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Generating functionals may guide the evolution of a dynamical system and constitute a pos-
sible route for handling the complexity of neural networks as relevant for computational
intelligence. We propose and explore a new objective function, which allows to obtain plas-
ticity rules for the afferent synaptic weights. The adaption rules are Hebbian, self-limiting,
and result from the minimization of the Fisher information with respect to the synaptic flux.
We perform a series of simulations examining the behavior of the new learning rules in
various circumstances.The vector of synaptic weights aligns with the principal direction of
input activities, whenever one is present. A linear discrimination is performed when there
are two or more principal directions; directions having bimodal firing-rate distributions,
being characterized by a negative excess kurtosis, are preferred. We find robust perfor-
mance and full homeostatic adaption of the synaptic weights results as a by-product of the
synaptic flux minimization. This self-limiting behavior allows for stable online learning for
arbitrary durations.The neuron acquires new information when the statistics of input activ-
ities is changed at a certain point of the simulation, showing however, a distinct resilience
to unlearn previously acquired knowledge. Learning is fast when starting with randomly
drawn synaptic weights and substantially slower when the synaptic weights are already
fully adapted.

Keywords: Hebbian learning, generating functionals, synaptic plasticity, objective functions, Fisher information,
homeostatic adaption

1. INTRODUCTION
Synaptic plasticity involves the modification of the strength of
individual synapses as a function of pre- and post-synaptic neural
activity. Hebbian plasticity (Hebb, 2002) tends to reinforce already
strong synapses and may hence lead, on a single neuron level, to
runaway synaptic growth, which needs to be contained through
homeostatic regulative processes (Turrigiano and Nelson, 2000),
such as synaptic scaling (Abbott and Nelson, 2000). Modeling of
these dual effects has been typically a two-step approach, carried
out by extending Hebbian-type learning rules by regulative scal-
ing principles (Bienenstock et al., 1982; Oja, 1992; Goodhill and
Barrow, 1994; Elliott, 2003).

An interesting question regards the fundamental computa-
tional task a single neuron should be able to perform. There is a
general understanding that synaptic scaling induces synaptic com-
petition and that this synaptic competition generically results in a
generalized principal component analysis (PCA) (Oja,1992; Miller
and MacKay, 1994), in the sense that a neuron will tend to align its
vector of synaptic weights, within the space of input activities, with
the direction having the highest variance. A meaningful behavior,
since information possibly transmitted by input directions with
low variances is more susceptible to be obfuscated by internal or
environmental noise.

A single neuron may, however, have additional computational
capabilities, in addition to its basic job as a principal component

analyzer. The neuron may try to discover “interesting directions,”
in the spirit of projection pursuit (Huber, 1985), whenever the
covariance matrix of the afferent inputs is close to unity. Devi-
ations from Gaussian statistics may encode in this case vitally
important information, a well-known feature of natural image
statistics (Simoncelli and Olshausen, 2001; Sinz and Bethge,
2013). One measure for non-Gaussianess is given by the kurto-
sis (DeCarlo, 1997) and a single neuron may possibly tend to align
its synaptic weight vector with directions in the space of input
activities characterized by heavy tails (Triesch, 2007), viz having
a large positive excess kurtosis. Here, we study self-limiting Heb-
bian plasticity rules which allow the neuron to discover maximally
bimodal directions in the space of input activities, viz directions
having a large negative excess kurtosis.

Binary classification in terms of a linear discrimination of
objects in the input data stream is a basic task for neural circuits
and has been postulated to be a central component of unsuper-
vised object recognition within the framework of slow feature
analysis (Wiskott and Sejnowski, 2002; DiCarlo et al., 2012). It is
of course straightforward to train, using supervised learning rules,
a neuron to linearly separate the data received into two categories.
Here, we propose that a single neuron may perform this task unsu-
pervised, whenever it has a preference for directions in the space of
input activities characterized by negative excess kurtosis. Neural
signals in the brain containing high frequency bursts have been
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Echeveste and Gros The Fisher information as a generating functional

linked to precise information transmission (Lisman, 1997). Neu-
rons switching between relatively quiet and bursting states tend to
have bimodal firing rate distributions and negative excess kurto-
sis. The autonomous tendency to perform a binary classification,
on a single neuron level, may hence be of importance for higher
cortical areas, as neurons would tend to focus their intra-cortical
receptive fields toward intermittent bursting neural populations. A
subclass of bursting pyramidal neurons have been found in layer 5
of somatosensory and visual cortical areas (Chagnac-Amitai et al.,
1990). Neurons receiving input from these bursting cortical neu-
rons would therefore be natural candidates to test this hypothesis,
for which there is, to date, no direct experimental evidence.

In order to develop synaptic plasticity rules,one may pursue one
of two routes: either to reproduce certain aspects of experimental
observations by directly formulating suitable plasticity rules, or to
formulate, alternatively, an objective function from which adap-
tion rules are then deduced (Intrator and Cooper, 1992; Bell and
Sejnowski, 1995). Objective functions, also denoted generating
functionals in the context of dynamical system theory (Linkerhand
and Gros, 2013a; Gros, 2014), generically facilitate higher-level
investigations, and have been used, e.g., for such as an overall sta-
bility analysis of Hebbian-type learning in autonomously active
neural networks (Dong and Hopfield, 1992).

The Fisher information measures the sensitivity of a system
with respect to a given parameter. It can be related, in the context
of population coding (Brunel and Nadal, 1998), to the transfer
information between stimulus and neural activity, and to order-
parameter changes within the theory of thermodynamic phase
transitions (Prokopenko et al., 2011). Minimization of the Fisher
information can be used as a generative principle for quantum
mechanics in general (Reginatto, 1998) and for the Euler equation
in density functional theory (Nagy, 2003). Here, we propose an
objective function for synaptic learning rules based on the Fisher
information. With respect to a differential operator, we denote the
synaptic flux.

The aim of adapting synaptic weights is to encode a maxi-
mal amount of information present in the statistics of the afferent
inputs. The statistics of the output neural activity becomes station-
ary when this task is completed and the sensitivity of the activity
of the post-synaptic neuron with regard to changes in the synap-
tic weights is then minimal. Minimizing the Fisher information
with respect to the synaptic flux is hence a natural way to gen-
erate synaptic plasticity rules. Moreover, as we show in Section
3, the synaptic plasticity rules obtained by minimizing the Fisher
information for the synaptic flux have a set of attractive features;
incorporating standard Hebbian updating and being, at the same
time, self-limiting.

Minimizing an information theoretical objective function, like
the Fisher information, is an instance of polyhomeostatic opti-
mization (Marković and Gros, 2010), namely the optimization
of an entire function. Other examples of widely used informa-
tion theoretical measures are the transfer entropy (Vicente et al.,
2011) and the Kullback–Leibler divergence, which one may use for
adapting, on a slow time scale, intrinsic neural parameters like the
bias, also called offset (Triesch, 2007; Marković and Gros, 2012).
Minimizing the Kullback–Leibler divergence then corresponds
to maximizing the information content, in terms of Shannon’s

information entropy, of the neural firing rate statistics. We use
intrinsic adaption for self-regulating the bias, obtaining, as a side
effect, an effective sliding threshold for the synaptic learning rule,
in spirit of the BCM rule (Bienenstock et al., 1982).

2. MATERIALS AND METHODS
In the present work, we consider rate encoding neurons for which
the output firing rate y is obtained as a sigmoidal function of the
membrane potential x via:

y = σ(x − b), σ(z) =
1

1+ e−z
, x =

Nw∑
j=1

wj(yj − ȳj),

(1)
where Nw is the number of input synapses, and wj and yj repre-
sent the synaptic weights and firing rates of the afferent neurons,
respectively. The sigmoidal σ (z) has a fixed gain (slope) and the
neuron has a single intrinsic parameter, the bias b. The ȳj represent
the trailing averages of yj,

d

dt
ȳj =

yj − ȳj

Ty
, (2)

with Ty setting the time scale for the averaging. Synaptic weights
may take, for rate encoding neurons, both positive and negative
values and we assume here that afferent neurons firing at the mean
firing rate yj ' ȳj do not influence the activity of the post-synaptic
neuron. This is a standard assumption for synaptic plasticity which
is incorporated in most studies by appropriately shifting the mean
of the input distribution.

In what follows, we will derive synaptic plasticity rules for the
wj and intrinsic plasticity rules that will optimize the average mag-
nitude of x and set in this way, implicitly, the gain of the transfer
function. We have not included an explicit gain acting on x since
any multiplicative constant can be absorbed into the wj and, con-
versely, the average value of the wj can be thought of as the gain of
the transfer function with rescaled wj.

The firing rate y of neurons has an upper limit, an experimental
observation which is captured by restricting the neural output of
rate encoding neurons to the range y ∈ [0, 1]. Here, we consider
with

Fob(x , y) = E
[(

2+ x
(
1− 2y

))2
]

(3)

an objective function for synaptic plasticity rules which treats the
upper and the lower activity bounds on an equal footing. E[·]
denotes the expectation value.

The functional Fob is positive definite and can be expressed as in
Equation (3), or purely as a function of either x or y = σ (x − b). In
Figure 1, Fob is plotted as a function of y for different values of the
bias b. The functional always presents two minima and diverges for
extremal firing rates 0/1. In particular, for firing rates y→ 0/1, Fob

is minimized by membrane potentials x→ (−2)/2, respectively.
Minimizing Equation (3) as an objective function for deriving

synaptic plasticity rules will therefore lead to bounded membrane
potentials and hence necessarily to bounded learning rules, devoid
of runaway synaptic growth. The cost function [Equation (3)]

Frontiers in Robotics and AI | Computational Intelligence May 2014 | Volume 1 | Article 1 | 2

http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Echeveste and Gros The Fisher information as a generating functional

0 0.2 0.4 0.6 0.8 1
y

0

5

10
F

o
b

b = 0
b = 1
b = -1

FIGURE 1 |The objective function Fob, expression (3), as a function of
the output firing rate y for different values of the bias b. Fob always has
two minima and diverges for extremal firing rates y→0/1, a feature
responsible for inducing limited output firing rates.

generically has two distinct minima, a feature setting it apart from
other objective functions for synaptic plasticity rules (Intrator and
Cooper, 1992). Moreover, the objective function [Equation (3)]
can also be motivated by considering the Fisher information of
the post-synaptic firing rate with respect to the synaptic flux, as
shown in Section 2.1.

In Section 2.2, via stochastic gradient descent, the following
plasticity rules for the afferent synaptic weights wj will be derived:

ẇj = εw G(x)H (x)(yj − ȳj), (4)

with

G(x) = 2+x(1−2y), H (x) = (2y−1)+2x(1−y)y . (5)

Here, εw controls the rate of the synaptic plasticity. The bias b
entering the sigmoidal may be either taken to be constant or
adapted via

ḃ = (−εb)(1− 2y + y(1− y)λ), (6)

in order to obtain a certain average post-synaptic firing rate, where
λ is a control parameter, as detailed out in Section 2.2. Equa-
tion (6) leads to the optimization of the statistical information
content of the neural activity, in terms of Shannon’s information
entropy; a process also denoting intrinsic adaption (Triesch, 2007)
or polyhomeostatic optimization (Marković and Gros, 2010).

Both adaption rules, Equation (4) for the synaptic plasticity and
Equation (6) for regulating the average post-synaptic firing rate,
interfere only weakly. For instance, one could take the bias b as a
control parameter, by setting εb→ 0, and measure the resulting
mean firing rate a posteriori. The features of the synaptic adaption
process remain unaffected and therefore alternative formulations
for the intrinsic adaption of the bias could also be considered.

The synaptic plasticity rule [Equation (4)] involves the Heb-
bian factor H (x), and a multiplicative synaptic weight rescaling
factor G(x). Although here G and H are presented as a func-
tion of x and y, these can also be expressed entirely in terms of

y, consistently with the Hebbian interpretation. It is illustrative
to consider the cases of small/large post-synaptic neural activity.
In the limit y→ 0/1, which is never reached, the updating rules
[Equation (4)] would read

ẇj ∝

{
(2+ x) (−1) (yj − ȳj) (y → 0)
(2− x) (+1) (yj − ȳj) (y → 1)

. (7)

For the case that |x |< 2, we hence have that the synaptic
strength decreases/increases for an active pre-synaptic neuron with
yj > ȳj , whenever the post-synaptic neuron is inactive/active,
an instance of Hebbian learning. The multiplicative constraint
(2± x) in Equation (7) results in a self-limitation of synaptic
growth. Synaptic potentiation is turned into synaptic depression
whenever the drive x becomes too large in magnitude. Runaway
synaptic growth is hence not possible and the firing rate will settle
close to the minima of Fob, compare Figure 1.

2.1. MOTIVATION IN TERMS OF FISHER INFORMATION
The synaptic plasticity rules [Equation (4)] can be derived either
directly from the objective function [Equation (3)], as explained
in Section 2.2 or motivated from an higher-order principle, the
optimization of the synaptic flux, as we will show in the following.
Synaptic weight competition could be formulated, as a matter of
principles, through an ad hoc constraint like∑

j

(
wj
)2
→ const., w = (w1, w2, . . .), (8)

which defines a hypersphere in the phase of afferent synaptic
weights {wj}, together with some appropriate Hebbian-type adap-
tion rules. We will not make use of Equation (8) explicitly, but
our adaption rules implicitly lead to finite length for the synaptic
weight vector w.

Synaptic plasticity will modify, quite generically, the statistical
properties of the distribution p(y) of the firing rate y of the post-
synaptic neuron. It is hence appropriate to consider the sensitivity
of the firing-rate distribution p(y) with respect to changes in the
wj. For this purpose, one may make use of the Fisher information

Fθ =

∫
p(y)

(
∂

∂θ
ln(p(y))

)2

dy , (9)

which encodes the sensitivity of a given probability distribution
function p(y) with respect to a certain parameter θ . Here, we are
interested in the sensitivity with respect to changes in the synaptic
weights {wj} and define with

Fw =

∫
p(y)

∑
j

wj
∂

∂wj
ln(p(y))

2

dy , (10)

the Fisher information with respect to the synaptic flux. Expres-
sion (10) corresponds to the Fisher information [Equation (9)]
when considering

∂

∂θ
→

∑
j

wj
∂

∂wj
= w · ∇w , (11)
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Echeveste and Gros The Fisher information as a generating functional

as differential operator. The factors wj in front of the ∂/∂wj result
in a dimensionless expression, the generating functional [Equation
(10)] is then invariant with respect to an overall rescaling of the
synaptic weights and the operator Equation (11) a scalar. Alterna-
tively, we observe that wj∂/∂wj = ∂/∂ log(wj/w0), where w0 is an
arbitrary reference synaptic weight, corresponding to the gradient
in the space of logarithmically discounted synaptic weights.

The operator Equation (11),which we denote synaptic flux oper-
ator, is, in addition, invariant under rotations within the space of
synaptic weights and the performance of the resulting synaptic
plasticity rules will hence be also invariant with respect to the
orientation of the distributions p(yj) of the input activities {yj}.
Physically, the operator Equation (11) corresponds, apart from a
normalization factor, to the local flux through the synaptic hyper-
sphere, as defined by Equation (8), since the synaptic vector w is
parallel to the normal vector through the synaptic hypersphere, as
illustrated in Figure 2.

The Fisher information [Equation (10)] can be considered as a
generating functional to be minimized with respect to the synaptic
weights {wj}. The time-averaged properties of the neural activities,
as measured by p(y), will then not change any more at optimality;
the sensitivity of the neural firing-rate distribution, with respect
to the synaptic weights, vanishing for small Fw. At this point,
the neuron has finished encoding the information present in the
input data stream through appropriate changes of the individual
synaptic weights.

It is interesting to consider what would happen if one would
maximize the Fisher information instead of minimizing it. Then,
the neural firing activity would become very sensitive to small
changes in the synaptic weights {wj} and information processing
unstable, being highly susceptible to noise, viz to small statistical
fluctuation of the synaptic weights. On a related note, the inverse
Fisher information constitutes, via the Cramer–Rao theory (Par-
adiso, 1988; Seung and Sompolinsky, 1993; Gutnisky and Dragoi,
2008), a lower bound for the variance when estimating an exter-
nal parameter θ . In this context, the external parameter θ can be
estimated more reliably when the Fisher information is larger, viz
when the distribution considered is highly sensible to the parame-
ter of interest. This is a different setup. Here, we are not interested

in estimating the value of the synaptic weights, but in deducing
adaption rules for the {wj}.

2.2. SYNAPTIC FLUX MINIMIZATION
We are interested in synaptic plasticity rules which are instanta-
neous in time, depending only on the actual pre- and post-synaptic
firing rates yj and y. Hence, the actual minimization of the synap-
tic flux functional [Equation (10)] needs to be valid for arbitrary
distributions p(yj) of the pre-synaptic firing activities {yj}. The
synaptic flux Fw, which is in the first place a functional of the
post-synaptic activity p(y), needs therefore to be reformulated in
terms of the distributions p(yj). A faithful representation of the
post-synaptic firing-rate distribution entering Fw would involve a
convolution over all pre-synaptic p(yj) and would hence lead to
intricate cross-synaptic correlations (Bell and Sejnowski, 1995).
Our aim here, however, is to develop synaptic plasticity rules
for individual synapses, functionally dependent only on the local
pre-synaptic activity and on the overall post-synaptic firing level.
We hence consider for the minimization of the synaptic flux all
j∈ {1, . . ., Nw} synapses separately, viz we replace Equation (10) by

Fw →

∫ ∑
j

wj
∂

∂wj
ln

(
p(yj)

∂y/∂yj

)2 ∏
l

p(yl)dyl

≡

∫
fw (y)

∏
l

p(yl)dyl , (12)

where we have defined the kernel fw(y). We denote the approx-
imation [Equation (12)] the local synapse approximation, since
it involves the substitution of p(y)dy by 5lp(yl)dyl. Expression
(12) becomes exact for the case Nw= 1. It corresponds to the
case in which the distinct afferent synapses interact only via
the overall value of the membrane potential x, as typical for a
mean-field approximation. We then find, using the neural model
[Equation (1)],

∂y

∂yj
= y(1− y)wj (13)

FIGURE 2 | Illustration of the principle of minimal synaptic flux. The
synaptic flux, compare expression (11), is the scalar product between the
gradient ∇w log(p) and the normal vector of the synaptic sphere, w̄/|w̄ | (left).
Here, we disregard the normalization. The sensitivity ∇w log(p) of the neural

firing-rate distribution p=p(y ), with respect to the synaptic weights
w= (w 1, w 2, w 3, . . .), vanishes when the local synaptic flux is minimal (right),
viz when w · ∇w log(p)→ 0. At this point, the magnitude of the synaptic
weight vector w̄ will not grow anymore.
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Echeveste and Gros The Fisher information as a generating functional

and hence

fw (y) =

∑
j

wj

(
1

wj
+ (yj − ȳj)(1− 2y)

)2

= (Nw + x(1− 2y))2 (14)

where Nw is the number of afferent synapses. The kernel fw is
a function of y only, and not of the individual yj, since x =∑

j wj(yj − ȳj). More fundamentally, this dependency is a con-
sequence of choosing the flux operator [Equation (11)] to be a
dimensionless scalar.

Taking Nw→ 2 in Equation (14) leads to the objective function
[Equation (3)] and results in G(x) and H (x) being proportional
to each other’s derivatives, with the roots and maxima, respec-
tively, aligned. We however, also performed simulations using the
generic expression (14), with the results changing only weakly and
quantitatively.

The synaptic weights are updated so that fw(y) becomes min-
imal, ẇj ∝ −∂fw (y)/∂wj , obtaining the plasticity rule [Equation
(4)]. This procedure corresponds to a stochastic steepest descent
of the objective function [Equation (3)], a procedure employed
when one is interested in obtaining update rules independent of
the actual distributions p(yj) of the afferent neural activities.

For the derivation, one makes use of ∂y/∂wj = (yj−ȳj)(1−y)y .
The synaptic plasticity rule [Equation (4)] depends via yj − ȳj

on the activity yj of the pre-synaptic neuron relatively to its
mean firing rate ȳj . This dependence models experimental find-
ings indicating that, in the context of spike timing-dependent
plasticity, low-frequency stimulation generically induces causal
depression (Lisman and Spruston, 2010; Shouval et al., 2010;
Feldman, 2012); one needs above-average firing rates for causal
potentiation.

Note that synaptic competition is present implicitly in the
updating rule through the membrane potential x, entering both
G(x) and H (x), which integrates all individual contributions; the
local synapse approximation [Equation (12)] only avoids explicit
cross-synaptic learning.

We denote the two factors on the right-hand side of Equation
(4), G(x) and H (x), as self-limiting and Hebbian, respectively;
with H (x) being, by construction, the derivative of G(x). The
derivative of H (x) is also proportional to G(x) since we substi-
tuted Nw→ 2 in the objective function on the right-hand-side of
Equation (14). With this choice, the two factors G(x) and H (x)
are hence conjugate to each other.

The synaptic plasticity rule [Equation (4)] works robustly for
a wide range of adaption rates εw, including the case of online
learning with constant updating rates. For all simulations pre-
sented here, we have used εw= 0.01. We constrained the activities
of the pre-synaptic neurons yj, for consistency, to the interval [0,
1], which is the same interval of post-synaptic firing rates. Gener-
ically, we considered uni- and bi-modal Gaussian inputs centered
around ȳj = 0.5, with individual standard deviations σ j. We con-
sidered in general σ j= 0.25 for the direction having the largest
variance, the dominant direction, with the other directions having
smaller standard deviations, typically by a factor of two.

2.3. EMERGENT SLIDING THRESHOLD
One may invert the sigmoidal σ (x) via x = b− log((1− y)/y) and
express the adaption factors solely in terms of the neural firing rate
y. For the Hebbian factor H (x), see Equation (5), one then finds

H (y) = (2y − 1) + 2y(1− y)
[
b − log((1− y)/y)

]
. (15)

The bias b hence regulates the crossing point from anti-Hebbian
(for low neural activity y < y∗H ) to Hebbian learning (for large fir-
ing rates y > y∗H ), where y∗H is the root of H (y). y∗H depends only
on b (as shown in Figure 3), emerging then indirectly from the
formulation of the objective function [Equation (3)], and plays
the role of a sliding threshold. This sliding threshold is analo-
gous to the one present in the BCM theory (Bienenstock et al.,
1982), which regulates the crossover from anti-Hebbian to Heb-
bian learning with increasing output activity and which is adapted
in order to keep the output activity within a given working regime.

The bias b regulates, in addition to its role determining the
effective sliding threshold for synaptic plasticity, the mean fir-
ing rate. In principle, one may consider an ad hoc update rule
like ḃ ∝ (µ − ȳ) for the bias, where µ =

∫
ypλ(y)dy is some

given target firing rate and where ȳ would be a sliding average
of y. We will however use, alternatively, an information theoreti-
cal objective function for the intrinsic adaption of the bias. The
Kullback–Leibler divergence

D =

∫
dy p(y) log

(
p(y)

pλ(y)

)
, pλ(y) =

eλy

Nλ
(16)

measures the distance between the actual firing-rate distribution
p(y) and a given target distribution pλ(y). It will be minimal if
pλ(y) is approximated as well as possible. An exponential target
distribution, as selected here, maximizes the information content
of the neural activity in terms of information entropy, given the
constraint of a fixed mean µ, both for a finite support y∈ [0,1],
as considered here, as well as for an unbounded support, y> 0,
with Nλ being the appropriate normalization factor. For λ→ 0,
a uniform target distribution is recovered together with µ→ 0.5
and the resulting p(y) becomes symmetric with respect to y = 0.5.

Following a derivation which is analogous to the one given
above for the case of synaptic flux minimization, one finds Equa-
tion (6) for the adaption rules (Triesch, 2007; Linkerhand and
Gros, 2013b). For the adaption rate εb for the bias we used in
our simulations generically εb= 0.1, its actual value having only
a marginal influence on the overall behavior of the adaption
processes.

Minimizing the Kullback–Leibler divergence and the Fisher
information are instances of polyhomeostatic optimization
(Marković and Gros, 2010, 2012), as one targets to optimize an
entire probability distribution function, here p(y). An update rule
like ḃ ∝ (µ − ȳ) would, on the other side, correspond to a basic
homeostatic control, aiming to regulate a single scalar quantity,
such as the mean firing rate.

2.4. FIXPOINTS OF THE LIMITING FACTOR
The self-limiting factor G(x) has two roots x∗G , compare Figure 3.
For b= 0 one finds x∗G ≈ ±2.4 corresponding to firing-rates
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FIGURE 3 |The roots of the adaption factors. Left: the roots G
(
x ∗0,1

)
= 0 and H (x ∗)= 0, respectively, compare Equation (5), as a function of the

bias b. Note that the roots do not cross, as the factors G and H are conjugate to each other. Right: the respective values y (x ∗) of the neural activity.
Note that y

(
x ∗1
)
− y

(
x ∗0
)
≥ 1/2, for all values of the bias.

y∗G = 0.083 and y∗G = 0.917, respectively, compare also Figure 3.
The roots of G(x) are identical with the two minima of the objec-
tive function Fob, compare the roots of the adaption [Equation
(3)]. The self-limiting nature of the synaptic adaption rules [Equa-
tion (4)] is a consequence of the two roots of G(x), as larger (in
magnitude) membrane potentials will reverse the Hebbian adap-
tion to an anti-Hebbian updating. The roots of G(x) induce, in
addition, the tendency of performing a binary classification. As
an illustration, consider the case of random sequences of discrete
input patterns

yη, η = 1, . . . , Npatt , (17)

with the number of input patterns Npatt being smaller than
the number of afferent neurons, Npatt≤Nw. The inputs
(y1, . . . , yNw ) = y are selected randomly out of the set [Equa-
tion (17)] of Npatt patterns and presented consecutively for small
time intervals. The synaptic updating rules will then lead, as we
have tested through extended simulations, to a synaptic vector w
dividing the space of input patterns into two groups,

w ·
(

yη − ȳ
)
= x∗G(1) for γNpatt states yη

w ·
(

yη − ȳ
)
= x∗G(2) for (1− γ )Npatt states yη

,

(18)
which is a solvable set of Npatt equations for Nw variables (w1, w2,
. . .). Here, we have denoted with x∗G(1) and x∗G(2) the two dis-

tinct roots of G(x), and with ȳ =
(∑

η yη
)
/Npatt the mean input

activity. This outcome of the long-term adaption corresponds to a
binary classification of the Npatt vectors. The membrane potential
x=w·y just takes two values, for all inputs y drawn from the set
of input patterns.

There is one free parameter in Equation (18), namely the frac-
tion γ and (1− γ ) of patterns mapped to x∗G(1) and x∗G(2),
respectively. This fraction γ is determined self-consistently by
the system, through the polyhomeostatic adaption [Equation
(6)] of the bias b, with the system trying to approximate as
close as possible the target firing-rate distribution ∝exp(λy),
see Equation (16).

3. RESULTS
In order to test the behavior of the neuron under rules [Equa-
tion (4, 6)] when presented with different input distributions,
a series of numerical simulations have been performed. In the
following sections, the evolution of the system when faced with
static input distributions is first studied. In particular, princi-
pal component extraction and linear discrimination tasks are
evaluated. These results are then extended to a scenario of vary-
ing input distributions and a fading memory effect is then
analyzed.

3.1. PRINCIPAL COMPONENT EXTRACTION
As a first experiment we consider the case of Nw input neurons
with Gaussian activity distributions p(yj). In this setup a single
component, namely y1, has standard deviation σ and all other
Nw− 1 directions have a smaller standard deviation of σ /2, as
illustrated in Figure 4A. We have selected, for convenience, y1 as
the direction of the principal component. The synaptic updat-
ing rule [Equation (1)] is, however, fully rotational invariant in
the space of input activities and the results of the simulations are
independent of the actual direction of the principal component.
We have verified this independence by running simulations with
dominant components selected randomly in the space of input
activities.

In Figure 4, we present the result for Nw= 100 afferent
neurons and λ=− 2.5 for the target distribution pλ(y), com-
pare Equation (16) in Section 2. The initial synaptic weights
{wj} have been randomly drawn from [−0.006: 0.005] and are
hence quite small, such that the learning rule is initially exclu-
sively Hebbian, viz the membrane potential x is substantially
smaller than the roots x∗G of the limiting factor G(x) (com-
pare Figure 4B where x/x∗G are given by the blue/red dots,
respectively). Hebbian synaptic growth then eventually leads to
larger weights, with the weight along the principal component
(here w1, red line in Figure 4F) becoming very large. At this
stage, the membrane potential x starts to cross the roots x∗G
of the limiting factor G(x) and a stationary state results, with
the weight along the principal component saturating and with
the weights along the non-principal components involved in

Frontiers in Robotics and AI | Computational Intelligence May 2014 | Volume 1 | Article 1 | 6

http://www.frontiersin.org/Computational_Intelligence
http://www.frontiersin.org/Computational_Intelligence/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Echeveste and Gros The Fisher information as a generating functional

A B

0 1 2 3 4 5

t [x10
4
]

-6

-4

-2

0

2

4

6

x

x
x*

G

x*
H

b

C

0 0.2 0.4 0.6 0.8 1
y

0

1

2

3

4

5

6

#

Output distribution

Target exponential

0 0.5 1.0 1.5 0.2

t [x10
5
]

0

0.1

0.2

0.3

0.4

0.5

α
/π

Angle α

D

0 1 2 3 4 5

t [x10
4
]

0

0.2

0.4

0.6

0.8

1

y

y

y(x*
G

)

y(x*
H

)

E

8.8 9 9.2 9.4

w
-0.6 -0.3 0 0.3 0.6

#

//

F

0

2

4

6

8

10

w
1

w
2

w
3

w
4

w
5

0 0.5 1.0 1.5 2.0

t [x10
5
]

-1

-0.5

0

0.5

1w

w
6

w
7

w
8

w
9

w
10

FIGURE 4 | Alignment to the principal component. Simulation results for a
neuron with Nw =100 input neurons with Gaussian input distributions with
one direction (the principal component) having twice the standard deviation
than the other Nw −1 directions. (A) Illustration of the input distribution
density p(y 1, y 2, . . .), with the angle α between the direction of the principal
component

(
PC
)

and w̄ , the synaptic weight vector. (B) Time series of the

membrane potential x (blue), the bias b (yellow), the roots x ∗G of the limiting
factor G(x ) (red), and the root x ∗H of the Hebbian factor H (x ) (green). (C) The

evolution of the angle α of the synaptic weight vector w with respect to the
principal component and (inset) the output distribution p(y ) (red) with respect
to the target exponential (blue). (D) Time series of the output y (blue) and of
the roots y ∗G of the limiting factor G(y ) (red) and the root y ∗H of the Hebbian
factor H (y ) (green). (E) Distribution of synaptic weights p(w ) in the stationary
state for large times. (F) Time evolution of the first ten synaptic weights {wj},
separately for the principal component (upper panel) and for nine other
orthogonal directions (lower panel).

bounded random drifts. This stationary state, with continuously
ongoing online learning, remains stable for arbitrary simulation
times.

The firing rate y(t ) covers the whole available interval [0,
1], in the stationary state, and a sliding threshold emerges self-
consistently. This sliding threshold is given by the root x∗H of
the Hebbian factor H (x); learning is Hebbian/anti-Hebbian for
y > y

(
x∗H
)

and y < y
(
x∗H
)
, respectively. For our simulation, the

sliding threshold is about y
(
x∗H
)
' 0.4 (green dots in Figure 4D)

in the stationary state.

The angle α between the direction of the synaptic weight vector
w and the principal component of input activities is initially large,
close to the random value of π /2, dropping close to zero with
forthgoing synaptic adaption, as shown in Figure 4C, a conse-
quence of the growth of w1. In Figure 4E, we plot the distribution
of the wj, with a separate scale for the principal component, here
w1≈ 9.1 (as averaged over 100 runs). The small components are
Gaussian distributed around zero with a standard deviation of
σ
(non)
w ≈ 0.23, we have hence a large signal-to-noise ratio of

Sw = |w1|/σ
(non)
w ≈ 9.1/0.23 ≈ 40.
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Echeveste and Gros The Fisher information as a generating functional

We also present in the inset of Figure 4C, a comparison between
the actual firing-rate distribution p(y) in the stationary state
and the exponential target distribution ∝exp(λy), entering the
Kullback–Leibler divergence, see Equation (16).

3.2. SIGNAL-TO-NOISE SCALING
For synaptic adaption rules to be biologically significant they
should show stable performance even for large numbers Nw

of afferent neurons, without the need for fine-tuning of the
parameters. This is the case for our plasticity rules.

In Figure 5, we present the scaling behavior of the synaptic
weight configuration. We consider both a large range for the num-
ber Nw of afferent neurons and an extended range for the incoming
signal-to-noise ratio. The input activity distributions p(yj) are
Gaussians with standard deviations σ j= σ⊥ for (j = 2, . . ., Nw),
and with the dominant direction having a width σ 1. We define
the incoming signal-to-noise ratio as Si= σ 1/σ⊥, and investigate
values for Si of 2:1, 4:1, 8:1, 16:1, and 32:1. Shown in Figure 5 is
the evolution of the outgoing signal-to-noise ratio, as a function
of inputs Nw, and the evolution of the angle α. All simulation
parameters are kept otherwise constant.

We define the outgoing signal-to-noise ratio as Sw =

|w1|/σ
(non)
w where w1 is the synaptic weight along the principal

component and σ (non)
w the standard deviation of the remaining

synaptic weights [compare Equation (A2) in Appendix]. The out-
going signal-to-noise ratio is remarkably independent of the actual
number Nw of afferent neurons. Sw shows, in addition, a threshold
behavior, remaining finite even for data input streams character-
ized by small Si. For large value of incoming signal-to-noise ratio,
a linear scaling Sw∝ Si is recovered.

Regarding the angle α, the performance deteriorates, which
increases steadily with Nw. This is, however, a dominantly statisti-
cal effect. In the appendix, we show how the angle α increases with
Nw for a constant outgoing signal-to-noise ratio Sw. This effect is
then just a property of angles in large dimensional spaces and is
independent of the learning rule employed.

It is interesting to compare the simulation results with other
updating rules, like Oja’s rule (Oja, 1997),

ẇj = εoja
[
y(yj − ȳj)− α y2wj

]
. (19)

The original formulation used α= 1 for the relative weight-
ing of the decay term in Equation (19). We find, however, for the
case of non-linear neurons considered here, that Oja’s rule does
not converge for α & 0.1. For the results presented in Figure 6,
we adapted the bias using Equation (6) both when using Oja’s
rule [Equation (19)] and for our plasticity rule [Equation (4)].
The parameter εoja was chosen such that the learning times (or
the number of input patterns) needed for convergence matched,
in this case εoja= 0.1. With Oja’s rule, arbitrarily large outgoing
signal-to-noise ratios are achievable for α→ 0. In this case, the
resulting p(y) becomes binary, as expected. There is hence a trade-
off and only intermediate values for the outgoing signal-to-noise
ratio are achievable for smooth firing-rate distributions p(y). Note
that Sanger’s rule (Sanger, 1989) reduces to Oja’s rule for the case
of a single neuron, as considered here.

We also attempted to compare with the results of the BCM the-
ory (Bienenstock et al., 1982; Intrator and Cooper, 1992; Cooper
and Bear, 2012). The BCM update rule also finds nicely the direc-
tion of the principal component, but runaway synaptic growth
occurs generically in the case of the type of neurons considered
in our study, being non-linear and having an maximal possible
firing rate, with y∈ [0, 1]. This is due to the fact that the upper
cut-off of the firing rate preempts, in general, the sliding threshold
to raise to values necessary to induce a large enough amount of
synaptic weight decay. For the input distributions used through-
out this study, we could not avoid runaway synaptic growth for the
BCM rule.

3.3. LINEAR DISCRIMINATION
An important question regards the behavior of neural learning
rules when no distinct principal component is present in the
data input stream. In Figure 7, we present data for the situation
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FIGURE 5 | Scaling of the adaption rules with the number of afferent
neurons. For constant simulating parameters the signal-to-noise ratio
(left), defined as the ratio |w1|/σ

(non)
w , where w 1 is the synaptic strength

parallel to the principal component and σ (non)
w the standard deviation of

the orthogonal synaptic directions, compare Equation (A2), and the mean
angle (right), of the synaptic weight vector with respect to the principal
component. Shown are results for a range, 2:1, 4:1, 8:1, 16:1, and 32:1,
of the incoming signal-to-noise ratios, defined as the ratio of the

standard deviations between the large and the small components of the
distributions of input activities p(yj). The outgoing signal-to-noise ratio
|w1|/σ

(non)
w remains essentially flat, as a function of Nw; the increase

observed for the average angle α is predominantly a statistical effect,
caused by the presence of an increasingly large number of orthogonal
synaptic weights. The orthogonal weights are all individually small in
magnitude, but their statistical influence sums up increasingly with
raising Nw.
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FIGURE 6 |The output distribution function and the signal-to-noise
ratio. The averaged firing-rate distributions p(y ) for Nw =100 and the
parameter set used previously, compare Figure 5. In comparison, the p(y )
resulted when using a modified Oja’s rule, see Equation (19), for the
synaptic plasticity. Depending on the parameter ε, controlling the strength
of the weight decay in Equation (19), arbitrary large signal-to-noise ratios Sw

can be achieved, on the expense of obtaining binary output distributions.
Note that the form of p(y ) is roughly comparable, for similar signal-to-noise
ratios, for the two approaches. The output tends to cluster, however, around
the target mean for smaller Sw and Oja’s rule.

where two dominant directions have the same standard deviation
σ ≈ 0.22, here for p(y1) and p(y2), with the remaining Nw− 2
directions having a smaller standard deviation σ /4. In our exper-
iment the first direction, y1 is a unimodal Gaussian, as illustrated
in Figure 7A, with the second direction, y2 being bimodal. The
two superposed Gaussian distributions along y2 have individual
widths σ /4 and the distance between the two maxima has been
adjusted so that the overall standard deviation along y2 is also σ .

The synaptic weight vector aligns, for most randomly drawn
starting ensembles {wj}, with the bimodal direction, as shown in
Figures 7C,F. In this case the system tries to adjust its parameters,
namely the synaptic weights and the bias b so that the two peaks
of the bimodal principal component are close to the two zeros
x∗G (red symbols in Figure 7B) of the limiting factor G(x) in the
adaption rule [Equation (4)]. This effect is clearly present in the
results for the membrane potential (blue symbols in Figure 7B),
clustering around the roots of G(x). The system performs, as a
result, a linear discrimination with a bimodal output firing rate,
presented in Figure 7D.

One possibility to characterize the deviation of a probability
distribution from a Gaussian is the excess kurtosis κ (DeCarlo,
1997),

κ =
Qj

σ 4
j

− 3, Qj =

∫
(yj − ȳj)

4p(yj)dyj ,

σ 2
j =

∫
(yj − ȳj)

2p(yj)dyj , (20)

with the normal distribution having, by construction, a vanish-
ing κ→ 0. The excess kurtosis tends to be small or negative on a
finite support pj ∈ [0, 1]. Distributions characterized by a positive

κ show pronounced tails. This statement also holds for trun-
cated Gaussians, as used in our simulations. We have generalized
the experiment presented in Figure 7 by studying the pairwise
competition between three distributions having all the same stan-
dard deviation σ , but varying values of κ , compare Figure 7E: a
bimodal distribution with κ =− 1.69, a unimodal Gaussian with
κ =− 0.63, and a unimodal double exponential with κ =− 0.43.

Running the simulation one thousand times, with randomly
drawn initial conditions, the direction with lower κ was selected
88.8/65.4/64.0% of the times when the competing directions were
bimodal vs. double exponential/Gaussian vs. double exponen-
tial/bimodal vs. Gaussian. In none of the cases would both the
first and the second synaptic weights, w1 and w2, acquire large
absolute values.

The underlying rationale for the updating rules favoring direc-
tions with negative excess kurtosis can be traced back to the
inherent symmetry Fob(−x, 1− y)= Fob(x, y) of the objective
function [Equation (3)], which in turn is a consequence of treat-
ing both large and small firing rates on an equal footing in Fob.
There are two equivalent minima for Fob to which the maxima of
a binary distribution are mapped, as discussed in Section 2.

We have repeated this simulation using the modified Oja’s rule
[Equation (19)], using α= 0.1 and εoja= 0.1. We find a very dis-
tinct sensitivity, with the relative probability for a certain input
direction to be selected being 97.0/99.8/42.1% when the compet-
ing directions were bimodal vs. double exponential/Gaussian vs.
double exponential/bimodal vs. Gaussian. Note that all our input
distributions are centered around 0.5 and truncated to [0, 1]. Oja’s
rule has a preference for unimodal distributions and a strong dis-
like of double exponentials. However, the excess kurtosis does not
seem to be a determining parameter, within Oja’s rule, for the
directional selectivity.

3.4. CONTINUOUS ONLINE LEARNING–FADING MEMORY
Another aspect of relevance concerns the behavior of synaptic plas-
ticity rules for continuous online learning. A basic requirement is
the absence of runaway growth effects in the presence of stationary
input statistics. But how should a neuron react when the statistics
of the afferent input stream changes at a certain point? Should it
adapt immediately, at a very short time scale or should it show
a certain resilience, adapting to the new stimuli only when these
show a certain persistence?

We have examined the behavior of the adaption rules upon
a sudden change of firing-rate statistics of the afferent neurons.
We find, as presented in Figure 8, that the new statistics is recog-
nized autonomously, with a considerable resilience to unlearn the
previously acquired information about the statistics of the input
data stream. The synaptic plasticity rules [Equation (4)] do hence
incorporate a fading memory.

In our experiment, we considered Nw= 100 afferent neurons,
with Gaussian firing distributions having standard deviation σ
for the principal component and σ /2 for the remaining Nw− 1
directions. The sign of the synaptic weights are not of relevance,
as the input distributions p(yj) are symmetric with respect to their
means, taken to be 0.5. The direction of the principal component
is then changed several times, everything else remaining otherwise
unchanged.
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FIGURE 7 | Linear discrimination of bimodal input distributions.
Simulation results for a neuron with Nw =100 with two directions having
the same variance (but one being bimodal) and the other Nw −2 directions
having a standard deviation four times smaller. (A) Illustration of the input
distribution density p(y 1, y 2, . . .). (B) Time series of the membrane
potential x (blue), the bias b (yellow), the roots x ∗G of the limiting factor
G(x ) (red), and the root x ∗H of the Hebbian factor H (x ) (green). (C) The
evolution of the angle β of the synaptic weight vector w with respect to
the axis linking the two ellipsoids and (inset) the output distribution p(y )

(red) in comparison to the target exponential (blue). (D) Time series of the
output y (blue) and of the roots y ∗G of the limiting factor G(y ) (red) and the
root y ∗H of the Hebbian factor H (y ) (green). (E) Illustration of the
distribution functions used, the bimodal competing with the Normal
distributed (alternatively with a double exponential) having the same
variance, all other directions being normally distributed with a four times
smaller standard distribution. (F) Time evolution of the first ten synaptic
weights {wj}, separately for the principal component (upper panel) and for
nine other orthogonal directions (lower panel).

The starting configuration {wj} of synaptic weights has been
drawn randomly from [−0.005: 0005] and the initial learning is
fast, occurring on a time scale of Tinitial≈ 104 updatings, compare
Figure 4, using the same updating rates εw= 0.01 and εb= 0.1
throughout this paper. The time the neuron takes to adapt to the
new input statistics is, however, of the order of Tunlearn≈ 106, viz
about two orders of magnitude larger than Tinitial. New infor-
mation is hence acquired at a slower rate; the system shows a
substantial resilience to unlearn previously acquired memories.

One can observe in Figure 8 an overshoot of the principal
synaptic weight, just before the unlearning starts, as the system

tries to keep the membrane potential x within its working regime,
compare Figure 4D. The system reacts by increasing the largest
synaptic weight when the variance of the input drops along the
corresponding afferent direction, before it can notice that the
principal component of the afferent activities has also changed.

Also included in the simulation presented in Figure 8 is a phase
without any principal component, the statistics of all incoming
p(yj) being identical, viz with the covariance matrix being pro-
portional to unity. One notices that the neuron shows a marked
resilience to forget the previously acquired knowledge, taking
about 5× 107 updates in order to return to a fully randomized
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Echeveste and Gros The Fisher information as a generating functional

FIGURE 8 | Continuous online learning and weak forgetting. The effect
of changing the statistics of the input firing rates p(yj). During (a), (b), and (d)
the principal axis is along y 1, y 2, and y 3, respectively, during (c) there in no
principal component. There are Nw =100 afferent neurons, shown is the
time evolution of the first ten synaptic weights. The standard deviations of
the afferent neurons is σ for the principal direction, if there is any, and σ /2
for all other directions, compare Figure 4. During(c), all inputs have identical
standard deviations σ /2. The initial weight distribution is randomly drawn.
The top/bottom panel shows the results using, respectively, our synaptic
updating rule [Equation (4)] and Oja’s rule [Equation (19)]. Note that it takes
considerably longer, for our updating rule, to unlearn than to learn from
scratch. Learning and unlearning occurs, on the other side, at the same
timescale for Oja’s rule.

drifting configuration of synaptic weights {wj}. The synaptic plas-
ticity rule [Equation (4)] hence leads to an extended fading mem-
ory, which we believe to be a consequence of its multiplicative
structure.

For comparison we have repeated the same experiment using
the modified Oja’s rule [Equation (19)], using α= 0.1 (which
yields the same signal-to-noise ratio, compare Figure 6), and
εoja= 0.1, such that the initial learning rates (achieving 90% of
the stationary value for the principal component) are comparable
for both updating rules. We also kept the same updating Equation
(6) for the bias. For Oja’s rule learning and unlearning occurs on
very similar time scales, reacting immediately to changes in the
statistics of the input activities.

It is presently not entirely clear which form of unlearning is
present in the brain, on the level of individual neurons. While stud-
ies in prefrontal cortex have shown full learning and unlearning
of different categories in binary classification tasks, related in this
context to the concept of adaptive coding (Duncan, 2001), more
complex behavioral responses tend, however, to exhibit slow or
incomplete unlearning such as extinction of paired cue–response

associations, in the context of Pavlovian conditioning (Myers and
Davis, 2002; Quirk and Mueller, 2007). It is also conceivable that
a fading memory may possibly be advantageous in the context of
noisy environments with fluctuating activity statistics.

4. DISCUSSION
Objective functions based on information theoretical principles
play an important role in neuroscience (Intrator and Cooper,
1992; Lengellé and Denoeux, 1996; Goodhill and Sejnowski, 1997;
Kay and Phillips, 2011) and cognitive robotics (Sporns and Lun-
garella, 2006; Ay et al., 2008). Many objective functions inves-
tigated hitherto use either Shannon’s information directly, or
indirectly by considering related measures, like predictive and
mutual entropy (Kraskov et al., 2004), or the Kullback–Leibler
divergence. Objective functions are instances, from a somewhat
larger perspective, of generating functionals, as they are normally
used to derive equations of motion for the neural activity, or to
deduce adaption rules for secondary variables like synaptic weights
or intrinsic parameters. Here, we discuss an objective function
which may be either motivated by its own virtue, as discussed in
Section 2, or by considering the Fisher information as a generating
functional.

The Fisher information encodes the sensitivity of a given prob-
ability distribution function, in our case the distribution of neural
firing rates, with respect to a certain parameter of interest. Cog-
nitive information processing in the brain is all about changing
the neural firing statistics and we hence believe that the Fisher
information constitutes an interesting starting point from where
to formulate guiding principles for plasticity in the brain or
in artificial systems. In particular, we have examined the Fisher
information with respect to changes of the synaptic weights. Min-
imizing this objective function, which we denoted as the synaptic
flux, we find self-limiting adaption rules for unsupervised and
autonomous learning. The adaption rules are Hebbian, with the
self-limitation leading to synaptic competition and an alignment
of the synaptic weight vector with the principal component of the
input data stream.

Synaptic plasticity rules for rate encoding neurons are cru-
cial for artificial neural networks used for cognitive tasks and
machine learning, and important for the interpretation of the
time-averaged behavior of spiking neurons. In this context our
adaption rules make two predictions, which one may eventually
test experimentally. The first prediction concerns the adaption in
the situation where more than one dominant component is present
in the space of input activities. Our model implies for this case a
robust tendency for the synaptic weight vector to favor directions
in the space of input activities being bimodal, characterized by a
negative kurtosis.

Our adaption rules have a second implication, regarding
the robustness of acquired memories with respect to persistent
changes of the statistics of the input activities, in the context of
continuous and unsupervised online learning. We predict that it
is considerably easier for the neuron to detect relevant features in
the space of input activities when starting from a virgin state of a
random synaptic configuration. New features will still be extracted
from the stream of input activities, and old ones unlearned at the
same time, once the initial synaptic adaption process has been
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completed, albeit at a much slower pace. This feature can be
interpreted as a sturdy fading memory.

We have extensively examined the robustness of the behavior
of the synaptic plasticity rules upon variation of the simulation
setup. All results presented here remain fully valid when changing,
e.g., the adaption rate εw, in particular we have examined εw= 0.1
and εw= 0.001. We have also studied other forms of input activ-
ities p(yj) and found only quantitative changes for the response.
For example, we have considered exponentially distributed input
statistics, as a consistency check with the target output distribu-
tion function. We hence believe that the here proposed synaptic
plasticity rules are robust to a considerable degree, a prerequisite
for viable plasticity rules, both in the context of biological and
artificial systems.

The synaptic plasticity rule [Equation (4)] is a product of two
conjugate factors, the limiting factor G(x) and the Hebbian factor
H (x). Runaway synaptic growth occurs, as we have verified numer-
ically, when setting G(x) to a constant. Unlimited synaptic growth
occurs despite the emergence of a sliding threshold [see Equation
(15) of Section 2] as the firing rate y(t )∈ [0,1] is bounded. Run-
away synaptic growth results in increasing (positive and negative)
large membrane potentials x(t ), with the firing becoming binary,
accumulating at the boundaries, viz y→ 0 and y→ 1.

Finally, we comment on the conceptual foundations of this
work. The adaptive time evolution of neural networks and the
continuous reconfiguration of synaptic weights may be viewed
as a self-organizing processes guided by certain target objec-
tives (Prokopenko, 2009; Friston, 2010; Gros, 2010; Linkerhand
and Gros, 2013a). A single objective function will in general
not be enough for generating dynamics of sufficient complex-
ity, as necessary for neural circuitry or synaptic reconfiguration
processes. It has indeed been noted that the interplay between
two or more generating functionals may give rise to highly
non-trivial dynamical states (Linkerhand and Gros, 2013a; Gros,
2014).

In this context, it is important to note that several generating
functionals may in general not be combined to a single overarch-
ing objective function. Dynamical systems can hence show, under
the influence of competing objective functions, complex self-
organizing behavior (Linkerhand and Gros, 2013a; Gros, 2014).
In the present work, we propose that the interplay between two
specific objective functions, namely the Fisher information for the
synaptic flux and the Kullback–Leibler divergence for the informa-
tion content of the neural firing rate, give rise, quite naturally, to a
set of viable adaption rules for self-limiting synaptic and intrinsic
plasticity rules.
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APPENDIX
MODELING ADAPTION FOR LARGE NUMBERS OF
TRANSVERSAL DIRECTIONS
For simulations with Nw Gaussian input distributions p(yj), the
synaptic weight vector adapts to

w = (w1, w2, . . . , wNw ), w1 � wk (k ≥ 2), (A1)

when p(y1) is assumed to have the largest standard deviation σ 1,
with all other p(yk), for k= 2, . . ., Nw having a smaller standard
deviation σ k. The angle α between the synaptic weight vector and
the direction (1, 0, . . ., 0) of the principal component is hence
given by

cos(α) =
w1√

w2
1 +

∑
k>1 w2

k

=
w1√

w2
1 + (Nw − 1)

(
σ
(non)
w

)2

≈
1
√

Nw

w1

σ
(non)
w

, (A2)

where we have defined with σ (non)
w =

(∑
k>1 w2

k

)
/(Nw − 1) the

averaged standard deviation of the non-principal components
(which have generically a vanishing mean). In our simulation
we find, compare Figure 5, an outgoing signal-to-noise ratio

Sw = |w1|/σ
(non)
w which is remarkably independent of Nw and

hence thatα approachesπ /2 likeπ/2−r/
√

Nw in the limit of large
numbers Nw→∞ of afferent neurons, where r is a constant, inde-
pendent of Nw. This statistical degradation of the performance, in
terms of the angle α, is hence a variant of the well-known curse of
dimensionality (Jain et al., 2000).
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