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Abstract

We propose a new framework for modelling the time dependence in duration pro-
cesses. The well known ACD approach introduced by Engle and Russell (1998)
will be extended so that an unobservable stochastic process accompanies the dura-
tion process. Our creation is called Mixture ACD model (MACD) which puts the
conjunction into practice. It is a moderate tool for description of financial duration
processes. The introduction of a latent regime variable can be justified in the light of
recent market microstructure theories. In an empirical application we show that the
MACD approach is able to capture specific characteristics of intraday transaction
durations while alternative ACD models fail.
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1 Introduction

Investigating the microstructure of financial markets has become very pop-

ular over the last twenty years. Theoretical assertions concerning the behavior

of market participants in the presence of asymmetric information are discussed
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in many contributions. In this respect Easley, Kiefer, O’Hara, and Paperman

(1996) deliver a prominent approach. Statistical methodology will be employed

in order to check empirically the validity of the implications of market mi-

crostructure models. Since rich transaction data sets are available containing

detailed information about the timing of trades, prices, volume and other rele-

vant characteristics for a wide range of financial securities, it is possible to get

to the bottom of financial markets. Theory and the application of a tailor -

made statistical instrument are combined in the elaboration of Kokot (2004).

New econometric methods appear rapidly and they experience an extensive

application in the branch of finance. The autoregressive conditional duration

model (ACD) introduced by Engle and Russell (1998) is an auspicious ap-

proach which couples the spirit of time series models with econometric tools

for the analysis of transition data. Ultra high frequency data, stemming from

transaction data sets and having the characteristic of irregular spacing in time,

are ideal actuality for the use of the innovative framework. The ACD model is

perfectly suitable for the analysis of dynamics of arbitrary events associated

with the trading process along time, and the durations between successive

occurrences of interesting market events are object of investigation.

As demonstrated by Bauwens, Giot, and Grammig (2000) the periods of

time elapsing between successive trades exhibit an idiosyncrasy which could

not even be captured by extensions of the original model. For the first time the

flexible Markov switching ACD model developed by Hujer, Vuletić, and Kokot

(2002) is capable of higher forecast accuracy of the trading process itself, but

it requires much effort and computing power in estimation. We intend to in-

troduce an alternative model with a parsimonious parameterization, called

the Mixture ACD model (MACD), which also attains to good performance.

Integral part of the MACD model is a latent discrete valued regime variable

whose involvement can be justified in the light of recent market microstructure

models. The unobservable regime can be associated with the presence (or ab-

sence) of private information about an asset’s value that is initially available

exclusively to a subset of informed traders and only eventually disseminates

through the mere process of trading to the broader public of all market par-

ticipants.

The manageable MACD model bears a resemblance to the general switch-

ing autoregression model introduced by Hamilton (1989) and nests many of

the existing autoregression duration models as special cases. There are several
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models that are closely related to our approach as well. Despite the affinity

to the duration model given by De Luca and Gallo (2004), the MACD model

differs substantially in the distributional assumption. It has the discrete mix-

ture in common with the threshold ACD model introduced by Zhang, Russell,

and Tsay (2001).

This paper is structured as follows: A brief review of the idea of ACD mod-

eling is given in Section 2. In Section 3 the MACD model will be introduced

and compared to related work on duration models. Moreover we discuss esti-

mation procedures and specification tests for MACD models. In an empirical

application in Section 4 we present estimation results employing a transac-

tion data set for the common share of Boeing traded on the New York Stock

Exchange. Finally, in Section 5 we summarize our main results and give a

perspective on possible issues for future research.

2 The ACD model

Autoregressive conditional duration (ACD) models, introduced by Engle

and Russell (1998), are designed to account for patterns of autocorrelation

typically observed in time series of intervals between successive occurrences

of market events associated with the trading process. The definition of the

market event depends on the specific aim of the study.

Let xn = tn−tn−1 be the duration between the recordings of the (n−1) - th

and the n - th market event with the deterministic conditional mean function

ψn =E(xn|Fn−1; θψ), (2.1)

where the information set Fn−1 consists of all preceding durations up to time

tn−1 and θψ is the corresponding set of parameters. The ACD model is defined

by some parameterization of this conditional mean and by the decomposition

εn =
xn

ψn
, (2.2)

where the residual process εn is assumed to be i. i. d. with density g (εn; θε)

depending on a set of distributional parameters θε, support on the positive

real line and an unconditional expectation equal to one. The flexibility of

the ACD model can be altered by modifying the distributional assumption

of the residuals and/or by changing the specification of the conditional mean

function. The distributional assumption of the residuals determines the density
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of the durations fn (xn | Fn−1; θ), where θ = (θψ, θε) represents the whole

parameter set. A list of common choices for g (εn; θε) includes the exponential,

the Weibull, the Burr (1942), and the generalized gamma distribution, all of

them nested in the comprehensive family of distributions.

In a standard ACD(p, q) model the parameterization of the conditional

mean is linear according to

ψn =ω +
p
∑

k=1

βk · ψn−k +
q
∑

k=1

αk · xn−k, (2.3)

and it can be transformed into an ARMA(max(p, q), p) representation from

which expressions for the unconditional moments of xn may be derived easily.

In order to ensure non-negativity for the conditional mean the parameters

ω, αk, and βk are forced to be non-negative. Computational problems due

to this strong restriction may be circumvented by using logarithmic versions.

Bauwens and Giot (2002) propose the following LACD(p, q) specification

ln (ψn) =ω +
p
∑

k=1

βk · ln(ψn−k) +
q
∑

k=1

αk · ln(xn−k) (2.4)

and the corresponding analytical expressions for the unconditional moments

are given by Bauwens, Galli, and Giot (2003). In both specifications station-

arity depends on the magnitudes of the parameters αk, and βk.

3 The Mixture ACD model

3.1 The basic framework

The basic assumption of the Mixture ACD model, also referred to as MACD,

is that the duration process xn is accompanied by an unobservable stochas-

tic process sn. The stochastic process sn is characterized by a discrete valued

random variable with countable support J = {j | 1 ≤ j ≤ J, J ∈ N} and has

the task to represent the regime in which the duration process xn prevails at

time tn. In financial applications the existence of different trading regimes may

provide evidence on the presence of agents with private information about an

asset’s value.

Decomposition (2.2) holds in the sense that the innovation process εn has

a known discrete mixture distribution with E (εn) = 1 and invariant higher

moments across the N observations considered in the sample. The density of
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each innovation εn has the following formal appearance

g(εn; θε, θπ) =
J
∑

j=1

π(j) · g(εn | sn = j; θ(j)
ε ), (3.1)

where each weight 0 ≤ π(j) ≤ 1 represents the corresponding long run proba-

bility for prevailing in state j and θ(j)
ε is the corresponding parameter vector

characterizing the conditional density of the innovation process driven in the

j-th regime. Consequently, the unconditional density of the innovation process

as given in equation (3.1) depends on all regime specific distributional parame-

ters gathered into the vector θε =
(

θ(1)
ε , . . . , θ(J)

ε

)′
and on θπ =

(

π(1), . . . , π(J)
)′

.

Any of the densities mentioned in Section 2 may be used in order to specify

the regime specific distributions of the innovation process. De Luca and Gallo

(2004) build up a duration model where the innovation process follows the

Schuhl distribution, being simply a discrete mixture of exponential distribu-

tions. The MACD model can be recognized as a generalization which allows

for more flexibility.

On the one hand the expected value of each innovation E(εn) is constrained

to be equal to one and on the other hand this expected value turns out to

be a discrete mixture of regime specific expectations E
(

εn|sn = j; θ(j)
ε

)

. This

implies the maintenance of the equality

1 =
J
∑

j=1

π(j) ·E
(

εn|sn = j; θ(j)
ε

)

(3.2)

which does not require that all the regime specific expectations are equal to

one. In the case of E
(

εn|sn = j; θ(j)
ε

)

= 1 for all j ∈ J , the MACD model

coincides with a special case of the static variant of the Markov switching

ACD model developed by Hujer, Vuletić, and Kokot (2002).

By the change of variable technique with xn = εn ·ψn, the relevant density

for statistical inference is the duration’s marginal density

fn(xn | Fn−1; θ) =
J
∑

j=1

π(j) · fn
(

xn | sn = j; θ(j)
ε , θψ

)

(3.3)

which depends on the parameter vector θ = (θε, θψ, θπ)
′. The mean function

ψn = E (xn | Fn−1; θψ) is assumed to capture the whole persistence of the

duration process by an appropriate recursion.

Note, that the MACD model does not allow for different regime specific
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mean functions. This feature may induce scathing criticism, especially from a

theoretical point of view. But the empirical experience with strongly restricted

Markov switching ACD models can be used as a vindicative argument. Hujer,

Kokot, and Vuletić (2003) conclude that even the static variant of the Markov

switching ACD model with regime independent dynamics in the mean func-

tion and regime specific distributional parameters performs reasonably well in

terms of forecast accuracy.

3.2 Estimation of the Mixture ACD model

For discrete mixture models there are two ways by which maximum like-

lihood estimates of the parameter vector θ may be obtained. The direct nu-

merical maximization of the incomplete log-likelihood function

LI(θ)=
N
∑

n=1

ln [fn(xn | Fn−1; θ)] (3.4)

under the linear constraint
∑J
j=1 π

(j) = 1 and additional restrictions for non-

negativity, stationarity and eventually for distributional parameters is the

standard approach. Log-likelihood functions of mixture models are charac-

terized by the existence of multiple local maxima. In order to catch the global

maximum, the repetition of the parameter estimation with different start val-

ues is strongly recommended. Since standard maximization algorithms often

fail or produce nonsensical results, maximum likelihood estimates for discrete

mixture models are often obtained by the use of the robust Expectation-

Maximization (EM) algorithm introduced by Dempster, Laird, and Rubin

(1977).

In the hypothetical situation where we can observe the realizations of the

regime variable the complete log-likelihood function is given by

LC(θ) =
N
∑

n=1

J
∑

j=1

z(j)
n

(

ln[fn(xn | sn = j,Fn−1; θ
(j)
ε , θψ)] + ln[π(j)]

)

, (3.5)

where z(j)
n = 1 if sn = j and zero otherwise. The expectation of (3.5) condi-

tional on all observed data XN = (x1, . . . , xN) leads to the expected complete

log-likelihood function LEC(θ, θ0) = E(LC(θ) | XN ; θ0) which is simply ob-

tained by replacing z(j)
n by the probabilistic inference
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ξ
(j)
n|n =

π
(j)
0 fn

(

xn|sn = j,Fn−1; θ
(j)
0ε , θ0ψ

)

J
∑

k=1
π

(k)
0 fn

(

xn|sn = k,Fn−1; θ
(k)
0ε , θ0ψ

)

(3.6)

evaluated for some parameter vector guess θ0. Evaluation of LEC(θ, θ0) con-

stitutes the first part of the EM-algorithm and is commonly referred to as the

E-step. The associated M-step consists of maximizing LEC(θ, θ0) in respect of

the parameter vector θ and can be conducted separately with respect to the

regression parameters and the regime probabilities if
∂ fn(xn|sn=j,Fn−1;θ

(j)
ε ,θψ)

∂ π(k) = 0

for all j, k ∈ (1, . . . J). The estimates for the regime probabilities are given by

π̂(j) =
1

N

N
∑

n=1

ξ
(j)
n|n (3.7)

and the remaining parameters may be obtained from the solution to

N
∑

n=1

J
∑

j=1

ξ
(j)
n|n ·

(

∂ ln fn(xn | sn = j,Fn−1; θ
(j)
ε , θψ)

∂ θ

)

= 0. (3.8)

By repeating the two steps of the EM-algorithm until the absolute change of

the parameter vector is smaller than some prespecified convergence criterion,

estimates of the parameter vector are obtained. Hamilton (1990) shows that

the final estimates θ̂ maximize the incomplete log-likelihood function.

3.3 Statistical inference

Diebold, Gunther, and Tay (1998) propose a method which can be ap-

plied to test the forecast performance of general dynamic models. The idea

behind this specification test has been extensively used by Bauwens, Giot,

and Grammig (2000) to compare different types of ACD models. Denote

by {fn(xn | Fn−1; θ̂)}
N
n=1 the sequence of density forecasts evaluated using

the parameter vector estimate θ̂ from some parametric model and denote by

{fn(xn | Fn−1; θ)}
N
n=1 the sequence of densities corresponding to the true but

unobservable data generating process of xn. As shown by Rosenblatt (1952),

under the null hypothesis

H0 : {fn(xn | Fn−1; θ̂)}
N
n=1 = {fn(xn | Fn−1; θ)}

N
n=1, (3.9)

the sequence of empirical integral transforms defined by
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ζ̂n =

xn
∫

−∞

fn(u | Fn−1; θ̂) du (3.10)

will be uniform i.i.d. on the unit interval. Any test for uniformity of the se-

quence of integral transforms can be used to assess the forecast performance

of the model under consideration. Consider partitioning the support of ζn into

K equally spaced bins and denote the number of observations falling into the

k-th bin by Nk. The test statistic RTζ

RTζ =−2 ·
K
∑

k=1

Nk · ln
[

ςk

ς̂k

]

(3.11)

compares the theoretical frequency ςk = 1
K

to the observed relative frequency

ς̂k = Nk
N

and has a χ2 distribution with (K − 1) degrees of freedom under the

null hypothesis. The independence feature may be checked by computing the

Ljung and Box (1978) test for the sequence of empirical integral transforms.

The statistical tests for i. i. d. uniformity may be supplemented by graphical

tools. Departures from uniformity can easily be detected using a histogram

plot or quantile-quantile plot based on the sequence of ζ̂n, while the autocor-

relogram for ζ̂n can be used in order to assess the independence property.

3.4 Link to microstructure models

The modern literature on the microstructure of financial markets, grad-

ually widening in the style of Easley, Kiefer, O’Hara, and Paperman (1996),

picks out the presence of diverse types of market participants (traders) as a

central theme. The intercommunity of the broad literature is the initial posi-

tion that the market participants are differentiated by the level of information

which they harness privately and consequently the trading mechanism will

be discussed under the aspect of asymmetric information. Concerning this

matter it is easy to imagine that some traders exist who catch a signal indi-

cating that an asset is either overpriced or underpriced while other traders do

not notice anything. So, the market development can be easily characterized

by the coexistence and interaction of just two categories of traders: informed

traders and uninformed traders, also called liquidity traders or followers. The

informed trader’s strategy consists of making purchases and sales of assets in

the immediate aftermath of the recognition of favorable and unfavorable sig-

nals. The informed traders encroach upon the market development conjunctly
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and trigger heaped transactions as soon as they bushwhack relevant news.

Uninformed traders are insensible in regard to the information processing and

retain the habitual trading activity.

The collectivity of transactions, carried out either by the large attendance

of uninformed traders or by sporadic emersions of informed traders as a result

of information based decisions, can be seen as a realization of a point process

and the corresponding probability law that governs the occurrence of trades

can be specified by a duration statistic. The presence of different traders acting

on the financial market makes the embedding of a conglomerate of trader

specific characteristics into the ordinary ACD framework adjacent. Because a

specific transaction does not reveal by which type of trader it has been induced,

the introduction of an underlying unobservable mixing variable with discrete

distribution is reasonable. The mixing parameters represent the corresponding

probabilities that a transaction arises from a specific type of trader.

This simple theoretical background is excellently reflected in the MACD

framework which bases upon an arbitrary mixture distribution for the stochas-

tic process of innovations. Thereby the regime variable is in the capacity of

the mixing variable and the mixing parameters can be interpreted as fractions

of the different trader types acting on the market. The level of discrepancy

between trader specific peculiarities in trading behavior can be easily regu-

lated by adapting the parameters inside of equation (3.2). The instantaneous

transaction rates turn out to be different across the trader categories and this

is what we want to achieve primarily.

Bauwens, Giot, and Grammig (2000) report on the deficiency of ordinary

ACD models which is well founded by the inability of modelling observations

in the tails of their distributions appropriately. This arouses the suspicion that

the duration process is mulcted of some facts with fundamental importance.

The thoughts stimulated by the market microstructure theory justify an ad-

vanced approach for duration data which is materialized in the concise MACD

framework. By doing this, we hope to succeed in overcoming the lack of sat-

isfactory forecast performance of ordinary ACD models and we expect a clear

answer from the empirical application given in the following section.
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4 Empirical application

4.1 The data set

The data used in our empirical application consists of transactions of the

common stock of Boeing, recorded on the New York stock exchange from the

trades and quotes database provided by the NYSE Inc. The sampling period

spans 19 trading days from November 1 to November 27, 1996. We used all

trades observed during the regular trading day (9:30 - 16:00). The trading

times have been recorded with a precision measured in seconds. Observations

occurring within the same second have been aggregated to one trade. In the

final data set we removed censored observations: durations from the last trade

of the day until the close and durations from the open until the first trade of

the day.

It is well known that the length of the durations varies in a deterministic

manner during the trading day that resembles an inverted U-shaped pattern.

Engle and Russell (1997) propose to decompose the duration series into a

deterministic time of day function Φ(tn−1) and a stochastic component xn,

so that the raw durations are generated from x̃n = xn · Φ(tn−1). In order to

remove the deterministic component we apply the two step method proposed

by Engle and Russell (1997) in which the time of day function is estimated

separately from other model parameters. 2 Dividing each raw duration x̃n in

the sample by an estimate of the time of day function Φ(tn−1), a sequence

of deseasonalized durations xn is obtained which is used in all subsequent

analyses. 3

Descriptive information about sample moments and Ljung Box statistics

of the raw and the seasonally adjusted duration data is reported in Table 1.

< insert Table 1 about here >

2 Simultaneous ML-estimation as in Engle and Russell (1998) and Veredas et al.
(2002) is also feasible. Engle and Russell (1998) report that both procedures give
similar results if sufficient data is available.
3 Estimates of the time of day function were obtained by conducting a semi-
nonparametric regression of the durations on the time of day according to Gallant
(1981) and Eubank and Speckman (1990). Details on the seasonality adjustment
step are available from the authors upon request.
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As expected, the series of adjusted durations has a mean of approximately

one. Both time series exhibit overdispersion relative to the exponential distri-

bution which has standard error equal to mean. A mixture of distributions will

accommodate well to the stylized fact of overdispersion. Another eyecatching

characteristic of the data is the presence of strong positive autocorrelation in

the trade durations as can be seen in Figure 1.

< insert Figure 1 about here >

Even after seasonal adjustment, the Ljung-Box tests reject the hypothesis of no

autocorrelation up to 50 lags at the 5% significance level, although the shape

of the autocorrelation function changes slightly. Therefore, an autoregressive

approach appears to be appropriate as a model for the transaction durations.

4.2 Specification of the Mixture ACD Model

We estimate an ordinary ACD model and also two contrastable specifica-

tions of the MACD model with consideration of two regimes, i. e. J = 2. The

mean function ψn is logarithmic and both lag orders p and q in the recursion

are equal to one, i. e.

ψn = exp(ω) · ψβ1
n−1 · x

α1
n−1. (4.1)

Concerning the demand for a unit mean of the innovation process εn we dis-

tinguish between two different cases. The restrictive variant, denoted by the

character R in the following, comprises the fact that all regime specific ex-

pectations of the innovation process E
(

εn|sn = j; θ(j)
ε

)

are forced to be equal

to one, so that absolutely no care for equation (3.2) is needed. This variant

may be estimated by employing the EM-algorithm, while the nonrestrictive

variant, denoted by the character R̄ in the following, has to be estimated by

maximizing the incomplete log-likelihood function directly.

Each regime specific distribution of the innovation process εn|sn = j is

taken from the Burr (1942) family of distributions with regular time-invariant

distributional parameters κ(j) and σ(j) which are associated with each of the

two regimes of interest. The introduction of additional time-invariant distri-

butional parameters µ(j) is considered in the nonrestrictive case where the

equality
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J
∑

j=1

π(j) ·
[

µ(j)
]− 1

κ(j) ·
Γ
(

1 + 1
κ(j)

)

· Γ
(

1
σ(j) −

1
κ(j)

)

σ(j)

(

1+ 1

κ(j)

)

· Γ
(

1
σ(j) + 1

)

=1 (4.2)

has to be ensured in the course of estimation. Because of the need to consider

two constrictive facts in estimation, i. e. the sum of all regime probabilities

is equal to one and the requirement given in (4.2), one has to estimate µ(1)

and π(1) beside the regular distributional parameters and the parameters of the

mean function only. In contrast, the restrictive case incorporates corresponding

distributional parameters which obey a parameterization according to

µ(j) =











σ(j)

(

1+ 1

κ(j)

)

· Γ
(

1
σ(j) + 1

)

Γ
(

1 + 1
κ(j)

)

· Γ
(

1
σ(j) −

1
κ(j)

)











−κ(j)

(4.3)

so that they are exempted from estimation. This parameter determination im-

plies that each regime specific expectation of the innovation process is equal

to one. Bringing together the restrictive and the unrestrictive variant, each

εn|sn = j follows the Burr distribution with the three distributional parame-

ters µ(j), κ(j), σ(j) and the regime specific density of the duration xn turns out

to be

fn
(

xn | sn = j,Fn−1; θ
(j)
ε , θψ

)

=
µ(j)
n · κ(j) · xκ

(j)−1
n

(

1 + σ(j) · µ
(j)
n · xκ(j)

n

)
1

σ(j)
+1

(4.4)

with the time variant parameter µ(j)
n = ψ−κ(j)

n · µ(j). Regardless to the in-

ner constitution of equation (4.2) which makes room for the restrictive and

unrestrictive variant of the MACD model, the regime specific distributions

of a selective duration xn turn out to be entirely different. Even the restric-

tive variant which implies E
(

xn|sn = j,Fn−1; θ
(j)
ε , θψ

)

= ψn for every regime

j ∈ J , gives leeway to different regime specific distributional features, i. e. the

first moment of xn is fix across all regimes but all higher moments are regime

variant. The unrestrictive variant provides a cut above in the sense that all

moments are allowed to be regime specific. But for all that, both specification

variants definitively imply the fact E (xn|Fn−1; θ) = ψn. An interesting issue

becoming apparent is whether the restrictive variant is sufficiently flexible to

catch regime specific characteristics hidden in the duration process.

But first of all, we attend to the topic concerning the outclassing perfor-
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mance of MACD models. Coming from the standard ACD approach there

is no exorbitant increase in the number of parameters composing a MACD

model. In comparison to the ordinary Burr ACD model, the corresponding

two regime MACD model, which conforms to the instruction of the R variant

(R̄ variant), requires the estimation of three (four) additional parameters only.

Parameter estimates, standard errors 4 , values of the log-likelihood func-

tion and information criterion; descriptive statistics for the series of empirical

integral transforms and p-values of statistical tests for the corresponding pa-

rameters being equal to the population counterpart implied by the uniform

distribution on the unit interval; and also results of the specification tests for

all of the model specifications we estimated are presented in Table 2.

< insert Table 2 about here >

At first, the Bayesian information criterion BIC proposed by Schwarz (1978)

does not support the ordinary logarithmic ACD model which is nested as a

special case in the MACD framework with logarithmic mean specification and

J = 1. The test on the mean argues for the null hypothesis ζ̄ ≡ E (ζn) = 0.5,

but the result of the variance test is not in favor of the null hypothesis

σ2
ζ ≡ V ar (ζn) = 1

12
. The low p-values obtained from the quantile tests are

a sign of bad adaption in the tail of the distribution. Moreover, the specifica-

tion test that we performed does not support the one regime model. This can

be seen from the low p-value of the ratio test which is equal to zero. Hence,

the apparent defect of the ordinary logarithmic ACD model stems from the

improper choice of distribution for the innovation process. However, the or-

dinary logarithmic ACD model is able to capture the autocorrelation pattern

of the intertrade durations adequately as indicated by the high p-value of the

Ljung Box statistic for the series of empirical integral transforms.

The present results for proper mixture models indicate a significant im-

provement on the performance of the ordinary logarithmic ACD model. They

admit for the general conclusion: for J greater than one, first order MACD

models are able to eliminate the distributional problem of ordinary ACD mod-

els and the autocorrelation pattern in the duration data will be considered

4 Standard errors have been computed based on numerical derivatives of the in-
complete log likelihood function using the quasi - maximum likelihood estimates of
the information matrix as suggested by White (1982).
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adequately. Even the two regime case breeds best results, as can be seen from

the last four columns of Table 2. For each of the two variants we estimated,

the arithmetic mean of the empirical integral transforms, denoted by
¯̂
ζ , draws

near one half, the corresponding empirical variance s2
ζ̂

becomes significantly

one twelfth and the first, second and third quartile does not differ significantly

from 0.25, 0.50 and 0.75 - these facts express the extraordinary conformance

to the uniform distribution on the unit interval. The p-values of the RTζ test

increase by leaps and bounds, they rise to over 10%. The hypothesis of no

autocorrelation in the integral transforms will be statistical significant at con-

ventional significance levels.

For purposes of comparison Figure 2 contains histogram plots and QQ -

plots for the series of integral transforms for the 1-regime and the nonrestric-

tive 2-regime model specification.

< insert Figure 2 about here >

The plots clearly show that the estimated MACD model produces empirical

integral transforms that match the implied theoretical density very well and

tends to give accurate forecasts over the whole range of observed values of

x. In contrast, the plots for the one regime model show that the empirical

integral transforms disagree sharply with the theoretical density, and that it

tends to produce systematically biased forecasts of small x, the histogram for

the first four quantiles is outside of the 95% confidence interval.

The parameter estimates for ω, α1 and β1, which determine the evolution of

the duration’s conditional mean in time, differ only marginally across the three

models we estimated totally. The same may be noticed for the distributional

parameters. The estimation results obtained from the multiple regime models

show that the two regular distributional parameters κ(j) and σ(j) vary keenly

across the regimes, each with larger value in the second regime than in the

first. This has a strong impact on the shape of the hazard function considered

for each regime separately. For both variants of the MACD model Figure 3 dis-

plays the two regime specific hazard functions λn(xn|sn = j,Fn−1; θ̂) and also

the regime unspecific hazard rate λn(xn|Fn−1; θ̂), each evaluated for ψn = 1

and by taking the parameter vector estimate into account.

< insert Figure 3 about here >
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Note in the first instance, that the choice for the one or the other variant

does not change the qualitative nature of the hazard rates. The hazard rate

assigned to the second regime tends to rise rather quickly after a transaction

has been observed. In contrast the hazard function under the first regime

increases moderately and gives clearly more weight to spells with a length

of more than two units of time. This corresponds nicely to the fact that the

first regime has higher probability π(1) than the second regime. Roughly three

fourths of all transactions were generated in the first regime.

So, the application of the MACD model affirms the existence of two con-

stitutively different streams governing the process of intertrade durations and

visualizes the different velocities from which trading evolves. The inertial trad-

ing activity, adumbrated by the hazard rate of the first regime, predominates

the whole trading process and can be associated with the theoretical vision

of trading behavior ascribed to the uninformed traders. The second regime

awards the image of succinct trading which can be traced back to informed

traders participating on the financial market.

5 Conclusions

Mixture models are frequently used in econometrics. This motivates us

to combine the basic idea of mixture models with the art of ACD modelling

originally introduced by Engle and Russell (1998). The fusion is realized by

the Mixture ACD model (MACD) which we present, challenge and put to the

test in this paper. We can conclude from our research work that the MACD

model turns out to be a promising new framework for modelling autocorre-

lated durations obtained from high frequency data sets from stock and foreign

exchange markets.

In the first instance the MACD model emerges as a successful tool for

forecasting time series of intraday transaction durations, as such it is able to

remove the distributional problem from which ordinary ACD models occasion-

ally suffer. Since the pompous Markov switching ACD model of Hujer, Vuletić,

and Kokot (2002) and the slender discrete mixture exponential ACD model of

De Luca and Gallo (2004) are seen as rivals, the creation of the MACD model

can be recognized as a compromise solution between the two extremes. As a

smart generalization the MACD model enhances the prestige of the discrete
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mixture exponential ACD model and as a manageable special case it belittles

the pride of the Markov switching ACD model. The amount of flexibility of the

MACD model can be regulated in four directions: the number of regimes, the

regime specific distributional assumptions, the mean function and finally the

condition for unit mean in the residual process are starting points for altering

the comprehension.

A further asset of the MACD model is its interpretation in the context of

recent market microstructure models. The weights π(j) can be perspicuously

regarded as fractions of informed and uninformed traders acting on the finan-

cial market, but the imagination of constant proportions all along the time

may be questionable. Therefore, an interesting extension of the MACD model

would be to make it fit for time varying regime probabilities.
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Tables

Table 1
Descriptive Statistics for trade durations

Statistic Raw durations x̃n Adj. durations xn

Arithmetic mean 48.3248 1.0007
Standard deviation 61.8416 1.1933
Minimum 1.0000 0.0141
First Quartile 10.0000 0.2323
Median 27.0000 0.5875
Third Quartile 61.0000 1.2980
Maximum 894.0000 16.1672
Sample size 9092 9092
Ljung Box statistica 3815.6633 1362.7593

a The Ljung Box statistic is based on 50 lags. For a significance
level of 5% the tabulated critical value is 67.1671.
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Table 2
Estimation results and specification tests

Ordinary R variant R̄ variant
Parameter Estimate Stderr Estimate Stderr Estimate Stderr

ω 0.0147 0.0021 0.0184 0.0028 0.0139 0.0020
α1 0.0248 0.0035 0.0224 0.0032 0.0233 0.0033
β1 0.9715 0.0047 0.9725 0.0045 0.9713 0.0047

µ(1) - - - - 0.9241 0.0438

κ(1) 1.1699 0.0182 1.4220 0.1801 1.4652 0.0513

κ(2) - - 2.7822 0.0448 2.4410 0.1546

σ(1) 0.3333 0.0284 0.3542 0.1750 0.3887 0.0425

σ(2) - - 2.5387 0.0395 1.5921 0.2256

π(1) - - 0.7252 0.0228 0.7238 0.0249

N 9092.00 9092.00 9092.00
LI -8691.82 -8518.40 -8510.35
BIC 17429.21 17109.73 17102.75

¯̂
ζ, p

(

TE(ζ)

)

0.4963 0.2217 0.4984 0.5972 0.4994 0.8429
s
ζ̂
, p
(

TV ar(ζ)
)

0.2960 0.0006 0.2880 0.7618 0.2883 0.8706

ζ̂0.25, p
(

TQ25(ζ)

)

0.2219 0.0000 0.2543 0.3433 0.2564 0.1577

ζ̂0.5, p
(

TQ50(ζ)

)

0.4903 0.0631 0.4887 0.0310 0.4915 0.1050

ζ̂0.75, p
(

TQ75(ζ)

)

0.7654 0.0007 0.7500 0.9915 0.7507 0.8846

RTζ , p(RTζ) 248.4424 0.0000 25.5817 0.1423 30.7584 0.0429
LBζ , p(LBζ) 54.2217 0.3166 53.4368 0.3437 52.4001 0.3810

LI is the value of the incomplete log-likelihood function. BIC is the Bayesian informa-
tion criterion computed as −2 · LI +ln(N) ·k where k denotes the number of estimated
parameters. A couple of descriptive statistics is given for the series of empirical integral

transforms:
¯̂
ζ is the arithmetic mean and p

(

TE(ζ)

)

is the p-value of a test for E(ζ) = 0.5.
s
ζ̂

is the standard deviation and p
(

TV ar(ζ)
)

is the p-value of a test for V ar(ζ) = 12−1.

ζ̂0.25 is the 25 percent quantile and p
(

TQ25(ζ)

)

is the p-value of a test for ζ0.25 = 0.25;
the analogous computations are done for the 50 and 75 percent quantile. RTζ is the
value of the ratio test for i. i. d. uniformity of ζ using 20 equal bins and p(RTζ) is
the corresponding p-value. LBζ is the value of the Ljung-Box statistic for 50 lags and
p (LBζ) is the corresponding p-value.
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Figures

Fig. 1. Autocorrelation function for durations

Raw durations x̃n Adjusted durations xn
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Fig. 2. Histograms and QQ-plots for integral transforms

1-regime model 2-regime model
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Fig. 3. Hazard function

Restrictive variant R Nonrestrictive variant R̄
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