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Deutschsprachige Zusammenfassung

Ubersicht

Die Entstehung des Universums, die Entstehung des Lebens und die Entstehung eines
Bewusstseins sind die wohl drei interessantesten Gebiete heutiger Forschung, welche
mit unterschiedlichen Methoden angegangen werden kénnen. Die Entstehung des Be-
wusstseins ist heute ein groflies Teilgebiet der Hirnforschung, wobei die Entstehung
des Lebens und die davon ausgehende Entwicklung verschiedener Spezies ein Gebiet
der Evolutionsbiologie sind [1,2,3]. Die Frage nach der Entstehung des Universums,
welches vor 13.7 Milliarden Jahren mit dem Urknall entstanden sein soll, und seiner
Beschaffenheit sind ein Gebiet der heutigen modernen Physik. Soweit wir heute wissen
existieren vier Grundkréfte in unserem Universum. Es handelt sich dabei um die starke,
die schwache, die elektromagnetische und die gravitative Wechselwirkung. Die ersten
drei Kréfte bilden das sogenannte Standardmodell der Physik [4,5,6].

Um die Grundbausteine der Materie unseres Universums zu erforschen, werden in
groflen Beschleunigern wie am Relativistic Heavy Ion Collider (RHIC) am Brookhaven
National Laboratory (BNL) und am Large Hadron Collider (LHC) am Conseil Europeén
pour la Recherche Nucléaire (CERN) schwere Ionen bei hohe Energien zur Kollision
gebracht. In einer kontrollierten experimentellen Umgebung wird die nukleare Materie
dabei sehr stark komprimiert und erreicht auf diese Art und Weise sehr hohe Energie-
dichten und Temperaturen. In diesem Fall wird ein neuer Zustand der Materie erreicht,
welcher als Quark-Gluon-Plasma (QGP) bezeichnet wird [7,8,9] und in der sehr frithen
Phase des Universums existiert haben soll. In diesem Stadium sind die Elementarteil-
chen, Quarks und Gluonen, nicht mehr in Hadronen gefangen, was als Farbeinschluss
bezeichnet wird, sondern ungebunden, was als asymptotische Freiheit bezeichnet wird.
Dieser Zustand hat eine sehr kurze Lebensdauer in der Gréflenordnung um At ~ 5—10
fm/c, da das System schnell expandiert und abkiihlt, wobei wiederum ein (Phasen-
)[“Ibergang eintritt, wenn eine pseudo-kritische Temperatur, T;, erreicht wird. Dieser
Ubergang zeichnet sich dadurch aus, dass die Elementarteilchen Quarks und Gluonen
wieder zu Hadronen rekombiniert werden, welche spéter in den jeweiligen Detektoren
gemessen werden.

Der Farbeinschluf}, welcher es nicht erlaubt, freie Quarks und Gluonen zu beobach-
ten, macht eine direkte Untersuchung des in Schwerionenkollisionen erzeugten Quark-
Gluon-Plasmas unmoglich. Deshalb miissen die Eigenschaften der final gemessenen Ha-
dronen genau erfasst werden, um eine geniigend grofle Menge an experimentellen Daten
zu erhalten. Mithilfe von verschiedenen theoretischen Modellen, bei denen davon ausge-
gangen wird, dass eine Quark-Gluonische Phase generiert wird, kénnen durch Vergleich
mit den experimentellen Daten Riickschliisse auf dessen Eigenschaften gezogen werden.

Eine Eigenschaft, welche dabei anfangs nicht erwartet wurde, war das starke kol-
lektive Verhalten und die damit eingehende rasche Thermalisierung der ungebundenen



Quarks und Gluonen. Die Messung des elliptischen Flusses in nicht-zentralen Kollisio-
nen impliziert, dass sich das QGP wie eine nahezu perfekte Fliissigkeit verhilt. Die
Annahme einer perfekten Fliissigkeit wurde in spéteren Jahren jedoch relativiert, da
die Viskositidt des QGP einen endlichen Wert hat. Eine mit der Entropiedichte reska-
lierte Viskositét, n/s, welche ein Maf} fiir die Stérke der Dissipation des Systems ist
und welche iiber den direkten Vergleich mittels viskoser hydrodynamischer Rechnungen
extrahiert werden kann [10,11,12,13,14,15,16,17], liegt sehr nahe an den vorhergesag-
ten unteren universellen Grenzen [18,19,20]. Dies deutet darauf hin, dass das QGP die
wohl perfekteste Fliissigkeit unseres Universums ist.

Ein weiterer Hinweis fiir die Existenz einer solchen Phase von ungebundenen Quarks
und Gluonen ist die Unterdriickung von hoch-energetischen Teilchen, welche man als
Jets bezeichnet. Diese Unterdriickung von Jets wird in der Fachsprache auch als Jet-
Quenching bezeichnet [21, 22,23, 24]. Die sehr kleine Viskositéit des Mediums fiihrt
dazu, dass Jets in der frithen Phase der Schwerionenkollisionen unterdriickt werden,
insofern sie das erzeugte heifle und dichte Medium durchqueren sollten. Sogenann-
te Zwei-Teilchen-Korrelationen weisen darauf hin [25, 26,27, 28], dass die Energie der
Jets sich auf die weiteren weichen Teilchen des Mediums verteilt und unter bestimm-
ten Umstinden eine Doppel-Peak-Struktur in den Zwei-Teilchen Korrelationen er-
scheint. Urspriinglich wurde angenommen, dass dieses Signal ausschliefSlich durch die
Wechselwirkung der Jets mit dem Medium hervorgerufen wird. Eine tiber Jahre viel
versprechender Erklarungsversuch fiir diese Struktur waren StofSwellen in Form von
Mach “schen Kegeln, welche durch mit Uberschallgeschwindigkeit propagierende Jets
induziert werden [29,30]. Mit der Annahme eines Mediums, welches sich wie eine fast
perfekte Fliissigkeit verhélt, werden durch die Energie- und Impulsdeposition des Jets
Schallwellen erzeugt, welche interferieren und auf einem Kegel mit einem Offnungs-
winkel liegen, welcher von der Geschwindigkeit des Jets und der Geschwindigkeit der
emittierten Schallwellen abhéngt. Auf dieser Kegelfront, welche auch als Stofifront be-
zeichnet wird, werden Teilchen mit einem bestimmten Emissionswinkel in Bezug zur
Richtung des Jets emittiert, was in einem vereinfachten Bild zu einer im Experiment be-
obachteten Doppel-Peak-Struktur fithren soll. Dennoch existieren auch andere mégliche
Beitrige, welche zu solch einer Struktur fithren kénnen. Das ist zum Beispiel der trian-
gulére Fluss, welcher aus fluktuierenden Anfangsbedingungen in Schwerionenkollisionen
resultiert [15,31,32].

Die Tatsache, dass sich das in Schwerionenkollisionen erzeugte Medium wie eine fast
perfekte Fliissigkeit verhélt und hochenergetische Jets unterdriickt werden, ist ein star-
kes Indiz fiir die Bildung von Stofiwellen in Form von Mach “schen Kegeln. In dieser
Arbeit wird die Frage untersucht, wie sich solche Stofiwellen und Mach “sche Kegel in
einem idealen und stark viskosen Medium ausbreiten, welche Einfliisse verschiedene For-
men der Energiedeposition haben und ob ein solcher Mach “scher Kegel in der Tat einen
Beitrag zu der Doppel-Peak-Struktur liefert. Fiir diese Untersuchungen benutzen wir
ein mikroskopisches Transportmodell, welches die relativistische Boltzmann-Gleichung
(rBE) 16st. Der Vorteil im Vergleich zu viskosen hydrodynamischen Modellen ist, dass
Zeitentwicklung von Jet und Medium innerhalb eines gemeinsamen Modells beschrieben
werden konnen. Ein weiterer Vorteil dieses Modells ist, dass man damit Nichtgleichge-
wichtsphinomene und Systeme mit starken Gradienten verldsslich beschreiben kann,
was bei viskosen hydrodynamischen Modellen nicht der Fall ist. Die genaue Losung der
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rBE dient im weiteren auch dazu, entsprechende dissipative hydrodynamische Forma-
lismen auf die Grenzen ihrer Anwendbarkeit zu iiberpriifen. Dies erreichen wir, indem
wir Stowellenphdnomene in einem kontrollierten eindimensionalen Szenario untersu-
chen, was fiir die kinetische und viskose hydrodynamische Theorie ein harter Testfall
ist. Die folgende Arbeit basiert auf den Publikationen [33, 34,35, 36,37, 38].

Relativistische kinetische Theorie und Hydrodynamik

Die relativistische Hydrodynamik ist eine klassische Feldtheorie, welche makroskopi-
sche Objekte wie Fliissigkeiten beschreiben kann. Hierbei muss angenommen werden,
das jedes Fliissigkeitselement nahe am thermodynamischen Gleichgewicht und die mi-
kroskopischen Langenskalen, wie die mittlere freie Weglidnge, A, klein gegeniiber den
makroskopischen Lingenskalen wie die Ausdehnung des untersuchten Systems, L, sind.
Die kinetische Theorie dagegen beschreibt die Dynamik von einfachen Gasen auf einer
mikroskopischen Ebene. Thr Vorteil gegeniiber der hydrodynamischen Theorie ist, dass
ihre Anwendbarkeit nicht auf Systeme nahe am thermodynamischen Gleichgewicht be-
schriankt ist. Das bedeutet, dass sie auch Systeme beschreiben kann, in welchen die
mikroskopischen Léngenskalen viel grofler als die makroskopischen Léngenskalen ist.
Eine bekannte Grofle, welche das Verhéltnis der mikroskopischen gegeniiber der ma-
kroskopischen Langenskala beschreibt, ist die Knudsen-Zahl,

. )\mfp
Kn = 7 (0.1)

Von einer nahezu idealen Fliissigkeit spricht man, wenn Kn < 1, dagegen spricht man
von viskosen Fliissigkeiten, wenn Kn < 1. Im Bereich Kn ~ 1 gilt die Theorie der
Hydrodynamik nicht mehr als anwendbar und im Bereich Kn > 1 wird von einem
nicht interagierenden, freien Gas gesprochen.

Die einfachste Form einer kinetischen Theorie ist die relativistische Boltzmann-
Gleichung (rBE) [39,40,41],

PO f(x,p) = Ca+ Coz+ -+, (0.2)

welche die Raumzeitevolution der Einteilchenverteilungsfunktion, f(z,p), unter Be-
riicksichtigung von Wechselwirkungsprozessen beschreibt. Die vollstéindige Information
iiber das System ist jederzeit durch die Einteilchenverteilungsfunktion, f(z,p), gegeben.
Die makroskopischen Gréflen des Systems konnen aus der Verteilungsfunktion extra-
hiert werden. Solche Gréflen sind unter Umsténden der Energie-Impuls-Tensor, T+,
und der Teilchenflu-Vektor, N*. Die Losung der rBE ist ein schwieriges Unterfangen
und nur nur numerisch moglich, was in dieser Arbeit mittels des in Kapitel 6 vorge-
stellten kinetischen Transportmodell BAMPS (Boltzmann Approach To Multi-Parton
Scattering) [41] gelost wird. Mittels einer stochastischen Beschreibung der Kollisionen
ist es dem Modell moglich, die rBE in einer sehr effizienten Weise zu l6sen, was in dieser
Arbeit am Beispiel der Simulation von relativistischen Stofwellen demonstriert wird.
Die Gleichungen fiir die ideale Hydrodynamik folgen direkt aus der Energie-, Impuls-
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und Teilchenerhaltung,

9,1 =0, (0.3)
9,N*=0. (0.4)

Die wesentlichen Groflen hierbei sind der Druck, p, die Energiedichte, e, die Teilchen-
dichte, n, und die Vierer-Geschwindigkeit, u#. Zusammen mit einer Zustandsgleichung,
p(n, e), hat man ein geschlossenes System von Gleichungen. Mochte man jedoch dis-
sipative Effekte mit beriicksichtigen, was zum Beispiel notwendig ist, wenn man das
QGP beschreiben mochte, werden weitere Gleichungen benétigt. Hierbei wird T#” und
NH* in einen Gleichgewichtsanteil und dissipativen Anteil zerlegt,

Nt = Nl + Nt = nut + V#, (0.5)
T =T +0T" = eutu” — (p + ) A + WHy” + WYy + mhv. (0.6)

wobei hiermit die Volumenviskositéit, II, der Warmeflu3, ¢*, und der Scherspannungs-
tensor, 7, eingefiihrt werden.

Mithilfe der Grad “schen Methode [42] oder der Expansion in der Knudsen-Zahl [40]
kann ein Zusammenhang zwischen den makroskopischen Gréflen und der Verteilungs-
funktion, f(z,p), hergestellt werden, wobei die Koeffizienten wie die Scherviskositiit,
71, der Warmeleitkoeflizient, k, oder die Volumenviskositédt, ¢, von der ihr zu Grunde
liegenden mikroskopischen Theorie abgeleitet werden kénnen. In Abschnitt 3.4 wird
diese Vorgehensweise kurz skizziert und die wichtigsten viskosen hydrodynamischen
Formalismen vorgestellt. Das sind zum einen die relativistischen relaxationsbasierten
Gleichungen zweiter Ordnung von Israel und Stewart (IS) [43,44,45], welche kausal sind
und standardméfig genutzt werden, um die Evolution des QGP in Schwerionenkolli-
sionen zu beschreiben. Zusétzlich zeigen wir die erst kiirzlich in [35,46,47] vorgestellte
Theorie RTRFD (Resummed Transient Relativistic Fluid Dynamics), welche unter Be-
nutzung der Momentenmethode hergeleitet wurde. Beide Theorien werden im Laufe
der Arbeit mit den numerischen Losungen der rBE auf ihre Anwendbarkeit untersucht.
Zur numerischen Realisierung wird das viskose hydrodynamische Modell vSHASTA
genutzt, welches im Appendix D kurz vorgestellt wird®.

StoBwellen und Mach “sche Kegel in idealer Hydrodynamik

In der idealen Hydrodynamik ist die Entropie eine Erhaltungsgrofie. Dies trifft nicht
mehr zu, wenn Losungen mit einer Diskontinuitidt auftreten, welche als Stofwellen
bezeichnet werden. StoBwellen zeichnen sich durch abrupte Anderungen von Druck,
Energiedichte oder Geschwindigkeit aus und propagieren schneller als die Schallge-
schwindigkeit durch ein Medium. Stofwellen sind keine seltenen Phénomene in der
Natur und treten in einer imposanten Form bei Sternenexplosionen auf, was auch als
Supernovae bezeichnet wird. Weiterhin spielen interstellare Stolwellen, welche durch
das Eindringen von Gas- und Staubwolken in eine gasreiche Galaxie erzeugt werden,
eine nicht unbedeutende Rolle bei Sternentstehungsprozessen.

'Wir danken H. Niemi und E. Molnar fiir die numerischen Berechnungen mittels vSHASTA und fiir
die gelieferten Resultate.
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Die Ausbreitung von Stofwellen in solchen Systemen ist ein komplexer Prozess, des-
sen Simulation numerisch aufwendige Modelle erfordert. Dennoch ist es méglich, Kon-
figurationen zu finden, in welchen man die Ausbreitung von Stofiwellen in stark verein-
fachten Systemen untersuchen kann. Ein sehr bekanntes Problem aus der Mathematik
ist das relativistische Riemann-Problem (rRP). Es behandelt die Ausbreitung einer
StoBwelle in einer idealen Fliissigkeit welche aus einer anfénglichen Diskontinuitéit von
thermodynamischen Grofien und/oder Geschwindigkeit folgt. Im speziellen Fall, in wel-
cher das Medium links und rechts von der Diskontinuitét in Ruhe ist, breitet sich eine
Stolwelle in den Bereich mit kleinerem Druck aus, wobei gleichzeitig in die entge-
gengesetzte Richtung eine Verdiinnungswelle mit Schallgeschwindigkeit in den Bereich
hoheren Druckes propagiert. Beide Wellen sind miteinander iiber eine Kontaktunste-
tigkeit verbunden. Eine analytische Losung fiir das rRP wird in Kapitel 5 fiir eine
einfache Zustandsgleichung diskutiert. Im Allgemeinen dient diese analytische Losung
zur Uberpriifung von numerischen Modellen im Hinblick auf ihre Genauigkeit, was zum
Teil auch in dieser Arbeit erfolgt.

Ein weiteres bekanntes Phénomen, in welchem Stoflwellen auftreten kénnen, sind
Mach “sche Kegel. Wenn eine sehr schwache Stérung mit einer Geschwindigkeit schnel-
ler als der Schall durch ein Medium propagiert, emittiert die Stérung Schallwellen,
welche interferieren und einen Mach “schen Kegel bilden. Diese Kegelfront besitzt einen
Offnungswinkel, welcher von der Geschwindigkeit der Stérung und der Schallgeschwin-
digkeit abhéngt. Die Ausbreitung von Mach “schen Kegeln ist im Allgemeinen sehr kom-
pliziert, wenn nicht von einer schwachen und gleichméflig propagierenden Storung aus-
gegangen werden kann. Im Falle einer nicht schwachen Storung werden anstatt Schall-
wellen Stoflwellen emittiert, wobei die Kegelfront auch als Stofiwellenfront bezeichnet
werden kann?. Der Offnungswinkel des Mach “schen Kegels héingt in diesem Fall von der
Geschwindigkeit der Storung und der Stofwellengeschwindigkeit ab. Zusétzlich treten
nicht-lineare Effekte wie Diffusion Wake und Head Shock auf, welche von der Form
der Energiedeposition abhéngen. Im Weiteren ist der Einfluss von Viskositét und an-
deren Faktoren auf die Entwicklung von Stofwellen auch in Form von Mach “schen
Kegeln aktuell noch eine weitgehend offene Frage und wird in dieser Arbeit mittels des
kinetischen Transport-Modells BAMPS untersucht.

Diskussion und Ergebnisse

Die numerischen Ergebnisse der Arbeit werden in zwei Kapiteln dargestellt. In Kapi-
tel 7 behandeln wir die Untersuchung von StoBwellen in einem (1 + 1)-dimensionalen
System, wobei in Kapitel 8 die Untersuchung von Stowellenphéinomenen in Form von
Mach “schen Kegeln durchgefiihrt wird.

2Solche Mach “schen Kegel werden in der Natur zum Beispiel durch Uberschallflugzeuge erzeugt. An
der Front des Mach-Kegels werden Stofiwellen erzeugt, welche von einem Beobachter als lauter
Knall wahrgenommen werden.



Xiv

Untersuchung von StoBwellenphdnomenen in kinetischer Theorie und
dissipativer Hydrodynamik

Das Hauptanliegen in Kapitel 7 liegt darin, Stowellen mit dem kinetischen Trans-
portmodell BAMPS in einem statischen System zu untersuchen, welches im Weiteren
auch als Referenzlosung fiir die dissipativen hydrodynamischen Formalismen dienen
soll. Um die Performanz und Genauigkeit von BAMPS zu iiberpriifen, vergleichen wir
deren Resultate mit der analytischen Losung des rRP fiir eine ideale Fliissigkeit im mas-
selosen Limit. Es zeigt sich, dass durch einen sehr groflen Wirkungsquerschnitt, o, oder
aquivalent dazu durch einen sehr kleinen Wert fiir 17/s mittels isotroper binérer Kollisio-
nen das nahezu ideale Fliissigkeitslimit erreicht wird und die Losungen dieses Modells
damit in diesen Regionen vertrauenswiirdig sind. Nun ist es moglich, den kompletten
Ubergang von idealen zu viskosen StoSiwellen mittels BAMPS zu untersuchen, indem
wir systematisch die mittlere freie Weglidnge des Systems erhohen. Es zeigt sich, dass die
diskontinuierliche Stofifront, Kontaktunstetigkeit und Verdiinnungswelle mit erhchter
Viskositdt ausschmieren und die genannten Bereiche fiir sehr grofie Viskositédten nicht
mehr voneinander zu unterscheiden sind. Weiterhin beobachten wir auch, dass Stof3-
wellen eine gewisse Zeit bendtigen, um sich zu entwickeln, was in Abschnitt 7.1.4 im
Detail diskutiert wird. Fiir einen festen Wert fiir n/s ist die Losung bei frithen Zeiten
stark viskos, wohingegen sich bei spéteren Zeiten die Charakteristiken des Stofiwellen-
profiles entwickeln. Eine Grofle, welche diese Entwicklung am besten beschreiben kann,
ist die Knudsen-Zahl, Kn. Aufgrund der anfinglichen Unstetigkeit kénnen wir hier
ein Skalierungsverhalten erkennen. Mithilfe dieses Skalierungsverhaltens kénnen wir in
einer weiteren Studie in Abschnitt 7.1.5 abschétzen, dass Stofiwellenphdnomene in
einem gluonischen Medium in Schwerionenkollisionen und bei endlicher Lebenszeit des
QGP nur dann entwickeln kénnen, wenn der Wert fiir /s nicht wesentlich groier als
0.2 ist.

Die Stédrke der Stoflwelle héngt im wesentlichen vom Druckunterschied links und
rechts von der anfinglichen Diskontinuitét ab. Mithilfe von BAMPS ist es moglich, ver-
schiedene Szenarien von Druckunterschieden zu untersuchen, was in Abschnitt 7.1.3
demonstriert wird. Weitere Losungen des rRP werden in Abschnitt 7.2 im Detail un-
tersucht. Hier diskutieren wir den Effekt von inelastischen Prozessen, den Effekt einer
nicht-verschwindenden Masse, sowie die Entwicklung von Stolwellen mit zwei verschie-
denen Teilchensorten, welche {iber unterschiedliche Wirkungsquerschnitte untereinan-
der und miteinander wechselwirken. Inelastische Prozesse fithren zu einer chemischen
Aquilibrierung, wohingegen eine endliche Masse die Untersuchung der Volumenvisko-
sitdt erlaubt, da diese nicht wie im masselosen Limit verschwindet. Ein System von
mehr als einer Teilchensorte zeigt dagegen den hohen Grad an Komplexitét, welcher in
einer solchen Konfiguration auftreten kann.

Die numerischen Losungen von BAMPS dienen in Abschnitt 7.1.2 dazu, den Giil-
tigkeitsbereich der IS-Theorie, welche mit vSHASTA numerisch implementiert wird,
zu iiberpriifen. Fiir kleine Viskositdten ist die Ubereinstimmung zwischen der rBE
und IS Theorie hervorragend, aber nimmt mit groflerer Viskositdt stark ab. Fiir sehr
grofle Viskositéten erzeugt die IS-Theorie Diskontinuitdten, welche in den Lésungen der
rBE nicht auftreten. Wir argumentieren, dass ein Teil dieser Diskrepanz daher kommt,
dass die IS-Theorie nicht fiir grofe Knudsen-Zahlen anwendbar ist, was eine starke
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Einschrinkung dieser Theorie darstellt. Gleichzeitig kann man auch erkennen, dass der
Formalismus von IS im Gegensatz zum Scherflufl auch bei kleinen Knudsen-Zahlen
den Wirmefluss nicht richtig beschreiben kann. Die Losung dieses Problems wird in
RTRFD durch Beriicksichtigung hoherer Momente erreicht. In Abschnitt 7.3 werden
in einem etwas modifiziertem Szenario die Losungen der rBE mit dem IS-Formalismus
und mehreren Varianten von RTRFD verglichen. Die Untersuchung von Systemen mit
groffen Gradienten in Druck und Fugazitit zeigen die deutlichen Verbesserungen von
RTRFD gegeniiber dem IS-Formalismus. Dies wird zum einen damit begriindet, dass
die Transportkoeffizienten wie die Scherviskositét, 7, oder der Warmeleitkoeffizient,
k, exakter berechnet werden und auch die Kopplung der beiden dissipativen Stréme
richtig implementiert ist.

Der Bereich der Stofiwellenfront kann auch in deren Ruhesystem untersucht wer-
den, was uns erlaubt, diese in einem hoheren Detailgrad zu untersuchen. Dies wird
in Abschnitt 7.4 dargestellt. Hier werden links und rechts von der statischen Box
thermische Reservoire simuliert, und nach einer hinreichend langen Zeit erreicht das
System eine stationére Losung. Zum einen bestétigen wir hiermit, dass die Stofiwel-
lenfront proportional zur mikroskopischen Lingenskala ist, und zum anderen zeigt ein
Vergleich mit RTRFD die Einschriankung relaxationsbasierter dissipativer Formalis-
men, zu denen auch der IS-Formalismus gehort. Bei sehr hohen Geschwindigkeiten der
Stof3wellenfront erscheint in allen dissipativen Formalismen eine Diskontinuitét, wel-
che nicht in den Losungen der rBE enthalten ist, was eine starke Einschrinkung der
Anwendbarkeit solcher Formalismen impliziert. Wir vermuten, dass die systematische
Einbeziehung von Momenten aus Tensoren héheren Ranges® in RTRFD dieses Problem
16sen kann, was jedoch noch einer eingehenden Studie bedarf.

Untersuchung von Mach “schen Kegeln in einem kinetischen
Transportmodell

In Kapitel 8 wenden wir uns der Untersuchung von Mach "schen Kegeln in dem kine-
tischen Transportmodell BAMPS zu.

Da Mach “sche Kegel oft mit einer Doppel-Peak-Struktur in Verbindung gebrachte
werden, mochten wir mit Hilfe eines einfachen Modells den Ursprung einer solchen
Doppel-Peak-Struktur verstehen, was in Abschnitt 8.1 im Detail dargestellt wird.
Dieses Modell beschreibt einen idealisierten Mach “schen Kegel in einer zweidimensio-
nalen Ebene und zeigt, dass eine Doppel-Peak-Struktur nicht immer auftaucht und sehr
stark von der Stédrke der Stoflwelle abhédngt. Dariiber hinaus zeigt dieses vereinfachte
Modell, dass unter Benutzung von Cuts im Impulsraum eine Doppel-Peak-Struktur von
Teilchen aus dem hoher-energetischen Bereich stammt.

Anschliefend untersuchen wir in Abschnitt 8.2 die Struktur der relativistischen
Mach “schen Kegeln mithilfe des mikroskopische Transportmodells BAMPS in einem
statischen (2 4 1)-dimensionalen System. Dies erlaubt die Untersuchung eines Mach -
schen Kegels ohne den Einfluss von externen Faktoren wie einer Expansion. Die Simu-
lationen werden mit zwei verschiedenen Arten von Projektilen realisiert, das PED- und
JET-Szenario. Das PED-Szenario zeichnet sich durch eine reine Energiedeposition aus,

3grofer als 2.
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wohingegen beim JET-Szenario Energie und Impuls in das Medium deponiert werden.
Wir variieren die Energiedeposition in das Medium und untersuchen im Weiteren auch
den Einfluss einer endlichen Viskositéit auf die Struktur des Mach “schen Kegels.

Wir beobachten die Entwicklung von Mach “schen Kegeln fiir beide Sorten von Pro-
jektilen in einer nahezu perfekten Fliissigkeit, wobei die Struktur des Mach “schen Ke-
gels fiir jedes Projektil unterschiedlich ist. Das JET-Szenario zeigt die Entwicklung des
Mach-Kegels, zusétzlich aber sind ein starker Head Shock und eine in die Richtung des
Projektils propagierende Diffusion Wake sichtbar. Das PED-Szenario zeichnet sich da-
durch aus, dass eine Anti-Diffusion Wake auftaucht, dagegen aber kein Head Shock. In
allen Szenarien beobachten wir weiterhin, dass der Emissions- und Offnungswinkel des
Mach-Kegels stark von der Energiedeposition abhéngen. Zusétzlich, und wie schon in
den vorigen Untersuchungen mit Stowellen im rRP, neigt ein groler Wert fiir n/s da-
zu, die kegelartige Struktur und weitere Charakteristika jeglicher Profile zu zerstoren.
Je grofler die Viskositidt bzw. je linger die Zeit fiir die Entwicklung des Mach-Kegels
ist, desto mehr héngt die finale Struktur des Mach “schen Kegels von den Eigenschaften
des Projektils ab. Aufgrund der speziellen Implementierung der Projektile kénnen wir
ghnlich wie beim rRP ein Skalierungsverhalten finden.

Obwohl Mach-Kegel-dhnliche Strukturen in BAMPS beobachtet werden, sind diese
nicht zwingend mit einer Doppel-Peak-Struktur in der extrahierten azimuthalen Teil-
chenverteilung, dN/(Nd¢), verbunden. Es zeigt sich, dass nur das PED-Szenario zu-
sammen mit einer sehr hohen Energiedeposition zu einer solchen Doppel-Peak-Struktur
fithrt. Im JET-Szenario kann diese Struktur nicht beobachtet werden, da der Beitrag
von den Fliigeln des Mach-Kegels von den Beitrégen des Head Shock und der Diffusion
Wake iiberschattet wird. Das PED-Szenario besitzt in dieser Form aber keine Korre-
spondenz in der Schwerionenphysik. Das JET-Szenario hingegen ist ein vereinfachtes
Modell, zeigt jedoch, dass eine Doppel-Peak-Struktur nicht von einem Energie und Im-
puls deponierenden Teilchen erzeugt werden kann. Eine endliche oder gar sehr grofle
Viskositét zeigt hier keine Verbesserung, sondern fiihrt stattdessen zu einer Zerstérung
der Doppel-Peak-Struktur aus dem PED-Szenario.

In Abschnitt 8.4 untersuchen wir schlussendlich die Bildung von Mach “schen Ke-
geln in einer vollen (3 + 1)-dimensionalen zentralen Schwerionenkollision mit Glauber-
Anfangsbedingungen [48,49]. Diese Anfangsbedingungen implizieren eine radiale und
longitudinale Expansion. Wir ersetzen hier das Projektil durch einen hoch-energetischen
Jet mit anfangs endlicher Energie und Impuls. Fiir kleine Werte der Viskositét ist die
Bildung von Mach “schen Kegeln sichtbar, wihrend diese Struktur fiir grofie Viskositét
verloren geht. Aufgrund des Jet-Quenching ist die Stowellenfront stark gekriimmt und
Jet-induzierte Mach “sche Kegel, welche durch den radialen Fluss abgelenkt werden,
sind stark deformiert.

Die extrahierte azimuthale Zwei-Teilchen-Korrelation zeigt eine Doppel-Peak-Struk-
tur, wenn sich der Jet in einem einzelnen Event in entgegengesetzte Richtung zum
radialen Fluss bewegt. Dies impliziert, dass der starke Beitrag des Head Shocks und
der Diffusion Wake durch die radiale Expansion aufgehoben wird und der Beitrag
ausgehend von den Fliigeln des Mach-Kegels wieder zum Vorschein kommt. Betrachtet
man hingegen die Uberlagerung von vielen verschiedenen moglichen Wegen eines Jets,
erscheint auch hier eine Doppel-Peak-Struktur. Dieser Beitrag stammt von abgelenkten
deformierten Mach “schen Kegeln, deren Head Shock und Diffusion Wake diese Doppel-
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Peak-Struktur induzieren. Fiir beide moglichen Szenarien ist die Beobachtung einer
Doppel-Peak-Struktur fiir /s = 0.08 am stirksten ausgeprigt. Ein groflerer Wert fiir
n/s neigt dazu, diese Struktur zu zerstoren.

Die Resultate in diesen Szenarien zeigen, dass eine von Mach “schen Kegeln indu-
zierte Doppel-Peak-Struktur nur zum Vorschein kommt, wenn eine radiale Expan-
sion existiert. Dies wurde schon in vorigen Uberlegungen und Rechnungen gezeigt
[30,50,51]. Das naive Bild, dass nur die Fliigel des Mach “schen Kegels eine Doppel-Peak-
Struktur erzeugen, wird von unseren Rechnungen nicht unterstiitzt. Der Beitrag von
abgelenkten und deformierten Mach “schen Kegeln zu einer Doppel-Peak-Struktur ist
grofer, wobei diese aus dem Head Shock und Diffusion Wake stammt. Obwohl fluktu-
ierende Anfangsbedienungen in Schwerionenkollisionen einen sehr starken Beitrag zur
Doppel-Peak-Struktur in Zwei-Teilchen Korrelationen zu liefern scheinen [15, 31, 32],
ist der aus der Wechselwirkung von Jet und Medium resultierende Beitrag nicht zu
vernachléssigen. Mach “sche Kegel scheinen in Schwerionenkollisionen zu existieren. Je-
doch ist die Doppel-Peak-Struktur nicht die beste Observable fiir Mach “sche Kegel in
Schwerionenkollisionen.






1. Overview

1.1. This work

In this work the main emphasis is put on the investigation of relativistic shock waves
and Mach cones in hot and dense matter using the microscopic transport model BAMPS
(Boltzmann Approach To Multi-Parton Scattering), based on the relativistic Boltz-
mann equation (rBE). Using this kinetic approach we study the complete transition
from ideal-fluid behavior to free streaming. This includes shock-wave formation in a
simplified (1 + 1)-dimensional setup as well as the investigation of Mach-cone forma-
tion induced by supersonic projectiles and/or jets in (2 4+ 1)- and (3 + 1)-dimensional
static and expanding systems. We further address the question whether jet-medium
interactions inducing Mach cones can contribute to a double-peak structure observed
in two-particle correlations in heavy-ion collision experiments. Furthermore, BAMPS
is used as a benchmark to compare kinetic theory to several relativistic hydrodynamic
theories in order to verify their accuracy and to find their limitations. This work is
based on the publications [33,34, 35, 36,37, 38|.

1.2. Abstract

We solve numerically the relativistic Riemann problem (rRP) in viscous matter em-
ploying the microscopic transport model BAMPS. We demonstrate the transition from
ideal to viscous shock waves by varying the shear viscosity over entropy density ra-
tio, n/s, from zero to infinity. With increasing viscosity the sharp and discontinuous
characteristic structures are smoothened out. The shock waves need a certain time
to develop and a scaling behavior is found, which can be expressed in terms of the
Knudsen number, Kn. We show that an 7/s ratio larger than 0.2 prevents the devel-
opment of well-defined shock waves on timescales typical for ultrarelativistic heavy-ion
collisions. In addition, we solve the rRP by including inelastic processes in BAMPS.
Furthermore, we extend our discussion by solving the rRP for a gas of massive particles
and to a system of more than one component.

We compare the numerical solutions of the rBE solved by the microscopic trans-
port model BAMPS to the solutions of the Israel-Stewart (IS) theory. Comparisons
between these two approaches clarify and point out the regime of validity of second-
order hydrodynamics to describe relativistic shock phenomena. We find that a good
agreement for several observables between these two approaches requires a Knudsen
number of Kn. < 1/2. However, it is shown that the IS theory cannot reproduce
phenomena associated with heat flow. This failure is resolved by the recently derived
theory RTRFD (Resummed Transient Relativistic Fluid Dynamics) by comparing the
numerical solutions to the rBE in scenarios with large pressure and fugacity gradients.
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The microscopic transport model BAMPS is also employed to investigate the shock-
front region in its rest frame. A detailed study indicates that the shock-front width is
proportional to a microscopic length scale. We use the numerical solutions of BAMPS
to compare relativistic kinetic theory to the solutions of relativistic dissipative hydrody-
namics. We find limitations of relativistic dissipative hydrodynamics when describing
the shock-front region for large propagation speeds of the shock front.

Using BAMPS we extend the investigation on the evolution of conical structures
originating from a supersonic projectile or source moving through a hot gas of ultra-
relativistic particles. Using different scenarios for the interaction between source and
matter and different transport properties of matter, we study the formation and the
structure of Mach cones in a simplified (2+ 1)-dimensional static system. In particular,
a dependence of the Mach-cone angle on the details and rate of the energy deposition
from projectile to matter is investigated. Similarly to the shock waves in one dimension
a scaling behavior is found. Furthermore, the two-particle correlations extracted from
the numerical calculations are compared to an analytical approximation. We find that
the propagation of a highly energetic particle through matter does not lead to the ap-
pearance of a double-peak structure as observed in ultrarelativistic heavy-ion collision
experiments. The reason is the strongly forward-peaked energy and momentum de-
position in the head-shock region, which overshadows the contribution from the Mach
cone wings. In addition, we investigate the influence of the viscosity to the structure
of Mach cones by adjusting the cross section. A clear and unavoidable smearing of the
profile depending on a nonzero ratio of the shear viscosity to entropy density is clearly
visible.

The formation of Mach cones are also studied in a full (3 + 1)-dimensional setup
of ultrarelativistic heavy-ion collisions. For smooth initial conditions and central col-
lisions the jet-medium interaction is studied using highly-energetic jets and various
values of the shear viscosity over entropy density ratio, n/s, of the matter. For small
viscosities, the formation of Mach cones is visible, while for large viscosities character-
istic structures smear out and eventually vanish. The extracted azimuthal two-particle
correlation show a double-peak structure if, in a single event, the jet propagates in the
direction opposite to the radial flow. This implies that the contribution from the head
shock and from the diffusion wake is superimposed by the radial flow and the contri-
bution of the Mach-cone wings can show up. Considering the superposition of many
different jet paths, a double-peak structure also appears. The double-peak structure
then originates mostly from a superposition of deflected jet-induced Mach cones with
the contribution originating from head shock and diffusion wake. Increasing the value
of n/s tends to destroy the double-peak structure for any possible scenario.

1.3. The road map

In Chapter 2, we provide a general introduction to the field of heavy-ion collisions and
discuss the observables motivating the existence of (conical) shock-wave phenomena.
In Chapter 3, we introduce the general framework of kinetic theory and relativistic
hydrodynamics in order to provide the framework for the discussion of the phenomena
discussed in this work. We continue in Chapter 4 with the basic definitions of sound
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waves, shock waves, and Mach cones. We further give a theoretical description of
shock discontinuities in perfect fluids. In Chapter 5 we subsequently introduce the rRP,
which deals with the formation of shock waves originating from sharp discontinuities
in velocity or thermodynamic variables. An analytical solution for a perfect fluid and
a simple equation of state (EoS) is derived. The kinetic transport model BAMPS is
thoroughly introduced in Chapter 6. We put the main emphasis on the capability of
solving the rBE in an accurate way and on the extraction of hydrodynamic quantities.
Chapter 7 provides the baseline for studies of shock waves. We discuss the transition
from ideal to viscous shock waves in various setups using BAMPS and vSHASTA and
demonstrate the range of applicability of the IS theory and RTRFD. In Chapter 8
we discuss the evolution of shock-wave phenomena in form of Mach cones and the
corresponding two-particle correlations using several implementation of the projectile-
matter interaction in a static system. Finally, the influence of radial flow on the
formation and evolution of highly energetic jets in ultrarelativistic heavy-ion collisions
and the extracted two-particle correlations are inspected. The summary and main
conclusions of this work are provided in Chapter 9.






2. Introduction

The origin of the universe, the origin of life, and the emergence of consciousness are
probably the three most interesting current research areas. The emergence of con-
sciousness is today a large part of brain research, while the emergence of life and the
development of various species belong to the field of evolutionary biology [1,2,3]. The
question of the origin of the Universe is an area of current modern physics. We believe
that all the matter and radiation as well as space and time were formed during the
Big Bang which is believed to have occurred 13.7 billion years ago. The search for the
fundamental properties of matter created during the Big Bang is one of the greatest
challenges in modern physics and in the history of mankind.

Today we assume that there are four fundamental interactions of nature. These are
the strong, the weak, the electromagnetic, and the gravitational interaction. For the
strong, the weak, and the electromagnetic, quantum-field theoretical descriptions have
been developed. These theories constitute the Standard Model of elementary particles
[4,5,6]. The gravitational theory is described by the theory of general relativity [52]
and is actually not incorporated into the Standard Model. Up to now the Standard
Model of elementary particles includes six quarks, six leptons, four gauge bosons, and
the Higgs boson. The Standard model is complete, but not applicable above a certain
energy scale, where a more fundamental theory is valid. In this sense, the Standard
model is an effective theory.

2.1. Quantum Chromodynamics

The strong interaction is described by the non-abelian gauge theory of Quantum Chro-
modynamics (QCD) which is invariant under SU(3) gauge transformations [53,54,55].
The SU(3) group transforms the color charge analogously to the electric charge in
Quantum Electrodynamics (QED), which is represented by the symmetry group U(1).
In contrast to QED which has only one charge the color charge in QCD can take three
different values, N., [53,54]. These values are referred to as red, blue, and green. The
mediator of the strong interaction are gluons which hence play a similar role as photons
in QED. In contrast to photons, however, gluons can interact with each other, which
makes QCD a non-abelian quantum field theory. The gluons are spin-1 vector bosons.
The number of these force carriers is N, = 32 — 1 = 8, which corresponds to the octet
representation! of SU(3).

Quarks are particles which carry fundamental color charge. They are spin-1/2
fermions which are to the best of our knowledge particles without any substructure
and therefore called elementary particles. Up to now six flavors of quarks have been
identified experimentally. These flavors are called up, down, strange, charm, bottom,

'In general, an SU(N) gauge theory has N? — 1 gauge fields.
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and top. The up and down quarks are also called light quarks because their masses
are small ~ 2 — 6 MeV. In contrast, the strange, charm, bottom, and top quarks have
much larger masses. The quarks also carry electric charge: the up, charm, and top
have an electric charge of +(2/3)e, while the down, strange, and bottom quarks have
an electric charge of —(1/3)e.

The theory of QCD allows for a strict mathematical description in terms of its
Lagrangian [53, 54],

~ 1 , .
Locp =1 Z%W“ (D) ¥l — ZFEVFG’“ - quwg%,k (2.1)
q q

where wf; is the color component k (k = 1,--- , N, = 3) of the quark field of flavor ¢
and mass m,. We identify also the field strength tensor,

ngx = auAg - aI/AZ - gsfabcAZAi ) (2.2)

which is given by the gluon fields Aj (a=1,---,N,) and the structure constants of
SU(3), fabe- The non-abelian nature of QCD is reflected by the last term in the field
strength tensor. This part describes the coupling of gluons to each other. (D,),, =
Ok — i9s ) Ty Ay, is the covariant derivative and the T are the eight generators of
SU(3).

We now introduce the two most important features of QCD, which are confinement
and asymptotic freedom.

e confinement reflects the experimental observation that there are no isolated quarks
or gluons, i.e., color particles cannot exist in an asymptotic state. Therefore,
quarks form always colorless objects which are known as hadrons. Hadrons exist
in different forms, namely mesons, baryons, and antibaryons. The most familiar
ones are the proton, p, and the pion, w. All hadrons are bound states of quarks
and antiquarks. Thereby, (anti-)baryons consist of three valence (anti-)quarks
and thus are fermions, while mesons consist of quark-anti-quark pairs and thus
are bosons. However, recent measurements also indicate the existence of four-
quark states [56]. Further interesting colorless objects are glueballs, which have
not been manifested experimentally yet [57,58].

The best way to illustrate confinement is considering the following simplified
potential between the most simple colorless object, a quark-anti-quark pair. This
potential can be parametrized as

4045(622)
-5

Vir)= 3

+ k. (2.3)
with & € Rt and a,(Q?) = ¢5(Q?)/47 being the strong coupling constant of
QCD at a given momentum transfer, @, or energy scale, while g;(Q?) denotes
the coupling. The first part in Eq. (2.3) denotes the Coulomb-like potential
while the second is the confining part. If we try to separate the quark-anti-
quark pair, i.e., if we increase the distance r between quark and anti-quark, the
potential energy grows because of the second part in Eq. (2.3) [59]. As soon as the
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potential energy increases beyond twice the rest mass of the quark-anti-quark, a

new quark-anti-quark pair will suddenly be created, which implies that color is
always confined.

asymptotic freedom is a property of QCD which affects that the interaction be-
tween quarks and gluons become very weak for large momentum transfer @, i.e.,
large energy scales [60,61]. In other words, quarks behave as almost free particles
at large energy scales and are thus not bound inside hadrons anymore.

The existence of confinement and asymptotic freedom as well as the energy depen-
dence of the strong coupling constant has been explored in a large variety of experi-

ments. Figure 2.1 illustrates the decrease in as(Q) for large ). This figure qualitatively
demonstrates the concept of confinement and asymptotic freedom.
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Figure 2.1.: The strong coupling constant, as(Q), at various energy scales, ), extracted

from different experimental measurements. The picture has been taken
from Ref. [62].

The remarkable feature of asymptotic freedom suggests that at high energy densities
and temperatures a new phase of matter, namely the Quark-Gluon Plasma (QGP),
exists [7,8,9]. The QGP is believed to have existed in nature in the very early stage
of the universe, a few microseconds after the Big Bang, where the energy densities and
temperatures were extremely high. Such a phase of matter is further assumed to occur

in the core of a neutron star where the nuclear density is several times large than for
normal nuclear matter of protons and neutrons.
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One of the greatest challenges in physics is to explore the QGP in a controlled
experimental environment. This goal has been achieved with of ultrarelativistic heavy-
ion collision (HIC) experiments which are supposed to reach conditions similar to those
shortly after the Big Bang.

2.2. Ultrarelativistic heavy-ion collisions

Today the best way to explore the properties of nuclear matter is the collision of
ultrarelativistic heavy ions using modern accelerators. Using sufficiently large collision
energies it is possible to reach energy densities in the system, which are much larger
than e ~ 1 GeV/fm3. This offers the possibility to reach the state of a deconfined
phase of quarks and gluons.

The era of experimental research of heavy-ion collisions has started in the mid-
70s at the BEVALAC at the Lawrence Berkeley National Laboratory (LBNL). The
BEVALAC studied excited and compressed hadronic matter at center of mass energies
of 2 GeV per nucleon pair [63]. However, the energy was too small in order to reach a
state of deconfined quarks and gluons as predicted by QCD. In the following years, the
Alternating Gradient Synchroton (AGS) at the Brookhaven National Laboratory (BNL)
and the Super Proton Synchroton (SPS) at the Conseil Europeén pour la Recherche
Nucléaire (CERN) have been constructed and provided the possibility to accelerate
heavy ions to ultrarelativistic energies, i.e., energies much larger than the rest mass of
the constituents, for the first time. For heavy-ion experiments the AGS and the SPS
have provided center of mass energies up to /s = 11.5 A GeV and /s = 17.3 A GeV,
respectively.

The results obtained at fixed-target experiments at SPS signalized already the onset
of a deconfined phase [64,65]. However, clear results and the systematic investigation
of the QGP became possible for the first time when the Relativistic Heavy-Ion Collider
(RHIC) at BNL was put into operation in 2000. RHIC also was the first dedicated
heavy-ion accelerator built as a collider and provided center of mass energies of up to
VSNN = 200 A GeV for Au + Au collisions. At RHIC, there were four experiments,
BRAHMS, PHENIX, PHOBOS, and STAR, which indicated that a new phase of matter
had been produced and that this phase behaves like a nearly-perfect fluid with a variety
of remarkable properties [7, 10, 66, 67, 68, 69, 70, 71, 72, 73]. The major results of all
experiments at RHIC have been published in so called white papers [25,26,27,28]. Up
to now, the major experiments, STAR and PHENIX, are still in operation.

Finally, the Large Hadron Collider (LHC) at CERN became operational in 2010.
Today it is the largest and most powerful colliding facility which is also designed to
find experimental evidence for the existence of the Higgs boson? [74]. The first heavy-
ion measurements with Pb+4Pb have been started in the end of 2011. Initially the LHC
has reached a center of mass energy of \/syny = 2.76 A TeV, but in the near future, it
will reach its maximum center of mass energy of \/syny = 5.5 A TeV. The experiments
at the LHC are ALICE, ATLAS, CMS, and LHCb, while only ALICE is exclusively

2The Higgs boson is a spin-0 elementary particle predicted by the Standard model. The existence
of the Higgs boson would confirm the existence of the Higgs field which gives an explanation why
some fundamental particles have masses.
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designed for heavy-ion collisions. The other experiments are almost solely used to find
the Higgs boson. So far, the results obtained at RHIC have been confirmed by the
measurements performed at the LHC [75,76,77,78]. The Facility for Antiproton and
Ion Research (FAIR) adjacent to the Gesellschaft fir Schwerionenforschung (GSI) is
a fixed-target experiment, which will start its HIC program in the near future®. The
CBM experiment at FAIR project will study the QCD phase diagram of nuclear matter
in a different regime with larger baryochemical potential.

The results at RHIC and LHC indeed imply that a hot and dense state of matter,
which is definitely not a hadronic gas of matter, is created in heavy-ion collisions.
However, the exact properties of this new phase of matter is far away from being
determined, even today, and demands a deep investigation in high-energy nuclear-
physics.

2.3. The phase diagram of QCD
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Figure 2.2.: Schematic presentation of the QCD phase diagram in terms of the temper-
ature, T', and baryochemical potential, ;. The baryochemical potential is
normalized to the one of the ground state of normal nuclear matter, pug.
The phase transition from the hadron gas to the QGP is assumed be of first
order at high p and low T, which ends in a critical point of second order
and continues with a crossover afterwards. For very large baryochemical
potential a color-superconducting phase is assumed. In addition, the re-
gions assumed to be investigated by recent and future experiments are also
shown. The picture has been taken from Ref. [50].

Above we have introduced the two most important properties of QCD, which sug-
gest that nuclear matter could exist in different phases. Different phases also imply

3FAIR is planned to be operational in 2018.
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that there must be a phase transition or crossover between the hadronic and decon-
fined phase, which may depend on several thermodynamic variables. In Fig. 2.2, we
illustrate the different phases of QCD matter in terms of thermodynamic variables like
the temperature, T', and the baryochemical potential, . The knowledge of the QCD
phase diagram is rare, except for the region around 7"~ 0 MeV and g ~ 924 MeV
describing the ground state of nuclear matter with a baryon density of pg ~ 0.17 fm—3
representing normal nuclear matter. The main purpose of modern physics is to obtain
more information of the other different phases of QCD matter. HIC experiments are
up to now the best way to explore several regions of the QCD phase diagram.

As shown in Fig. 2.2, nuclear matter forms hadrons for small temperature, T, and
small baryochemical potential, y, while for large temperatures a deconfined phase of
quarks and gluons is assumed. At low T and high p there is a phase transition,
which is assumed to be of first order ending in a critical point of second order and
continuing with a crossover [79,80]. For very large baryochemical potential, a color-
superconducting region with a various numbers of distinct phases is proposed [66,81,82].
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Figure 2.3.: The energy density scaled by T~% as a function of temperature extracted
from lattice QCD calculations. The results are shown for different numbers
of flavors. In addition, the estimated temperatures reached in recent and
former accelerators are shown by arrows. The figure has been taken from
Ref. [72].

A derivation of the properties of nuclear matter in thermodynamic equilibrium from
the QCD Lagrangian (2.1) is definitely possible, but several problems have to be
taken into account. While the deconfined phase can be studied via perturbative QCD
(pQCD), the confined phase and the phase transition belong to the non-perturbative
region. The complexity arising from many interacting particles with different masses
in different regimes of temperature and chemical potential is an almost impossible
task and can only be accomplished numerically with a lot of restrictions [66]. This
is realized via lattice QCD which is the most fundamental approach in order to solve
non-perturbative QCD problems from first principles [83,84]. However, solving QCD
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on a lattice is technically challenging and strongly limited by computational resources.

Calculations on the lattice with vanishing baryochemical potential and including
quark degrees of freedom have been performed [85, 86,87, 88,89, 90]. Furthermore,
calculations with non-vanishing baryochemical potential, which are basically more dif-
ficult to handle due to mathematical and technical reasons, require further improve-
ments [91,92,93,94, 95].

Current lattice-QCD calculations predict a crossover for vanishing baryochemical
potential around T, =~ 175 MeV. Around this temperature region, the energy density
and pressure increases more rapidly, but smoothly and continuously, which indicates a
crossover phase transition from a gas of hadrons to a strongly coupled plasma of quarks
and gluons. This is illustrated in Fig. 2.3 for different numbers of flavors. As a matter
of fact, the Stefan-Boltzmann limit is not reached.

Although lattice-QCD calculations provide great insights into QCD matter in the
non-perturbative regime, the application of this method is strongly limited. In order
to obtain a better understanding of the phase diagram at non-zero temperature and
baryochemical potentials, heavy-ion collisions and effective theoretical tools describing
the QGP phase are necessary.

2.4. Signatures for the QGP
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Figure 2.4.: Different stages of a heavy-ion collision. The Figure has been taken from
Ref. [50].

Determining the properties of the QGP and even proving that such a state is created
is a great challenge, since we have not directly access to this stage. The only stage
experiments can access directly are the collision fragments in form of hadrons.

A heavy-ion collision is assumed to feature different stages shown in Fig. 2.4. First
of all, heavy nuclei are accelerated to ultrarelativistic velocities of almost the speed of
light. At this velocity the nuclei are Lorentz-contracted in the center of mass system
of the collision. At the moment when the nuclei collide with each other, the matter
gets strongly compressed indicating the pre-equilibrium phase. Insofar the collision
energy is sufficiently large, a state of deconfined quarks and gluons is being formed.
This strongly coupled QGP is possible to maintain thermal and chemical equilibrium
throughout its short lifetime* of At ~ 5 — 10 fm/c. While the fireball expands and

“The lifetime depends strongly on the collision energy.
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cools down, it will reach the critical temperature, T, at which matter locally undergoes
a phase transition or crossover leading to the formation of hadrons. In this hadronic
phase, matter interacts further via elastic and inelastic collisions until chemical freeze-
out is reached. The system becomes more and more dilute and reaches finally the
kinetic freeze-out. The outgoing hadrons and their decay products®, respectively, reach
the detectors.

From this point the identification of the final particles and their momenta has to
be performed in order to reconstruct the collision process. The only possibility to
prove the existence and to obtain the properties of the QGP is to analyze the particle
distribution of the final hadrons and to compare them with predictions originating from
theoretical models assuming the creation of the deconfined phase of matter.

An overview for the most important signatures indicating the existence of the QGP
can be found in Ref. [96], the white papers of the experiments at RHIC [25, 26,27, 28]
and recent measurements at LHC [75,76,77,78]. The most important signatures can
be summarized as follows:

e early thermalization and strong collective flow, indicating an almost perfect fluid
with a small shear viscosity over entropy density ratio, n/s,

e suppression of high-pp particles indicating the creation of a hot, dense, and
opaque state of matter.

We will review these signatures, since they are relevant for this work.

2.4.1. Collective flow
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(a) Elliptic flow of identified hadrons as a func- (b) Elliptic flow from minimum-bias Au + Au
tion of transverse momentum, vs(pr). collisions at 62.4 A GeV scaled by the
Results are shown for 20 — 60% central number of valence quarks at RHIC as mea-
Au+ Au collisions at RHIC as measured by sured by STAR. The figure has been taken
PHENIX. The figure has been taken from from Ref. [98].

Ref. [97].

Figure 2.5.: Elliptic flow of identified hadrons measured at RHIC.

The most crucial behavior of the new phase of matter created in heavy-ion collisions
at RHIC and LHC is the unexpectedly strong collective flow pattern. The initial

5Some hadrons are unstable and decay after the collision.
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spatial anisotropy in non-central collisions is translated into strong pressure gradients,
while the strength of the translation depends on the interaction strength between the
constituents of the collision. For a non-interacting gas, the spatial anisotropy would
persist, while for an almost perfect fluid, a strong momentum anisotropy in the particle
spectra would be observed. This momentum anisotropy can be quantified in terms of
the expansion coefficients of the Fourier decomposition of the azimuthal dependence of
the particle distribution [99,100],

dN 1 dN

prdprdydé 27 prdprdy (1 + QT;%(PT) cos [n (¢ — %DR)]) : (2.4)

Here ¢ is the azimuthal angle in the transverse momentum space and v,, is referred to
as the n-th order coefficient of the Fourier decomposition. The decomposition is done
with respect to the reaction plane with the angle ¥p [25,27].

The second coefficient of the Fourier transformation, v, is often referred to as the
elliptic flow, which is the largest contribution and one of the most famous observables
in the heavy-ion community. In Fig. 2.5a, we show the differential elliptic flow of
identified hadrons as measured at PHENIX, which clearly demonstrates that a large
elliptic flow builds up in heavy-ion collisions. The fact that most of the elliptic flow
emerges during the partonic® phase can be inferred from Fig. 2.5b which shows the
scaling of vo with the number of valence quarks [102,103].
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Figure 2.6.: Ideal and viscous hydrodynamic calculations compared to RHIC data for
Au + Au collisions at /syy = 200 A GeV for differential and integrated
elliptic flow. Both figures are taken from Ref. [10].

The large measured elliptic flow coefficient, ve, indicates that the QGP created at
RHIC and LHC could even be a perfect fluid. This was shown by comparing the ex-

5Quarks and gluons are also referred to as partons, a notation first introduced by R. P. Feynman [101].
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perimental data with ideal hydrodynamic calculations in Ref. [104]. Consequently, the
QGP was reported to be the most perfect fluid ever observed in nature [67]. However,
a perfect fluid with full thermalization is rather unrealistic and the agreement of the
calculations of vy with the experimental data strongly depends on the choice of the
initial conditions, the hadronization process, and the equation of state (EoS), which all
are uncertain. Furthermore, another uncertainty, the choice of transport coefficients
such as shear viscosity, n, or bulk viscosity, (, comes into play. In nature the viscous
transport coefficients cannot vanish but must have lower bounds [18,19,20], such that
a perfect fluid cannot exist by definition.

It has been confirmed later that nonzero dissipation has to be taken into account
in order to obtain a qualitatively better agreement with the experimental data leading
to the frequent application of viscous hydrodynamics. In particular, Fig. 2.6a shows
the differential elliptic flow, vo(pr), while Fig. 2.6b shows the integrated vy with re-
spect to the centrality. Both quantities have been measured at RHIC. As an overlay,
hydrodynamical calculations with different values for the shear viscosity over entropy
density ratio, /s, are shown. Both figures demonstrate that ideal hydrodynamics with
vanishing 7/s overestimates the elliptic flow. On the other side, a nonzero value for n/s
suppresses the large elliptic flow and improves the agreement with the experimental
data. The value for 7/s still has to be sufficiently small in order to be in reasonable
agreement with the experimental data. This definitely supports the assumption of an
almost perfect-fluid behavior and indicates a rapid and early thermalization. Since
then, a variety of investigations about the viscosity of the QGP has been performed
using dissipative hydrodynamics [10,11,12,13,14,15] and microscopic transport theory
with pQCD-based elastic and inelastic scattering processes [105,106]. Furthermore,
the extraction of the shear viscosity coefficient became very popular [16]. However,
recent calculations indicate that the ratio of the shear viscosity coefficient over entropy
density, /s, is not constant but features a dependence in temperature [17].

Although the application of viscous hydrodynamics became very successful in recent
HIC, there are still open questions. Besides the uncertainties in the choice of the initial
conditions, hadronization, EoS, and transport coefficients, the theory of dissipative
hydrodynamics is not complete yet. In heavy-ion collisions at ultrarelativistic energies
the system expands very fast and gradients in matter are very large. It is still an open
question to what extent hydrodynamics is applicable in describing the dynamics of
such a system. Hydrodynamics is an effective theory that describes the macroscopic
evolution of the system close to thermal equilibrium. Its applicability requires that
either the viscosity or the gradients or both quantities are small. On the other hand,
microscopic transport models can be used for systems which are also strongly out of
thermal equilibrium. Therefore, a comparison between the microscopic approach and
hydrodynamics can provide the limits and accuracy of the hydrodynamical description.
This has been established in Ref. [45,107] for the Bjorken scaling solution [21]. Such
a comparison is also provided in this work using shock-wave scenarios and is discussed
in detail in the subsequent chapters.
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2.4.2. Hard probes and jet quenching

In the very early stage of the collision the constituents of the nucleons, the partons, can
undergo hard collisions producing highly-energetic real partons which are back-to-back
created, which simply follows from energy-momentum conservation. These partons
evolve as parton showers, and are often referred to as jets or hard probes. They will
finally hadronize before detected in experiments as back-to-back di-jet events. In case
a hot and dense medium is created, parts of the jet will traverse this medium, interact
strongly with the soft medium particles (low pr) and loose energy. This phenomenon is
known as jet quenching and would serve as a good probe to investigate the properties
of the QGP created in heavy-ion collisions, as is has been theoretically predicted [21,
22,23, 24]. However, the exact mechanism of the jet quenching is still to be fully
understood.

A full jet reconstruction would help to get a more detailed understanding of the
mechanisms taken place when jets traverse the medium. This has been done in ex-
periments at the LHC, and methods to reconstruct jets have been developed or are
still under development [108,109,110]. However, at the RHIC a full jet reconstruction
was almost impossible due to the huge background contribution. The most promising
methods in order to quantify the energy loss of jets are measurements of the nuclear
modification factor and two- or three-particle correlations, which we present in the
following.

Nuclear modification factor R4 4

As mentioned above, if a hot and dense matter like the QGP is created, jets with
high transverse momentum, pr, traversing the medium may interact strongly with the
medium particles and loose energy. In heavy-ion collisions at RHIC and also recently
at the LHC the suppression of jets with respect to the scaled p 4+ p collision is found.
This can be quantified in terms of the nuclear modification factor

d?Na/dy dpr
Taa d?onn/dy dpr’

Raa = (2.5)

where Tqq = Neou/onn is the nuclear overlap function, N denotes the number of
binary collisions in nucleus-nucleus collisions and oy is the nucleon-nucleon cross
section [48]. The nuclear modification factor, R4, is the ratio of the yield in a heavy-
ion collision to the corresponding yield in a proton-proton collision, where the latter one
is rescaled by the number of binary scatterings. Thus, if a jet in a heavy-ion collision
undergoes jet quenching, R4 4 will decrease indicating that in comparison to a p + p
collision a hot and dense matter is created. Thus, the fact that R44 < 1 in heavy-ion
collisions is a strong signature for the creation of the QGP.

Figure 2.7 represents the nuclear modification factor for several identified hadrons
in a central Au + Au collisions with /syny = 200 A GeV at RHIC as measured by
PHENIX. A strong suppression is observed for most hadrons, which reflects the energy
loss of the partons before fragmenting to hadrons. In contrast, R44 ~ 1 for photons
at pr > 5 GeV, since photons do not interact strongly with the partonic medium.
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Figure 2.7.: Compilation of the nuclear modification factor R44 for various identified
hadrons and direct photons for central Au + Au collisions at 200 A GeV
as measured by PHENIX. The figure has been taken from Ref. [111].

Two-particle correlations

As mentioned above, in the initial phase of proton-proton or heavy-ion collisions jets
with high transverse momentum, pr, are always created back-to-back as sketched in
Fig. 2.8. In p + p collisions, it is expected that both jets can be measured by so called
two-particle correlations of final hadrons, since no medium is created and accordingly
no suppression occurs. This might change in heavy-ion collisions. If these jets are
created at the edge of a heavy-ion collision region, one jet (trigger particle) propagates
outside of the collision area almost without any further interaction, while the other
one (associated particle), separated from the trigger particle by an angle of 7 in the
azimuthal plane, traverses the hot and dense collision region and possibly is suppressed.
This has been measured experimentally [25, 26,27, 28] and indicates the existence of
the QGP.

In experiment, the two-particle correlations are determined by selecting the trigger
particle and measuring the azimuthal distribution of the associated particles relative
to the trigger particle, i.e., Ap = ¢ — Pirigger- For both, the trigger and associated
particles a specific pr-range has to be defined.

Figure 2.9a shows the measurements of the STAR experiment on correlations between
high pp-particles in p+p, central d+ Au, and central Au+ Au collisions. For the trigger
particle a range of 4 < p;flg < 6 GeV is chosen, while for the associated particles
pF%°¢ > 2 GeV is used. Around A¢ ~ 0 the enhanced correlation of a single hadron is
generated in all measurements, while only in p+p and d + Au an enhanced correlation
at A¢ ~ w with a broader width than the near-side peak has been found. For Au+ Au
collisions the correlation on the away side is missing, which demonstrates the quenching
of the corresponding away-side jet.

The interaction of the jet with the medium leads to a strong energy loss of the jet.
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Au+Au
p+p

??

Figure 2.8.: Hard scatterings in p+p collisions produce back-to-back correlated partons,
while in heavy-ion collisions at RHIC the jet is modified by the hot and
dense collision region.

Since energy and momentum have to be conserved globally, the missing energy must
have been distributed in the medium. This is demonstrated in Fig. 2.9b, where the
range of pr for the associated particles has been lowered to 0.15 < p77°°¢ < 4 GeV. As
it must be, the missing fragments around A¢ ~ 7 appear, but surprisingly a double-
or even triple-peak structure instead of only one single peak appears.

In Fig. 2.10, we show two-particle correlations from PHENIX as measured in p + p
and central Au+ Au collisions. Here, several pr regions for the trigger and associated
particles are considered. While for p + p collisions only a peak around A¢ ~ 7 is
measured, this is not the case for Au + Au collisions. For 3 < p;flg < 4 GeV and
0.4 < pF°°¢ < 1 GeV a double-peak structure for the away-side jet is observed. With
increasing pr-range the double-peak structure is visible up to 2 < pF*°¢ < 3 GeV,
while for 3 < p§7°°¢ < 4 GeV, the double-peak structure disappears. For a larger pr in
trigger and associated particles the yield in Au 4 Au collisions vanishes and no single-
or double-peak structures appears.

The appearing double-peak structure in these two-particle correlations led to a big
discussion regarding its origin. Initially it was considered that such double-peak struc-
ture originated solely from the jet-medium interaction. Other explanations also in-
cluded Cerenkov gluon radiation [114]. Recently, it was found that initial-state fluctu-
ations can also play a large role in describing this observable [115].

In the following, we list the contributions currently considered to be most important
for this observable:

e Deflected Jets
One possible explanation is the deflection of the jet due to its interaction with
the soft medium particles [116]. Due to interactions the momenta of the particles
change, and its initial propagation direction accordingly changes. Furthermore,
an additional possibility for a deflection of the jet might results from the strong
radial flow in central and non-central collisions of heavy ions.

e Mach Cones
The observation of the almost perfect-fluid behavior of the QGP also indicated the
formation of shock waves in form of Mach cones [29,30]. Mach cones are assumed



18 2. Introduction

i . ‘d+Au F‘TPC—Au‘ 0_20%‘ 1 = 3; :d';::u FTPC-Au 0-20% (preliminary) {
. 021 | —pepmin.bias  Sipe % [ % Au+Au 0-5% ]
% E * Au+Au Central E % 2? 7:
é 0.1; 7 ?,1 ]
£ i 1 Zr F ]

O : ~ 0%

Ly L \ \ \ \ 0 2 4

A ¢ (radians) A¢ (radians)

(a) Two-particle correlations for trigger particles of (b) Two-particle correlations for trigger parti-

4< pffrig < 6 GeV and associated particles with cles of 4 < pgfig < 6 GeV and associated
pF%°¢ > 2 GeV for p + p, central d + Au, and particles with 0.15 < pF*°° < 4 GeV for
central Au + Au collisions. The figure has been p + p, central d + Au, and central Au + Au
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Figure 2.9.: Two-particle correlation measurements at STAR.

to be generated by supersonic jets traversing the medium and depositing energy
and momentum which results in the formation and propagation of sound and
shock waves. The interference of these sound and shock waves form a Mach cone,
while the matter on that cone preferably propagates at a certain emission angle
« with respect to the propagating jet. Mach cones have been a topic of great
interest in the community of heavy-ion physics [51,114,117,118,119,120,121,122,
123,124,125,126,127,128].

The idea of shock-wave phenomena in HIC, however, is not completely new.
Shock-wave phenomena such as Mach cones have been already theoretically pre-
dicted to occur in collisions of heavy nuclei in the early 1970"s [129, 130], have
been experimentally investigated [131] and subsequently observed [132,133].

The formation of shock waves and the jet-medium interaction inducing Mach
cones are the main part of this thesis. This is to be discussed in the subsequent
chapters.

Initial-state fluctuations

For a long time most theoretical studies of heavy-ion collisions were performed
using smooth initial conditions [48]. Recently it has been shown that initial
fluctuating conditions in the transverse plane, such as hot spots [134,135], become
very important when describing flow observables like triangular flow, vs, [15,31,
32]. It has also been argued that these initial-state fluctuations have a large
contribution to the double-peak structure measured in multi-particle correlations
[115,135,136].

Furthermore, three-particle correlations [137,138] have been measured as an attempt



2.5. The purpose of this work 19

0.4[-(a) 3-4©0.4-1GeVic T (b) 34©12GeVic
- - ié\%Auo-zo/o ] 15
0.2 ol - 7
0lo! S : :
0.04L 3-4®3-4GeVic
g 7 x3.5
T 0.02
o L
< L
% ok : ; : :
<z °'15:'(e 5-10®2-3 GeVic = (f) % 4-5®4-5 GeV/c E
= ot + $ x10 S
1 3 E ]
EO.OS: E 0%
> 07 3 t t g t f . : t
ooel(@ . 510©35Gevic ¥ (h) " 510 ® 5-10 GeV/c |
0.04F T x2:5
0.02f °° + ]
ol :

D

0 2 4 A(]) (rad)O 2
Figure 2.10.: Two-particle correlations from PHENIX in p+p and central Au+ Au col-
lisions. Several pr-ranges for trigger and associated particles are shown.

The solid histograms are shaded due to background subtraction uncer-
tainties. The figure has been taken from Ref. [113].

to distinguish between different explanations for the appearing double-peak structure.
It was for example shown that Cerenkov gluon radiation [116] could be excluded, while
the scenario of the generation of shock waves in form of Mach cones or initial-state
fluctuations was supported. Moreover, the measured three-particle correlations could
distinguish between Mach-cone signals and random jet deflection [116].

2.5. The purpose of this work

This work is dedicated to the investigation of shock-wave phenomena in hot and dense
matter using a microscopic transport model based on the relativistic Boltzmann equa-
tion (rBE). The fact that the medium created in such violent collisions of heavy nuclei
behaves as an almost perfect fluid is a strong indication for the formation of shock
waves. Furthermore, the strong suppression of jets indicated that shock-wave phenom-
ena in form of Mach cones should exist.

Usually, the investigation of shock phenomena or Mach cones in HIC is realized
using hydrodynamics with source terms describing the jet-medium interaction [51,119].
However, it is not clear if this modeling is able to fully describe such non-equilibrium
phenomena. In the transport model employed in this work, both the jet and the medium
are treated within the same formalism. Furthermore, it is able to describe systems
with large gradients and in which the viscosity is very large. For both conditions
hydrodynamics is expected to fail.
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The first part of this work is dedicated to perform the complete transition from ideal
to viscous shock waves in a simplified one-dimensional setup. The accurate solution of
the rBE serves also as a benchmark to find the accuracy and limitations of different
derivations of relativistic viscous hydrodynamics. Next, we continue our studies on
the subject of Mach cones. We study the complete transition from ideal to viscous
Mach cones in a static system using different scenarios for the jet-medium interaction.
We systematically study the influence of the viscosity and energy deposition on the
final profile and its two-particle correlations. Finally, we investigate the jet-medium
interaction and development of Mach cones in relativistic heavy-ion collisions with
nonzero dissipation, which by default includes a radial and longitudinal expansion. In
a systematic study we clarify whether a Mach cone in such a scenario can contribute
to the signal of a double-peak structure observed in two-particle correlations in the
experiments.

2.6. Notation

As long as not indicated otherwise, we are using natural units throughout this work,
ie.,
h=c=kp=1. (2.6)

Here h is the Planck constant divided by 27, ¢ is the speed of light, and kp is the
Boltzmann constant. Since ¢ = 1, time and length have the same dimension. Using
natural units as introduced above implies that the units GeV and fm are related to
each other as

0.197GeV fm = 1. (2.7)

During the entire work we use a flat metric. The metric tensor hence reads

1 0 0 O
0 -1 0 O
py
g 00 -1 0 (28)
0O 0 0 -1
Quantities featuring an arrow on top are traditional three-dimensional vectors
ol
a=[a*]| = (a',a? a®T. (2.9)
a3

The superscript T' indicates that the vector is to be transposed. Covariant b, and
contravariant vectors b* are denoted as

(2.10)
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with the greek index running from 0 to 3. Quantities with two or more greek indices we
refer to as tensors. Quantities without indices are scalars. We are using the Einstein
summation convention that indices appearing twice are summed over, i.e.,

3
Vg bt = b = bt (2.11)
pn=0

In order to improve the readability of this work, we highlight equations and expres-
sions which require a long derivation using a box, as illustrated here,

[@+p =2, (212)






3. Relativistic hydrodynamics and kinetic
theory

Relativistic hydrodynamics - also known as fluid dynamics - is a classical field theory
that provides an effective long-wavelength and low-frequency description of macro-
scopic objects called fluids. A fluid is defined as a continuous system in which every
infinitesimal volume element, dV, is assumed to be close to thermodynamic equilibrium
and homogeneous in space. In this sense, in every infinitesimal fluid volume or fluid
element thermodynamic quantities such as temperature, pressure, and energy/particle
density are well defined.

Physically speaking, the fluid elements cannot be infinitesimal, but have to be large
enough compared to microscopic distance scales to enclose a large number of particles
and, at the same time, small enough compared to macroscopic distance scales in order
to assure the continuum limit. Therefore, hydrodynamics, whether relativistic or not, is
only applicable when there is a clear separation between microscopic and macroscopic
time/spatial scales.

Kinetic theory describes the dynamics of simple gases on a microscopic level. In
contrast to the theory of hydrodynamics discussed above, kinetic theory is not restricted
to describe systems that are close to local equilibrium and does not require a separation
between the microscopic and macroscopic scales in order to be applicable. For example,
it is able to describe systems even when the microscopic or interaction length scale is
of the order of the system size or even larger.

As mentioned above, hydrodynamics is only applicable occurs when there is a sepa-
ration between microscopic and macroscopic scales. In kinetic theory, the microscopic
scale corresponds to the average mean free path, Ay, of the particles contained in the
system. In this sense, hydrodynamics can be applied to simple gases when the mean
free path, Anpp, is very small compared to gradients of thermodynamic quantities!.
The ratio of microscopic and macroscopic length scale is referred to as the Knudsen
number, \

mfp
Kn = 7 (3.1)
and quantifies when hydrodynamics can be applied. When Kn < 1 is extremely small,
the system is close to the ideal-fluid limit. If Kn < 1, the system is a viscous fluid,
if Kn =~ 1 we are outside the validity of hydrodynamics, and Kn > 1 corresponds to
free streaming.

It is important to mention that the domain of applicability of kinetic theory and
hydrodynamics overlap over a big regime, as will be discussed in this work. For ex-
ample, solutions of hydrodynamics and those of numerical solvers of kinetic theory are
approximately the same when the mean free path, A\, is small. However, one should

lwhich provide a macroscopic distance scale.

23
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take notice, that in this limit simulations based on kinetic theory require large compu-
tational power. On the other hand, it has been pointed out that, even when hydrody-
namic solvers should be able to describe kinetic theory, they will fail if the transport
coefficients are chosen incorrectly. In order to properly compare hydrodynamical sim-
ulations to those of kinetic theory, one has to implement the proper matching between
the macroscopic equations of motion and the microscopic ones. For this reason, con-
structing a macroscopic theory that can be applied at large Knudsen numbers is very
convoluted and often leads to complicated equations of motion.

In this chapter we give an overview of relativistic hydrodynamics and kinetic theory.
In Sec. 3.1 we start with the basic definitions of kinetic theory, the Boltzmann? equation
and the connection to macroscopic quantities. In the subsequent Sec. 3.2 we first
provide a discussion of the description of an ideal fluid, which is then extended to
viscous hydrodynamics in Sec. 3.3. We discuss the basic tensorial decompositions, the
choice of reference frames and the derivation of relativistic dissipative hydrodynamics.
In Sec. 3.4 we finally discuss the different derivations of viscous hydrodynamics, which
are referred to in this work.

This chapter is a general summary of the knowledge from several works. For a more
detailed discussion we refer to Refs. [39, 40,139, 140, 141]. For the basic concepts of
thermodynamics used in this work we refer to Ref. [142].

3.1. The Boltzmann equation in kinetic theory

In relativistic kinetic theory of simple gases the state of the system is characterized
by the invariant single-particle distribution function, f(z,p). The space-time evolution
of f(x,p) caused by particle motion and collisions among the particles is given by the
relativistic Boltzmann transport equation [39,40,41],

PO fi(z,p) = Cog + Coz + -+ -, (3.2)

where

1 [dle1 [dTydlYs ,, .,
Cyp = 2/2V/ 5 2f1fz><

X [Myyaf*(2m) 6@ (0'y + 'y —p1 — p2)

- 1/dF21/dF’1dF’2ffX
2] 2 v 9 o 712

X | Migyr|?(2m) 46 (p1+p2—9p1—7), (3.3)

?Ludwig Eduard Boltzmann (1844-1906) was an Austrian physicist and philosopher, who was a pro-
fessor in Graz and Wien.
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denotes the collision integral for elastic 2 — 2 scattering processes and

dl'y dI's 1 dr’y df 9
O = 22' 2 2 21) 2 ff'2 %
X [ My o1a3)*(2m)* 6™ (0 + 1o — p1 — p2 — ps)
1 [dly1 [dT dF’g dr’s
+2/23,/ f1f2f3><
X !M1'2'3'a12! (27T)45(4) (P 1+ 0+ Ds—m —p2)
dl'y dI' dF’ dF’
23 —2fifafs %

B 2 2' 775
X |Miggra*(2m) 46 (Pl +p2+ps—11—p)
1 [dIs 1 dr’q dF’ 9 dF’
- 2/ 9 31 / f1f2 X
X | Mgz (277)45(4) (p1 +po—p 1 plz - plg) ) (3.4)

is the corresponding collision integral for inelastic 2 — 3 scattering processes. p1, p2,
and p3 denote the momenta of the incoming particles, p}, p, and p4 the momenta of
the outgoing particles. In order to avoid double counting, v will be set to 2 if 1’ and 2’
are identical particles. Otherwise, v is set to 1. We assume that there are no external
forces or fields® and dI' = d®p/[(27)3E]. Above, M,_,;, are the corresponding matrix
elements which are momentum dependent and should be provided by the corresponding
underlying microscopic theory. We have introduced

= (f) , (3.5)

which is the particle four-momentum with E denoting its energy. Furthermore, m is
the rest mass and p is the momentum vector of a particle. The relativistic energy-
momentum relation is given by E? = p? +m?2. We have also introduced the space-time

coordinate .
ot = <f> (3.6)

Oy = +— (3.7)

and the partial derivative

The Boltzmann equation (3.2) is given by the free propagation of the distribution
function on the left-hand side and the collision term on the right-hand side. In the
simplified case in which no collisions occur, the solution of the Boltzmann equation
becomes simple. Among other things, the solution has been determined in Ref. [143],
and it is discussed for a simplified one-dimensional setup in Appendix I. This solution
shall be referred to in the following as the free-streaming case. In the general case
in which collisions are taken into account, solving the Boltzmann equation is rather
complicated, since one has to solve equations in (6+1)-dimensional phase space, (Z, p t).
This demands a numerical simulation which is presented in Chapter 6.

3Such as magnetic fields.
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The macroscopic quantities appearing in hydrodynamics can be shown to correspond
to moments of the distribution function. The first moment is the particle four-flow,

Nt = /dﬁp”f(z,p) . (3.8)

Here, dp = gdI' = g d3p/[(27)3E], where g counts the internal degrees of freedom. The
second moment defines the energy-momentum tensor,

T = / A5 f (2p). (3.9)

Similarly one can define higher moments of the distribution function, such as the third
moment,

P = / dpp"p (2, p) (3.10)

The entropy four-current is defined as

St = / A5 p f(z,p) [1 — In f(2,)] - (3.11)

The Boltzmann H-theorem [39, 142] implies that the entropy production for a closed
system is positive semi-definite, i.e.,

9uS* >0, (3.12)

and vanishes in thermal equilibrium. The equation above is also known as the second
law of thermodynamics.

3.2. Relativistic ideal hydrodynamics

In this section we discuss the perfect-fluid limit of relativistic hydrodynamics. This
limit corresponds to infinite large scattering rates, i.e., the case in which the average
mean free path of the particles vanishes. This implies that there is no dissipation, i.e.,
the fluid is assumed to be always in local thermal equilibrium and that the entropy is
conserved,

9,8" =0. (3.13)

One has to note, however, that the differential form above is not valid when the system
features sharp discontinuities in the density or velocity profile. Hence, in the case of
shock waves, entropy may be produced even for perfect fluids. We discuss this in more
detail in Chapter 4.

Relativistic hydrodynamics is a classical field theory describing the time evolution of
the energy-momentum tensor, T#"(xz*), particle four-flow, N#(z#) and entropy four-
current, S#(z#). These currents describe the state of a relativistic fluid and have to be
well defined locally at each space-time coordinate x*. From now on we explicitly leave
out the position dependence (z#) of every hydrodynamic field.
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We define an arbitrary timelike four-vector

ut =yt = <11_),) (3.14)

which we normalize to unity, i.e., u#u, = 1. It shall be chosen in such a way so that it
can be interpreted as the collective four-velocity of the fluid. We identify

V= _ (3.15)

1|9

as the Lorentz gamma factor and ¢ as the velocity vector defined in the laboratory
frame. The frame where

ULRF = ) (3.16)

S O =

0

is called the local rest frame (LRF). An ideal fluid is defined such that the energy-
momentum tensor in the local rest frame of the fluid reads

T = (317

This is nothing but the static equilibrium energy-momentum tensor, in which no flow
of energy exists and the pressure is isotropic. We denote here e as the LRF energy
density and p as the LRF equilibrium pressure. In the LRF of an ideal fluid there is
no flow of particles, hence we obtain

N = (3.18)

o o o 3

for the particle four-flow. Here n is the LRF particle density. For completeness we
introduce also the LRF entropy four-current,

(3.19)

S
0
SlﬁRF = 0

0

The conserved currents of a fluid in local equilibrium, i.e., of a perfect fluid, can be
expressed as

Ty = ew'u” — pAM = / dpp"p” feq(, D) | (3.20)
Ng =" = /dﬁp“feq(:v,p), (3.21)

Stq = su”' = /dﬁp“feq(ﬂf,p) [1—1In feq(2,p)] - (3.22)



28 3. Relativistic hydrodynamics and kinetic theory

Here, the subindex ”"eq” denotes that the quantity is in local equilibrium. We intro-
duced the spacelike transverse projection operator,

AW = gl —utu” | (3.23)

which projects onto the 3-space orthogonal to the normalized timelike four-vector, u*,
i.e. A¥u, = 0. In the LRF, the transverse projection operator reads

0 O 0 0
0 -1 0 0
po
ALRp = 0 0 -1 0 (3.24)
0 O 0 -1
We have also introduced the equilibrium distribution function,
p“uu—u -1
feqlz,p) = e T +a . (3.25)
Here a = —1(+1) corresponds to bosons (fermions), and a = 0 corresponds to Boltz-

mann particles. In this work we do not take into account any quantum effects such as
Bose enhancement or Pauli blocking, i.e., we restrict our calculations and discussion to
Boltzmann particles.

We have introduced the temperature, T', and chemical potential, u, in Eq. (3.25),
which together with the velocity, U, are referred to as the primary fluid dynamical
variables. The LRF equilibrium quantities for a constant and nonzero mass, m, are
given in terms of T and u,

n(T, p) = #mQTe“/TKg(m/T) , (3.26)
p(T,p) =n(T, )T, (3.27)
(T, p) = 3p(T, p) + 55m*Te! T Ky (m/T). (3.28)

T T ) — T
S(T, 1) = e(T, ) + p( ,Tu) p(Tp) (3.29)
Here K, (z) is the modified Bessel function of the second kind [144]. In the ultrarela-

tivistic limit, i.e., m = 0, Egs. (3.26), (3.27), (3.28) and (3.29) simplify to

A
lim (T, 1) = 973, (3.30)
m—0 s
lim p(T, p) = n(T, )T, (3.31)
m—0
lim e(T, p) = 3p(T, ) (3.32)
limO s(Typ) =4 —In ) n(T, pn) (3.33)
m—

So far, we have introduced the general tensors that specify the state of a perfect
fluid. However, in order to obtain the dynamical description of any fluid, we need the
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conservation of energy, momentum, and particle number, which can be expressed by
the following continuity equations,

BT =0, (3.34)
9uNE =0. (3.35)

The conservation laws (3.34) and (3.35) provide five equations while e, p, n, and u*
correspond in total to six unknowns. In order to close this system of equations we have
to introduce an equation of state (EoS) for the fluid,

p=ple,n), (3.36)

which relates the pressure to other thermodynamical quantities. For the simple case of
a massless Boltzmann gas with no conserved charges, the equation of state is

1
Ze, (3.37)

P=3

which is mainly used throughout this work. With the equation of state, the above
system of equations is closed and provides the time evolution of the conserved currents.

3.3. Framework of relativistic dissipative hydrodynamics

In this section we introduce the general formalism of relativistic dissipative hydrody-
namics. In contrast to the previous Sec. 3.2, where we have assumed a perfect fluid, i.e.,
the fluid is always in local thermal equilibrium during its evolution, we now consider
more realistic fluids, i.e., where dissipative effects are taken into account.

We know from thermodynamics that every closed system is driven towards thermo-
dynamic equilibrium. Such a thermalization process is an irreversible process. The
H-Theorem implies that the entropy production is always positive, see Eq. (3.12), and
has its maximum value when the system reaches equilibrium. In fluids, dissipation
originates from irreversible thermodynamic processes. In order to obtain local equi-
librium, each fluid element exchanges heat and dissipates energy by friction with its
surrounding fluid elements. Such processes have to be included into the relativistic
hydrodynamic equations in order to obtain a more realistic description of relativistic
fluids.

3.3.1. Basic tensorial decompositions and definitions

In this subsection we introduce the most general tensorial decomposition allowed by
symmetry from the mathematical point of view. As discussed in Sec. 3.2 for perfect
fluids, the particle and energy-momentum conservation laws provide the basic equations
of motion for the fluid

8,T" =0, (3.38)
ANt =0. (3.39)
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With the general decomposition using the transverse projection operator (3.23) and
collective four-velocity of the fluid (3.14), the particle four-flow and energy-momentum
tensor can be decomposed into the equilibrium (Nfg, Tl ) and dissipative parts (JN#,
oTH), i.e.,

Nt = Nl + 6Nt = nut + VH#, (3.40)
™" =T +0T" = eu'u” — (p + 1) A + WHy” + WYyl + ol (3.41)

We define the LRF particle density as
n= Ntu,, (3.42)

and the LRF energy density as
e=u,T"u, . (3.43)
The two relations above are known as the Landau matching conditions, which we
discuss in Sec. 3.3.2. Let us first continue the discussion of the other hydrodynamic
quantities.
The sum of the equilibrium pressure, p, and bulk viscous pressure, II, denotes the
isotropic pressure

1
P = p —|— H = —gA#VTMV . (344)
The flow of particles in the LRF reads
VE =AEUNY | (3.45)
while the flow of energy-momentum in the LRF is given by
WH = AMT,5u” . (3.46)
The heat flow is defined as
gt =WH—-hVH (3.47)

with h = (e + p)/n denoting the enthalpy per particle.
The shear-stress tensor is given by, 7 = T where

Ti) = B (AgAg + A;Ag) - ;A“”Aaﬁ] T8 (3.48)

Hence the shear-stress tensor is that part of T that is symmetric, traceless, and
orthogonal to the flow velocity.

In a simplified one-dimensional setup, i.e., assuming an expansion only in z-direction
and homogeneity in the transverse plane y — z, we define the shear pressure

T =" /y? = 27V = —27°% (3.49)

which is shown to be a useful quantity in the upcoming chapters.

In local equilibrium all dissipative terms vanish, i.e., I = V# = W# = 7/ = (.
Therefore the particle four-current and energy-momentum tensor, as given in Egs. (3.40)
and (3.41), again take the simpler form given by Egs. (3.20) and (3.21). In local equi-
librium, the particle four-current, N&g, the energy-momentum tensor, Tt , and the
entropy four-current, Sk, are uniquely defined for any time-like four-velocity, u#. The
LRF particle density and energy density are given by neq = Néﬁluu and eqq = uuTe‘ffu,,,
respectively. The importance of the reference frame for the four-velocity is demon-
strated in Sec. 3.3.3.
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3.3.2. Matching conditions

We get in trouble when introducing dissipative currents, since the equilibrium variables
are not well-defined in viscous fluids. The equilibrium pressure, p, is only known as a
function of the equilibrium energy density, eqq, and particle density, neq, but not known
as a function of the actual energy density, e, and particle density, n. In order to resolve
the problem we use the Landau matching conditions [44,145,146,147]. They match the
equilibrium energy density and particle density in the LRF to their non-equilibrium
quantities

feq = (3.50)

Neqg =1,

which allows us to define Eqgs. (3.42) and (3.43). The matching conditions (3.50) imply
the following constraints to the dissipative currents:

u N =0, (3.51)
u,u, 0TH = 0. (3.52)

These conditions together with the Gibbs equation [142] ensure that the equilibrium
part of the pressure is given by the equation of state, p(e,n) = p(€eq, Neq). Therefore,
the temperature, T', and chemical potential, u, correspond to a given energy density
and particle density, which we introduce in Sec. 3.3.4.

In order to get a better understanding of the matching conditions, we consider an
example from kinetic theory. We imagine a small volume element, dV, in its local
rest frame with a given distribution function, f(p), for a massless classical Boltzmann
gas. If matter is in thermal equilibrium, Eq. (3.25) holds with a given equilibrium
temperature, T', the energy distribution has the form

dN 1 g
= e . 3.53
NE2dE 273 ( )
The energy density and particle density are eeq and mneq, respectively. Now, let us
assume that the particle distribution function is not thermal, but for example, a delta
function of the form
dN

This implies that all particles have the same kinetic energy, £ = 37, so that in the end

the same amount of energy is in the system as it would be in the thermal case?.

Although both systems have the same energy, the energy per particle is distributed
in a different way. The Landau matching conditions tells us that we cannot distinguish
between the two different setups. In other words, the local energy and particle density
do not depend on the distribution function itself.

4Here, T is not the equilibrium temperature anymore.
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3.3.3. Choice of reference frame for dissipative fluids

For a system that deviates from local thermodynamical equilibrium the LRF is am-

biguous, because there is energy and particle diffusion. There are two special reference

frames in which either the particle or the energy-momentum diffusion current vanishes.
Using Eckart’s definition of the flow velocity [148],

A 3.55
Up NN, ( )
the LRF flow of particles vanishes, V¥ = 0, while the flow of energy is given by the
heat flow, WH = g*.
In Landau’s frame [139] the flow of matter is tied to the flow of energy,

TH u,, _
VTP gu? 7

hence the flow of energy vanishes, W# = 0.

For processes close to equilibrium, the above definitions and decompositions are
related to each other [43]. Up to second order in deviations from local equilibrium,
out ~ gt /e < 1, we obtain

ub = (3.56)

"
e+p’

(3.57)

This means that the non-equilibrium part of the particle four-flow in Landau’s frame
is related to the heat flow in Eckart’s frame, that is, V¥ = —¢*/h.

As we discuss later on, the number of independent components is reduced when one
specific reference frame for the velocity is defined. This is important in order to solve
the hydrodynamic equations in an easier way.

3.3.4. Definition of temperature and fugacity

For a gas of classical particles in equilibrium, the temperature is given by the ratio of
the equilibrium pressure and equilibrium particle density

p

Teq =
Neq

(3.58)

In order to define a temperature for a non-equilibrium state in any reference frame -
Landau or Eckart - we essentially need the Landau matching conditions [44, 145, 146,
147]. Equation (3.58) then still holds for massless particles and refers to an effective
temperature of a non-equilibrium state
P

T= - (3.59)
Here, we have replaced the equilibrium pressure, p, by the isotropic pressure, P, since
the bulk pressure, II, for massless particles always vanishes. For massive particles the
relation above does not hold, because bulk viscous pressure can appear. Therefore, we
use the energy density, e, and particle density, n, to determine the temperature for
massive particles, which is discussed in greater detail in Appendix H.
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The fugacity which accounts for deviations from the chemical equilibrium state is
defined as

A=et/T= 1 (3.60)
Meq(T,u=0) -

where neq(T,,—0) i the particle density in thermal and chemical equilibrium.

3.3.5. Description of hydrodynamic quantities with more than one species

In this section we briefly introduce the hydrodynamic description of fluids with more
than one species of particles. This description is needed when extracting the hydrody-
namic quantities from the numerical calculations. For a more detailed discussion we
refer to Refs. [147,149, 150, 151].

We consider a system of Ng,ec different particle species. Each particles species, i, is
represented by its own distribution function, f;(x,p). Therefore, the general decompo-
sition of the particle four-flow and energy-momentum tensor for each fluid component
reads
NI =njut + VI, (3.61)

)

TZ:“V = e;ufu’ — (pi + Hi) AP + Wiu’uy + WZ'VUM + Wﬁw ) (3'62)

similar to Egs. (3.40) and (3.41). The reader will notice that we use only one four-
velocity, u#, instead of a velocity for each particle species, uf’. The reason for that is
discussed in the following.

We start with the following expressions,

Nspec Nspec
=N T Nt =Y NE, (3.63)
i=1 =1
Nspec Nspec Nspec

n:Zni,P:ZPi,e:Zei, (3.64)
i=1 i=1 i=1

Nspec Nspec Nspec Nspec
M= > T, Vi= ) VI Wwr=>Y Wk o =>Y = (3.65)
=1 =1 =1 =1

We obtain the quantities for the whole system by summing up the quantities for each
particle species. In order to fulfill relations (3.64) and (3.65) we have to define only
one reference frame using one four-velocity, u*. This is explained next:

We consider two particle species, A and B. For each particle species we have an
energy-momentum tensor, 74", T%”, and particle four-flow, N, N%. Using the energy-
momentum tensor or particle four-flow for each particle species, choosing either the
Eckart- or Landau-frame characterized by Egs. (3.55) and (3.56), respectively, we obtain
a velocity for each species, v4 and vp. In general, the obtained velocities are not equal,
i.e., v4 # vp. Using these velocities we calculate for example the energy density, e
and ep. Using then Eq. (3.64) we obtain the energy density of the whole system via
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es+B = e4 + ep. We compare this to the energy density obtained from the energy-
momentum tensor and particle-four flow of the whole system, which we refer to as
e p- Here we calculated the velocity v* directly for the whole system, i.e., using T""
and N*. We get ef g # ea+B-

As mentioned above, in order to get a consistent picture as given by Egs. (3.64)
and (3.65), we have to define one four-velocity, u*, for the whole system. This is also
true for the temperature and chemical potential®. Using the method discussed in Ap-
pendix H, we use the temperatures, T;, and chemical potential, u;, of each particle
species to construct a temperature, 7', and chemical potential, u, for the whole system.
The quantities for each particle species, T; and u;, have no further physical meaning.
The reason for this special construction for velocity, temperature, and chemical po-
tential is that the description of hydrodynamics assumes (almost) local thermal and
chemical equilibrium. Two particle species which differ with respect to their velocity,
temperature, or chemical potential, are not thermalized with each other. We have to
wait until both fluid components are in local thermal equilibrium with each other, so
that vq ~vp, T4 ~ Tp, and ug ~ up. We conclude that a velocity, v;, temperature, T;
or chemical potential, u;, for each particle species itself has no important or significant
meaning®.

3.4. Derivation of relativistic dissipative hydrodynamics

In Sec. 3.3 we have introduced the basic framework of relativistic dissipative hydro-
dynamics. The total number of independent components from the symmetric energy-
momentum tensor, T, (ten) and particle four-flow, N#, (four) is fourteen. Via the
tensor decomposition as realized in Sec. 3.3.1, we get:

e T — 5 symmetric, traceless and orthogonal to u*

e ¢ — 3 orthogonal to u*

e u* — 3 one component is eliminated by the normalization
o [T -1 scalar

e p,n,e — 2 one is eliminated by the EoS

In this section we will give an overview of different methods for the derivation of
dissipative relativistic hydrodynamics, which are partly used in this work. First, we
introduce methods to approximate the off-equilibrium distribution function, f(z,p),
then we introduce the derivations of dissipative hydrodynamics.

3.4.1. Hydrodynamics as an approximation to kinetic theory: Knudsen
number expansion and Grad “s 14-moment theory

Hydrodynamics is an effective theory for the slow, long-wavelength dynamics of a given
system. For systems with well-defined quasi-particles, hydrodynamics can be derived

Sor equivalently the fugacity.
SExcept for the fact, that each species can be in thermal equilibrium among itself.
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in terms of a power series in the Knudsen number (3.1), where

1
Amfp = - (3.66)
is the mean free path of the particles with o being the cross section. In Eq. (3.1) we
refer to L as a macroscopic length scale over which macroscopic fields such as energy
density, particle density, or temperature vary. Hydrodynamics as an effective theory
can be systematically improved by successively including higher-order terms in Kn.
This is discussed in detail in Ref. [107].

To zeroth order in K'n we obtain an effective theory that does not contain any powers
of Kn, corresponding to the limit K'n — 0, that is, the (unphysical) limit where Apg, —
0. This corresponds to infinite scattering rates, and thus the system instantaneously
assumes local thermodynamical equilibrium. This is the perfect-fluid limit we have
discussed in Sec. 3.2. To first order in Kn, we obtain the relativistic generalization
of Navier-Stokes theory presented in Sec. 3.4.2. This effective theory is plagued by
instabilities and acausalities [152, 153, 154]. These problems can be circumvented by
including terms of second order in Kn as it is done in the fluid-dynamical theory of
Israel and Stewart described in Sec. 3.4.3. The fluid-dynamical limit can be derived
for any kind of system, that is, its applicability is not restricted to dilute gases, as is
the case for the Boltzmann equation. However, since it is an expansion around the
perfect-fluid limit, we expect its validity to be restricted to dynamics close to local
thermodynamical equilibrium.

The coefficients of hydrodynamics as an effective theory can be computed by match-
ing to an underlying microscopic theory, for example the kinetic theory of ultrarela-
tivistic Boltzmann particles, described by the Boltzmann equation (3.2) with elastic
binary collisions. One has to note, however, that the matching procedure of dissipative
quantities is not unique [155].

The matching condition can be as follows. We expand the single-particle distribution
function around local thermodynamical equilibrium,

f(xap) = feq(fﬂ,p) +4f, (367)

where § f measures the deviation from the equilibrium distribution function (3.25). The
validity of the expansion around feq requires that ¢ = df/foq < 1. In order to match
to fluid dynamics as an expansion in powers of Kn, one possibility is to assume that ¢
is a series in powers of Kn. This approach was pioneered by Hilbert, and by Chapman
and Enskog [40].

Another method has been proposed by Grad [42] and generalized to relativistic sys-
tems by Israel and Stewart [44,156]. In this approach,

¢($,p) =€+ E,up“ + Euupupy 5 (368)

where the coefficients €, €,, and €,, are the expansion parameters and therefore ~
O(Kn). For each non-equilibrium state given by f the corresponding equilibrium state
feq is defined by the Landau matching conditions [44].

The coefficients of the expansion, €, ¢€,, and €,,, are determined using Eq. (3.68) to-
gether with Egs. (3.8) and (3.9). Comparing the result with Egs. (3.40) and (3.41), one
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finds that the parameters of the expansion are proportional to the dissipative quantities
I, V# ¢*, and 7##*¥. Thus, the deviation from equilibrium is proportional to the ratio
of dissipative quantities to local equilibrium quantities, that is, ¢ ~ II/e,¢" /e, 7" /e.
However, if the dissipative quantities are close to the Navier-Stokes values’, then these
ratios are proportional to the local Knudsen number.

3.4.2. The Navier-Stokes theory

A simple way to obtain the first-order equations of hydrodynamics, which are also
referred to as Navier-Stokes equations, is to apply the second law of thermodynamics,
(3.12), to the simplest form of the entropy current, i.e.,

q*
SH = sut + T (3.69)

We then obtain, as discussed in details in Refs. [44,157], the Navier-Stokes equations:

IIns = —(CVut, (3.70)
2

poo— g (B

ds = w V(%) (3.71)

NG = PIAVAGTZ) (3.72)

The gradient operator is V# = A*” 9, and (...) denotes the projection in order to obtain
a traceless symmetric tensor. The dissipative currents in the Navier-Stokes limit, (3.70),
(3.71) and (3.72), are proportional to the gradients of thermodynamic variables and
velocity fields, which are considered as thermodynamic forces. We have introduced the
proportionality factors (, k, and n, which are the bulk viscosity, heat conductivity, and
shear viscosity, respectively. They are referred to as transport coefficients and they
have to be non-negative in order to satisfy the second law of thermodynamics (3.12).

Furthermore, Egs. (3.70), (3.71), and (3.72) imply that thermodynamic forces can
be switched on and off instantaneously, which violates causality and is intrinsically
unstable. This is undesirable for relativistic systems. This fact is well-known in the
hydrodynamic community and has been investigated in detail in several publications
(152,153, 158].

Another problem in the Navier-Stokes theory is the following: Egs. (3.70), (3.71),
and (3.72) imply that dissipative quantities only exist if there are spatial gradients.
This is definitively not true as shown in Ref. [151]. Although there are no spatial
gradients, the distribution function itself can be non-thermal. Thus, the Navier-Stokes
equations fail in describing such a particular case.

These presented problems can be solved by introducing more terms in the hydrody-
namic derivation. The obtained equations are called second-order equations. They are
equations of relaxation type and have been introduced by Israel and Stewart, which we
discuss in the following.

see later
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3.4.3. Transient relativistic fluid dynamics: The Israel and Stewart theory

The Navier-Stokes theory provides a reasonable description for a wide set of non-
relativistic fluids, but it is unstable and acausal in the relativistic regime and, for this
reason, unable to describe any relativistic fluid. Israel and Stewart have formulated
a hydrodynamic theory which is stable and causal even in the relativistic regime [43,
44]. The main difference to the Navier-Stokes theory is the appearance of relaxation
times which imply that 7##¥, ¢*, and II are dynamical variables. The relaxation times
corresponds to the time scales on which the dissipative currents react to gradients of
thermodynamic variables and velocity fields.

The macroscopic equations for the evolution of dissipative quantities can be obtained
from the third moment of the single-particle distribution function [44]. The method is
similar to one of the first-order equations, whereas the entropy four-current (3.69) is
extended by introducing second-order corrections. Here we just recall the result of this
laborious calculation by Israel and Stewart as presented by Huovinen and Molnér [45]
for a massless gas, which implies that the bulk viscous pressure vanishes. Then the
Israel-Stewart (IS) equations for the heat flow and the shear-stress tensor are

1
D" = —(dys—d") —w"a (3:73)
q
1
—utq, Du” — §q“ <V>\u)‘ 4+ Dln ?)
—I—ﬂ(amr)‘“ + u”ﬂ')‘”a)\uy) — ﬂ7T)‘“Du,\,
b1 B
1
Drt = — (rhig — ") — 27r)\<“w”>)‘ (3.74)
Tr

—(mMu” + N ur) Duy

1
—571"“’ (vwA +Dln @_ﬁ)

/
_ﬂv(qu) + ﬂquu”) ’
2 P2

where the proper-time derivative is denoted by D = u*0,,, and the vorticity tensor
1
W = §A“O‘A5” (Opta — Oaug) - (3.75)

The coefficients aq, 81, 82, and a1 are thermodynamic functions, and

s = [0(801) 0], — a (3.76)

These coeflicients depend on whether we choose the Landau or Eckart frame. The
relaxation times of heat conductivity and shear viscosity are proportional to the heat
conductivity and shear viscosity coefficient, respectively, that is, 7, = ;781 and 7 =
2nps.

The microscopic time scales in the IS equations are given by the relaxation times of
dissipative quantities, 7 and 7,4, which are of the order of the mean free path between
collisions. The relevant macroscopic scales can be estimated from the gradients of
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the primary fluid-dynamical variables. For example, these can be given in terms of the
expansion rate Ly = 1/6, or in terms of the energy density gradient L' = | /VHeV e/e.

If the Knudsen number is sufficiently small, then at late times ¢ > 7, 74, heat flow
and shear viscosity will approach their Navier-Stokes values, that is, g* ~ q%s and
Y~ W]‘i,lig When this happens, the dissipative quantities can be estimated to be of
order 1 in the Knudsen number, and Egs. (3.73) and (3.74) include contributions up
to second order in Kn.

In the limit 74,7 — 0, with constant 7 and x4, the IS equations reduce to the
Navier-Stokes equations. Here, the relaxation time is the time scale over which the
dissipative currents relax to their Navier-Stokes values. Furthermore, in the limit where
all dissipative quantities approach zero, the IS equations reduce to the perfect-fluid
equations.

In this work the Israel-Stewart equations (3.73) and (3.74) are numerically solved us-
ing the vSHASTA (viscous SHarp And Smooth Transport Algorithm) [159]. Although
solving the hydrodynamic equations it is not the main part of this work, it is important
for the overall discussion in this work. Therefore, we shall introduce the equations in
(14 1)-dimensions in Appendix A.

3.4.4. Resummed Transient Relativistic Fluid Dynamics

In the last couple of years, the IS theory introduced above has been widely applied
to ultrarelativistic HIC in order to describe the time evolution of the QGP and the
freeze-out of the hadron resonance gas appearing in the late stages of the collision.
However, in heavy-ion collisions extreme conditions occur which question the validity
of hydrodynamics. The QGP created at RHIC and, recently, at LHC is not only the
fluid with the smallest space-time extension (~ 10 fm) ever created in nature but also
the one where the space-time gradients of the fluid fields, for instance energy density,
e, are the largest (~ |0y e|/e ~ 1/fm) ever encountered. On the other hand, Israel and
Stewart’s derivation lacks a small parameter, such as the Knudsen number, with which
one can do power counting and systematically improve the approximation to describe
higher-order gradients. Thus, the applicability of IS theory to the extreme conditions
reached in heavy-ion collisions is, at the very least, not clear.

As shown in this work in Sec. 7.1.2 and also the corresponding publication [34],
the IS formalism is unable to describe heat flow even when the Knudsen number is
very small. Recently, a systematic derivation of hydrodynamics from the Boltzmann
equation has been introduced [35,46,47]. The main difference between IS theory and
the theory derived in Refs. [35,46,47] is that the latter does not truncate the moment
expansion of the single-particle distribution function. Instead, dynamical equations for
all its moments are considered and solved by separating the slowest microscopic time
scale from the faster ones. Then, the resulting fluid-dynamical equations are truncated
according to a systematic power-counting scheme using the inverse Reynolds number,
R™ ~ |V¥| /n ~ |7#| /p and the Knudsen number, Kn = Apgp/L, With Ay, being
the mean free path and L a characteristic macroscopic distance scale, e.g. L™ ~ Oput.
The values of the transport coefficients of fluid dynamics are obtained by resumming
the contributions from all moments of the single-particle distribution function, which
is similar to the Chapman-Enskog expansion [160)].
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In Appendix B, we briefly describe this recently derivation of viscous hydrodynamics,
which is an approximation to the relativistic Boltzmann equation and is named RTRFD
(Resummed Transient Relativistic Fluid Dynamics). For more details we refer to the
original works [35,46,47]. The application of this theory in this work is shown in
Sec. 7.3 and Sec. 7.4, when comparing the IS theory and RTRFD?® to the numerical
solutions of the relativistic Boltzmann equation.

8The IS theory and RTRFD are solved by the numerical solver vSHASTA.






4. Sound waves, shock waves, and Mach
cones

We have introduced the framework of ideal and viscous hydrodynamics which govern
the motion of fluids. This chapter provides an overview of the general definitions of
sound waves and shock waves assuming a perfect fluid. Furthermore, we discuss the
appearance of conical structures, such as Mach cones, caused by moving supersonic
perturbations. For a more detailed discussion we refer to Refs. [139,140,161,162].

4.1. Sound waves in a perfect fluid

A small oscillation with a small amplitude in a compressible fluid is called a sound
wave. A sound wave can be referred to as a small perturbation moving through a fluid
at rest. In a fluid, a sound wave causes alternating compression and rarefaction. The
elements of a fluid propagate in the same direction as the sound wave itself. Therefore,
they are longitudinal waves. In addition, we remind that the propagation of a sound
wave is an adiabatic process such as all continuous solutions in perfect fluids. This is
not true anymore for shock waves which belong to the class of discontinuous solutions.

The speed of sound, i.e., the speed of propagation of a sound wave in a perfect fluid,

is given by
dp
. = - , 4.1
‘ <a€>s/n ( )

which is the square root of partial derivative of the pressure, p, with respect to energy
density, e. The speed of sound (4.1) is the solution of the wave equation, a homogeneous
differential equation of second order, which is discussed in more details in Refs. [139,
140].

For an ultrarelativistic gas of massless particles with e = 3p, see Eq. (3.37), the speed

of sound is given by

1
Cs = 7 (4.2)

We notice that for a massless gas the speed of sound does not depend on the local
temperature or chemical potential, i.e., it is overall constant. In contrast, the speed of
sound for a massive Boltzmann gas depends locally on the temperature and chemical
potential. For a vanishing chemical potential this reads,

. (T) - 2T K9 — % (Kl + Kg)
° 6T Ky — 2 (K + K3) + mK; + 2 (Ko + K»)

(4.3)
©n=0

where K,, = K,,(m/T) are the modified Bessel functions of second kind. The derivation
of Eq. (4.3) is shown in Appendix C.

41
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4.2. Moving perturbation in a perfect fluid

So far, we have only discussed the propagation of sound waves in fluids at rest. If
the fluid itself is moving, or equally, a perturbation is moving through the fluid, then
we observe additional phenomena. We assume a projectile or source of the sound
wave propagating with a given velocity towards an observer at rest, then the emitted
frequency of the sound wave seems to have a higher frequency than it actually has.
The other way around, the sound wave seems to have a lower frequency if the source
is moving away from the observer. This can be understood when one considers that
the sound waves are compressed and decompressed, respectively. This phenomenon is
known as the Doppler effect.

The usual situation, when the source of disturbance moves slower than the speed of
sound in the fluid, i.e., Vgource < Cs, is called subsonic flow. Therefore, the interfering
sound waves which originate from the source reach an observer in front before the source
could reach him/her. This is shown in the left part in Fig. 4.1. However, this situation
changes when the source propagates faster than the speed of sound, vsource > Cs, as
shown in the right part of Fig. 4.1. This case is called ultrasonic flow. Here, the speed of
the source is faster than the speed of sound, so that the interfering sound waves emitted
from the source are confined inside a 3-dimensional conical structure. Therefore the
sound cannot be heard outside the cone and the source reaches the observer in front
before the sound wave.

Vsource < Cs Vsource = Cs Vsource > Cs

Figure 4.1.: The propagation of a weak perturbation through a fluid at rest. The
perturbation emits sound waves propagating with the speed of sound. On
the left, the perturbation is slower than the local speed of sound, in the
middle, the perturbation is as fast as the speed of sound, and on the right,
the perturbation exceeds the speed of sound. In the latter case the sound
waves lie on a cone which is referred to as a Mach cone.

The cone is often referred to as Mach cone! in literature, and has an emission angle,

'Ernst Mach (1838-1916) was an Austrian physicist and philosopher who was a professor in Graz and
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o, with
c
cos g = —— | (4.4)
Usource
and an opening angle, 23, with
c
sin B = —— . (4.5)
VUsource

We can read off the above relations from Fig. 4.1. The opening angle, 28, is also often
referred to as Mach angle in literature. Furthermore, the ratio of vsource/cs is defined
as Mach number:

Ma = Jouree. (4.6)
Cs
The area which the perturbation touches during its evolution is called Mach area or
characteristic area.

The appearance of a Mach cone in ultrasonic flow is not only interesting because
of its geometrical structure, but is often connected to the existence of shock waves.
This is the case, insofar the perturbation is not considered as weak anymore. In case of
stronger perturbations the source emits shock waves instead of sound waves. In contrast
to sound waves, shock waves are characterized by an abrupt and discontinuous change
of the properties of the fluid such as pressure, energy density, or velocity. Moreover,
they propagate with a speed faster than the speed of sound, which we refer to as the
velocity of the shock front, vghock. We introduce the properties of shock waves in the
next section.

Figure 4.2.: The propagation of a perturbation, which emits sound waves (left) and
shock waves (right). The angles of the Mach cone depends on the ratio of
the velocity of the source, vsource, and the velocity of the emitted waves.

We above introduced the classical description and definition of a Mach cone, as
usually presented in literature for a weak perturbation. We will extend the discussion

Prague.
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a little bit more. In Fig. 4.2 we show the angle dependence of the emission angle of the
Mach cone [163]. On the left we still consider a weak perturbation, where the emitted
waves are sound waves propagating with c;. Now the perturbation is not assumed to
be weak anymore. Then the emitted waves are shock waves propagating with vgnock-
As illustrated in the right part of Fig. 4.2, the emission angle of the Mach cone changes
since the ratio of vghock tO Usource is smaller. Moreover, the length of the linear cone
region, i.e., the shock front, is shorter.
Thus, we generalize the previously introduced angles of the Mach cone to

Ushock

cosq = ———, (4.7)
Usource
and "
sin g = —neck (4.8)
Usource

which serve as a good approximation in case of not too strong perturbations. For the
case that vshock = Usource, the conical structure in the right part of Fig. 4.2 will vanish
to one point. Furthermore, if the shock wave is faster than the source the Mach cone
disappears. All shock-wave scenarios are illustrated in Fig. 4.1, when replacing cs with
Ushock and a (Bs) with a (5).

In the above discussion we have assumed that the source moving through the medium
emits sound or shock waves isotropically in its LRF. This need not to be the case
if one considers for example a highly energetic projectile depositing energy and mo-
mentum into the medium, which induce a different pattern of the generated Mach
cone. Furthermore, increasing the strength of the perturbation for any kind of source
induces the appearance of non-linear effects? along the shock front and behind the
shock [139, 162,163, 164, 165]. Moreover, the angle dependence of the Mach cone in
the form introduced above serves also only as a good approximation for not too large
perturbations, and may deviate for larger perturbations as well as for different sources
due to the appearance of non-linear effects. This and more will be discussed in detail

when presenting the numerical results in Chapter 8 using the numerical framework
BAMPS.

4.3. Shock waves and discontinuities

In the previous section we have found out that in ultrasonic flow shock waves may
form. We discuss now in more detail, what shock waves exactly are and introduce the
theoretical description.

As mentioned in the previous section, the most important feature which characterizes
shock waves is the abrupt and discontinuous change of hydrodynamic quantities such as
pressure, energy density, flow velocity, etc. When the shock front hits the undisturbed
medium, matter is heated up such the pressure and energy density rises instantaneously.
The undisturbed medium has no chance to react fast enough since it is limited due to
the speed of sound. Therefore, matter is pushed forward and the pressure progressively
increases, respectively. This also implies that not a normal sound is emitted from the

2These are for example head shock or (anti-)diffusion wake and discussed in Chapter 8.
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shock front, but a strong and loud bang. This is what happens for example when
supersonic aircrafts travel faster than the speed of sound of air. Another example is
the explosion of a bomb or the explosion of stars, like supernovae. The existence of
shock waves in outer space are interesting and exciting phenomena, whereas the shock
waves created in supernovae are of unimaginable strength.

The velocity of the shock wave, i.e., the signal propagation, as well as its strength
depend strongly on the difference of the pressure in the shock wave and the pressure
of the undisturbed medium in front of it. In the following we introduce the theoretical
description of relativistic shock discontinuities. We still consider a perfect fluid without
dissipation since viscous solutions of shock waves, at least in the relativistic regime, do
not exist. The following discussion is analogous to that in Ref. [147]. For even more
information considering shock discontinuities we also refer to Refs. [139,161,163,166].

As mentioned above, shock waves represent discontinuous solutions of ideal hydro-
dynamics, where the general conservation equations introduced in Sec. 3.2 cannot be
applied. At such discontinuities, the partial derivatives of the hydrodynamic quantities,
O, N* and 0, TH", are ill-defined. However, the general conservation equations can be
replaced with pure algebraic equations which are well-defined across such discontinu-
ities.

For this purpose we consider the shock discontinuity in its LRF. We also refer to it as
shock front. For simplification, we assume the transverse direction to be homogeneous,
and consider only the z-direction as relevant for the following problem. The matter,
which enters the shock discontinuity (on the left) is denoted by the subindex 0, referring
to the initial state. Now, matter enters that discontinuity with a given velocity, vg. The
matter is in local equilibrium, and is characterized by eg, ng, and pg. In the following
we are interested in the quantities behind the discontinuity. In other words, we aim
to determine the final state of the quantities v, e, n, and p, which emerge from the
shock front. For this purpose we define a small volume V', which encloses the shock
discontinuity as shown in Fig. 4.3.

In the next step, we have to integrate the conservation equations (3.34) and (3.35)
over the infinitely small volume V:

at/ d3xN0+/ Pz 0, N* =0,

\%4 \%

o / AP T% + / d*2 8,7 =0, (4.9)
\% \%4

O, / Bz T + / Bzo, T =0 .
Vv 1%

We assume in the following a stable propagating shock discontinuity, i.e., a station-
ary scenario. Then matter in the small volume V' does not change with time, which
implies that the time derivatives in the above equations vanish. We perform an inte-
gration by parts and obtain the Rankine-Hugoniot-Taub relations, which represent the
conservation of energy, momentum ,and particle number across the shock front,

noug = nNu ,
(eo + po)Youo = (e +p)yu, (4.10)
(eo +p0)u(2) +po = (e +P)u2 +p.
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Figure 4.3.: A sketch of a shock discontinuity in its rest frame. On the left are the initial
values vg, eg, ng, and pg. Matter propagates through the discontinuity,
where the final values v, e, n, and p are obtained. A volume V encloses
the shock discontinuity.

We have introduced here the four-velocity v = v in the LRF of the shock front. The
equations derived above are purely algebraic and valid for such shock discontinuities
assuming a one-dimensional flow. For conical shock waves we refer to the discussion
in [163].

The initial values on the left, vg, eg, ng, and pg, determine the final state, v, e, n, and
p, on the right of the shock discontinuity. We require here that the equation of state,
p(e,n), is known. The introduced equations (4.10) are essential for the discussion of
the relativistic Riemann problem in Chapter 5 and are partly used in Chapter 7 and
8, when discussing the numerical results of shock waves and Mach cones, respectively.

We have mentioned in Chapter 3 that in perfect fluids the entropy is conserved.
This is true if we consider sonic perturbations, i.e., sound waves, which are considered
as adiabatic processes. A remarkable feature of shock waves is that entropy is not
conserved. As discussed in detail in Ref. [147], the specific entropy increases across the
shock front, i.e.,

2550 (4.11)
n no
The entropy conservation in perfect fluids is only valid for continuous, differentiable
solutions. Shock discontinuities, as the name indicates, are not continuous such that
Eq. (3.13) is not applicable. However, in the limit where the shock is infinitesimally
small, the entropy is again preserved. Then the shock wave degenerates into an ordinary
sound wave.



5. The relativistic Riemann problem

In this chapter we introduce the relativistic shock-tube problem, which is part of the
famous Riemann problems in relativistic hydrodynamics. The Riemann problem has
been first formulated by the mathematician Bernhard Riemann'. The problem deals
with determining the temporal evolution of a perfect fluid which initially has a sharp
discontinuity in velocity or thermodynamic variables, such as temperature or pressure.
The initial discontinuity leads to the appearance of a shock wave and rarefaction wave.
The final solution is totally determined by the initial values and the problem is self-
similar. Under certain circumstances an analytic solution can be determined from the
initial values, which is called self-similar solution.

Analytical solutions of the Riemann problem in the non-relativistic cases have been
widely discussed in several publications in physics as well as in mathematics [139,167].
However, in the relativistic regime such a solution is much more difficult to obtain.
In many cases, a simple equation of state (EoS) and similarity methods have to be
applied in order to get analytic expressions as shown in Refs. [33, 34, 168, 169, 170,
171]. Furthermore, solutions of the relativistic Riemann problem (rRP) in relativistic
magnetohydrodynamics have been derived inter alia in Refs. [172,173].

The analytic solution of the Riemann problem is quite often used to serve as a
benchmark for numerical hydrodynamic solvers in the relativistic and non-relativistic
regime. The almost exact reproduction of the analytic solutions proves that the numeri-
cal solvers are stable and trustworthy in capturing shock phenomena. After passing this
benchmark, the hydrodynamic solvers can be applied to more complex hydrodynamic
problems.

According to current knowledge, an analytic solution for the Riemann problem for
dissipative fluids does not exist, not even for a simple ideal gas EoS. Therefore, the
investigations of the rRP with nonzero dissipation have been performed via numerical
solvers based on dissipative hydrodynamics [159,174] and kinetic theory [33,34]. From
these works we can conclude that up to now only the results of kinetic transport
models are trustworthy and able to describe any weakly coupled fluid covering ideal
hydrodynamics and free streaming. This is part of this work and discussed in detail
in Chapter 7. The solution of the rRP obtained in this section serves as a benchmark
and is required for a deeper understanding of the evolution of shock waves.

In Sec. 5.1 we present the shock-tube problem which is a special case of the rRP and
discuss the general procedure to obtain a solution. Using a simple EoS the problem
admits an analytic solution, as discussed in Sec. 5.2. In Sec. 5.2.1 we will derive the
equations for the rarefaction wave and, afterwards, in Sec. 5.2.2 the solution of the
shock wave is discussed. In Sec. 5.2.3 we finally present our results.

'Bernhard Riemann (1826-1866) was a German mathematician who was a professor in Géttingen.
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5.1. Phenomenological contemplation of the relativistic
Riemann problem

We introduce the relativistic Riemann problem in the case of perfect fluids. The matter
is assumed to be thermodynamically normal [171], e.g. an ideal gas, and, for the sake
of simplicity, to be homogeneous in the transverse directions, such that the problem
becomes (1 + 1)-dimensional.

In the Riemann problem we have matter in thermodynamical equilibrium separated
by a membrane at x = 0. The pressures on the left (z < 0) and right (x > 0) sides of
the membrane are pg and p4, and the particle densities are ng and ny4, respectively. The
velocities left and right of the discontinuity are vy and vs. The ”slab-on slab” collision
problem where initially matter left or right of the discontinuity is moving, i.e., vg # vq4,
is discussed in Ref. [171]. In the following we discuss only the shock-tube problem
where the velocities on both sides of the membrane are zero, that is, vg = v4 = 0, and
with a pressure gradient pg > p4.

In the shock-tube problem, removal of the membrane at time ¢t = 0 leads to two
propagating waves. A shock wave is propagating to the right with the velocity vghock-
Simultaneously, the tail of a rarefaction fan is propagating to the left with the speed of
sound, cg, into the matter with higher pressure. The region between these two waves
includes a contact discontinuity propagating to the right with v3 and a shock plateau
which is bounded by the contact discontinuity and the shock front.

The solution for the ideal shock-tube problem is self-similar in time, that is, the
solution keeps the same shape at all times, ¢ > 0, without change. Therefore, the
shape can only depend on the similarity variable

x

&= T (5.1)
Figure 5.1 shows the schematic representation of the particle density, pressure, and
velocity profile against the similarity variable, €. Here, regions 0 and 4 represent the
undisturbed matter at rest, 1 is the rarefaction wave, 2 denotes the constant region
between the tail of the rarefaction wave and the contact discontinuity, while 3 is the
shock plateau. The shock front is the discontinuity between regions 3 and 4.

The solution of the relativistic Riemann problem is obtained by matching the pres-
sure, pa, and velocity, ve, at the rarefaction tail to the pressure and velocity of the
shock plateau ps and v, that is, po = p3 and ve = v3; see also Ref. [168]. In Sec. 5.2
we discuss the solution of the shock-tube problem using an EoS of the form

p= cge, (5.2)

which admits an analytical solution.

We have to determine the rarefaction wave using the conservation equations of par-
ticle number, energy, and momentum. In order to decouple the first-order differential
equations, we use the similarity method. As mentioned above, this is possible, because
the problem is self-similar. Therefore, we can replace position and time by the simi-
larity variable (5.1). The procedure is discussed in Sec. 5.2.1. In Sec. 5.2.2 we discuss
the part of the shock wave. The solution at the discontinuity is given by the Rankine-
Hugoniot-Taub relations (4.10) in the LRF of the shock. The velocities of the shock
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Figure 5.1.: Schematic representation of particle density (a), pressure (b), and velocity
(c) as a function of the similarity variable, £ = z/t, in the shock-tube
problem.
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plateau and the shock front in the LRF of the undisturbed matter can be expressed in
terms of thermodynamic quantities before and after the discontinuity.

In general, using a more complicated EoS, the solution of the shock-tube problem
requires a numerical integration of ordinary first-order differential equations, which is
discussed in Ref. [168].

5.2. Analytic solution of the relativistic shock-tube problem in
the perfect-fluid limit
5.2.1. The rarefaction wave

The rarefaction wave in the shock-tube problem can be determined using the conserva-
tion equations of particle number, Eq. (3.35), energy, and momentum, Eq. (3.34). We
repeat the equations in (1 + 1)-dimensions with a different notation

OR  O(Rw)

wr o7 =0, (5.3)
oM O(Mv)  Op
o T T e (54)
OE  9(Ev) _ 9d(pv)
ot or  Ox (5:5)

Here R = N, E = T% and M = T'0 are the quantities in the laboratory frame, t
is the time, p is the pressure, and v is the velocity in x-direction. We also introduce
the following known relations which connect the quantities in the laboratory frame and
LRF? in the case of perfect fluids,

R=N%=n~n, (5.6)
E=T%=~*e+p) —p,
M =T =+2(e 4 p)v,

where e is the LRF energy density, n is LRF particle density, and v = 1/4/1 — v? is the
Lorentz factor. To close the conservation equations we have to use an EoS, p = p(e,n).
In the following we will restrict our calculations to an EoS which has a linear relation
between the pressure and energy density via the speed of sound (5.2). We also define
the specific enthalpy
w:e+p:<12+1)p. (5.9)
CS
Due to the fact that the rRP is self-similar, we may use the similarity method [168].
The similarity method provides the possibility to decouple the differential equations
(5.3), (5.4), and (5.5) and convert them into ordinary differential equations. This is
realized by replacing the position and time with the similarity variable, £. In the
following, we construct the solution of the rarefaction wave. First, we get the pressure
and particle density, then we derive the velocity.

2See Egs. (3.20) and (3.21).
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Construction of the pressure p;(v) and particle density n;(v)

Using expressions (5.6), (5.7), (5.8), and (5.9), we can write the conservation of energy
(5.4) and momentum (5.5) in the following form

0 (w'y2 — p) N 0 (w’y%) B

ot Ox ’
5.10
0 (wfy2v) 0 (w’yzfu2) _ Op (5.10)
at oz oz

We perform a variable transformation using the similarity variable, { = z/t, and its
relations

9 _ ¢

ot t’

e 1 (5.11)
or  t

In the following, we multiply Egs. (5.10) by 9§/0¢ = 1 and use the relations (5.11). Af-
terwards, we multiply with ¢ and 9¢/dv, such that both equations (5.10) are decoupled.
We get

d (w72) d (w’y%) dp
d (w’va) d (w’yQU2) dp '

Now, we equate both equations (5.12) to eliminate the variable £. Using the expression
for the specific enthalpy (5.9) we obtain

1 dp\® 1 /dp\ d(?) L [der) ’
(c;2 + 1)2 dv CS_Q +1 \dv dv dv
Lo L (dp)dlmPe?)  [d*?) dm?)] _
2 +1 \dv dv dv dv '

(5.13)

This relation can be rewritten as
dp\? 1 2
(Céj) =2 <c2 + 1) Pt (5.14)
S

We obtain two solutions where only the solution with negative sign has a physical
meaning

dp 1 2
— =—c | =+1 . 5.15
P (+ >m (5.15)

The solution for which dp/dv > 0 is unphysical since it describes a fluid compressing
itself. As the next step, we integrate the equation above by separation of variables, i.e.,

p v

1 1 1

“dp=— [ — + ¢ dv. 5.16
[ =5 +e) [ 319

Po vo
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The integral on the right-hand side can be calculated via a partial fraction leading to

m(L)=- i—i—cs / ! ! dv
Po Cs 1_'1)1+’l)

vo (5.17)
1 /1 n ! 1—v]"
=3l Cs nl—l—v UO.

The final expression for the pressure of the rarefaction wave reads

: (5.18)

1— v) %(é%S)

1+wv

p1(v) =po (

where we have replaced p — p;(v) for the correct notation.

In contrast to the propagation of the shock wave, the entropy is conserved during
the expansion of the rarefaction wave. Therefore, we can use the adiabatic expansion
rule [140] to determine the particle density

p n\"
:<> . (5.19)
Po 1o

Here I' is the adiabatic coefficient, which is determined by the FoS. Using the expres-

sions (5.18) and (5.19), and the notation n — n;(v), we can write for the particle
density of the rarefaction wave

(5.20)

1— v) %(%sﬂé')

1+wv

ni(v) =ng <

Construction of the velocity v;(§)

We use again the conservation of energy (5.4) and momentum (5.5) and apply the
similarity method to decouple both equations. Multiplying both equations with ¢ we
get

oM | 9(Mv)  dp

(=€) OE  0(Bv)  9(pv) 0 '
3 0¢ o
and, after some transformations, we can rewrite
dM d d
(v =& e + Mz + 3. =0,
d¢ d¢ ' de (5.22)
dE dp dv '
(v =& g +vge +(EFp)g =0.

a€ lae d
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Using expressions (5.7) and (5.8) we obtain after some algebraic transformations

5de dp 9 dv
(v =g + [1+ (v = &vy ]d—gﬂ (e+p) [(v =1 +20*7?) +v] — T
o de 91 dp 2 2 dv
(0 =7 T v+ = v*r] ge +7%(e +p) 200 = ) + 1] G2 =0,
(5.23)
where we have used the following relations
dy _ gdv
a -~ "hag
d(d”;) = 332 (5.24)
d7 4dv
d& = 2u7y df'
Next, we use relation (5.2) to eliminate the pressure:
[07?(v = &) (1 + ¢2) + 2] 25 +%e(1+c2) [(v— &) (1 +20*9°) + 0] jz 0,
(5.25)
[72(11 -1 +v2cs) + ve } 35 + e(l +c ) [21}72(1; —&)+ 1] 35 =0.

We equate both equations to eliminate de/d{. By means of algebraic transformations
we then obtain the velocity of the rarefaction wave

£+Cs

111(5) - 1+ éc,

, (5.26)

where we replaced v — v1(&).

5.2.2. The shock wave

The conservation equations (5.3), (5.4), and (5.5) can not be applied to shock waves,
since the derivatives are ill-defined at such discontinuities as discussed in Sec. 4.3. Thus,
we apply the Rankine-Hugoniot-Taub relations (4.10) which represents the conservation
of particle density and energy-momentum across the shock discontinuity®, in order to
derive the necessary equations for the shock wave.

We repeat the Rankine-Hugoniot-Taub relations (4.10) with a different notation,

n3Us = N4y ,
(e3 + p3)Y3us = (e4 + pa)7ally, (5.27)
(e3 + p3)u3 + p3 = (eq + pa)us + pa.

The 77 denotes that the quantities are taken in the rest frame of the shock front.
The subindex 3 denotes the quantities entering the shock discontinuity, the subindex
4 denotes the quantities emerging from the shock front. @ = 70 is the four-velocity in
the rest frame of the shock front.

3We also call it shock front.
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The velocities

First, we derive the velocities, U3 and vy, of matter in the rest frame of the shock front.
We start with the energy and momentum conservation across the shock discontinuity
(5.27), which leads to

(e3 + p3)73tus = (e4 + pa)7ala,

- - (5.28)
(e3 + p3)uz + p3 = (e4 + pa)ug + pa.
We can rewrite the above equations as
(e3 +p3)3303 = (ea + pa)3i0a, (5.29)
(e3 + p3)V303 + p3 = (€4 + a)F303 + pa- (5.30)
The relation (5.29) is inserted into Eq. (5.30), which yields
oo (ea+pa) 22050
v U4, 5.31
Y3U3 = (6 + p3) V34 ( )
~o-~2 _ (e3+p3) o 2535
Vg = V34, 5.32
Y4V4 (6 + p4) ( )
such that we obtain the following equations:
03 (es + pa) — U3a(es + ps) = (pa — p3) (5.33)
@\4(64 —l—pg) - 5354(64 + p4) = —(p4 - pg). (5.34)

We have used the relations 32 = 1/(1 —93) and 73 = 1/(1 — 93) to expand all terms.
Now, we add both equations, i.e.,

ﬁg(eg +p4) + @\2(64 + p3) — v3vs(ez +ps +es+ps) =0, (5.35)
and divide them by v3v4. Applying the following expression x = v3/04, we obtain
2%(es + pa) — x(e3 +p3 + eq + pa) + (es + p3) = 0. (5.36)
The solution of the above equation is

. @ _ e4+ D3
Uy e3+pa

(5.37)

8
|
|

In order to obtain 03 and vy in terms of the pressure and energy density the expression
(5.37) is inserted into Eq. (5.30). This leads to

N

P <(p4 —p3)(es +P3)>
(es —es)(es+p1)/) (5.38)
S ((m —p3)(es +P4)>1
4 (eq — e3)(eq + p3)
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As expected, the velocities, U3 and 04, depend only on the pressure and energy density
on both sides of the shock front. Using the relativistic velocity-addition formula, we
can transform the velocities into the laboratory frame, i.e.,

03 — U4

We are able to determine the velocity of the shock plateau and shock front, respectively,

N|=

(p3 — pa)(e3 — eq)
(e4 +p3)(es + pa)
(pa — p3)(e3 + pa)

)( )

(eq —e3)(eq + p3

I ”

Uplat = V3 = |:

N

~

Ushock = —U4 |:

] . (5.41)

For the velocity of the shock front, vgnock, there are two limits. For ps > ps4 and
e3 > ey, the velocity of the shock front approaches the speed of light,

lim VUshock = 1 5.42
P3>>Pp4 ,€32>€4 Shoe ’ ( )

whereas for p3 — p4 and e3 — e4 we obtain the speed of sound

P3—P4,€3—€4 Oe

1
o 2
lim Ushock =~ Cs = <p> . (5.43)

In the latter case, the shock wave degenerates to a sound wave. In contrast, the velocity
of the shock plateau covers the regime 0 < vpjap < 1.

The pressure

As the next step, we derive the pressure, p3(v), for the shock wave, which is necessary to
complete the solution of the rRP. For this purpose, we insert Egs. (5.38) into Eq. (5.39).
Using the expression for the EoS given in Eq. (5.2), and squaring the equations to get
rid of the square roots, we get after some simple algebraic transformations the following
quadratic expression,

P3 +pspaA+pi =0, (5.44)
with ,
A 2(c§—1) (1—c§)—c§v2 (1—03)2—2—3(1—03)2 (5.45)
(2 =1)*(1-0?) '
Only the positive solution has a physical meaning. It is given by
p3(v) = —% + <p42A>2 —p3l, (5.46)

which is the expression we are searching for.
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5.2.3. Discussion for the ultrarelativistic gas of massless particles

In the following, we discuss the results we have achieved in our calculations for the
shock-tube problem. We assume an ultrarelativistic gas of massless particles for which
p = ¢/3 and the speed of sound is given by ¢, = 1/v/3. The corresponding adiabatic
coefficient in this case is I' = 4/3. We mention that the initial values are fixed, i.e.,
Po > P4, Mo, N4, vo = vq4 = 0. The discussion for a different EoS of the form p = c2e is
analogous.

The solution of the shock tube problem is obtained by matching the pressure and
velocity at the rarefaction tail and at the shock front, i.e.,

P2 =p3, U2=103. (5.47)

For this purpose we use Newton s method to determine the intersection point of

Eq. (5.18), R
o =m(150) " (5.48)

and Eq. (5.46),

(5.49)

1
5 1 1,\°
p3(v) =7°pa |1+ S0 +4v ( + v2>

3 3 9

The intersection point represents the tail of the rarefaction wave and its connection
to the constant plateau ps. We obtain the velocity ve = v3. This automatically leads
to the determination of the pressure at the tail of the rarefaction wave and the shock
plateau, where pa(v2) = p3(v3). In addition, using Eq. (5.20) we get,

\/g
= (U ) =n vy ( 0)
n n 5.5

which corresponds to the particle density at the tail of the rarefaction wave.
The rarefaction wave propagates with the speed of sound to the left, which is our

starting point to draw the profile. The velocity in the rarefaction wave is given by

Eq. (5.26),

C1+¢&V3
V3+¢

Here we use the similarity variable, which covers the range —1 < £ < 1. The pressure
and particle density at the rarefaction wave are given by p;(v) and n(v), respectively.

In the following, we have to determine the velocities in the rest frame of the shock,
Eq. (5.38). Thereon, we are able to determine the velocity of the plateau, vpat, given
by Eq. (5.40), the shock front, vghock, given by Eq. (5.41), as well as the particle density,

v1(§) (5.51)

4.
ng = nytet (5.52)

Y3U3
The region left of the rarefaction wave and right of the shock front are given in terms
of the values of the undisturbed matter at rest. Now, the solution of the shock-tube

problem which is a special case of the relativistic Riemann problems is complete.
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However, the solution discussed here is restricted to a simple EoS which has the form
as shown in Eq. (5.2). When considering another EoS which has a more complicated
form or simply the pressure has an additional dependence on the particle density an
analytical solution is not possible anymore. Thus, the solution of the rarefaction wave
has to be calculated via numerical integration.

In Chapter 7 we discuss in particular the solutions of the shock-tube problem using
numerical solvers where the analytical solution is used as a reference to check the
perfect-fluid limit. In addition, using the numerical solvers we are able to produce
viscous solutions of the rRP. We will observe how the sharp profiles smoothen out and
the characteristic structures are washed out due to dissipation. Furthermore, we show
the solutions for a different EoS and a system with more than one particle species.






6. The kinetic transport model BAMPS

In this chapter we introduce the relativistic microscopic transport model BAMPS
(Boltzmann Approach To Multi-Parton Scattering) which has been developed by Z.
Xu and C. Greiner [41] in order to investigate and to understand the early evolution
and thermalization of the hot and dense quark-gluon matter created in heavy-ion col-
lisions (HIC) at RHIC and LHC energies'. This has been realized by implementing
perturbative QCD (pQCD) interactions for binary collisions as well as for creation and
annihilation processes. Furthermore, the model delivers a facility to investigate two
different HIC-phenomena, jet quenching and elliptic flow, within one framework. Since
then it has been updated and successfully applied to a wide range of phenomena and
its applications. These are the comparison of kinetic to hydrodynamic theory, un-
derstanding and calculating transport coefficients, and the investigation of shock-wave
phenomena. Furthermore, it has been extended and improved by several people, which
makes this model a powerful framework for many present and future studies.

In this work, the main emphasis is on the investigation of shock-wave phenomena
which are realized within a static box scenario as well as in full simulations of HIC.
The feature of pQCD scattering processes, as introduced in the original version of
BAMPS [41], is not treated here. In this work, we concentrate on the feature of
BAMPS in dealing with an accurate numerical solution of the relativistic Boltzmann
equation using momentum-independent matrix elements, i.e., isotropic cross sections.

This chapter is organized as follows: We start with the basic numerical framework of
BAMPS in Sec. 6.1 where the idea of the core model is discussed. In Sec. 6.2 and 6.3 we
introduce the space-time geometry and initial momentum sampling, respectively. The
implementation of the momentum-independent cross sections is shown in the following
section. Afterwards, in Sec. 6.5 we describe the method to extract several hydrody-
namic quantities from BAMPS. In Sec. 6.6 we finally introduce other works realized
with BAMPS in order to present the other abilities and achievements of the model.

6.1. The basic numerical framework

6.1.1. Basic idea

BAMPS is a full (3+1)-dimensional kinetic transport model which solves the relativistic
Boltzmann equation (rBE),

POuf(z,p) =C=Con+Cu+-, (6.1)

for a semi-classical Boltzmann gas using a stochastic collision algorithm [175,176,177,
178]. Bose enhancement and Pauli blocking are currently not taken into account. The

Thus, BAMPS is often referred to as a partonic cascade, because it is originally designed to study
the early partonic phase of HIC.

59
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Boltzmann equation? describes the time evolution of the single-particle distribution
function, f(z,p), in presence of collisions represented here by the collision term, C.
For C' = 0 the solution is given by free streaming, represented by the left part of the
equation. For C' # 0, the time evolution of the phase-space distribution is altered by
binary 2 <> 2 and/or inelastic scattering 2 <+ 3 processes.

As mentioned above, BAMPS solves the rBE using a stochastic collision algorithm,
which makes it so powerful compared to different approaches based on a geometrical
interpretation of cross sections. For example, ZPC [179, 180] is a partonic cascade
which implements the partonic dynamics with elastic scatterings and a geometric in-
terpretation of the cross section. It turns out that when the mean free path, A, of
the particles is not much larger than the interaction length, /o /m, causality violation
arises. In order to solve this limitation, the subdivision or test particle method has been
introduced in MPC [181]. This method preserves covariance. However, the geometric
interpretation of cross sections is limited inter alia due to the following facts: applying
the models based on the geometrical interpretation of cross sections to dense matter
where the mean free path is very small compared to the system size, the computation
time is very high since one has to use a large number of test particles in order to pre-
serve covariance and correct collision rates. Moreover, due to the fact that one has to
go through the list of all particles to check the next collision time, the computation
time increases quadratically with the number of test particles. This can be avoided by
dividing space in smaller areas, in order to decrease the checking of collision partners.
However, the numerical accuracy suffers especially in the region at the borders of these
areas. Another disadvantage is that a consistent implementation of inelastic processes
in the geometrical picture is difficult and almost impossible for the annihilation process
3= 2.

In BAMPS the incorporation of inelastic processes is possible since the model relies
on the stochastic algorithm. Inelastic processes are important when the system has
to achieve chemical equilibrium. In order to maintain detailed balance, a consistent
incorporation of 3 — 2 processes besides 2 — 3 has to be realized. As we will show
in this work the stochastic algorithm has the advantage that it allows for an accurate
solution of the rBE even in the almost perfect-fluid limit. In addition, due to the
natural division in cells, the computation time for small mean free paths compared
to the system sizes does not increase as fast as in the geometrical method. In the
following, we introduce the general fundamental operation method.

In order to numerically calculate the space-time evolution of the distribution function,
f(z,p), via the rBE, space and time in BAMPS are discretized into small cells with a
volume, AV = Az - Ay - Az, and small time steps, At, respectively. The distribution
function is represented by a certain number of point particles located in each cell as
illustrated in Fig. 6.1. Here, we require that the cell size has to be sufficiently small in
order to resolve spatial gradients. Only if this condition is fulfilled, each cell represents
the distribution function properly. Every particle in these cells has a well defined
four-momentum, p* = (E,p). At each time step, particles may interact only with
other particles in the same cell, without regarding their spatial difference, by a given
collision probability, P. This is calculated dynamically for all particles. Before and

2The Boltzmann equation Eq. (6.1) including the collision term is introduced in Sec. 3.1.
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Figure 6.1.: In BAMPS, each cell with a given number of particles corresponds to a
single-particle distribution function, f(x,p). The time evolution of the
distribution function via the rBE is realized as follows: Within a time step,
At, particles propagate freely but they may collide with other particles in
the same cell with a given collision probability, irrespectively of their spatial
separation.

after the collision, particles propagate via free streaming.

The probability of a collision is a number in the range (0 < P < 1], which is one
important difference to the geometric method where the collision probability is either
0 or 1. Using the Monte Carlo sampling in BAMPS, a random number is diced and
compared to the calculated probability. If the random number is smaller than P the
collision occurs, otherwise it does not. Of course, one has to ensure that P is not larger
than one. Therefore, the time step, At, as well as the volume element, AV, have to be
chosen appropriately.

However, if the volume element is too small and does not contain enough particles,
one encounters a problem when using the stochastic algorithm. As we mentioned
above, the distribution function is represented by the particles in each volume element.
The stochastic method only works properly if the number of particles in the cells is
sufficiently large. For example, if less than two particles are in the cells, the distribution
function is not represented in an appropriate way. Moreover, the collision algorithm
does not work, since no collision partners are available. This leads to a wrong collision
rate, as discussed in Ref. [41].

In order to solve this problem, the test particle method is used. The real number of
particles is multiplied with the test particle number, Ny, and therefore adjusts the
test particles in the simulation to an appropriate number3. Of course, the test particle
number is implemented in such a way that the mean free path is not changed. In

3The motivation to implement the test particle number, Niest, in models based on the stochastic
interpretation of the cross section is thus different to models based on the geometrical one.
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order to accomplish this, the probability, P, is scaled with Nieg. Furthermore, several
extracted physical observables have to be rescaled with Niest as well. This is discussed
in particular in Sec. 6.5.

Note that the test particle number can be in the range of [0 < Nyt < o0]. De-
pending on the densities and volumes we use in our simulations, Niest has to be chosen
accordingly.

For the given limits, At, AV — 0 and Niesy — 00, the rBE is solved exactly [33,34].
However, this is computationally very expensive, but a good choice of parameters is
sufficient to solve the rBe in a very accurate way. These choice are as follows:

e The time step should be at least one order of magnitude smaller than the local
mean free path Ayg, of the particles!. Among other things this is important in
order to ensure the correct collision rate.

e The cell sizes, Az, Ay, and Az, have to be smaller than the local mean free
path, Angp. Moreover, the cell sizes have to be small enough to resolve spatial
gradients.

e The number of particles in each cell should be at least 8 — 10 to represent the
distribution function in an accurate way.

If the above conditions are fulfilled we can conclude that the physical results are almost
independent of the discretization of space and time in cells and time steps, respectively,
as well as of the approximation of the distribution function by test particles located in
cells. If one violates these conditions numerical artifacts arise as discussed in Refs. [34,
41]. The magnitude of the numerical artifacts depends on the level of the violation
of the conditions listed above. We will discuss in Chapter 7 some ot those limitations
when presenting the accurate solution of shock waves. In particular Sec. 7.5.1 provides
a detailed discussion on the numerical convergence when varying the number of test
particles per cell and the cell length with respect to the local mean free path.

6.1.2. Probabilities and cross sections

So far we have introduced the core of the model based on the stochastic algorithm. This
method allows us to incorporate certain scattering processes: elastic 2 — 2 scattering,
inelastic process 2 — 3 and its reverse channel 3 — 2. The collision probability for a
2 — N process is expressed by

092N At
PN = Vpel

— 2
Ntest AV 7 <6 )

where N = 2,3 and ooy is the cross section. The relative velocity of two incoming
particles is defined as

2
\/(p‘fp’é) —mim3
E1Es

(6.3)

Urel =

4This value is based on personal experience.
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In the massless case, the above relation simplifies to

S
- 4
Urel 2E1E2 ) (6 )
with 5
s= 0 +ph)° = (B1+ E)” = > (0} +pb)" (6.5)
=1

being one of the Mandelstam variable, while y/s denotes the center of mass energy, i.e.,
the invariant mass of the particle pair. The probability for the annihilation process
3 — 2 for three particles 1, 2, and 3 is given by

- 1 132 At
" 8E1EyE3 Niest (AV)2

Pso (6.6)
where I39 is the phase-space matrix element corresponding to the cross section ooy .
The introduced probabilities are scaled with the test particle number, Ny, which we
have introduced above.

The collision terms, Cy2 and Cs3, and their definitions have been introduced in
Sec. 3.1. From these terms we can read off the usual definitions of the momentum-
dependent cross sections, i.e.,

1 1 dFll dFIQ 2 4 4 / /
022 = %52 TT|M12—>1’2/| (2m) 5 (pl +p2—p1—Dp 2) ) (6.7)
11 dIr’y dIVs dI's
- 253! 2 2 2

The phase-space matrix element [41] reads

\M12—>1'2'3'\2(27T)45(4) (Pl +p2—p -1y — Pls) . (6.8)

023

1 dr’y dr’,
Ip =7 | ———5—

o1 5 5 |Mia3_51r00 | (27) 6™ (p1+p2+ps—11—-15) . (6.9)

The matrix elements in the expressions for cross sections are, in general, momentum
dependent and have to be derived from the underlying field theory. In the original ver-
sion of BAMPS the matrix elements have been implemented as given by pQCD, which
is discussed in detail in Refs. [41,182]. In this work, we use momentum-independent
matrix elements, as shown in Sec. 6.4.

6.2. Space-time geometry in BAMPS

There are two main geometry types in BAMPS used in this as well as in other works.
We will briefly discuss them.

6.2.1. Heavy-ion collisions

BAMPS has been designed for the simulation of ultrarelativistic heavy-ion collisions
[41]. For this purpose, the transverse cell structure is kept constant, Az = Ay =
const, since the expansion in transverse direction is small compared to the expansion
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in longitudinal direction. The grid in the transverse direction is always set to be large
enough for the individual setup. In contrast, the cell size in the longitudinal direction,
Az, is dynamically adjusted in space-time rapidity according to

1. t+z
nrapziln

et (6.10)
Due to the fact that the system behaves approximately Bjorken-like [21] in the longi-
tudinal direction, it turns out that we automatically obtain almost equally sized bins
in space-time rapidity, 7rap. We adjust Niest such that in average there are enough
particles in each cell. In order to reduce numerical artifacts, the sizes of the cells are
adjusted in such a way that the mean free path is of the order or larger than the cell
sizes. Since this is not always possible and densities and the corresponding mean free
paths vary a lot, the cells are ”joggeled”. This procedure prevents also other numerical
artifacts due to the static cell structure, which are discussed in Ref. [41]. As a final
remark, there are no special boundary conditions in this scenario, since we have an
expansion into vacuum.

6.2.2. Static box

The stationary problems are simulated in a static box. Here, we have a better control
of the boundary conditions. As the name indicates, all cell sizes are constant during
the whole simulation, i.e., Az = Ay = Az = const.

Depending on the individual problem, we can set our boundary conditions appropri-
ately. We have to decide what happens to particles colliding with the static walls in
each direction. We discuss the scenarios at the point when a particle hits the boundary.
We do so for the z-direction since the generalization for the y and z-direction is then
straightforward.

e Periodic boundary conditions are used in the case where the specific direction is
homogeneous.

When a particle with position X collides with the boundary in x-direction, then
its position changes the sign, X = —X. Therefore, it moves to the other side of
the box. The particle momentum does not change.

o Elastic walls are used in the case where the border in the specific direction is a
hard wall.

When a particle with momentum Py collides with the wall in x-direction, then its
momentum changes sign, Px = —Px. It is reflected by the wall without loosing
any energy. The particle position does not change.

o Reservoirs: They are used where we simulate a constant thermal reservoir with
a given temperature, T', fugacity, A, and collective velocity, .

When a particle collides with the boundary in x-direction, the particle is instan-
taneously removed from the whole simulation. Independent from the removal,
particles are inserted at a specific rate. This is discussed in Appendix F.2.
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6.3. Initial momentum sampling

6.3.1. Heavy-ion collisions

We discuss the initial momentum sampling for heavy-ion collisions in Chapter 8.

6.3.2. Static box

When performing numerical calculations in BAMPS, we have to initialize the system
according to some distribution function. If not stated otherwise, we sample for each
particle species with a temperature, T', chemical potential, u, collective velocity, ¢, and
constant or vanishing mass, m, a thermal distribution for a Boltzmann gas,

_ubpu—p

flz,p)=e T . (6.11)

The four-velocity is u* = (1,7), and the four-momentum vector is p* = (F,p) with
E? = p?> + m?. We briefly introduce the numerical implementation to sample the
momenta in Appendix F.1. The method is based on the rejection sampling method

introduced in Appendix E.

6.4. Implementation of momentum-independent cross
sections

If not stated otherwise, we use isotropic cross sections for elastic and inelastic pro-
cesses throughout this work such that the matrix elements introduced previously in
Sec. 6.1 are momentum-independent. Furthermore, the cross sections are calculated
locally in each cell. We begin with the cross sections for elastic processes and continue
with the inelastic processes afterwards. Depending on the implemented method, we
need to know different hydrodynamic quantities in each cell and time step during the
simulation. These quantities are computed using the procedure introduced in Sec. 6.5.
Before discussing the methods to implement the cross section into BAMPS, we in-
troduce the main definitions related to the cross section which are employed in this
work. The first one is the mean free path which is related to the cross section by

1
Amfp = g (6.12)
where n is the LRF particle density. Hence, for a given density and the cross section,
the mean free path is given by the relation above.
For elastic and isotropic processes in an ultrarelativistic gas of massless particles, a
simple relation exists between the cross section and the shear viscosity® over entropy
density ratio. The general formula for the shear viscosity [105] is given in terms of the

collision rate:
4de

Ui

SWe introduced the transport coefficient 1 in Chapter 3.
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e is the LRF energy density. In case of binary isotropic cross sections the transport
collision rate [45] is given by
2
R = 31022, (6.14)
where n is the LRF particle density and o9y is the cross section for isotropic binary

collisions. Inserting the above expression into (6.13) we obtain,

2e
= . 6.15
"= Srom (6.15)

This equation relates the cross section to the transport coefficient 7 for isotropic bi-
nary collisions, as derived in Ref. [39]. We have to mention that Eq. (6.15) is approx-
imately true. Recent calculations extracting the shear viscosity from kinetic theory
using BAMPS [183, 184], show a tiny deviation from the above relation. This has
also been found in Refs. [35,47]. However, unless stated otherwise, we exclusively use
Eq. (6.15) throughout this work.

For the case where we also consider inelastic processes, Eq. (6.15) has to be modified.
The relation between the cross sections and the shear viscosity for elastic and inelastic

scatterings reads
2e

~ 5n (0’22 + %023) ‘

n (6.16)

Here, 093 is the isotropic cross section for inelastic processes. The formula above is
derived in Ref. [185] and confirmed using BAMPS in Ref. [183]. For vanishing inelastic
processes, i.e., g3 = 0, Eq. (6.16) reduces to Eq. (6.15). We mention that the relation
above is only valid for massless particles.

The relationship between the heat conductivity and the cross section [39,186] in IS
theory, which is partly used in this thesis for the numerical solver vSHASTA, is given
by

K= (6.17)

The above relation does not hold in all cases, as shown in recently published works
[35,187]. Part of the work done in Ref. [35] is shown in this thesis, see Chapter 7.

6.4.1. Elastic processes: constant cross section

This is the most trivial case in BAMPS and requires no further assumptions. For a
single-component system, the cross section g2 is overall constant and independent of
the densities during the whole simulation.

In the case of more than one particle species, we set different but constant cross
sections® for each particle species separately. For example, considering two particle
species, A and B, we have a cross section for species A to species A, o22(A <+ A), and
species species B to species B, g92(B <> B). Moreover, we have to specify a mixed
cross section oa2(A <> B).

5These have also no local space or time dependence.
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6.4.2. Elastic processes: constant mean free path

This method implies an overall constant local mean free path during the whole simula-
tion, Amg, = C, where C is a constant. This scenario is useful when huge differences in
densities exist, for example, due to strong local energy depositions. In order to prevent
numerical artifacts originating from a smaller mean free path compared to the cell size,
the cross section in each cell is locally adjusted at every time step, which results to a
constant mean free path. The cross section is calculated via

1

= . 1
g929 nC’ (6 8)

If large densities exist the cross section is automatically reduced and vice versa.

6.4.3. Elastic processes: constant shear viscosity over entropy density
ratio, 7/s

In the following, we introduce the method to keep the shear viscosity over entropy
density ratio constant in a simulation with massless particles. The motivation to do
so arises from viscous hydrodynamic models applied to heavy-ion collisions. While
kinetic models have the cross section, o, as input parameter, the input in viscous
hydrodynamics are the transport coefficients, such as the shear viscosity coefficient,
1. Therefore, a relation between those two input parameters is essential for a direct
comparison between both theories.

In the following, we divide both sides of Eq. (6.15) by the entropy density, s, see
Eq. (3.33), and obtain an expression for the shear viscosity over entropy density ratio:

n_ 2e
s 5n2(4—InX)og

(6.19)

Reshaping the relation above we obtain a formula for the cross section which depends
on the ratio of shear viscosity over entropy density,

2e n\ 1
2= srr—m () (6.20)

The cross section is adjusted locally at each time step in such a way, that the shear
viscosity over entropy density ratio is achieved.

6.4.4. Inelastic processes

In this work we also apply simulations which include inelastic scattering processes in
addition to the usual binary collisions. However, we restrict this scenario to a single
species of massless particles. Furthermore, we apply only constant cross sections.

The isotropic cross sections for the elastic processes, 2 — 2, is given by 9. In
addition, we have the isotropic cross section, oo3, for the creation process, 2 — 3,
and also the cross section for the annihilation process, 3 — 2, which is given by the
phase-space matrix-element, Iso. We choose the cross section for the inelastic process
to be equal to the elastic one, i.e., 093 = 092. In order to maintain detailed balance,



68 6. The kinetic transport model BAMPS

the expression I35 for momentum-independent matrix elements is given in terms of the
cross section oo3:

19272

132 = g93 . (621)

For more details see Ref. [41]. The implemented method discussed above implies that
the system can achieve chemical equilibrium. The amount of time the system needs
to chemically equilibrate strongly depends on the cross section and initial conditions.
The numerical realization for such a scenario is shown in Sec. 7.2.1.

6.5. Computation and extraction of hydrodynamic quantities

In this section we discuss the extraction of hydrodynamic quantities, which is highly
important and necessary for the whole discussion of the numerical results coming up
later”. Moreover, the extracted hydrodynamic quantities are partially required to cal-
culate the cross section, as introduced above.

We will describe the extraction of the hydrodynamic quantities in both reference
frames®, Eckart and Landau, as well the extraction for a multi-component system in
a detailed way. In the following discussion, we introduce the method directly for a
multi-component system. The only restriction is that the procedure is only valid for a
Boltzmann gas where the mass for each particle species is constant or zero. For a more
detailed discussion related to hydrodynamic quantities, see Chapter 3.

6.5.1. Computing the energy-momentum tensor and particle four-flow

The first step in computing the hydrodynamic quantities is to determine all components
of the particle four-flow and the energy-momentum tensor as a function of time and
position. We consider a system of Ngpe. different particle species. For each particle
species, 7, we identify

i d3
Nl (zh) = 7(2‘(;)3 /Epp“fi(a?,p),

v gi &Py,
Ti‘u (w,u) = (27‘(’)3 f Np fi(xap)a

(6.22)

where f;(x,p) is the distribution function and g; is the degeneracy factor of each particle
species. So far, we have repeated the relevant definitions from Sec. 3.3.5. Next, we have
to perform the transition from the continuous integral to the numerical summation in

TA big advantage of BAMPS is its possibility to obtain the dissipative quantities directly from the
off-equilibrium distribution function in the simulation.

8There are more reference frames, but these are the most familiar ones. They have also a physical
motivation.
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BAMPS. This leads to

1 Ok
N (@) = —— ) 2, (6.23)
‘ AV Niest = p%
N; W, v
T (M) = Yt 6.24
7 ( ) AVNtest ; pZOJ ( )

The integral has been replaced by a discrete summation over all particles, IV;, of each
species. As mentioned above, in BAMPS we can reconstruct the distribution function
f(x,p) from the momentum distribution of the particles inside an arbitrary volume?,
AV i.e., the position, z#, and momentum, p*, of each particle is explicitly given at
any time step and position. Due to the test-particle method, the number of particles
has to be rescaled with Niest in order to obtain the correct physical values in the end.
Finally, we obtain N#(z#) and TH (z#) from Egs. (6.23) and (6.24) via summing over

all particle species'?, i.e.,

Nspec
Nty = > N, (6.25)
i=1

Nspec
T () = > T (at) . (6.26)
=1

As mentioned above, space in BAMPS is discretized naturally. When computing the
hydrodynamic quantities during the simulation in order to calculate the cross sections,
the size of the volume, AV, is equal to the volume of the cell. However, if hydrodynamic
quantities are computed in order to extract them off line for the analysis, the size of the
volume element can be chosen freely. The finer the grid is, the better is the resolution!!,
but unfortunately, the size of statistical fluctuations also increases. In order to reduce
the statistical fluctuations, we have to perform an ensemble average of the particle
four-flow N¥(2#) and energy-momentum tensor T/ (z*) of each particle species.

In the following we introduce the calculation of the hydrodynamic quantities in the
Eckart and Landau frame. Furthermore, we assume that N/ (z#) and T/ (z#) are
extracted numerically. Moreover, we omit the index (x*), since it is clear that we
calculate the quantities in discretized space at different time steps.

6.5.2. Numerical extraction in the Landau and Eckart frame

Except for the calculation of the velocity, the procedure for the numerical extraction
of hydrodynamical quantities coincides in both the Landau and Eckart frame. We
start with the procedure for the Landau frame for a general multi-component system.
Then, we briefly introduce the difference compared to the Eckart frame. The general
definitions of the hydrodynamic quantities have been provided in Chapter 3.

The extraction procedure for the Landau frame is given as follows:

9The coordinate of the volume is always defined in the center.
"9This is also true for the continuous integrals in Eqs. (6.22).
"1t is clear that the grid should always be chosen appropriately in order to resolve spatial gradients.
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1. We determine the energy density, e, as well as the components of the velocity,
¥, via the global N*” and T"" using Eq. (3.56). The procedure is discussed in
Appendix G.

2. With e, v, N* and T", we determine the particle density, n, and isotropic
pressure, P.

3. Now, we go through all particle species separately. We adopt the velocity of the
global system, i.e., ¥; = ¥, instead of calculating the velocity for each particles
species. The reason for this is discussed in Sec. 3.3.5.

4. Using @;, NI, and T/ we determine the energy density, e;, using Eq. (3.43).
Moreover, we determine the particle density, n;, and isotropic pressure P,

5. We calculate the pseudo!?-temperature, T}, and pseudo-fugacity, A}, using the
procedure discussed in Appendix H.

6. Using T/ and X, we calculate the temperature, T, and fugacity, A, as discussed in
Appendix H.

7. In the next step we require that T; = T and \; = X as motivated in Sec. 3.3.5.

8. We determine entropy density, s (s;), equilibrium pressure, p (p;), and bulk pres-
sure, II (II;), for the global system (each particle species).

9. Finally, we determine the shear-stress tensor, 7 (w!”), the flow of energy-
momentum and particles, W# (W}) and V# (V}'), respectively, and heat flow, ¢*
(¢%"), for the global system (each particle species).

The extraction procedure for the quantities in the Eckart frame is the same as listed
above, except the first step. Using N# and T, the global velocity, ¥, is calculated
via Eq. (3.55), and the global energy density, e, is determined via Eq. (3.43).

6.6. Further application of the model

BAMPS is an appropriate tool in order to study off-equilibrium physics and both, low-
and high-ppr phenomena, within one framework. It has been applied to study the early
phase of ultrarelativistic heavy-ion collisions. Furthermore, since the model solves the
rBE, it is a perfect tool to study several transport coefficients as well as to serve as
a benchmark to viscous hydrodynamics. We briefly introduce the topics on which the
framework of BAMPS has been already applied in several studies. The results have
been published in several notable journals.

12\We name them pseudo, because they have no physical meaning, and we denote them with ”/”. For
more details see Sec. 3.3.5.
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Figure 6.2.: Early thermalization and time evolution of 1/s from previous studies with
BAMPS.

6.6.1. Application to heavy-ion phenomenology
Early thermalization and low shear viscosity

The issue of thermal and chemical equilibration of the QGP created in relativistic
heavy-ion collisions has been already addressed in certain studies [179, 181, 188, 189,
190,191,192,193]. Initially, BAMPS has been employed to study the early evolution of
hot gluon matter in relativistic heavy-ion collisions at RHIC energies, focusing on the
understanding of rapid thermalization [41]. Such a rapid thermalization is not possible
with elastic scattering processes only unless unphysically high cross sections are used
instead of pQCD-based cross sections. It has been shown that including inelastic par-
ticle production and annihilation processes with pQCD-based cross sections solves the
problem of the rapid thermalization, as shown in Fig. 6.2a. Moreover, studies focusing
on the ”bottom-up” scenario using BAMPS have been realized in Refs. [194,195]. The
fast thermalization observed in non-central collisions of heavy-ions correlates with the
appearance of a small shear viscosity over entropy density ratio, n/s. Comparison of
ideal and viscous hydrodynamics [10,69,104,197,198,199] to data from RHIC suggests
a rather small value of 1/s, which seems to be very close to the conjectured lower bound
of n/s =1/(4m) [19] from a correspondence between conformal field theory and string
theory in Anti-de-Sitter space. Such a small ratio has also been confirmed by calcula-
tions with BAMPS including both elastic and inelastic processes [105,106,200,201,202].
These findings indicate a rather small n/s =~ 0.08 — 0.15 depending on the coupling
constant, a. In Fig. 6.2b we show the time evolution of the shear viscosity over entropy
density ration in Au+ Au collisions at 200 A GeV with different impact parameters and



72 6. The kinetic transport model BAMPS

0.10 T T T T T T
= STARV,{4}
v 0.09F J e PHOBOS Track-based] 1 . . .
2 0.08F 4 PHOBOS Hit-based ] BAMPS, 2°. b-3.4 fm —a
0.07 —°~BAMPS ¢=0.3 PHENIX, 20, 0-10%
HhE 81 —s—BAMPS =06 0.8 BAMPS quarks
0.06 b i M ~ = only gg->gg, (xs=0.3' BAMPS gluons -—--&---
0.05F 7 "~ only gg->gg, «,=0.6 ] 06
<
004k ' &
e 3 | o
0.03F e T ' E 041 g% }
002f 7 T 3 .
Y e e e = ~ 0.2 S005ee%0eset®
0.01F - -~ E :
0.00 'Ty ) ) ) ) T P e P — 28 S
- O L L L L L
0 50 100 150 200 250 300 350 0 5 10 15 20 25 30
<N > pr [GeV]
part
(a) Integrated elliptic flow, v2, vs. number (b) The nuclear modification factor, Raa,

of participants, Npart, for the central re- for neutral pions, quarks, and gluons, ex-
gion of Au + Au collisions using a5 = 0.3 tracted from BAMPS calculations with an
and 0.6 compared with RHIC data. The impact factor of b = 3.4fm, compared with
initial spectrum is the distribution given experimental data for central collisions.
from mini-jet initial conditions with Figure from Ref. [182].

po = 1.4 GeV. Figure from Ref. [105].
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previous studies with BAMPS.

coupling constants, .

Flow phenomena and jet suppression

BAMPS provides the possibility to study both low- and high-p7 phenomena within one
framework, i.e., to study the bulk and jet properties of QCD matter in the perturba-
tive coupling regime. Calculations of the elliptic low, va, which are shown in Fig. 6.3a,
are found to be in good agreement with experimental data for the coupling regime
as = 0.3...0.6 [105,201]. For the hadronization, a simple picture has been employed,
where gluons turn into pions'® when the local energy density drops lower than a speci-
fied critical value. The results are in very good agreement with the experimental data,
and one observes the importance of inelastic scattering processes included in BAMPS.
Whereas the bulk properties are well-described in BAMPS using pQCD-based scatter-
ing processes, the nuclear modification factor, Raa, shown in Fig. 6.3b, is found to
be below the data, i.e., a too strong suppression of highly energetic jets traversing the
medium created in HIC [182]. Here, BAMPS has been already extended to light quarks,
with all scattering channels, while the cross sections are based on pQCD. Recently, it
has been demonstrated in Ref. [203], that the Gunion-Bertsch approximation of the
leading-order perturbative QCD radiation matrix element, which is used in BAMPS; is
not exact and has to be improved. The improved Gunion-Bertsch approximation may
resolve the bad description of the nuclear modification factor, R 44, but simultaneously
will change also the results for the elliptic flow, vo. This work is still in progress.

13This is named “parton-hadron duality” [182].
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Figure 6.4.: Heavy quark flow at RHIC and charm production at LHC as studied within
the BAMPS framework in Refs. [204] and [206].

Heavy quarks

As shown in Ref. [182], BAMPS has been extended to light quarks in order to provide a
more complete description of the phenomena in heavy-ion collisions at RHIC and LHC.
However, BAMPS has also been extended to heavy quarks which enables the study of
production and space-time evolution of charm and bottom quarks in central and non-
central heavy-ion collisions at RHIC and LHC energies for various initial conditions
[204,206]. Tt has been found that the in-medium production of charm quarks from gg —
QQ processes is negligible for RHIC collisions. In contrast, it contributes significantly
to the total charm yield at LHC energies, which is shown in Fig. 6.4a. In a recently
published study the nuclear modification factor, Raa, and elliptic flow, vo, of electrons
emerging from open heavy-flavor decays have been extensively investigated as shown in
Fig. 6.4b. It has been found that the elastic g@QQ — g@) cross section is too small in order
to provide a good description. A scaling factor of K for the elastic cross section has
to be introduced in order to reproduce the experimental data. Further studies require
the extension to inelastic processes for heavy quarks, such as g@Q@ — ¢gQg, based on
the improved Gunion-Bertsch matrix element. This will allow for the investigation of
radiative contributions to the energy loss and collective behavior of charm and bottom
quarks.

6.6.2. Application to nearly ideal and viscous hydrodynamics

Comparison to viscous hydrodynamics

BAMPS is an excellent tool to compare with, insofar as the exact solution of the rBE is
required. In certain studies, BAMPS has been used as benchmark for newly developed
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theories of viscous hydrodynamics. In Ref. [207], a new third order dissipative hydro-
dynamic theory has been derived from the entropy principle and extensively compared
to the numerical results generated with BAMPS. This is depicted in Fig. 6.5a. The
main question which has been tried to answer is, in which regime the theory of viscous
hydrodynamics is applicable and which are the conditions where it fails. It has been
shown that the standard theory of Israel and Stewart which is the so-called second-
order theory of viscous hydrodynamics, does not provide a reasonable description of
systems which are far from thermal equilibrium. In contrast, in a simplified model
assuming Bjorken scaling, a newly derived third-order theory covers a larger regime of
applicability, i.e., larger values of Knudsen number®, Kn. Moreover, when effectively
considering contributions from all orders, the agreement with BAMPS is improved even
more.

The above work has been extended to systems with more than one particle species,
as shown in Ref. [150,151]. The main emphasis has been put on the issue whether a
system containing many species can be treated as a single component hydrodynamical
system. In this work, novel hydrodynamic equations for each component of a multi-
component system have been derived and compared to the solution of the rBE via
BAMPS, as shown in Fig. 6.5b. It has been found that especially in a static system
where no spatial and velocity gradients appear the shear viscosity coefficient for each
particle species as well as the effective shear viscosity of the mixture depend on the
ratios of the shear pressures. Although similar relaxation-type equations exist, there
are differences between single- and multi-component systems. Therefore, using only a
single-component description unavoidably leads to the wrong description of a multi-
component system. However, it has been shown, that with the appearance of spatial
and velocity gradients, the differences become smaller [208].

Extraction of transport coefficients

The determination of transport coefficients of the medium which is created in relativis-
tic HIC is of big interest. The most important ones are the shear viscosity, n, the bulk
viscosity, ¢, and the heat conductivity, k. The transport coefficients describe the prop-
erties of the medium on a macroscopic length scale, which are an important input for
viscous hydrodynamic models. Furthermore, with the knowledge of these coefficients,
one can qualitatively learn about the interactions in the system on the microscopic
level.

As BAMPS solves the rBE, it is a perfect tool to extract these coefficients on the
level of a simplified Boltzmann gas. In Ref. [184], BAMPS has been employed in
a more or less phenomenological Ansatz to extract the shear viscosity coefficient, 7,
using the relativistic Navier-Stokes equations, where 7 is proportional to the velocity
gradient. For this purpose, left and right of a one-dimensional system two moving plates
were simulated by thermal reservoirs. Using a sufficiently high momentum-independent
cross section with only binary collisions, a velocity gradient has been established after a
certain period of time, which is non-linear due to relativistic effects. On the other hand,
the rapidity shows a linear behavior, as demonstrated in Fig. 6.6a. The extraction of

The Knudsen number is the ratio of a microscopic to a macroscopic length scale.



6.6. Further application of the model 75

1.2
1+
N =] |
! o 4 total O
107 ¢ species 1
species 2 ©
one-component with GK viscosity
06 | | W/s=02 102
& I a ,
& N U & 10°
o
\= >~
0.2 ¢ N T 108
5 multi-component hydro
0 IS . g [ PO BAMPS
- - -~ 3rd order E >l
02 - = All prders ‘(appro‘ximatio‘n) (1] [ b 3
“0 o5 1 15 2 25 3 35 4 o 05 p 15 5 25 3
T (fm/c) time (fm/c)

(a) Time evolution of the pressure isotropy (b) (a) Time evolution of the partial and total
for various 7n/s values. Symbols present shear pressures normalized by total energy
the results of BAMPS calculations. The density and (b) ratio of the partial shear
solid, short-dashed and long-dashed curves pressures from BAMPS (symbols) and hy-
show the solutions of Israel-Stewart theory, drodynamic calculations (lines). Solid grey
of third-order hydrodynamics, and of the lines represent the effective one-component
heuristic consideration of all-orders contri- solution. Figure from Ref. [151].

butions. Figure from Ref. [207].

Figure 6.5.: Applicability of hydrodynamics investigated within BAMPS in Refs. [207]
and [150,151].

the shear-stress tensor components in BAMPS makes it possible to determine the shear
viscosity, whereas for simplification the gradient of the velocity and rapidity have been
derived analytically. Using a similar method the heat conductivity, &, is extracted in the
Navier-Stokes limit using BAMPS [187]. To this end, a temperature gradient has been
established using thermal reservoirs, where a non-vanishing heat flow exists. In order
to obtain a static profile, the pressure gradient has to vanish. Furthermore, another
method to extract the shear-viscosity coefficient, ), is realized within the Green-Kubo
formalism. The details are discussed in Ref. [183]. As expected, the results agree with
those obtained in the work discussed above [184].

Both, the shear viscosity, 7, and heat conductivity, , for a massless Boltzmann gas
with isotropic cross sections have been compared to different values extracted from
different derivations of viscous hydrodynamics. BAMPS has been able to clarify which
method reflects the best manner of derivation. In case of the shear viscosity, the
results from all second-order theories are close to the values extracted from BAMPS.
This changes dramatically for the heat conductivity, where a big discrepancy between
the different theories exists as shown in Fig. 6.6b.

Besides that, the different methods to extract the shear-viscosity coefficients makes
it possible to determine the shear viscosity of a medium with momentum-dependent
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Figure 6.6.: Extraction of transport coefficients within BAMPS in the Navier-Stokes
limit as realized in Refs. [184] and [187].

cross sections. This has been realized in Refs. [183,184] for a medium with pQCD-based

elastic and inelastic scattering processes.



7. Investigation of shock-wave phenomena
in kinetic theory and viscous
hydrodynamics

In this work, the main emphasis is put into the investigation of ideal and viscous
shock waves using kinetic theory. For this purpose we use the microscopic transport
model BAMPS which solves the relativistic Boltzmann equations (rBE). In order to
obtain a better structure and keep track of the whole discussion, we partitioned the
numerical results into two parts: In this Chapter 7, we present the numerical results
of shock waves in various scenarios in a simplified (1 + 1)-dimensional' setup, while in
the subsequent Chapter 8, we study the evolution and properties of Mach cones which
belong to the class of shock-wave phenomena but require a two or three-dimensional
framework.

In order to obtain a more comprehensive discussion, we also make use of the hydro-
dynamic solver vSHASTA? in this chapter. Using both, BAMPS and vSHASTA, we
determine the range of applicability of the relativistic viscous hydrodynamic theory by
simulating shock waves appearing in the context of the relativistic Riemann problem
(rRP), which is introduced in the perfect-fluid limit in Chapter 5, and other numerical
setups. The comparison of viscous hydrodynamics to kinetic theory considering shock
wave scenarios has turned out to be a fundamental and notably study [33,34,35]. Thus,
this chapter is an elaborate discussion of these publications and contains additional ma-
terial useful for the investigation of shock waves and the comparison between viscous
hydrodynamics and kinetic theory.

In the forthcoming discussion, we exclusively use a 3-dimensional static box of fixed
size with various boundary conditions. Since we consider the shock-wave propagation
in one dimension, we assume that the matter is homogeneous in the y — z plane>.
The shock wave propagates along the longitudinal x—direction. Furthermore we also
use different cross sections. Unless stated otherwise, however, we only use isotropic
cross sections and the extracted hydrodynamic quantities are calculated in the Landau
frame, both for BAMPS and for vSHASTA. The method to extract those quantities
using BAMPS has been introduced in Sec. 6.5.

We now introduce the structure of this chapter: In Sec. 7.1 we study the influence of
the 7/s ratio on the formation and evolution of shock waves by solving the rRP with the
microscopic transport model BAMPS and the viscous hydrodynamic solver vSHASTA.
Here vSHASTA solves the Israel-Stewart (IS) theory. We benchmark both vSHASTA

!The transverse directions are assumed to be homogeneous.

2The numerical calculations of vSHASTA have been performed by H. Niemi and E. Molnar.

3Thus, the cell sizes in transverse direction are equal to the corresponding arbitrarily large size of the
box.

7
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and BAMPS to the ideal solution as a proof of their applicability. In the following, we
consider shock waves for different viscosities by adjusting the 7/s ratio, where results
from BAMPS are used as a reference for vVSHASTA in order quantify the applicability
of IS theory. We find that for large n/s ratio the IS theory breaks down. Furthermore,
we encounter a strong limitation in the description of heat flow, which is identified as a
limitation of the IS theory. In the end of this section we discuss the scaling behavior and
formation time of shock waves. In the following Sec. 7.2, we discuss the implementation
of inelastic processes in BAMPS and the effects compared to the case where only binary
scattering processes are taken into account. Furthermore, we extend our discussion
by solving the rRP for a gas of massive particles and to a system of more than one
component. In Sec. 7.3 we use a modified setup to investigate the heat-flow problem
as encountered in Sec. 7.1. We demonstrate the improvements of RTRFD compared to
IS theory when comparing them to the solutions of BAMPS. In Sec. 7.4 we introduce
another modified setup to investigate the formation of a shock front. Here, we move
to the frame where the shock front is in rest and use both, BAMPS and vSHASTA,
to compare relativistic kinetic theory to relativistic dissipative hydrodynamics. We
encounter strong limitations when applying dissipative hydrodynamics to describe the
shock-front region for large propagation speeds of the shock front. In Sec. 7.5, we
finally provide a brief discussion of the numerical convergence of BAMPS by varying
the parameters, such as cell size and test-particle number. Moreover, we show some
details regarding the calculating time of BAMPS.

7.1. The Riemann problem in the ultrarelativistic limit

In this section, we consider the rRP in order to investigate shock waves in one dimen-
sion. The initial conditions are the same as for the shock-tube problem discussed in
Chapter 5. Furthermore, we use an ultrarelativistic gas of massless particles charac-
terized by the equation of state (EoS) e = 3p. The size of the static box is chosen
to be L, = 6.4fm. In order to obtain the results in BAMPS we average over many
different ensembles. Unless otherwise stated, vSHASTA solves the standard IS theory,
see Appendix A. In the following, we shall also use the relationship between the heat
conductivity and the cross section. We use the relation (6.17). Furthermore, we use
the relation (6.15) to relate the shear viscosity to the cross section for binary collisions.

7.1.1. The perfect-fluid limit

The Riemann problem which is analytically solvable in the perfect-fluid limit is an
important test case for both kinetic and hydrodynamical calculations. In this section,
we show that both approaches can reproduce the analytic solution very accurately, and
therefore are usable for investigations of shock-wave phenomena. Furthermore, we also
discuss possible numerical uncertainties which always appear in numerical approaches.

The initial conditions we use are those of the shock-tube problem discussed in Chap-
ter 5. This implies that we initialize the left and the right part of the box. We initialize
the system in thermal equilibrium with the initial values summarized in Tab. 7.1. The
initial dissipative quantities, ¢ and 7*¥, vanish and the bulk viscous pressure in the
ultrarelativistic limit is always zero. A sharp discontinuity appears in the temperature
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profile, which implies a strong initial pressure gradient. In the end, the initial pressure
gradient leads to the development of a shock wave and a rarefaction wave, as discussed
in detail for the ideal solution in Chapter 5.

] initial variables ‘ left ‘ right \H further settings ‘

T(GeV) 04 |02 one species: m = 0GeV

A 1 1 degeneracy factor g = 16

v 0 0 isotropic elastic 2 — 2 collisions

I (GeV /fm?) 0 0 constant n/s or o

¢* (GeV/fm?) |0 0 runtime = 3.2 fm/c; system size L, = 6.4
fm

T (GeV/fm?) | 0 0 walls in a-direction; periodic bound-
ary conditions in transverse y- and z-
directions

Table 7.1.: The initial conditions and settings used in BAMPS and vSHASTA in the
rRP for an ultrarelativistic gas of massless particles.

In BAMPS we cannot exactly reach the perfect-fluid limit, but we can choose a very
small physical viscosity 7 = 0.001s to simulate an ideal fluid numerically. The use of
even smaller viscosities or, equivalently, larger cross sections would require a better
resolution* which is computationally very time consuming. On the other hand, we can
choose n = k = 0 for vSHASTA which solves the relativistic Euler equations instead of
the IS equations. As explained in Appendix D, however, because of the approximative
nature of the numerical algorithm we always have some residual numerical viscosity in
the calculations.

Figure 7.1 shows a snapshot of the particle density n, the fugacity, A, the isotropic
pressure, P, the shear pressure, 7, the velocity, v, and the heat flow, ¢*, at t = 3.2
fm/c. The shear pressure is defined as ™ = %% /42, because we identify the z-direction
as the longitudinal one, whereas y and z span the transverse plane®.

The results from BAMPS for n, P, and v in Fig. 7.1 agree well with those of the
ideal fluid-dynamical calculation, except for small deviations around the discontinuities
separating the different regions. These deviations are expected to appear because of the
small but non-vanishing physical viscosity used in BAMPS calculations and are best
seen in the fugacity profile. The solution of vSHASTA demonstrates that this effect
originates from the small nonzero viscosity. Nevertheless, the results from BAMPS
also deviate from vSHASTA using the same 7/s value. This is especially distinctive
in the heat-flow profile, which is not zero but positive around the constant plateau.
Furthermore, one observes a peak in the BAMPS result. We demonstrate later that
this deviation arises from numerical fluctuations.

Figure 7.1 shows that BAMPS is indeed able to reproduce the almost perfect-fluid
limit. The small deviations of the ideal solution indicate that particles in regions around
discontinuities are out of thermal equilibrium in the BAMPS calculations. However,

4This implies a smaller Az and a larger Niest.
SHowever, this definition of the shear pressure holds for a one-dimensional expanding system only.
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Figure 7.1.: The analytical and numerical solutions of the relativistic Riemann problem
for the particle density (a), the fugacity (b), the isotropic pressure (c),
the shear pressure (d), the velocity (e), and the heat flow (f). The initial
conditions and settings are listed in Tab. 7.1. The full lines are the analytic
solutions at ¢t = 3.2 fm/c. The results from vSHASTA for the perfect-fluid
limit are shown by the dashed-dotted lines. The results from BAMPS and
vSHASTA at n/s = 0.001 are displayed by the dashed and dotted line,

respectively.

this is only a small fraction of the whole system. The development of the (shock) plateau
as well as of the sharp discontinuities indicates that matter reaches thermal equilibrium.
In order to demonstrate this, we calculate the energy distribution, dN/(N dFE), of
particles in the region of the shock plateau and compare it to the thermal one, which
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Figure 7.2.: Relative difference of the energy distribution for particles in the plateau
region between the results extracted from BAMPS and from a local thermal
equilibrium distribution given by Eq. (3.25) with a = 0.

is obtained from Eq. (3.25) with a =0, i.e.,
dN e "E/T sinh(vyE/T)E

NdE 272~ 2y
The results are shown in Fig. 7.2, where we see agreement within a few percent.

If the system is exactly in thermal equilibrium as described by the ideal fluid-
dynamical solution, the dissipative quantities such as the heat flow, ¢*, are expected to
vanish. As already mentioned above, the heat-flow profile as shown in Fig. 7.1f demon-
strates that this is not the case for BAMPS. Here, BAMPS deviates from vSHASTA
with the same n/s = 0.001. The heat flow in vSHASTA is practically zero, while in
BAMPS it has a small positive value between the rarefaction fan and the shock front.
This deviation between BAMPS and vSHASTA is already noticeable in the fugacity
and shear pressure profile, although the difference is hardly distinctive. Moreover, we
see a large peak in the fugacity, the shear pressure, and the heat flow in the region of
the shock front. The particle density, pressure, and velocity are not sensitive enough
on this numerical artifact, such that the same effect is not visible.

The deviation of ¢* from zero observed in Fig. 7.1f seems to be a numerical artifactb,
because it disappears when using a constant cross section instead of a constant value of
n/s. In Fig. 7.3 we show the numerical result from BAMPS and from vSHASTA for the
fugacity, the shear pressure, and the heat flow for constant /s and for a constant cross
section in the left and in the right panel, respectively. We have chosen o = 224.431 mb,
which corresponds to n/s = 0.002 in the medium with the higher initial temperature.
Furthermore, in contrast to Fig. 7.1 we use a smaller number of test particles in the
left part of Fig. 7.3. This effectively leads to an on average smaller number of particles
per cell.

(7.1)

Sexcept for the peak
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Figure 7.3.: The fugacity, A, the shear pressure, 7, and the heat flow, ¢*, obtained from
BAMPS and from vSHASTA using a constant 77/s = 0.001 (left panel) and
a constant cross section o = 224.431mb (right panel).The initial conditions
and settings are listed in Tab. 7.1. In contrast to the results displayed in
Fig. 7.1, we use in BAMPS a smaller number of test particles in the left
panel. The value of 7/s for the case of a constant cross-section simulation
varies from 0.002 to 0.008.

For the quantities in the right panel of Fig. 7.3, we see a perfect agreement between
the results from BAMPS and vSHASTA. This is especially distinctive for the small
drop at z = 1.6 fm. The peak at the shock front becomes smaller, although it is larger
than the peak from the vSHASTA calculation. One can infer from the left panel of
Fig. 7.3 that using a smaller number of test particles the size of the numerical artifact
increase when comparing them to Fig. 7.1. This demonstrates that this numerical
artifact originates from the method of cross section and local fluctuations. This is
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explained in the following: On the shock plateau, where the flow velocity and the LRF
particle and energy density (v, n, €) are constant, one expects that the cross section is
also constant for a constant 7/s. In a single event, however, thermodynamic quantities
fluctuate, such that one would use a smaller cross section (larger shear viscosity) in a
cell with larger energy (entropy) density in order to keep 1/s constant, and a larger
cross section in a cell with smaller energy density. Therefore, although the results
shown in Figs. 7.1 and 7.3 (left panel) are averaged over 1000 events, the deviations
between BAMPS and vSHASTA results are likely to come from the fluctuations in
single BAMPS events. These can be reduced by performing simulations with much
larger Niest.

Using a larger number of test particles in Fig. 7.1 than we have used in Fig. 7.3, we
have confirmed that the difference between BAMPS and vSHASTA solutions decreases.
The scenario of using a constant ¢ is independent of this effect.

7.1.2. Viscous solutions

In this section we study the relativistic Riemann problem at different non-zero vis-
cosities. We show that for small viscosities both the hydrodynamical and kinetic ap-
proaches are in good agreement, especially at late times. With increasing viscosity,
however, this agreement fades and ultimately breaks down when the hydrodynamical
description leads to results which are inconsistent with kinetic calculations. Thus, the
main motivation of this section is to find the conditions of this break-down and then to
quantify the range of applicability and the limitations of the dissipative hydrodynamical
description.

We note that all results shown below are calculated in the Landau frame. In the cases
considered here the heat flow is small” such that the differences between the Landau
and Eckart frames are very small, even for large values of 7/s.

Relativistic kinetic theory can correctly treat the Riemann problem from the nearly
perfect-fluid limit to the free-streaming limit. This has been demonstrated before and
has been published in Refs. [33,34,209,210]. Another promising method to investigate
the Riemann problem is based on the lattice Boltzmann approach and has been recently
reported in Refs. [211,212,213,214]. In contrast to kinetic theory, the applicability of
IS theory requires that the system stays close to local thermal equilibrium and that
the Knudsen number, Kn, is small during the whole evolution.

In the special case of the Riemann problem the local Knudsen number is large at early
times of the evolution when large density gradients appear even for small viscosities.
Furthermore, the system is far from equilibrium around the discontinuity. Hence, the
IS theory of dissipative hydrodynamics is expected to fail to correctly describe the
evolution in this region.

However, the gradients will be smoothened out later because of the viscosity and heat
conductivity, which provides better conditions for the IS hydrodynamical description.
The degree of agreement with the kinetic description depends on the value of the
Knudsen number which we demonstrate later.

In the next subsections, we show results at fixed times but for different values of n/s.

Texcept for the free streaming case.
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Figure 7.4.: The numerical solutions of the relativistic Riemann problem for the particle

density (a), the fugacity (b), the isotropic pressure (c), the shear pressure
(d), the velocity (e) and the heat flow (f). The initial conditions and
settings are listed in Tab. 7.1. The results are shown for BAMPS and
vSHASTA for n/s = 0.01 and 0.1 at ¢t = 3.2 fm/c.

However, solutions at time ¢ with shear-viscous coefficient 7 correspond to solutions at
time at with a shear-viscous coefficient a n, where a is some arbitrary constant. This
scaling behavior is discussed later in Sec. 7.1.4.

Small viscosity

We use the same initial conditions as in the previous Sec. 7.1.1, but we consider two
different values of the shear viscosity to entropy density ratio, n/s = 0.01 and /s = 0.1.
Figure 7.4 shows the particle density, n, the fugacity, A, the isotropic pressure, P, the
shear pressure, 7, the velocity, v, and the heat flow, ¢*, at t = 3.2 fm/c for BAMPS
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and vSHASTA calculations.

In the dissipative case, the characteristic structures of the perfect-fluid solution still
can be found in the late stages of the evolution since it takes a finite time for the
structures to form. We demonstrate this in Sec. 7.1.4. Instead of a discontinuous shock
front, a contact discontinuity, and sharp rarefaction tails, however, we obtain continu-
ously changing profiles, i.e., dissipation leads to the smoothening and the broadening
of these characteristic structures.

Another difference compared to the perfect-fluid case is that the head and the tail of
the rarefaction fan and the shock front propagate faster into the undisturbed matter.
However, for the shock wave this happens only until the shock plateau is formed. After
that, the velocity of the shock wave is the same as for the perfect-fluid case. Similarly,
the velocity of the plateau does not change compared to the perfect-fluid solution. The
width of the shock front strongly depends on the dissipation. In the perfect-fluid case
the width vanishes, whereas it increases with increasing n/s. However, as we will show
in Sec. 7.4, the total width of the shock front is proportional to the shear viscosity
coefficient 7 in the limit ¢ — oo [40,215,216,217].

For the smaller shear viscosity to entropy density ratio, n/s = 0.01, the agreement
between BAMPS and vSHASTA results is excellent within statistical fluctuations for
all macroscopic quantities, although any definite conclusions regarding the heat fluxes
are hard to draw because of large fluctuations. The shock front from both calculations
is also in very good agreement. However, a closer inspection reveals that vSHASTA
results in slightly steeper profiles than BAMPS.

Increasing the viscosity to /s = 0.1 leads to noticeable differences between the
approaches. The most pronounced difference can be again seen in the shock front:
vSHASTA provides a too sharp profile at the right edge of the front, while the matter
in the low-density region is diffused faster in the BAMPS calculation. It is an important
question whether this is only a specific failure of the IS theory or a general failure of
viscous hydrodynamics. A deeper investigation of the shock front is performed in
Sec. 7.4.

Further differences are visible in the region of the rarefaction fan where the kink
at the left edge survives. Another difference can be seen by inspecting the fugacity
and shear pressure in the region where one would find the contact discontinuity in
the perfect-fluid case. In this region the vSHASTA calculation leads to an overall
smaller fugacity, and to a sharp kink in the shear-pressure profile. These differences
are enhanced for larger viscosities as seen in the next subsection.

Large viscosity

If the value of n/s is increased further to n/s = 0.2, deviations between the results of
vSHASTA and BAMPS become more significant. They are shown in Fig. 7.5 for the
same quantities as in Fig. 7.4. In addition, we also present the free-streaming solution
which has been discussed in Appendix I.

The most salient difference occurs in the pressure profile. In the vSHASTA calcula-
tion a part of the initial discontinuity survives near the contact discontinuity located
at © ~ 1.5 fm even after ¢t = 3.2 fm/c. In contrast, this kind of structure is not
seen in the BAMPS calculation. A similar shock structure has also been observed



86 7. Investigation of shock-wave phenomena in kinetic theory and viscous hydrodynamics

free streaming
BAMPS n/s =0.2 =
VSHASTA n/s = 0.2

125

10.0

n[1/fmd

P [GeV / fm%]
n [GeV /fmd]

05| (o) T (®
/08‘ ‘\‘ _ 0.0 ﬂ.!‘\hﬂq.‘,:.".‘ -
0.4 § B 3 mE E9% :.,,:I::wm?.-__.
5 I I
> 03 > N | > o
08
0.2 4 '; ~. -0.2
4 2\l
K4 H
0.1 x"' -“ -0.3
0.0 #oas’ =
-3 2 1 0 1 2 3 3 2 1 0 1 2 3
x [fm] x [fm]

Figure 7.5.: Same quantities as shown in Fig. 7.4 but for /s = 0.2. In addition, the
free-streaming solution, as discussed in Appendix I, is shown. The initial
conditions and settings are listed in Tab. 7.1.

in Ref. [174], called the ”double-shock” phenomenon by the authors. It is important
to note that within this reference smoothed-particle hydrodynamics (SPH) has been
used to solve the equations of dissipative hydrodynamics, corresponding to the simpli-
fied IS equations without heat conductivity. The simplified or truncated IS equations
take into account the relaxation term only to describe the time evolution of dissipative
quantities.

In the hydrodynamical calculation, this discontinuity originates from the initial dis-
continuity. In the early stage of the evolution the effective pressure, P 4+ m, and the
velocity acquire almost constant values near the discontinuity. The velocity and the
gradient of the effective pressure are the driving forces of the expansion. Therefore, if
they are constant nothing happens to the structures in the solution and the original
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discontinuity disappears very slowly such that parts of it are still visible in the later
stages of the evolution.

A similar difference between the BAMPS and vSHASTA results is seen at the right
edge of the shock wave. This part of the profile is again not described correctly by the
IS theory, and the difference is already visible for smaller values of 1/s. The same is
also true for the head of the rarefaction fan, although it is less visible for small viscosi-
ties. This kind of discontinuous behavior can be seen in all relevant hydrodynamical
quantities.

In the BAMPS calculation, the original discontinuity disappears immediately. This
is because in kinetic theory, the evolution near the very steep density gradient is well
approximated by free streaming or diffusion of particles, which smoothen out all sharp
structures very rapidly. Free streaming of particles drives the system far out of thermal
equilibrium immediately, such that it cannot be described correctly by second-order
dissipative hydrodynamics.

This phenomena has been studied and explained in non-relativistic systems by M.
Torrilhon et al. [218,219,220]. They concluded that the viscous hydrodynamical solu-
tions of the Riemann problem actually lead to discontinuous solutions. For example, in
the non-relativistic 13-field equations the system has five instead of three characteristic
waves. Although dissipation leads to the attenuation of these waves and the smoothen-
ing of discontinuities, this can only happen after a sufficiently long time. In case we
include higher moments of the distribution function we will find more characteristics
and therefore more discontinuities but with smaller amplitude. There is an infinite
number of moments, which form a hierarchy of equations. Therefore, by taking into
account higher moments the approximations to the Boltzmann equation become more
precise, which in turn leads to a better approximation for smooth profiles. On this ac-
count we note that there are more recent studies showing that the Grad’s 13-moment
method leads to much better results with a special regularization technique [221,222].
So far these methods have been studied only in the non-relativistic case, but they
nevertheless point towards a solution.

Heat-flow problem in the IS-Theory

As shown in Appendix A, we have neglected the term that couples the shear pressure
to the heat-flow equation (A.14). The reason is that, if this term is included, the good
agreement of heat flow and fugacity between BAMPS and vSHASTA is lost even for
small viscosities. This is demonstrated in Fig. 7.6, where we show the fugacity, A,
and heat flux, ¢*, for n/s = 0.1 with and without this coupling term. The profiles
change completely, and there is no support from BAMPS for structures induced by the
coupling. For the other quantities this coupling term has only a very small effect.

The reason that this single term can become dominant is that for the viscous Riemann
problem, the heat flow is typically one order of magnitude smaller than the shear
pressure. Thus, the coupling term in the heat equation can be large when the shear
pressure is large, even if it formally is a second-order correction only.

The origin of the heat-flow problem is hence not due to strong dissipation, but it
is a general failure of the standard theory of Israel and Stewart. We assume that
the IS theory suffers from wrong values for the transport coefficients and does not
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Figure 7.6.: The fugacity (a) and heat flow (b) profiles with and without the coupling,
I35, of the shear pressure in the heat-flow equation (A.14).

include all terms which are necessary for a sufficiently good description. In order to
resolve the heat-flow problem, it is necessary to go beyond the standard 14-moment
approximation, which has been pointed out in Sec. 3.4.4 and is discussed in greater
detail in Refs. [35,47]. In Sec. 7.3, we show the results and improvements of this
recently derived RTRFD theory compared to the IS theory again using BAMPS as a
reference.

Global Knudsen number analysis

In order to better quantify and measure the applicability of IS theory, we define the
relative difference between the BAMPS and vSHASTA calculations as

() - ()
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Figure 7.7.: Time evolution of the average Knudsen number, Kn., for different initial
temperature ratios and different values of 7/s.

where de is the difference in energy density between the BAMPS and the vSHASTA
calculations. We recall that e = 3p for a massless gas. The integral is evaluated from
the head of the rarefaction fan to the tail of the shock wave. As a consequence the
constant temperature regions to the left and the right are not included. The width of
this region is denoted as Ax. Similarly, the average macroscopic length scale can be
estimated from the average energy density gradient as

_ 1 1 86 1 €0
L, Az / e@xdx' = A—xlna, (7.3)
where eg and ey4 are the initial energy densities on the left- and the right-hand side of
the initial discontinuity, respectively. Hence, an average Knudsen number relevant for
this study can be defined as
)\mfp
L.’

Kne = (7.4)
where Apf, is the mean free path in the low-temperature region, i.e., where the mean
free path is largest. This definition smoothens the rapid changes compared to a local
Knudsen number and makes the comparisons between calculations feasible. Note that
the Knudsen number (7.4) is similar to that introduced in Ref. [33].

Since Amgp, ~ n/(T's) and L. ~ t, where ¢ is a typical time scale of the evolution, we
also have

Kne ~ = — . (7.5)

Therefore, Kn, stays constant for a given temperature if we scale n/s and t by the
same factor.

Figure 7.7 shows the time evolution of the average Knudsen number for two different
initial conditions and two different viscosities. In all cases the Knudsen number is
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Figure 7.8.: The relative difference of kinetic and hydrodynamical calculations for dif-
ferent initial temperature ratios and different values of 7/s as a function
of the average Knudsen number.

initially large but then decreases rapidly as the system expands. This happens as a
function of the initial temperature difference and viscosity.

On the other hand, the relative difference between BAMPS and vSHASTA calcula-
tions decreases with a decreasing averaged Knudsen number. This is shown in Fig. 7.8
where we can see that for small Knudsen numbers the different solutions converge to
approximately one curve. This also means that to good approximation the Knudsen
number alone determines the applicability of IS theory. We can infer from Fig. 7.8 that
the differences between BAMPS and vSHASTA are less than 10% for Kn. < 1/2.

7.1.3. The weak and the strong shock-wave limit

] initial variables ‘ left ‘ right \H further settings

T(GeV) 0.4 | 0.32 and 0 ||| one species: m = 0GeV

A 1 1 degeneracy factor g = 16

v 0 0 isotropic elastic 2 — 2 collisions

I1 (GeV /fm?) 0 0 constant 7/s

q" (GeV/fm?) |0 0 runtime = 3.2 fm/c; system size L, = 6.4
fm

7 (GeV /fm?) | 0 0 walls in a-direction; periodic boundary
conditions in transverse y- and z-direction

Table 7.2.: The initial conditions and settings used in BAMPS solving the rRP in the
ultrarelativistic limit for weak and strong shock waves.

In Sec. 7.1.1 and 7.1.2, we have discussed in detail the numerical solutions of the rRP
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using BAMPS and vSHASTA. The initial conditions have been chosen as T, = 0.4
GeV and Ty = 0.2 GeV, resulting in a specific profile. However, keeping all other
initial values the same, but using a different initial ratio, the profile of the shock-
tube problem changes. For this purpose, we discuss two other initial ratios for the
shock-tube problem, which we call the weak limit with Tg = 0.32 GeV, and the strong
limit with Ty = 0 GeV. The latter limit corresponds exactly to the expansion into
the vacuum. The designation weak limit is not totally correct, since one has to use an
infinitely small difference between initial pressures to obtain the weak-shock limit, i.e.,
Py/ Py =~ 1. For our discussion, however, the values are appropriate enough. A smaller
ratio would require a considerably larger computational power in order to get rid of
statistical fluctuations. In contrast to Secs. 7.1.1 and 7.1.2 we discuss the numerical
solutions from BAMPS only. The initial conditions are listed in Tab. 7.2.

We discuss both cases simultaneously, and compare always with the cases discussed
in Secs. 7.1.1 and 7.1.2. In Fig. 7.9 and 7.10, we show the results for various 7/s
values as computed with BAMPS, demonstrating the gradual transition from the ideal
hydrodynamical limit to free-streaming of particles. We show a snapshot at the time
t = 3.2 fm/c from BAMPS for the particle density, n, the fugacity, A, the isotropic
pressure, P, the shear pressure, mw, the velocity, v, the shear pressure, w, and the
heat flow, ¢®. In addition, the analytical solution for a massless gas of particles is
depicted for the corresponding initial ratio both for the perfect-fluid case® and the free-
streaming case?. At first glance we observe that the perfect-fluid limit is reproduced
by BAMPS very accurately using a small shear viscosity over entropy density ratio of
n/s = 0.001 although we find the same numerical artifact for the dissipative quantities
as in Sec. 7.1.1. In order to resolve this numerical artifact, we have to use a higher
number of test particles.

Comparing the results to the case discussed in Sec. 7.1.1, we find differences in the
profiles of the pressure, P, the particle density, n and the velocity, v. First of all, the
plateau itself is wider in the weak limit shown in Fig. 7.9, and the rarefaction wave
is almost not curved. Moreover, the velocity of the shock front is smaller, i.e., the
shock front propagates more slowly into the right medium at rest. Furthermore, the
drop of the fugacity is not that strong. On the other hand, the expansion into the
vacuum shown in Fig. 7.10, has a dramatically different profile. Due to the fact, that
there is no medium on the right side initially, an infinitely strong shock wave evolves.
However, because this shock wave approaches the speed of light the width of the shock
wave shrinks to zero and is not visible anymore. Hence, the only part we observe is the
characteristic structure of a rarefaction wave which is strongly curved due to relativistic
effects.

The viscous solutions are obtained by varying the shear viscosity over entropy density
ratio to larger values. A larger n/s value results in a finite transition layer where the
quantities change smoothly rather than discontinuously as in the case of a perfect
fluid. We make the clear observation that in the weak limit presented in Fig. 7.9
the shock plateau shrinks with larger viscosity. A nonzero viscosity smears out the
profiles and impedes a clean separation of the shock front from the rarefaction fan.

8discussed in Chapter 5.
9discussed in Appendix I.
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Figure 7.9.: The analytical and numerical solutions of the relativistic Riemann problem

for the particle density (a), the fugacity (b), the isotropic pressure (c), the
shear pressure (d), the velocity (e), and the heat flow (f). The initial
conditions at t = 0 fm/c are listed in Tab. 7.2. The initial temperatures
are 11, = 0.4GeV and T = 0.32GeV. The results from BAMPS are
shown for various /s at t = 3.2 fm/c. The full lines represent the analytic
solution for n = 0.

The expansion into the vacuum presented in Fig. 7.10 undergoes a similar behavior
with larger viscosity. The difference here is that only the shape of the rarefaction wave
changes, since there is no shock wave part at all. In both cases the dissipative quantities
grow with larger viscosity. Depending on the strength of the viscosity a different shape
of the shear pressure and heat flow appear. For a non-interacting gas we have depicted
the free-streaming solution where the characteristic structure of the Riemann problem
for a perfect fluid is completely washed out. A clear distinction between the shock
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Figure 7.10.: Same quantities as shown in Fig. 7.9. The initial conditions at ¢ = 0 fm/c

are listed in Tab. 7.2. The initial temperatures are chosen as 11, = 0.4 GeV
and T = 0 GeV which represents the expansion into the vacuum.

wave and the rarefaction fan is no longer possible.

Finally, we can conclude that BAMPS is able to describe all the initial pressure

ratios of the rRP, even though there are some limitations.

The most difficult case

is the expansion into the vacuum since no particles exist on the corresponding side
initially. But in BAMPS we require a sufficient number of particles per cell in order to
solve the rBE in an accurate way. For the weak limit presented in Fig. 7.9 we find a very
good agreement to the analytical solution of the perfect-fluid limit. The only problem
we encounter here is the fact that the dissipative quantities are almost of the same
magnitude as the statistical fluctuations. Thus, we need more computational power in

order reduce these fluctuations. An even smaller initial pressure ratio compared to this

presented in Fig. 7.9 aggravates this problem.
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Figure 7.11.: The time evolution of the rRP for /s = 0.1. The quantities and the
initial conditions are the same as shown in Fig. 7.1.

7.1.4. Time evolution and scaling behavior

In ideal hydrodynamics, shock waves are formed immediately after removing the mem-
brane that separates matter with different temperatures. This happens because the
Knudsen number, Kn., vanishes at any time. For non-vanishing viscosity, Kn. is large
at early times and, as a consequence, the formation of shock waves occurs later, when
Kn, becomes smaller. For example, this happens in the case of constant 7/s value as
demonstrated in Fig. 7.7.

Figure 7.11 shows the profiles of the particle density, n, the isotropic pressure, P,
the velocity, v, the fugacity, A, the shear pressure, w, and the heat flow, ¢%, at various
times for /s = 0.1 and initial temperatures 71, = 0.4 GeV and Ty = 0.2 GeV. At the
early time ¢ = 0.64 fm/c shock waves have not yet developed. The pressure profile
looks like that in the strongly diffusive case of free-streaming particles. At ¢t = 6.4 fm/c
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Figure 7.12.: The scaling behavior of the rRP. The initial conditions and settings are
listed in Tab. 7.1. The velocity profiles are shown as a function of the
similarity variable £ = z/t for n/s = 0.1 and n/s = 0.05 at the times
t=3.2 fm/c and t = 1.6 fm/c, respectively.

we observe a characteristic shock plateau that clearly separates the shock front from
the rarefaction wave as in the ideal-fluid case. The intermediate time ¢ = 3.2 fm/c
is approximately the time scale at which the shock plateau is being formed and the
maximum of the velocity distribution, v(x), reaches the value vpiat of the ideal-fluid
solution. We define this time scale as the formation time of shocks.

The only intrinsic length scale in the microscopic approach is the particle mean free
path. Therefore, if we rescale the mean free path by a constant factor of a, we expect
the time scale for the evolution of matter to change accordingly. Since 1/s ~ Angp
we expect that profiles calculated at time ¢ for a given value of 1/s agree with those
at a time at for a viscosity-to-entropy density ratio of an/s. This is demonstrated in
Fig. 7.12 where we show the velocity profiles as a function of the similarity variable,
£ =ux/t.

The pressure and the velocity profile as a function of £ are determined by the Knudsen
number given by Eq. (7.4). According to Eq. (7.5), Kn, is the same for the calculation
with /s = 0.1 at ¢ = 3.2 fm/c and that with /s = 0.05 at ¢ = 1.6 fm/c. Therefore,
the pressure P(z,t;n/s)/Py and velocity v(x,t;n/s) are functions of £ and Kn. only,
ie., P(x,t;n/s)/po = F(& Kne), with the same relation holding for the velocity. For
decreasing Kne, the plateau of the velocity profile in Fig. 7.12 grows and approaches
the shape of the ideal-fluid case discussed in previous sections.

This scaling behavior holds for initial conditions with a discontinuity in the pressure
only. If the discontinuity is replaced by a smooth transition, the non-zero width, I'i,
of the transition region introduces another length scale. This transition region then
changes as a function of the transition variable under the rescaling t — at, &, = 'y, /t —
I'y;/(at), which causes a different gradient in the transition region as a function of &.
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Because of the different initial situations, evolutions in £ are not identical for the same
Knudsen number, Kn..

7.1.5. Formation time of shock waves

In the following, we estimate the upper limit of the n/s ratio, for which shocks can still
be observed experimentally on the timescale of an ultrarelativistic heavy-ion collision.
As mentioned in the previous section 7.1.4, a criterion for a clear separation, and thus
for the observability of a shock wave, is the formation of a shock plateau as in the
ideal-fluid case. The formation of a shock plateau takes a certain amount of time, as
demonstrated in Fig. 7.11 for a specific initial pressure ratio.

From Fig. 7.11, we see that the shock wave develops between 3.2 < ¢t < 6.4 fm/c for
a fixed n/s = 0.1. Thus, the shock plateau has not yet developed at ¢t = 3.2 fm/c, but
for sure at ¢ = 6.4 fm/c. There is a critical time ¢; for a given n/s where the shock
plateau has been formed. However, there is also a dependence on the initial pressure
ratio, which is not negligible for the formation time of a shock wave. The larger the
initial pressure ratio, the longer time the shock plateau needs to develop.

In order to understand the timescale of the formation of a shock wave, we use the
general definition of the Knudsen number [45,202, 223]

)\mfp

K = T (7.6)

where we define L = t (Vghock +¢s) as the width of the region bounded by the rarefaction

wave traveling to the left and the shock front moving to the right!?. Here, vgnock is

the velocity of the shock front and cs is the speed of sound. Note that Af, is not

constant. We approximate it by its maximum value which is assumed to be found on

the low-pressure side!! in front of the shock wave. The quantity K can be viewed as

a “global” Knudsen number for the Riemann problem. K goes to zero at late times,
which implies that the medium behaves more and more like an ideal system.

The value of K at which the shock wave forms, called Ky, is universal for given
Py/Py. With Eq. (6.15) we obtain Apg = 10/(3T4)n/s in the undisturbed medium
with the lower pressure. As an example, for the case with T = 320 MeV the shock
wave forms at ¢t = 3.2 fm/c for /s = 0.1. We find that Ky = 0.053.

Inserting Amg, = 10/(37)n/s into Eq. (7.6), the formation time of shock waves is
given by

10 1 n
tr=— -
3 Kf(vshock -+ CS)T S

(7.7)

Figure 7.13 shows the relation (7.7) with 7' = 350 MeV and for various initial pressure
discontinuities, Py/Py.

The difference in slopes reflects the dependence of K and vgpock on the ratio Py/Fy.
For n/s = 0.2, no shock will be visible until 6—7.2 fm/c, which most likely exceeds the
lifetime of the QGP at RHIC. This implies that if shock phenomena are discovered at
RHIC, this could be an indication that the QGP has a small /s ratio of probably less

1011 the ideal-fluid case.
Hthe undisturbed medium.
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Figure 7.13.: Formation time of shock waves as a function of 7/s.

than 0.2. For a more viscous QGP no shock waves and thus no Mach cones will be
formed. In a relativistic heavy-ion collision, the temperature is decreasing during the
expansion. Thus, according to Eq. (7.7), t7 is even larger and shock waves may be even
harder to observe.

This kind of study is useful for our further discussions about Mach cones which are
a special form of shock waves. We demonstrate in Chapter 8 that the viscosity as well
as the energy deposition rate play an important role for the observation of Mach cones.

7.1.6. The difference between the Eckart and the Landau frame

In Chapter 6 we have mentioned that we are able to calculate the hydrodynamic quan-
tities either in the Eckart or the Landau frame. In this Chapter 7 we have so far
focused exclusively on the Landau frame, so far. The reason is that the difference
between the Eckart and Landau frame is small and does not play any important role
for the discussions and conclusions we have made. This is definitely true in the case of
small dissipation. However, the difference between Eckart and Landau frame becomes
significant with larger viscosity and gradients, which is reflected by the appearance of
heat flow. In this section we briefly discuss the origin of heat flow and demonstrate the
difference between Eckart and Landau frame using BAMPS.

In Fig. 7.14, we show the velocity profile in the Eckart and the Landau frame of the
rRP in the almost ideal case (upper panel) and in the case with huge dissipation (lower
panel). The initial conditions are listed in Tab. 7.1. In the upper left panel we use
a large constant cross section of ¢ = 224 mb, which results in a very small Knudsen
number Kn, because the mean free path is small compared to the macroscopic length
scale. We find that there is no visible difference between Eckart and Landau frame
in the velocity profile v(z). This results in a vanishing heat flow, ¢*, as shown in the
upper right panel. Since we cannot go to the limit of the perfect-fluid case, some finite
heat flow remains, which is indicated by the peak at the shock front. On the other
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Figure 7.14.: The difference between the Eckart and the Landau frame for a specific
ratio in the rRP. In the left panels, we show the velocity profile in the
FEckart and the Landau frame. The right panels depict the corresponding
heat flow. In the upper panels we show the almost ideal case, whereas we
show the free-streaming case in the lower panels. The initial conditions
and settings are listed in Tab. 7.1.

hand, for an infinitely large Knudsen number, as shown in the lower left panel, we find
an explicit difference between Eckart and Landau frame. This obviously results in a
strong heat flow, as shown in the lower right panel. When comparing the upper and
lower right panel, we see that heat flow is different by 3 — 4 orders of magnitude.

The heat flow is directly connected to the difference between Eckart and Landau
frame. For the special case of a one-dimensional system which is homogeneous in
transverse direction, we can find a simple expression to illustrate this. We start from
the general definition of the heat flow (3.47) as discussed in Chapter 3, i.e.,

gt =W+ —-hVH, (7.8)
The heat flow is the difference between the flow of energy WH* and flow of particles V#,
where h is the enthalpy per particle. In the Landau frame the flow of energy vanishes,

while the flow of particles vanishes in the Eckart frame. In the following, we use the
Landau frame. Thus, the heat flow reads

qp = —hV*". (7.9)



7.2. Further solutions of the relativistic Riemann problem 99

Using the definition of V# from Eq. (3.45), we can rewrite this as
gy = —hAJN". (7.10)

With the definition of the space-like transverse projection operator (3.23), the first
component of the heat flow reads

g7 =h (VoL N° = N —470i N7) | (7.11)

where vp, (1) is the velocity (Lorentz factor) in the Landau frame. Now, factorizing
out N, we obtain

q7 = hN© (’y%vL — Vg — 'y%v%vE) , (7.12)

where vg = N*/N0 is the definition of the velocity in the Eckart frame. In the following,
we use the relation 72 = 1 4+ 7202, leading to

@& =h2N° (v, —vp) . (7.13)

This relation indicates that heat flow only appears if v; # vg. In the perfect-fluid case
we have vy, = vg, such that the heat flow has to vanish. In case of particle or energy
diffusion, i.e., if we have dissipation, the heat flow is proportional to the difference
between the velocities in the Landau and Eckart frame, respectively.

7.2. Further solutions of the relativistic Riemann problem

In this section, we solve the rRP for different properties of the matter using BAMPS.
We still consider the shock-tube problem and the size of the static box is chosen to be
L, = 6.4fm.

We start in Sec. 7.2.1 using a massless gas of particles, but in contrast to Sec. 7.1
we include the possibility of production and annihilation of particles, which in the end
affects the fugacity and particle-density profile. In the following Sec. 7.2.2, we employ
BAMPS to simulate the shock-tube problem for a gas of massive particles, with only
binary collisions and constant cross sections. The nonzero mass of the particles leads
to a nonzero viscous bulk pressure which grows with larger dissipation. In Sec. 7.2.3 we
finally simulate a system of two massless particle species with various cross sections.
We will observe an interesting coupling between both particle species.

7.2.1. A system of massless particles including inelastic processes

In Sec. 7.1 we have restricted our investigations of the rRP to binary collisions. This
implies that the particle number is conserved during the whole simulation and leads to
a drop of the fugacity in the region of the shock plateau, even in the nearly perfect-fluid
limit. This can be inferred from Fig. 7.1b. This drop of the fugacity also appears in
the analytical solution and is not a numerical artifact.

In this section we employ BAMPS to solve the rRP for an ultrarelativistic gas of
massless particles as we have done in Sec. 7.1, but we now include particle production
and annihilation processes. This results in chemical equilibration depending on the
chosen values of the cross sections. For an infinite scattering rate, we would observe
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] initial variables ‘ left ‘ right \H further settings

T(GeV) 0.4 | 0.25 ||| one species: m = 0GeV

A 1 1 degeneracy factor g = 16

v 0 0 isotropic elastic 2 — 2 and inelastic 2 +» 3
collisions

1I (GeV/fmg) 0 0 0929 — 0923 — 25 mb, 132 = (196/9)7‘(’20'23

¢" (GeV/fm?) |0 0 runtime = 3.2 fm/c; system size L, = 6.4
fm

7 (GeV /fm3) | 0 0 walls in a-direction; periodic boundary
conditions in transverse y- and z-direction

Table 7.3.: The initial conditions and settings used in BAMPS to describe the rRP for
an ultrarelativistic gas of massless particles including binary and inelastic
processes.

an instantaneous chemical equilibration. Then, the chemical potential would vanish,
i.e., the fugacity would always be equal to unity. However, BAMPS always has a finite
cross section, and therefore the chemical potential does not vanish.

In Fig. 7.15 we show a snapshot of the particle density, n, the fugacity, A, the
isotropic pressure, P, the shear pressure, 7, the velocity, v, and the heat flow, ¢*, at
time ¢ = 3.2 fm/c. The initial conditions are listed in Tab. 7.3. For binary collisions we
use a constant cross section of o9 = 25 mb. In addition, the cross section for particle
creation is 093 = 25mb and the phase-space matrix element is accordingly given by
I3 = (196/g)m2023. All scattering processes are isotropic and the inelastic scattering
processes are adjusted in such a way that we maintain detailed balance.

In Fig. 7.15, we compare the numerical results of BAMPS to the analytical solution
of the rRP. For the analytic solution we assume particle-number conservation in order
to demonstrate the differences arising from chemical equilibration. At first glance we
observe an almost perfect agreement in most quantities. However, there are differences
which results from two effects. The first one results from the nonzero dissipation
emerging from the finite cross sections in BAMPS. We observe a smearing out of the
profile around the shock front as well in the region of the rarefaction wave. Still, the
cross sections are large enough to lead to the appearance of a shock plateau. The
second effect results from chemical equilibration, which manifests itself in the profile
of the fugacity and the particle density.

In the region of the shock plateau the temperature is higher, since the particles in this
region have a higher kinetic energy. When assuming particle-number conservation, as
done for the analytical solution, this is unavoidable, and results in a drop of the fugacity
and the particle density. When including inelastic processes in BAMPS, for which the
results are shown in Fig. 7.15, we see that the fugacity is almost equal to unity even in
the region of the shock plateau and as a further consequence the discontinuity in the
particle-density profile vanishes.

The chemical equilibration also affects the heat-flow profile. Although we have
nonzero dissipation, as seen in the profile of the shear pressure, depicted in Fig. 7.15d,
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Figure 7.15.: The analytical and numerical solutions of the rRP for an ultrarelativis-
tic gas of massless particles including inelastic processes. We show the
particle density (a), the fugacity (b), the isotropic pressure (c), the shear
pressure (d), the velocity (e), and the heat flow (f). The initial conditions
and settings are listed in Tab. 7.3. The full lines are the analytic solutions
at t = 3.2 fm/c assuming particle-number conservation. The results from
BAMPS are shown for constant and isotropic cross sections for elastic

and inelastic processes.

the heat flow almost vanishes and it has no peak in the region of the shock front, see
Fig. 7.15f. However, the effect here is small, because the heat flow is very small even
for the case of only binary collisions, see Fig. 7.3f. A vanishing heat flow indicates that
the Eckart and Landau velocity are closer to each other compared to the case assuming

12

particle-number conservation~.

'2Gee Sec. 7.1.6 for more details to the origin of heat flow.
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We can conclude that the consistent implementation of inelastic processes in BAMPS
is a very important and interesting feature [41]. Inelastic processes'®> become very
important when dealing with energies in the relativistic regime as they occur in HIC.
The effect and importance of chemical equilibration has been discussed in several works
dealing with hydrodynamic models of relativistic HIC [224,225,226,227,228|.

7.2.2. A system of massive particles

] initial variables ‘ left ‘ right H‘ further settings

T(GeV) 04 | 0.3 one species: m = 1GeV

A 1 1 degeneracy factor g = 16

v 0 0 isotropic elastic 2 — 2 collisions

I1 (GeV /fm?) 0 0 constant o

q" (GeV/fm?) |0 0 runtime = 3.2 fm/c; system size L, = 6.4
fm

™ (GeV /fm3) | 0 0 walls in a-direction; periodic boundary
conditions in transverse y- and z-direction

Table 7.4.: The initial conditions and settings used in BAMPS to describe the rRP for
a massive gas of particles for binary collisions only.

BAMPS is a kinetic transport model which allows also the propagation and scat-
tering of particles with nonzero masses. In this section, we want to investigate the
behavior of a gas of massive particles by considering the rRP. The main motivation is
the investigation of bulk viscous pressure which vanishes in the ultrarelativistic limit,
as discussed in Sec. 7.1. The bulk viscosity, (, is another transport coefficient similar
to the shear viscosity, . In viscous hydrodynamic models, the bulk viscosity is mostly
neglected. This is reasonable, since the effects of bulk viscosity are small. However, the
effects of a nonzero mass are not small even with low viscosity and result in a different
profile in the quantities of interest. The analytical solution of the rRP with nonzero
fixed mass is not possible, since it requires the numerical integration of three coupled
nonlinear differential equations. However, since BAMPS can handle the rRP in the
ultrarelativistic limit, we expect no problems simulating the rRP at nonzero mass.

Figure 7.16 shows the transition from ideal to viscous shock waves for a massive
gas in the shock-tube problem. We show a snapshot at time ¢ = 3.2 fm/c of the
particle density, n, the fugacity, A, the isotropic pressure, P, the shear pressure, 7,
the energy density, e, the bulk viscous pressure, II, the velocity, v, and the heat flow,
q®. The initial conditions are listed in Tab. 7.4, where the initial temperatures are
T1, = 0.4GeV and Ty = 0.3 GeV. We use a gas of massive particles with m = 1GeV,
which interacts only via isotropic and binary collisions. The mass is kept constant
during the simulation. Due to the constant mass and changing local temperature, the
EoS as well as the speed of sound are not fixed. The speed of sound for a massive gas
and vanishing chemical potential is given in Appendix C. The results are shown for

131n HIC, they are known as Bremsstrahlung processes.
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Figure 7.16.: Transition from ideal to viscous shock waves in BAMPS using the rRP
for a gas of massive particles. We show the particle density (a), the
fugacity (b), the isotropic pressure (c), the shear pressure (d), the energy
density (e), the bulk pressure (f), the velocity (g), and the heat flow (h).
The initial conditions and settings are listed in Tab. 7.4. The results
from BAMPS are shown for constant and isotropic cross sections and a

constant mass of m =1 GeV.
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various constant cross sections, where o = 900 mb represents an almost ideal fluid and
o = 0mb the free-streaming solution. The results for ¢ = 90 mb and o = 9mb are the
viscous solutions.

We can infer from Fig. 7.16a that for o = 900 mb the particle density features different
regions separated by discontinuities . The discontinuities are not sharp, which is the
main effect of the nonzero but small viscosity. However, when comparing the results
to the ultrarelativistic case calculated from BAMPS we observe a similar structure for
the particle density, except for the fact that there is a larger drop in the shock plateau
region, see Fig. 7.1a. At first glance, the fugacity in Fig. 7.16b considerably differs
from the fugacity which is shown in Fig. 7.1b. The main difference is that in the region
of the rarefaction wave as well as in the constant region in front of the shock plateau,
the fugacity is above 1. In this region we have particles with less kinetic energy, which
implies that the temperature is lower. In contrast to that, the temperature is very
high in the region of the shock plateau, because we have particles with more kinetic
energy. As expected, there is no discontinuity in the pressure profile between the shock
plateau and the constant region, which can be inferred from Fig. 7.16¢. This is the main
requirement in the shock-tube problem and is discussed in Chapter 5. Furthermore,
there is no discontinuity in the velocity profile depicted in Fig. 7.16g.

In the ultrarelativistic limit, the energy density is exactly proportional to the pres-
sure, i.e., e = 3p. Thus, we have not shown the energy-density profile in Sec. 7.1.
However, for a gas of massive particles this relation does not hold any longer, which
is shown in Fig. 7.16e. We clearly observe another contact discontinuity similar to the
one in the particle density. The fact that the energy density is no longer proportional
to the pressure is also a direct consequence inferred from Egs. (3.26) - (3.28).

Since we use a very large cross section, the dissipative quantities such as the shear
pressure, the bulk viscous pressure, and the heat flow almost vanish. This is shown
in Figs. 7.16d, 7.16f, and 7.16h, respectively. The bulk viscous pressure, I, is another
quantity we have not yet considered in the ultrarelativistic limit, since the bulk viscous
pressure for massless particles is always zero.

By adjusting the cross section to smaller values, we are able to investigate the viscous
solutions of the rRP and for a massive gas. In Fig. 7.16, this is demonstrated for o = 90
mb, 0 = 9 mb and ¢ = Omb, where the latter represents the free-streaming solution.
Instead of a discontinuous shock front, a contact discontinuity, and sharp rarefaction
tails, we get continuously changing profiles for the particle density, n, the fugacity, A,
the isotropic pressure, P, the energy density, e, and the velocity, v. Dissipation leads
to the smoothening and the broadening of these characteristic structures. For o = 90
mb, the separation of these structures is weak, but still visible. Due to increasing
viscosity for ¢ = 9 mb and ¢ = O0mb, a clear separation is not possible anymore. For
the dissipative quantities, such as the shear pressure, w, the bulk viscous pressure, II,
and the heat flow, ¢*, the dissipation in these quantities becomes large with smaller
cross section.

Similar to the massless case, the dissipative quantities build up in different regions.
The shear pressure is positive in the front, but negative in the region of the rarefaction
wave. The heat flow shows up in three regions. It is positive in the front and back but
negative in between. This kind of behavior is different from the one in the ultrarela-
tivistic limit, as discussed in Sec. 7.1. Due to the constant and nonzero mass the bulk
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Figure 7.17.: Same setup as shown in Fig. 7.16. In the left panel we show the velocity
both in the Eckart and the Landau frame for various cross sections. In the
right panel we show the velocity for ¢ = 900 mb in both the Eckart and
the Landau frame at ¢ = 0.3 fm/c and ¢t = 3.2 fm/c. In order to enhance
the visibility we show only a small fraction of the velocity profile.

viscous pressure also appears and develops differently in four separate regions. When
comparing the order of magnitude of the bulk viscous pressure to the heat flow or to
the shear pressure, one notices that the bulk viscous pressure is one (two) order(s) of
magnitude smaller than the heat flow (shear pressure).

We have to pay attention to the velocity profile which shows an interesting and
unexpected structure. When comparing the solution for ¢ = 900 mb and ¢ = 90 mb
in Fig. 7.16g, we notice that the velocity profile for ¢ = 90mb exceeds the velocity
for 0 = 900 mb in a small part of the region at the plateau. From the solution in the
ultrarelativistic limit in Sec. 7.1 we have obtained that the maximum velocity never
exceeds the velocity of the ideal solution, vpja¢. This kind of behavior seems not be true
anymore for a massive gas and this fact is also visible if the velocity is considered in the
Eckart frame. In the left panel of Fig. 7.17, we show the velocity profile in the Landau
and the Eckart frame for various cross sections. We show a small fraction of the velocity
profile only, in order to enhance the visibility in this region. For ¢ = 900 mb, there is
almost no difference while for & = 90mb there is a noticeable difference between the
velocities in the Eckart and the Landau frame. The Eckart velocity is higher than the
Landau velocity in that specific region. This is also reflected in the heat-flow profile
where for ¢ = 90mb we observe a noticeable drop towards negative values'®. For the
low cross section of 0 = 9 mb we observe that the velocity in the Landau frame is below
the solution with o = 900 mb, whereas the solution of the Eckart frame at o = 9mb is
still higher than the solution for ¢ = 900 mb and almost on the same level as the one
for 0 = 90 mb.

For a deeper inspection we show the time evolution of the velocity both in the Eckart
and the Landau frame in the right panel of Fig. 7.17, where the solution is displayed for
0 =900mb, at ¢t = 0.3 fm/c and ¢ = 3.2 fm/c. Since we solve the shock-tube problem

14Gee Sec.7.1.6 for more details on the heat flow and the relation between the Eckart and the Landau
frame.
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which features a sharp initial discontinuity, we can make use of the scaling behavior
introduced in Sec. 7.1.4. The solution for o = 900mb at ¢ = 0.3 fm/c is approximately
the same as for 0 = 90mb at ¢t = 3 fm/c. Therefore, we can check whether the velocity
in the early phase of the solution for ¢ = 900 mb is higher than in the later phase. As
shown in the right panel of Fig. 7.17, this is indeed the case. For both the Eckart and
the Landau frame the velocity is higher in the early phase and decreases in time. As
expected, the velocity in the Eckart frame is higher than the velocity in the Landau
frame.

We have to mention that in the scenario discussed in this section, the EoS is not
constant, since in contrast to the ultrarelativistic case the proportionality constant
between the pressure and the energy density varies with m/T. Therefore, the expecta-
tion that the maximum velocity of the plateau in the perfect-fluid limit is always the
maximum velocity for any value of the viscosity, is untenable.

In order to clarify that this is no possible numerical artifact we adjusted the cell length
and increased the test-particle number. We have used a four times smaller cell length
than the smallest average mean free path appearing in this simulation. The results
do not change significantly, and we therefore conclude that it is a feature and not a
numerical artifact. Thus, BAMPS can serve as a benchmark for viscous hydrodynamics
when considering massive gases. Moreover, using BAMPS we can easily investigate the
effects of the bulk viscous pressure in various scenarios. The effects of nonzero masses
is clearly visible in the evolution of shock waves.

7.2.3. A multi-component system

] initial variables ‘ left ‘ right H‘ further settings

T4(GeV) 04 |02 species A: m = 0GeV

Tp(GeV) 0.35 | 0.3 species B: m = 0GeV

Ad 1 1 degeneracy factor g4 = 8, gp = 8

AB 1 0.5 isotropic elastic 2 — 2 collisions

vy = VR 0 0 scenario (high): 044 = 80mb, casp =
40mb, OB« B — 20 mb

4 = g (GeV/fm?) 0 0 scenario (low): o044 = 20mb, cap =
10mb, og.p = 5mb

¢t = ¢l (GeV /fm?) 0 0 runtime = 3.2 fm/c; system size L, = 6.4
fm

" (GeV /fm3) 0 0 walls in z-direction; periodic boundary
conditions in transverse y- and z-direction

7 (GeV/fm?) approx. | —1.6 | —0.4

Table 7.5.: The initial conditions and settings used in BAMPS in the rRP for a multi-
component system.

In this section, we solve the rRP for a system with two different particle species, A
and B, which both interact with constant isotropic and binary collisions. We intro-
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duce the cross sections o 44, 04, and o, which represent the different cross sections
between the two particle species. Here, 044 is the cross section between two particles
of species A, o4p the intermediate cross section between particles of species A and B,
and opp the cross section between two particles of species B. Due to the different
cross sections and the different initial conditions for each particle species, we expect an
interesting interaction between the particle species. A similar study with two different
interacting particle species, but no spatial gradients using BAMPS and viscous hydro-
dynamics has already been performed in Refs. [150,151], where the main focus was on
the extraction of the shear viscosity, 7, of such a composite system. However, in this
section we investigate the final hydrodynamic quantities in a one-dimensional system
using BAMPS only. Moreover, we restrict our calculations to massless particles.

In Fig. 7.18, we show a snapshot of the particle density, n, the fugacity, A, the
isotropic pressure, P, the shear pressure, w, the energy density, e, the bulk viscous
pressure, 11, the velocity, v, and the heat flow, ¢, for both particle species together
(A+B), and each particle species separately at time ¢ = 3.2 fm/c. The initial conditions
are listed in Tab. 7.5, where two scenarios for the cross sections are employed. The first
scenario (high) uses 044 = 80mb, 045 = 40 mb, and opp = 20 mb, whereas the second
scenario (low) uses 044 = 20mb, 045 = 10mb, and cpp = 5mb. The initial conditions
are as follows: Particle species A is initialized with 71, = 0.4 GeV and Tg = 0.2 GeV,
and vanishing chemical potential on both sides. Furthermore, the system is initialized
in thermal equilibrium. The second particle species is initialized with T, = 0.35 GeV
and Tr = 0.3 GeV, where on the right side the fugacity is Ag = 0.5. In contrast to the
particle species of A, the particles of B are initially not in thermal equilibrium. The
momenta of the particles in the transverse directions y and z are isotropic, but they
have no momentum in z-direction. The initial shear pressure is therefore very large.
However, we will find that this anisotropic initialization has no significant effect for the
further evolution of the system.

We remind that the initial conditions given in Tab. 7.5 are chosen for each species
separately. Hence, initially each particle species has no clue about the other particle
species. The initial temperatures we have listed in this table have no further physical
meaning, because the temperature for each particle species differs from that of the
other one. This changes during the evolution, when the system rapidly thermalizes via
interactions between both particle species. In Sec. 3.3.5 we have already introduced
the definitions and problems corresponding to a system with more than one particle
species.

Figure 7.18 shows the results for both scenarios. We first focus on the first scenario
with the large cross sections, where we can identify the appearance of a shock wave
as well as a rarefaction wave in the particle density, the isotropic pressure, the energy
density, and the velocity profile. This is true when considering both particle species
together, where the pressure has a constant plateau. However, when we take a view
on each particle species separately, we can see that for particle species, A or B, there
is no constant plateau in the pressure. For particle species A the pressure drops in the
region of the shock plateau, whereas for particle species B the pressure increases in
this region. However, this is not a problem, since one has to keep in mind that only
the whole system has the whole information, since both particle species interact with
each other. Therefore, it is to be expected that there is no constant pressure region



108 7. Investigation of shock-wave phenomena in kinetic theory and viscous hydrodynamics
A+B high o
10.0
s 7.5
£
—~ <
= 50
Yoy 'm""""w.'g- .\
2.5 “"#J.-w.-il" 'vz::l =% ‘:
(@) g
h|gh Opp = 80 mb
4.0 opg =40 mb
o =20 mb
o 3.0 low: opp =20 mb L
§ E——— GAB =10 mb ~§
> \:'o*_‘ O = 5mb %
& 20 %, G,
o ST &
1.0 ~“: e
. RN T ST -
Veus et N\
(C) LR Y Y .y,_.\l::¢‘- -
pL .
14.0
12.0
"’E 10.0 ] mg
; 8.0 1 ;
O (]
S 6.0 12
o =
4.0 .
% """-Hiu-...u.'..‘, RPTT LI
2.0 (e) "'~'4-,‘..w_,‘“_.’d"~1.,,m';:‘ ‘:‘ /]
i
0.04 E
0.02
-
S
g 0.00
> >
1 o
G -0.02
x
o

x [fm]

-0.04

-0.06

Figure 7.18.: Transition from ideal to viscous shock waves in BAMPS using the rRP
for a multi-component system of massless particles. We show the particle
density (a), the fugacity (b), the isotropic pressure (c), the shear pressure
(d), the energy density (e), the bulk pressure (f), the velocity (g), and the

heat flow (h).

The initial conditions and settings are listed in Tab. 7.5.

The results from BAMPS are shown for two different sets of constant and

isotropic cross sections.
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Figure 7.19.: We show the velocity profile for the same setup as depicted in Fig. 7.18.
The left (right) panel shows the velocities in the Landau (Eckart) frame.
We show only a small fraction of the profiles in order to enhance the
visibility.

when considering each particle species separately.

If one deactivates the interaction between the particle species A and B, i.e., oo =
Omb, the profiles would evolve separately. If instead one deactivates the cross section
of each particle species, i.e., 044 = ogp = 0mb, each particle species could only
equilibrate via interactions with the other particle species. If all interaction cross
sections were exactly the same we would not distinguish between each particle species,
except for the facts that the initial conditions make the difference. For ¢ — oo, the
system would behave as a one-component system [150,151].

Considering the second scenario with lower cross sections, we observe the expected
behavior: The profiles smear out and the discontinuities vanish. This is also visible
for the dissipative quantities such as the shear pressure and the heat flow, which grow
with increasing viscosity. Due to the initially smaller fugacity for the particle species
B on the right side, the heat flow develops differently as if it would have been the case
for A = 1, i.e., the heat flow is larger because of the additional gradient in fugacity.
The bulk viscous pressure vanishes for the whole system, since we have no masses for
both particle species. However, considering the bulk viscous pressure for each particle
species, we get a nonzero bulk viscous pressure. This is due to the construction of the
temperature, the fugacity, and the velocity which has been discussed in Sec. 3.3.5 in
greater detail.

The initially nonzero and large shear pressure for particle species B has no significant
effect on the final profile as depicted in Fig. 7.18. Due to the interactions the system
equilibrates very fast. Furthermore, the shear pressure for particle species A first grows
due to the intermediate cross section and then relaxes similar to particle species B. This
happens within a very short time in the beginning of the simulation and does not have
any significant effect to the final profile.

As discussed in Sec. 7.1, the velocity in the plateau region is the highest for the
most ideal system. In the case that dissipation appears, the velocity should not exceed
the maximum velocity in the plateau, vplas. We have already shown in Sec. 7.2.2 that
this is not valid anymore for nonzero masses. We also find such an observation in our
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multi-component system, which is depicted in Fig. 7.19. Here we show the velocities in
the Landau (left panel) and in the Eckart frame (right panel). Furthermore, we show
the velocities of each particle species separately.

Considering the velocity of both particle species together, A + B, which is done in
the left panel of Fig. 7.19 the velocity for the low cross section is higher than the one for
large cross sections. This is also shown in the right panel for the Eckart frame where the
difference is even larger. However, an explanation of our finding is difficult to formulate.
First, the initial fugacity gradient of the particles of species B may play a role. Another
point are the different initial temperatures for each particle species. And one last effect
might arise from the individual cross sections we use in our scenarios. However, most
probably all these referred points together result in this unexpected behavior in the
velocity profile, whereas the initial fugacity gradient is the most probable candidate
leading to the largest effect. In Fig. 7.19 we see that, with larger viscosity, the velocity
of species A increases at a larger rate than the velocity of the particles of species B is
decreasing. However, clarifying this point requires further studies. The best way to do
this is to systematically investigate each effect separately.

We can conclude that a system with two or more particle species with different
cross sections and initial conditions is much more complex than a simple system of
one component. Especially in the early phase, when both particle species are not
equilibrated with each other, the multi-component system cannot be reduced to a
system with only one species of particles. Using in addition inelastic processes in such
kind of scenarios, the complexity changes dramatically which is of great interest for
future investigations. We expect that with a possible chemical equilibration the final
profiles depend even more on the chosen cross sections and initial conditions.

7.3. Solving the heat-flow problem

In Sec. 7.1, we have investigated the rRP using BAMPS and vSHASTA. We found that
for small Knudsen numbers the standard IS theory provides a reasonable description
for most hydrodynamic quantities, such as the shear pressure. However, in Sec. 7.1.2,
we found that even for small Knudsen numbers the description of heat flow was in a
bad agreement with the microscopic theory. This observation indicated that the IS
theory suffers from wrong values for the transport coefficients and does not include all
terms which are necessary for an appropriate description.

In this section, we compare the equations of motion of Resummed Transient rela-
tivistic Fluid Dynamics (RTRFD), which has been reviewed in Refs. [46,47] and briefly
reviewed in Sec. 3.4.4, at various levels of approximation with numerical solutions of
the Boltzmann equation. In order to obtain a detailed discussion we perform the calcu-
lations for two different types of initial conditions!®. We demonstrate that this recently
derived formalism, RTRFD, is able to handle problems with strong initial gradients in
pressure or particle-number density, whereas the theory of IS fails especially to describe
the heat flow. Both hydrodynamic theories are solved using vSHASTA, while the so-
lution of the rBE is performed by BAMPS. We have to notice that we do not solve the

5labeled case I and II as explained in the following.
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rRP, but use smooth initial conditions, as explained in the following. The following
part is a strict summary of the work presented in Ref. [35].
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Figure 7.20.: Initial conditions for cases I and II.

We consider two different initial conditions. In case I, the system is initialized with

a homogeneous fugacity of A\g = 1, but with an inhomogeneous pressure profile in the
longitudinal direction. In practice, we smoothly connect the two temperature states
T(—oo) = 0.4GeV and T ) = 0.25 GeV via the Woods-Saxon parametrization

Ti_oo) — T

w (7.14)
exp (5) +1

with the thickness parameter given by D = 0.3 fm. In case II, the pressure is homoge-

neous with Py = gT(,oo)4 /m? and the fugacity distribution is given by a Woods-Saxon
profile!® with D = 0.3 fm, interpolating between Acoo) = 1 and Ajo) = 0.2, For
the degeneracy factor we use g = 16. In both cases, matter is initialized in local ther-
modynamical equilibrium, i.e., with all dissipative currents!” set to zero, and at rest,

i.e., with a vanishing collective velocity u# = 0. These initial conditions are shown in
Fig. 7.20.

In both cases, we consider two exemplary values for the cross section of ¢ = 2
mb and 8 mb, and consider the solutions after the system has evolved for 6 fm/c in
time. We compare the solution of the Boltzmann equation with that of traditional IS
theory'®, as well as with RTRFD at various levels of approximation. In the following,
we shall compare RTRFD with 13 dynamical degrees of freedom and with the transport
coeflicients computed with 13 and with 37 moments. We shall term these variants of
RTRFD “13/13” and “13/37”. In addition, we also solve Egs. (B.6). These contain 21

dynamical degrees of freedom. We compute the corresponding transport coefficients

using 37 moments. We shall refer to this variant of RTRFD as “21/37”. For more
details we refer to Refs. [35,47] and Sec. 3.4.4.

16We replace the corresponding values of the temperature by those of the fugacity in Eq. (7.14).
17and eigenmodes of the Boltzmann equation.

8including terms omitted in the original work [44,229,230] but quoted in Ref. [231,232,233].
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Figure 7.21.: Fugacity and thermodynamic pressure profiles at ¢ = 6 fm/c for case I,
for 0 = 2 mb (left panels) and o = 8 mb (right panels) .

In the following figures, the numerical solutions of the Boltzmann equation shall
always be displayed by open dots, the results of IS theory by black dash-dotted lines,
the solution of RTRFD “13/13” by green dashed lines, that of RTRFD “13/37” by
blue dotted lines, and that of RTRFD “21/37” by solid red curves.

In order to verify the different fluid-dynamical theories discussed in this section the
solutions of the Boltzmann equation must be calculated to a very high precision. For
this purpose we performed 5 - 10* BAMPS runs and computed the fluid-dynamical
quantities as averages over these runs.

In Fig. 7.21 we show the fugacity (top) and thermodynamic pressure (bottom) and
in Fig. 7.22 the heat flow (top) and shear-stress tensor (bottom) for case I. The ini-
tial pressure gradient in case I drives, via conservation of momentum, the creation of
velocity gradients. On the other hand, the gradient of fugacity is initially zero and
turns out to remain small throughout the evolution. The Boltzmann equation and the
fluid-dynamical theories have been solved for o = 2 mb (shown in the left panels of each
figure) and for 0 = 8 mb (shown in the right panels). For ¢ = 8 mb, the thermodynamic
pressure and shear-stress tensor computed in all fluid-dynamical theories are in good
agreement with the numerical solutions of the Boltzmann equation. As we decrease the
cross section we expect the agreement between macroscopic and microscopic theory to
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Figure 7.22.: Heat flow and shear-stress tensor profiles at ¢ = 6 fm/c for case I, for
o =2 mb (left panels) and ¢ = 8 mb (right panels).

become worse. This explains why, for 0 = 2 mb, the pressure and shear-stress tensor
computed within fluid-dynamical theories deviate more strongly from those computed
via the microscopic theory. Nevertheless, compared to the fugacity and heat-flow pro-
files, the agreement is not too bad, even for the smaller value of the cross section.

In Fig. 7.23 we show the fugacity (top) and thermodynamic pressure (bottom) and
in Fig. 7.24 the heat-flow (top) and shear-stress tensor profiles (bottom) for case II.
As before, the Boltzmann equation and the fluid-dynamical theories considered have
been solved for ¢ = 2 mb (shown in the left panels) and for ¢ = 8 mb (shown in
the right panels). Since, in case II, the initial pressure gradient is zero and turns out
to remain small throughout the evolution, the velocity gradients remain small as well.
Again, we expect, and see, better agreement between fluid dynamics and the Boltzmann
equation for the larger value of the cross section. While the fugacity profiles are in good
agreement with the solution of the Boltzmann equation for all fluid-dynamical theories
and both values of the cross section, the heat flow is not well described in IS theory and
in RTRFD “13/13”: IS theory predicts values for the heat flow which are smaller in
magnitude than the Boltzmann equation, while RTRFD “13/13” predicts larger values,
even for 0 = 8 mb. On the other hand, both RTRFD “13/37” and RTRFD “21/37”
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Figure 7.23.: Fugacity and thermodynamic pressure at t = 6 fm/c for case II, for o = 2
mb (left panels) and ¢ = 8 mb (right panels).

describe the heat flow very well or even perfectly, respectively, for both values of the
cross section. The reason is that the diffusion coefficient, x, has the correct value in
these theories'?, see Refs. [47,187].

Note that in Fig. 7.24 the BAMPS results for the shear-stress tensor are strongly
fluctuating. This happens because, in this special case, the values of the shear-stress
tensor are of the same magnitude as the statistical fluctuations in BAMPS. In order
to reduce the statistical fluctuations and to achieve a better resolution, a significantly
larger amount of runs would be required.

In conclusion, the resummation of irreducible moments for the computation of the
transport coefficients, as introduced in Sec. 3.4.4 and described in Refs. [35,47], has
been essential to obtain a good agreement with the microscopic theory. It provides
not only the correct values for the shear-viscosity and heat-conduction coefficients, but
also for the transport coefficients that couple the respective dissipative currents. This
recent derivation of viscous hydrodynamics resolved the previously observed differences
between the solution of IS theory and of the Boltzmann equation discussed in Sec. 7.1.2
and the corresponding published work [34].

Ywhile it deviates by ~ 30% in both IS theory and RTRFD “13/13”.
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Figure 7.24.: Heat flow and shear-stress tensor profiles at ¢ = 6 fm/c for case II, for
o =2 mb (left panels) and ¢ = 8 mb (right panels).

As expected, and explicitly demonstrated in this section, the agreement between
solutions of RTRFD and the Boltzmann equation depends on the value of o. For the
cases considered in this section, we obtained a good agreement for ¢ = 8 mb, while for
o = 2 mb we started to notice small deviations. In order to improve the agreement for
smaller values of the cross section, more moments of the Boltzmann equation have to
be included.

7.4. Investigation of the shock front

In Chapter 5, we have discussed the analytical solution of the rRP for a perfect fluid in
the massless limit, which for initially zero velocities is called the shock-tube problem.
The rRP consists of three main regions: the propagation of the rarefaction wave in one
direction, the propagation of the shock wave in the opposite direction, and the part
in between, which is the constant plateau. The shock-wave part is characterized by
the shock plateau and the shock front, while in the perfect-fluid limit the width of the
shock front is exactly zero.

However, as discussed in Sec. 7.1, we have introduced the numerical viscous solutions
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of the rRP. With nonzero and not too large viscosity we still found a rarefaction wave,
constant plateau, and shock plateau, as well as a shock front, but all regions were
smoothed out due to dissipation. The shock front had a nonzero width, where we have
assumed, but not confirmed, that the total width of the shock front in the limit ¢ — oo
is proportional to the shear viscosity, n [40,215,216]. In the shock-tube problem a
detailed investigation of the shock plateau and front is not easy since in the laboratory
frame this part is moving with a high velocity. In order to investigate the shock
plateau and front, it is reasonable to transfer into the frame of the shock front. Then,
this problem becomes stationary, and we disregard the rarefaction wave as well as the
constant plateau region.

] initial /reservoir values | left right \H further settings

T(GeV) 0.272416 | 0.19912 one species: m = 0GeV

A 0.913437 1 degeneracy factor g = 16

v —0.441552 | —0.754912 ||| isotropic elastic 2 — 2 colli-
sions

I1 (GeV /fm?) 0 0 constant ¢ = 100 mb

g" (GeV /fm?) 0 0 runtime = 10fm/c, system
size L, =1 fm

T (GeV /fm3) 0 0 thermal reservoirs in a-
direction; periodic boundary
conditions in transverse y-
and z-direction

Table 7.6.: The settings used in BAMPS and vSHASTA for the simulation of the shock
front using thermal reservoirs for an ultrarelativistic gas of massless parti-
cles. The values for T, A, and v are the values given in the reservoirs and
the initial conditions left and right of the discontinuity. The pressure ratio
of the initial discontinuity and the reservoirs is given by Pp,/Pr = 3.2.

The stationary solution of the shock front can be found from the Rankine-Hugoniot-
Taub relations (4.10), as discussed in Sec. 4.3. By fixing a pressure ratio, all other
quantities, such as the energy density, the particle density, and the velocities are given
in front of and after the discontinuity. Initializing a sharp discontinuity in pressure and
using special boundary conditions in form of thermal reservoirs with the values given
from the Rankine-Hugoniot-Taub relations, a stationary solution of the shock wave is
obtained. It is obvious that the final stationary solution is reached after a certain time,
which strongly depends on the chosen value for the cross section and the size of the
system. In the end, the initial sharp discontinuity will smoothen out, where we expect
that the shock front will approach a final width, which is proportional to the shear
viscosity or ultimately the cross section.

In this section we apply BAMPS in order to simulate the shock wave in its rest
frame. The advantage of this scenario is that we can investigate the shock wave with
a higher resolution than in the previous scenario shown in Sec. 7.1. Moreover, using
vSHASTA we can simulate the same scenario using the 13 and 21 moment approxima-
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Figure 7.25.: Stationary numerical solutions of the shock front in BAMPS and
vSHASTA. The initial conditions as well as the parameters given in
the thermal reservoirs are listed in Tab. 7.6. The pressure ratio is
Pp,/Pr = 3.2. We use isotropic and binary collisions. We show the par-
ticle density (a), fugacity (b), isotropic pressure (c), shear pressure (d),
velocity (e), and heat flow (f). The results of vSHASTA are shown for 13
and 21 moments.

tion of RTRFD, as introduced in Sec. 3.4.4. The comparison to BAMPS will reveal the
limitations of both theories when applied to strong gradients as given in this scenario.
We will see that both theories have no reasonable agreement with the results from
kinetic theory for large Knudsen numbers. We will discuss this in the following.

We begin with the scenario as shown in Fig. 7.25 for the pressure ratio P,/ Pr = 3.2.
Here we show the particle density, n, the fugacity, A, the isotropic pressure, P, the
shear pressure, 7, the velocity, v, and the heat flow, ¢*, initially and after ¢ = 10 fm/c.
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We use binary collisions only with an isotropic angular distribution. As constant cross
section we use 0 = 100 mb. The size of the system is L, = 1 fm. The system is
initialized as listed in Tab. 7.6, where the initial sharp discontinuity at = 0 fm is
clearly visible for most of the quantities in Fig. 7.25, while the dissipative quantities
are zero initially. We use thermal reservoirs with the values as listed in Tab. 7.6 as well.
The implementation of thermal reservoirs in BAMPS is discussed in Sec. 6.2 and in
Appendix F. The initial conditions for vSHASTA are identical with those for BAMPS.

The initial sharp discontinuity in Fig. 7.25 in the particle density, the isotropic pres-
sure, and the velocity in Fig. 7.25a, Fig. 7.25c, and Fig. 7.25e, respectively, smoothens
out and reaches an almost stationary solution after a sufficiently long time of ¢ = 10
fm/c, i.e., the profiles will not change their shape anymore. The final shape of the
profile is determined by the pressure ratio, the cross section, o, and the size of the
system, L,. This can be expressed in terms of the Knudsen number (3.1). If we used
a higher cross section but the same system size, the width of the shock front would
decrease, and vice versa. However, this fact indicates that the absolute width of the
shock front is indeed proportional to a kind of microscopic length scale, such as the
shear viscosity, 1, the mean free path, A, or the cross section, o, and is universal for a
given pressure. These observations agree very well with those in Refs. [40,215,216].

’ initial /reservoir values | left right H‘ further settings ‘

T(GeV) 0.292228 | 0.19912 one species: m = 0GeV

A 0.862245 1 degeneracy factor g = 16

v —0.423659 | —0.786796 ||| isotropic and elastic collisions

I1 (GeV /fm?) 0 0 constant ¢ = 100 mb

g" (GeV /fm?) 0 0 runtime = 10fm/c, system
size Ly =1 fm

T (GeV /fm3) 0 0 thermal reservoirs in a-
direction; periodic boundary
conditions in transverse y-
and z-direction

Table 7.7.: The settings used in BAMPS and vSHASTA for the simulation of the shock
front using thermal reservoirs for an ultrarelativistic gas of massless parti-
cles. The values for T, A, and v are the values given in the reservoirs and
the initial conditions left and right of the discontinuity. The pressure ratio
of the initial discontinuity and the reservoirs is given by Pp,/Pr = 4.0.

A further investigation of the other quantities shows the detailed shape of the shock
front for the dissipative quantities. The possibility to investigate the shock front in
its rest frame allows an improved and detailed comparison to the results of viscous
hydrodynamics, as realized via vVSHASTA. As introduced above, we compare two dif-
ferent theories, 13 and 21 moments of viscous hydrodynamics, where the one with the
higher moments is expected to have a better agreement with the results from BAMPS.
This fact is clearly visible in all quantities. While in the particle density, the isotropic
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Figure 7.26.: Same quantities as shown in Fig.7.25. The initial conditions and settings
are listed in Tab. 7.7. We show the results for P, /Pr = 4.

pressure, and the velocity?® in Fig. 7.25a, Fig. 7.25¢, and Fig. 7.25e, respectively, the
agreement of both theories is overall very good and the deviations are not noticeable,
we identify a disagreement with BAMPS in the dissipative quantities. For the shear
pressure the agreement is almost perfect, except for the frontmost part, where a small
discontinuity appears and does not smoothen out. For the fugacity and the heat flow
depicted in Fig. 7.25b and Fig. 7.25f, respectively, the disagreement of the theory with
13 moments has been discussed in Secs. 7.1.2 and 7.3. The improvement using 21
degrees of freedom in viscous hydrodynamics is clearly visible, while we have to men-
tion again the small disagreement in the frontmost part where again a discontinuity

appears.

29A negative value of the collective velocity displays that matter propagates from right to the left.
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This very small disagreement in the frontmost part of the shock front seems to be
a general failure or limitation of the present form of viscous hydrodynamics, i.e., the
IS theory or RTRFD. Although the inclusion of higher moments is necessary in order
obtain a better agreement with the rBE, see also Sec. 7.3, it does not help to obtain a
better agreement in the region of the shock front. In order to clarify this fact, we use
a stronger gradient in pressure, as shown in Fig. 7.26. Here we have P;,/Pgr = 4 and
the values used in the simulation are listed Tab. 7.7. As visible in every quantity in
Fig. 7.26, we observe a sharp discontinuity appearing in vSHASTA for both theories,
but not in BAMPS.

So far the explanation of this limitation of viscous hydrodynamics is the following:
The signal speed in the IS theory and RTRFD, which are both variants of transient
relativistic hydrodynamics?!, is limited. This is exactly the property that makes those
kind of theories causal, i.e., no superluminal signal propagation exists. This for example
occurs in the theory of Navier and Stokes?? where the signal speed is not limited.

Actually, in viscous hydrodynamics we have a few modes each of which propagates
with the corresponding signal velocity?3. When we start to solve the discontinuity in
the rRP, as shown in Sec. 7.1 and discussed for the non-relativistic case in Refs. [218,
219,220], we initially get several ”steps” in the solution, corresponding to each mode
and propagating with the corresponding signal velocity. One of them has the maximum
propagation speed. All the other steps will eventually smoothen out, expect the fastest
if the speed of the shock front is larger than the maximum propagation speed.

Now the actual maximum propagation speed depends on the values of the transport
coefficients heat conductivity, shear viscosity, and the corresponding relaxation times.
For actual values derived in IS theory or RTRFD from the Boltzmann equation the
propagation speed is clearly below the speed of light and that is why we obtain the
discontinuity in the shock problem.

In principle, if we would include more and more dynamical moments into the equa-
tions we would get more and more of these small steps and also the maximum propa-
gation speed would approach the speed of light. With an infinite number of moments
we would go back to the Boltzmann equation with an infinite number of propagating
modes with always smooth solutions, as shown in BAMPS. In RTRFD only the 1st and
2nd rank moments are included. In order to really see the increase in the number of
modes we would need to include also higher rank moments. This is a similar procedure
as discussed in Refs. [218,219,220].

Thus, this discussion demands a deeper investigation by the authors of Ref. [35] and
remains a future task [38].

7.5. Numerical performance in BAMPS

7.5.1. Numerical convergence

In the previous sections we have already figured out some limitations of BAMPS when
solving the evolution of an interacting gas. In Sec. 7.1 we have found, that BAMPS

Zlsee Sec. 3.4.3 and 3.4.4, respectively.
225ee Sec. 3.4.2.
23In ideal fluid dynamics we have only the speed of sound.
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Figure 7.27.: Cell size (a) and number of test particles (b) dependence in the BAMPS
simulation at ¢t = 3.2 fm/c. The initial conditions are chosen as 71, = 0.4
GeV and Tr = 0.35 GeV. The mean free path is Apg, = 0.1 fm. In (a)
the pressure profile is shown for different cell sizes Az = 0.4,0.1,0.025
fm and constant Niest. In (b) we use a fixed Az = 0.1 fm and different
numbers of test particles per cell.

produces numerical artifacts if we try to simulate a constant 1/s. The magnitude of
the numerical artifact strongly depends on the average number of particles in the cells.
In case we use a constant cross section, this numerical artifact does not appear.

In this section we want to illustrate the effects of the test-particle number and cell
length on the physical results using a massless Boltzmann gas. As already discussed
in Chapter 6, the relevant parameters in BAMPS that control the numerical accuracy
are the cell size, Az, the time step, At, and the test-particle number, Nyo;. The cell
sizes in the transverse directions, Ay and Az, are not relevant, because the system is
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assumed to be homogeneous in the transverse plane?*. In addition, At is always chosen
to be smaller than Az as to avoid possible large local variations within one time step.
If one decreases Ax one has to simultaneously increase Niest to ensure that each cell
contains a sufficiently large number of test particles. Thus, using BAMPS the rBE will
be exactly solved in the limit Az — 0 and Niest — 00. In practice, we do, of course,
use a non-vanishing value of Ax and a finite value of Niegt. In the following, we show
how the numerical solutions converge when Az is decreased and Niest is increased.

The initial conditions for this study are 71, = 0.4 GeV and Ty = 0.35 GeV. Fig-
ure 7.27 shows the pressure profile at a time ¢ = 3.2 fm/c for a constant mean free
path of Apngp = 0.1 fm. Results in the upper panel are obtained by varying Az and
keeping Niest unchanged. The number of test particles in the cells is between 22 and
34, depending on the local temperature. We see that convergence is reached when
Az = Apfp. Further decrease of Az does not lead to noticeable changes. The lower
panel of Fig. 7.27 shows the results for fixed Az and a varying number of test particles
per cell. Here we do not see significant changes even for a small test-particle number
in the cells.

The number of test particles per cell plays an important role when not using a
constant cross section, but e.g. a constant shear viscosity over entropy density ratio,
n/s, or constant mean free path, Ay When inspecting various dissipative quantities
we have found small numerical artifacts, as shown in Sec. 7.1. These are in general
very small and negligible.

We conclude that using a cell length smaller than the mean free path in the system
is enough to avoid numerical artifacts originating from the cell length. Furthermore, a
sufficient number of test particles is also enough to avoid numerical artifacts.

7.5.2. Calculating time

So far, in this chapter, we have not mentioned the required computational run time
for each setup. Moreover, we have not listed all numerical parameters, such as Nieg or
cell length Ax.

It is obvious that the calculating time strongly depends on the chosen parameters
Niest and Az. The more test particles we use, the longer is the runtime. It is also clear
that the smaller the cell length, the more test particles we have to use in order to avoid
numerical artifacts. The reason why we have not displayed these numerical parameters
is that they should not matter for the physical results. These parameters are always
chosen accordingly, such that BAMPS solves the rBE in an accurate way.

The corresponding runtime varies with the chosen numerical parameters. It is to
be expected that performing BAMPS in the almost perfect-fluid limit, i.e., for small
Knudsen number, the runtime is very large and takes a couple of hours. In contrast,
when we perform BAMPS in the highly viscous limit, the cell length does not have to
be so small as in the almost perfect-fluid limit such that the runtime per simulation
decreases significantly. However, we always average over many ensembles to get rid of
statistical fluctuations and, therefore, depending on the statistics we frequently require
to perform more than 103 — 10* parallel simulations.

21In case we do not have a one-dimensional problem, the cell sizes in transverse direction are relevant
and have to be adjusted accordingly.
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We can conclude that BAMPS is a very accurate rBE solver, but requires large
computational resources especially when considering the almost perfect-fluid limit.






8. Investigation of Mach cones in a kinetic
transport model

In the previous chapter we have shown a detailed study of the formation and the evolu-
tion of shock waves in a simplified (14 1)-dimensional setup. It has been demonstrated
that BAMPS is suitable to describe the complete transition from ideal to viscous shock
waves in a very accurate manner. This implies that BAMPS is also an appropriate
framework to study ”Mach cone”-like structures, which is the main topic of this chap-
ter.

In Chapter 4, we have introduced the physical motivation for Mach cones and the
framework in which they may appear. As discussed there, the most important prereq-
uisites in order to observe Mach cones are that we have to assume an almost perfect
fluid and a perturbation, i.e., a source or projectile, which propagates faster than the
local speed of sound in the medium. If these two requirements are fulfilled, a Mach
cone may appear. As we will observe in the forthcoming sections, however, the shape of
the Mach cone strongly depends on the implementation of the moving projectile which
in the end deposits energy and/or momentum into the medium.

The motivation for studying Mach cones is not only of academical interest. Mach
cones have been a topic of great interest in the community of the heavy-ion physics [29,
30,51,114,117,118,120,121,122,123,124,125,126,127,128,129,130,131,132,133,163] over
the last decades. The almost perfect-fluid behavior and strong jet suppression indicate
that shock waves in form of Mach cones have to exist. Furthermore, the extracted two-
particle correlations from experiments at RHIC and LHC indicated that under some
circumstances the appearance of a double-peak structure is found [113,234, 235, 236,
237,238]. Initially, it was considered that such double-peak structures originated solely
from the jet-medium interaction. Recent studies of hot spots and triangular flow from
initial-state fluctuations have shown to have a very large contribution to the double-
peak structure in the azimuthal two-particle correlations [15,31,32,115,135,136,239].
In this work, however, we address the question whether a Mach cone can contribute to
the signal of a double-peak structure and whether it is indeed an appropriate observable
for it. The naive picture of a Mach cone implies that a double-peak structure appears
because the Mach cone in the transverse plane is mainly characterized by two wings
where matter propagates at a certain emission angle with respect to the propagating
source. It has to be checked whether this naive picture is indeed true. For this purpose,
we inspect the jet-medium interaction and quantify which properties of the medium
and/or jet prevents a double-peak structure. The influence of a non-static medium
has also to be considered [30,51]. Therefore, it is reasonable to split our forthcoming
discussion about Mach cones into two parts: studies in a static medium where only the
effects of the Mach cone itself are analyzed, and a scenario in full relativistic heavy-ion
collisions (HIC), which by default includes an expansion of the medium.
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Although the shear viscosity over entropy density ratio, n/s, seems to be very small
in relativistic HIC, the short lifetime of the QGP possibly prevents the full development
of shock waves and thus of Mach cones. As shown in Sec. 7.1.4, shock waves need a
certain time to develop when the viscosity is not exactly zero. Thus, as discussed in
Sec. 7.1.5, the formation time of shock waves depends on 7/s and the lifetime of the
system. The larger n/s the more time shock waves need to develop. Therefore, the
effects of dissipation on the development of shock waves and Mach cones have to be
taken into account, which is part of our study and the main advantage of the kinetic
transport model BAMPS.

We now introduce the structure of this chapter: In order to understand the origin of
the double-peak structure associated originally with Mach cones, we start in Sec. 8.1
with the discussion of the particle-momentum distribution emitted from a shock front
of an ideal Mach cone in a perfect fluid. In the subsequent Sec. 8.2, we use BAMPS
in order to investigate the transition from ideal to viscous Mach cones using different
projectiles in a static system. We note that we use a (24 1)-dimensional setup' in order
to reduce the required computational power when performing the almost perfect-fluid
limit. In particular, a dependence of the Mach-cone angle on the details and rate of
the energy deposition from the projectile to the matter is investigated. Similarly to the
relativistic Riemann problem we also encounter a characteristic scaling behavior. In
the end of this section we discuss the two-particle correlations of the Mach cones in the
perfect-fluid limit as well for various 71/s, where we compare the numerical results with
our findings from Sec. 8.1. In the following Sec. 8.3 we still maintain our studies in a
static system, but we switch to highly energetic jets losing energy and momentum to the
medium and thus decelerating and study the corresponding two-particle correlations.
In Sec. 8.4 we finally extend our study to relativistic heavy-ion collisions in (3 + 1)-
dimensions, which imply a longitudinal and radial expansion which affects the evolution
of the Mach cone induced by highly energetic jets. We study possible scenarios of the
jet path and the resulting two-particle correlations.

We note that in the following we will investigate the jet-medium interaction in several
setups. Depending on the properties of the medium and projectile/jet shock waves in
form of a ”Mach cone”-like structure will appear. The shape will always deviate from
the strict conical structure due to non-linear effects. Nevertheless, we will always call
this "Mach cone”-like structure Mach cone.

In this chapter, all further hydrodynamic quantities are calculated in the Landau
frame. The method to extract those quantities has been introduced in Sec. 6.5.

8.1. Particle momentum distribution in the shock front of an
idealized Mach cone

In this section, we derive a simple model for the particle emission from a Mach cone in a
perfect fluid omitting non-linear effects resulting from a diffusion wake or head shock?.
This will clarify whether the naive picture of a Mach cone leading to a double-peak

!This is realized using periodic boundary conditions in z-direction.
2More details regarding those effects come later when introducing the numerical results.



8.1. Particle momentum distribution in the shock front of an idealized Mach cone 127

structure in the particle-momentum distribution is supported. Before that, we repeat
some basic details from Chapter 4 using an adapted notation.

8.1.1. Basic details of Mach cones

In Chapter 4, we have illustrated the main features of Mach cones in a perfect fluid.
We have found that if the velocity of the source or projectile, vsource, 1S faster than the
generated waves propagating with the speed of sound, c¢s, the waves lie on a cone. In
this case, the propagating modes are called sound waves. In the following, we refer to
the surface of the cone as the Mach cone or shock front?.

The resulting emission angle of this Mach cone with respect to the direction of the
projectile with vgouree = 1 is given by the weak-perturbation Mach angle which for an
ultrarelativistic gas of massless particles characterized by the EoS e = 3p reads

Cs 1
Qi = arccos = arccos | — | = 54,73°. 8.1
( Usource > < \/3) ( )

As discussed in Chapter 4, we have to mention that in nature perturbations are not
always small. In this case, shock waves are generated instead of sound waves and we
expect a change of the Mach angle due to different propagation velocities of these waves.

Therefore, the Mach angle has to be generalized to the case of stronger perturbations*
as
v
« = arccos <Sh°Ck> . (8.2)
Usource

We require here vsource > Ushock, Where vghock is the velocity of the shock front propa-
gating through the medium. The velocity of the shock front depends on the pressure
(energy density) behind the cone, peone (€cone), and in front of it, i.e., of the medium,
Pmed (emed)a Le.,

B 1/2
(pmed pcone) (eCODe + pmed) :| . (83)

(emed - econe)(emed + pcone)

The relation above corresponds to Eq. (5.41) with an adapted notation. Equation (8.3)
has the following limits: If pcone >> Pmed We obtain vghock = 1. If Peone & Pmed, i-€.,
if the perturbation is very weak, we get the expected limit of the speed of sound, i.e.,
Ushock = Cs. As expected, Eq. (8.2) turns into oy, in the latter case. A useful and
required quantity for our forthcoming discussion is the collective velocity of matter in
the shock wave, i.e., in the wings of the Mach cone. This is different from the signal
propagation velocity (8.3), and reads

Ushock = |:

(pcone - pmed)(ecmle — emed) 2 (8.4)

(emed + pcone) (econe + pmed)

Veoll =

which is just Eq. (5.40) with an adapted notation. In the case of a very weak pertur-
bation the collective velocity of matter vanishes, i.e., veon = 0, whereas for stronger
perturbations v.o can increase up to the speed of light.

3The name shock front is in general only valid in case of stronger perturbations, as we will discuss in
the following.
4These are shock waves.
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8.1.2. Derivation of particle-momentum distribution on the shock front

In order to understand the origin of the double-peak structure induced by Mach cones
in our forthcoming analysis of the numerical results, we shall derive a simple model
of particle emission from the shock front of a Mach cone in the 2-dimensional xy-
plane. We restrict our model to a projectile depositing its energy isotropically into
the medium, i.e., there is no momentum deposition. We furthermore assume a perfect
fluid, i.e., no dissipation.

Y\

Figure 8.1.: A sketch of an idealized Mach cone in a two-dimensional plane. The pertur-
bation propagates in z-direction and induces two wings, which symbolizes
the shock front of the cone. The Mach cone has an emission angle «. The
matter on the cone is characterized by the velocity, u*, and temperature,
T. There is no diffusion wake, head shock, or any other non-linear effect.

As depicted in Fig. 8.1, we assume two sources modeling the two wings of a Mach
cone® with a constant temperature, T', and collective four-velocity, u* = (1, %), where
v =1/+/1 — v? is the Lorentz factor. Each source consists of massless particles with to
the thermal distribution

o) =exp (52, (85
where p* = (E,p) is the particle four-momentum. Choosing the z-axis to be the

symmetry axis of the cone, which is simultaneously the propagation direction of the

5We omit the contribution of a possible diffusion wake or head shock, which will be discussed later
on when showing the numerical results. These contributions affect the final particle distribution
emitted from a Mach cone.
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projectile, we can write
1
wo_ v COS (v 8.6
YT Losina | (8.6)
0

The =+ corresponds to each wing of the cone. We identify v = v with Eq. (8.4) as the
collective velocity of the matter in the shock wave and « is the Mach angle defined in
Eq. (8.2). Using the same coordinate system we write for the four-momentum vector

1
cos ¢ sin
sin ¢ sin
cos 0

P=p (8.7)

¢ is the azimuthal angle in the = — y-plane and 6 is the polar angle with respect to the
z-axis. The distribution function is defined as

dN(27)3

- ’ 8.8

V& f(z,p) (8.8)

where dV d3p/(27)3 is the phase-space volume element. We are interested in the nor-

malized azimuthal particle distribution, dN/(Nd¢), which can be calculated as an inte-

gral over the thermal distribution in a certain volume, V', over the Mach-cone surface.
We use d®p = sin 0p? dpd¢ df and write

AN Vo[ o e e
Ndo N @) /d@sm@/p <e T +e T |dp. (8.9)
0 0

We obtain N = 8713V by integrating Eq. (8.8) over the entire phase-space volume.
First, integrating Eq. (8.9) over dp leads to

ngzb i /Z [1 p—— ] sin 0d6 , (8.10)

and after the integration over df we obtain

2
dN 1 2+b2 3b;
2 1

— = A
Nd$ 87 T a—wpn ] :

(8.11)

where A = 7/2+arctan(b;/1/1 — b?), by = vcos(a—¢) and by = v cos(a+¢). Equation
(8.11) mainly depends on the pressure (energy density) on the cone, peone (€cone),
and the medium itself, pped (€med), Which determines the emission angle, a, and the
collective velocity of matter, v = v.oy, on the cone.
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Discussion of the solution

The naive picture of Mach cones suggests that both wings generate two peaks in the
azimuthal particle distribution, dN/d¢. Against all expectations, even in this simple
model this does not always apply. In the left panel of Fig. 8.2 we show the normalized
azimuthal particle distribution, dN/(Nd¢), according to Eq. (8.11) with respect to
the angle, ¢. We consider an energy density on the cone of econe = 16.3 GeV/fm?,
with a medium temperature of Ti,.q = 0.4 GeV and an energy density of epeq = 16.28
GeV/fm3. This specific case represents a very weak perturbation for which the emission
angle is o = 54.72° and the collective velocity of matter is given by veoy = 0.0004. Each
of the wings leads to a peak around 454.72° but the sum of both wings results in a
peak in direction of the projectile, ¢ = 0°. One would expect such an outcome since the
propagation of a shock front does not mean that all particles have the same propagation
direction: In effect, they are distributed according to the thermal distribution function
(8.5).

2782 | eeone=163  bothwings — || egne=16.3;0=54.72;v=0.0004 — |
) left wing ==: €cone=30.0; 0=47.91; v=0.2594 ...
2781 1 0=54.72;v=0.0004 " yight wing =+ €cone=50.0; 0=41.51; v=0.4554 ~.-
z TN, N T 5
8 2.78 ~,‘ N, ,, N 1 * x“
o .
S 2779t 4
5 278 | ", 3
= 2777 |/
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Figure 8.2.: We show the normalized azimuthal particle distribution, dN/(Nd¢), of
a Mach cone in a simplified model for an ultrarelativistic gas of massless
particles. The temperature of the medium is T1,.q = 0.4 GeV, and therefore
we have epeq = 16.28 GeV/fm3. In the left panel, we show the results
for each wing separately and for the sum of both. We use econe = 16.3
GeV/fm?, which results in o = 54.72° and veop = 0.0004. In the right
panel, we show the particle distribution for various strength of the shock
waves.

However, the results might change when increasing the strength of the shock wave,
which induces a higher collective velocity of matter in the shock wave, as shown in
the right panel of Fig. 8.2. If econe is much larger than ey.q, a double-peak structure
appears. This is due to the fact that the peaks originating from each wing become
sharper, because of the increasing collective velocity of matter, which in the end affects
the distribution function (8.5). Thus, although summing up both wings together, those
peaks survive. When increasing the strength of the shock waves, the corresponding sig-
nal of the double-peak structure becomes even more dominant. Due to the dependence
of the emission angle, o, on the strength of the shock wave, however, the peaks move



8.1. Particle momentum distribution in the shock front of an idealized Mach cone 131

closer to the direction of the projectile.
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Figure 8.3.: We show the normalized particle distribution, dN/(Nd¢), with several cuts
in the energy E of a Mach cone in a simplified model for an ultrarelativistic
gas of massless particles. The temperature of the medium is Tpeq = 0.4
GeV which corresponds to epeq = 16.28 GeV/fm3. We show the results
for econe = 18 GeV /fm?, which results in a = 53.7° and veoy = 0.043.

These results indicate that a Mach cone does not necessarily result in a double-
peak structure in the azimuthal particle distribution, dN/(Nd¢), but that such a phe-
nomenon occurs for strong shocks only. However, this might change if one considers
momentum cuts. If we do not carry out the full momentum integration in Eq. (8.9) but
restrict it to a certain interval, a double-peak structure even appears for weak shocks,
as demonstrated in Fig. 8.3 for econe = 18 GeV/fm3. This is shown for ¥ = 21—-22 GeV
or 40 — 41 GeV, which represent exemplary fractions of the high-momentum region®.
On the contrary, the low-momentum region represented exemplary by £ =5 — 6 GeV
particles does not support a double-peak structure. This indicates that the contribution
for the double-peak structure originates mostly from high-momentum particles, while
the contribution of the bulk medium’ has a compensating effect on the phenomenon.

We have discussed the results for a specific scenario by assuming a gas of massless
particles and a projectile propagating with the speed of light. It is clear that changing
the EoS or speed of the projectile might play an important role when addressing the
question under which conditions a double-peak structure will appear. For example,
if the speed of sound is very small compared to the speed of the projectile, when
considering a massive gas for instance, the double-peak structure appears even for very
weak shock waves. This is due to the fact that in this case the emission angle of
the Mach cone is very large. However, we restrict our forthcoming discussion of the
numerical results to an ultrarelativistic gas of massless particles.

We can conclude that in our simplified model a double-peak structure does not
always appear. The appearance of a double-peak structure depends on the strength of
the shock wave, the speed of the projectile with respect to the propagation speed of

5We note that p = E for massless particles.
"It consists of low-momentum particles.
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the shock front, and, in general, on the EoS. Using special cuts in momentum, a double
peak in the particle distribution may appear more easily since the contribution for the
double-peak structure originates mostly from the high-momentum region. Nevertheless,
we have to mention that our scenario omits any other non-trivial and non-linear effects
which normally appear if a projectile moves through a medium®, and which affects the
final distribution. Moreover, the propagating projectile in our scenario deposits only
energy to the medium, but no momentum. Therefore, our simple model here is merely
a good approximation and just serves as a reference.

We will compare our results derived here to the numerical results from BAMPS. For
a static system® and fixed projectile direction, the particle distribution is equivalent to
the two-particle correlation, since the angle ¢ is always correlated to the direction of
the projectile, which serves as a ”"trigger” particle.

8.2. Transition from ideal to viscous Mach cones using
projectiles

In the following, we study the evolution of Mach cones with different assumptions of
the interaction between the projectile and the medium using the microscopic transport
model BAMPS. To our knowledge, the complete transition from ideal to viscous Mach
cones, similar to the studies of shock waves in the previous Chapter 7, has not been
realized by any other model or study.

In this section, we focus on the investigation of Mach-cone evolution in the absence
of any other effects, i.e., we neglect such effects as initial fluctuations or longitudi-
nal/transverse expansion, which are, however, relevant for heavy-ion collisions. For
this purpose, the space-time evolution of particles is performed in a static box. If not
stated otherwise, the box lengths are L, = L, = L, = 5 fm. We initialize a static uni-
form medium of massless Boltzmann particles for a medium temperature of Ty,eq = 0.4
GeV which is in chemical equilibrium, i.e., Ajeq = 1. This corresponds to a LRF energy
density of epmeq = 16.28 GeV /fm3, while the degeneracy factor is g = 16. The medium
is initially in thermal equilibrium, i.e., all dissipative quantities are initially zero.

In order to keep our calculations simple, we consider only binary collisions with an
isotropic cross section, i.e., a cross section with an isotropic distribution of the collision
angle. Furthermore, as introduced in Sec. 6.4, we keep the mean free path of the
medium particles constant in all spatial cells, i.e., A, = C, by adjusting the cross
section according to o = 1/(nC), where n is the LRF particle density in the cell'?.
In the forthcoming numerical results we always show the corresponding shear viscosity
over entropy density ratio, 77/s, of the medium in rest. The related shear viscosity for
isotropic binary collisions is given by Eq. (6.15).

8We will see those effects when introducing the numerical results for Mach cones.
9There is no expanding medium.

'0This is necessary, because due to the energy deposition originating from the propagating projectiles,
the local energy and particle density will increase significantly. This would possibly lead to numerical
artifacts. Adjusting the cross section according to o = 1/(nC), where C has to be chosen larger
than the cell size, avoids this problem.
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8.2.1. Number of dimensions

When performing the almost perfect-fluid limit, the computational time in BAMPS is
already very high in the simplified one-dimensional problem considered in Chapter 7.
In a full (3 + 1)-dimensional system the calculations would take too much time when
performing the almost perfect-fluid limit. To this end, we reduce our problem to two
space dimensions, which considerably decreases the computational time. Thus, we
keep the z-direction homogeneous and use periodic boundary conditions. Collisions of
particles against box boundaries in z- and y-direction are realized as elastic collisions
off a wall. The z- and y-directions are the physically relevant dimensions.

As we show in Sec. 8.2.2, we implement two different projectiles depositing energy and
momentum in order to simulate the evolution of the Mach cones. The shape of the Mach
cone as well as the evolution is similar to the case of a full (3+ 1)-dimensional scenario.
The restriction to (2 + 1)-dimensions does not affect the main results and conclusions
we obtain in our discussion. Nevertheless, the corresponding energy-deposition rate,
dE/dz, of the projectile in two dimensions is not directly comparable to systems with
three dimensions.

8.2.2. The projectiles

In order to investigate the evolution of Mach cones, we introduce two different pro-
jectiles. Both projectiles are characterized by their different implementation of the
energy- and momentum-deposition into the medium. We note that the projectiles are
point-like.

1. The pure-energy deposition scenario (PED)
In the so called pure-energy deposition scenario (PED) which is quite similar
to the one introduced in Refs. [50,240,241] the projectile propagates and emits
particles according to the thermal distribution

f(z,p) = exp <— E > , (8.12)

Tsource

such that the energy deposition is isotropic in the LRF of the projectile. The
parameter Tyouce as well as the number of particles is chosen appropriately in
order to obtain a specific energy-deposition rate, dE/dz. In this scenario only
energy, but no net-momentum is deposited into the medium.

2. The JET scenario

In the second scenario, referred to as JET, a highly energetic massless particle
(jet) has a momentum in z-direction only, i.e., p, = Ejet. The jet propagates
and deposits energy into the medium due to collisions with the medium particles.
After each collision, the momentum of the jet is reset to its initial value. The jet-
medium cross section is adjusted in such a way that we obtain a specific energy
deposition rate, dE/dz. Using this scenario a constant energy- and momentum-
deposition rate is achieved.

For both scenarios the projectiles are initialized at ¢ = 0 fm/c at the position z =
—0.1 fm and propagate in z-direction with vsource = 1, i.e., with the speed of light.
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We note that the JET scenario is a simplified model of a jet in heavy-ion physics,
whereas the PED scenario vaguely resembles the hot spots studied in [135], but in its
implemented form has no direct relation to heavy-ion collisions. Furthermore, the PED
scenario provides the possibility to reproduce the Mach cone structure generated by a
weak and sonic perturbation, see Chapter 4.

We expect clear differences between these two scenarios concerning the evolution of
the entire system, but also concerning the final distribution of the particles.

The energy deposition rate dF/dx

In this section we use a constant energy-deposition rate, dF/dz, for the projectiles.
The energy-deposition rate is given by

dE  Ei— E;

= N
dx Az Ntest’ (8 3)

where F; denotes the energy of the whole system at ¢ = 0 fm/c, Ef the energy at the
end of the simulation, and Az the path length the projectiles traverse.

Although the projectile is point-like, the energy is deposited in the smallest possible
volume element, which is given in terms of the cell sizes. However, due to the fact
that we choose the z-direction to be homogeneous, we numerically set the cell size in
z-direction equal to the box length, L,. Thus, we have to be careful when comparing
the results for a specific dE//dx, but different lengths of L,. The same amount of energy
has a different influence on the medium when changing!! L. Thus, in case we change
the length in L., we have to rescale the energy deposition rate'? by L.. Then, two
different simulations with a given energy-deposition rate and different L, are directly
comparable.

In this section we always use L, = 5 fm, such that all numerical calculations are
directly comparable.

8.2.3. Mach cones in the nearly perfect-fluid limit

In Fig. 8.4, we show the results for the PED scenario in the left panel and for the JET
scenario in the right panel for three different energy-deposition rates into the medium,
ie.,dF/dz =1, 10, and 200 GeV /fm, and in the nearly ideal limit, i.e., we have chosen
n/s = 0.005. We note that, in general, the maximum (minimum) energy density in
the simulations is larger (smaller) than the maximum (minimum) of the energy density
scales in the figures. As an overlay we show the velocity profile as arrows with a scaled
length arrow. Both modifications are done to enhance the readability of the figures'.

In both scenarios, PED and JET, we observe a conical structure but with obvious
differences for all depositions. In the PED case with the isotropic energy deposition, a
circle of perturbations propagating in backward direction is visible. This is missing in

"The energy per particle which is transferred to the medium by the projectile is large for small L,
and small for large L.
dE* 1 dE

12The energy deposition rate has to be divided by L., i.e., o = I ds

13Those modifications are performed in all forthcoming figures concerning the demonstration of Mach
cones in those 2-dimensional plots.
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Figure 8.4.: Shape of a Mach cone in the nearly ideal limit (/s = 0.005) shown for dif-
ferent jet scenarios and different energy-deposition rates into the medium,
ie.,dF/dz =1, 10, and 200 GeV/fm. The left panel shows the pure energy
deposition scenario (PED), whereas the right panel shows the propagation
of a highly energetic jet (JET) depositing energy and momentum in the
x-direction. We have depicted the LRF energy density within a specific
range. As an overlay we show the velocity profile as arrows with a scaled
length arrow in order to improve the readability. The results are a snap-
shot of the evolution at ¢t = 2.5 fm/c. In addition we show the analytical
solution for the ideal Mach cone in the very weak perturbation case with
the emission angle ..
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the JET scenario because of the strong momentum deposition in z-direction. Another
difference is that in the JET scenario a clearly visible head shock, i.e., a shock wave in
the front of the jet perpendicular to the direction of the jet appears. This in turn is
missing in the PED scenario. Furthermore, there is a clear difference in the behavior of
the matter behind the Mach cones. In the JET case, the projectile induces a diffusion
wake!* where the matter is flowing in the direction of the projectile. On the contrary,
a different behavior is observed within the PED scenario. In this scenario, we observe
an anti-diffusion wake, for which the matter behind the cone is flowing in the backward
direction. These observations are in qualitative agreement with the results from ideal
hydrodynamics and transport calculations [50,240,241].

Angular dependence of the energy-deposition rate

Additionally, every scenario is compared to the ideal Mach cone with ay, for a very weak
perturbation as shown in Fig. 8.4. Both scenarios provide evidence that the energy-
deposition rate of the projectile influences the Mach angle, a. For a very small energy
deposition of dE/dz = 1 GeV /fm, the profile in JET and PED is almost linear and, as
expected, we reproduce the angle a.,. In addition, non-linear effects such as a diffusion
wake and a head shock are almost negligible and do not influence the conical structure
significantly due to the very weak perturbation!®. This changes with larger energy
deposition as shown for d£/dz = 10 GeV /fm. Here, the shock front in both, PED and
JET, propagates faster through the medium and the Mach angle changes according
to Eq. (8.2). Moreover, the shock front is already slightly curved, because the energy
density and pressure in the wings decrease away from the projectile. Different energy
densitiy and pressure mean a different local propagation velocity at each point of the
wing according to Eq. (8.3). When increasing the energy deposition further the curved
structure of the shock front is clearly visible, both, for JET and PED, and the Mach
angle, «, strongly deviates from the weak-perturbation Mach angle, a,.

Furthermore, near the projectile in the JET scenario the disturbance of the medium
is strongest, resulting in a strong head shock, and the shock front moves much faster
than the speed of sound. Farther away from the projectile, a part of the energy of the
shock front has already dissipated into the medium and, as a result, the perturbation
gets weaker and approaches a weak perturbation propagating with the speed of sound.

For the PED scenario, the curved profile is not the result from a head shock'®, but
due to the fact that the linear conical region is shortened. Since the propagating waves
are shock waves and not sound waves, the linear region where the shock waves lie on
the cone is shortened, which is shown in the right part of Fig. 4.2. For example, if
the propagation velocity of the shock waves approaches the velocity of the projectile,
Usource, the linear region vanishes and we obtain only a circle-like structure. In order to
demonstrate this, we show a very strong energy deposition of dE/dz = 20000 GeV/fm

MMore details to the appearance of a diffusion wake are given in Refs. [50, 139,164, 165, 242].

Y However, by a deeper inspection we can see that only the PED scenario is able to reproduce the
Mach cone generated by sonic perturbations (plotted as black lines), because it deposits its energy
isotropically to the medium. In the JET scenario we see even for this small energy- and momentum
deposition that the cone region has a significantly higher energy density as the medium in rest and
a small but visible diffusion wake in direction of the projectile exists.

16 As mentioned above, there is no head shock in the PED scenario.
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Figure 8.5.: Shape of a Mach cone in the nearly ideal limit (n/s = 0.005) shown for the
PED scenario at energy deposition rate dE/dx = 20000 GeV/fm in the
z-direction. Depicted is the LRF energy density within a specific range.
As an overlay we show the velocity profile as arrows with a scaled length
arrow. The results are a snapshot of the time evolution at ¢t = 2.5 fm/c.

for the PED scenario in Fig. 8.5. The propagation velocity of the shock waves in the
backward and the sidewards direction is almost 85% and 90% of the speed of light,
respectively. Furthermore, they approach the speed of light in forward direction. Due
to this incredibly fast shock-wave propagation in the forward direction, the conical
linear region shortens to almost a point, and we hence observe a circle-like structure
only.

Details on the implementation of the projectile

In the JET scenario the energy of the jet, Ej, is 20, 200, and 20000 GeV, starting from
the upper to the lower panel in Fig. 8.4, respectively. For our calculations in the nearly
ideal limit, the energy of the jet does not play any significant role. The only parameter
which matters is the average energy-deposition rate. We mention in Sec. 8.2.4 how the
value of the jet energy, Fjet, changes the pattern of the Mach cone.

In the PED scenario we make a similar observation as in the JET scenario due to
the free choice of the parameters of the projectile, which are Tyource and the number
of particles which are emitted by the projectile. In order to achieve a fixed energy-
deposition rate, dE/dx, we can adjust those parameters in an arbitrary way. This
free choice leads to different final profiles of the resulting Mach cones. In order to
demonstrate this we show a Mach cone in the PED scenario for dE/dz = 200 GeV /fm,
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Figure 8.6.: Shape of a Mach cone in the nearly ideal limit (/s = 0.005) shown for the
PED scenario at energy deposition rate of dE/dx = 200 GeV/fm in the
x-direction. The results are a snapshot of the time evolution at ¢t = 2.5
fm/c. Depicted is the LRF energy density within a specific range. As an
overlay we show the velocity profile as arrows with a scaled length arrow.
The value Tyource and the number of particles emitted from the projectile
differs from those in Fig. 8.4 and results into a slightly different shape in
the final profile.

n/s = 0.005, and at a time of ¢ = 2.5 fm/c in Fig. 8.6. Although the choice of
the settings is equal to the case shown in Fig. 8.4 for dE/dx = 200 GeV/fm (lower
left panel), we observe a slightly different profile. This is due to the fact that the
number of particles as well as their average kinetic energy are chosen differently in

both simulations!”.

Mach cone or Mach shock?

An interesting issue is whether the specific case considered in Fig. 8.5 can be still called
a Mach cone. In this case only shock waves propagate through the medium, which are
still slower than the projectile itself, but there is almost no conical structure visible. A
better name for such a scenario would be "Mach shock” [30,163]. In the end, this is
an issue of convention and should not affect our discussions and conclusions.
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Similar to Fig. 8.4. We show the transition from ideal to viscous Mach
cones by adjusting the shear viscosity over entropy density ratio, /s =
0.005, 0.05, 0.2, and 0.5. The energy deposition is dE/dx = 200 GeV /fm.
The results are a snapshot of the time evolution at ¢ = 2.5 fm/c. Depicted
is the LRF energy density within a specific range. As an overlay we show

the velocity profile as arrows with a scaled length arrow.
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8.2.4. Effects of viscosity on the evolution of Mach cones

Similar to the consideration of shock waves in one dimension in Chapter 7, BAMPS
also allows us to investigate Mach cones in different dissipative regimes. For this
purpose, we show the Mach-cone structure for the PED scenario (left panel) and the
JET scenario (right panel) for different values of /s in Fig. 8.7. The energy-deposition
rate has been fixed to dE/dzx = 200 GeV /fm. In addition, Eje; = 20000 GeV is used in
the JET scenario. The chosen 71/s values are intended to cover the nearly-ideal limit
(n/s = 0.005), the estimated QGP shear viscosity over entropy density ratio in heavy-
ion collisions (/s = 0.05, 0.2) [11,105] and the highly viscous limit where dissipative
hydrodynamical calculations are not reliable anymore (n/s = 0.5) [33].

First, we note that if we consider the system at fixed time of ¢ = 2.5 fm/c, the
Mach cone structure and the characteristic sharp structures smear out and eventually
disappear almost completely within both scenarios as the viscosity increases. This
is true for the shock front as well as for the (anti-)diffusion wake. The difference
between both scenarios is that for increasing 7/s the resulting Mach-cone solution
covers approximately the same spatial region regardless of the value of /s within the
PED scenario, while in the JET case the structure is concentrated more and more near
the projectile. The reason for this is that in the PED scenario, the momentum from
the projectile is isotropically deposited into the medium, whereas in the JET scenario,
the initial momentum dissipation is strongly peaked in the direction of the projectile'®.
With a large viscosity, the re-scattering of the emitted particles from the projectile is
very rare. Thus, the larger the viscosity the more the resulting solution reflects the
details of the projectile-matter interaction.

Dissipative quantities of Mach cones

So far, we have only investigated the energy-density profile which already reveal a lot
about the structure end evolution of Mach cones in the low- and high-viscosity regime.
As a further possibility, we can also inspect the dissipative quantities which reflect the
non-equilibrated regions of the profiles. This is especially the case if the shear viscosity
over entropy density ratio is large. For this purpose, we show some of the dissipative
quantities in Fig. 8.8 (n/s = 0.005), Fig. 8.9 (n/s = 0.05), and Fig. 8.10 (/s = 0.5). We
show the time-like component of the shear-stress tensor, 7% (upper panel), the time-
like component of the heat flow, ¢° (middle panel), and the fugacity A (lower panel),
at time ¢ = 2.5 fm/c. The energy deposition has been fixed to dE/dxz = 200 GeV /fm.
The left and the right panel presents the PED and the JET scenario, respectively.
In Fig. 8.8, which represents the almost ideal limit, the dissipative quantities 7
and ¢° are only observable in the very small region of the shock front. In this case
the dissipative quantities are not zero because the gradients are very large here. In
the region away from the shock front, however, the medium is in thermal equilibrium.
When increasing the shear viscosity over entropy density ratio to /s = 0.05 as shown
in Fig. 8.9, we observe that the region where the dissipative quantities are not zero

00

"The main conclusions we draw in this thesis are not affected by this choice.
'8The effect in the JET scenario becomes even stronger with increasing energy Eje; of the jet, since
the scattered particles are stronger forward-peaked.
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Figure 8.8.: Shape of a Mach cone in the nearly ideal limit (/s = 0.005), shown for
different jet scenarios and a fixed energy-deposition rate into the medium
of dE/dzx = 200 GeV /fm. The left panel shows the pure energy-deposition
scenario (PED), whereas the right panel shows the propagation of a highly
energetic jet (JET) depositing energy and momentum into the z-direction.
Depicted are the time-like component of the shear-stress tensor, 7% (upper
panel), the time-like component of the heat flow, ¢° (middle panel), and
the fugacity A (lower panel) within a specific range. As an overlay we show
the velocity profile as arrows with a scaled length arrow. The results are
a snapshot of the time evolution at ¢ = 2.5 fm/c.
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Figure 8.9.: Shape of a Mach cone in the viscous regime (/s = 0.05) shown for dif-
ferent jet scenarios and a fixed energy-deposition rate into the medium of
dE/dx = 200 GeV/fm. The left panel shows the pure energy-deposition
scenario (PED), whereas the right panel shows the propagation of a highly
energetic jet (JET) depositing energy and momentum into the z-direction.
Depicted are the time-like component of the shear-stress tensor, 7% (upper
panel), the time-like component of the heat flow, ¢° (middle panel), and
the fugacity A (lower panel) within a specific range. As an overlay we show
the velocity profile as arrows with a scaled length arrow. The results are
a snapshot of the time evolution at t = 2.5 fm/c.
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Figure 8.10.: Shape of a Mach cone in the highly viscous regime (n/s = 0.5) shown for
different jet scenarios and a fixed energy-deposition rate into the medium
of dE'/dx = 200 GeV /fm. The left panel shows the pure energy-deposition
scenario (PED), whereas the right panel shows the propagation of a highly
energetic jet (JET) depositing energy and momentum into the z-direction.
Depicted are the time-like component of the shear-stress tensor, 7% (up-
per panel), the time-like component of the heat flow, ¢° (middle panel),
and the fugacity A (lower panel) within a specific range. As an overlay
we show the velocity profile as arrows with a scaled length arrow. The
results are a snapshot of the time evolution at ¢ = 2.5 fm/c.
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becomes larger and the sharp profiles smear out. A higher dissipation as considered in
Fig. 8.10 with /s = 0.5 shows a further increase of 7% and ¢" for the PED scenario
but not for the JET scenario. This is due to the fact that in the JET scenario particles
are pushed almost only in forward direction due to the high energy and momentum
deposition, as discussed previously and demonstrated in Fig. 8.7. Thus, only in the
region at the very front around the projectile the dissipative quantities do not vanish.
In the PED scenario, to the contrary, the emitted particles are distributed isotropically
such that dissipation covers a larger region.

The pattern of the dissipative profiles obviously depends strongly on the implemented
projectile. This fact is also reflected in the fugacity, A, which in the affected region
exceeds one within the PED scenario, whereas it remains below one within the JET
scenario. This is due to the fact that in the JET scenario the number of particles is
conserved but energy is deposited into the medium. In the PED scenario the energy
is deposited via the emission of particles, where in this specific case the kinetic energy
per particle is very low'”. Thus, the fugacity develops differently compared to the JET
scenario.

8.2.5. Scaling behavior and time evolution of Mach cones

In Figs. 8.11 and 8.12, we demonstrate the time evolution of the PED and the JET
scenario, respectively. We fix the energy deposition to dE/dz = 200 GeV /fm and show
the results for the nearly ideal-fluid limit characterized by n/s = 0.005. In both cases,
we observe that the Mach cone takes some time to develop its final structure. Especially
for the PED scenario we see that the high energy-density region around x = —0.2 fm
for t = 2.5 fm/c has not yet developed at very early times.

We note that in both scenarios the projectiles are point-like and the matter is ho-
mogeneously distributed initially, i.e., there are no gradients and the medium does
not expand. The only length scales that control the solution are the mean free path,
Amfp ¢ 7, and the energy deposition rate, dE/dz. Thus, we expect a similar scaling
behavior as for the Riemann problem discussed in Sec. 7.1.4. For example, the energy
density profiles for two different shear viscosities,  and 7/, are related by

dE t—to x—2x0 Y — Yo 1 dFE

t—t . . art _ ac
6( 0, L Zo,Y — Yo, dxvn) 6( C ) C ) C ’CNfl d$7n)a

(8.14)

where the scaling factor is given by C' = n/n/. Furthermore, xy and yg are the coor-
dinates of the projectile at time ty. Here, N counts the physically relevant number
of dimensions in space. In our case we have N = 2 since we keep the z-direction as
homogeneous?.

Using this scaling behavior, we can also interpret Fig. 8.7 as a time-evolution of
the solution, with a larger viscosity corresponding to an earlier time and with an

appropriate scaling of the energy-deposition rate. In order to demonstrate this, we

O The shape of the fugacity depends strongly on Tiource and the number of particles emitted from the
projectile.

20Tn case we consider the evolution of a Mach cone in a full 3-dimensional setup with N = 3, then
the relation (8.14) has to be modified, such that the signal propagation in z-direction has to be
considered, too.
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Figure 8.11.: Time evolution of a Mach cone in the nearly ideal limit (/s = 0.005)
shown for the PED scenario at a fixed energy-deposition rate dF/dz =
200 GeV/fm. Depicted is the LRF energy density within a specific range.
As an overlay we show the velocity profile as arrows with a scaled length
arrow.
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Figure 8.12.: Time evolution of a Mach cone in the nearly ideal limit (/s = 0.005)
shown for the JET scenario at a fixed energy-deposition rate dE/dx = 200
GeV/fm. Depicted is the LRF energy density within a specific range. As
an overlay we show the velocity profile as arrows with a scaled length
arrow.
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Figure 8.13.: We demonstrate the scaling behavior of a Mach cone using the PED
scenario according to Eq. (8.14). Depicted is the LRF energy density
within a specific range. As an overlay we show the velocity profile as
arrows with a scaled length arrow. In the left (right) panel we show a
snapshot at t = 2.5 (25) fm/c for n/s = 0.005 (0.05) and dE/dz = 200
(2000) GeV/fm. The box sizes are L, = L, = 50 (5) fm and L, =5 (5)
fm. The starting position of the projectile is x = —0.1 fm at ¢t = 0 fm/c.

show the solution for n/s = 0.005 (0.05), t = 2.5 (25) fm/c dE/dx = 200 (2000)
GeV/fm in the left (right) panel of Fig. 8.13. The box sizes are L, = L, = 50 (5) fm
and L, = 5 (5) fm. The starting position of the projectile is x = —0.1 fm at t = 0
fm/c in both simulations. Both simulations are identical, which confirms the scaling
behavior given by Eq. (8.14).

Although the Mach angle apparently changes with viscosity, see Fig. 8.7, this is a
transient effect related to the finite formation time of the Mach cone with non-zero
viscosity. The viscosity affects the width and formation time of the shock front, but
not its speed of propagation, i.e., Eq. (8.3) still holds for non-zero viscosity. Asymp-
totically, the Mach-cone angle will be the same regardless of the value of 1/s using the
corresponding energy-deposition scaling given in Eq. (8.14).

From this discussion, we can conclude that in order to observe a fully developed
Mach-cone structure, we have to wait for a sufficient long time, i.e., we have to keep
the microscopic length scale small compared to the macroscopic one. This relation
corresponds to a small Knudsen number Kn, which has been discussed in Sec. 7.1.4
and 7.1.5.

8.2.6. Two-particle correlations of Mach cones

Based on the naive assumption that the double-peak structures always result from
the formation of Mach cones, we investigate the two-particle correlations in the PED
and JET scenario for ideal and viscous Mach cones extracted from the numerical cal-
culations in BAMPS. We further compare our numerical results with our findings in
Sec. 8.1, where we have derived a simple model in order to understand the origin of
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a double-peak structure induced by Mach cones. Since we have performed our calcu-
lations in a static system and the direction of the projectile is always in z-direction,
the particle distribution extracted from BAMPS is equivalent to the two-particle cor-
relation. The reason is that the angle ¢ is always correlated to the direction of the
projectile, which serves as a ”trigger” particle.

Two-particle correlations in the nearly perfect-fluid limit

We would now like to address the question whether the Mach-cone structures in the
almost perfect-fluid limit as observed in Fig. 8.4 can be regarded as the source of a
double-peak structure in two-particle correlations. For this purpose, we extract the
normalized azimuthal particle distribution, dN/(Nd¢), from BAMPS calculations. In
Fig. 8.14a, we show the numerical results for the energy-deposition rate dF/dz = 10
GeV /fm together with the analytical calculation as given by Eq. (8.11). In order to
extract the contribution from the wings only and to exclude those from all regions
such as the (anti-)diffusion wake and the back region?!, a lower energy-density cut
of 20 GeV /fm3 is applied??. Particles in cells with an energy density lower than this
value are not considered for the extracted particle distribution®?. For the analytical
solution?* taken from Eq. (8.11) we use econe = 22.15GeV /fm? and vy = 0.137. For
both scenarios as well as for the analytical calculation we observe only a peak in the
direction of the projectile, i.e., ¢ = 0°, but no double-peak structure. As already
mentioned in Sec. 8.1 this finding is against all expectations from the naive picture of
a Mach cone.

However, with a sufficiently high energy-deposition rate the final picture changes
significantly. In Fig. 8.14b the results from BAMPS calculations with dF/dz = 200
GeV/fm are shown. The lower energy-density cut has been increased to 50 GeV /fm3
because of the much higher energy-deposition rate. For the analytic calculation ecope =
62.55 GeV/ fm? with veon = 0.537 has been chosen. In the PED scenario as well as in
the analytic model the double-peak structure finally appears as long as the energy-
deposition rate and, consequently, v. are sufficiently large. In the JET scenario,
however, only one peak in direction of the jet is visible.

There are two main contributions to the structure of the two-particle correlation.
One arises from the wings of the Mach cone and the other one emerges from the head-
shock region. The matter in the wings is moving in the direction perpendicular to the
surface with some collective velocity, veon. The peaks in the local particle-distribution
function are the stronger the larger the collective velocity is chosen. It follows from our
simple analytical model that the mere existence of the wings does not necessarily lead
to clearly visible peaks in the correlation, but that the local velocity of the matter has
to be sufficiently large as well. This is also confirmed by the numerical simulations:

2Legpecially in the PED scenario.

22We note that regardless of those lower energy-density cuts the contribution of the head shock in the
JET scenario is included since this region features the largest energy density.

25We note that the contribution of the medium at rest is a constant. Thus, this contribution cancels
out when inspecting the normalized particle distribution.

2 e cone is estimated by the average energy density on the Mach-cone wings extracted from the associated
numerical calculations.
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Figure 8.14.: Two-particle correlations, dN/(Nd¢), extracted from calculations for
Mach cones in the nearly ideal limit shown in Fig. 8.4. The results are ex-
tracted from calculations with dE'/dz = 10 GeV/fm (a) and dE/dz = 200
GeV/fm (b). Analytic solutions extracted from Eq. (8.11) are shown for
€cone = 22.15 GeV /fm? (a) and econe = 62.55 GeV /fm? (b).

If the energy-deposition rate is sufficiently large in the PED scenario, the double-peak
structure appears.
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Figure 8.15.: Two-particle correlations, dN/(Nd¢), with spatial cuts in transverse posi-
tion extracted from calculations as shown in Fig. 8.4. We have considered
the JET scenario for /s = 0.005 and dE/dx = 200 GeV /fm. Only par-

ticles with transverse positions |y| > 0.2, 0.3, and 0.5 fm, respectively,
contribute to the final two-particle correlations.

In principle, the same argument also holds for the JET scenario. In this scenario,
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however, there is also a strong contribution from the head-shock region®, where the
matter is moving with large collective velocity. This collective motion is in direction
of the projectile and results in a particle-distribution function that is peaked in the
same direction. Although a double-peak structure due to the Mach-cone wings may
be formed, the contribution of head shock clearly dominates and overshadows the
contribution from the wing regions.

A promising method to find a double-peak structure in the JET scenario are probably
momentum cuts?®. When considering only particles from the high-momentum region,
the signal for the double peak becomes very strong. This is definitely true for the
PED scenario and also leads to the appearance of a double-peak structure for weak-
shock scenarios, i.e., for small v.o. However, such an effect does not occur within the
JET scenario. The reason is that within the JET scenario, one encounters a strong
contribution from the head-shock region, where a huge amount of highly energetic
particles exist. These highly energetic particles mostly propagate in the direction of
the projectile.

In order to obtain a double-peak structure in the JET scenario, we have to perform
a spatial cut in the transverse y-direction in order to get rid of the contribution of the
diffusion wake and the strong head-shock region [243]. This is shown in Fig. 8.15, where
only particles with |y| > 0.2, 0.3, and 0.5 fm are taken into account. For |y| > 0.2 fm
the contribution of the head shock and the diffusion wake is still too strong. But for
ly| > 0.3 fm as well as for |y| > 0.5 fm the double-peak structure originating from the
wings becomes clearly visible. Figure 8.15 demonstrates that neglecting the head shock
and the diffusion wake makes it possible to observe a double-peak structure originating
from the wings. Therefore, it is justified to conclude that the head shock as well as the
diffusion wake prevent the appearance of a double-peak structure in the above JET
scenario .

Two-particle correlations in the low and highly viscous regime

An important question of interest is the effect of dissipation on the development of
the two-particle correlations. In Fig. 8.16 we show the two-particle correlations for the
distributions shown in Fig. 8.7. The procedure is similar to the one applied for the
results presented in Fig. 8.14. The lower energy-density cut is chosen as 50 GeV /fm?.
For the JET scenario (a), the peak in direction of the projectile becomes sharper
with larger viscosity and no other appreciable effects originating from viscosity are
visible. On the contrary, for the PED scenario (b) the viscosity destroys the double-
peak structure. If the viscosity is very large, only one peak in direction of the jet is
visible.

As a matter of fact, dissipation does not lead to any important effect enhancing the
appearance of a double-peak structure. Quite the reverse, without exception possible
double-peak structures tend to disappear with larger dissipation. This is also shown in
the forthcoming sections.

25The part of the diffusion wake is already excluded by the lower energy-density cuts.
26 As shown for our simple model a double-peak structure in Fig. 8.3 appears when restricting the
momentum or equivalent the energy integration in Eq. (8.9) to a certain interval.
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Figure 8.16.: Two-particle correlations, dN/(Nd¢), for different viscosities extracted
from the distributions shown in Fig. 8.7. The results are depicted for an
energy-deposition rate of dE/dx = 200 GeV /fm for both scenarios.

8.3. Mach cones induced by decelerating or quenched jets in
a static system

In the previous section, we have investigated the evolution of Mach cones induced by
projectiles in a static system. In this section, we still keep the static system and the
initial configuration, but instead of a projectile we use a highly energetic and massless
jet?” which interacts with the medium via isotropic and binary collisions. The main
difference to the previous section is that we now take into account that the jet can lose
energy and momentum when interacting with the medium and thus decelerates. This
also implies that the energy loss, dE/dx, is not constant and changes in time. We also
allow the deflection of the jet. The exact mechanism strongly depends, however, on
the interaction strength with the medium which is characterized by the value of 7/s.

Although the JET scenario as well as the scenario with the decelerating jet are
both characterized by their energy and momentum deposition, we expect differences
in the final energy-density profile of the Mach cone. This is to be expected, since the
decelerating jet is quenched due to the interaction with the medium. In this section
we address the issue whether this natural deceleration of the jet might change the
final particle distribution in such a way that those strong contributions of head shock
and diffusion wake become weaker or even vanish?®. This would finally lead to the
appearance of a double-peak structure.

The initial setup of the static system is equal to the one in Sec. 8.2, but we use
a larger box size given by L, = L, = L, = 10 fm. The method of calculating the
cross section is also identical to the previous section. Moreover, we again use a (2+ 1)-
dimensional setup. This is necessary in order to approach the almost perfect fluid limit,

2TA jet is by definition a highly energetic particle whose energy is much larger than those of particles
of the bulk medium.

28 As discussed for the JET scenario in the previous section, the development of the head shock as well
as the diffusion wake prevents the observation of a double-peak structure in the final azimuthal
particle distribution.
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because otherwise the computational time would be too large. This implies that the
calculations done here are not directly comparable to those for a full (3+1)-dimensional
setup.

8.3.1. The jet initialization and the issue with the test-particle method

In this work we have demonstrated that BAMPS is a very accurate relativistic Boltz-
mann solver with the distribution function locally represented by point-like particles.
Using the test-particle method we ensure that we solve the rBE in a proper way. Thus,
the test-particle method is of great necessity.

However, we encounter a problem when we initialize the bulk medium?’, but set a
highly energetic particle on top, which should represent the jet. If we are interested
in the effect of the medium on the jet only [244], then the test-particle number does
not affect the numerical results. In our scenario, however, we are highly interested in
the jet-medium interaction, i.e., we are interested in the effect of the medium on the
jet and vice versa. Thus, the exact influence of the jet on the medium is lost when
Niest # 1. The energy which the jet deposits in the medium is large if Niest = 1, but
small if we choose Niest = 100, for instance. In the latter case, the effective energy
deposition of the jet is reduced by 100 and thus does not correspond anymore to the
scenario with Nyeet = 1.

In order to preserve the correct interaction between jet and medium, we have the
possibility to rescale the jet energy, Fie;, for example. However, this is not the best
way since the way how the momentum and the energy are transferred in each collision
of a jet with Fje; = 20 GeV is not the same as for a rescaled jet with Eje; = 2000 GeV.
Thus, we should not consider this scenario as a possible solution.

Another method is to rescale the number of jets by Niest. This implies that we do
not have only one jet, but a jet bundle. Physically speaking, we still have only one jet,
because if we divide the number of jets in the bundle by Niest, we again obtain a real
physical jet. The advantage of this method is that we preserve the correct influence of
the medium on the jet and vice versa®”, by multiplying the jet number with Nies.

The jet bundle is initialized within a small volume element characterized by Tuyin =
—0.53 fm, Tpmax = —0.07 fm, ymin = —0.2 fm, Yymax = +0.2 fm, 2w = —5 fm, and
Zmax = +5 fm. Concerning the cross section, we do not distinguish between medium
and jet particles. The initial momenta of the jets are p, = Fjet.

8.3.2. Transition from ideal to viscous Mach cones induced by decelerating
jets

In Fig. 8.17, we show the results for the energy density as well the velocity profile for a
jet with an initial energy and momentum of p, = Eje; = 20 GeV. In the upper panel, we
show the scenario for a small shear viscosity over entropy density ratio of /s = 0.01. In
the middle and the lower panel we consider the cases of 7/s = 0.1 and 0.5, respectively.
For the smallest value of n/s, a clear development of a shock front with a higher energy

2The medium in rest.
30In other words, rescaling the jet number by Niest, we represent the jet by a distribution function,
which is physically correct, since we solve the rBE.
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Figure 8.17.: Transition from ideal to viscous Mach cones induced by decelerating jets
in a static medium. Depicted is the LRF energy density within a specific
range. As an overlay we show the velocity profile as arrows with a scaled
length arrow. We use a jet with an initial energy of Eje; = 20 GeV. The
system size is L, = L, = L, = 10 fm and we show a snapshot of the
simulation at ¢ = 5 fm/c for different values of the shear viscosity over
entropy density ratio, n/s.
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density, which is strongly curved rather than conical can be observed. Furthermore
we observe very characteristic velocity profiles. It is remarkable that strong vortices
occur around x = y = 0 fm, while a diffusion wake and strong head shock are also
visible. In the back as well as behind the shock front we observe a significantly lower
energy-density region. All those effects result from the strong collective behavior of the
medium?!.

The reason for this strongly curved structure of the shock front is perhaps due to
the strong quenching of the jet and its deflection. A jet which interacts strongly with
the medium reduces its energy in a very fast manner, which is demonstrated below.
This energy reduction is commonly known as jet quenching [22,24,25,26,27,28,72,245,
246,247]. Due to the fact that the jet decelerates very fast it cannot punch through
the matter. However, this changes when considering a jet with initially much larger
energy. Then the scenario would approach the JET scenario discussed in Sec. 8.2.
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Figure 8.18.: Time evolution of the jet energy in a static medium at different values
of the shear viscosity over entropy density ratio, n/s. The results are
extracted from the scenarios shown in Fig. 8.17.

Increasing the value of /s, as shown in the middle and lower panel of Fig. 8.17, an
expected smearing out of the profile is observed. Features such as head shock, diffusion
wake, and the vortices almost vanish. In case of /s = 0.5, the shock front is more or less
concentrated in the forward direction. However, although the diffusion wake disappears
when increasing the value of 77/s to even larger values, the head shock definitely persists,
since the jet itself does not disappear. Moreover, we make an interesting observation:
The velocity of the shock front moving through the matter in rest strongly depends on
the strength of dissipation. The larger the dissipation is assumed, the faster the shock
front is moving. This is to be expected, since the jet interaction with the medium is

31For jets with initially larger/lower energy the final profile would change. In case the jet has a
significantly larger energy, the shock front would become more conical, because it can punch through
the medium.
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weaker at larger dissipation. Thus, the deceleration or quenching of the jet is smaller
with larger values of 7/s.
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Figure 8.19.: Two-particle correlations, dN/(Nd¢), extracted from BAMPS calcula-
tions for realistic jets as shown in Fig. 8.17. We show the results for
several values of 7/s in specific energy ranges.

A comparison to the JET scenario indicates that an influence of the medium on the
decelerating jet is visible, which is the stronger the smaller the value of n/s is. The
development of a head shock is more or less independent of whether the jet is quenched
or not, while the diffusion wake disappears with increasing n/s.

In Fig. 8.18 we show the time evolution of the jet energy, Eje, for three different
values of the shear viscosity over entropy density ratio, n/s. As expected, the energy
loss of the jet is the stronger the smaller 7/s is chosen. For /s = 0.01 the jet loses
almost 80% of its initial energy within the first 0.2 fm/c. Afterwards the jet energy
approaches the value Ejq = 2.2 GeV at 5 fm/c, such that it can be considered as
thermal. It is not a surprise that the jet does not approach the average kinetic energy
of particles in the medium in rest given by £ = 3T = 1.2 GeV, since a shock front
with a higher energy density is created due to the jet-medium interaction. Particles
in the shock-front region are characterized by a higher kinetic energy and thus the jet
approximates the average kinetic energy of those particles. Furthermore, the region
with lower energy density indicates that a huge amount of matter is pushed in the
forward direction and increases the energy density on the shock front. This is the main
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effect when considering jet-medium interaction: the jet influences the medium and vice
versa.

With increasing viscosity the jet loses its energy more slowly. For /s = 0.1 the jet
energy is below Eje; = 4 GeV after 1 fm/c. Around t = 5 fm/c the jet energy is slightly
below the final value for /s = 0.01, but in principle on the same level. Finally, the jet
energy in the case of n/s = 0.5 is just below Ejt = 4 GeV around ¢ = 5 fm/c. This
indicates that the jet has not yet thermalized at all.

8.3.3. Two-particle correlations
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Figure 8.20.: Two-particle correlations, dN/(Nd¢), with spatial cuts in the transverse
y-direction extracted from BAMPS calculations for decelerating jets in
a static box. The results are from the corresponding calculations in
Fig. 8.17.

In the JET scenario discussed in Sec. 8.2.6 we have found that the double peak
only appears when neglecting contributions originating from the head shock and the
diffusion wake. In the following, we discuss the extracted two-particle correlations for
the more realistic scenario including the natural deceleration of the jet. We address
the question whether this scenario gives rise to a double-peak structure in the final
distribution.

In Fig. 8.19, we show the normalized azimuthal particle distribution, dN/(Nd¢), for
several values of 17/s and energy ranges. Figure 8.19a shows the distribution for the very
low energy region, £ =0 to 1 GeV. In Figs. 8.19b, 8.19¢c, and 8.19d, we systematically
neglect particles from the bulk medium and go to higher energy regions, since we know
that the contribution for a double-peak structure originates more or less from highly
energetic particles, as we have demonstrated in Sec. 8.1. Although the jet decelerates
due to the natural interaction with the bulk medium, the contribution from the head
shock and the diffusion wake are still too strong such that only a peak at ¢ = 0° builds
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up. On the other hand, for the cases of larger values of 1/s the diffusion wake vanishes,
as discussed above and shown in Fig. 8.17, but a strongly shaped head shock in the
x-direction still exists. Thus, the highly energetic particles mostly propagate in the
z-direction and the double peak does not appear.

In order to obtain a double-peak structure, we have to perform spatial cuts in trans-
verse y-direction, as shown in Fig. 8.20. As to be expected, if we apply those spatial
cuts we observe a double-peak structure which originally is mainly overshadowed by
the contribution of the head shock and/or the diffusion wake. Our findings are similar
to those obtained in Fig. 8.15 where the JET scenario was considered.

The results in this section indicate that the scenario of a decelerating and quenched
jet is not enough in order to obtain a double-peak structure. The origin of this failure
is, similar to the JET scenario, the strong energy and momentum deposition of the
jet, which induces the development of a head shock and diffusion wake. So far, our
findings confirm previous studies in Refs. [50, 119,124,240, 248, 249, 250], where it was
also claimed that the strong momentum deposition of a jet or projectile prevents the
appearance of a double-peak structure.

8.4. Investigation of Mach cones in relativistic HIC

In this section we study the evolution of Mach cones induced by highly-energetic jets?
in a fully (3 + 1)-dimensional system of relativistic HIC. The obvious difference com-
pared to the previous sections is the longitudinal and transverse expansion. We address
the question whether the longitudinal and transverse expansion of the system affects
the final pattern of the jet-induced Mach cone as well as its corresponding particle
distribution.

As discussed in Ref. [30], the flow-velocity profile created by jets in the transverse
plane interacts with the radial flow of the background medium. This, for instance,
changes the effective angle of a Mach cone. Motivated by the work in Ref. [30] the
effect of transverse expansion to Mach cones has been also studied in Refs. [50, 51].
It was found that a double-peak structure can be created by averaging over different
jet paths in the medium created in HIC. Some of these jets create Mach cones which
propagate into the opposite direction to the radial flow. The interplay between radial
flow and jets reduces the strong contribution of the diffusion wake and head shock and
results in a double-peak structure. However, a much larger contribution to a double-
peak structure originates from distorted jet-induced Mach cones which traverse the
medium on different paths not in opposite direction to the radial flow. Those jets are
then deflected by the radial flow and their superposition leads to the observation of a
double-peak structure.

In the following, we investigate a similar setup as discussed in Refs. [50,51]. We focus
on the investigation of the effect of the radial flow on the pattern of jet-induced Mach
cones and the corresponding final particle distribution [37]. We neglect such effects as
initial fluctuations which are relevant for heavy-ion collisions. We further study the
influence of the shear viscosity over entropy density ratio, n/s, on the final results.

32as introduced in Sec. 8.3
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8.4.1. Numerical setup

We use the framework of BAMPS in a fully (3 + 1)-dimensional setup designed for
ultrarelativistic heavy-ion collisions introduced in Sec. 6.2. Similar to the previous
sections we use a massless gas of gluon particles®?, with the degeneracy factor g = 16,
and consider only binary collisions with an isotropic cross section, i.e., a cross section
with an isotropic distribution of the collision angle. Furthermore, as introduced in
Sec. 6.4 we perform the numerical calculations using a constant value of the shear
viscosity over entropy density ratio, n/s.

In the following, we consider the mid-rapidity region [21] when extracting the hydro-
dynamic quantities as well as the azimuthal particle distribution. Thus, we introduce
the space-time rapidity,

1. t+=2
Tlrap = 5 In PR (815)
and momentum rapidity,
1. E+p,
rap = = | . 1
Yrap = 5 In — P (8.16)

Here, ¢t denotes the laboratory time of each particle, while E and p, are the energy
and longitudinal momentum, respectively. In the numerical analysis we consider only
particles within a small space-time rapidity of |nap| < 0.1, i.e., the mid-rapidity region.

Since the parton cascade BAMPS has no effective hadronization process implemented
yet, the final particle distribution is obtained by stopping the simulation at a certain
time and extracting the hydrodynamic quantities as well as the two-particle correlations
from the final gluon-momentum distribution.

Initial conditions

We use smoothed Glauber initial conditions for binary collisions only in the transverse
direction [48,49]. For this study we want to focus on the impact of the longitudinal
and radial flow on the jet only and thus we neglect additional effects like local density
fluctuations. The Gaussian momentum-rapidity distribution resembles the experimen-
tal observation at RHIC where it was found that the rapidity distribution of charged
hadrons is nearly Gaussian [251]. On the other hand we use a simple estimate of the
width of the nuclear overlap region at the point of the impact, based on the Lorentz-
contracted nuclear thickness. In this case, it is simple to use a Gaussian distribution
for the longitudinal z-direction as well>*. For the high-pr region we use a power law,
which approximately fits the p + p data [252,253]. Thus, for the initial non-thermal

single-particle distribution function we apply the following parametrization3?,

. 1 Q" \™ Yo 22 b b
—K— | —— —crep =) —y|Ts(z—=,y) .
f(xaﬁ) E <Qn+p%> eXp( 0-5 )GXP< 0_2 A £B+2ay B|Z 2,2/

(8.17)

33We treat them as classical Boltzmann particles.

34Note that for a strictly boost-invariant system the width is zero at t = 0. Instead of forcing boost
invariance onto the system, we initialize with a finite width. The system will behave after a certain
time boost-invariant near z = 0, which has been checked.

35This parametrization has been provided by H. Niemi.
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where pr = (/p2 + pg denotes the transverse momentum and b is the impact parameter.

We have introduced the nuclear thickness function [48],

Th (z,y) = /+OO dzpa(z,y,2), (8.18)

—00

which has to be integrated in z-direction, and pa (Z) denotes the Woods-Saxon distri-
bution for the nucleus A,

—

Po
1+ exp (50 )

(8.19)

with
Ry = 1.124'3 —0.86471/3 (8.20)

and the mean density of the nucleus of py = 0.17fm™3. For the thickness parameter

we use D = 0.54 fm. We exclusively use a gold nucleus with a mass number of A =
B = 197. Furthermore, we choose Q =1.3GeV, n =4, m =15, 0, =1, 0, = 0.13fm,
and K = 0.0135. Moreover, we consider only central collisions, i.e., b = 0 fm, which
results in neglecting effects originating from elliptic flow, vy, or higher harmonics. The
above parameters are chosen to approximate the energy densities of Au+ Au collisions
at /sy~ = 200 GeV at RHIC [11,48].

Jet initialization

In the following we investigate scenarios where the jet is set on top of the bulk medium.
We restrict our studies and calculations to jets in the mid-rapidity region. We note that
the jet interacts with the same cross section as the medium particles®®. As introduced
in Sec. 8.3.1 we use the test-particle method for the jet in order to preserve the correct
jet-medium interaction3”.

Similar to the work of Refs. [50,51] we initialize the starting points of the jet on a

semi-circle displayed in Fig. 8.21 with a radius of r = 4 fm at mid-rapidity,

08 Bt
fjet =r | sin ¢jet . (821)
0

In the experiment back-to-back correlated jets are created due to momentum conser-
vation. In this study we neglect the near-side jet contribution due to the assumption
that the near-side jet escapes rapidly to the vacuum and thus only leads to a small
contribution. In contrast, the away-side jet traverses the hot and dense medium of the
collision and, depending on the value of 7/s, it gets suppressed and deposits its energy
to the medium.

Due to reasons of symmetry in central collisions the possible jet paths that need to be
studied in the left panel of Fig. 8.21 reduces drastically, as shown in the right panel of

36When calculating the cross section we do not distinguish between jet and medium particles.
3"The corresponding jet bundle is initialized in a small volume element.
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Figure 8.21.: Schematic representation of different jet paths on the semi circle, see also
Refs. [50,51]. The left panel shows all possible contributing paths, the
right panel the reduced paths due to symmetry reasons, since we consider
only central collisions, i.e., b = 0 fm.

Fig. 8.21. Initially, the jet has only momentum in the z-direction, i.e., p; = Eje = 20
GeV.

The extracted azimuthal particle distribution is equivalent to the two-particle corre-
lation, since the propagation direction of the corresponding near-side jet is always the
same. We note that the contribution of the background medium is a constant when
considering central collisions only. Thus, contributions of the medium cancel out when
inspecting the normalized particle distribution.

In the following we refer to three scenarios:

e Scenario I
We consider a jet starting at a fixed-angle position of ¢je; = 180° on the semi
circle. Here we investigate the contribution of the jet propagating in opposite
direction to the radial flow.

e Scenario II
We consider a jet starting at a fixed-angle position of ¢;eq = 135° on the semi
circle. Here we study the effects of deflection of the jet due to the radial flow.

e Scenario III
We average over all possible angle positions, ¢jer = 90° — 270°, of the jet on the
semi circle.
8.4.2. Numerical results

Scenario I: Jet starting at a fixed-angle position of ¢;.; = 180°

In this particular case, the jet initially propagates in opposite direction to the radial flow
generated in HIC. We perform calculations with different values of the shear viscosity
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over entropy density ratio which reflect possible strengths for the medium interactions
expected in HIC. In order to illustrate the results we show a time evolution of the LRF
energy-density profile at mid-rapidity, |7rap| < 0.1, in Fig. 8.22. As an overlay we show
the velocity profile as arrows with a scaled length arrow.

As to be expected, at early times, i.e., t = 1 fm/c, the energy density is very high
in the central region of the transverse plane and decreases significantly at the edges.
We also observe the jet on top of the bulk medium, which for any value of 7/s has
not built up any Mach cone yet. However, for these early times the energy density of
the medium behind the jet is significantly lower for the smallest value of /s = 0.08,
indicating that matter is pushed in forward direction of the jet. This effect is reduced
with increasing value of 7/s.

For later times the energy density has drastically decreased due to the longitudinal
and the transverse expansion. In addition, a conical structure induced by the jet has
developed at t = 5 fm/c for n/s = 0.08. In contrast, such a structure has not built up
for larger values of 17/s. The differences in the shape of the Mach cone for various n/s
becomes more evident at later times, ¢ = 9 fm/c and t = 12 fm/c. In case of /s = 0.08,
the energy density in the region of the developed shock front is increased due to the fact
that matter is pushed in forward direction and contributes to the shock-front region
of the Mach cone, while this is not the case for /s = 0.2. On the other hand, the
maximum energy density in the head shock region for 1/s = 0.2 is smaller than for
n/s = 0.5. This is to be expected, since the interaction of the jet with the medium is
weak for n/s = 0.5, i.e., the jet is almost not quenched. Similar to the discussion in
Sec. 8.3 we observe that the propagation speed of the shock front is faster for a smaller
value of n/s.

The results in Fig. 8.22 indicate that a Mach cone can develop for a single jet prop-
agating through the middle of the medium considering moderate values of 1/s and a
sufficiently large simulation time38. However, the shock front is strongly curved, which
is due to the strong jet quenching. This has already been found in Sec. 8.3.

In Fig. 8.22 the diffusion wake is not visible because it is superimposed by radial flow
of the background medium. This indicates that the contribution of the diffusion wake
and head shock in the final particle distribution is possibly reduced by the radial flow,
since the jet initially propagates in opposite direction to the radial flow. In contrast,
after passing the center of the collision the radial flow broadens the jet-induced shock
front region.

We show the extracted normalized azimuthal particle distribution, dN/(Nd¢), in
Fig. 8.23. Using different cuts in pr we demonstrate that a double-peak structure
develops for several regions of pr, and a rather small value for the shear viscosity
over entropy density ratio, n/s. For n/s = 0.08 and 0.5 < pr < 1 GeV a double-
peak structure is observable and we suggest that the contribution of head shock and
diffusion wake is indeed compensated by the radial flow and the contribution from the
Mach cone wings show up. The peaks are approximately at ¢ ~ +70°. However, for
larger transverse momentum, i.e., 3 < pr < 4 GeV, and for /s = 0.08 and 0.2 the
double-peak structure appears but the peaks are approximately at ¢ ~ £120°. In this
case we suggest that this contribution comes from the region of the diffusion wake,

38See also the discussion in Sec. 7.1.5.
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Figure 8.22.: Time evolution of a Mach cone in central HIC. We show the LRF energy
density within a specific range at mid-rapidity, i.e., |9uap| < 0.1. As an
overlay we show the velocity profile as arrows with a scaled length arrow.
The results are depicted at different time steps and for different values of
the shear viscosity over entropy density ratio, /s. The jet is initialized
at fixed-angle position of ¢jt = 180° on the semi circle. The initial
momentum is p, = Fjer = 20 GeV.
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Figure 8.23.: Two-particle correlations, dN/(Nd¢), extracted from BAMPS calcula-
tions using several values of 7/s as shown in Fig. 8.22. The jet is initial-
ized at fixed-angle position of ¢je; = 180° on the semi circle. The results
are shown for several regions of py and at fixed time ¢t = 12 fm/c.

where matter flows into the region of lower pressure and energy density. Finally, the
head-shock contribution for /s = 0.5 is very strong and not reduced by the radial
flow. The head-shock region contains particles which are mostly forward peaked and
superimposes a possible double-peak structure.

A significantly stronger jet, i.e., a jet with initially much larger energy, would in-
duce a stronger head shock and diffusion wake which cannot be reduced by the radial
flow. This prevents the observation of a double-peak structure in this specific scenario.
However, if the jet energy was too small no significant pattern of a Mach cone would
develop due to the strong radial flow in opposite direction.

Scenario Il: Jet starting at a fixed-angle position of ¢;.; = 135°

In this scenario the jet starts at fixed-angle position of ¢jet = 135° on the semi circle.
The chosen value serves as an exemplary case for a possible jet deflection by radial flow.
We perform calculations for different values of the shear viscosity over entropy density
ratio, 1/s, and show the corresponding time evolution in Fig. 8.24. We observe that
due to the chosen position on the semi circle, the signal of a Mach cone is very weak
for small values of 77/s. A comparison to scenario I shows a significantly lower energy
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Figure 8.24.: Time evolution of a Mach cone in central HIC. We show the LRF energy
density within a specific range at mid-rapidity, i.e., |9uap| < 0.1. As an
overlay we show the velocity profile as arrows with a scaled length arrow.
The results are depicted at different time steps and for different values of
the shear viscosity over entropy density ratio, /s. The jet is initialized
at fixed-angle position of ¢jt = 135° on the semi circle. The initial
momentum is p, = Fjer = 20 GeV.
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density in the shock-front region for n/s = 0.08. Furthermore, due to the strong radial
flow the jet is deflected and results in a distorted shock-front region. On the other hand,
the deflection of the jet becomes weak for large n/s. This is to be expected, since the
jet interacts weakly with the medium for /s = 0.5 and keeps its initial propagation
direction.

A direct comparison to scenario I indicates that the jet traverses a significantly lower
energy-density region because of the different initial starting position. This implies that
the mean free path of the jet in scenario II is larger than in scenario I which results
in a reduced jet quenching. However, the value of n/s = 0.08 is still large enough
to generate a collective behavior. The strong radial flow leads to a strongly distorted
Mach cone pattern. In contrast, the shape of the jet-induced shock front is almost not
affected for n/s = 0.5 and leads to only a large head-shock width.
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Figure 8.25.: Two-particle correlations, dN/(Nd¢), extracted from BAMPS calcula-
tions using several values of 7/s as shown in Fig. 8.24. The jet is initial-
ized at fixed-angle position of ¢je; = 135° on the semi circle. The results
are shown for several regions of py and at fixed time ¢t = 12 fm/c.

Our observations indicate that, comparing scenario I and scenario II, the gener-
ated diffusion wake and head shock are less compensated by the radial flow in scenario
IT since the jet does not propagate in exactly opposite direction to the radial flow. The
deflection of the jet for /s = 0.08 leads to only one peak in the two-particle correla-
tions, as displayed in Fig. 8.25. This peak originates from the head-shock region and
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diffusion wake of the distorted Mach cone and becomes sharper and more obvious when
going to higher pr. Furthermore, we observe that the position of the peak changes with
viscosity. The larger the value of 1/s the smaller the angle, which reflects the fact that
for larger n/s the jet is less deflected.

Although we observe only one peak in the two-particle correlations in this specific
scenario, a double-peak structure is possible when considering in addition a second
event with a jet starting at ¢je; = 225° on the semi circle. Summing up both contri-
butions from the jets at initial positions ¢jer = 135° and ¢je¢ = 225°, a double-peak
structure resulting from those deflected jets is not unlikely [50,51,250,254,255]. Such
a case occurs in the subsequent scenario III where we average over many jet events
with different starting positions on the semi circle.

In order to understand this possible superposition of two jets in two events, we
consider the simple model we derived in Sec. 8.1. Instead of two sources of the Mach-
cone wings we now consider two deflected jet-induced Mach cones with the head shock
and diffusion wake as the sources contributing to the final particle distribution. If
the head shock and diffusion wake induced by the jets are sufficiently strong, i.e.,
the collective velocity of matter is sufficiently large, they may lead to a double-peak
structure. However, the initial jet energy cannot be too large in order to observe
a double-peak structure. Stronger jets punch through the medium resulting in less
deflection. This finally leads to one peak in the two-particle correlations only. The jets
cannot be too weak as well, since then the head-shock contribution cannot generate
strong sufficient flow which is important to obtain a double-peak structure.

Scenario llI: Jet at random-angle position, i.e., ¢je; = 90° — 270°

In this scenario we average over all possible jets with randomly chosen starting positions
on the semi circle, i.e., @5t = 90° — 270°. Scenario III gets closest to the experimen-
tal situation as many different events are considered, in contrast to scenario I and
scenario II. As shown in Fig. 8.26 we calculate the normalized azimuthal particle
distribution for several pp-cuts. The figure demonstrates that a double-peak structure
appears for sufficiently high pr and low 1/s. The peaks are approximately at ¢ ~ 50°.
As shown in Fig. 8.26¢, a double-peak structure appears for /s = 0.08 but not for
n/s = 0.2. Only for pr = 3 — 4 GeV, as demonstrated in Fig. 8.26d, the double-peak
structure also appears for the larger n/s = 0.2. However, for /s = 0.5 there is no
double-peak structure even for pp = 3 — 4 GeV.

8.4.3. Further discussion and conclusion

The results obtained in this section provide evidence that Mach cones may form if the
viscosity over entropy density ratio, n/s, is small enough. However, the pattern of the
Mach cone is less conical but strongly curved resulting from jet quenching. In case the
propagating jet is deflected due to radial flow, the shape of the induced Mach cone is
distorted. The numerical calculations demonstrated that the radial flow occurring in
HIC affects the final pattern of the Mach cone [30] and the final particle distribution as
well. However, already the studies in a static medium reveal a lot information about the
evolution of Mach cones. These studies are absolutely necessary in order to understand
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Figure 8.26.: Two-particle correlations, dN/(Nd¢), extracted from BAMPS calcula-
tions using several values of 77/s. We consider all starting positions of the
jet on the semi circle. The results are shown for several regions of pr and
at fixed time ¢ = 12 fm/c.

the origin and properties of Mach cones itself.

Considering a single jet event for a sufficiently small value of /s = 0.08 we have
demonstrated that the interplay of jet-induced Mach cones and radial flow may lead to
a double-peak structure, as shown in scenario I. In this scenario when considering only
particles from the low-momentum region the contribution for the double-peak structure
originates from the Mach-cone wings and appears only because the contribution of head
shock and diffusion wake is superimposed by the radial flow. Additionally, a double-
peak structure from a single jet event not traversing the medium in opposite direction to
the radial flow shown in scenario IT does not appear. In this scenario the jet is deflected
by radial flow. This deflection leads to only one peak in the two-particle correlations.
However, scenario III provides an average over many possible jet paths originating
from different starting positions and is thus a superposition of many different cases
of scenario I41II. In this scenario a double-peak structure appears and is generated
mostly from the superposition of many deflected and distorted jet-induced Mach cones.
The origin for the double-peak structure are not the wings of the Mach cone but the
deflected head shock and diffusion wake of the distorted Mach cones [50,51,250].

We have demonstrated that a sufficiently large value of 1/s tends to destroy the char-
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acteristic shape of a Mach cone and a possible double-peak structure. The Mach cone
eventually disappears in the single jet event in scenario I when increasing the shear
viscosity over entropy density ratio to 7/s = 0.5. This happens also for the double-peak
structure. The reason is that the diffusion wake and head-shock contribution are not
canceled anymore by the radial flow. The same is also true for scenario III, where the
larger dissipation reduces the deflection of the jets and leads to the disappearance of
the double-peak structure. However, not only the viscosity tends to destroy the double-
peak structure, but also the strength of the jet. A jet with much larger initial energy
punches through the medium and the effect of the radial flow weakens. In scenario
I the diffusion wake and head-shock contribution would overshadow the double-peak
structure, while in scenario III most of the jets would get less deflected. A jet with a
too small initial energy would also not lead to a double-peak structure. In scenario 1
no Mach cone would develop since the jet is too weak to survive the radial flow, while
in scenario III the head shock of the jet reaches not enough collective flow to provide
a sufficiently strong signal for the double-peak structure.

Our findings imply that the influence of the radial flow is the most important re-
quirement for the observation of a double-peak structure in the jet scenarios we have
considered here because in a static system the double-peak structure was overshadowed
by head shock and diffusion wake when considering jets with energy and momentum
deposition. The importance of the radial flow is thus reflected in the effects of dissi-
pation and initial jet energy. A large dissipation and/or large initial jet energy lead
finally to a smaller influence of the radial flow.

The effect of longitudinal flow is studied here in a qualitative way, which was not
considered in Refs. [50,51]. We can conclude that the longitudinal flow does not affect
the main results in a significant way.

The Mach-cone angle extracted from two-particle correlations is definitely not con-
nected to the EoS [30]. Scenario III provides evidence that the contribution of this
double-peak structure originates mostly from deflected jet-induced head shocks of Mach
cones. In order to extract the Mach angle we would require a single jet event as shown
in scenario I. However, this seems to be a difficult task experimentally.

In conclusion, the naive picture that only the Mach-cone wings only generate the
double-peak structure is definitely not supported by our calculations. The diffusion
wake and head-shock contribution originating from deflected jets inducing distorted
Mach cones provide a much larger contribution to the double-peak structure. Although
initial-state fluctuations should provide definitely a much larger contribution to the
double-peak structure [15,31,32,135,239], the jet-medium interaction should not be
neglected.

Although Mach cones should exist in HIC, we like to point out that the double-peak
structure is definitely not the appropriate observable for the signal of Mach cones. This
already became clear when studying the jet-medium interaction in static systems, since
Mach cones were observed but a double-peak structure was not always visible. However,
the studies obtained in this work revealed a lot information about the evolution and
properties of a Mach cone. We investigated the effects of nonzero viscosity and different
energy-deposition scenarios on the final pattern of the Mach cone.

In this study have neglected fluctuating initial conditions, the influence of a nonzero
impact parameter and a reasonable hadronization process. It remains a future task to
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include these effects in order to gain a better understanding of the experimental signal
of the double-peak structure.






9. Summary and conclusions

9.1. Summary and conclusions

The purpose of this work was to study the formation and evolution of relativistic shock
waves and Mach cones in viscous matter using a relativistic kinetic transport model.
The microscopic transport model BAMPS (Boltzmann Approach To Multi-Parton
Scattering) solves the relativistic Boltzmann equation (rBE), hence a complete transi-
tion from ideal to viscous shock-wave phenomena can be studied. We studied shock-
wave formation in a simplified (14 1)-dimensional setup as well as Mach-cone formation
induced by supersonic projectiles and/or jets in (24 1)- and (3 + 1)-dimensional static
and expanding systems. We further addressed the question whether the jet-medium
interaction resulting in Mach cones can contribute to a double-peak structure observed
in two-particle correlations of heavy-ion collision experiments. Furthermore, BAMPS
was used as a benchmark to compare with several hydrodynamic theories in order to
verify their accuracy and find their limitations. This work is based on several publica-
tions [33, 34,35, 36,37, 38].

In Chapter 2 we gave a general introduction of the basic features and the phase dia-
gram of Quantum Chromodynamics (QCD). Afterwards, we discussed the space-time
evolution of matter in heavy-ion collisions (HIC) and discussed the possible existence
of a new phase of matter, the quark-gluon plasma (QGP), created in recent HIC ex-
periments. We then continued with the description of different probes and observables
of the QGP which indicate that the QGP behaves as a nearly perfect fluid and that
highly-energetic jets traversing the medium are suppressed. Both signalize the exis-
tence of shock waves in form of Mach cones. Furthermore, possible contributions to
the double-peak structure observed in two-particle correlations were briefly introduced.

In Chapter 3 we have introduced the rBE in kinetic theory and subsequently reviewed
the standard derivation of relativistic hydrodynamics. We started with the description
of ideal hydrodynamics and continued with the framework of relativistic dissipative
hydrodynamics. This chapter includes the discussion and interpretation of the funda-
mental dissipative quantities and reference frames in one- and multi-component systems
used frequently in this work. Afterwards, the derivation of dissipative hydrodynam-
ics from kinetic theory was briefly reviewed. We introduced the traditional first-order
theory of Navier and Stokes, the second-order theory of Israel and Stewart (IS) and
subsequently the recently derived theory named RTRFD (Resummed Transient Rela-
tivistic Fluid Dynamics).

Chapter 4 has provided an overview of the general definitions of sound waves and
shock waves assuming a perfect fluid. We discussed the appearance of conical shock
structures, such as Mach cones, caused by moving supersonic perturbations. We fur-
ther discussed for larger perturbations, i.e., the perturbation emits shock waves, the
Mach-angle dependence. Finally, we gave a short theoretical description of a shock
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discontinuity.

In Chapter 5 we have introduced the relativistic Riemann problem (rRP) in the
perfect-fluid limit. Its solution was used to test the accuracy of the microscopic trans-
port model BAMPS and fluid-dynamical solver vSHASTA in the perfect-fluid limit.
The rRP deals with the determination of the temporal evolution of a perfect fluid
which initially has a sharp discontinuity in velocity or other thermodynamic variables.
The initial discontinuity leads to the appearance of a shock wave and rarefaction wave.
We discussed in detail the analytical solution of the shock-tube problem for a simple
EoS and assuming that the velocities on both sides of the discontinuity are zero initially.

Chapter 6 provides a detailed overview of the microscopic transport model BAMPS,
which is based on the stochastic interpretation of collision rates and used throughout
this work when computing the solutions of shock waves based on kinetic modeling.
We showed the details of this numerical model and discussed the differences to models
based on the geometrical method. We also introduced the implementation of different
cross sections and the extraction of the hydrodynamical quantities which are necessary
for the proper understanding and discussion of the results.

The main results of this thesis are elaborated in two chapters. Chapter 7 deals with
the investigation of shock-wave phenomena in various scenarios in a simplified (1 + 1)-
dimensional setup, while in Chapter 8 we focused on the study and evolution of Mach
cones in a (2+1)- and (3+1)-dimensional framework. The numerical solution of the rBE
in kinetic theory were performed numerically by BAMPS while the different theories of
relativistic dissipative fluid dynamics were solved numerically by the vSHASTA method
introduced in Appendix D.

9.1.1. Investigation of shock-wave phenomena in kinetic theory and
viscous hydrodynamics

In Chapter 7 we have started the investigation of relativistic shock waves in dissipative
matter with non-zero shear viscosity and heat conductivity by solving the relativistic
Riemann problem in the ultrarelativistic limit using isotropic and binary collisions only.
We used BAMPS to solve the rBE, while the fluid-dynamical approach is based on IS
theory and was solved numerically by the vVSHASTA method. It was demonstrated that
both approaches reproduce the analytic solutions of the rRP in the perfect-fluid limit
and the numerical results converge when the numerical resolution is sufficiently high.
This implies that further numerical solutions of BAMPS are trustworthy also for the
viscous solutions of shock waves. By adjusting the shear viscosity over entropy density
ratio, 77/s, the transition from the ideal-fluid limit to free-streaming was demonstrated.
Henceforth, instead of a discontinuous shock front, a contact discontinuity, and sharp
rarefaction tails, we obtain continuously changing profiles, i.e., dissipation leads to
the smoothening and broadening of these characteristic structures. For cases when
the viscosity is small, the agreement between the rBE and IS theory is excellent. As
the viscosity increases the agreement between the two different approaches starts to
deteriorate. For even larger values of the 7/s ratio, IS theory develops discontinuities
which survive even after long times. We argued that part of this discrepancy can be
understood to result from the inapplicability of IS theory for large Knudsen numbers.
Furthermore, we also realized that the IS theory is unable to describe heat flow even
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for very small Knudsen numbers, which shows the limits of this theory based on 14-
dissipative fields. We also showed that a quantitative analysis in terms of an average
Knudsen number is possible and it gives a good measure for the applicability of the
IS theory. We found that for Kn. < 1/2 the relative difference between kinetic theory
and IS theory is less than ~ 10 %. In the following sections we further inspected the
time evolution of shock waves in the weak and strong limits and discussed in detail
the solutions. We found that shock waves need a certain time to develop. We also
found a scaling behavior which can be expressed in terms of the Knudsen number.
Furthermore, in a simplified study we also showed that the formation of shock waves
in gluon matter with n/s > 0.2 probably takes longer than the lifetime of the QGP in
HIC at RHIC energies.

The excellent performance of BAMPS motivated to study the evolution of the rRP
using different properties of the matter. First we studied the effect of inelastic processes
which turned out to affect the chemical equilibration in the system. Afterwards, we
solved the rRP for a gas of massive particles which among others allowed the inspection
of the bulk viscous pressure. Finally, multicomponent systems were investigated using
two massless particles species with various cross sections.

In the following sections we modified the setup in order to investigate the heat-flow
problem as encountered before when applying the IS theory to the solutions of the rRP.
We compared the equations of motion of RTRFD at various levels of approximation
with BAMPS for two different types of initial conditions. By a careful comparison
with numerical solutions of the microscopic theory, we have demonstrated that this
new formalism is able to handle problems with strong initial gradients in pressure or
particle-number density. Furthermore, it provides not only the correct values for the
shear-viscosity and heat-conduction coeflicients, but also for the transport coefficients
that couple the respective dissipative currents. The improvements are established by
including higher moments and, thus, RTRFD resolved the previously observed differ-
ences between the solution of the IS theory and the rBE.

In order to inspect the shock-front region in more detail we studied the shock front
in its rest frame using thermal reservoirs. This allowed a stationary solution and
confirmed that the width of the shock front is proportional to a microscopic length
scale of the system, like the mean free path of particles. This setup also enabled the
detailed comparison of BAMPS to various approximations of RTRFD. The correct
description of the shock-front region for large gradients by RTRFD failed when going
to large velocities of the shock front. Hence, in contrast to our considerations on the
heat flow, the inclusion of higher dynamical moments has no significant effect within
this scenario, but we believe that the inclusion of higher-rank moments might improve
RTRFD.

9.1.2. Investigation of Mach cones in a kinetic transport model

In Chapter 8 we turned to our studies of Mach cones. In order to understand the
origin of the double-peak structure often connected with the naive picture of Mach-cone
phenomena, we derived a simple model representing a Mach cone in a two-dimensional
plane. We found that a double-peak structure does not always appear, but depends
on the strength of the shock wave. Moreover, using special momentum cuts we also
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found that the double-peak structure originates almost exclusively from the high-energy
region of the distribution. Subsequently we investigated the structure of relativistic
Mach cones by using the microscopic transport model BAMPS in a static (2 + 1)-
dimensional system. The simulations were realized by using two different types of
projectiles propagating through the matter, the PED and JET scenarios. The strength
of the projectile-matter interaction was studied by varying the rate of energy dissipation
from the projectile to the matter. Furthermore, the effect of viscosity of the matter
was investigated by adjusting the shear viscosity over entropy density ratio, n/s.

We observed the formation of conical structures for both types of projectiles in the
nearly perfect-fluid limit with the Mach-cone angle depending on the rate of energy
dissipation. In the JET scenario we observed the development of a head shock and
diffusion wake, while in the PED scenario an anti-diffusion wake but no head shock
appeared. We also demonstrated that a non-vanishing viscosity tends to destroy the
sharp conical structure. The larger the viscosity or equivalently the longer the time for
development of the Mach cone, the more the structure depends on the details of the
projectile-matter coupling. We also found a scaling behavior.

Although Mach cone-like structures are observed in BAMPS calculations for different
energy- and momentum-deposition scenarios they are not necessarily associated with
double-peak structures in the azimuthal particle distributions in dN/(Nd¢). We found
that only the PED scenario together with a rather high rate of energy deposition leads
to a double-peak structure, which otherwise cannot be observed because of the strong
diffusion wake and head shock. However, the PED scenario has no equivalent in heavy-
ion physics. On the other hand, the JET scenario is a simplified model but nevertheless
demonstrates that a double-peak structure cannot be produced by jets with energy and
momentum deposition, since the diffusion wake and head shock always overshadow the
double-peak structure contribution of the Mach-cone wings.

In order to investigate the interplay between the jet and medium we used the same
setup but replaced the projectiles with highly energetic jets, where the jet loses energy
via scatterings within the medium. A Mach cone develops, but the shock front is
strongly curved rather than conical due to jet quenching. We found that depending
on the interaction strength between the medium and jet, the deceleration of the jet
varies. We also inspected the azimuthal particle distributions in dN/(Nd¢) and found
that the deceleration of the jet does not reduce the contribution of the head shock and
diffusion wake. Similarly to the previously discussed JET scenario we argued that the
contribution of head shock and diffusion wake overshadows the double-peak structure
stemming from the Mach-cone wings.

Finally, we investigated the jet-induced Mach-cone formation and evolution in a
(3 + 1)-dimensional expanding system in most central HIC, i.e., b = 0 fm, with smooth
initial conditions. For small viscosities the formation of Mach cones is visible, while
for large viscosities the initial sharp structures smear out and eventually vanish. The
pattern of the Mach cone is less conical but strongly curved resulting from jet quenching.
In case the propagating jet is deflected due to radial flow, the shape of the induced
Mach cone is distorted.

The extracted azimuthal two-particle correlations shows a double-peak structure
when the jet in a single event propagates in opposite direction to the radial flow. This
suggests that in this specific scenario the contribution of the head shock and diffusion
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wake is canceled by the radial flow. However, considering the superposition of many
different jet paths, a double-peak structure appears. The double-peak structure in such
cases originates mostly from a superposition of deflected jet-induced Mach cones with
a contribution of head shock and diffusion wake. The observation of a double-peak
structure in the single event as well as in the superposition of many jet paths is the
strongest if the value for the shear viscosity over entropy density ratio is /s = 0.08.
Increasing the value of 7/s tends to destroy the double-peak structure. For /s = 0.5
the double-peak structure eventually vanishes.

Our results in more realistic scenarios indicate that the development of a double-peak
structure induced by Mach cones requires an expanding system. However, the naive
picture that the Mach-cone wings only generate the double-peak structure is definitely
not supported by our calculations. The diffusion-wake and head-shock contribution
originating from the superposition of deflected jets inducing distorted Mach cones has
a much larger contribution to the double-peak structure. Although initial-state fluctua-
tions should provide definitely a much larger contribution to the double-peak structure,
the jet-medium interaction shown in this work should be not neglected. Mach cones
might definitely exist in relativistic HIC, but we conclude that the double-peak struc-
ture is not the appropriate observable for the signal of Mach cones in heavy-ion collision
experiments.

0.2. Outlook

The accurate solution of the rBE shown in this work allowed the detailed study of
relativistic shock-wave phenomena in the fluid-dynamical regime and beyond starting
from almost perfect-fluids to highly dissipative fluids. For the first time a complete
transition from ideal to viscous shock waves was performed which enabled a detailed
understanding of shock-wave phenomena.

This work made it possible to point out the limitations of current theories of rel-
ativistic dissipative hydrodynamics not only qualitatively but also served as a guide
for quantitative advancements. The improvements of RTRFD in comparison to the
standard IS theory are clearly visible. However, the applicability of RTRFD is still
limited to systems close to local equilibrium with weak gradients. Furthermore, the
propagation of shock waves is also an issue which requires a detailed investigation.
Thus, a systematic study to improve this theory has to be done, and the framework of
BAMPS is the best candidate to test these ideas.

In this work, the comparison of kinetic theory to dissipative hydrodynamics was re-
stricted to the ultrarelativistic limit. BAMPS is also possible to follow the evolution
of systems including inelastic processes, large masses, or systems consisting of more
than one particle species. Relativistic hydrodynamics has not yet been completely es-
tablished to answer these questions but remains a topic of intense investigation since,
to properly understand these phenomena, more advanced theories of relativistic dissi-
pative hydrodynamics are needed. However, as we have shown, viscous hydrodynamic
theories can be also be compared and improved with respect to BAMPS when applied
to different systems under different conditions. The work here can serve as a guideline
for further studies.
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To our knowledge, the complete transition from relativistic ideal to viscous Mach
cones was performed for the first time within a kinetic transport model. The studies
performed here revealed a lot about the development of Mach cones. Up to now we
restricted our calculations to the ultrarelativistic limit. The influence of a nonzero
mass or non-trivial EoS would further affect the final structure in the perfect-fluid and
viscous regime. This is for example important in the hadronic phase of a heavy-ion
collision, where large masses and small scattering rates occur. This implies also that
a hadronization process is needed in BAMPS in order to improve the capability to
compare with experimental data.

In this work, so far, we restricted our investigations of jet-induced Mach cones in HIC
to a scenario with smooth initial conditions and vanishing impact parameter. Effects
from fluctuating initial conditions definitely contribute to the final results, especially
when addressing the question of the origin of the double-peak structure measured in
two-particle correlations. As demonstrated by several works, the initial hot spots are
good candidates in order to explain several observables occurring in HIC. The imple-
mentation of event-by-event fluctuations in BAMPS would lead to a better description
of several flow observables and help to improve the capability of BAMPS to apply it
to relativistic HIC.
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A. The Israel-Stewart equations for the
(1 + 1)—dimensional expansion

For the sake of simplicity, we assume an ultrarelativistic massless Boltzmann gas with
conserved particle number. In this case, the bulk viscosity vanishes, and the equation of
state is simply e = c; 2p, where the speed of sound is ¢; = \/m For massless particles,
the energy density as a function of temperature is e = 3nT, where n = \ g7 /7 is the
number density, with g being the number of degrees of freedom. The entropy density
is given by s = (4 — In A\)n.

In the following we choose the Landau frame. We shall briefly discuss and write
the IS equations in (1+1)-dimensional Cartesian coordinates. We assume that the
system is homogeneous in the transverse directions, y and z, and evolves along the
longitudinal direction x such that the velocities as well as the derivatives in both
transverse directions vanish identically. Thus the four-velocity is v = v,(1,0,0,v,)
where 7, = (1 —v2)~1/2, while the four-derivative is 9, = (8;,0,0, ;). The following
four-vector and tensor components vanish: NY = N? = 0 and T% = 79 = TY* =
TY = T* = (. This also implies that the heat-flow components ¢ = ¢* = 0 and
shear-stress tensor components 7% = 7% = 7¥% = 7% = 1** = () vanish identically.

Using the orthogonality of the heat-flow four-vector we obtain that ¢° = ¢"v,. We
may also define the magnitude of the heat-flow four-vector by ¢ = ,/—¢Fq,, thus
q* = v,q. Similarly, using the orthogonality property of the shear-stress tensor we get
790 = 707y, and 79 = 7%%y,. To satisfy the tracelessness condition we may choose
YW = 1% = —1/2 and 7% = >2T.

Therefore, the non-vanishing components of the particle four-current and energy-
momentum tensor are

N = ny, — ¢ Vs , (A.1)
h
f— 0 q:v
TOO = (6 + Pz)7£ - Pac ) <A3)
T = 0, (T +P,), (A.4)
™ = p-— g =T%, (A.5)
7% = 0, 7% +P,, (A.6)

where the LRF effective pressure is,
Po = ple,n)+7. (A7)

The LRF particle and energy densities expressed through the laboratory frame quan-
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tities and the velocity are

T -1
n = NO|(1—0v3)"1/2— % , (A.8)
TOZL‘)Q
_ TOO _ mTOI — TOO _ ( A
e v T . (AL9)
TOx

The conservation equations are

ON° +,(v,N°) = 0, [qx”] Al
' (v 1V") ¥*(e +p) (A1
KT 4 0, (v, T®) = —0,(vaPs), (A.12)
KT + 0, (v, %) = —0,P,. (A.13)
The relaxation equations for the heat conductivity are calculated from Egs. (3.73)

and (3.74). In the (1+1)-dimensional case the terms containing the vorticity vanish;
therefore the relaxation equations can be formally written as

T ]' X X T T x
Dq = ;(qNS_q ) _Iql _IqQ_IqB7 (A14)
q
1
Dr = p (mng =) = Ini — In2 — I3, (A.15)

where the Navier-Stokes values for the heat conductivity and shear stress are,

_ _&m
™S = g (;) 0, | (A.16)
- kT (Ts)n o oA Oz

= |— ) — r—— . Al
anNs <S>e+p%”)\+)\ (A.17)

The expansion rate is denoted by 6, = 0y, + 0(72v,). In the ultrarelativistic limit,
the coefficients introduced in Sec. 3.4.3 are oy = —1/(4p), 81 = 5/(4p), B2 = 3/(4p),
a; = 0, and a} = 5ay. The terms in the relaxation equations are given explicitly as

N 1, b1
2 = —q"vay (pve + v20rvz) (A-19)
1
B o=z (72 (0,04 + 007) + Y (V20 + 720rvy)] (A.20)
and
1
Im = o <9w +DlIn 5;) , (A.21)
10, , 5
Iy = (@) (Orve + vadova) (A.22)
2 Ty
Iy = & <uw8th 40, — LY 0x> . (A.23)
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The terms Ij5, Iro, and Ir3 represent a coupling between the heat-flow four-vector
and shear-stress tensor.

In this work the term Ij; is neglected in most cases unless otherwise stated. The
reason is that the agreement with kinetic theory is better without it, but results with
and without this coupling term will be shown when we discuss in Chapter 7 the viscous
solutions to the relativistic Riemann problem.






B. Resummed Transient Relativistic Fluid
Dynamics

We briefly introduce the new derivation of viscous hydrodynamics, which is an approx-
imation to the relativistic Boltzmann equations and is named RTRFD (Resummed
Transient Relativistic Fluid Dynamics). For more details we refer to the original
works [35,46,47]. Note that in this section we use a different notation for the par-
ticle diffusion current, n* = V*#, and the particle four-momentum, k* = p*.

In RTRFD [47], fx is expanded in terms of an orthonormal and complete basis
in momentum space. The expansion basis contains two basic ingredients: The first
are the irreducible tensors, 1, k), ki gr2) o gl oo kkm) | which form a complete
and orthogonal set, analogously to the spherical harmonics [39,47]. Here, we use the
notation A1) = ALTEE Avicve with ALLTE™ . The latter quantities are projectors
onto the subspaces orthogonal to u*. Their definition is explicitly given in Refs. [39,47].
Except for m = 1, where A} = g — wtu,, they are traceless. E.g., for m = 2,
AL = (AGAY + ARAY) /2 — A Aup/3. Note that the expansion of fi in IS theory
is not in terms of the irreducible tensors k1 ... k#m) but in terms of the tensors
kM1 .. kFmowhich are complete but neither irreducible nor orthogonal.

The second ingredient are orthogonal polynomials in Ey = utk,, Pr(i) =3 a,(f,} Ey.
For details in constructing the polynomials, see Ref. [47]. Then, f is expanded as

oo Ny
fk:fOk_’_fOkZZ,Hglz Pﬁlmw k(;u "'k/u} ) (Bl)
£=0 n=0

where fox = exp (o — BoEx) is the local equilibrium distribution function, with oy =
u/T being the ratio of chemical potential to temperature and Sy = 1/T the in-

verse temperature. We further introduced the energy-dependent coefficients Hfflz =

(W(E) / K!) er\r[f: n G%ZIPSL with a normalization constant W(e), and the irreducible mo-
ments of §fx = fx — fox,

plaHe = /dK Ep KW k) § (B.2)

Here, dK = gdk/[(27)3k°] is the Lorentz-invariant momentum-space volume. Some of
the irreducible moments are related to the fields in Eqs. (3.40) and (3.41): n* = pff and
7 = pt”. The values of ag and Sy are defined by the matching conditions n = (Fx)o
and € = <E12<>0, where (---)o = [dK (---) fok.- The matching conditions and the
definition of u* according with the Landau picture imply that the following moments
should vanish: p; = p2 = p{ = 0.

The equations of motion for p} and p}” together with their respective transport
coefficients were derived in Ref. [47]. Since we are investigating the massless limit,
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the scalar moments p, will not play a dominant role! and we set them to zero. We
also neglect all irreducible moments with tensor rank higher than 2, since they are
traditionally not considered in fluid dynamics. Then, the equations for the first- and
second-rank tensors p}’ and p}” read

r+3

£ 4 Z A plt = a1 + plut,
n=0,7#1

PO — ANV Yy o iy

2r+3 Bolri2,1

z Vol + 2t B Aﬁ@;ﬂr)‘”,

v 4 7 2 2
pﬁ“ + ZAri)pﬁ = 2a Do - (2r +5) p?m 0')1:> + 2,0;\<”w1;\> + ngp:}rl

2 . r+4

5 8 plyat — = e, (B:3)
where p<“1 He) — = ADLIDEur o plrve, IF = Viayg, ot = Oy?) | and VH = 9w [47].
We also defined the thermodynamic integrals

Ing (a0, B0) = m / dKE!% (—Ao‘ﬁkak5>q fore - (B.4)
The coeflicients
ALY — 4£1+2 / AKdK'dPAP' Wigy—ppr for fors fop fopr EL KW - k70)
% (Mg, =Ky + HD K, Ky = Hdpg, Dy = HG bl Py )
(B.5)

(£)

contain all the information of the microscopic theory, while a,’ are complicated func-
tions of Sy and o [47].

The equations of motion for 13 dynamical variables or moments? can be obtained
from Egs. (B.3) for pj = n* and pp” = 7 where pj = WH = 0 by definition.
Similarly, the equations of motion for the additional fields py and pi” follow from
Egs. (B.3). In this approximation, RTRFD becomes a theory with 21 moments as
dynamical variables®. For completeness we recall these equations.

dii* - 5 A A o
TnAH¥ + it = RIY — 7,10,w"" — 0, 7iH0 + EnﬂA“”aﬂré — Ty F,
- )\nnnyg - )\nTrW "I, ,

dre 2 v
T = 2ot 4 27,7 GV San O — 7o M J)\>

S TALD LBy vATY; LONNED VALY SO0 (B.6)

!They contribute mainly to the bulk viscous pressure.
2Had we included the scalar moments, there would have been 14 moments.
3Had we included the scalar moments, there would have been 23 moments.
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where we define the vectors,

I mz
=) = (0w ) (B.7)

Here 7., Ty Lo, Lans Onns Oxms Tnrs Trums Trns Anns Anm, and Ap, are 2 X 2 matrices,
while £ and 77 are two-component vectors. The microscopic formulas for these transport
coefficients are computed for a gas of massless classical particles with a constant cross
section, o, in Ref. [35].






C. The speed of sound

The speed of sound is defined as [139, 140]

@) e

In the following we calculate the speed of sound for a massive Boltzmann gas and
vanishing chemical potential, i.e., for © = 0. We can write

ao (2 o

The equilibrium pressure, p, and energy density, e, with u = 0 read

. g 2 (m)
7= -Lm?TKy (=) T
pT) =5 TR () T

— 9 .3 <E>
e(T) 3p(T)+27T2m TK, 7))

(C.3)

where K, (z) is the modified Bessel function of the second kind, m is the mass, T is
the temperature and g is the degeneracy factor. In order to calculate the derivatives of
the pressure and energy density we have to know the derivative of the modified Bessel
function, K, (x), which in general reads
dK K, K

n(x) _ _Bn 1(z) + n+1(33)' (C.4)

dx 2
However, since the argument = of the Bessel function in our case is not linear, we have
to use the chain rule. Hence, we get with x = m/T,

A, (B) _ m (Knaa(3) + Knnn(3) o

dT T2 2 ’ '
which we use to obtain the derivatives

d

d _gm* [2TK2 + K +K3)] :

dT 272 (C.6)

de 3@+ﬁ mK +—2(K + K>) .

dr ~ “dt LTop o

We have replaced K, = K,(m/T) to enhance the readability. Finally, the speed of
sound for a massive Boltzmann gas with a constant mass m reads

eo(T) = 2T'K9 — % (K1 + K3)
’ 6T Ky — 25 (K + Ky) +mKy + 37 (Ko + Ko)| |

(C.7)

=0
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The final expression depends on the temperature. In the case of vanishing mass, or in
the limit m/T — 0, we obtain the speed of sound for an ultrarelativistic gas of massless

particles, which reads

(C.8)

lim ¢4 =
m
7—0

5~



D. The viscous hydro solver vSHASTA

In order to solve the IS equations of causal relativistic fluid dynamics and the recently
derived equations of RTRFD we use a version of the sharp and smooth transport algo-
rithm (SHASTA) [256]. This numerical method is widely used in modeling relativistic
heavy-ion collisions, and has hence been extensively tested in the perfect-fluid approxi-
mation [168,257]. We apply SHASTA to solve both the conservation equations and the
relaxation equations rearranged in conservation form and call this numerical method
vSHASTA! [258].
This algorithm requires the Courant-Friedrichs-Lewy (CFL) condition

)\CFL = At/Am S 0.5, (D.l)

where At is the time step and Ax is the cell size. In all our numerical calculations
we take Acpr, = 0.4. In a first-order finite-difference approach this means that causal
transport of matter covers only a distance Acpr, Az, while the remaining part of the
matter is acausally diffused over a distance (1 — Acpr,)Az. The remaining low-order
numerical diffusion represents the so-called numerical viscosity of the algorithm. This
purely numerical effect called prediffusion is partially removed by non-linear corrections
in SHASTA. In a strict sense numerical viscosity does not fully correspond to real phys-
ical viscosity which is independent of the numerical method and resolution. However,
its presence is inevitable and at the same time compulsory to keep the computations
stable and to smoothen out dispersion errors. By increasing the numerical resolution
this numerical diffusion can always be reduced to smaller values than the physical one.

We also mention another rather trivial numerical artifact which is present in the
numerical solutions at early times. The numerical solutions at early times? do not
represent the correct and accurate physical behavior, not even in the perfect-fluid limit.
However, this will change in time as the solution spreads over a larger number of cells
while the structures are resolved on a finer grid. Therefore, the numerical solutions
approach the correct solution only after some amount of time.

!We thank H. Niemi and E. Molnar for running the code and delivering the results.
2In case of very strong gradients.
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E. Numerical sampling in BAMPS

In the numerical transport model BAMPS as well as in other Monte Carlo-based mod-
els, it is often required to sample values of a given distribution function. Such a proce-
dure, if frequently used throughout a numerical simulation, consumes a lot of numerical
time. Therefore, it is desirable to implement a method which is as fast as possible. The
sampling methods used in BAMPS are mostly performed using the inverse-transform
and rejection sampling which we will introduce briefly in the following. For a more
detailed discussion on such implementations and their mathematical description, we
refer to Refs. [259,260,261] and other textbooks. The following sections are based on
the discussion in the PhD thesis of O. Fochler [182].

E.1. Inverse-transform sampling

We define a continuous univariate probability density, f(u), such that we obtain a
probability, Pla < X < b] = f; f(u)du, of the random variable, X, to be in the
interval, [a,b]. We have to make sure that f(u) is normalized, i.e., [*_ f(u)du = 1.
Then the cumulative distribution function

F(x) = /_I flu)du (E.1)

gives the probability for X to be smaller than z, i.e., P[X < z].

The next step is to randomly choose values, x, that are distributed according to
the density f or, equivalently, the distribution, F'. Using a Monte-Carlo generator, we
obtain a uniformly distributed random number, y, from the interval [0,1) in order to
compute

r=F"(y) (E.2)

from the inverse of the cumulative distribution function.
This method is very fast and simple if indeed the following conditions are fulfilled:

1. there is only one random number which we have to sample according to the
univariate distribution,

2. the inverse of the distribution function, F'~!, can easily be obtained.

In general, the distribution function used in the numerical framework in BAMPS does
not obey these conditions. The distribution function is often too complicated and
depends on more than one random number. Therefore, the rejection-sampling method
has to be applied.
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E.2. Rejection sampling

As mentioned above, the inverse-transform sampling can only be used if we have a uni-
variate distribution function and, in addition, we know the inverse of the cumulative
distribution. If these conditions are not fulfilled, we are able to use rejection sam-
pling. The univariate case will be discussed first and then generalized to multivariate
distributions.

We start with the same notation as above and define f(u) as a continuous univariate
probability density with cumulative distribution F(z) = [*_ f(u)du. Now, we have to
find the Lebesgue-integrable envelope function, g(u), such that f(u) < g(u)Vu. The
function g(u) should be sufficiently simple in order to be able to perform, for example,
the inverse-transform sampling as discussed before. The rejection method can then be
summarized as follows:

1. Sample z according to g (for example using the inverse-transform method).

2. Sample y uniformly from [0, 1).

3. Accept z if y < %, otherwise reject x and start again.

The rejection sampling samples points (z,v = yg(z)) uniformly distributed under the
curve of g. Now, we have to check whether v = yg(z) is below f(z) or not. If
yg(x) < f(z), the value z is accepted. Otherwise it is rejected. If the latter is the
case, the procedure has to be repeated until the condition yg(z) < f(x) is fulfilled.
The method here ensures that the area under f(x) is sampled uniformly and thus x is
sampled according to f.

The method introduced here can be extended to distributions of multiple random
variables, if the envelope function ¢ is still sufficiently simple to apply the inverse-
transform method. Choosing g(z1, -+ ,z,) = A = const. with A < sup{f(z) : z € R},
step no. 1 of the algorithm above becomes trivial since all points (z1, - - - , x,,) are equally
probable.

The rejection method introduced has a big advantage, since it can be extended
easily to multivariate distributions. Insofar the envelope function, g, is well-chosen,
the method is also very fast. If latter is not the case, it may happen that step no. 3
has to be repeated many times, which therefore increases the computational time.



F. Momentum sampling

F.1. Sampling of the thermal distribution

In the following, we introduce the numerical method to sample the thermal distribution
of a Boltzmann gas

21)3dN _ufpp—p
B — fa) =g (F.1)

using the accept/rejection method!. We split our discussion into two parts, one for a
thermal distribution at rest, i.e., ¥ = 0, and one for a boosted thermal distribution, i.e.,
v # 0. We neglect the chemical potential, u, the degeneracy factor, g, and the factor
(27)3 in the following discussion, because they do not count in the sampling method.

For the following discussion, we repeat some definitions as introduced in Chapter 3.
The four-velocity is u* = (1,?) and the four-momentum vector is p* = (E,p). The
relativistic energy-momentum relation reads E? = p? + m2. T is the temperature and
¥ denotes the collective velocity or boost of the system. Without loss of generality, we
restrict the direction of the velocity to the z-direction. Therefore, we use a modified
spherical coordinate system for the momentum vector,

D pcosf
pP=|py| = | psinfcos¢ (F.2)
D psinfsin¢.

For more details we refer to Ref. [262]. We use the integration measure
d3p = p?dedcosfdp. (F.3)

The number of particles?, N, in a specified volume, V, is obtained using Eq. (3.26) for
massive particles and Eq. (3.30) for massless particles,

N = yneq(T,\) V. (F.4)

In the following, we use a Monte Carlo generator, as to generate uniformly distributed
random numbers, w, in the interval [0, 1).

F.1.1. Thermal distribution at rest

The thermal distribution for a Boltzmann gas at rest, i.e., ¥ = 0, reads

dN _
dTp—f(xap)—e

Sl

(F.5)

!See appendix E for more details.
2In BAMPS N has to be multiplied with Niest in order to get the number of particles used in the
simulation.
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We have to calculate the momentum distribution, dN/dp. Using the expression (F.3)
we write

dN 27 1
—_— = dqb/ d cos Her_% . (F.6)
dp 0 —1
We integrate over d¢ and d cos 0, leading to
dN
flp) = W = 471'])267% , (F.7)

which is our probability density. However, the integral of the equation above is ana-
lytically not invertible, so we have to find a function which is larger, g(p) > f(p), and
the integral G(p) is analytically invertible. This is

g(p) = 4T%e 77 . (F.8)
The momentum, p, is obtained via
p=—2Tlogw, (F.9)

where w is a random number. In order to accept the sampled momentum, p, the
condition

M <w (F.10)
9(p)
has to be fulfilled. The angular distribution is calculated via
(Z) = 2m w1,
cosf = cos (war) , (F.11)

sinf = /1 — cos?0,

where wy and wy are independent random numbers.

Now, performing the procedure above for a given number of particles, N, in some
volume element, V', we are able to calculate the energy and momenta of particles using
the expressions (F.2).

F.1.2. Thermal distribution for non-vanishing velocities

The thermal distribution for a Boltzmann gas with non-vanishing velocity, v;, reads
dN _ E—vzpsx
oy = fwp) =T (F.12)

Similarly to the previous discussion, we have to find the momentum distribution,
dN/dp. Using the expression (F.3) we write

av _
dp 0

E—vgpx

2 1
d¢/ dcos@p?e T . (F.13)
—1

The integration over ¢ gives 2w. Moreover, we use p, = pcosf to rewrite

dN ! v cos
— = 27Tp2€_7TE/ dcosf e 25 (F.14)
dp -1
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After integration over cosf we obtain

dN T
= = 4n " e sinn 12 ) (F.15)

f(P)—dTD— - T

which is our probability density. A corresponding enveloping function, g(p), can be of
the form
47T?

1—vg
p) = P ar F.16
o0 = =y (F.16)
The momentum, p, is obtained via
2T

= ———log(w). F.17
P= Ao g(w) (F.17)

In order to accept the sampled momentum, p, the condition
), (F.18)

9(p)

has to be fulfilled.

In contrast to the previous case, where we have used a thermal distribution, the
angular distribution has to be calculated with the rejection sampling. Using a Monte-
Carlo random generator we sample the angles

¢ = 2mwy ,
cos 0 = cos (wam) , (F.19)
sinf = /1 — cos? 0.
Using the chosen p, the angular distribution, f’(6), we like to sample reads

1+vy cos @

f'(0) = Cp*sinfeP~— 1 (F.20)

with C' being an arbitrary constant. The enveloping function we choose is a constant,

1+

T (F.21)

§'(6) = e

In order to accept the sampled angle distribution, the condition

f'(9)
70 =¥ (F.22)

has to be fulfilled.

In analogy to the previous case for the distribution function in rest, we perform the
procedure above for a given number of particles, IV, in some volume element, V. The
obtained results determine the momenta as given in Eq. (F.2).
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F.2. Sampling of thermal reservoirs

At some point in this work, we consider the numerical realization of reservoirs within
the static-box scenario. The reservoirs are characterized by a thermal distribution
function with a given temperature, 7', chemical potential, y, and velocity, ¢, which
emit massless particles at a given rate. In the following, we introduce the numerical
method in BAMPS. This method has already been introduced in Refs. [184,187,263]
for similar setups.

We consider the z-direction, whereas the y- and z-directions are assumed to be
homogeneous. The left reservoir is at position x < Zpmin, the right one at x > Xmax.
The area A is spanned by the y- and z-plane. If not otherwise stated, particles in the box
touching the borders of the reservoirs are removed from the simulation. Independently
of the removal, particles are inserted by at given rate and probability, as discussed in
the following.

We now discuss the calculation of the rate for a massless gas which admits an analyt-
ical expression for the rate?. The probability that a particle is emitted by the reservoir
at a time, t, reads

P(t) = Le %, (F.23)

T

where 7 is the inverse rate. The relation above is normalized,
oo
/'P@m:1. (F.24)
0
Using a random number, w, in the interval [0, 1), we write
oo
/ Pthdt = w. (F.25)
t

In a time interval, A¢, the number of particles emitted by the reservoir is At/7. We
calculate the rate by integrating over all momenta and positions of the particles in the

dN g 1 3 / 3 _ulpu—n
= . F.2
Adt (27r)3Adt/dp et (F-26)

reservoir, i.e.,

A = AyAz is the area of reservoir walls. For the integration over d3z we obtain
Adtp,/E and we can write

dN g d’p _“”P#u*“

_ & F.2
Adt - @np) EPC (F.27)

In order to perform the integration over momentum space, we apply the following

3In this work, we only use a massless gas of particles when considering the reservoirs.
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relations?
E = pr coshy, (F.28)
pz = pr sinhy, (F.29)
d3p = pr coshy d?pr dy, (F.30)
d*pr = prdpr de, (F.31)
pr = \/Pj + 3, (F.32)
Thus, we can write
dN g B I oo 9 . _ ppcosh (y—B)
it [, 00 ar [y T way

where we have introduced § = Artanh b, where b is the boost. In the following, we have
to integrate over momentum space. The integration over d¢ and dpy is straightforward,
but, considering the integration over dy, we have to distinguish between the left and
right reservoir,

_ dN g /°° sinh y
1 3
=S I 4 ATEA dy——22Y
" dt ~ @rp U Sy Y cosh? (y — Br)
_ dN g /0 sinh y
1 3
= — = 4w ATp A dy————F"—.
R dt  (2m)3 TALRAR oo Y cosh? (y — Br)

For the left reservoir, we integrate only from 0 to co because only particles with positive
momentum p, pass the border. For the right reservoir only particles with negative
momentum —p, pass the border such that the integration runs from —oo to 0. We
replaced the expression for the fugacity, e%, by A. After integrating over dy, we obtain
the following expressions for the rates:

(F.34)

-1_ 9 3 . 1
TL = (27T)347TATL)\L (Slnh 5L + cosh ﬁL — 2COShBL> s (F 35)
-1_ 9 3 . 1 )
TR = (2ﬂ)347rATR)\R <— sinh Br + cosh Br — 2(:oshBR> .

Using the rates derived here, we are able to compute the timesteps when particles are
emitted by the reservoirs. The corresponding momentum sampling of the particles is
performed as introduced in Sec. F.1.

“We note that we have used a different coordinate system.






G. The energy density and velocity in the
Landau frame

In this thesis, the velocity in the Eckart and the Landau frame is extracted using the
numerical transport model BAMPS. While the calculation of the Eckart velocity is
straightforward, the calculation of the Landau velocity and the corresponding LRF
energy density is rather complicated. In this section we discuss the method how to
obtain the Landau velocity and energy density analytically, as long as the full energy-
momentum tensor T is known'.

We split this discussion into two parts. In Sec. G.1, we obtain a fourth-order polyno-
mial which has to be solved in order to get the energy density. As soon as the energy
density is known, the components of the velocities can be obtained. In Sec. G.2, we

discuss how to solve the previously derived fourth-order polynomial analytically.

G.1. The energy density and velocity in the Landau frame

We repeat the definition of the four-velocity in the Landau frame introduced in Sec. 3.3.3.

It reads
THYy,,
ut = al , (G.1)
e

where e is the LRF energy density and u* = ~v*. Using the latter expression, we can
cancel out the Lorentz factor, v, and write for the velocity in the laboratory frame
_ TH,

o= (G.2)

We have an inhomogeneous system of four equations. Writing

eVO — TOOVO _ T01V1 _ T02V2 _ TOBVS,

eyt — Ti0,0 _ il 1 iz 2 i3, 3 (G-3)
and using v” = 1 we obtain
70,1 4 02,2 4 03,3 _ 00 _
(Tll + €)V1 + T12V2 _ T131/3 — 1’\107
(G.4)

T2 (T2 4 e)? — T3 = T2,
T3 4 7322 (T3 4 o) = T30,

!The extraction of the energy-momentum tensor using BAMPS is discussed in Chapter 6.
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From these relations, we obtain

TlO T12 T13
T2O T22 Te T23
) T30 T23 T33 de
v= TH e 712 73 | (G.5)
T12 T22 Te T23
T13 T23 T33 Te

Tll Te Tl(] T13
T12 TZO T23
T13 T3O T33 +e

2 _
v= TH Lo 712 73 | (G.6)
T12 T22 Te T23
T13 T23 T33 Te
Tll +e T12 TlO
T12 T22 +e T20
T13 T23 T33
v? (G.7)

TITH e T2 T13
T T®4e T |
T13 T23 T33 +e
As the next step, we have to calculate the determinants. After that, the expressions
v',v?, und v3 are inserted into the first equation of (G.4). After some algebraic trans-
formations, we obtain the following fourth-order polynomial

et +bed +ce? +de+ f=0|. (G.8)

The corresponding coefficients read

b — dy—d -
b= e g hoh Stk (G.9)
ay al ay a1
with
ap =—1, (G.10)
by =T% -7 72 T3 (G.11)
¢ = [Tll + T22 + T33:| TOO
_ [T11T22 +T11T33 —|—T22T33 _ (T13)2 _ (T23)2 _ (TIQ)Q] ) (G12)
co = (T10)2 4 (T%)2 + (139), (G.13)
d1 — [T11T22 + T11T33 4 T22T33 _ (T13)2 o (T23)2 o (T12)2] TOO
_ [T11T22T33 4 2 T12T13T23 o (T13)2T22 o (T23)2T11 _ (T12)2T33] ’ (G14)
d2 — [(T10)2 + (T30)2] T22 + [(T10)2 + (T20)2] T33 + [(TQO)Q + (TSO)Q] Tll (G 15)

-9 T10T30T13 ) T10T20T12 -9 T20T30T23
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fi = [T11T22T33 4o TI2TIST2S _ (I8y2p22 _ (p23y2pll (T12)2T33] 79, (G.16)
fo =(T10)2T2233 4 (T20)2 133 4 (730)21ip22 4 o Ol 1223703
+92 T01T13T23T02 +92 T13T03T02T12 —9 T01T03T13T22
g POLTO2I283 o 020828 pLL _ (p10)2 (7232
_ (T13)2(T02)2 _ (T03)2(T12)2
In general, the fourth-order polynomial (G.8) has four solutions. One of them is pos-
itive, the other three are negative. Hence, only the positive one is the exact physical
solution of the LRF energy density. The method to solve Eq. (G.8) is discussed in

Sec. G.2. If the LRF energy density is known in the Landau frame, the velocities can
be calculated easily via Egs. (G.5), (G.6), and (G.7).

(G.17)

G.2. The solution of a fourth-order polynomial

Solving a fourth-order polynomial, also named as quartic equation, can be realized via

numerical root finding, or even better, by finding an exact analytical solution [264]. The

determination using an analytical expression is more accurate and much faster than

the numerical root finding. Therefore, we can save a lot of computational time. We

introduce the general solution of a quartic equation, which is numerically implemented

in BAMPS used to obtain the energy density as discussed in the previous section.
Hence, we introduce the method solving an equation of the form:

2t +azd +br? +cx+d=0, (G.18)

with a, b, ¢, and d being the coefficients. If the coefficients do not vanish, we obtain
four solutions for x. In order to solve the above equation, we make the substitution

a

=y — - G.19
T=y = (G.19)
as to eliminate the cubic part. This leads to
v + oy’ +qy+r=0. (G.20)
The new coefficients are
3
=b— g2
p 8a )
1 1
q= ga?’ - iab +c, (G.21)
3a* — 16a?b + 64ac — 256d
r=— .
256

Equation (G.20) can be solved via its resolvent cubic [265],
23— 2p2% 4+ (p? —4r)z + 2. (G.22)
Now we have to solve the cubic equation

22— RA+S24+T, (G.23)
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with
R=2p,
S = p® —4r, (G.24)
T = ¢
We make another substitution,
R
z=2zZ— 3 (G.25)
and obtain the equation in a reduced form
BLP:+Q=0, (G.26)
where
Lo
P — S _ gR 5
2 1 (G.27)
= —R —-RS+T,
@ 27 3 +
are the corresponding coefficients. Now, using the expression
2 3
P
o-(2) +(3) (C.29)

2 3

we have to distinguish between three different cases.

e For © > 0 we obtain one real and two complex solutions
via Cardano’s method [266]. Here,

(—Q/z + \F@);’ :
(~@r2-ve)*,

u

=

v

and thus the three solutions are

Z1i=u+wv,

- 1 1
zgz—i(u—i—v)—li(u—i—v)\/g,
- 1 1
z3:—§(u+v)+1§(u+v)\/§.

We note that i is the imaginary unit.

. We solve the equation

(G.29)

(G.30)

For ©® = 0 we can solve the equation via Cardano’s method, too. The difference

is that we get three real solutions, where two of them collapse. Here,

Q

2

1
3
)

_u,

u=o—(

21:2u,

and the three solutions are

29,3 =

(G.31)

(G.32)
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e For © < 0 we have the casus irreducibilis [266]. The solutions are obtained using

TV (];)3’ (G.33)

cosw = ——=
2u’

and v, which is either 0°, 120°, or 240°. We obtain three solutions

- 1 w
Z1 = 2u3 cos —
3?

%y = 2u3 cos% +120°, (G.34)

Z3 = u3 cos% + 240° .

After obtaining the three solutions of Z, we have to undo the substitution, i.e.,

z1 =% _R

1 —=~1 3
22:52—2, (G35)
=gy B

3 = 23 3"

Then, Vieta’s formula [267] predicts that the product of the three solutions z1,z2, and
23 has to be equal to the linear part of the equation, that is ¢° = 212223. The solutions
are

y1=v-21+vV-2+V-z,
Y2 =V—21— V22— V-2,
ys = —v—21+V—22 —V~z3,
Yos = —v—21— V-2 + V-2,
while the sign in front of the square roots has to be chosen such that —q = /z1/22/23.

Finally, we have to substitute back to get the final solutions of Eq. (G.18), which
accordingly read

(G.36)

a
951:3/1—17
a
1:2:3/2_17
4 (G.37)
1?32213—17
a
$4:y4—1~






H. Extraction of the temperature and
fugacity

In this appendix we discuss the extraction of the temperature, T, and fugacity, A,
both for a massless and massive gas, as well as for a multicomponent system. For
most definitions we refer to the general introduction of the hydrodynamic quantities as
discussed in details in Chapter 3.

H.1. One-component system

H.1.1. Massless particles

The extraction of the temperature, T, and fugacity, A, of a system of massless particles
is obtained in a few steps without any difficulty.

The relation p = nT for a relativistic Boltzmann gas connects the temperature with
the particle density, n, and equilibrium pressure, p, of the system. When the system
contains only one species of massless particles, the bulk viscous pressure vanishes, i.e.,
II = 0. This implies that the equilibrium pressure is equal to the isotropic pressure,
i.e., P = p. Since the isotropic pressure, P, as well as the particle density, n, are easily
extracted from the numerical simulation, the temperature is obtained via

T=—. H.1
- (.1
With the knowledge of the temperature, we know the equilibrium particle density
assuming vanishing chemical potential, neqr ,—0). Using this, we can calculate the
fugacity directly via

7 n
A=exp(B)= " H.2
<T> Teq(T,u=0) (5.2

H.1.2. Massive particles

The calculation for a one-component system of massive particles with a constant mass,
m, is a little bit more complicated and requires the secant method.

In contrast to the massless case, the bulk viscous pressure, II, is not always zero.
Therefore, we cannot use the relation p = nT" directly in order to extract the temper-
ature, because we have two unknowns 7" and p. For that reason, we use the energy
density, e, instead of the equilibrium pressure, p, in order to achieve our goal.

Using Eqgs. (3.26) and (3.28), the ratio of energy density and particle density reads

e eeq(T,p) _ 3peq(T', 1) + ﬁmgTW/TKH(m/T)

(H.3)

n neq(T, 1) 3Zzm2Ter/T Ko(m/T) ’
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The left part is given numerically. Although the fugacity, A\ = exp (u/T), is canceled
out, we cannot extract the temperature directly because of the non-invertible Bessel
functions, K, (x). Therefore, we transform the right part

e _ gpea(Top) | mEi(m/T)

- =3 HA4
n P nea@on) T Kalm/T) Y
and move everything to the left side
K T
gp o M m/T) e o (H.5)

Ko(m/T) n

The temperature can be extracted from the above expression via iteration it using the
secant method. In order to achieve this we need an upper and lower limit, T3, and
Tinin, respectively. They read

T
i CallW) e
750 Neq (T, 1) 3n
T q (FL6)
eeq(Ta M) 1re .
lim — Thyin = = (7 — m)
00 Neq (T 1) 3\n

The upper one is the limit we know for an ultrarelativistic massless gas. The lower
limit is the case when the masses are huge compared to the kinetic energy.

H.2. Multicomponent system

In Sec. 3.3.5 we have discussed the problem of finding a definition of the temperature
and the fugacity for a system containing more than one particle species. Although we
are able to obtain a temperature and fugacity for each species, its physical meaning
is questionable. However, calculating these quantities which we refer to as pseudo-
temperatures and fugacites for each species separately is important to obtain a tem-
perature, T', and fugacity, A, for the whole system. This is discussed in the following.

The determination of the temperature for the whole system, independent of whether
it is in local equilibrium or not, is realized via

ng_zniTi

no Son;
where ¢ denotes each particle species. Hence, we have to calculate the temperature as
well as the particle density for each particle species in order to determine the tempera-
ture for the whole system. Furthermore, using the obtained temperature, T', a similar
procedure is realized to determine the fugacity for the whole system:

(H.7)

B n B >on;
A T =0) S nes (T =0) (FL8)

At first glance, however, we obtain strange results when determining the hydrodynamic
quantities according the procedure introduced. For instance, we assume two massless
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particle species, each of them in equilibrium, but each with different temperatures, T4
and Tg. The average temperature, 1', of the system lies in between T4 and Ty, and
there is no bulk pressure for the whole system, i.e., I = II4 + IIz = 0. However, for
each particle species separately, the bulk pressure does not vanish, i.e., I14 # Il # 0.
We make this observation in Sec. 7.2.3.






|. The solution of the relativistic Vlasov
equation

In Chapter 5, we have discussed in particular solutions of the relativistic Riemann
problem. In a more detailed discussion in Sec. 5.1 and 5.2, we have introduced an
analytical solution of the shock-tube problem for a perfect fluid. This deals with the
propagation of a shock wave and rarefaction wave starting from a sharp discontinuity
in velocity and/or several thermodynamic quantities.

In this section, we introduce the shock-tube problem with exactly the same initial
conditions as in Sec. 5.1. The only difference is that we assume a non-interacting gas
instead of a perfect fluid. Furthermore, we fix the equation of state to e = 3p, hence
we consider an ultrarelativistic gas of massless particles. In the following, we refer to
the derived analytical solution as the free-streaming solution which has been discussed
also in Refs. [143,268]. We use dp = gd3p/[(27)3E].

We construct a solution of the particle four-flow (3.8),

) = [ g @), L)
and the energy-momentum tensor (3.9),
(o) = [y 1@ 7). (12)

for a given distribution function, f(Z, p,t), which solves the relativistic Vlasov equation

PO, f(Z,p,t) =0. (1.3)

The Vlasov equation is the special limit of the Boltzmann equation (3.2), where the
collision term vanishes on the right-hand side. The initial conditions are the same as
in the shock-tube problem discussed in Sec. 5.1. We assume matter to be in thermal
equilibrium and, for the sake of simplicity, to be homogeneous in the transverse y —
z plane, such that the problem becomes (1 + 1)-dimensional. We have matter in
thermodynamical equilibrium separated by a membrane at x = 0. The temperatures
on the left (z < 0) and right (x > 0) sides of the membrane are denoted by 77, and T,
respectively. The chemical potentials and velocities vanish on both sides.

First, we calculate the quantities which do not vanish due to symmetry. These
quantities are N9, N1, 700 711 722 733 and 710, Then we are able to calculate the
velocity, the LRF thermodynamic quantities, and the dissipative quantities. This will
be discussed in the end of this section. We separate the problem into two parts, i.e.,
left and right of the discontinuity. The final solution is the sum of them

NH(xt) = N () + Nh ("),

T () = TH (o) + T8 (2 (L4)
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210 I. The solution of the relativistic Vlasov equation

We discuss the solution of one quantity, 7%, where the other quantities are calculated
analogously. They are provided in the end of this section.
The left part of the energy density in the laboratory frame reads

T2 (2 (20, pyto) E0(x — 29 — —At) O(zn — x0) d®pduy. (I.5)

The subindex 0 denotes the inital time or position of quantities. We denote At =t —tg
as the timestep. The J-function is constructed such that we consider only particles
starting at position zg, and reaching the final position = at final time ¢ within the dis-
tance 22 At. Furthermore, we introduce the ©-function, which considers only particles
from the left or the right part of the discontinuity, respectively. The ©-function is de-
fined such that it is one when its argument is positive, otherwise it is zero. Analogously,
we define the right part of the energy density in the laboratory frame, i.e.,

T (xH (20, Dy to) Ed(x — o — —At) O(xN + x0) d®p dao. (I.6)

In the following, we calculate the solution of Eq. (I.5) in a detailed way.
The initial distribution function f(20,p,to) is the thermal distribution (3.25) of a
massless Boltzmann gas,

(@0, pto) =e T . (L7)

As mentioned above, the chemical potential and velocity vanish initially. We obtain

TO(zH) = /e_TL; Ed(x —xo — —At) O(xy — x0) d®p dao. (L.8)

g
(2m)?
We integrate over xo, where the J-function contributes only for zp = x — 52 At. With
xy = 0, we obtain ©(—z+ 5 At). We introduce a common transformation of variables!

E = pp coshy, (1.9)
px = pr sinhy, (1.10)
d3p = pr coshy d?pr dy, (I.11)
pr = /P2 + D2, (1.12)

as to simplify our further calculations. Here, pr is the transverse momentum and y is
the momentum rapidity. Using tanhy = p,/E we obtain the following expression:

00/, .1 g —brcoshy 2 2. 12
T/  (zt) = L e L ©(—x + tanh yAt) p7 cosh” y d“pr dy. (1.13)

Next, we use the relation
d*pr = prdprdé, (I.14)
which allows us to rewrite
27

it pp coshy
(—z + tanh y At) cosh? y dy //pgTe_ 7 dprde | . (1.15)
0 0

T (a") =

"We note that we used a different coordinate system.



211

Carrying out the integrations leads to

12

() = =

cosh”y

Furthermore, we make use of the relation
dy
2

cosh” y

=dtanhy,
by which Eq. (I.16) turns into

12T}

/ O(—z + tanh y At) d tanh y.
-1

gT# 7 1
W2L /@(—:E—I—tanhyAt) s—dy .

(L.16)

(L17)

(L18)

We remember that the ©-function is non-zero for positive arguments only. This requires
that /At < tanhy. We can hence replace the lower limit —1 by x/At and obtain for

T on the left side of the discontinuity
1297} T
TP = =5 (1- 5 ).
L (") 82 At
Analogously, we obtain for 7% on the right side of the discontinuity

12973
TV (2H) = % (1+ T ) '

2 At
We summarize the final quantities for the energy-momentum tensor
12¢g z
00 4 4 4 4
T (l’u) = Q |:TL+TR+E (TR_TL)] )

4 3
T = % |1 T () (A1)

- Bt e 5
renT 5 m s (3]
+eaTh|5t a5 (a) )

T = 2 |1t - i+ (1) (@ -1

and the particle-four flow

4g T
NO(at) = 32 [Tf + T + AL (T3 - Tg)} ;

2 2
N(z#) = 8792 [TE’ ~ T+ (A%) (T3 - Tf)} .

(L.19)

(1.20)

(L.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

With the energy-momentum tensor and particle four-flow we are able to calculate all

further hydrodynamic quantities, as discussed in Chapter 3.
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