifts of some hydrogen-

bonded complexes. 

In the present work, a systematic investigation of the influence of basis-set size, electron 

correlation and anharmonicity on the IR spectrum of typical H-bonded systems has been 

performed (Sec. 3.7). CP-corrected frequencies were obtained on CP-corrected PES (i.e. 

optimized according to Eq. X(175)X) at the level of MP2 and CCSD with large basis sets (up to 

cc-pVTZ, cc-pVQZ). The study demonstrates that infrared spectra corresponding to the 

relevant OH stretch frequencies obtained at the CP-corrected MP2 level with moderate 

valence-split 6-31G(d,p) basis are well-described. The distance between the peaks, 

constituting the spectrum is almost unaffected by the basis set increase and improvement of 

electron correlations from the MP2 to CCSD levels. In contrast, IR spectra obtained at the CP-

uncorrected levels of theory reveals much stronger basis-set dependence. Furthermore, the 

structures of the complexes obtained at the level of CP-corrected PES with MP2 and moderate 

basis sets are almost identical to those obtained at CP-corrected CCSD level with the cc-

pVTZ basis. For the latter, BSSE error still exceeds 25% of the stabilization energy – it is 

larger than the differences in stabilization energies between MP2 and CCSD. These findings 

suggests that transition from the second-order perturbation theory (MP2), combined with 

moderate basis sets, to higher levels of theory and larger basis sets does not make sense 

without BSSE correction of PES. The notorious overbinding problem of MP2 can hence be 

traced back to BSSE rather than to the lack of dynamic correlations itself. 

3. BSSE in excited-state calculations. 

So far, most of the efforts around BSSE have been focused on ground-state systems. 

However, BSSE is present in the excited states as well. It can be easily seen for variational 

methods (e.g. full- or truncated-CI, Sec. 1.2.3) by assignment of the CP-corrected energy 

X(170)X to the energy of a particular excited state. An ultimate solution of the problem would be 

to use excited-state methods with a BSSE-free CHA reference. Since such procedures are not 

yet implementedF

1
F, one would consider the possibility to apply the CP correction to excited-

state calculations. 

In the excited-state CP correction, there are two levels of the problem.  

First, in order to apply the CP correction, calculations on a complex and its monomers 

should describe the same excited state. Obviously, electronic structure of excited states of the 

                                                 
1
 Except single-point CHA-CI (Ref. 158), which is limited by few-electron systems. 
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complex and its isolated monomers can be significantly different. For instance, excited states 

of the fragments in (Eq. X(170)X) are by construction locally-excited (LE) with respect to the 

complex. Therefore, they conceptually unable to correct charge-transfer (CT) excited states 

of the complex (if it possesses them), since CT is essentially a collective effect. This example 

readily demonstrates breakdown of the general applicability of the CP correction to excited-

states. Another problem arise when a complex comprise several nearly degenerate excited 

states which are produced from several degenerate atomic orbitals of the fragments. This may 

occur in the highly symmetric cases like diatomic complexes. In this case, the assignment of 

an excited state of the complex to the excited state of the monomer (comprised from the 

degenerate orbitals) becomes ambiguous. It will be important to quantify the magnitude of 

this ambiguity. 

Second, to calculate BSSE correction according to Eq. X(170)X, MCBS and DCBS 

calculations for the relevant monomer should describe the same excited state. “Same” means 

that it should be represented by the same dominant (occupied/virtual) orbital contributions. 

Again, when excited states in DCBS are nearly degenerate and comprised from several 

degenerate orbitals of the monomer, the assignment of an excited state of DCBS to the excited 

state of the MCBS becomes ambiguous. 

As one can see, application of the CP correction to the excited states combines the two 

above-mentioned problems of CP, typical for the cases of charged and open-shell complexes. 

In view of these arguments, it would be interesting to check for a possibility to apply CP 

correction within linear-response theory (Sec. 1.3.2). In this case, the energy of a particular 

excited state is a sum of the ground-state total energy and the excitation energyF

1
 

 

)()()( 0 nnnn SnSSS RRERE  . 

(176) 

As it was mentioned above, it is often possible to apply the CP correction to the ground-state 

contribution, but it is not easy to establish how BSSE enters the excitation energies obtained 

from linear-response functions. It might occur that in some parts of PES, BSSE in the 

excitation energy compensates BSSE in the ground state. Thus, application of the CP 

procedure to the first term alone cannot be justified without the analysis of BSSE in the 

second term. These points need to be clearly addressed and this work is currently underway 

(Ref. D180D) 

                                                 
1
 In this notation excitation energies are designated as n  instead of n  in Sec. 1.3.2. This is done to prevent 

confusion with the energies of excited states obtained variationally. 
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4. BSSE-consistent basis sets. 

As it was mentioned in Sec. 1.4.1, correlation-consistent basis sets are optimized in 

correlated calculations for some atomic and molecular test sets and hence, by construction, 

contain BSSE. This error will automatically transmit to the CHA calculations on atoms since 

in this case the BSSE-contamination, inherited from the basis set, cannot be removed from the 

atomic Hamiltonian (notice that BSSE itself is a multiatomic phenomenon). Therefore, the 

development of basis sets, optimized on the molecular test sets by means of BSSE-free CHA 

methodology is necessary for accurate atomistic calculations employing CHA. 
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Chapter 2 

Water Deficient Environment Accelerates Proton Exchange: 

Acetone-Water Reaction Catalyzed by Calix[4]hydroquinone 

Macromolecules 

 

2.1 Introduction 

Over the past decades, self-assembling organic hollow and tubular structures have attracted 

significant interest as prospective functional materials in the areas of catalysis, 

electrochemistry, molecular recognition, and drug discovery (Ref. D181D, D182D, D183D, D184D, D185D). 

Most of the research in this field has been dedicated to the investigation of organic and 

inorganic nanotubes with covalently-bound architectures. Recently, Kim and coworkers 

discovered and investigated the self-assembly phenomenon of calix[4]hydroquinone (CHQ) 

monomers, which builds tubular nanostructures in the presence of water, under certain 

experimental conditions (Fig. 2.1) (Ref. D186D, D187D). The tubular structures are built from the 

bowl-shaped non-tubular CHQ monomers, which are bound noncovalently but linked by the 

hydrogen bonds (H-bond) with the bridging water molecules. The bridging water molecules 

and the OH-groups of the CHQ building blocks constitute a quasi-one-dimensional (1D) H-

bonded chain along the axis of the tubular structure. The CHQ tubes further aggregate in 

bigger porous polymers mediated by the intertubular –stacking interactions which stabilize 

the tubular subunits laterally. In contrast to the covalently-bound nanotubes, the ordering in 

the organic CHQ nanotubes is stipulated by a delicate interplay of H-bonding and – 

interactions, similarly to the situation found in biological materials like membranes and 

membrane proteins (Ref. D188D, D189D). 

The hollow bowl shape of the aromatic CHQ molecules allows for an efficient size-specific 

trapping of organic guest molecules and for their subsequent chemical transformations by, for 

example, stereo-selective reactions (Ref. D190D). Indeed, a recent NMR/quantum chemical study 

has shown that CHQ nanotubes can specifically trap small organic molecules (acetone, 2-

propanol, 2-methyl-2propanol). In particular, it was demonstrated that in the case of acetone, 

one molecule fits into one CHQ bowl (Ref. D191D, D192D). Understanding the mechanism of size-

specific binding and mobility of the guest molecules in CHQ nanotubes will give insights also 

relevant for trans-membrane ion channels and pore structures, due to their aforementioned 

structural relation (Ref. X188X, X189X). 
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Figure 2.1. CHQ monomers (A), tubular CHQ (B) and fragment of tubular CHQ trapping 

acetone molecules (C), where the rest of the nanotube is removed for clarity. The 1D-H-

bonded chain is highlighted by a yellow dotted line and a possible proton transport pathway is 

indicated by green arrows (C, bottom). 

  

An important manifestation of the unusual chemical properties of CHQ structures (both 

tubular and amorphous) is its catalytic activity in acetone-water proton exchange (PE) (Ref. 

D193D), which has been observed at ambient conditions in two nuclear-magnetic resonance 

(NMR) experiments – the spectra are shown in Fig. 2.2. The experiments were performed and 

the peaks were assigned according to Ref. X191X. In a solid state magic-angle spinning 
1
H NMR 

experiment on the CHQ nanotubes (Fig. 2.2A), the spectra were taken immediately, one day 

and one week after the preparation of the CHQ nanotubes. The latter were produced by 

evaporation of the solvent from the solution of non-tubular CHQ in deuterated acetone C3D6O 

and water. As one can see from the spectrum in Fig. 2.2A, the intensity of the peak at 0.5 

ppm, corresponding to the methyl protons of initially deuterated acetone C3D6O, grows during 

the experiment. While the peak of the protons of the OH-groups cannot be clearly resolved in 

the solid-state NMR experiment, it is well resolved in the corresponding solution 
1
H-NMR 

experiment (Fig. 2.2B) on nontubular, but partially-aggregated CHQ molecules in deuterated 

acetone. In the spectrum, a peak corresponding to water impurities is visible at about 3 ppm. 
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The time evolution of the solution 
1
H-NMR spectrum reveals that the concentration of water 

protons decreases simultaneously with the increase of acetone methyl protons. According to 

these data, a proton-deuteron exchange between water and acetone takes place and, most 

likely, deuterated water subsequently exchanges deuterons with the OH-groups of the CHQ 

molecules, resulting in the observed decrease of their signals in the solution 
1
H NMR 

spectrum. Since PE between acetone and water is observed in the tubular CHQ aggregates, as 

well as in the partially-aggregated CHQ solution, both forms of CHQ exhibit the property to 

catalyze the exchange. 

 

 

Figure 2.2. Solid state 
1
H-NMR spectrum of tubular CHQ trapping C3D6O (A), solution 

1
H-

NMR spectrum of CHQ dissolved in C3D6O (B), solution 
1
H-NMR spectrum of a mixture of 

QH2, C3D6O and H2O (C). 

  

It is a well-established fact that acetone alone does not exchange protons with water at 

normal conditions (T~300 °K, pH~7) (Ref. D194D). However, acids are known to catalyze 

acetone keto-enol tautomerism (KET) (Ref. D195D) and one might suspect that the weak acidity 

of CHQ may be responsible for the observed PE. KET is an interconversion between the 

isomeric forms (keto and enol forms) involving a formal proton migration and a double bond 

(–electron) shift (Sch. 2.1). Since in solution, KET involves several 

protonation/deprotonation steps, it is reasonable to assume that it plays also a role in the PE 

between water and acetone, observed in the described NMR experiments. 

To corroborate the weak acidity of CHQ itself is not the origin of the PE, an analogous 
1
H-

NMR experiment has been performed on the solution of hydroquinone (QH2) in deuterated 
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acetone and water (in 1:1 concentrations). QH2 has been chosen since it possesses a very 

similar chemical structure as CHQ and should act as a weak organic acid as well. Although 

the pKa value of CHQ is not available, since the CHQ aggregates in aqueous solution 

immediately, the arguments that this assumption is clearly justified will be given in the next 

section. Surprisingly, no PE was observed (Fig. 2.2C) in the QH2 experiment: the spectrum 

taken after one week does not show any changes in the intensities of peaks corresponding to 

the methyl group of C3D6O or to the water protons. Thus, the reason of catalytic activity of 

CHQ in the acetone-water PE cannot be its weak acidity alone. 

 

H3C CH3

O

H3C CH2

OH

 
 

Scheme 2.1. Keto-enol tautomerism of acetone. 

. 

In order to clarify the nature and the mechanism of the catalytic function of CHQ in 

acetone-water proton exchange, the present computational study employing state-of-the-art 

quantum chemical methodology, have been performed. 

One should notice that although QH2 and CHQ exhibit similar acidity, they show a 

different catalytic function in acetone-water PE. Moreover, the concentration of dissociated 

CHQ species, due to the pKa of QH2, amounts to 10
-5

. This means that most of CHQ in the 

system is present in the neutral form and, thus, cannot facilitate acid-catalyzed KET. Owing 

these arguments, the first step of this investigation (Sec. 2.3-2.7) will be dedicated to the PE 

mechanisms via concerted KET of trapped acetone, without considering the formation of 

ionic intermediates. 

Nevertheless, the concentration of ionic moieties, resulting from CHQ OH-group 

dissociation (~10
-5

), can be sufficient to provide slow acid-catalyzed PE at the rates of the 

aforementioned experiments (hours to days). It can, in principle, occur if the proton transfer 

(PT) involving these moieties is efficient enough. This possibility thus cannot be a priory 

excluded from the consideration. Therefore, as the second step of this study (Sec. 2.8-2.13), 

ionic mechanisms of PE, following by predissociation of CHQ OH-group, will be scrutinized. 

Taking into account that water is present in all system exhibiting PE and following the title 

of the Thesis, special attention has been paid to clarify the role of individual water molecules 

in both considered concerted and ionic mechanisms. The latter allowed to draw general 
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conclusions for the case of solutions and to eventually clarify the role of supramolecular CHQ 

in the catalytic proton exchange. 

 

2.2 Theoretical Methods 

Description of thes proton-transfer reactions generally requires a quantum treatment of the 

electronic structure at highly-correlated level, combined with nuclear dynamics. However, for 

large systems of practical interest such calculations are presently not feasible. One thus has to 

resort either to the combination of computationally inexpensive electronic-structure methods 

combined with nuclear dynamics, or to static calculations employing correlated ab-initio 

electronic-structure methods (Sec. 1.2.3). Since the former methods often fail to describe non-

covalent interactions even qualitatively, the latter option has been chosen here. 

Since the full CHQ-water-acetone complex is too large even for a comprehensive 

description by means of static correlated quantum-chemical methods, one has to employ 

molecular models. In this case, hydroquinone (QH2) has been chosen as a model, since it 

represents a substructure of CHQ and was suggested as the CHQ prototype in earlier studies 

(Ref. D196D). The acidities of the compounds are expected to be essentially identical, since the 

OH-groups of CHQ and QH2 exhibit identical polarity. Mulliken partial charges analysis 

revealed the charges of (-0.57) on oxygen and 0.31 on hydrogen for both systems at the 

DFT/B3LYP/6-31G(d,p) level of theory. Since the polarity of the OH-groups essentially 

determines the acidity of the compounds, one can assume that they exhibit similar pKa values 

of approximately 10. Furthermore, calculation of the deprotonation energies (DA) of QH2 and 

CHQ at the B3LYP/6-31G(d,p) level revealed that they also have nearly identical 

deprotonation energies of 361 and 369 kcal mol
-1

, respectively. This confirms that QH2 and 

CHQ have similar chemical properties in proton transfer processes. This rationalizes the 

choice of QH2 as a prototype of CHQ. However, at first glance it contradicts the NMR 

experiments where CHQ and QH2 behave differently with respect to the observed PE. As it 

will be shown later, their different behavior can be related to the presence and absence of 

solvent water aggregates in the three NMR experiments. This, and not the different structural 

and/or electronic properties of CHQ and QH2, is crucial for the barriers and rates of PE. 

The model systems cover the whole range of non-covalent interactions, i.e. dispersion 

interactions and hydrogen bonding, requiring high-level correlated ab-initio methods. 

However, due to the size of the largest necessary model system (QH2 with acetone and two 

water molecules), the only applicable ab-initio method is the second-order Møller-Plesset 

perturbation (MP2) theory (Sec. 1.2.4). MP2 theory is in principle capable to treat the long-
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range interactions with sufficient accuracy (Ref. D197D) as well as the dispersion, polarization 

and covalent effects associated with hydrogen bonding (Ref. D198D). 

For an efficient location of transition-state structures, as well as for the correction of 

proton-transfer barriers by zero-point vibrational energy (ZPVE) (Sec. 1.1.4), the computation 

of analytical second derivatives is required (see Ref. D199D, D200D for review on the geometry 

optimization techniques). This restricts the largest possible basis set size to 6-31G(d,p) for the 

largest model complex (see e.g. Fig. 2.6, Sec. 2.5). Therefore, stationary-point searches and 

harmonic vibrational frequencies of the majority of calculations were performed at the MP2 

level with the moderate double-zeta 6-31G(d,p) basis set, while the energy barriers for proton 

transfer were improved by means of the single-point calculations with the larger cc-pVTZ 

triple-zeta basis set (see Sec. 1.4.1 for details on the structures of basis sets). Comparison with 

existing experimental data for the reaction barrier of acid-catalyzed acetone KET (Ref. X195X) 

indicates that such a practical approach is quantitatively accurate enough for the investigation 

of the given system. 

Since ZPVE is slightly overestimated within the harmonic approximation compared to 

ZPVE calculated on corrected anharmonic potential energy surfaces, the former was scaled by 

a factor of 0.9 (Sec. 1.1.4). 

Another important issue in the calculations on weakly-bound complexes is the basis-set 

superposition error (BSSE) (Sec. 1.4.1). The error leads to a systematic overestimation of 

stabilization energies and to mutilated potential energy surfaces of the complexes. Since at 

correlated levels of theory, BSSE vanishes very slowly with increase of basis-set size, its 

correction is necessary for a quantitative evaluation of stabilization energies of weakly-bound 

complexes. One simple way of correction for BSSE is the counterpoise (CP) procedure (Sec. 

1.4.3). Application of the CP correction during geometry optimizations at the MP2/6-

31G(d,p) level gives structures and stabilization energies of the quality similar to those 

obtained with much larger basis sets of triple- and quadruple-zeta quality and higher levels of 

theory like CCSD (Sec. 3.7). Therefore, CP correction was employed to obtain the absolute 

values of the stabilization energies of several selected complexes. 

In the second part of this study (Sec. 2.7-2.13), proton affinities (PA) and deprotonation 

enthalpies (DE) of several charged protonated complexes were calculated. In general, these 

quantities are also sensitive to BSSE (Sec. 1.4.4). However, in this case CP correction was not 

employed. In fact, the CP procedure requires an assignment of charges and multiplicities to 

the individual fragments of the ionic complexes, given in integer values (Sec. 1.4.3). As it was 

mentioned previously (Sec. 1.4.4), in the case of covalently-bound (e.g. protonated) 
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complexes the charge distribution over the fragments is not discrete and, thus, the assignment 

is not well-defined and often ambiguous. In order to avoid such ambiguities, CP correction 

was not applied to the calculation of PA and DE of the ptotonated complexes. Nevertheless, 

the neglect of CP does not affect the results since only the relative – not the absolute values of 

PA/DE were analyzed. 

MP2 natural-orbitals occupation number (NOON) analysis (Ref. D201D, D202D) provides a 

useful criterion on the multireference nature of electronic wave functions. In some cases it can 

be pronounced during bond-breaking reactions, even for closed-shell reactants and thus 

should be controlled in proton-transfer calculations. However, the NOON analysis of all 

transition state structures did not reveal any deviations from the single reference. Hence, 

single-reference closed-shell MP2 calculations prove to be clearly adequate for the study of 

all model systems. 

When the long-range interactions were not a major concern, density-functional theory 

(DFT) calculations (Sec. 1.2.6) with the common B3LYP functional and 6-31G(d,p) basis 

were utilized. In particular, DFT was used to calculate deprotonation energies and partial 

Mulliken charge distributions in the OH-group of CHQ monomers. Alternative approaches to 

compute partial charges for the investigated complexes, e.g. Löwdin charges, NBO charges, 

as well as partial charges from the electrostatic-potential fitting procedures as implemented in 

Gaussian 03, were also employed. Since all approaches give essentially identical results, all 

the data are expressed in terms of Mulliken charges. 

Most of the calculations were performed with the GAMESS-US (Ref. D203D) quantum 

chemical software package, while the computations of stabilization energies on the CP-

corrected potential energy surfaces and partial charges employed the Gaussian03 package 

(Ref. D204D). 

 

2.3 Proton Exchange via Concerted Proton Transfer in CHQ 

A previous study of the tubular CHQ structures employing solid-state NMR and quantum-

chemical calculations has given a strong evidence that only one acetone molecule is trapped 

within one CHQ building block (Ref. X191X). According to the derived structural model, the 

acetone molecule appears to be connected to the 1-D H-bonded chain of the CHQ tubes via an 

additional H-bond from the carbonyl group of acetone to the bridging water molecule. One 

particular possibility of such a connection is given in Fig. 2.1 (Sec. 2.1). Here, a water 

molecule in the vicinity of the methyl group of acetone and several OH-groups, which belong 

either to water or to CHQ and which establishes a 1-D H-bond chain, can form a cyclic 
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network. Within this network, all OH-groups act as proton donors and acceptors 

simultaneously and, hence, they can efficiently assist PT between the moieties. 

Since the OH-groups of CHQ and water molecules are the key players in the observed PE, 

let us discuss the differences between the tubular and nontubular CHQ aggregates, used in the 

described NMR experiments (A) and (B) shown in Fig. 2.2 (Sec. 2.1) in more detail. Within 

the solid-state NMR experiment (A), most of the present water is bound as bridging water 

molecules within the 1-D networks and only a negligible amount of “free” water is available. 

Therefore, it is justified to assume that in the tubular CHQ rather simple proton transfer 

networks exist. They comprise acetone connected by its carbonyl group to one of the -OH 

groups of bridging water, or to the -OH groups of the CHQ molecules. This has been 

suggested by an analysis of previous NMR experiments on CHQ nanotubes (Ref. X191X). In the 

solution NMR experiment (B), nontubular CHQ aggregates were formed and water molecules 

were present only as impurities. Here, one can also suppose that the limited number of water 

molecules in the sample mediates aggregation and, thus, it is most likely bound to CHQ as 

bridging water. Therefore, one can assume that in both tubular and nontubular aggregates of 

CHQ, acetone molecules are part of very specific hydrogen bonding networks responsible for 

the observed PE between acetone and water. The basic mechanism of PE in tubular and 

nontubular aggregates of CHQ, hence, is expected to be closely related. 
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Scheme 2.2. Principal mechanism of proton exchange via concerted keto-enol tautomerism of 

acetone. 

  

As it was argued in the Introduction, the absence of PE in the experiment on QH2 (Fig. 

2.2C), having similar chemical properties as CHQ (Sec. 2.2), as well as the low fraction of 

dissociated CHQ due to its weak acidity, points to the relevance of PE via concerted KET 

involving several OH-groups of the bridging water and CHQ. This is in contrast to acid-

catalyzed KET, which requires the dissociation of an OH-group prior to PE, resulting in the 

formation of charged intermediates. The general idea of the mechanism of PE via concerted 



2.3 

77  

KET is depicted in Sch. 2.2. As a first step, it is assumed that concerted keto-enol 

tautomerism mediated by two water molecules takes place, which transfers a deuteron from 

the methyl group of acetone to the H-bonded water. This particular water molecule is assumed 

to rotate and back-KET to take place. The rotation of the deuterated water molecule is 

essentially barrierless, since no chemical bonds need to be broken, whereas the hydrogen 

bond to the methyl group is weak. The final back-KET step is fast, since the keto form is 

more stable than the enol form of acetone. Therefore, the initial KET step and the concomitant 

concerted transfer of the methyl deuteron will determine the observed proton exchange rate 

between acetone and water. 

 

2.4 Keto-Enol Tautomerism via Concerted Proton Transfer in Hydrated Acetone 

Clusters 

As it was introduced in the previous section, bifunctional OH-groups of water are the 

components of the PT networks, presumably catalyzing PE in CHQ (Sch. 2.2). Since each 

water molecule possesses also a permanent dipole moment, it can polarize the PT agents 

within the networks ad, in principle, influence the catalysis of PT. Herein, the efficiency of 

the process can depend on the number of water molecules involved in the PT networks, as 

well as on their relative alignment. It means that the effect of specific microsolvation by water 

on the acetone KET should be elucidated in detail. As a first step, the question of how many 

waters are optimal for the catalysis of concerted PT in the networks similar to those presented 

in CHQ (Sch. 2.2), was answered at first. Secondly, the influence of solvating water 

molecules, which are not directly involved in the concerted PT, was clarified. Having both 

these issues addressed, gives an insight into the molecular details of the mechanism and 

allows to identify the differences of the reaction mechanisms when CHQ is employed. 

To answer the question about the optimal number of catalytic water molecules in the 

concerted KET, the hydrated clusters C3H6O•••(H2O)n with up to three waters (n=0-3) have 

been constructed (Fig. 2.3). They form the cyclic PT networks, in which each water acts as a 

proton donor and proton acceptor simultaneously, to assist KET. The equilibrium geometries 

of these clusters were optimized at the MP2/6-31G(d,p) level of theory in both the keto (Fig. 

2.3, top) and enol (Fig. 2.3, bottom) forms, as well as the transition states (Fig. 2.3, middle) 

corresponding to KET via concerted single-, double-, triple- and quadruple PT. All the 

stationary points were characterized by analysis of their harmonic frequencies (see Sec. 

1.1.3). For the transition-state structures, the latter revealed one imaginary value 
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corresponding to the concerted PT pathway. The energy differences between acetone keto and 

enol forms as well as activation energies (the energy barriers) of the PT along these pathways 

were further corrected by ZPVE. The calculated energy differences and the barrier values are 

collected in Tab. 2.1. In addition, single-reference character of the wave-function in the 

transition structures was tested by computations of the NOON values (Sec. 2.2), which, 

indeed, indicate no multireference character and further validates the use of closed-shell MP2. 

 

 
 

Figure 2.3. Molecular structures of the educts (top), transition states (middle) and products 

(bottom) along proton transfer pathways (green arrows) via keto-enol tautomerism in isolated 

acetone (A), C3H6O•••H2O (B), C3H6O•••(H2O)2 (C) and C3H6O•••(H2O)3 (D) clusters. 

  

The computed energy difference between the keto and enol forms of acetone itself is 11.3 

kcal mol
-1

 at the MP2/cc-pVTZ//MP2/6-31G(d,p) level of theory and increases slightly to 

11.6 kcal mol
-1

 when ZPVE is employed. This agrees very favorable with a previous Car-

Parinello molecular dynamics (CPMD) study at the BLYP level of theory which gave 11.8 

kcal mol
-1

 (Ref. D205D). Unfortunately, neither experimental, nor benchmark theoretical data are 

available to evaluate directly the computed values for the hydrated acetone clusters. Instead, 

the averaged ZPVE-corrected energy difference between the keto and enol forms of all 

considered hydrated clusters C3H6O•••(H2O)n clusters (n=1-3) was calculated to be 10.7 kcal 

mol
-1

. Comparing to the experimental value of 10.30.4 kcal mol
-1

 found in aqueous solution 

of acetone (Ref. X195X), the agreement is very good. The relative energies of the keto and enol 
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forms are nicely reproduced with the chosen theoretical approach and this gives confidence 

that the PT mechanism can also be well-described with this methodology. 

The calculated values for the activation enthalpy Ea in the concerted KET reveal a strong 

decrease of the reaction barrier height with an increase of the number of involved water 

molecules. While the energy barrier in isolated acetone is 64 kcal mol
-1

, it drops already by 

26.5 kcal mol
-1

 to 37.5 kcal mol
-1

, with only one catalytic water molecule, and decreases 

further to 30.4 and 29.1 kcal mol
-1

 with two and three catalytic water molecules, at the level 

of MP2/cc-pVTZ\\MP2/6-31G(d,p) and ZPVE calculated with MP2/6-31G(d,p). This is in 

agreement with a previous MP2 study (Ref. D206D), which demonstrated that one water 

molecule leads to the reduction by 26.1 kcal mol
-1

 of the barrier of KET in acetone from 69.2 

kcal mol
-1

, for isolated acetone itself, to 43.1 kcal mol
-1

. 

  

Table 2.1. ZPVE-corrected activation energies (enthalpies) Ea (kcal mol
-1

) for concerted keto-

enol tautomerism in cyclic C3H6O•••(H2O)n clusters (n=0-3) as well as the energy difference 

ΔE of keto and enol forms as function of number of catalyzing water molecules n at the 

theoretical level of MP2/cc-pVTZ//MP2-6-31G**. The contributions of ZPVE scaled by 0.9 

for anharomonicity are given in brackets and have been computed at MP2/6-31G** level. 

  

N 0 1 2 3 

Ea(keto → enol) 64.0 (+3.0) 37.5 (+2.7) 30.4 (+3.4) 29.1 (+1.7) 

Ea(enol → keto) 52.4 (+3.3) 26.5 (+2.6) 20.9 (+4.3) 17.6 (+2.9) 

ΔE 11.6 (-0.3) 11.0 (+0.1) 9.6 (-0.9) 11.5 (-1.2) 

  

In Fig. 2.4 the functional dependence of the activation energy on the number of catalytic 

water molecules, for the concerted KET in hydrated acetone complexes, is displayed. The 

barrier height is practically converged with three catalytic water molecules and one can expect 

only a minor decrease when a fourth water molecule is embedded in the catalytic PT network. 

On the other hand, due to the anticooperative effect of the electric dipole moment of those 

water molecules, which are not involved in the PT networks directly, one can expect an 

increase of the activation energies with increasing number of water molecules in the transition 

to solution. Indeed, previous studies on the subject corroborate this assumption. For example, 

an earlier research employing the self-consistent reaction field (SCRF) methodology to 

include solvent effects, showed an increase of the activation energy by about 2 kcal mol
-1

 in 

the C3H6O•••H2O complex, compared to the same system in the gas phase (Ref. X206X). In that 

study, one catalytic water molecule, involved in the PT via KET, was treated explicitly, while 

water as solution was represented by a polar continuum. In a recent Car-Parinello molecular 
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dynamics (CPMD) simulation of acetone KET in water solution (Ref. X205X), the computed 

activation energy of KET was 57.7 kcal mol
-1

 for the isolated acetone in the gas phase and 

38.5 kcal mol
-1

 for the KET catalyzed by four water molecules in the presence of twenty four 

explicit solvent water molecules. It is worth to mention that the employed DFT methodology 

tends to underestimate reaction barriers, thus they are most likely higher in reality, as it is the 

in the case of the present MP2 calculations. However, this demonstrates that the activation 

barrier of KET of acetone in aqueous solution is higher than in isolated C3H6O•••(H2O)n 

complexes with well-defined specific H-bonded networks. Summarizing, these findings 

already indicate that solvent water molecules, i.e. the water molecules which are not involved 

in the PT as proton-donor/proton-acceptors, presumably decrease the efficiency of KET. This 

is also in agreement with recent studies on the tautomerism of various organic molecules, 

where solvent water was treated explicitly (Ref. D207D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Zero-point energy corrected energy barriers of acetone-water proton transfer 

(circles) in C3H6O•••(H2O)n, n=1-3 (solid line) and QH2•••C3H6O•••(H2O)2 (dashed line) with 

respect to the number of participating OH-groups. The difference between the Mulliken 

charges at the acetone methyl hydrogen and carbonyl oxygen (squares) as well as between 

methyl hydrogen and the closest water oxygen (diamonds) in C3H6O•••(H2O)n, n=1-3 (solid 

line) and QH2•••C3H6O•••(H2O)2 (dashed line) are also given. 

  

To corroborate these assumptions qualitatively and further clarify the explicit influence of 

solvent water on the efficiency of KET, the following complimentary study has been 

undertaken. Within the study, the influence of a second (solvent) water molecule on the 

barriers of KET in acetone•••H2O complexes was investigated, where KET is catalyzed by one 
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water and proceeds via concerted double proton transfer. For this objective, two additional 

acetone•••(H2O)2 complexes, in which the second water molecule is not part of the catalytic 

H-bonded network, but instead is bound additionally either to the carbonyl group of acetone 

(isomer I) (Fig. 2.5B) or to the oxygen of the catalytic water (isomer II) (Fig. 2.5C), were 

constructed. Again, keto and enol forms of the two isomers of C3H6O•••(H2O)2 as well as the 

transition states for the concerted double PT were optimized and confirmed by harmonic 

frequency calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Optimized stationary structures of the educts (top), transition states (middle) and 

products (bottom) along the proton transfer pathways (green arrows) in C3H6O•••H2O (A), 

C3H6O•••H2O with one additional solvent water bound to acetone carbonyl (B), and 

C3H6O•••H2O with one additional solvent water bound to water oxygen. 

  

Computations of the activation enthalpies of KET via double proton transfer in isomers I 

and II show they are 37.7 and 40.7 kcal mol
-1

 at the MP2/cc-pVTZ//MP2/6-31G(d,p) level. 

Comparison with the value of 37.5 kcal mol
-1

 in the C3H6O•••H2O complex (without the 

additional solvent water) (Fig. 2.5A), reveals that the barrier is increased by 3.2 kcal mol
-1

 

only when the solvent water is bound to the catalytic water directly. While the first solvent 

water molecule directly bound to the catalytic water network appears to have an influence of 

approximately 3 kcal mol
-1

, further water molecules will still lead to an increase of the barrier, 

but to a smaller extent. Obviously, hydrogen bonding to the catalytic water reduces its 
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catalytic activity, while the hydrogen bonding to the acetone carbonyl group bears only a 

marginal effect. This indicates that, in principle, only those solvent water molecules, which 

are bound to the catalytic H-bonded networks directly, increase the KET energy barrier and, 

thereby, decrease the catalytic efficiency. 

To explain this anticooperative effect of solvent water on KET in isomers I and II 

quantitatively, one should make one step back and elucidate the role of water molecules in the 

catalysis of KET (Fig. 2.3, Tab. 2.1). As it was supposed in the beginning of the section, 

polarization of acetone and other bifunctional OH-groups involved in PT by the permanent 

dipole moment of the catalytic water molecules is the most probable reason. The stronger the 

acetone molecule is polarized, i.e. the more partial positive charge is located on the hydrogen 

of the methyl groups and the more negative charge is located on the carbonyl oxygen, the 

easier the migration of the relevant protons from the methyl to the carbonyl group of acetone 

is. The dependence of the difference between the partial charges on the proton-accepting 

carbonyl oxygen and proton-donating methyl hydrogen of acetone, on the number of catalytic 

water molecules is presented in Fig. 2.4. It is evident that the polarization of acetone is 

converged in the same way as the reaction barriers for the concerted KET. This occurs when 

three to four catalytic water molecules are involved. Therefore, a clear relation between the 

acetone polarization and the barriers for the concerted KET has been established. 

A closer look at the structures of the acetone•••(H2O)n complexes with up to three catalytic 

water molecules (Fig. 2.3), indeed, explains why the activation energies converge to an 

optimal value of three to possibly four water molecules. An increase in the size of the cyclic 

H-bonded network, at some point, does not lead to an increased polarization of acetone, since 

a cooperative, i.e. additive effect of the water dipoles, is diminished due to several structural 

factors. In particular, the catalytic water molecules have to arrange in structures, which are far 

from linear alignment, which is optimal for polarization, with increasing the number of 

catalytic water molecules. At the same time, the distance between the catalytic water 

molecules and acetone increases thereby diminishing polarization. 

These results allow to extrapolate the values of the energy barriers to the case of acetone 

KET in neutral aqueous solution. As it was shown above, the most efficient KET process with 

a barrier of about 30 kcal mol
-1

 assisted by three or, perhaps, by four water molecules in an 

isolated acetone-water complex. Solvation of this cluster in water will lead to the hydrogen-

bonding of catalytic water molecules decreasing their ability to polarize acetone. If one 

assumes that each catalytic water molecule to be H-bonded by one solvent water, and further 

assumes that each solvated catalytic water molecule adds about 3 kcal mol
-1

 to the minimal 
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barrier of 30 kcal mol
-1

, one would arrive at an activation energy of acetone KET in water of 

ca. 40 kcal mol
-1

. This is consistent with the value of 38.5 kcal mol
-1

 obtained from the 

CPMD study mentioned previously (Ref. X205X), where on average four water molecules 

catalyzed KET in the presence of twenty four solvent water molecules. 

Although rather simple in nature, the effect of anticooperativity of water dipoles can lead 

to very considerable increase of the activation energies of acetone KET in solutions. 

Furthermore, one would expect a similar behavior of catalytic/solvent water in other proton-

transfer processes in solution pointing to the general significance of the described 

phenomenon. 

Turning back to the initial experiments on proton exchange in CHQ, one realizes they were 

performed under conditions with no or only very little amount of free water, which could act 

as solvent and increase the barrier of KET. Therefore, based on the results for the acetone-

water clusters, one can expect concerted KET to be more efficient by about 10 kcal mol
-1

 in 

the CHQ aggregates than in aqueous solution. 

 

2.5 Keto-Enol Tautomerism in Hydrated Hydroquinone-Acetone Clusters 

Having understood the mechanism of KET catalyzed by H-bonded networks in acetone-

water complexes in detail, the next logical step is to investigate the influence of CHQ on the 

concerted KET. The major question to answer now is how the barrier of PT alters when one 

of the OH-groups of the H-bonded networks originates from CHQ and not from water. Since 

CHQ is too large to afford calculations at MP2 level even with only medium-size basis sets, in 

all calculations QH2 was used as model system. This choice was rationalized in Sec. 2.2. 

As a first step, two model complexes comprising QH2, acetone and one or two catalyzing 

water molecules, respectively, were constructed. They resemble the suggested structures of 

KET PT networks in CHQ (Sch. 2.2), derived from the previous NMR experiments (Ref. 

X191X). The minima, corresponding to the keto and enol forms of acetone, and the transition 

states of the complexes were optimized at the MP2/6-31G(d,p) level of theory and were 

verified by analysis of their harmonic frequencies. Their structures and energetics are 

presented in Fig. 2.6 and Tab. 2.2, respectively. 

The smaller cluster with only one catalytic water molecule possesses two OH-groups 

which are involved in the concerted KET mechanism, one from QH2 the other from the 

catalytic water. The results for that cluster are thus comparable with those for 

acetone•••(H2O)2, since in the latter, two catalytic OH-bonds (both from water) are also 

involved. Computed activation enthalpies along the concerted KET pathway in the 
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QH2•••C3H6O•••H2O complex is 31.9 kcal mol
-1

 at the MP2/cc-pVTZ//MP2/6-31G(d,p) level, 

which is 1.5 kcal mol
-1

 higher than in the corresponding acetone•••(H2O)2 cluster. In the larger 

QH2•••C3H6O•••(H2O)2 cluster the activation enthalpy of concerted KET via quadruple PT is 

found to be even higher with 32.7 kcal mol
-1

 at the same level of theory. Compared to the 

corresponding value of concerted KET via quadruple proton transfer in the acetone•••(H2O)2 

complex (29.1 kcal mol
-1

), the substitution of one water by an OH-group of QH2 increases the 

activation energy by 3.6 kcal mol
-1

. Clearly, concerted acetone KET is less efficient in the 

QH2 clusters than in the analogous hydrated clusters alone.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Optimized educt (left), transition state (center) and product (right) structures of 

the QH2•••C3H6O•••H2O model complex (A) and QH2•••C3H6O•••(H2O)2 model complex (B) 

along the concerted acetone keto-enol tautomerism (green arrows). 

  

Since the catalytic activity of the water molecules in the acetone-water clusters can be 

explained by their polarizing function, the slightly less efficient catalytic function QH2 

compared to water is readily understood in terms of the different polarity of their OH-groups. 

Indeed the OH-group of QH2 is slightly less polar than the OH-group of water. It is indicated 

by the Mulliken charge differences between oxygen and hydrogen of 0.73 and 0.60 in H2O 

and QH2, respectively, at the SCF/cc-pVTZ//MP2/6-31G(d,p) theory level. Therefore, it is 

unnecessary to consider model clusters, in which both OH-groups of QH2 are involved. In 

summary, in the case of QH2•••C3H6O•••H2O, the two OH-groups of the catalytic water and 

QH2 are slightly less efficient in polarizing the acetone than two water OH-groups of 
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C3H6O•••(H2O)2. This is nicely illustrated in Fig. 2.4 (Sec. 2.4) by relation of the partial 

charges on carbonyl oxygen and methyl hydrogen atoms of acetone and corresponding values 

of the activation energies for concerted KET in the QH2•••C3H6O•••H2O and C3H6O•••(H2O)2 

clusters. 

The surprising, at first glance, increase of the activation energy of concerted acetone KET 

in the QH2•••C3H6O•••(H2O)2 cluster, as compare to the QH2•••C3H6O•••H2O one, can be again 

explained by the depolarizing function of the second water molecule. Indeed, a closer look at 

Fig. 2.6 reveals that the second catalytic water in the vicinity of the acetone carbonyl group of 

the QH2•••C3H6O•••(H2O)2 complex is H-bonded to the other one in the vicinity of acetone 

methyl group, i.e. simultaneously acts a depolarizing solvent agent. This picture is also 

corroborated by the analyses of partial charges on the relevant groups of the 

QH2•••C3H6O•••(H2O)2 and QH2•••C3H6O•••H2O complexes (Fig. 2.4). 

 

Table 2.2. ZPVE corrected activation energies Ea (kcal mol
-1

) for concerted keto-enol 

tautomerism in QH2•••C3H6O•••H2O (n=2) and QH2•••C3H6O•••(H2O)2 as well as the energy 

difference ΔE of keto and enol forms as function of number of catalyzing hydroxyl groups n 

at the theoretical level of MP2/cc-pVTZ//MP2-6-31G(d,p). The contributions of ZPVE scaled 

by 0.9 for anharomonicity are given in brackets and have been computed at MP2/6-31G(d,p) 

level. 

 

n 2 3 

Ea(keto → enol) 31.9 (-2.4) 32.2 (-3.4) 

Ea(enol → keto) 7.4 (-2.9) 18.5 (-3.5) 

ΔE 24.5 (+0.5) 13.7 (+0.1) 

  

 

2.6 Stability of the Hydrated Acetone and Hydrated Hydroquinone-Acetone 

Clusters 

In conclusion of this part, dedicated to the PE mechanisms via concerted KET, 

stabilization energies/enthalpies of the QH2•••C3H6O•••H2O (Fig. 2.6, Sec. 2.5) and 

C3H6O•••(H2O)2 (Fig. 2.3, Tab. 2.1, Sec. 2.4) complexes will be compared. Both clusters have 

similar activation energies for KET via concerted triple proton transfer of 31.9 and 30.4 kcal 

mol
-1

, respectively. The comparison will give an idea of the strength and compactness of the 

H-bonded PT networks assisting KET in CHQ. 
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To obtain reliable stabilization energies of the hydrogen-bonded complexes, their potential 

energy surfaces should be corrected for BSSE (see Part 1.4). To that end, both structures have 

been reoptimized on the CP-corrected PES. Also ZPVE was computed in the reoptimized 

points with the CP correction included to produce CP-corrected stabilization enthalpies. At 

the level of CP-corrected MP2/6-31G(d,p), the stabilization enthalpies for the 

QH2•••C3H6O•••H2O and C3H6O•••(H2O)2 complexes amount to -12.6 and -8.4 kcal mol
-1

, 

respectively. Thus, QH2•••C3H6O•••H2O is 4.2 kcal mol
-1

 stronger bound than C3H6O•••(H2O)2. 

At the level of single-point CP-corrected MP2/cc-pVTZ on the CP-corrected MP2/6-31G(d,p) 

structures and ZPVE, the difference is even larger with 5.7 kcal mol
-1

. 

Although the efficiency of the catalysis of KET via the OH-group of QH2 and water is 

slightly weaker than the efficiency of two water OH-groups alone, the stability of the PT 

networks is considerably larger in the QH2 complex – by about one H-bond strength of the 

water dimer (4.0 to 5.7 kcal mol
-1

). Most likely, the origin of the additional stability are 

dispersion interactions between the aromatic ring of QH2, acetone and water. In the case of 

CHQ, one would expect that dispersion interactions become more pronounced due to the 

increased number of aromatic rings. The H-bonded network in the CHQ cages hence becomes 

even stronger and more compactly bound. It will result in specific structures of 1D H-bond 

chains, observed experimentally in CHQ (Ref. X186X, X187X, X191X). Furthermore, it would explain 

the efficient trapping of one acetone per CHQ subunit in tubular and non-tubular CHQ 

aggregates as well as the observed efficient binding of other small organic molecules by 

CHQ. 

 

2.7 Proton Exchange via Concerted Mechanism: Summary 

In the first part of this work outlined in section 2.1, KET via concerted proton transfer was 

thoroughly studied as a possible precursor of the catalytic proton exchange of acetone trapped 

in CHQ aggregates.  

At first, concerted KET of acetone in specific clusters hydrated by one to three water 

molecules and forming cyclic PT networks was studied at first. It was shown that three or, 

possibly, four water molecules are optimal for the catalysis of KET with an activation 

enthalpy of about 30 kcal mol
-1

. This value appears to be about 10 kcal mol
-1

 lower than in 

aqueous solution. The reason for the increase of activation energy in aqueous solution can be 

attributed to the anticooperative effect of solvent water dipoles which depolarize the reagents 

involved in the proton transfer. In particular, it was shown that H-bonding of a single solvent 
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water molecule to the catalytic water involved in PT, leads to an increase of the barrier for 

concerted KET by about 3 kcal mol
-1

. 

Having understood the general mechanism of concerted acetone KET in detail, a specific 

influence of CHQ on the PT was investigated at second. For this purpose, complexes 

comprising QH2, which serves as molecular model for CHQ, acetone and one or two catalytic 

water molecules, were used. The simulations revealed that concerted KET in these model 

complexes is slightly less efficient than in the corresponding hydrated acetone complexes. 

This is mainly due to the lower polarity of the OH-group of QH2 comparing to that of water. 

Finally, computed stabilization energies of the acetone-water and QH2-acetone-water 

complexes, demonstrate that the hydrogen-transfer networks in the latter case are significantly 

stronger bound than in the former case.  

These findings demonstrate that KET via concerted mechanism is more efficient in 

solvent-free environments with only a few catalytic water molecules, a condition that is 

provided by CHQ aggregates. Nevertheless, the Arrhenius rate constant for the concerted 

KET obtained using the activation enthalpy of the most efficient case C3H6O•••(H2O)3 of 29.1 

kcal mol
-1

 is 10
-13

 M
-1

 s
-1

 at room temperature. This is clearly too low to explain the 

observation of proton exchange at the conditions of the NMR experiment. In contrast, 

acetone-water proton exchange in superheated water can be quantitatively explained by the 

mechanism found in the present study. In an NMR study (Ref. X194X), proton exchange 

between acetone and superheated deuterated water was achieved at 200° C during total 

exposure time of 60 min. This agrees nicely with the calculated rate constant at 473 K of 

about 10
-1

 M
-1

 s
-1

, which would allow for the observation of the proton exchange under these 

conditions. Obviously, at room temperatures KET via concerted proton transfer, assisted 

by a few OH-groups is not the prevailing mechanism of the catalytic proton exchange in 

CHQ. 

Although this part of the study was not able to identify the mechanism of the observed 

catalytic activity of CHQ, it has discovered that desolvation of the proton-transfer networks 

assisting KET appears to be a very important, if not a crucial feature of CHQ. This property of 

CHQ will reappear in the next sections, where dissociation of the CHQ OH-groups and 

concomitant formation of charged ionic species which are possibly involved in proton 

exchange via step-wise mechanisms, will be investigated. 

 

2.8 Proton Exchange via Ionic Mechanism Triggered by CHQ Dissociation: 

Possible Scenarios 
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In the Introduction it was already noticed, that although the concentration of ionic species 

resulting from dissociation of weakly-acidic CHQ is small (of about 10
-5

), it can still provide 

slow PE, observed experimentally. It may happen when PT reactions involving ionic species 

are efficient enough. In this section, possible scenarios and related model systems for ionic 

proton-exchange mechanisms will be considered. For this objective, the question where the 

proton goes to after dissociation of the OH-group of CHQ (or in the model complexes QH2), 

will be answered. Therefore, selected protonated molecules and their complexes, hydrated by 

one water molecule, have been compared in terms of their proton affinities (PA). The latter 

are commonly defined as the differences between the total energies  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Molecular structure of the protonated water [H3O]
+
 (A), hydroquinone [QH3]

+
 (B) 

and acetone [C3H6O]
+ 

(C), water dimer [(H2O)2-H]
+
 (D), mono-hydrated hydroquinone [QH2-

H•••H2O]
+
 (E) and mono-hydrated acetone [C3H6O-H•••H2O]

+
 (F). 

  

of protonated and neutral systems. By inspection of the PT networks presented in the tubular 

CHQ aggregates, several possible protonation sites can be identified. Most likely, the proton 

acceptors are monomers of water, CHQ or acetone, and/or their hydrated complexes like 

(H2O)2, QH2•••H2O, C3H6O•••H2O and so on (Fig. 2.7). In principle, one cannot a priori 

exclude larger hydrated complexes to be present in the CHQ aggregates. However, the NMR 

experiments on both tubular and non-tubular CHQ aggregates demonstrated that they 

correspond to a water-deficient environment. Thus, one can safely assume that additional 

“free” solvent water molecules, which are not bound in the H-bonded network of the tubular 

assembly, are scarce and are most likely spread uniformly over the OH-groups of CHQ. As a 

consequence, the amount of multihydrated molecular complexes in the tubular and non-

tubular CHQ aggregates is probably negligible. 
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Equilibrium structures of the protonated complexes were optimized at the level of MP2/6-

31G(d,p) and are displayed in Fig. 2.7. Their PA were computed at the MP2/cc-pVTZ level 

with ZPVE calculated at the MP2/6-31G(d,p) level included (Tab. 2.3). One can see that 

acetone has a higher PA than water and QH2 by about 27 and 13 kcal mol
-1

, respectively. 

Upon the addition of one water molecule to each monomer, the acetone complex 

C3H6O•••H2O still remains the best proton acceptor, but the energetic differences in the PA of 

the complexes decrease. The PA of the acetone-water complex, QH2-water complex and the 

water dimer are now only 8 and 14 kcal mol
-1

 smaller, respectively. 

  

Table 2.3. Zero-point energy corrected proton affinities (PA) and deprotonation enthalpies 

(DE) (kcal mol
-1

) of potential proton acceptors (see text). All values were calculated as single 

point MP2/cc-pVTZ energies on the MP2/6-31** optimized structures. ZPE has been 

computed at the MP2/6-31** level and is given in parenthesis. 

  

Complex PA (ZPE) DE (ZPE) 

H2O -165.7 (+8.4)   

QH2 -179.2 (+7.9) +353.2 (-9.0) 

C3H6O -192.5 (+8.1) +373.0 (-8.8) 

[C3H6O-H]
+
   +201.3 (-7.7) 

(H2O)2 -197.8 (+7.2)   

QH2•••H2O -203.2 (+7.5)   

C3H6O•••H2O -211.5 (+7.7)   

  

Comparison of the PA values of selected monomers and their monohydrated complexes 

suggests that the proton originating from CHQ will tend to preferentially attach to the 

carbonyl group of acetone. In this situation, a zwitterionic intermediate would be formed, 

which triggers the back proton transfer with a proton exchange step between the methyl group 

of acetone and water. This mechanism is depicted in Sch. 2.3. The created zwitterionic 

intermediate will probably need quite some energy to be created (the evaluation of this energy 

will be given in Sec. 2.9), whereas the further PE step should be essentially barrierless. 

Since the proton affinities of selected complexes increase with the addition of water 

molecules, one may suspect that further hydration will lead to the protonation of surrounding 

water aggregates rather than acetone. Indeed, this behaviour has been previously reported for 

the water dimer which can abstract proton frome protonated alkenes, in contrast to a single 

water molecule, whose PA is insufficient for the abstraction (Ref. D208D) 
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To check for this option, the structures of protonated acetone-water clusters with up to 

three water molecules have been optimized at the MP2/6-31G(d,p) level. The structures were 

produced by addition of the n-th water molecule to the optimized structures of the [C3H6O-

H•••(H2O)n-1]
+
 cluster followed by a re-optimization step. From comparison of the optimized 

geometries (Fig. 2.8) one can see that only upon addition of the third water molecule, the 

proton migrates from acetone to the adjacent water molecule. In the case of [C3H6O-

H•••H2O]
+
, the proton is clearly bound to the carbonyl group of acetone exhibiting a typical 

bond length of 1.04 Å. Addition of one more water molecule to the [C3H6O-H•••(H2O)2]
+
 

cluster results to a small shift of the proton to the water. Still, it is more closely located at the 

acetone with an extended bond length of 1.14 Å. Finally, in the cluster hydrated by three 

water molecules [C3H6O-H•••(H2O)3]
+
, the proton is transferred entirely to the adjacent water 

molecule. This is in agreement with the above supposition that a cluster of three water 

molecules has larger proton affinity than the acetone-water complex. In summary, the 

protonated acetone is stable in water-deficient environment (e.g. in the CHQ aggregates), 

while in the excess of water molecules around (such as in aqueous solution), protonated 

acetone becomes unstable and the proton moves to the water molecules. 

  

 
  

Figure 2.8. Optimized structures of protonated acetone (A) and protonated clusters of acetone 

hydrated by one (B) and two (C) and three (D) water molecules. 

  

To corroborate this effect in the CHQ aggregates explicitly, the protonated clusters of 

acetone, QH2 and one or two water molecules (Fig. 2.9), were optimized. While in the 

[C3H6O-H•••H2O•••QH2]
+
 cluster (Fig. 2.9A) the proton is still bound to the carbonyl group of 

acetone, addition of the second water molecule results in a hydroxonium cation and neutral 
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acetone in the [C3H6O•••H-(H2O)2•••QH2]
+
 complex (Fig. 2.9B). Therefore, the proton, again, 

can be released into the environment, when a sufficient number of water molecules are 

available. In this case, the proton could not be involved in acetone-water PE. Eventually, PE 

will be catalyzed by the anionic [QH]
-
 moiety as depicted in Sch. 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Optimized structures of the protonated clusters [C3H6O-H•••H2O•••QH2]
+
 (A) and 

[C3H6O•••H-(H2O)2•••QH2]
+
 (B). 

  

In summary, two general ionic scenarios appear to be relevant for the investigation of 

proton exchange between acetone and water in CHQ aggregates. (1) Pre-dissociated proton of 

the OH-group of QH2 remains in its vicinity and protonates acetone resulting in a zwitterionic 

intermediate (Sch. 2.3). This case will be realized when no or only few solvent waters 

surround the OH-group of CHQ. (2) The proton is released into the environment and is not 

directly involved in the proton exchange. The remaining anion will catalyze PE (Sch. 2.4). 

The situation will occur when several solvent water molecules surround the OH-group of 

CHQ and screen acetone from protonation. In the next sections these two possibilities will be 

analyzed. 
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Scheme 2.3. Sketch of proposed mechanism of acetone methyl-water proton exchange 

initiated by OH-group dissocation of QH2 leading to formation of a zwitterionic intermediate. 

Finally, a methyl deuteron is transferred to a nearby water molecule in a back proton transfer 

step. 

  

  

 
  

Scheme 2.4. Sketch of proposed mechanism of acetone methyl-water proton exchange 

catalyzed by a deprotonated CHQ moiety, where the proton has been transferred to the 

environment and is not immediately present. 

  

 

2.9 Proton Exchange via Zwitterionic Intermediates 

The quantum-chemical description of the PE reactions via zwitterionic intermediates (Sch. 

2.3, Sec. 2.8) comprising protonated acetone cation and deprotonated [QH]
-
 anion bears a 

certain challenge, since the zwitterionic structure does not correspond to a local minimum on 

PES. Partial geometry optimization of the zwitterionic structures is possible when the 

geometrical constraint is imposed that holds the proton covalently bound to the oxygen atom 

of the acetone molecule. For instance, the energy of a partially optimized 

[C3H6OH]
+
•••H2O•••[QH]

-
 cluster is found to be only 24 kcal mol

-1
 above the neutral complex. 

Since the energy obtained by means of partial optimization constitutes an upper bound to the 

true energy, it manifests the feasibility of the zwitterionic catalytic pathway at ambient 

temperatures. Indeed, it is has been already corroborated by the liquid-phase NMR 

experiment on the mixture of CHQ, acetone and water, where proton exchange between the 

OH-groups of CHQ and water was detected (Fig. 2.2, Sec. 2.1). The detection of PE was 

possible in that case since the resolution of the liquid-state NMR signal is greater than that of 

the solid state. Therefore, it will be assumed in the further analysis that formation of 

zwitterionic intermediates occurs with the same probability as the deprotonation of QH2 in 

water. 
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Owing to the pKa-value of weakly-acidic QH2 (9.8), one recognizes that a fraction of only 

10
-5

 of the present QH2 molecules is deprotonated. Therefore, calculated rates of PT starting 

from an educt generated by the deprotonation of QH2 must be scaled by 10
-5

 to account for the 

preceding deprotonation step. Taking into account the feasibility of CHQ dissociation at room 

temperatures as corroborated above, it is justified to assume that the influence of acetone on 

the pKa value is marginal. 

Owing to the reasons given above, the zwitterionic complexes technically cannot be 

employed as defined starting points to study PT from the acetone methyl group to the attached 

water molecule by means of static quantum-chemical calculations. Therefore, a different 

strategy has been chosen to study the energetics of the mechanism and to obtain reasonable 

values for the energy barriers and reaction rates. Within this strategy, the as whole neutral but 

zwitterionic complex (Sch. 2.3) was decomposed into two ionic fragments. On one hand, 

anionic complexes of neutral acetone, one or two water molecules and deprotonated [QH]
-
 

were used to investigate the influence of [QH]
-
 on the PE mechanism (Fig. 2.10, Sec. 2.10). 

At the same time, the anionic complexes serve as a model for the second anionic mechanism, 

introduced in the previous section and depicted in (Sch. 2.4, Sec. 2.8). On the other hand, a 

positively charged model complex of the protonated acetone, one water molecule and neutral 

QH2 was employed to study the role of protonated acetone in the proton transfer step (Fig. 

2.11, Sec. 2.11). It is clear that both protonated acetone as well as the [QH]
-
 anion in the 

zwitterionic complex together energetically support the proton-transfer step. Therefore, the 

obtained energy barriers for PT in the cationic and anionic model complexes are each higher 

than they are in the original zwitterionic intermediate (Sch. 2.3), while the barriers for PT in 

the anionic complexes correspond to the true barriers in the case of the anionic mechanism 

(Sch. 2.4). 

 

2.10 Proton Exchange via Anionic Intermediates 

For the investigation of the possible role of anionic clusters in the proton exchange, the 

complex [C3H6O•••H2O•••QH]
-
 has been constructed (Fig. 2.10A). Calculation of the 

minimum energy pathway for the proton transfer from the methyl group of acetone to the 

water molecule reveals a concerted double proton transfer of the second water proton to the 

[QH]
-
 anion via the transition state shown in Fig. 2.10A. The product of this reaction path is a 

complex of the neutral QH2, and acetone anion [C3H5O]
-
 with the H-bonded neutral water 

molecule between them. The calculated activation enthalpy for this proton transfer amounts to 

13.9 kcal mol
-1

 (Tab. 2.4, see below) at the MP2/cc-pVTZ//MP2/6-31G(d,p) level of theory 
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with ZPVE calculated at MP2/6-31G(d,p). The concerted scenario in this case can be 

rationalized by comparison of the deprotonation enthalpy of acetone and the proton affinity of 

water, the potential intermediates of a step-wise process (the relevant DE and PA are given in 

Tab. 2.3 (Sec. 2.7). Since the difference between the DE and PA is about 207 kcal mol
-1

 

higher in energy than the barrier for the concerted transfer, the step-wise PT via the 

intermediate hydronium cation [H3O]
+
 is unlikely to occur. 

  

  

Figure 2.10. Reactants, transition states and products of the proton transfer pathways from the 

acetone methyl group to deprotonated hydroquinone [QH]
-
 in [C3H6O•••H2O•••QH]

-
 (A) and 

[C3H6O•••(H2O)2•••QH]
-
 (B) clusters respectively. The arrows highlight the proton transfer 

pathway. 

  

The previous part of this investigation (Sec. 2.3-2.7), dedicated to PE via a concerted 

mechanism in neutral complexes, revealed that additional water molecules can significantly 

exert the efficiency of PT. Following the same idea here, the anionic model complex 

[C3H6O•••(H2O)2•••QH]
-
 hydrated by two waters, was studied (Fig. 2.10B). The complex, 

again, exhibits concerted double-proton transfer like the complex with one water (Fig. 2.10A). 

Again, in course of the reaction, proton is transferred from the methyl group of acetone, and 

simultaneously the second proton is transferred from the water to [QH]
-
 via the transition state 

shown in Fig. 2.10B. The product of this reaction is a complex of a deprotonated acetone 

anion and a neutral QH2 molecule bridged by two water molecules. The calculated activation 

enthalpy for this pathway is 16.3 kcal mol
-1

. Compared to the complex [C3H6O•••H2O•••QH]
-
 

containing only one bridging water molecule, the barrier is higher by 2.5 kcal mol
-1

. This 



2.10 

95  

value is close to ca. 3 kcal mol
-1

 for the inhibition of the concerted PT via KET by a single 

solvent water molecule in the neutral C3H6O•••(H2O)2 complex (Fig. 2.5, Sec. 2.4). Thus, one 

additional solvent water molecule exhibits an anticooperative effect within the anionic 

mechanism as well. 

The physical reason for the increased efficiency of the proton transfer in the anionic 

complexes, compared to the neutral complexes, studied in Sec. 2.3-2.7, can be related to the 

polarization of the proton-donating and proton -accepting groups by the negatively charged 

[QH]
-
 anion. This is readily manifested by comparison of the Mullikken charges obtained for 

the anionic model cluster [C3H6O•••(H2O)2•••QH]
-
 and its neutral counterpart 

C3H6O•••(H2O)2•••QH2. The difference of the Mullikken charges between the methyl proton of 

acetone and the proton-accepting oxygen atom of the adjacent water molecule (see Fig. 

2.10A) is 0.77 in the anionic complex, and only 0.65 in the corresponding neutral cluster (Fig. 

2.3, Sec. 2.4). This correlates with the difference in the free energy barriers for the proton 

transfer: 16.8 kcal mol
-1

 in the case of anionic complex vs. 32.2 kcal mol
-1

 in the case of 

neutral cluster. Again, the less efficient PT in the [C3H6O•••(H2O)2•••QH]
-
 complex can be 

easily explained in these terms by the influence of the second solvent water, which is not 

ivolved in the PT directly and depolarize the relevant proton-donating and proton-accepting 

groups Fig. 2.10B. 

  

Table 2.4. Energy difference between educt and product (∆Eequil), energy barriers (∆EPT), free 

activation energies (∆GPT) and transfer rates (kPT) calculated at ambient temperature 

(T=298.15 K) for the proton transfer in [C3H6O•••H2O•••QH]
-
, [C3H6O•••(H2O)2•••QH]

-
, 

[C3H6OH•••H2O•••QH2]
+
 and C3H6O•••(H2O)3 model clusters. The energies are given in kcal 

mol
-1

 and have been computed at MP2/cc-pVTZ level at MP2/6-31** optimized geometries. 

Zero point energy corrections are calculated at the MP2/6-31** level and given in parenthesis. 

. 

Complex ∆Eequil ∆EPT ∆GPT kPT  

[C3H6O•••H2O•••QH]
-
 4.2 (-0.4) 13.9 (-3.5) 13.0 1.8*10

3
 

[C3H6O•••(H2O)2•••QH]
-
 9.2 (-0.2) 16.3 (-3.7) 16.8 2.9 

[C3H6OH•••H2O•••QH2]
+
 25.8 (-0.7) 25.6 (-2.1) 25.1 2.6*10

-6
 

C3H6O•••(H2O)3 11.5 (-1.2) 29.1 (-1.7) 32.0 2.3*10
-13

 

. 

 

2.11 Proton Exchange via Cationic Intermediates 

The last reaction mechanism for the proton exchange considered in this study is the 

cationic mechanism. It is represented by the cationic model complex of the protonated 
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acetone, water and neutral QH2. The proton transfer pathway in the model cluster 

[C3H6OH•••H2O•••QH2]
+
 is displayed in Fig. 2.11. The products of the reaction are the neutral 

enol form of acetone, the hydronium cation H3O
+
 and neutral QH2. In the course of the 

transfer, the H-bond between the protonated carbonyl group of acetone breaks and another 

one is created between the hydronium cation and the methylene group of the neutral enol form 

of acetone. Computed activation enthalpy for the PT in this pathway is 25.6 kcal mol
-1

 (Tab. 

2.4). In comparison, proton transfer between the neutral acetone and one water molecule is 

characterized by the energy barrier of 37.5 kcal mol
-1

 (Tab. 2.1, Sec. 2.4). 

  

 
  

Figure 2.11. Reactant, transition state and product of the proton transfer between the methyl 

group of protonated acetone cation and water in the cationic complex 

[C3H6OH•••H2O•••QH2]
+
. The green arrow highlights the proton transfer pathway. 

. 

Indeed, the positive charge on acetone increases the rate of the proton transfer similar to 

the negative charge of [QH]
-
 considered in the previous section. However, the nature of 

catalysis in this case is different from the anionic one. The decrease of the barrier in the 

cationic cluster [C3H6OH•••H2O•••QH2]
+
 now is not due to polarization, but due to the 

diminished deprotonation energy of the methyl-group of the protonated acetone cation vs. the 

neutral acetone molecule (Tab. 2.3, Sec. 2.8). While the deprotonation enthalpy for the neutral 

acetone is 373 kcal mol
-1

, it is only 201 kcal mol
-1

 for the protonated one. The larger DE of 

the neutral acetone can be explained by a stronger electrostatic attraction between the proton 

and the remaining anion which is weaker in the case of protonated acetone since the 

remaining acetone is neutral. This case exhibits a special type of catalysis by means of the 

protonation of acetone carbonyl-group resulting in the weakening of its methyl CH-bond. 

 

2.12 Rate Constants of the Proton Exchange via Ionic Intermediates 
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The Arrhenius equation (see e.g. Ref. D209D) has been employed to calculate proton transfer 

rates for the three considered ionic model complexes [C3H6O•••H2O•••QH]
-
, 

[C3H6O•••(H2O)2•••QH]
-
 (Fig. 2.10A, 2.10B, Sec. 2.10) and [C3H6OH•••H2O•••QH2]

+
 (Fig. 

2.11, Sec. 2.11)). The computed free activation energies (at 298.15° K) for the model 

complexes are 13.0 and 16.8 kcal mol
-1

 for the anionic complexes [C3H6O•••H2O•••QH]
-
 and 

[C3H6O•••(H2O)2•••QH]
-
, respectively, and 25.1 kcal mol

-1
 for the cationic complex 

[C3H6OH•••H2O•••QH2]
+
 (Tab. 2.4, Sec. 2.10). Comparison of these values with the lowest 

one of 29.1 kcal mol
-1

, obtained for the proton transfer between the neutral acetone and water 

via KET, already demonstrates that ionic intermediates reduce the energy barriers 

considerably. 

Calculated proton transfer rates for the ionic complexes are 1.8×10
3
, 2.9 and 2.3×10

-6
 M

-1
 

s
-1

 for the [C3H6O•••H2O•••QH]
-
, [C3H6O•••(H2O)2•••QH]

-
 and [C3H6OH•••H2O•••QH2]

+
, 

respectively. However, since CHQ (and its prototype QH2) is a weak acid these results must 

be scaled by the equilibrium concentrations of the deprotonated QH2 and protons, which can 

be easily estimated to be ca. 10
-5

 from the pKa-value of QH2 of 9.8. This leads to the effective 

rates of 1.8×10
-2

, 2.9×10
-5

 and 2.6×10
-11

 M
-1

 s
-1

 respectively. Indeed, the rates of the anionic 

mechanism (1.8×10
-2

 and 2.9×10
-5

 M
-1

 s
-1

) are comparable with the characteristic rates of the 

proton exchange in the NMR experiments on CHQ aggregates, and finally can explain the 

observation of acetone-water proton exchange in CHQ aggregates. 

 

2.13 Catalysis of Acetone-Water Proton Exchange by Strong and Weak Acids in 

Aqueous Solutions 

Summarizing the above findings, several remarks on general acid catalysis of acetone-

water proton exchange can be made. 

The analysis of the computed proton affinities (Tab. 2.3, Sec. 2.8), as well as the results of 

the calculations on the protonated hydrated acetone clusters (Sec. 2.8), suggest that protonated 

acetone species are unstable in water-rich solutions of acetone and acids (either weak or 

strong), since larger protonated water aggregates have higher PA than protonated acetone-

water clusters. Therefore, one can assume that catalysis through the anion of the dissociated 

acid (in this case the [QH]
-
 anion), presented in Sch. 2.4, Sec. 2.8, would be a prevalent 

mechanism under acidic conditions. Moreover, the calculations on the anionic model 

complexes [C3H6O•••H2O•••QH]
-
 and [C3H6O•••(H2O)2•••QH]

-
 have shown that the energy 

barrier for PT will increase by 2.5 kcal mol
-1

 upon the addition of a second solvent water 
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molecule. One can further estimate the barrier of this proton exchange in aqueous solution to 

be close to about 20 kcal mol
-1

 due to the anticooperative effect of excess solvent water 

molecules. In fact, the activation energy for KET of acetone catalyzed by perchloric acid, 

measured previously, amounts to 20 kcal mol
-1

 (Ref. X195X). This barrier leads to a rate constant 

of about 10
-2

 M
-1

 s
-1

 for the rate-limiting proton-transfer step from the methyl group of 

acetone to the anion of the dissociated acid. Analogously to CHQ, the observed rate of proton 

transfer will depend on the concentration of anions [A
-
], i.e. kPT

eff
 = [A

-
]×10

-2
 M

-1
 s

-1
. 

These arguments eventually allow to distinguish between the limiting cases of weak and 

strong acids. In the former case only a fraction of the acid molecules is dissociated and hence 

should be scaled by [A
-
]. In the latter case, essentially all acid molecules are dissociated ([A

-

]~1) and the PE rate is faster since it does not need to be scaled with a predissociation factor 

as in the case of weak acids. Consequently, in the presence of a strong acid proton exchange 

between acetone and water occurs with an observable rate close to 10
-2

 M
-1

 s
-1

 and should 

therefore be easily observable in the appropriate NMR experiments. In the presence of weak 

acids like QH2, the reaction is much slower in 1 M solution since the calculated rate has to be 

scaled by a factor of [A
-
] ~10

-5
. This leads to a substantial decrease of the rate and makes it 

problematic to observe the proton exchange at the conditions of the NMR experiment. 

 

2.14 Summary and Conclusions 

In the present study, two principal mechanisms of the unique catalytic proton exchange 

between water and acetone, trapped in CHQ aggregates, have been investigated in detail. 

The first suggested mechanism, responsible for the exchange in specific proton-transfer 

networks, similar to those presented in CHQ, is proton transfer via keto-enol tautomerism 

(Sec. 2.3-2.7). The proton transfer was assumed to occur via initially neutral moieties and 

hence supposed to be concerted. The mechanism was explicitly studied employing model 

complexes of acetone, hydrated by few water molecules, as well as the complexes comprising 

QH2 (served a molecular model for CHQ), acetone and one or two water molecules. It was 

shown, that in these networks, bifunctional OH-groups of water and/or of CHQ, indeed 

catalyze tautomeric proton transfer. Herein, the free Gibbs energy is dramatically reduced 

from 64 kcal mol
-1

 for the KET in isolated acetone, to ca. 30 kcal mol
-1

 for the transfer 

assisted by three water molecules. In this case, catalysis by the OH-groups involved in the 

proton transfer can be explained by their cooperative effect in polarization of proton 

donating/accepting groups of acetone. Furthermore, catalysis assisted by only few OH-groups 

appears to be about 10 kcal mol
-1

 more efficient than that in aqueous solutions. The latter was 
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explained by the depolarizing anticooperative effect of solvent water molecules which are not 

involved in the transfer. Since the CHQ aggregates, exhibiting proton exchange, are naturally 

water-deficient, one can conclude that the efficiency of the proton- exchange via concerted 

KET in CHQ is close to its best values observed in the model gas-phase clusters with only a 

few catalytic waters involved. 

Nevertheless, the rate constant for the concerted mechanism, corresponding to the most 

efficient case of KET, assisted by three waters, is 10
-13

 M
-1

 s
-1

 at room temperature. 

Obviously, this value is too low to explain the observation of proton exchange at the 

conditions of the NMR experiments. This motivated for an investigation of the alternative 

step-wise mechanisms via formation of the ionic intermediates, based on the weak acidity of 

CHQ. To that end, two ionic mechanisms of proton transfer, triggered by the dissociation of 

CHQ OH-groups, have been studied (Sec. 2.8-2.13). To simulate these mechanisms, the 

protonated cationic [C3H6OH•••H2O•••QH2]
+
 and deprotonated anionic complexes 

[C3H6O•••H2O•••QH]
-
, [C3H6O•••(H2O)2•••QH]

-
 were chosen upon the inspection of possible 

proton absorption sites in the proton-transfer networks of the CHQ aggregates. The feasibility 

of the dissociation of CHQ at room temperatures was explicitly confirmed by the partial 

geometry optimization of the zwitterionic complex [C3H6OH]
+
•••(H2O)2•••[QH]

-
 with the 

constrained covalent bond between the proton and carbonyl oxygen of the acetone molecule. 

Computed energy barriers for the ionic proton transfer prove to be substantially smaller 

than those for the concerted one with activation free energies of only 13.0 and 16.8 kcal mol
-1

 

in the most favorable cases of [C3H6O•••H2O•••QH]
-
 and [C3H6O•••(H2O)2•••QH]

-
 anionic 

complexes. The corresponding proton transfer rates are 1.8×10
-2

 and 2.9×10
-5

 M
-1

 s
-1

. The 

rates were scaled by the concentration of dissociated CHQ, owing to its weak acidity, 

estimated to be ca. 10
-5

. In the case of isolated protonated acetone complex 

[C3H6OH•••H2O•••QH2]
+
, the barrier of the reaction of 25.1 kcal mol

-1
 could, in principle, 

provide the proton exchange at room temperatures. However, after the scaling by the 

concentration of predissociated CHQ in the CHQ aggregates, this mechanism itself yields a 

negligible rate. Indeed, the rates associated with the anionic mechanisms are high enough to 

explain the observation of acetone-water proton exchange during several hours of the NMR 

experiments. 

Herein, depending on the hydration of the CHQ OH-groups, the interplay of two principal 

ionic mechanisms, either involving the anionic complexes like [C3H6O•••(H2O)2•••QH]
-
or the 

zwitterionic complex [C3H6OH]
+
•••(H2O)2•••[QH]

-
, can take place. The latter mechanism 

should be more efficient or even barrierless than the former one due to the presence of an 
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uncompensated protonated acetone cation. In contrast, in aqueous solutions of acids the 

anionic mechanism is less efficient than in the isolated [C3H6O•••H2O•••QH]
-
 and 

[C3H6O•••(H2O)2•••QH]
-
 clusters due to the anticooperative effect of solvent water dipoles, 

and approaches to ca. 20 kcal mol
-1

. One should notice that the inhibiting effect of solvent 

water in the case of anionic mechanism is similar to that observed in the neutral clusters via 

concerted KET mechanism.  

These results perfectly explain why proton exchange via ionic mechanism was not 

observed in the aqueous solution of acetone and weakly-acidic QH2 (having similar acidity as 

CHQ) and eventually allow to indentify the ionic mechanism as responsible for the proton 

exchange in water-deficient CHQ aggregates. 

Generalizing the above findings, proton exchange should also be observable in the gas-

phase acetone-water-QH2 clusters, similar to those used for the simulations of concerted KET. 

This is due to the aforementioned feasibility of the formation of zwitterionic complex 

[C3H6OH]
+
•••(H2O)2•••[QH]

-
 at room temperature, as well as due to the lack of solvent water, 

suppressing the proton transfer catalyzed by the ions of [C3H6OH]
+
•••(H2O)2•••[QH]

-
. 

Additionally, protonated acetone-water complex [C3H6OH•••H2O•••QH2]
+
 should exhibit 

proton exchange in the gas phase as well, since in this case its rate should not be scaled by the 

predissociation of CHQ, delivering protons. 

The results obtained in Sec. 2.8-2.13 also have consequences for the understanding of 

acetone-water proton exchange in aqueous solutions of acids. They allow to distinguish the 

cases of strong and weak acids. It was shown that protonated acetone is unstable in the 

aqueous solution. Therefore, acetone-water proton exchange most probably will be catalyzed 

by the anions of dissociated acid. In the limiting case of weak acids only a fraction of the acid 

molecules is dissociated. Thus, predissociation of acid, determining the concentration of 

catalytic anions in the system is the limiting factor of proton exchange. Contrarily, in the case 

of strong acids, essentially all acid molecules will be dissociated and, hence, the proton-

exchange rates will be determined by the activation energy of reaction itself, without further 

scaling by the dissociation rates. As a consequence, proton exchange should be easily 

observable in the relevant NMR experiments. 

 

In conclusion of Chapter 2, several important observations gained during the study and 

directly related to the main topic of the thesis, i.e. influence of water microsolvation on the 

proton-transfer processes, will be highlighted. 
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1.1. As it was shown upon the example of acetone-water proton transfer simulations via 

concerted keto-enol tautomerism, the role of water in this and similar proton transfer reactions 

is twofold. On one hand, water molecules are bifuncional and hence can be involved in the 

proton-transfer reactions as proton donors/acceptors. Since each water molecule at the same 

time bears a permanent dipole moment, the efficiency of the proton transfer can be 

significantly improved by polarization of the relevant groups, involved in the reaction. These 

water molecules, hence, possesses a catalytic function in the proton-transfer processes. On the 

other hand, the water molecules which are not involved in proton transfer (i.e. the solvent 

molecules) can depolarize the involved reagents and, therefore, suppress the reaction. These 

waters exhibits a property of the inhibitor of proton transfer, shared with many other polar 

solvents. Therefore, bifunctionality of water molecules is the main reason why it behaves 

differently from those polar solvents, which cannot participate in the proton-transfer reactions. 

1.2. In comparison to the case of water catalysis (1.1), acetone-water proton transfer can be 

further accelerated by addition of ionic species into the system. In the present study, the 

phenomenon was observed in the predissociation of weakly-acidic CHQ which catalyzes the 

acetone-water proton-exchange reaction. Herein, proton transfer, leading to the catalytic 

proton exchange, can be treated as a step-wise keto-enol tautomerism via formation of ionic 

intermediates. In particular, addition of acidic anions into the system decreases the activation 

energies associated with the transfer, due to the polarization of proton-transfer reagents by the 

acidic anions. Since the origin of catalysis can in this case be attributed to the polarization of 

reagents by anions, solvent water again can inhibit proton transfer, analogously to the case of 

water catalysis. Furthermore, protons, resulting from the dissociation of catalytic acids can 

form the covalently-bound cationic complexes with the reagents of the proton transfer 

reaction (in particular, with the carbonyl oxygen of acetone). It alters the electronic structure 

of the reagent and weakens the methyl CH-bond, involved in the proton transfer between 

acetone and water. In this case, solvent water aggregates can also decrease the efficiency of 

the proton transfer reaction. However, the reason for that is not the depolarization of reagents 

itself, but rather the abstraction of protons from the reagents by larger water aggregates 

having larger proton affinity. 

In summary, catalysis of proton-transfer reactions of various mechanisms can be optimized 

with respect to the number and specific binding patterns of water molecules involved. More 

efficient reaction scenarios can often be observable in the gas-phase experiments only, since 

in aqueous (polar) solutions the reactions will be suppressed by the action of solvent water. 
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The results summarized above elucidate the mechanism of acetone-water proton exchange 

and similar proton transfer processes in great detail. This eventually allows to clarify the 

catalytic role of CHQ macromolecules in this process to be the following. 

2.1. Only one guest reactant molecule (acetone) is trapped by one bowl-shaped CHQ 

monomer. This allows its embedding into the H-bonded networks favourable for the proton 

transfer between the guest molecule and incorporated waters molecules. Due to the strong 

dispersion interaction between acetone and CHQ monomers, these catalytic networks gain 

additional stability. 

2.2. The OH-groups of weakly-acidic CHQ can dissociate and deliver ionic intermediates 

(protons and anions) into the networks, which further improve the efficiency of the reaction. 

2.3. Due to several structural factors, in particular, the presence of spatially-separated OH-

groups, the CHQ aggregates are naturally water-deficient. Water-deficiency prevents from the 

formation of large solvent assemblies, which can inhibit proton-transfer reactions in the ways 

outlined in (1) and (2). 

Therefore, CHQ and similar guest-host macromolecular architectures with desolvation 

function can provide conditions similar to those occurring in gas-phase experiments. It hence 

allows for an optimal control of various proton-transfer reactions, otherwise missed in 

aqueous solutions. 
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Chapter 3 

Specific Microsolvation Triggers Dissociation-Mediated Red-

Shifted Fluorescence of Methyl 4-N,N-dimethylaminobenzoate 

Ester in the Gas Phase 

 

3.1 Introduction 

Methyl 4-N,N-dimethylaminobenzoate ester (DMABME) (Sch. 3.1) belongs to the donor-

acceptor substituted benzene derivatives which undergo intramolecular charge transfer (ICT) 

after excitation into the first electronically-excited state. In the ICT state, the nitrogen of its 

amino group acts as an electron donor, while the oxygen of the carbonyl group – as an 

electron acceptor. Further electron transfer from the donor to acceptor imparts the system a 

large electric dipole moment as compared to the ground state. In polar solvents DMABME 

exhibits dual fluorescence with an additional red-shifted band (Ref. X18X). 

 

N

O

OH3C

H3C

CH3

 
 

Scheme 3.1. Methyl 4-N,N-dimethylaminobenzoate ester (DMABME). 

 

Historically, the phenomenon of dual fluorescence in polar solvents was initially 

discovered in another electron donor-acceptor derivative – 4-N,N-dimethylaminobenzonitrile 

(DMABN) (Ref. D210D). This species also possesses the dimethylamino group (electron donor) 

but the ester function is replaced by a nitrile group (electron acceptor). Since then, many 

experimental and theoretical efforts have been undertaken to elucidate the underlying 

molecular mechanism, responsible for the observed red-shifted fluorescence. It will be 

informative to briefly summarize these findings for a better understanding the situation in 

DMABME. 

At present, it is well-established that the formation of a ICT state is responsible for the red-

shifted additional fluorescence in polar environments (Ref. X9X, X18X), since the back electron 

transfer is suppressed due to the large structural changes in the ICT state. However, the 

detailed molecular structure of the fluorescing ICT state has been questionable for a long 

time. By now, several structural configurations of DMABN have been suggested to be 
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responsible for the additional red-shifted fluorescence: a twisted ICT (TICT) (Ref. D211D, D212D, 

D213D), a planar (PICT) (Ref. D214D, D215D), a rehybridized (RICT) (Ref. D216D, D217D) or a wagged 

(WICT) (Ref. D218D) configurations. The TICT and PICT states seem to be the most promising 

alternatives. These conformations of DMABN are also relevant for DMABME due to their 

structural relation. 

Recent high-level ab-initio calculations on the excited states of DMABN revealed that the 

initially excited S2 state, also referred as La, or the CT state, decays rapidly into the S1 state 

termed locally excited (LE), or Lb state, via a conical intersection (Ref. D219D). Conical 

intersections are special but ubiquitous topologies of the excited-state potential energy 

surfaces where two states become degenerate. In general, conical intersections are responsible 

for the ultra-fast nonradiative decay processes of excited states (Ref. D220D). Indeed, it has been 

shown that the S2/S1 conical intersection is spatially and energetically very close to a planar 

minimum on the S2 surface of DMABN (Ref. X219X), which allows for an ultrafast radiationless 

transition from the S2 to the S1 PES. On the S1 surface, two minima are then accessible: a 

planar and a TICT structure. These two states hence correspond to two structural isomers of 

the same electronic S1 state. In particular, the local planar minimum of the S1 state has been 

assigned to a PICT state, combining the PICT and TICT models in one general mechanism for 

dual fluorescence in DMABN (Ref. X219X). Therefore, one can conclude that the occurrence of 

dual fluorescence in this and related donor-acceptor systems is controlled by the shape of the 

S1 potential energy surface. It eventually depends on the relative energies of the two minima 

and the height of the energy barrier connecting them. These aromatic systems thus can be 

further classified into four groups, depending on the relative vertical excitation energies of the 

CT and LE states, as well as on the stabilization energy of the ICT (Ref. D221D). 

Until recently, most of the experimental studies on the ICT of DMABME and similar 

donor-acceptor systems have been performed in solution, whereas the relevant theoretical 

models for understanding the effect either neglect the environment, or consider it as a 

dielectric/polar continuum (Ref. X9X, X18X). According to the models, it is assumed that the 

electrostatic field of a polar solvent stabilizes the formed ICT state due to its large dipole 

moment, thereby reducing the energy barrier from the LE state to the ICT state thus leading to 

dual fluorescence. Contrarily, an apolar solvent does not open the ICT channel (at least in 

DMABN) and hence dual fluorescence is not observed. Such an interpretation is only justified 

when the influence of solvent on the ICT mechanism is similar to that of a dielectric or polar 

continuum i.e. it does not have a direct influence on the structural or electronic properties of 

the molecules. In general, however, solvent molecules can directly exert ICT and dual 
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fluorescence (Ref. X11X, D222D, D223D). This point becomes immediately evident in context of the 

previous example of acetone-water proton exchange in CHQ (Chap. 2) which demonstrated 

that the role of solvent water in different proton-transfer reactions is not at all reproduced by a 

polar continuum. 

Indeed, recent gas-phase experiments on donor-acceptor benzene derivatives demonstrate 

that dual fluorescence, common in polar solvents, is rather an exception in the isolated 

molecules (Ref. X9X). For example, jet-cooled studies on 4-N,N-diisopropylaminobenzonitrile 

(DIABN) detected the excited state ICT, although a red-shifted emission band was not 

observed under these experimental conditions (Ref. D224D). In the case of DMABN, at least five 

molecules of acetonitrile (the solvent) are necessary to induce red-shifted CT emission (Ref. 

X223X). 

Earlier experimental studies of DMABME using a combination of mass spectroscopy and 

laser-induced fluorescence (LIF) spectroscopy recognized that at least one water molecule is 

necessary to stimulate dual fluorescence (Ref. D225D, D226D, D227D). It was suggested that the TICT 

formation is the key mechanism for the observed red-shifted fluorescence. The process is 

supported by microsolvation and mixing of the low-lying electronic states. Early calculations 

(Ref. D228D) also corroborated the suggested mechanism. Unfortunately, the employed 

experimental technique can only give a lower limit of the actual minimum cluster size that 

generates the corresponding laser-induced fluorescence spectrum. This did not allow to give 

an ultimate answer of how many water molecules are required for the occurrence of dual 

fluorescence. 

To circumvent this limitation, another more accurate experiment combining LIF, resonant 

two-photon ionization (R2PI) spectroscopy and infrared (IR) ion depletion spectroscopy on 

DMABME clusters hydrated by one to three water molecules were performed in an ultracold 

supersonic jet beam (Ref. X2X). This powerful technique allows not only to establish the 

minimal  number of water molecules necessary for dual fluorescence, but also to get the IR 

footprints of particular isomers responsible for the fluorescence, by means of IR depletion 

spectroscopy. Here and further, the complexes hydrated by n waters are designated as 

“DMABME•••(H2O)n”. In the experimental terminology, this designation is equivalent to the 

“1:n“ complex. This experimental study has demonstrated that two water molecules are 

needed to induce dual fluorescence at 325 and 425 nm (Fig. 3.1c, left) (Ref. D229D). For the 1:1 

complex (Fig. 3.1b, left), red-shifted fluorescence is present only in a marginal amount. 

Moreover, the IR spectra revealed that two different isomers of the DMABME•••(H2O)2 

complex are formed in the jet-beam (ion-depletion spectra) and only one of them is 
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responsible for the observed red-shifted fluorescence (fluorescence-depletion spectra). On the 

basis of the experiments alone, an unambiguous assignment of the vibrational bands to 

different isomers was not possible. In particular, the isomer which is responsible for the 

observed red-shifted fluorescence could not be identified. Furthermore, interpretation of the 

fluorescence spectrum requires the knowledge of the excited-state PES of the complexes what 

calls for computational support. 

  

 
  

Figure 3.1. Gas-phase fluorescence (left) and mass (right) spectrum of DMABME (a), 

DMABME•••H2O (b), DMABME•••(H2O)2 (c) complexesF

1
F. 

  

In this chapter the results of our computational investigation of the IR spectra of the 

DMABME•••(H2O)2 complexes, as well as of the excited states of isolated DMABME and 

DMABME•••(H2O)2, employing high-level quantum-chemical methodology are presented. 

The particular isomer of DMABME•••(H2O)2 responsible for the red-shifted fluorescence is 

identified. The mechanism of fluorescence in isolated DMABME, as well as in its 1:n (n=1-2) 

complexes is studied in detail. Hence, the direct influence of individual water molecules on 

the electronic and structural properties of DMABME in the CT state is illuminated. 

Furthermore, a complimentary benchmark study of the influence of electron correlation, 

anharmonic and basis-set effects on IR spectra of prototypical H-bonded systems, similar to 

the hydrated complexes of DMABME, has been conducted (Sec. 3.7). 

 

                                                 
1
 Reproduced from Ref. 229. 



3.2 

107  

3.2 Theoretical Methods 

One primary aim of this study is the assignment of the ground-state IR depletion spectra of 

the hydrated DMABME complexes to its particular isomers. In Sec. 1.4.3 it was pointed out 

that potential energy surfaces and, hence, IR spectra of noncovalently-bound complexes (e.g. 

H-bonded and Van der Waals) are especially sensitive to the basis-set superposition error 

(BSSE). Furthermore, electron correlation effects are pronounced at the characteristic 

distances of noncovalently-bound complexes (Sec. 1.2.3). These arguments call for a BSSE-

corrected correlated theoretical treatment of PES and IR spectrum of the H-bonded hydrated 

DMABME complexes. 

Due to the large size of the complexes, the only applicable correlated ab-initio method is 

second-order Møller-Plesset perturbation theory (MP2) (Sec. 1.2.4) combined with medium-

sized basis sets. In particular, the minimum energy structures and harmonic frequencies of 

hydrated DMABME clusters were computed at the level of MP2 with the split-valence 6-

31G(d,p) basis set (Sec. 1.4.1) on the PES corrected for BSSE by means of the CP procedure 

(Sec. 1.4.3). The latter implies that the CP correction was applied to both energy gradients 

during the geometry optimizations and to harmonic frequencies calculations. To underline this 

fact, the designation “CP-PES MP2” is introduced herein. Zero-point vibrational energy 

(ZPVE) (Sec. 1.1.4) was taken into account at the level of CP-PES MP2/6-31G(d,p) to 

include nuclear effects in the relative and stabilization energies of the different 

DMABME•••(H2O)2 clusters. 

The accuracy and reliability of this theoretical approach was extensively studied by 

benchmark calculations on small model clusters comprising the formic acid-water and 

ammonia-water complexes. These model complexes were chosen to reproduce those types of 

hydrogen bonds (carbonyl-water and amino-water) which are responsible for the assignment 

of the IR spectra of the DMABME•••(H2O)2 complexes. For these systems, theoretical levels 

of up to CP-PES CCSD/cc-pVTZ and CP-PES MP2/cc-pVQZ were tested (for details see Sec. 

3.7). The calculations revealed that the energetic ordering between the relevant OH stretch 

vibrations is nicely preserved at all levels of theory. Therefore, one can rely on CP-PES MP2 

calculations with moderate 6-31G(d,p) basis set in the interpretations of the experimental IR 

spectra of the DMABME•••(H2O)2 clusters. Furthermore, since the benchmark complexes 

cover common H-bonds, the findings also allow to draw the general conclusion that BSSE-

corrected potential energy surfaces, obtained with second-order perturbation theory level and 

moderate basis sets, are able to reproduce IR spectra of typical H-bonded systems with 

sufficient accuracy. 
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To allow for a direct comparison of the computed harmonic vibrational frequencies with 

the measured ones, the former were empirically scaled by factors of 0.946 and 0.940 for each 

isomer of the 1:2 complex. The factors were derived by comparison of the OH vibrations of 

two most stable DMABME•••H2O isomers (1:1 complex), computed at the CP-PES MP2/6-

31G(d,p) level, with their experimental values (see Sec. 3.7). After the application of these 

shift factors to the computed OH stretch vibrations of DMABME•••(H2O)2 an excellent 

agreement between experiment and theory was achieved. 

For the investigation of the optical properties of isolated and hydrated DMABME 

complexes, the two lowest excited electronic states of the complexes have been calculated 

using linear-response TDDFT level of theory (Sec. 1.3.2, 1.3.5) and were further improved by 

single-point calculations at the level of linear-response approximated coupled-cluster with 

singles and doubles, the so-called CC2 model (Ref. D230D, D231D, D232D) (see Sec. (1.3.3) for the 

linear-response coupled-cluster formalism). The equilibrium structures on the S1 potential 

energy surface were optimized employing TDDFT with the B3LYP functional and TZVP 

basis set (triple-zeta basis augmented with polarization functions (Sec. 1.4.1)). For 

consistency, the ground-state structures were also reoptimized at the DFT/B3LYP/TZVP 

level. Comparison of the ground state geometries of the relevant isomers of the (1:2) complex, 

computed at the CP-PES MP2/6-31G(d,p) and DFT/B3LYP/TZVP levels, showed that the 

change in geometrical parameters is small, in particular for the relevant hydrogen bonds. The 

maximum deviation is about 0.05 Å. One may predict that this trend will hold for the excited-

state calculations as well. Nevertheless, one cannot generally expect that TDDFT/B3LYP 

yields reliable excited-state structures in systems with strong CT character (Sec. 1.3.6). 

Therefore, the influence of HF exchange in the employed hybrid xc-functionals, on the 

geometrical parameters of the TICT structure was studied by geometry optimization with the 

B3LYP and BHLYP xc-functionals. The geometrical parameters appears to be practically 

independent of the amount of HF exchange, when at least 20% of HF exchange is included in 

the xc-functional, i.e. when at least B3LYP is employed. The largest difference is observed 

for the CN bond length connecting the amino group with the benzene ring. The bond has a 

length of 1.44 and 1.40 Ǻ using the B3LYP and BHLYP xc-functionals, respectively. With 

increasing amount of HF exchange, the bond length becomes shorter due to the improved 

description of the electrostatic interaction between the separated charges in the CT state. 

However, the difference in the bond length has no effect on the relative position and shape of 

the computed excited-state surfaces. Thus, one can rely on the structures obtained with 

TDDFT/B3LYP. 
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In summary, the calculated excitation energies agree very favourably at the 

TDDFT/B3LYP and CC2 levels for the planar geometries. Only for the TICT states they 

deviate by approximately 0.8 eV. This is clearly due to the well-known CT failure of TDDFT 

(Sec. 1.3.6) resulting in a strong underestimation of the excitation energies of the charge-

transfer excited states. The minimum energy pathways for TICT formation in the most stable 

DMABME•••(H2O)2 isomers were computed at the level of TDDFT/B3LYP on the excited 

state PES along the dihedral angle attributed to the twist of the dimethylamino group. Again, 

owing to the CT failure of TDDFT for the vertical excitation energies observed in the TICT 

states, CC2 single-point calculations along the TDDFT/B3LYP optimized reaction pathway 

were performed to correct for it. 

Ground state IR spectra were computed with the Gaussian 03 software package (Ref. X204X) 

where the CP-corrected gradients and second derivatives are implemented. The excited-states 

calculations employed TURBOMOLE 5.7 (Ref. D233D). 

 

3.3 Assignment of the Infrared Spectra of DMABME•••(H2O)2 Complexes 

In the previous sections it was mentioned that two water molecules are required to induce 

dual fluorescence of DMABME with peaks at wavelengths of 325 and 425 nm (Fig. 3.1, Sec. 

3.1). The IR ion-depletion spectrum of the complexes with two water molecules (1:2) 

comprises four distinct bands at 3466, 3514, 3525 and 3550 cm
-1

 corresponding to the H-

bonded OH stretch vibrations, and two bands at 3718 and 3724 cm
-1

 representing the free OH 

stretches (Fig. 3.2). Therefore, two structural isomers of DMABME•••(H2O)2 are present in 

the molecular beam in approximately equal amounts. However only one of them with the 

bands of 3466, 3525 and 3718 cm
-1

 is responsible for the red-shifted CT emission. 

To identify those two isomers which contribute to the IR spectrum of the beam (Fig. 3.2a), 

five energetically lowest isomers of DMABME•••(H2O)2 were computed. All isomers were 

obtained by stationary-point searches on the ground-state PES and are verified by an analysis 

of their Hessian matrices (Sec. 1.1.3). The isomers vary in the binding pattern of the water 

molecules to DMABME. In isomer I, the water dimer is bound to the amino nitrogen, while in 

isomer II it is connected to the carbonyl oxygen of the ester function (Fig. 3.3). In isomer III 

(not shown) the water dimer is connected to the ether oxygen of the ester function. Another 

two possibilities is to split the water dimer and either attach one water to the carbonyl oxygen 

and one to nitrogen (isomer IV, not shown), or one water to the ether oxygen and another one 

to nitrogen (isomer V, not shown). 
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Figure 3.2. a) IR ion depletion spectra of a mixture of two isomers of DMABME·2H2O b) IR 

spectrum of the species responsible for CT emission measured as depletion of the red-shifted 

fluorescence c) calculated IR spectrum at the level of CP corrected MP2/6-31G(d,p). Dashed 

lines correspond to isomer I and solid lines to isomer II. 

  

The analysis revealed that isomers I and II are the two most stable isomers of the series 

and being practically equal in energy (Tab. 3.1). At the level of CP-PES MP2/6-31G(d,p) with 

ZPVE included, isomer II is slightly more stable than isomer I – by 0.08 kcal mol
-1

, while at 

the level of single-point CP MP2/cc-pVTZ on the CP-PES MP2/6-31G(d,p) equilibrium 

geometry, it is -0.01 kcal mol
-1

 lower in energy. Isomer III is about 2 kcal mol
-1

 less stable at 

both levels of theory, while isomers IV and V are 3 and 6 kcal mol
-1

 higher in energy than 

isomers I and II, respectively (Tab. 3.1). Since isomers I and II are nearly isoenergetic and 

clearly are the energetically lowest isomers, one can conclude that these two ones are 

observed in equal amounts in the jet-cooled beam of the IR depletion experiment. This will be 

further confirmed by calculations of their IR spectra. 

In the case of DMABME•••H2O, the two most stable isomers are again those where the 

water monomer is attached to either the amino nitrogen, or to the carbonyl oxygen. The 

optimized structures of isomers I and II of DMABME•••(H2O)2 are displayed in Fig. 3.3. 
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Although the geometrical parameters (i.e. the bond distances) of the DMABME molecules 

within the 1:2 complexes are essentially identical, in the isomer I the hydrogen bonding of 

water dimer to the amino group leads to a strong pyramidalization of the nitrogen, and a 

further pre-twist of the group as a whole (Fig. 3.3). In contrast, in isomer II the amino group 

is essentially planar and only slightly pyramidalized. The same trend is observed in the 

isolated DMABME, as well as in both isomers of the 1:1 complex. 

  

 
  

Figure 3.3. Equilibrium structures of the energetically most stable and isoenergetic isomers I 

(left) and II (right) of the DMABME·2H2O cluster in the electronic ground state. 

  

To corroborate that isomers I and II are those present in the ion-depletion spectra of the 

molecular beam (Fig. 3.2a), their IR spectra were calculated at the CP-PES MP2/6-31G(d,p) 

level of theory. The calculated harmonic frequencies of the isomers were further scaled by 

factors of 0.946 and 0.940, respectively, to account for basis-set effects, missing electron 

correlation and anharmonicity. The scaling factors were derived from comparison of 

calculated harmonic frequencies of the hydrogen-bonded OH vibrations of the corresponding 

1:1 complexes with their known experimental values (Sec. 3.7). Comparison of the 

experimental IR spectra with the calculated harmonic frequencies of the isomers I and II (Fig. 

3.2c, Tab. 3.2) finally clarifies that the strong bands at 3466 and 3525 cm
-1

, which are visible 

in both the ion-depletion IR spectrum of the molecular beam (Fig. 3.2a) and in the IR 

spectrum of the precursor of the red-shifted fluorescence (Fig. 3.2b), are due to the N•••HO 

and O•••HO hydrogen bonds of the water dimer in isomer I. The bands at 3514 and 3550 cm
-1

, 
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which are only found in the ion-depletion IR spectrum of the beam (Fig. 3.2a), are due to the 

O•••HO carbonyl water and water dimer’s hydrogen bonds of isomer II (Tab. 3.2). The 

findings indeed confirm that both energetically lowest isomers I and II of 

DMABME•••(H2O)2 are present in the molecular beam. However, only isomer I, in which the 

water dimer is bound to the amino nitrogen, is responsible for the red-shifted fluorescence. 

. 

Table 3.1. Relative energies and stabilization energies (kcal·mol
-1

) of the investigated isomers 

of DMABME·2H2O obtained at CP corrected MP2/6-31G** and MP2/cc-pVTZ level of 

theory. At the MP2/6-31G** level also ZPVE is included, and the numbers are given after the 

slash. The energy of isomer I is set to zero. 

  

 Isomer 

 I II III IV V 

Relative energies 

MP2/6-31G(d,p) 0.00/0.00 0.51/-0.08 2.56/1.93 3.77/2.70 7.02/5.45 

MP2/cc-pVTZ 0.00 0.01 2.18 2.99 6.10 

Stabilization energies 

MP2/6-31G(d,p)  -13.50/-9.04 -12.99/-9.11 -10.94/-7.11 -9.73/-6.33 -6.94/-3.59 

MP2/cc-pVTZ  -13.08 -13.07 -10.90 -10.10 -6.98 

  

For a preliminary guess on the CT excited states behaviour of the isomers, their ground-

state ionization potentials (IP) and electron affinities (EA) were calculated and compared with 

those of isolated DMABME (see e.g. Ref. D234D, D235D, D236D for the description of diagnostics in 

terms of IP/EA). In the case of isomer I, the water dimer, hydrogen-bonded to the amino 

group (electron donor), increases IP and, hence, should destabilize the ICT state. On the other 

hand, the hydrogen bonding of water dimer to the carbonyl oxygen (electron acceptor), 

increases its EA and stabilizes ICT. Both give strong evidence that the electron transfer in 

isomer I should be energetically less favourable. Indeed, the vertical excitation energy of the 

CT state, calculated at the ground state geometries, is higher for isomer I (Tab. 3.3, Sec. 3.4) 

than for either isomers II or isolated DMABME. Therefore, the emission from this state, if it 

happened, would me more blue-shifted what contradicts to the experimental findings. From 

this perspective, an opposite behaviour of the isomer I seems to be very astonishing. 

However, it would be only true if one considers the phenomenon of red-shifted fluorescence 

merely in terms of the energetics of ICT. The next sections will show, that rather the details of 

gas-phase dynamics, emission and energy dissipation in the CT state together are responsible 

for the red-shifted fluorescence of isomer I. 
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Table 3.2. Assignment and comparison of scaled calculated harmonic frequencies of the 

DMABME isomers I and II at the level of CP-corrected MP2/6-31G** with the measured IR 

ion depletion spectrum of the mixture and of the CT emission depletion spectrum. 

  

 Calc. OH stretch frequencies [cm
-1

] Expt. Frequencies [cm
-1

]  

 Isomer I Isomer II IR depletion CT emission Character 

ν1 3432  3466 3466 N···HO 

ν2  3546 3514  =O···HO 

ν3 3557  3525 3525 H2O···HO 

ν4  3576 3550  H2O···HO 

ν5 3747/3749  3718 3718 free OH 

ν6  3757/3776 3724  free OH 

  

 

0B3.4 Excited Electronic States of the DMABME•••(H2O)2 Complexes 

As a first step in the investigation of excited-state properties of the energetically most 

stable isomers I and II of DMABME•••(H2O)2, their vertical excited states have been 

calculated. For this objective, geometries of the ground (S0) and excited (S1) states were 

optimized at the DFT/B3LYP and the linear response TDDFT/B3LYP level of theory, 

respectively, employing the standard TZVP basis set. As usual, all the minima points have 

been confirmed by the analyses of their harmonic frequencies. CC2 calculations generally are 

more reliable than TDDFT results since they do not suffer from problems with charge-transfer 

excitations (Sec. 1.3.6). Thus, all TDDFT results were improved by means of single-point 

CC2 calculations and the following discussion will refer to these results, unless it is indicated 

otherwise. For comparison, the same analysis was also performed for the isolated DMABME, 

as well as for both 1:1 complexes. 

The computed vertical excitation and deexcitation energies are summarized in Tab. 3.3. 

The vertical excitation energies at the ground-state equilibrium structure are directly 

comparable to the experimentally observed absorption spectra (Ref. X2X), while the vertical 

excited states computed at the equilibrium structure of the electronic S1 state of DMABME, 

1:1 and 1:2 complexes directly relate to the wavelength of the observed red-shifted 

fluorescence (Fig. 3.1, Sec. 3.1). 

At the ground-state equilibrium geometries of isomer I, the S1 and S2 states are almost 

degenerate with 4.78 and 4.86 eV at the level of CC2. While the S1 state corresponds to the 
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locally excited (LE) stateF

1
F, the S2 state is identified as the typical intramolecular CT state. The 

latter was corroborated by analysis of the molecular orbitals contributing to the S2 state and by 

its dipole moment. In this CT state, electron is transferred from the amino group to the ester 

function, resulting in a strongly positively-charged amino nitrogen and strongly negatively-

charged carbonyl oxygen. This is in agreement to the previous discussion of the ground-state 

IA and EA of DMABME. 

  

Table 3.3. CC2 and TDDFT/B3LYP excitation energies (eV) and static dipole moments 

(Debeye) of isomers I and II of DMABME•••(H2O)2 calculated at DFT and TDDFT 

optimized equilibrium geometries on the ground-state S0 and S1 surfaces. 

  

 State S0
eq

 S1
PICT,TS

 S1
TICT

 

 Eex [eV] Eex [eV] μ [D] Eex [eV] μ [D] 

TDDFT 
RI-CC2 TDDFT RI-CC2   TDDFT RI-CC2   

Isomer I 

LE 4.75 4.78 4.2 4.32   3.26 3.94  

CT 4.52 4.86 3.49 3.65 6.0 2.01 2.76 11.1 

Isomer I 

LE 4.57 4.59 4.47 4.5   
3.8 4.46  

CT 4.25 4.41 4.03 4.15 7.5 2.28 3.05 12.5 

Isolated DMABME 

LE 4.55 4.57 4.36 4.45   
3.88 4.56  

CT 4.43 4.64 3.6 3.82 9.05 
2.56 3.37 14.0 

  

Calculations at TDDFT/B3LYP level are consistent with single-point CC2 results. The 

only difference is that the order of states is reversed with the LE and CT states, exhibiting 

excitation energies of 4.75 and 4.52 eV, respectively, which is due to the typical 

underestimation of charge-transfer excited states by TDDFT (Sec. 1.3.6). Comparison of the 

vertical excited LE and CT states of the isolated DMABME (Tab. 3.3), with the excitation 

energies of 4.57 and 4.64 eV, respectively, reveals the CT excited state is destabilized by the 

water dimer in the N-bonded isomer I by 0.22 eV. 

Unconstrained geometry optimization at TDDFT/B3LYP in the S1 (CT) state of isomer I 

directly leads to a twisted equilibrium structure with a dihedral angle of 90° between the 

essentially planar dimethylamino group and the phenyl ring (Fig. 3.4) with a large electric 

                                                 
1
 In contrast to the CT states, charges in the LE states are centered on specific atoms of the excited species. 
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dipole moment of 11.1 Debeye (Tab. 3.3). This structure is commonly characterized as a 

TICT state. The TICT structure is the only minimum that could be identified on the PES of 

the CT state at the TDDFT level. In the TICT minimum, the CT state of isomer I exhibits 

excitation energy of only 2.76 eV. Concomitantly with the charge transfer resulting in a 

switch from negative to positive partial charge on the nitrogen, the hydrogen bond of the 

water dimer to the amino nitrogen breaks in the course of geometry optimization. Eventually, 

the water dimer turns around such that the oxygen of the spatially-closest water molecule 

interacts with the now positively-charged amino nitrogen. It can be interpreted as a 

transformation from hydrogen bonding to ion solvation. This effect should be highlighted 

here, since it plays a crucial role in the proposed mechanism of red-shifted fluorescence in the 

isomers I, as the next sections will show. 

  

 
  

Figure 3.4. Equilibrium geometries of the TICT states of isomers I (left) and II (right) on the 

S1 potential energy surfaces. 

. 

Constrained geometry optimization in the CT state, in which the dimethylamino group is 

not allowed to twist, leads to a planar structure which exhibits typical properties of a PICT 

state. However, this state is identified as a transition state on the S1 PES at TDDFT/B3LYP 

level, with a single imaginary harmonic vibrational frequency corresponding to the rotation of 

dimethylamino group. Also, the electric dipole moment is not as large as in the TICT structure 

with only 6.0 Debeye at TDDFT/B3LYP level. Nevertheless, already in this planar 
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arrangement, the hydrogen bond between the water dimer and amino nitrogen breaks up and 

the water dimer rearranges in the way described above. 

At the geometrically relaxed planar saddle point, the isomer I of DMABME•••(H2O)2 

exhibits an excitation energy into S1 of 3.65 eV at CC2 level. Notice, that at this geometry the 

LE (S2) state is already 0.7 eV higher in energy than the CT state. At the equilibrium 

geometry of the ground state, i.e. at the initial excitation, the CT state has been found to 

possess a slightly higher energy than the LE state. Since a conical intersection has been found 

for DMABN (Ref. X219X), it is justified to assume that in DMABME a conical intersection is 

present in the vicinity of the ground-state equilibrium structure as well, allowing for an 

efficient radiationless transition to the S1 CT state. 

The O-bonded isomer II of DMABME•••(H2O)2 exhibits lower vertical excitation energies 

than I, with values of 4.41 and 4.59 eV for the CT and LE state, respectively, at CC2 level of 

theory. In particular, the excitation energy of the CT state is 0.45 eV lower than in isomer I, 

which is the lowest excited state at the ground-state equilibrium structure. This is mainly due 

to the aforementioned stabilization of the CT state by the water dimer in isomer II. The effect 

is further emphasized by comparison with the vertical excitation energy of the CT state in 

isolated DMABME of 4.64 eV, which is 0.23 eV higher than in isomer II, lacking 

stabilization by the water dimer. Therefore, no state crossing between CT and LE is found in 

isomer II. 

It should be noticed, that based on these calculations, a further, approximately 0.4 eV red-

shifted peak should exist in the absorption spectrum of DMABME•••(H2O)2 corresponding to 

the CT state of the O-bonded isomer. However, this peak is not detectable employing one-

colour R2PI, since two photons of the required excitation energy are not sufficient for 

ionization. Possibly, two-colour R2PI which is currently not available would allow for its 

observation. 

Analogously to isomer I, unconstrained geometry optimization of the S1 (CT) state of 

isomer II yields a twisted equilibrium structure (Fig. 3.4) with a dipole moment of 12.5 D, 

thereby representing a TICT state. The vertical excitation energy of the TICT minimum is  

again strongly red-shifted with a value of only 3.05 eV at CC2 level of theory. Also, in 

analogy to isomer I, a planar transition state is found, which exhibits an excitation energy of 

4.15 eV. Furthermore, the excitation energy of this PICT state matches the energy of 

“regular” fluorescence peak at 325 nm (Fig. 3.1c, Sec. 3.1).  
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Figure 3.5. Potential energy surfaces of the ground state (GS), the locally excited (LE) and 

the charge-transfer (CT) state for isomers I (top) and II (bottom) at level of RI-CC2 along the 

TDDFT/B3LYP optimized pathway on the surface of the CT state along the TICT dihedral 

angle. The vertical excitation energies of the CT states as well as their dissociation energies 

are given as horizontal dashed and dotted lines, respectively. The energy of the ground-state 

equilibrium structures is set to zero. The dependence of the oscillator strength of the CT states 

on the TICT angle is plotted as dashed line. The vertical arrow represents the experimentally 

employed excitation energy. 

  

This observation gives another hint for understanding the mechanism of dual fluorescence. It 

is also important to notice that in contrast to isomer I, the hydrogen bond does not break-up in 

the course of the geometry optimization but, on the opposite, becomes even stronger. This is 

manifested by the decrease of its bond length from 1.84 Å in the ground state to 1.72 Å in the 

TICT state. This is easily understood in terms of the increase of negative charge on the 

carbonyl oxygen in the CT excited state, which strengthens the hydrogen bond due to the 

additional electrostatic attraction. 
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Summarizing the above results for the vertical excitation energies of the CT and LE states 

of isomers I and II at the ground-state as well as at the TICT minimum structures, both 

isomers exhibit very similar properties and, in principle, could be candidates for red-shifted 

fluorescence. The discovered structural differences alone do not explain the observed red-

shifted fluorescence in isomer I only, but they will become important in the discussion of 

possible TICT formation mechanisms. 

To get more insight into the TICT formation mechanism, the S1 potential energy surfaces 

of the CT excited states of isomers I and II have been computed at TDDFT/B3LYP level 

along the dihedral angle between the dimethylamino group and the phenyl group of 

DMABME. Along this twisting path, all other geometrical parameters were allowed to relax 

freely. The results were further improved by means of single-point CC2 calculations at the 

optimized structures. The curves obtained for the N-bonded isomer I and the O-bonded 

isomer II representing minimum energy pathways are depicted in Fig. 3.5. 

The calculated minimum-energy pathways for TICT formation in both isomers have 

brought another surprise, since they do not exhibit any significant difference. Both isomers 

can in principle form a TICT structure along the direct pathway from the initially excited 

structure on the electronic ground state with no energy-barriers to pass. The barrier height for 

the complete rotation of the dimethylamino group from the TICT state via PICT transition 

state is 0.25 eV for both isomers. The total energies of the CT state at the equilibrium 

geometries of the ground state, termed Franck-Condon points, are energetically above the 

rotation barrier by 0.85 and 0.25 eV in both isomers I and II, respectively. 

At this point, one should remember that the experiments were performed in the gas phase 

where excess energy cannot be dissipated immediately. Therefore, the dimethylamino group 

can rotate freely in both isomers upon photo-excitation for a considerable time, unless the 

excess energy is dissipated and the molecules are cool enough to form stable TICT structures 

which eventually emit red-shifted fluorescence. In the case of free rotation, the emission is 

determined not by the minima on the PES but rather by the distribution of its oscillator 

strength (Eq. X(126)X, Sec. 1.3.2). It is further important to remember that the excitation energy 

of the PICT state of the O-bonded isomer matches the first “regular” peak in the dual 

fluorescence of DMABME. The computed oscillator strengths of the S1 state of both isomers 

I and II , dependent on the rotational angle, is plotted in Fig. 3.5. Indeed, for both isomers the 

maximum of the oscillator strength occurs at the PICT structure. Most likely, both isomers 

fluoresce from the PICT state, which corresponds to the “regular” fluorescence peak. 

Therefore, the only possible difference between the isomers, explaining why only isomer I is 
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responsible for the red-shifted emission from the TICT state, lies in their nonradiative energy 

dissipation mechanisms. The next section will illuminate this mechanism. 

 

3.5 Dissociation-Mediated TICT Formation in DMABME 

According to the assignment of the IR spectra and the conclusion that both isomers are 

present in the molecular beam of the 1:2 complexes but only the N-bonded isomer exhibits 

red-shifted fluorescence, energy is obviously more efficiently dissipated in the N-bonded 

isomer I than in the O-bonded isomer II. Thus, the key task to resolve now is how the 

molecules can lose their excess internal energy. 

The IR and fluorescence depletion experiments described above have been performed in 

the gas phase and both DMABME•••(H2O)2 isomers are excited with the same laser 

wavelength, which was tuned to the red edge of the observed broad absorption spectrum (Ref. 

X2X, X225X). The calculations reveal that the CT state has a much larger oscillator strength than the 

LE state and, since both isomers are observed in the IR depletion spectrum, the laser energy 

must thus at least correspond to the higher vertical excitation energy of the CT state of the N-

bonded isomer I, which is marked by the vertical arrows in Fig. 3.5 (Sec. 3.4). Photo-

excitation at the same laser wavelength deposits approximately equal amount (about 0.25 eV) 

of excess internal energy with respect to the stabilization energy of both isomers in the CT 

state. Thus, the only possibility for the isolated DMABME•••(H2O)2 complexes to dissipate 

sufficient energy and to emit via red-shifted fluorescence, can be achieved in the gas phase by 

fragmentation of the complex. Since the N-bonded isomer I exhibits red-shifted fluorescence 

while the O-bonded isomer II does not, isomer I obviously dissociates, whereas isomer II 

stays stable during the experiment. The latter can only emit via “regular” fluorescence from 

the PICT state which possesses larger oscillator strength (Fig. 3.5). 

In fact, the previous geometry optimizations of both isomers in the CT states can provide 

the explanation of the possible energy dissipation scenario. 

As it was noticed in the previous section, the hydrogen bond between the amino nitrogen 

and the water dimer in isomer I breaks-up immediately upon photo-excitation into the CT 

excited state. It was manifested by the constrained geometry optimization on the CT state, 

with the dimethyl amino group angle fixed at its ground state value (planar). During the 

optimization, the water dimer is at first repelled and moves away, but rearranges and finally 

returns to the DMABME molecule to switch from hydrogen bonding to ion solvation. 

Physically, these simulations correspond to the static case of zero nuclear kinetic energy and, 

hence, to infinite times to adopt the equilibrium structures. However, in the dynamic case of 
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the real experiment, the immediate repulsion between the amino nitrogen and the water 

hydrogen will lead to an instantaneous dissociation of isomer I into twisted free DMABME, 

which is the only minimum on the CT PES, and to the isolated water dimer. This situation can 

be designated by the switch from the DMABME•••(H2O)2 to the DMABME+(H2O)2 complex. 

The energy difference between DMABME+(H2O)2 (i.e. isolated DMABME and a water 

dimer) and DMABME•••(H2O)2 is then added to the energy of DMABME resulting from the 

fragmentation. Herein, it is assumed that the water dimer absorbs this energy, exhibiting the 

property to serve as a kinetic energy acceptor. Thus, in the experiment, the remaining internal 

excess energy in DMABME after dissociation is not larger than 0.2 eV (Fig. 3.6). 

  

 
  

Figure 3.6. Potential energy surfaces of the CT states of the N-bonded isomer I along the 

TICT angle and dissociation pathway going from the 1:2 complexes to isolated DMABME 

and a free (H2O)2 dimer. The vertical energy of isomer I is given as dashed horizontal line, 

and the energy of the ground-state equilibrium structure is set to zero. 

  

Further calculation of the potential energy curve of the CT state of isolated DMABME 

along its TICT formation pathway revealed that it is practically identical to the isomers of its 

hydrated 1:2 complexes: it possess a TICT minimum and a PICT transition state with the 

excitation energies of 3.37 and 3.82 eV, respectively. The maximum of the emission oscillator 

strength corresponds again to the PICT state. However, contrarily to the isolated species, in 

the case of fragmented DMABME within the DMABME+2H2O complex, the remaining 

internal excess energy is of around 0.2 eV, which is insufficient for the rotation of the 

dimethyl amino group. As a consequence, the generated free DMABME molecules are 

trapped in the TICT structure, from which they decay via the red-shifted fluorescence only. 
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As it was mentioned above, the O-bonded isomers II are excited with the same laser 

wavelength as isomers I in the experiment and, thus, possess enough energy to dissociate 

analogously to the mechanism outlined for isomer I. However, the experiment did not reveal 

red-shifted fluorescence originating from isomer II. The geometry optimization of the CT 

structures of isomer II again can rationalize this observation. In fact, it is seen in this isomer 

that the hydrogen bond between the carbonyl oxygen of the ester group and the water dimer 

does not break-up, but instead, is substantially strengthened upon photoexcitation. Calculation 

of the stabilization energy of isomer II in the CT state reveals that it amounts to about 0.7 eV, 

which is unusually strong compared to typical hydrogen-bond stabilization energies (from 

about 0.1 to 0.25 eV). The equilibrium bond length of the DMABME•••(H2O)2 hydrogen bond 

is also shorter in the ICT state than in the electronic ground state. This strongly enhanced 

hydrogen bond in the TICT structure of isomer II can be simply explained by the increase of 

negative partial charge on the carbonyl oxygen in the CT state and the resulting additional 

electrostatic attraction between the carbonyl oxygen and the hydrogen atom of water. 

Therefore, a direct dissociation of the water dimer in the isomer II should be suppressed. 

Nevertheless, the fragmentation is in principle energetically feasible since the internal 

excess energy upon photo-excitation is 0.25 eV above the stabilization energy in the TICT 

state. It can occur when the excess energy is redistributed such that sufficient energy is 

channelled into the intermolecular hydrogen-bond dissociation coordinate. From a statistical 

point of view, though, it seems unlikely that almost the complete excess energy is employed 

for fragmentation of the complex. In fact, it has been demonstrated previously that photo-

excitation with energies of 0.25 eV above the dissociation threshold can lead to delayed or 

metastable dissociation in much weaker Van-der-Waals complexes (Ref.  D237D, D238D). 

However, quantum dynamic simulations, necessary for quantitative conclusions on the details 

of the mechanism of internal vibrational energy redistribution (IVR) (see e.g. Chap. 4 of Ref. 

D239D) of the isomer II are unfeasible at present. 

In summary, photoinduced charge transfer from the dimethylamino group to the ester 

group in DMABME produces a positively charged nitrogen atom and a negatively charged 

carbonyl oxygen. This leads to a strong electrostatic repulsion between the amino nitrogen 

and the bound hydrogen atom in the N-bonded isomer I of DMABME•••(H2O)2 as well as to a 

strong electrostatic attraction between the carbonyl oxygen and the water dimer in the isomer 

II resulting to an unusually strong hydrogen bond. As a consequence, isomer I dissociates 

instantaneously, while the dissociation of isomer II is strongly suppressed, if it occurs at all. 

Since dissociation is required to dissipate excess energy in the gas phase for the TICT 
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structure, attributed to red-shifted fluorescence, to be formed, an explanation is finally 

provided why only the N-bonded isomer is experimentally found to exhibit red-shifted 

fluorescence. 

A recent investigation on hydrogen-bonded phenol complexes has demonstrated that the 

efficiency of hydrogen bond dissociation is independent of the hydrogen bond strength (Ref. 

D240D). At first glance, the experiment seems to be in contradiction with the depicted 

mechanism in isomer II of DMABME•••(H2O)2. However, in that experiment, the OH stretch 

vibration of phenol was selectively excited with IR light. As a consequence, the internal 

energy, from the beginning, was directly pumped into the hydrogen bond dissociation 

coordinate. Furthermore, the investigated hydrogen bonds are substantially weaker with at 

most 0.25 eV compared to the TICT state of isomer II with 0.7 eV. 

Owing to the above arguments, one thus cannot a priori expect that photo-excited 

complexes of O-bonded DMABME•••(H2O)2 to dissociate into DMABME and a water dimer 

via efficient IVR, even when the excess energy in the complexes is in principle enough for the 

hydrogen-bond dissociation. To corroborate the suggested mechanism of red-shifted 

fluorescence in the DMABME•••(H2O)2 complexes further, another IR and fluorescence 

depletion experiment has been proposed in the present work. In this experiment, the O-isomer 

II should be excited with its individual vertical excitation energy of 4.41 eV (computed at 

CC2 level), which is about 0.4 eV lower than in isomer II. According to the presented 

calculations, the stabilization energy of isomer I is about 0.7 eV in the excited CT state on the 

TICT equilibrium structures. However, the Franck-Condon point of isomer I is only 0.5 eV 

above the TICT minimum, i.e. its internal vibrational energy is not enough to dissociate. 

Therefore, this energy dissipation channel is closed. In such an experiment, one should not be 

able to observe red-shifted fluorescence at all, since the N-bonded isomers are not excited into 

the CT state because of too low photon energy, whereas the O-isomers should exhibit only a 

“regular” fluorescence from the PICT state. 

In conclusion of this section, the question is addressed why red-shifted fluorescence is 

experimentally observed in very small amount (Fig. 3.1, Sec. 3.1) in the DMABME•••H2O 

complexes hydrated by one water (1:1). 

As in the case of 1:2 complexes, two most stable isomers, analogous to isomers I and II 

can be constructed from DMABME and water monomer. Indeed, the isomer of 

DMABME•••H2O, in which the water molecule is hydrogen-bonded to the amino nitrogen, 

possesses essentially identical structure to the isomer I of the 1:2 complex. Not surprisingly, a 

barrierless decay into the TICT state is possible, thus red-shifted fluorescence could in 
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principle be observed. However, in the IR ion depletion experiment only one isomer is 

observed for the 1:1 clusters. Single-point CP MP2/cc-pVTZ calculations on the CP-PES 

MP2/6-31G(d,p) structures reveal that the O-bonded isomer of DMABME•••H2O is 

thermodynamically more stable by 0.5 kcal mol
-1

 than the N-bonded one. The computed IR 

spectra of these isomers confirm that the only one presented in the molecular beam 

experiment is the O-bonded isomer. Therefore, red-shifted fluorescence is not observed for 

the O-bonded isomer of the 1:1 complex for the same reason as for the isomer II of the 1:2 

complex. Thus, the weak red-shifted fluorescence, observed in the 1:1 complex (Fig. 3.1, Sec. 

3.1) can either stem from the O-bonded isomers of the 1:2 complex, or from the N-bonded 

isomers of the 1:1 complex, which should present in the molecular beam at small amounts. 

 

3.6 Summary and Conclusions 

Recent experiment employing IR and fluorescence spectroscopy on the DMABME clusters 

hydrated by one to three water molecules revealed that two water molecules are needed to 

observe dual fluorescence in the gas phase. To elucidate this phenomenon the present 

theoretical study has been performed. 

Using high-level quantum-chemical calculations, two experimentally observed isoenergetic 

isomers were assigned to the complexes in which a water dimer is hydrogen-bonded either to 

the carbonyl oxygen of the ester function or to the amino nitrogen. Moreover, the assignment 

proved that only N-bonded isomer exhibits unusual red-shifted fluorescence in the gas phase. 

At first glance the observation seems to be intriguing, if one considers the phenomenon of 

the occurrence of red-shifted fluorescence merely as the result of stronger ICT. In fact, in the 

N-bonded isomer, the ICT formation appears to be energetically less favourable than in the O-

bonded one, since the hydrogen bonding of a water dimer to the dimethylamino nitrogen 

increases the ionization potential, i.e. destabilizes ICT, whereas hydrogen bonding to the ester 

function increases the electron affinity, i.e. stabilizes ICT. Indeed, that was corroborated by 

the computed vertical excitation energies of the two isomers of DMABME•••(H2O)2. 

To understand this surprising behaviour of the isomers, the excited-state potential energy 

surfaces of the two DMABME•••(H2O)2 isomers, as well as those of the isolated DMABME 

molecule, were computed along the dihedral angle between the dimethylamino group and the 

phenyl ring, representing the TICT formation coordinate. Astonishingly, all molecules possess 

TICT equilibrium structures on the CT excited state surface. Indeed, this TICT structure is 

attributed to the red-shifted peak in the fluorescence spectrum. In addition, barrierless 

formation of the TICT state is in principle possible for all of them. 
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However, the experiments were performed in the gas phase where the internal excess 

energy of the complexes cannot be dissipated immediately. Upon photoexcitation, the 

dimethylamino group can rotate freely, unless excess energy is dissipated and the molecules 

are localized in the equilibrium structures, i.e. in the TICT geometry. Under these 

circumstances, the emission will be determined not by the minima on the PES but rather by 

the distribution of its oscillator strength which maximum corresponds to the “regular” 

emission form the PICT state. Obviously, this fluorescence mechanism appears to be 

dominant for the O-bonded isomer of DMABME•••(H2O)2. 

The only possibility for the N-bonded isomer to lose its excess energy radiationless and to 

localize in the equilibrium TICT structure can be realized by its fragmentation. Indeed, this 

option is energetically feasible for both isomers in the conducted experiments. However, in 

the N-bonded isomer the hydrogen bond breaks-up immediately upon photo-excitation into 

the CT state, due to strong electrostatic repulsion between the now positively-charged amino 

nitrogen and the hydrogen atom. In the O-bonded isomer the opposite effect is observed: the 

hydrogen bond is substantially strengthened due to the increased negative charge on the 

carbonyl oxygen leading to an unusually strong hydrogen bond suppressing dissociation of 

the complex. The isolated DMABME molecules resulting from the dissociated N-bonded 

DMABME•••(H2O)2 complexes can finally form stable TICT equilibrium structures on the CT 

surface and eventually decay via red-shifted fluorescence.  

These results demonstrate that the phenomenon of dual fluorescence in the gas phase of the 

DMABME•••(H2O)2 complex is determined by specific interactions with the solvent 

molecules. Herein this solvent water behaves differently from conventional polar continuum. 

The microscopic reason for this is that the isomer IVF

1
F of the 1:2 complex, in which water 

could exhibit the property of a polar continuum, is less stable than the considered N- and O-

bonded isomers. 

 

Turning back to the main topic of the Thesis, the following aspects of the investigation 

should be highlighted in conclusion. 

1. The example of dual fluorescence in DMABME demonstrates that the influence of water 

molecules on the charge-transfer excited states of the electron donor-acceptor systems in the 

gas-phase is essentially site-specific. In theoretical studies it hence cannot generally be 

reproduced by polar continuum models. 

                                                 
1
 In isomer IV one water molecule is attached to the carbonyl oxygen and another one to the amino nitrogen 

(Sec. 3.3). Only in this case, the action of these two solvent water molecules can be similar to the action of polar 

continuum in the ICT state. 
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2. In the gas phase, when internal excess energy is larger than the energy of a particular 

excited state, the emission from this state will be determined by the distribution of its 

oscillator strength rather than by the minima on the excited-state potential energy surface. 

Since the latter do not necessarily fit to each other, the situation can sometimes be in 

contradiction to physical intuition based on minimum energy pathways alone. 

3. The example highlights the property of solvent water molecules to serve as a kinetic 

energy acceptor in the gas phase, allowing chemical reactions to follow specific ways 

determined by the minima on their potential energy surfaces. Since water and hydrogen bonds 

are ubiquitous in nature, the identified mechanism of energy dissipation via hydrogen bond 

fission is expected to be not an exception, but rather a general feature of many chemical and 

biological processes. 

4. A systematic benchmark study of computed IR spectra of suitable model systems 

containing typical hydrogen bonds (carbonyl-water, amino-water) that are present in the 

system, revealed that the basis-set superposition error (BSSE) is the leading source of error in 

the IR spectrum simulations (see Sec. 3.7). At correlated, computationally-affordable MP2 

level with moderate basis sets, correction for BSSE provides an accurate reproduction of the 

spectrum compared to higher levels of theory (CCSD) and larger basis sets (up to quadruple-

zeta). This important manifestation of BSSE in calculations of spectroscopic properties is in 

line with recent advances in this scientific field (Part 1.4). 
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3.7 Addendum 

Influence of Electron Correlation, Anharmonicity and Basis-Sets on 

Calculated IR Spectra of H-bonded Prototype Systems 

 

General sources of errors in quantum-chemical calculations of IR spectra 

In Chapter 1, general theoretical methods for electronic-structure calculations have been 

introduced. They lead to approximate descriptions of electron correlation (Sec. 1.2.3) and 

introduce basis-set effects (Part. 1.4). The latter can be divided into the basis-set 

incompleteness error (BSIE) and basis-set superposition error (BSSE) (Sec. 1.4.1). 

Calculations of infrared (IR) spectra, as well as stabilization, protonation and deprotonation 

enthalpies etc., in general, require the solution of the entire nuclear problem (Sec. Part 1.1) 

but are usually treated in the harmonic approximation (Sec. 1.1.4). In most cases it is 

sufficient to know the magnitude of error to draw reliable conclusions about the relation 

between the experimental IR bands and individual molecular vibrations. In this section, the 

results of a systematic study on the magnitude of aforementioned errors comprised in the 

computed ground-state IR spectra of hydrated complexes of Methyl 4-N,N-

dimethylaminobenzoate ester (Fig. 3.3, Sec. 3.3), are presented. 

 

Molecular model systems for benchmarking the IR spectra of 

hydrated DMABME complexes 

A number of recent studies on the subject indicates that in most cases BSSE – not the lack 

of dynamic correlation, is the leading source of error in second-order perturbation theory 

(MP2) (Sec. 1.2.4) calculations of potential energy surfaces (PES) of weakly-bound 

complexes (see references in Sec. 1.4.2-1.4.4). Notice, most of these studies have been 

focused mainly on MP2, since it is the only wave-function correlated method which is 

affordable in studies on the systems of chemically relevant molecular size. 

Indeed, also the size of hydrated DMABME complexes does not allow to compute their 

equilibrium geometries and vibrational frequencies at theoretical levels higher than MP2 with 

moderate basis sets and the counterpoise correction (CP) (Sec. 1.4.3) for BSSE. However, the 

presence of hydrogen bonds, in principle, can require theoretical levels higher than MP2 to 

describe dispersion and polarization effects properly. Therefore, owing to the large size of the 

system, the primary objective of this complimentary study is to provide smaller appropriate 

H-bonded benchmarking systems to further evaluate the quality of their IR spectrum, obtained 
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on the CP-corrected MP2 potential energy surfaces, with respect to basis set and correlation 

effects.  

Previous similar studies focused on the shape of PES shapes and stabilization energies of 

H-bonded complexes rather than on the comparison of IR spectra. Furthermore, correlated 

BSSE-corrected IR calculations did, in most cases, not go beyond MP2 level. This is partly 

due to the fact that CP-corrected gradients are implemented in Gaussian 03 only. The latter, 

though, does not have analytic second derivatives of PES at coupled-cluster level (Sec. 1.2.5) 

what is necessary for efficient IR frequency calculations. 

  

            
  

Figure A1. Ammonia-water (left) and formic acid-water (right) complexes as models for the 

amino- and carbonyl bound hydrogen bonds occurring in the N- and O-isomers of 

DMABME•••(H2O)2. 

  

To overcome the size limitation, the following strategy has been used here. Frequency 

calculations, necessary for benchmarking of IR spectra (Fig. 3.2, Sec. 3.3), were performed 

for the formic-acid-water and the ammonia-water complexes, containing both types of H-

bonds, required for the identification of N- and O-bonded isomers of the 1:1 and 1:2 

complexes of DMABME. Herein, two relevant vibrations of each model complex (i.e. the two 

free OH stretch vibrations of both complexes, the H-bonded OH stretch vibration of the 

carbonyl-water dimer and the N-bonded OH stretch vibration of the amino-water dimer), 

computed at various levels of approximation, were plotted on the same graph (Fig. A2). The 

influence of the aforementioned approximations (i.e. the basis-set size, correlation and 

anharmonicity) on the IR spectrum of hydrated DMBME complexes was further tested by 

analysis of the relative distances between the vibrational bands of the model complexes. 

The procedure can be justified to benchmark IR spectra of larger systems in those cases, 

when the relevant H-bonded groups are spatially-separated and their vibrations do not couple 

with each other. Indeed, this case is realized in the 1:1 and 1:2 hydrated complexes of 

DMABME in the gas phase. 
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Here and further, BSSE of the acid-water and ammonia-water dimer was corrected at the 

intermolecular level only. In the CP procedure for the BSSE correction (Ref. X138X, X161X), each 

monomer of the complexes was treated as a neutral fragment. Notice, that it means that the 

results still bear some intramolecular BSSE, especially in the computed free OH stretch 

vibrations and the bond lengths. However, these bands were not principal for the 

identifications of N- and O-bonded isomers of  the 1:2 complex (see Fig. 3.3, Sec. 3.3). 

 

Basis-Set Size 

To assess how the basis-set size affects the computed OH stretch frequencies, CP-corrected 

MP2 calculations with increasingly large basis sets have been performed. They started from a 

relatively small split-valence 6-31G(d) basis set of double-zeta quality and went through up to 

the cc-pVQZ basis set of quadruple-zeta quality (see Sec. 1.4.1 for the structure of basis sets). 

Although the increase in the basis-set size is quite enormous, the IR spectrum constituted by 

the OH stretch frequencies remains rather unaffected. 

In particular, addition of polarization functions to the basis set in the CP MP2 calculations, 

e.g. compare 6-31G(d) with 6-31G(d,p) or 6-31++G(d,p) with 6-31++G(d,p), shifts the 

absolute values of the OH frequencies upwards to higher values. 

Increasing the number of diffuse functions, i.e. going from 6-31G(d,p) to 6-31++G(d,p), 

from 6-31G(d,p) to 6-31++G(d,p) or from cc-pVTZ to aug-cc-pVTZ bases, bears the opposite 

effect, displacing the frequencies to lower values. However, the ordering of the frequencies 

and even the relative energies between the peaks in this case remain essentially unchanged 

varying only negligibly. 

Transition from the basis sets of double- to triple-zeta quality, brings the frequencies shift 

to higher values again. In the case of 6-311G(d,p) (triple-zeta quality) the peaks 

corresponding to the N•••HO and O•••HO hydrogen bonds become closer together, but are still 

clearly separated by 70 cm
-1

 and do not change order. Using the cc-pVTZ basis set, on the 

other hand, almost does not decrease their separation (100 cm
-1

) as compare to the bases of 

double-zeta quality. 

Obviously, the influence of basis-set size increase is strongly compensated by the 

application of Counterpoise correction. The computed OH stretch frequencies do change in 

the absolute magnitude, but their relative position is almost constant. 

In contrast, the MP2 calculations, not corrected for BSSE, exhibit much less balanced 

description of the IR spectrum with respect to the basis-set variation. For example, addition of 

one polarization p-function to the 6-31(d) basis leads to much stronger dispersion in the 
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relative distances between the peaks of both N- and O-bonded isomers of DMABME, 

whereas application of the CP correction compensates for this effect (Fig. A3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure A2. Influence of correlation, anharmionicity and basis-set effects on the hydrogen OH 

stretch frequencies of the ammonia-water complex (blue dashed lines) and the formic acid-

water complex (red solid lines). The geometries have been optimized at each particular level 

of theory. The first two left peaks of each spectrum are of particular interest, since they 

correspond to the hydrogen-bonded OH stretch vibrations. 

  

Better description of the IR spectrum, obtained on the CP-corrected PES of these 

hydrogen-bonded complexes, stems from the fact that the PES obtained with increasingly-

large basis sets are nearly equal to those obtained with moderate sets. This is readily 

manifested by comparison of the relevant geometrical parameters of the model complexes. 

Indeed, the N•••HO H-bond lengths difference in ammonia-water dimer obtained with 6-

31G(d,p) and cc-pVTZ bases is 0.02 Ǻ (2.0581 vs. 2.0374 Ǻ), while the difference in the 

O•••HO bond lengths of formic-acid-water dimer is 0.04 Ǻ (2.1158 vs. 2.0723 Ǻ). Single-

point stabilization energies of both model complexes, computed with the cc-pVTZ basis on 

the 6-31G(d,p)-optimized structures, are practically identical to the stabilization energies 

obtained with the cc-pVTZ optimized structures itself. 

As it was mentioned above, all computed frequencies bear some contribution of the 

intramolecular BSSE which was not corrected in these calculations. This is readily 
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corroborated by the less balanced description of the free OH frequencies of the model 

complexes (the right parts of the spectra of Fig. A2). The latter are particularly sensitive to the 

intramolecular BSSE. In principle, application of the CP correction to these model complexes 

as whole to reduce itramolecular BSSE is also possible. That would provide even more 

balanced IR spectrum of hydrogen-bonded complexes. 

 

Electron Correlation 

The influence of increase of electron correlations on the composite IR spectrum of 

hydrogen-bond frequencies of the formic acid-water and ammonia-water dimer was studied 

by comparison of the CP CCSD/cc-pVTZ with the CP MP2/cc-pVTZ results. CCSD theory 

(N
6
 scaling), takes to account dynamic correlations more systematically than MP2 scaling as 

N
5
 (see Sec. 1.2.3), since the former includes singly-excited determinants. The calculations 

 

          
  

Figure A3. Comparison of computed harmonic frequencies of the OH stretch vibrations of 

the N- and O-isomers of DMABME•••(H2O)2: CP-uncorrected (left) vs. CP-corrected (right) 

MP2 with standard basis sets 6-31G(d,p) (top) and 6-31G(d,p) (bottom). 

  

reveal that the CP-corrected geometric parameters of the model systems alter very slightly 

when going from the CP MP2/cc-pVTZ to CP CCSD/cc-pVTZ levels. The difference in the 

relevant H-bonds bonds obtained at MP2 and CCSD levels is negligible. The N•••HO 

hydrogen-bond lengths difference between the MP2 and CCSD values in ammonia-water 
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complex is within 0.04 Ǻ (2.0374 vs. 2.0732 Ǻ), while difference in the O•••HO bond lengths 

formic-acid-water dimer is only 0.03 Ǻ (2.0723 vs. 2.1025 Ǻ). This, again, indicates a nice 

reproducibility of the CP-corrected geometric parameters and potential energy surfaces with 

respect to the increase of correlation. 

Harmonic OH stretch frequencies calculated at CP CCSD/cc-pVTZ level demonstrate the 

shift to higher absolute values, compared to the CP MP2 calculations. However, the ordering 

of the N-bonded OH stretch band of the ammonia-water dimer and O-bonded OH stretch band 

of the formic acid-water dimer, necessary to distinguish the N- and O-isomers of DMABME, 

remain unchanged. Hererin, the distance between the bands is reduced only slightly by about 

29 cm
-1

 when going from MP2 to CCSD level. Owing to the fact that CP-corrected MP2 

harmonic frequencies obtained with large basis sets are nearly equal in quality to those 

obtained with moderate sets of double-zeta quality, one concludes the latter are also close in 

quality to the frequencies obtained at CP CCSD/cc-pVTZ level. 

 

Harmonic Approximation 

In standard frequency calculations presented here, the true potential energy surfaces are 

approximated by harmonic ones, allowing for the computation of harmonic frequencies (Sec. 

1.4.1). The harmonic approximation introduces an additional error, which normally leads to 

an overestimation of frequencies as well as ZPVE magnitudes. In the stationary points it is 

possible to obtain corrected potential energy surfaces and their derivatives by means of the 

anharmonic correction to the harmonic approximation (Sec. 1.4.1). However, the procedure 

requires high-order derivatives of PES and, hence, is computationally inapplicable to the 

system of the DMABME size. In practice, anharmonic effects for large systems are usually 

corrected by scaling of the computed harmonic frequencies with factors, derived from 

comparison of experimental and computed frequencies (see the next subseection). 

Nevertheless, for the chosen model complexes of ammonia-water and formic acid-water 

dimers, the anharmonic calculations are feasible. As expected, the fundamental (i.e. corrected 

for anharmonicity) frequencies are systematically lower than the harmonic ones, as can be 

seen by comparison of the CP MP2 and ANH CP MP2 calculations with up to the cc-pVTZ 

basis set (Fig. A2). However, the ordering of the calculated peaks, responsible for 

identification of the N- and O-bonded isomers of DMABME does not switch in any single 

case. 

This result, in combination with the results of the previous subsections, gives a certain 

confidence that harmonic frequencies, calculated at the level of CP-corrected MP2 with 
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moderate basis sets of double-zeta quality, allow for an unambiguous assignment of the 

experimentally-observed OH stretch frequencies to the different isomers of DMABME. 

 

Scaling Factors for the Harmonic OH Stretch Frequencies 

Calculations of DMABME•••(H2O)2 

Computed harmonic frequencies demonstrate that the IR spectra, obtained on the CP-

corrected MP2 potential energy surfaces with moderate basis sets, exhibit its perfect 

conservation as a whole (i.e. conservation of relative distances between the peaks) with 

respect to basis set, correlation and anharmonicity effects (Fig. A2). This is not the case for 

calculations that are not corrected for BSSE (Fig. A3). On the other hand, absolute values of 

the computed harmonic and fundamental frequencies of the model systems do not show 

convergence at the theory levels up to CP MP2/cc-pVQZ and CP CCSD/cc-pVTZ and, hence, 

cannot serve as reference points for the derivation of scaling factors for the harmonic 

frequencies calculations on large systems. 

. 

 
  

Figure A4. Scaled MP2/6-31G** IR spectrum of the N- (blue dash) and O-isomers of 

DMABME•••(H2O)2. The bold numbers correspond to the experimental values for 

DMABME•••(H2O)2. 

  

However, a direct connection of the computed harmonic frequencies of large system to the 

experimental IR spectrum does require scaling factors. As it was mentioned previously, the 

problem in many cases can be solved by a derivation of scaling factors from comparison of 

computed harmonic frequencies, associated with a particular functional group of a molecule, 

with experimental IR frequencies, related to the functional groups of this, or similar 

molecules. Such scaling factors would allow for a direct comparison of calculated and 
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experimental values, as well as to correct for basis-set, electron correlation and anharmonicity 

effects. The procedure can be provided with confidence if the IR spectrum computed with 

available theoretical methodology is well-reproduced as a whole. 

In the present study, the scaling factors for two isomers of the DMABME•••(H2O)2 

complex (1:2) were derived from comparison of the experimentally available relevant OH 

stretch vibrations with the computed harmonic frequencies of the smaller DMABME•••H2O 

complex (1:1). Herein, the N•••HO hydrogen-bonded OH vibration in the N-isomer of the 1:1 

complex has an experimental frequency of 3552 cm
-1

, while the value, calculated at the CP 

MP2/6-31G(d,p) level, is 3752 cm
-1

. This gives a scaling factor for the N-isomer of kN = υ(CP 

MP2/6-31G(d,p))/υ(exp)=0.946. In the O-isomer, the corresponding experimentally 

determined frequency has a value of 3608 cm
-1

 compared to the calculated value of 3839    

cm
-1

. The resulting scaling factor kO for the O-isomer is thus 0.940. The factors derived above 

were further applied to the CP MP2/6-31G(d,p) harmonic frequencies of the N- and O-

isomers of the 1:2 complex of DMABME. The resulting IR spectrum is displayed in Fig. A4. 

Comparison of the experimental frequencies of DMABME•••(H2O)2 and the scaled computed 

values reveals an excellent agreement within error of 20-50 cm
-1

. This precision is by far 

enough to undoubtedly assign the measured experimental IR spectra of DMABME•••(H2O)2 

to the N-bonded and O-bonded isomers. 

 

Conclusions 

Numerous studies on the subject demonstrate that correction for BSSE significantly 

improves the quality of MP2 potential energy surfaces of weakly-bound, in particular 

hydrogen-bonded, complexes (see Ref. X19X for in-depth review). This benchmark study on 

prototypic hydrogen-bonded complexes corroborates these findings. It shows that the quality 

of MP2 potential surfaces and their derivatives (e.g. harmonic frequencies) is indeed 

improved by the CP correction. Unlike the case of BSSE-uncorrected MP2, harmonic 

frequencies of the model complexes calculated at the CP MP2 theory level with moderate 

basis sets (of double-zeta quality) produces a regular, with respect to the basis set variation 

(up to MP2/cc-pVQZ), IR spectrum. Its quality is sufficient to finally identify the relevant 

isomers of large DMABME•••(H2O)2 complexes. 

Furthermore, the study reveals that the quality of CP-corrected potential energy surfaces of 

the prototypic H-bonded complexes computed with MP2 and moderate basis sets appears to 

be very close to the BSSE-corrected surfaces obtained with more accurate and 

computationally expensive methods like CCSD. That means that transition from the level of 
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second-order perturbation theory to higher levels of theory to obtain more accurate PES and 

their derivatives does not make sense, unless BSSE is corrected in the calculations. These 

findings, though, are in principle predictable, if one realizes that the BSSE-contribution into 

the stabilization energy of a supramolecular complex in the vicinity of its equilibrium 

structure is usually of the same order of magnitude as the correlation contribution for a wide 

range of atom-centered basis sets. 
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