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Abstract

Self-organization is thought to play an important role in structuring nervous systems. It frequently arises as a consequence
of plasticity mechanisms in neural networks: connectivity determines network dynamics which in turn feed back on network
structure through various forms of plasticity. Recently, self-organizing recurrent neural network models (SORNs) have been
shown to learn non-trivial structure in their inputs and to reproduce the experimentally observed statistics and fluctuations
of synaptic connection strengths in cortex and hippocampus. However, the dynamics in these networks and how they
change with network evolution are still poorly understood. Here we investigate the degree of chaos in SORNs by studying
how the networks’ self-organization changes their response to small perturbations. We study the effect of perturbations to
the excitatory-to-excitatory weight matrix on connection strengths and on unit activities. We find that the network
dynamics, characterized by an estimate of the maximum Lyapunov exponent, becomes less chaotic during its self-
organization, developing into a regime where only few perturbations become amplified. We also find that due to the mixing
of discrete and (quasi-)continuous variables in SORNs, small perturbations to the synaptic weights may become amplified
only after a substantial delay, a phenomenon we propose to call deferred chaos.
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Introduction

A fundamental question in Neuroscience is how cortical circuits

acquire the structure required to perform desired computations. A

range of different plasticity mechanisms shape neural circuits, but

their interaction at the network level remains poorly understood.

Recent modeling work has shown that recurrent spiking neural

networks with multiple forms of plasticity can learn interesting

representations of sensory inputs [1] and reproduce experimental

data on the statistics and fluctuations of synaptic connection

strengths in cortex and hippocampus [2]. These self-organizing

recurrent networks (SORNs) rely on an interplay of spike-timing

dependent plasticity (STDP) and different homeostatic mecha-

nisms. While these networks offer a plausible explanation for the

experimentally observed approximately log-normal distribution of

excitatory synaptic efficacies, their dynamics are still poorly

understood. Here we try to shed light on this issue by employing

tools from nonlinear dynamics analysis. Specifically, we perform a

perturbation analysis, where we investigate how the evolution of a

network changes in response to a small perturbation. We

characterize the degree of chaos by an estimate of the maximum

Lyapunov exponent and study it at different stages of network

evolution.

Several previous studies have investigated the occurrence of

chaos and associated irregular dynamics [3] in discrete and

continuous time artificial neural networks with symmetric

oscillators [4], asymmetric weight structures [5] and both weak

and full connectivity [6–9]. Most studies have used sigmoidal

transfer functions like the hyperbolic tangent [10–12]. The high

degree of abstraction of such models often makes it hard to directly

relate them to brain function, e.g. see [13]. Robust chaos is

common in such systems and with more units in the network an

increasing number of positive Lyapunov exponents has been

observed [14,15]. The tendency for chaotic dynamics in networks

with excitatory and inhibitory neurons can be reduced by Hebbian

learning mechanisms as well as certain external stimuli [10,16].

Self-organization due to Hebbian learning is frequently assumed

to be the responsible mechanism for the observed stabilization

[10,17]. Interestingly, it has also been argued that recurrent neural

networks should operate at the edge of chaos in order to maximize

their computational power [18–20]. This suggests that neither

highly chaotic dynamics as prevalent in random networks nor

strongly regular dynamics may be desirable for the brain. Here we

investigate the degree of chaos in the SORN model as studied in

[2]. An interesting property of these networks is their hybrid

nature that mixes discrete and (quasi-)continuous variables [21].

Our major finding is an overall reduction of chaos during its self-

organization, with the network settling into a regime where only

few perturbations become amplified. Due to the mixing of discrete

and (quasi-)continuous variables in SORNs, they are instances of

hybrid dynamical systems [21]. We also show that because of their

hybrid nature, small perturbations to the synaptic weights may

become amplified only after a substantial delay, a phenomenon we

propose to call deferred chaos.
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Methods

Network Model
The network model is almost identical to the one in [2]. It

consists of NE~200 excitatory and NI~40 inhibitory threshold

neurons linked through weighted synaptic connections. W EE

represents the connections between excitatory neurons. Initial

connectivity is sparse with a connection probability of 0.1, but can

change during network evolution. Self-connections of the excit-

atory neurons are forbidden. W EI are the inhibitory-to-excitatory

connections with connection probabilities of 0.2. W IE denotes

excitatory-to-inhibitory connections which are all-to-all and

remain fixed at their random initial values. Connections between

inhibitory neurons were left out to keep the model simple and to

stay consistent with the previous work on these networks [1,2].

Unless specified otherwise, all initial weights are drawn from a

uniform distribution over the interval ½0,1� and then normalized

such that the sum of weights projecting to a neuron is one.

The binary variables x(t)[f0,1gNE

and y(t)[f0,1gNI

represent

the activity of the excitatory and inhibitory neurons at a discrete

time t, respectively. The network activity state at time step tz1 is

given by:

xi(tz1)~

H
XNE

j~1

W EE
ij (t)xj(t){

XNI

k~1

W EI
ik (t)yk(t){

0
@ TE

i (t)zjE(t)Þ,ð1Þ

yi(tz1)~H
XNE

j~1

W IE
ij xj(t){TI

i zjI (t)

0
@

1
A : ð2Þ

TE and TI denote threshold values for the excitatory and

inhibitory neurons, respectively. Initially, they are uniformly

distributed in the interval ½0,TE
max� and ½0,TI

max�, but not bounded

during network evolution. H(:) is the Heaviside step function. jE

and jI represent Gaussian white noise with mj~0 and s2
j~0:05.

The connection strength of nonzero weights between excitatory

neurons is subject to the following spike-timing dependent

plasticity (STDP) rule:

W EE
ij (t)~gSTDP xi(t)xj(t{1){xi(t{1)xj(t)

� �
: ð3Þ

If W EE
ij becomes negative due to this update, the synapse is

immediately eliminated.

At every time step we normalize all incoming weights to an

excitatory neuron by

W EE
ij (t)/W EE

ij (t)=
X

j

W EE
ij (t) , ð4Þ

W EI
ij (t)/W EI

ij (t)=
X

j

W EI
ij (t) : ð5Þ

Furthermore, the applied intrinsic plasticity (IP) mechanism

regulates the spiking thresholds in such a way that all neurons

exhibit the same average firing rate HIP:

TE
i (tz1)~TE

i (t)zgIP xi(t){HIPð Þ : ð6Þ

Thresholds of inhibitory neurons remain at their initial values.

Inhibitory weights are subject to a different STDP rule. We

implement a form of inhibitory spike-timing dependent plasticity

(iSTDP) for the W EI connections. If an inhibitory neuron is active

and the excitatory neuron receiving input from this inhibitory

neuron stays silent in the following time step, the corresponding

weight will be weakened by the amount ginhib. If, however, the

excitatory neuron is active despite receiving input from the

inhibitory unit, then the weight will be strengthened by an amount

ginhib=HIP:

W EI
ij (t)~{ginhibyj(t{1) 1{xi(t)(1z1=HIP)½ � : ð7Þ

This rule aims to balance excitation and inhibition and is inspired

by [22]. If an inhibitory neuron succeeds in silencing a target

excitatory cell with its spike, the inhibitory influence is weakened.

Conversely, if the inhibitory neuron fails to silence the excitatory

cell, its inhibitory influence is strengthened.

We also introduce a structural plasticity (SP) mechanism to

compensate for the synapse elimination induced by STDP. We

conceive this rule as a Bernoulli experiment for each neuron. At

every time step there is a small probability pC~0:01 that a neuron

creates new synapses to other excitatory cells. The number of

connections is drawn from a Poisson distribution with mean lP~2
and their weight is set to 0:0001. The parameters used in the

simulations were as follows: gSTDP~0:004, gIP~0:01, TE
max~1,

TI
max~0:5, HIP~0:1, ginhib~0:001.

Perturbation analysis
We apply perturbation analysis to measure the stability of the

network during different stages of its evolution as observed in [2].

The network has a finite set of elements, each of which takes a

discrete (unit activations) or (quasi-)continuous (weights and

thresholds) value. To perform the analysis, we simulate a first

network (the original) up to a certain time step. Then a copy of the

network is made and a small perturbation is applied to this copy.

Both original network and copy are simulated with identical noise

as well as under the same influence of structural plasticity and we

compare their subsequent evolution. To this end, we consider the

Euclidean or Hamming distance of network weights, thresholds

and activities, respectively. To construct a ‘‘baseline’’ Euclidean

distance for the purpose of normalization due to changing statistics

during network evolution, we consider the current weight

matrices, threshold and input vectors of the unperturbed SORN

and compute their Euclidean distance to 100 random matrices and

vectors, respectively. These are generated by randomly permuting

the rows/entries of the original matrix/vector. This keeps the

statistics of the weights, thresholds and inputs identical. The

average distance obtained in this procedure then serves as the

normalization factor 1=N when calculating the Euclidean

distances. An analogous normalization for the Hamming distances

is not necessary, however. As stated above, the implemented IP

mechanism guarantees a constant average firing rate. Perturba-

tions are performed by strengthening or newly generating one

randomly selected entry of the W EE weight matrix by an amount

proportional to N . Here, N corresponds to the inverse

normalization factor of the W EE matrix. The perturbation

strength is set to 0:001|N .

Chaos Waning in SORN
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Note that a perturbation of the network weights will also affect

the unit activities, because an increased (or decreased) synaptic

weight may allow (or prevent) a neuron from reaching its firing

threshold in a certain situation. In fact, since the dynamics of the

weights of the network depends exclusively on the synaptic

normalization and the unit activities via the STDP mechanism, a

small change to one weight can only percolate to other weights

after it has resulted in an effect on the discrete unit activities.

Conversely, a change of unit activities will immediately affect the

synaptic weights, because the firing (or silence) of a neuron may

lead to the triggering (or not) of the STDP mechanism which

adapts the synaptic weights. Note that the effects of perturbations

to unit activities will generally be bigger, because an extra spike in

a unit can lead to changes in all incoming and all outgoing

connections of this neuron at the same time.

Because perturbations to the weights will only affect unit

activities after a delay (at least one time step later), we define two

different Lyapunov exponents. The first, immediate Lyapunov

exponent i quantifies any amplifications of perturbations to the

weight matrix following the perturbation as long as the neuron

activities remain unaffected. The second, delayed Lyapunov

exponent d quantifies amplifications of perturbations to the

weight matrix after these have altered the neuron firing patterns.

Specifically, let t0 be the time of a perturbation which we observe

for a total of Tt time steps and t� be the time step right before the

unit activities start differing between the perturbed and unper-

turbed networks (t0ƒt�vt0zTt). We estimate i according to:

i~
1

Ti

ln
dt0zTi

dt0

, ð8Þ

where Ti~t�{t0 and dt denotes the normalized Euclidean

distance corresponding to the excitatory-to-excitatory weight

matrix. Analogously, we estimate d as:

d~
1

Td

ln
dt�zTd

dt�
:

ð9Þ

Figure 1. Average fraction of nonzero excitatory-to-excitatory connections as a function of time. The different phases of connectivity
and time periods of investigation are indicated in terms of color. Errorbars represent standard errors (10 simulations) and are given every 7,000th time
step.
doi:10.1371/journal.pone.0086962.g001

Figure 2. Long term development of normalized Euclidean distances between excitatory weight matrices of perturbed and
unperturbed networks. A Averaged result over 1,000 simulations with error bars indicating standard errors of the mean. The inset shows a
magnification of the initial 100 time steps. B Histogram of normalized Euclidean distances at 1,000th time step in A. In figures A–B, the color indicates
the starting time of the perturbations as shown in the legend. C Examples of single simulations in the decay phase: the normalized Euclidean
distance often stays at a low value for several hundred time steps but then displays an extensive amplification.
doi:10.1371/journal.pone.0086962.g002

Chaos Waning in SORN
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Td is set to 10 time steps. The combined maximum Lyapunov

exponent c is computed as follows:

c~
1

TizTd

X
j~i,d

jTj : ð10Þ

If the activities are not affected at all within the investigated time

period or if they are influenced immediately after the perturbation,

the combined Lyapunov exponent simply reads c~ i with

Ti~Tt and c~ d , respectively. Else if t�wt0zTt{Td , we used

Td~t0zTt{t�. Perturbations which completely vanish are

ignored.

To characterize network dynamics in different stages of network

evolution, perturbations are performed at different time points. At

each stage, we consider 10 independent networks. Each network is

considered at 10 different time points within 100 time steps during

this phase. For each time step we perform 10 perturbations. Thus,

we perform a total of 10|10|10~1,000 perturbations for each

stage of the network’s evolution.

Results

As the network develops, its connectivity changes due to the

action of the different plasticity mechanisms. Zheng et al. [2]

observed that the network goes through different phases as

indicated by the number of excitatory-to-excitatory connections

present in the network. Fig. 1 shows the average fraction of

excitatory-to-excitatory connections present in the network as a

function of time. During an initial decay phase (around time step

10,000), many connections are driven to zero strength and are

removed from the network. The connectivity becomes minimal

between time step 30,000 and 40,000. In the subsequent growth

phase, connectivity increases again. Around time step 100,000 the

network has entered the stable phase where connectivity stays

roughly constant.

Effect of perturbations on network weights and
thresholds

We measured the long term development of the normalized

Euclidean distance between the excitatory-to-excitatory weight

matrix of the original and the perturbed network over 1,000 time

steps after the perturbation as described in the Methods. This was

done for SORNs in the three different phases of their develop-

ment: starting at 10,000 time steps (decay phase), 50,000 time steps

(growth phase), 100,000 and 200,000 time steps (early and late in

their stable phase). The results are shown in Fig. 2 A. The average

normalized Euclidean distance tends to increase with time. This

increase is fastest for networks in the decay phase and slowest for

Figure 3. Example of a single amplified perturbation. A Development of the normalized Euclidean distance in a single perturbation during the
decay phase. B Histogram of the single absolute differences of the excitatory-to-excitatory weights at time step 1,000 in A. C Differences in neuron
activity patterns between the perturbed and the unperturbed network. D Time course of ln (dtz1=dt). dt corresponds to the normalized Euclidean
distance in A at time step t.
doi:10.1371/journal.pone.0086962.g003

Chaos Waning in SORN
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networks in the stable phase. Fig. 2 B shows a histogram of

normalized Euclidean distances between the original and

perturbed network 1,000 time steps after the perturbation. Note

that a majority of perturbations are not strongly amplified

(normalized Euclidean distance stays close to zero) and only few

perturbations have a strong effect on the network. During the

decay phase around time step 10,000 (blue) there are many more

such perturbations producing a strong effect compared to the

other phases. In the first bin, the height of color bars increases

monotonically as the networks go from decay to stable phase,

which indicates that they become less sensitive to perturbations

with time. Fig. 2 C gives examples of how individual perturbations

during the decay phase of the network develop. The normalized

Euclidean distance between the weight matrix of the original and

the perturbed network tends to maintain a small value but may

suddenly increase after several hundred time steps.

To illustrate this effect more clearly, we show as an example the

changes of the excitatory-to-excitatory weights, the activity

patterns and the time development of ln (dtz1=dt) in a single

amplified perturbation from the decay phase in Fig. 3. Fig. 3 A
displays the time course of the Euclidean distance between the

weight matrices of the perturbed and unperturbed networks. Note

the sharp increase around time step 150. Fig. 3 B shows a

histogram of the single absolute differences of the excitatory-to-

excitatory weights at the 1,000th time step in A. Interestingly, only

a comparatively small fraction of weights contribute noticeably to

the total normalized Euclidean distance and most of the

connection strengths remain close to their original values. Data

points in Fig. 3 C indicate situations where a neuron stays silent in

the perturbed network and is active in the unperturbed network or

vice versa. It is apparent that the sudden increase of the

normalized Euclidean distance between both networks around

time step 150 in A coincides both with upcoming differences in the

activity patterns in C and an underlying time period of positive

values of ln (dtz1=dt) in D.

The observed delayed amplification of the perturbation to the

synaptic weights is due to the mixing of discrete and (quasi-

)continuous variables in the network. The perturbation of a weight

can only percolate to other weights after it has managed to alter

one or more of the discrete unit activities. Due to the threshold

function in the units’ dynamics and depending on the size of the

weight perturbation, this may take a substantial amount of time.

We propose to call this phenomenon deferred chaos. Note that the

increase in the Euclidean distance following changes in the unit

activities in Fig. 3 A is not exponential. This also holds for the

examples in Fig. 2 C. The reason for this is again that the changes

to the synaptic weights are mediated by changes to the unit

activities. At any time step, only a small number of weights are

affected via the STDP mechanism and each of them will change its

value by +gSTDP. Thus the total amount of weight change per

time step is limited, thereby preventing an extended exponential

growth.

To quantify the deferred chaos, we considered the immediate,

delayed and combined Lyapunov exponents introduced above.

Figure 4. Deferred chaos. A Histogram of the immediate Lyapunov exponent. The legend shows the starting times of perturbations for each
subfigure. B Histogram of the delayed Lyapunov exponent. C Histogram of the combined Lyapunov exponent. D Time course of the immediate and
the delayed Lyapunov exponent. E Time course of the combined Lyapunov exponent. F Histogram of the time a weight perturbation needs to affect
the neuron activities. The data correspond to Fig. 2. Errorbars in D and E indicate standard errors of the mean.
doi:10.1371/journal.pone.0086962.g004

Chaos Waning in SORN
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Fig. 4 A–C show histograms of i, d and c at different stages of

network evolution. The majority of perturbations produce a

negative value of i across all phases. We also find more

perturbations that have a slightly positive value during the decay

phase (around time step 10,000) than in any other phase.

Especially, the stable phase (around time steps 100,000 and

200,000) displays a huge amount of slightly negative values. Fig. 4

B shows histograms of estimated d values for the different phases

of network evolution. Almost all estimates are positive, indicating

chaotic behavior right after a perturbation has affected the unit

activities. Note that only a fraction of perturbations ever affect the

unit activities, however. This fraction is highest in the decay phase

around time step 10,000 and becomes smaller with network

evolution (10,000: 40.6%, 50,000: 30.1%, 100,000: 16.9%,

200,000: 13.0%). Also note that since the growth of the Euclidean

distance of the weight matrix after ‘‘take-off’’ is generally not

exponential as explained above (compare Fig. 3 A), the estimate of

d depends on the time interval Td over which it is estimated.

Results are shown for Td~10 time steps (compare eq. (9)). Longer

time intervals will lead to a smaller estimate of d . Fig. 4 C shows

histograms of c values for the different phases of network

evolution, which are estimated by combining i and d according

to (10). The number of negative c estimates is smallest for

networks in the decay phase and highest for networks in the stable

phase.

Fig. 4 D, E show the average i, d , and c for the four

different stages of network evolution. i, d and c are

significantly different from zero across all phases (except c

during the growth phase: p~0:3230, else: pv10{7; t-test). On

average, i ( d ) is strictly negative (positive) during the whole

network evolution. d significantly increases from growth to stable

phase. However, we also find a significant decrease of i and c

from decay to stable phase (pv10{6 for i, d and c; ANOVA

with multiple comparisons and post-hoc t-test), indicating chaos

waning. Specifically, c starts at a positive value during the decay

phase, crosses the critical line and settles down to negative values

when entering the stable phase. Finally, we find a significant

increase according to iv cv d averaged across all stages of

network evolution (pv10{15; ANOVA with multiple comparisons

and post-hoc t-test). Only 16 out of a total of 4|1000
perturbations vanished completely and were excluded, which

should not strongly bias the results.

We also quantified the distribution of time periods of how long

it takes a weight perturbation to influence the neuron activities.

Fig. 4 F shows histograms of such ‘‘take-off’’ times depending on

the stage of network evolution. Across all network stages the

perturbations typically need several hundred time steps to alter

activities for the first time. Note that the relatively steady increase

of the normalized Euclidean distance in Fig. 2 A results from

averaging many curves like the ones in Fig. 2 C with different

‘‘take-off’’ times.

Figure 5. Long term development of normalized Euclidean distances between inhibitory-to-excitatory weight matrices and
excitatory threshold vectors. The color indicates the starting time of the perturbations as shown in the legend. A Averaged normalized Euclidean
distance between inhibitory-to-excitatory weight matrices over 1,000 simulations for 1,000 time steps. B Averaged normalized Euclidean distance
between excitatory threshold vectors over 1,000 simulations for 1,000 time steps. Errorbars indicate standard errors of the mean in A and B. C
Histogram of normalized Euclidean distances at 1,000th time step in A. D Histogram of normalized Euclidean distances at 1,000th time step in B.
doi:10.1371/journal.pone.0086962.g005

Chaos Waning in SORN
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Fig. 5 shows how a perturbation to the excitatory-to-excitatory

weights affects inhibitory-to-excitatory connections and excitatory

thresholds. Again, perturbations are amplified least when the

network has reached the stable phase around time step 100,000

and 200,000. In Fig. 5 A, there is no significant difference between

the decay phase (around time step 10,000) and the growth phase

(around time step 50,000), which is in contrast to the development

of the excitatory-to-excitatory weights as shown in Fig. 2 A and the

thresholds as shown in Fig. 5 B. However, part C and D of Fig. 5

exhibit the same stabilizing phenomenon as Fig. 2 B: the fraction

of perturbations that are not strongly amplified increases

monotonically across the different stages of network evolution.

Effect of perturbations on the unit activities
In Fig. 3 C we already saw how a single perturbation to the

synaptic weights can influence the unit activities. To study this

effect more systematically, we consider the evolution of the

Hamming distance between the activities of the excitatory units in

the original and the perturbed network. Fig. 6 A shows that the

average long term development of the Hamming distance

increases with time during all phases. Consistent with the results

from the previous section, the amplification of an initial

perturbation tends to become smaller as the network develops.

In the stable phase, perturbations grow most slowly. A similar

behavior is observed for the non-discrete inputs to the excitatory

and inhibitory units. Specifically, we consider the normalized

Euclidean distance between the arguments of the Heaviside step

functions in the update equations (1) and (2) for the excitatory

(Fig. 6 B) and inhibitory units (Fig. 6 C). Note that the effects of

the perturbation are generally small. A mean Hamming distance

of 4.5 after 1,000 time steps (compare Fig. 6 A) means that on

average only four or five units out of 200 have a different activity

state. Often the perturbation is immediately ‘‘forgotten’’ in the

next time step and only infrequently it is amplified up to a limiting

mean value of 36 corresponding to two independent networks with

sparse activity of 10% active units per time step. Nevertheless, we

find once again in two out of three cases the smallest amount of

strongly amplified simulations in the stable phase, which is

evidence for the network’s stabilization (compare Fig. 6 D–F).

We speculated that the effect of a perturbation to a synaptic

weight may depend on the outdegree of the receiving neuron. A

unit with a high outdegree connects to many other units in the

network. Therefore, altering one of its incoming weights may

affect a large part of the network. This raises the question if the

normalized Euclidean distance is correlated to the outdegree of the

neuron that receives the perturbed weight. This is not the case,

however. Fig. 7 shows a scatter plot of the perturbed neuron’s

outdegree vs. the normalized Euclidean distance between excit-

atory weight matrices of original and perturbed network after

1,000 time steps for 1,000 perturbations in each of the three phases

of network development. Coefficients of correlation r are small

and not significant at the 5% level in any of the four stages (10,000

time steps: r~{0:0106, p~0:7378; 50,000 time steps:

r~0:0050, p~0:8745; 100,000 time steps: r~{0:0613,

p~0:0526; 200,000 time steps: r~0:0582, p~0:0658; two-tailed

t-test).

Figure 6. Perturbation analysis of neuron activities. The legend shows the starting times of perturbations. A Averaged Hamming distance
between neuron activities of the perturbed and unperturbed networks over 1,000 simulations for 1,000 time steps. Only every tenth time step is
plotted. Error bars indicate standard errors of the mean in A–C and are given every 50th time step. B Averaged normalized Euclidean distance of
excitatory neuron inputs over 1,000 simulations for 1,000 time steps. C Averaged normalized Euclidean distance of inhibitory neuron inputs over
1,000 simulations for 1,000 time steps. D–F Histograms of Hamming distances and normalized Euclidean distances at 1,000th time step in A–C,
respectively.
doi:10.1371/journal.pone.0086962.g006
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Discussion

The potential role of chaos in the brain has long been a topic of

debate. On the one hand, recent work suggests that chaotic

dynamics could play a central role in approximating stochastic

inference schemes, e.g., [23]. On the other hand, recent

theoretical considerations and experimental data support the view

that the brain operates in a regime close to criticality that is neither

highly chaotic nor strongly regular [18–20,24]. A recent analysis

by Priesemann et al. indicates that the human brain may in fact

favor a slightly subcritical operating regime across different

vigilance states [25]. This raises the question how the brain tunes

its dynamics towards such a slightly subcritical regime.

Here we have investigated the dynamics of the recently

proposed self-organizing recurrent neural network model (SORN)

[1,2]. This model has been shown to learn effective representations

of dynamic inputs and to reproduce experimental data on the

statistics and fluctuations of synaptic connection strengths in

cortex and hippocampus. Here we have studied the network’s

self-organization without any structured input but under the

influence of weak noise. To characterize the network’s dynamics

during different phases of its self-organization, we performed a

perturbation analysis and quantified the sensitivity of the network

to small changes to its synaptic weights. Our major findings are

that only a fraction of perturbations becomes amplified within a

limited time window, and this fraction decreases across the

different phases of network self-organization. This is consistent

with findings in other recurrent network architectures with

Hebbian-like plasticity mechanisms showing a development

towards more stable dynamics [10,14,26]. Interestingly, most

perturbations to the synaptic weights remained at a ‘‘critical’’ level

or even disappeared again. We showed that amplification of a

perturbation depends on whether it affects the neural activity or

not. Perturbations that are amplified produce drastic changes in

the network’s firing patterns compared to the cases where neuron

activity in perturbed and unperturbed network stays identical.

Importantly, we found that such changes in the network’s activity

patterns could occur after substantial delays, a phenomenon we

refer to as deferred chaos. This effect is a consequence of the hybrid

nature of our network in that it mixes discrete (neuron activities)

and (quasi-)continuous (weights and thresholds) variables [21].

Since changes to the synaptic weights are driven by the neurons’

activity patterns, a change to a synaptic connection has to first

affect the activitiy of the recipient neuron before it can percolate to

other weights in the network. Depending on the size of the initial

perturbation this can take a very long time across all different

phases of network self-organization. It is an open question whether

there are interesting engineering applications for such deferred chaos.

Overall, our results are broadly consistent with earlier findings

that similar networks may develop dynamics that are close to the

critical regime [26]. Further analysis is needed to understand how

the network’s dynamics is influenced by structured inputs.
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