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Decreased STARD10 Expression Is Associated
with Defective Insulin Secretion
in Humans and Mice

Gaelle R. Carrat,1 Ming Hu,1 Marie-Sophie Nguyen-Tu,1 Pauline Chabosseau,1 Kyle J. Gaulton,2,3

Martijn van de Bunt,2,4 Afshan Siddiq,5 Mario Falchi,5,6 Matthias Thurner,2,4 Mickaël Canouil,7,8

Francois Pattou,7,8 Isabelle Leclerc,1 Timothy J. Pullen,1 Matthew C. Cane,1 Priyanka Prabhala,1

William Greenwald,2,3 Anke Schulte,9 Piero Marchetti,10 Mark Ibberson,11 Patrick E. MacDonald,12

Jocelyn E. Manning Fox,12 Anna L. Gloyn,2,4,13 Philippe Froguel,5,7,8 Michele Solimena,14,15,16

Mark I. McCarthy,2,4,13 and Guy A. Rutter1,*

Genetic variants nearARAP1 (CENTD2) and STARD10 influence type 2 diabetes (T2D) risk. The risk alleles impair glucose-induced insulin

secretion and, paradoxically but characteristically, are associated with decreased proinsulin:insulin ratios, indicating improved proinsu-

lin conversion. Neither the identity of the causal variants nor the gene(s) through which risk is conferred have been firmly established.

Whereas ARAP1 encodes a GTPase activating protein, STARD10 is a member of the steroidogenic acute regulatory protein (StAR)-related

lipid transfer protein family. By integrating genetic fine-mapping and epigenomic annotation data and performing promoter-reporter

and chromatin conformational capture (3C) studies in b cell lines, we localize the causal variant(s) at this locus to a 5 kb region that

overlaps a stretch-enhancer active in islets. This region contains several highly correlated T2D-risk variants, including the

rs140130268 indel. Expression QTL analysis of islet transcriptomes from three independent subject groups demonstrated that T2D-

risk allele carriers displayed reduced levels of STARD10 mRNA, with no concomitant change in ARAP1 mRNA levels. Correspondingly,

b-cell-selective deletion of StarD10 inmice led to impaired glucose-stimulated Ca2þ dynamics and insulin secretion and recapitulated the

pattern of improved proinsulin processing observed at the humanGWAS signal. Conversely, overexpression of StarD10 in the adult b cell

improved glucose tolerance in high fat-fed animals. In contrast, manipulation of Arap1 in b cells had no impact on insulin secretion or

proinsulin conversion in mice. This convergence of human and murine data provides compelling evidence that the T2D risk associated

with variation at this locus is mediated through reduction in STARD10 expression in the b cell.
Introduction

Normal glucose homeostasis depends on the correct pro-

cessing of proinsulin and the storage of the mature hor-

mone within secretory granules in the pancreatic b cell.1

Stimulation of insulin secretion by glucose involves the

uptake and metabolism of the sugar via glucose trans-

porters (Glut2 and/or Glut1),2 phosphorylation by gluco-

kinase,3 and enhanced mitochondrial ATP synthesis.4,5

Closure of ATP-sensitive Kþ channels (KATP),
6 plasma

membrane depolarization, and Ca2þ influx7 then prompt

the fusion of insulin-containing secretory granules with

the plasma membrane. Additional, KATP-channel-indepen-

dent mechanisms8 also sensitize the secretory machinery

to Ca2þ.9

Changes in both the number of b cells10 and in the abil-

ity of these cells to respond to glucose11 are involved in the
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development of type 2 diabetes (T2D [MIM: 125853]) in

the face of insulin resistance.12 In addition to lifestyle fac-

tors including obesity (MIM: 601665),13 genetic factors

also contribute substantially to overall T2D risk.14,15

Genome-wide association studies have identified more

than 90 loci associated with type 2 diabetes risk.14,15 In

the majority of cases the identified polymorphisms, which

usually affect b cell function, lie in intronic or intergenic

regions, and neither the identity of the responsible gene(s)

nor the mechanism of action is clear.15,16

T2D is typically characterized by a disruption of proinsu-

lin conversion17,18 and carriers of T2D-risk alleles generally

display increased proinsulin:insulin ratios compared with

those who are homozygous for the protective allele.19 By

contrast, the T2D-risk alleles at a locus adjacent to ARAP1

(MIM: 606646) (formerly called CENTD2) and STARD10

on chromosome 11q1320,21 are robustly associated with a
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Figure 1. Identification of Likely Causal Variants at the ARAP1/STARD10 Locus
(A and B) Quantitative trait locus association between variants at ARAP1/STARD10 and STARD10 (A) or ARAP1 (B) expression level in
human islets. Variants are strongly associated with STARD10 expression level but not ARAP1 level. Colors in each plot represent the
extent of linkage disequilibrium between each tested variant and the T2D index variant

(legend continued on next page)
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marked reduction in proinsulin:insulin ratios.19,22 This un-

usual pattern implies preserved or improved proinsulin

processing despite increased T2D risk.

ARAP1 encodes ARF-GAP, Rho-GAP, ankyrin repeat and

pleckstrin homology domain-containing protein 1, or cen-

taurin delta 2, an ArfGAP (GTPase activating protein) regu-

lated by phosphatidyl inositol 1,4,5-trisphosphate. ARAP1

appears to act on ARF6 (MIM: 600464),23 a known regu-

lator of insulin secretion.24 STARD10 (previously termed

phosphatidylcholine transfer protein, PCTP-like) is a phos-

pholipid transfer protein possessing a steroidogenic acute

regulatory protein (StAR)-related lipid transfer (‘‘StART’’)

domain that facilitates the transport of phosphatidylcho-

line and phosphatidylethanolamine between intracellular

membranes.25 In the mouse, StarD10 is strongly expressed

in testes, liver, and kidney, but much more weakly in other

tissues involved in insulin action and glucose metabolism

such as skeletal muscle.26 STARD10 is the most strongly ex-

pressed of the genes close to the index SNP rs1552224 in

human islets19 and is also highly abundant (second centile

of mRNAs) in mouse islets, where it is the most highly ex-

pressed StarD family member.27 STARD10 expression is

also apparent in both human a and b cells, with similar

mRNA levels in each cell type, and ARAP1 is also expressed

in both cell types albeit at levels approximately one-

third those of STARD10.28 Although global inactivation

of StarD10 in mice has previously implicated this protein

in bile acid homeostasis,29 its role in glucose homeostasis

is unknown.

Recent expression quantitative trait loci (eQTL) studies

in normoglycemic donors30 have suggested that islet

STARD10 expression is correlated with T2D risk variants

at this locus, whereas no such islet eQTL association was

observed for ARAP1. These findings contrast with other re-

sults31 reporting higher ARAP1 mRNA synthesis from the

T2D risk allele. Expression of other nearby genes at this lo-

cus—FCHSD2 (MIM: 611565), ATG16L2 (Figure 1C), and

PDE2A (MIM: 602658) (not shown)—is relatively low in

human islets.19,28

Here, we show first that disease-associated variants in

this locus are associated with STARD10, but not ARAP1,

mRNA levels in human pancreatic islets ascertained from

both diabetic and non-diabetic individuals. Using genetic

and genomic fine mapping and functional analysis in b

cells, we identify a region in intron 2 of STARD10 contain-

ing several variants that is likely to mediate T2D risk at

this locus. Finally, we generate and characterize a series

of mouse strains overexpressing, or inactivated selectively

in the adult b cell, for StarD10 or Arap1. These analyses
(C) Top: probability that each variant at ARAP1/STARD10 is causal fo
derived from chromatin state maps of 12 cell types from ENCODE, i
causal probability (pc ¼ 42%). Middle: chromatin states for each of t
TssA, active promoter; EnhWk, weak enhancer; EnhA, active enhance
moter). Variants with highest causal probabilities, including rs140130
largely inactive in other cell types. Variants highlighted in red were ch
those in green were analyzed in combination (see Results). Bottom: is
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reveal that StarD10 is required for normal insulin secretion,

though its deletion enhances proinsulin processing.
Material and Methods

Materials
cDNAs encoding human full-length ARAP1 and mouse StarD10

were purchased from Genscript and OriGene, respectively. Cell

culture medium was from Sigma and fetal bovine serum (FBS)

from SeraLab.

Identification of Causal Variants using MetaboChip and

Functional Priors
We derived causal probabilities for each variant in the following

way. We first obtained fine-mapping data of variants at 39 T2D

loci (including ARAP1) from the Metabochip.32 For each of the

49 distinct association signals at the 39 loci, we calculated the

Bayesian posterior odds for all variants at each signal using

the approach of Wakefield.33

Previous studies have demonstrated that sets of T2D risk loci

share patterns of functional regulatory annotation in specific cell

types and that this information can be used to help prioritize

causal variants.32,34–37 We thus obtained regulatory chromatin

state data previously generated in 12 cell types which included 9

ENCODE cell types (Gm12878, HepG2, HUVEC, Hsmm, hESC,

Hmec, NHLF, NHEK, and K562), pancreatic islets (PancIslt), and

pre- and mature- adipocytes (hASCt1, hASCt4).32,34,38,39 For

each cell type, we used active enhancer (EnhA), weak enhancer

(EnhWk), and active promoter (TssA) elements for a total of 36

chromatin annotations. For active enhancer elements, we further

defined ‘‘stretch’’ enhancers using a previously described defini-

tion of active enhancers greater than 3 kb in size.35

We modeled the effect of these 36 annotations on the posterior

odds of variants at the 39 T2D loci using fgwas.40 In this procedure

we first iteratively added annotations that increased the likelihood

of the model. With this joint model, we selected the penalty

with the highest penalized cross-validation likelihood. Using the

optimal penalty, we maximized the cross-validation likelihood

by iteratively removing annotations from the model. We then

used the enrichment estimates of each annotation from this final

model as functional priors to update the posterior odds for each

variant at the ARAP1/STARD10 locus. We finally calculated the

posterior causal probability of each variant from these updated

posterior odds.

Chromatin Accessibility Analysis
A total of 23 human islet samples were freshly isolated at the

Oxford Centre for Islet Transplantation as described previously30

and stored for 1–3 days in CMRL or in UW media. The latter

were reactivated in CMRL for 1 hr before processing them further.

Assay for transposase accessible chromatin (ATAC-seq) was per-

formed on these 23 primary pancreatic islet samples as previously
r T2D risk using Metabochip fine-mapping and functional priors
slets, and adipose tissue.32 The indel rs140130268 has the highest
he 12 cell types colored by state (abbreviations: Quies, quiescent;
r; Ins, insulator; Tx, transcription; Repr, repressed; TssP, poised pro-
268, fall in a stretch-enhancer region (dark blue) active in islets and
aracterized individually in functional (promoter-luciferase) assays,
let RNA-seq expression level of each gene transcript in the region.
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described.41 To remove primer dimers, the amplified libraries were

additionally purified with Agencourt AMPure beads. Samples were

multiplexed using primers Ad2.1-6 and paired-end sequenced us-

ing Illumina HiSeq 2500. Raw FASTQ reads were processed with

a departmental/in-house pipeline42 and on the DNase and ChIP

pipeline website (Web Resources). Specifically, library/sequencing

quality was checked with FASTQC (Web Resources) and reads were

mapped to the human genome hg19 via bowtie.43 For reads that

could not be aligned the first time, adapters were removed at the

30 end with Trim Galore (Web Resources). The resulting trimmed

reads were then mapped again with bowtie. Any remaining un-

mapped and trimmed reads were processed with FLASH44 and re-

mapped a third time with bowtie. For each fine-mapped variant at

the ARAP1/STARD10 locus, we then re-mapped reads in the region

against allele-specific reference genomes using WASP.45 We then

retained variants with at least five overlapping reads at the variant

base from >2 different heterozygote samples. For the four result-

ing variants, we then tested for imbalance in the pooled read

counts for each allele from heterozygote samples using a binomial

test.
Expression Quantitative Trait Locus Analysis
IMIDIA Samples

Expression data were acquired and normalized from islet organ do-

nors (81 healthy, 19 T2D) or partial pancreatectomy-laser micro-

dissection samples (32 non-diabetic, 35 T2D) from the IMIDIA

consortium (Web Resources; M. Solimena, personal communica-

tion) with appropriate permissions from donors and/or families.

In brief, genotyping analysis was performed on the DNA from

the same subjects using HumanOmni 2.5-8 beadchip from Illu-

mina using a standard Infinium genotyping protocol. Standard

quality control assessment was carried out on the genotyping

data using PLINK (Web Resources).46 cis-eQTL analysis was per-

formed with a freely available program called matrix eQTL.47

Linear model was used as a parameter for the analysis with age

and gender as covariates. A ‘‘window size’’ of 100 kb was used as

the cisDist; this distance represents the maximum distance at

which gene-SNP pair is considered local. Only cis-eQTL results

for STARD10 and ARAP1 are described in the present manuscript.

Oxford & Edmonton Samples

RNA-seqwas performed on 174 human islet preparations collected

in Oxford, UK, and Edmonton, Canada (an extension of the

data reported in van de Bunt et al.30). In brief, samples were geno-

typed on Illumina HumanOmni2.5þExome beadchips followed

by imputation from the 1000 Genomes phase 3 panel using

SHAPEIT248 and IMPUTE2.49 Raw RNA-seq reads were aligned to

the human genome reference hg19 with STAR50 and expression

quantified at the exon-level. Read count data was normalized to

20M reads, with exons with expression <1 count in >20% of all

samples excluded. This was followed by rank normalization per

exon, after which 30 hidden factors (accounting for non-genic

variability in the samples) were inferred from the count matrix

using PEER.51 cis-eQTL analysis for STARD10 and ARAP1 was per-

formed in a window flanking 1 Mb either side of the transcrip-

tional start site using linear regression (with 30 PEER factors as

covariates) implemented in FastQTL,52 with p values adjusted

through beta-approximation.

Liver Biopsies

Genotyping was performed using Illumina Metabochip DNA

arrays.53 mRNA levels were measured using the Illumina

HumanHT-12 Expression Beadchip. cis-eQTL analysis was per-
The America
formed under R (v.3.3.1) using standard linear regression adjusted

for age and BMI as implemented in FastQTL,52 setting a maximum

distance from the SNP location of 500 kB.
Animals and Ethics
All in vivo procedures were approved by the UK Home Office ac-

cording to Animals (Scientific Procedures) Act 1986 (HO License

PPL 70/7349) and were performed at the Central Biomedical Ser-

vice, Imperial College, London, UK. Animals were housed 2 to 5

per individually ventilated cage in a pathogen-free facility with

12 hr light-dark cycle and had free access to standard mouse

chow diet unless otherwise stated. For high-fat diet treatment,

mice were placed on a high-fat diet at 5 weeks of age (DIO Rodent

Purified Diet w/60% energy from fat; Test Diet). Human islet sam-

ples were obtainedwith appropriate local and ethical approval and

consent from next of kin as required.
Generation of Transgenic Mice
Human ARAP1 and murine StarD10 coding sequences were ampli-

fied from ARAP1-pcDNA3.1þ and StarD10-pCMV-entry6, respec-

tively, with the addition of a single NH2 Flag tag by PCR, and

inserted between the NheI and XhoI sites of the plasmid pBI-L

Tet (Clontech). The resulting plasmid carried a bidirectional

tetracycline-regulated promoter driving expression of both Flag::

ARAP1 or Flag::StarD10 and firefly luciferase.

The above expression cassette was excised from the plasmid

backbone by AatII and AseI digestion and transferred by pronu-

clear microinjection into C57BL/6J mouse oocytes. Successful in-

tegrants were identified by PCR screening. RIP7-rtTA mice on a

C57BL/6 background, expressing the reverse tetracycline transac-

tivator under the control of the rat insulin promoter,54 were

crossed with transgenic mice to permit b-cell-specific, tetracy-

cline-inducible expression of the transgene and luciferase.55

Heterozygous transgenic mice were crossed to homozygous RIP7-

rtTA mice to produce littermates of two genotypes: single trans-

genic (control, RIP7-rtTA/-) and double transgenic (ARAP1 or

StarD10-tg, RIP7-rtTA/transgene-Luc).
Generation of StarD10- and Arap1-Null Mice
StarD10whole body and conditional knockout (KO) mice (C57BL/

6NTac background) were generated by the trans-NIH Knock-

Out Mouse Project (KOMP) and obtained from the KOMP Reposi-

tory (Web Resources) via the international mouse phenotyping

consortium (IMPC).56 Mice homozygous for floxed StarD10

(StarD10fl/fl) or Arap1 (Arap1fl/fl) alleles were crossed to mice

expressing Cre recombinase from the endogenous Ins1 locus

(Ins1-Cre mice).57 This generated StarD10fl/fl:Ins1Creþ (bStarD10

KO) mice, where exon 3 was removed selectively by Cre-mediated

excision in pancreatic b cells, or Arap1fl/fl:Ins1Creþ (bArap1KO)

mice, where exon 12 of Arap1 was removed. Genotyping was per-

formed by PCR of DNA extracted from ear biopsies by the

HotSHOT method58 (primer sequences in Table S1). Ablation of

gene expression from pancreatic islets was assessed by real-time

quantitative PCR (qPCR) on islet RNA and western (immuno-)

blotting.
In Vivo Physiological Studies
All studies were performed on male mice except when data were

comparable between genders, in which case results from males

and females were combined to gain statistical power, as indicated.
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Intraperitoneal Glucose Tolerance Test

Mice fasted overnight (16 hr) were intraperitoneally injected at

~10 am with glucose, 1 g/kg mouse weight. Blood from the tail

vein was obtained at 0, 15, 30, 45, 60, 90, and 120 min after injec-

tion. Blood glucose levels were measured with the Accu-Chek

Aviva glucometer (Roche).

Plasma Insulin Measurement

Mice fasted overnight (16 hr) were intraperitoneally injected at

~10 am with 3 g glucose/kg mouse weight. Blood from the tail

vein was collected into heparin-coated tubes (microvette) at 0,

15, and 30 min after injection. Plasma was separated by centrifu-

gation at 2,0003 g for 5 min. Plasma insulin levels were measured

using an ultrasensitive mouse insulin ELISA kit (Crystal Chem).

Insulin Tolerance Test

Human insulin (Actrapid, Novo Nordisk) was intraperitoneally in-

jected at 3 pm into mice fasted for 5 hr. Blood glucose levels were

measured at 0, 15, 30, 45, 60, 90, and 120 min after injection.

The quantities of insulin injected were 0.5 U/kg (females, chow

diet), 0.75 U/kg (males, chow diet and females, high fat diet), or

1 U/kg (males, high fat diet).

Proinsulin Measurement

Blood from the tail vein was collected into heparin-coated tubes

from female and male mice fasted 5 hr. Plasma proinsulin levels

were measured using a rat/mouse proinsulin ELISA kit (Mercodia).

Islet Isolation and Culture
Mouse islets were isolated after collagenase digestion (Collagenase

NB8 Broad Range, 1 mg/mL, Serva Electrophoresis)59 and subse-

quently cultured in RPMI1640 medium, containing 11 mM

glucose (Sigma) and supplemented with 10% (v/v) fetal

bovine serum plus penicillin (100 units/mL) and streptomycin

(0.1 mg/mL) at 37�C in an atmosphere of humidified air (95%)

and CO2 (5%), for 2 or 3 days prior to experiments.

Insulin Secretion from Mouse Islets
Islets (10/well) were incubated in triplicate for each condition and

treatment. Islets were pre-incubated for 1 hr in 3 mM glucose

Krebs-Ringer-HEPES-Bicarbonate (KRH) buffer prior to secretion

assay (30min) in 3mM, 17mM glucose, or 30mMKCl. The super-

natant were collected and the islets were lysed in 1 mL of acidified

ethanol to measure total insulin content. The insulin concentra-

tion was measured by radioimmunoassay (LINCO/Millipore) or

using an HTRF kit (Cisbio Bioassays).59

qRT-PCR
Total cellular RNA from mouse islets or other tissues was obtained

using TRIzol reagent (Invitrogen) and reverse transcribed with a

High-Capacity cDNA Reverse Transcription Kit (Applied Bio-

systems) according to the manufacturer’s instructions. Real-time

PCR was performed on an ABI-Prism Fast 7500 device (Applied

Biosystems) using the Fast SYBR Green Master Mix (Applied

Biosystems).

Promoter-Reporter Assays and Chromatin

Conformation Capture
INS1(832/13) pancreatic b cells60 were cultured in RPMI medium

(11 mM glucose) supplemented with 10% (v/v) fetal calf serum,

20 mM HEPES, 50 mM beta-mercaptoethanol plus penicillin (100

units/mL) and streptomycin (0.1 mg/mL) at 37�C in an atmo-

sphere of humidified air (95%) and CO2 (5%). EndoC-bH1 cells

were kindly provided by Dr. Philippe Ravassard (CRICM CNRS
242 The American Journal of Human Genetics 100, 238–256, Februar
UMR 7225, Paris, France) and grown in serum-free DMEM (Life

Technology) containing low glucose (1 g/L), 2% (w/v) albumin

from bovine serum fraction V (Roche Diagnostics), 50 mM b-mer-

captoethanol, 10 mM nicotinamide (VWR), 5.5 mg/mL transferrin

(Sigma-Aldrich), 6.7 ng/mL sodium selenite (Sigma-Aldrich), peni-

cillin (100 units/mL), and streptomycin (100 mg/mL).

Identification and Cloning of the ARAP1/STARD10 Variant-Bearing

Regions

Genomic DNAs from HEK293 cells were extracted using DNeasy

blood and tissue kit according to manufacturer’s instruction

(QIAGEN). PCR reactions using Phusion high-fidelity DNA poly-

merase (New England Biolabs) were carried out to amplify

genomic DNA fragments carrying variants using the primer

sets as follow: rs148527516: forward: 50-GCTGCGTCGACGG

CCTGGTCCACCACTAGCC-30 and reverse: 50-GCAAGGGATC

CGCCTCCTACTCAACCCCAGC-30; rs140130268: forward: 50-GC

TGCGTCGACCAGCTCCCCAAAAAGCCACC-30 and reverse:

50-GCAAGGGATCCCGGGTGTGGTGGCTGACACC-30; rs3862791:
forward: 50-ACTGAGGATCCGCTGCGTCGACCCGCGTGAGGA

CTGGTGTGG-30 and reverse: 50-ACTGAGTCGACGCAAGGGAT

CCGCCTCCTGACTTCAGGTGAGG-30; rs7103836: forward: 50-AC
TGAGGATCCAGAGAAGCCTGGCAAATAGCACC-30 and reverse:

50-ACTGAGTCGACGCTGTTTGGATGCTAACGATGATGC-3 0;
rs76550717: forward: 50-ACTGAGGATCCAATCTGGGGCCAAGG

GGTGG-30 and reverse: 50-ACTGAGTCGACGAGCCAGGCTC

CCTCAATCC-30. PCR products were gel purified, digested with

BamHI and SalI, and sub-cloned into the pGL3-promoter vector

(Promega). To generate allelic variants, site-specific mutagenesis

was carried out by a PCR-basedmethod (Q5 site-directedmutagen-

esis kit, New England Biolabs) according to the manufacturer’s

instructions. All constructs were subjected to DNA sequencing.

Luciferase Assay

Luciferase constructs containing variant DNA fragments of 500–

600 bp in each case were co-transfected, using Lipofectamine

2000 (Life Technologies), with CMV-Renilla construct as internal

control, into INS1 (832/13) cells according to manufacturer’s in-

struction. After 48 hr, transfected cells were washed once with

PBS and lysed directly in passive cell lysis buffer from Luciferase

Assay System (Promega). Cells were incubated on a rotating plat-

form at room temperature for 10 min to ensure complete lysis of

cells, and then spun at 10,000 rpm for 1 min to remove cell debris.

Luciferase activity was determined with the Dual-luciferase Assay

Reporter System on a Lumat LB9507 luminometer (Berthold

Technologies).

Chromosome Conformation Capture

Assays were carried out as described.61 In brief, a suspension of

EndoC-bH1 cells was cross-linked with 2% (v/v) formaldehyde at

room temperature for 10 min. The cross-linked DNA was digested

overnight with NcoI. DNA fragments were ligated with T4 DNA

ligase at 16�C overnight (14–16 hr). The ligated 3C DNA was puri-

fied by extraction with phenol/chloroform and precipitation with

ethanol. The ligation products were quantitated by real-time PCR

and normalized to the human CXCL12. The standard curve for

each primer pair was generated using NcoI-digested and T4

DNA-ligated BAC DNA (RP11-101P7) encompassing the human

ARAP1, STARD10, and ATG16L2 loci. The constant primer

was located in the promoter 2 region of STARD10 and its

DNA sequence was 50-CGGAGCCTCCGCGGAGGACC-30. The

sequence of the qPCR probe was 50-CGCTTCACCTGGCTGGG

GAGTGGCTCCTAG-30. The probe was labeled with both

FAM and TAMRA. The individual primers covering variant

regions were: for NcoI fragment �4: 50-GCAGCTTATCTCAGAT
y 2, 2017



Table 1. Association of cis-eQTLs with rs1552224 and rs11603334

SNP Gene Probe

OD Control OD All LCM Control LCM All

b (SE) p Value b (SE) p Value b (SE) p Value b (SE) p Value

rs1552224 STARD10 223103_at 0.26 (0.10) 0.012* 0.30 (0.09) 0.0023* 0.22 (0.13) 0.10 0.32 (0.10) 0.0025*

232322_x_at 0.16 (0.09) 0.069 0.19 (0.08) 0.025* 0.20 (0.13) 0.13 0.21 (0.10) 0.039*

ARAP1 34206_at 0.12 (0.08) 0.11 0.07 (0.08) 0.36 0.06 (0.09) 0.51 –0.04 (0.07) 0.65

212516_at 0.11 (0.06) 0.10 0.06 (0.06) 0.33 0.04 (0.08) 0.59 –0.07 (0.07) 0.26

rs11603334 STARD10 223103_at 0.26 (0.10) 0.013* 0.30 (0.09) 0.0023* 0.22 (0.13) 0.10 0.32 (0.10) 0.0025*

232322_x_at 0.16 (0.09) 0.067 0.19 (0.08) 0.023* 0.20 (0.13) 0.13 0.21 (0.10) 0.039*

ARAP1 34206_at 0.13 (0.08) 0.095 0.07 (0.08) 0.33 0.06 (0.09) 0.51 –0.04 (0.07) 0.65

212516_at 0.11 (0.06) 0.093 0.07 (0.06) 0.29 0.04 (0.08) 0.58 –0.08 (0.07) 0.27

225883_at – – – – 0.05 (0.11) 0.62 –0.05 (0.08) 0.57

Probe names are from Human Genome U133 Plus 2.0 Array from Affymetrix. p values calculated by linear model, and beta (b) is measuring the effect size estimate.
All subjects were corrected for age and gender as covariates in the analysis. Significant values indicated by asterisk (*).
TGAGCCC-30; fragment �6: 50-CCGTGATGTCATCACCCTCC-30;
fragment �7: 50-CCCAACCTTTTTGGCACCAGG-30 and frag-

ment�8: 50-GCACAGCTTAGGAAGGGTCTC-30C. The Taqman re-

action was carried out on fast 9700 PCR machine with Taqman

Fast advanced reagents. PCR reactions were set as below: 95�C
for 10 min, then with 45 cycles at 95�C 30 s and 58�C 45 s. The

real crosslinking frequencies were plotted as percentage of that

of the human CXCL12.

To assess the chromatin association between ARAP1 promoter

region and the variants, the constant primer was designed to

locate in the promoter 2 region of ARAP1 and its DNA sequence

was 50-ACTTCTGTGAGCTCCCTGAGG-30. The sequence of the

qPCR probe was 50-CCAGGCCTGGCCCTGTGCTGGCTCCT

GAGG-30. The probe was labeled with both FAM and TAMRA.

The individual primers covering the variants regions were:

for NcoI fragment 12, 50-CCCAACCTTTTTGGCACCAGG-30;
fragment 13, 50-CCGTGATGTCATCACCCTCC-30; fragment 14,

50-CCTCCTGCACTGAGATTCTCC-30; fragment 15, 50-GCAGCT

TATCTCAGATTGAGCCC-30; fragment 17, 50-CCTGGGTCCC

TAGGACTTTGG-30; and fragment 18, 50-CTGGCAGAGGTGGTTT

GAGC-30
Statistical Analysis
Data are expressed as means 5 SEM. Significance was tested by

Student’s two-tailed t test, Mann-Whitney test for non-parametric

data, and one- or two-way ANOVA with SIDAK multiple compari-

son test, as appropriate, using Graphpad Prism software. p < 0.05

was considered significant.
Results

cis-eQTL Analysis Reveals Association between T2D Risk

Variants at the ARAP1/STARD10 Locus and STARD10 but

Not ARAP1 Expression

Wefirst explored the possibility that possessionof risk alleles

at this locus may lead to changes in the expression of

STARD10orARAP1 inhuman islets from three separate sour-

ces. First,we examined two cohorts froma recentlydescribed

biorepository from the IMIDIA consortium (M. Solimena,
The America
personal communication). This consists of samples from

non-diabetic and T2D subjects taken either (1) post-mortem

(organ donors; OD) or (2) after partial pancreatectomy for

pancreatic disease and laser capture microdissection (PP-

LCM) (167 samples in total). Associations were determined

between signals from themicroarray expression probes indi-

cated inTable 1 and thepreviouslydefinedSNPsat this locus,

rs1552224 and rs11603334,19–21 whichwere used as proxies

for the likely causal variants (see below) with which they

are in linkage disequilibrium (LD). We note that although

cis-eQTLs detected with this approach are likely to reflect as-

sociations with b cells, we do not exclude a contribution

from other islet endocrine cells to the observed signals.

Significant associations were detected between STARD10

mRNA levels and genotype in both OD and PP-LCM

groups, irrespective of the SNP analyzed (Table 1). In all an-

alyses, increased expression was associated with possession

of the minor (T2D-protective) allele.19–21 By contrast, no

such associations were apparent for ARAP1 expression

(Table 1). In RNA-seq data from human islet preparations

ascertained from 174 normoglycemic ODs in Oxford and

Edmonton (this is an extension of a recently reported

sample)30 the lead variants at the locus were full LD proxies

for the significant (FDR < 1%) cis-eQTL for STARD10

(Figure 1A), but no association with ARAP1 (Figure 1B)

mRNA levels was observed.

In the OD and PP-LCM islets from the IMIDIA samples,

it was possible to compare STARD10 and ARAP1 expres-

sion levels from islets gathered from T2D (n ¼ 54) and

nondiabetic (n ¼ 113) subjects. In both OD and PP-

LCM, T2D individuals displayed reduced STARD10 ex-

pression; whereas a reduction in ARAP1 expression in

T2D was observed in OD but not PP-LCM subjects

(Table 2).

Fine Mapping of Variants at the ARAP1/STARD10 Locus

We next used data from a dense fine-mapping study of 39

T2D loci on the Metabochip, involving 27.2k cases and
n Journal of Human Genetics 100, 238–256, February 2, 2017 243



Table 2. Expression of STARD10 and ARAP1 in Healthy and T2D Islets

Gene

OD Data LCM Data

Probeset

Log
Fold
Change p Value

Adjusted
p Value Probeset

Log
Fold
Change p Value

Adjusted
p Value

STARD10 STARD10_238911_at –0.27 0.00618 0.0185* STARD10_238911_at –0.37 0.0216 0.0862

STARD10_232322_x_at –0.15 0.00496 0.0149* STARD10_223103_at –0.17 0.00211 0.00846*

ARAP1 ARAP1_212516_at –0.25 0.000479 0.00144* ARAP1_34206_at 0.10 0.0658 0.263

ARAP1_225883_at 0.17 0.265 1.06

Data are from organ (OD, n ¼ 81 and 19 normoglycemic and T2D, respectively) and partial pancreatectomy/laser capture microdissection (LCM, n ¼ 32,35)
donors (M. Solimena, personnal communication). Fold changes indicate the rate of expression in T2D versus non-diabetic islets. Significant values indicated
by asterisk (*).
57.6k controls,32 to determine which variants at the

ARAP1/STARD10 locus were most likely to be causal. First,

using genetic data alone, we calculated the Bayesian poste-

rior causal probability (pc) for each variant and identified

the set of those variants that collectively explained 99%

of the total probability. This ‘‘credible set’’ included 27 var-

iants, each with relatively modest probabilities of being

causal (max pc ¼ 0.13).

To further distinguish between these 27 candidate vari-

ants, we used the fgwas approach40 to integrate the T2D

fine-mapping data with chromatin state maps from 12

human cell types (including islets; see Material and

Methods). We determined the degree of enrichment for

each enhancer and promoter annotation with respect to

T2D association data across all 39 T2D loci for which

high-density genotype data were available on Metabochip

(see Material and Methods) and used these enrichment

estimates as a prior on the causal evidence for each variant

at the ARAP1/STARD10 locus specifically. The joint anal-

ysis reduced the 99% credible set to 12 variants and identi-

fied several variants with high posterior probabilities

(Figure 1C). These high probability variants all map to

a 5 kb interval in intron 2 of STARD10 within a 22.6 kb

region of stretch-enhancer elements active in pancreatic

islets. Of the variants within this set, the rs140130268

indel accounted for almost half of the re-weighted

causal probability (pc ¼ 42.3%). Neither the previously re-

ported ‘‘index’’ SNP (rs1552224)20,62 nor a second SNP

(rs11603334) previously assigned a putative functional

role31 were members of this re-weighted credible set

(both have pc < 1 3 10–5), indicating that these specific

variants are likely to have been proxies for the true causal

variant, rather than being directly responsible themselves.

The region surrounding the 5 kb region of interest was

relatively more inert in other cell types including in

HepG2 hepatoma cells (Figure 1C). Correspondingly,

more detailed scrutiny of activating H3K4me3 and

H3K27ac signals, as well as open chromatin, in both islet

and liver, confirmed the differences between these two tis-

sues in the region hosting the five variants (Figure S1), in

line with an absence of cis-eQTLs for ARAP1 or STARD10

in liver, as described below.
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To next determine whether variants in the 5 kb fine-

mapped region influence local chromatin structure, we ob-

tained chromatin accessibility data in primary pancreatic

islets using ATAC-seq.41 We identified four fine-mapped

variants in the 5 kb interval that directly overlapped re-

gions of accessible chromatin and thus could serve as

markers of allelic activity. For each variant, we tested for

allelic imbalance in ATAC-seq signal in samples heterozy-

gous for all of these variants. We identified evidence for

imbalance at three variants (rs7103836 p ¼ 3.0 3 10–6,

rs3862791 p ¼ 3.5 3 10–3, rs76550717, p ¼ 0.02). At all

three variants, the T2D risk-increasing allele was correlated

with lower chromatin accessibility, consistent with the cor-

relation of T2D risk alleles with lower STARD10 expression.

This demonstrates that risk alleles of variants in the 5 kb

fine-mapped region are correlated with decreased islet

chromatin accessibility in islets and implies that one or

several variants in this region directly affects local chro-

matin structure. Note that indel imbalance could not be as-

sessed accurately given asymmetric read and mapping

efficiencies.

Indel rs140130268 (Figure 1C), which had the strongest

posterior causal probability, as well as other variants in

the credible set, were carried forward for functional anal-

ysis: two other variants, rs3862791 and rs148527516

(Figure 1C), with low probabilities of contributing to dis-

ease risk (rs3862791 pc ¼ 0.02, rs148527516 pc ¼
0.0001), served as negative controls. Promoter-reporter

studies were performed in the insulin-secreting rat

INS1(832/13) cell line.60 Regions of ~0.5 kb around

the human variants were PCR amplified and sub-cloned

into plasmids downstream of firefly luciferase cDNA ex-

pressed under the control of an SV40 promoter

(Figure 2B). Co-transfection with a control vector allowed

expression to be normalized to that of Renilla luciferase.

No differences were observed between the apparent

enhancer activity of risk and protective alleles of

rs148527516, rs3862791, rs7103836, or rs76550717.

Moreover, simultaneous replacement of the two risk for

the two protective alleles at the closely neighboring

(~650 bp apart) variants rs79430446 and rs140735484, or

of those at rs7103836 and rs61397, failed to impact
y 2, 2017



Figure 2. A Region Carrying Multiple Risk
Variants Including rs140130268 Is Physi-
cally Associated with STARD10 Promoter
and Influences Enhancer Activity
(A) 3C-qPCR analysis of long-distance inter-
actions at the STARD10 locus assessed in
human-derived EndoC-bH1 cells. The rela-
tive level of each ligation product (frag-
ments �4 to –7) is plotted according to its
distance (in kb) from the STARD10 pro-
moter 2 (P2). The constant primer and the
Taqman probe are indicated in orange.
Data were normalized to a CXCL12 loading
control. Blue box, STARD10 Promoter2;
yellow box, qPCR probe; yellow arrow,
qPCR constant primer; red stars, variants.
The NcoI restriction fragments are indi-
cated below the graph. NcoI fragments are
numbered from fragment –1 to –8. The
data represent two or three independent
experiments.
(B) The protective allele of variant
rs140130268 increases the transcriptional
activity of the corresponding region in in-
sulin-secreting cells by luciferase-reporter
assay. Diagram of the luciferase reporter
constructs carrying either the risk or pro-
tective variants. Transcriptional activities
measured by dual luciferase assay after
transfection of INS1(832/13) cells (see
Material and Methods). The risk variant is
shown in red and the protective variant in
blue. Data are from five independent exper-
iments, represented as the mean 5 SEM,
and significance was calculated by Mann-
Whitney two-tailed test.
enhancer activity in this assay (not shown). By contast, the

T2D-protective (-GTTT) allele at rs140130268 displayed

significantly (~40%) higher activity than the T2D-risk

form (Figure 2B).

To determine whether the above region was able to phys-

ically associate with the STARD10 promoter, chromatin

conformation capture (3C) analysis61 was performed using

human EndoC-bH1 cells.63 STARD10 may be expressed

from one of two promoters (P1 and P2) located at the 50

end of exon 1 or exon 2, respectively.35 RNA-seq analysis

from human islets (Figure 1C)35 indicates that transcripts

from P2 are the most abundant in islets. The results

of 3C analysis using the restriction enzyme NcoI are

presented in Figure 2A. Cross-linking frequencies

were observed at the genomic DNA fragment (NcoI frag-

ment –4) carrying rs140130268 as well as surrounding re-

gions (NcoI fragments –4 and –7) demonstrating that

STARD10 P2 interacts physically with the 5 kb fine-

mapped interval and may thus be impacted by variation

at rs140130268 as well as other credible set variants.
The American Journal of Human Ge
A similar experiment was performed

with ARAP1 promoter 2, which is the

most active in islets (Figure S2). We

also observed an association between

the previous index SNP at this locus
(rs1552224) which is located in the 50 UTR of ARAP1 and

sites located across the entire locus.

cis-eQTLs for STARD10 and ARAP1 Are Not Detected in

the Liver

Given the characteristic effect of this locus on apparent

proinsulin processing and the importance of liver, where

STARD10 is also highly expressed, for proinsulin clearance,

we assessed data from previous reports64,65 to determine

whether similar T2D-GWAS coincident cis-eQTLs were

observed for this tissue. We examined publicly available

datasets including samples from 97 (GTex)64 and 600

(STARNET)65 samples, respectively. In contrast to the situ-

ation in islets, the previously reported cis-eQTLs for

STARD10 in the liver were in very low LD (r2 ~0.1) with

the identified T2D locus, and no liver cis-eQTL was

observed for ARAP1.

In order to further validate the above results, we

searched for cis-eQTLs for these genes in a separate

cohort of liver biopsies from 186 female subjects in the
netics 100, 238–256, February 2, 2017 245



Figure 3. Defective Proinsulin Processing and In Vitro Insulin Secretion in bStarD10 KO Mice
(A) Western blot analysis of STARD10 in pancreatic islets of wild-type (Cre�) and littermate bStarD10 KO mice (Creþ).
(B) Growth curves are similar in male WT and bStarD10 KO littermates maintained on a regular chow diet.
(C) Increased fed glycemia in 14-week-old male bStarD10 KO compared to WT littermates (n ¼ 8–9 mice per genotype, *p < 0.05, un-
paired two-tailed Student’s t test).
(D) Glucose tolerance at 8, 12, and 16 weeks of age are similar in maleWTand bStarD10 KO littermates as determined by intraperitoneal
glucose tolerance tests (1 g/kg).

(legend continued on next page)
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ABOS (‘‘Atlas Biologique de l’Obésité Sévère’’) cohort

(ClinicalTrials: NCT01129297)66 collection. Since none

of the variants in the credible set were detected in

Metabochip samples after QC checks (see Material and

Methods), we used proxy SNPs for four of the five variants

(rs140130268, rs148527516, rs7103836, rs76550717).

None of these proxies displayed any significant association

with probes for ARAP1 or STARD10.

Defective Glucose Homeostasis and Insulin Secretion in

Mice Deleted Selectively for StarD10 in the b Cell

Mice lacking StarD10 selectively in the b cell (bStarD10 KO)

were generated by crossing StarD10 floxed mice, in which

LoxP sites were present at either side of exon 3, to mice car-

rying an Ins1Cre allele.57 The latter strain allows efficient

(>94%) deletion in b cells, without significant recombina-

tion at extra-pancreatic sites including the brain or the

expression of human growth hormone.67 Levels of StarD10

mRNA (not shown) and protein (Figure 3A) were markedly

reduced in islets from bStarD10 KO mice, demonstrating

efficient deletion from b cells. bStarD10 KOmice displayed

significantly higher fed glycaemia at 14 weeks of age

(Figure 3C), although glucose tolerance was not different

compared to control Cre– littermates at 16 weeks of age

(Figure 3D). Insulin sensitivity (Figure 3E) and in vivo insu-

lin secretion in response to glucose (Figure 3F) remained

unchanged in bStarD10 KO mice versus controls. While

vesicle density at the plasma membrane, assessed using

total internal reflection of fluorescence (TIRF) microscopy,

was not altered by StarD10 deletion (Figures S3A and S3B),

increases in the number of exocytotic events in response to

glucose or KCl tended to be reduced (Figure S3C). Impor-

tantly, proinsulin:insulin ratios were significantly lower

in bStarD10 KO mice compared to controls (Figure 3G).

Indicating defects in both glucose sensing and meta-

bolism-independent insulin secretion, cytosolic Ca2þ in-

creases in response to high glucose were diminished

(Figure 3H), and both glucose- and KCl-induced insulin

secretion (Figure 3I) were impaired in islets from bStarD10

KO animals, compared to controls.

Impaired Glucose Homeostasis in Global StarD10-Null

Mice

Given the mild glycaemic defects observed in bStarD10 KO

animals and the fact that StarD10 is highly expressed in the

liver (bioGps, Web Resources), we next explored glucose
(E) Insulin sensitivity is similar in 17-week-old WT and bStarD10 K
(0.75 U/kg insulin). n ¼ 8–9 mice per genotype.
(F) In vivo insulin secretionmeasured from plasma collected after intr
are unaffected. n ¼ 4–6 mice per genotype.
(G) Fasting plasma proinsulin:insulin ratio frommale and female 20-
mates (n ¼ 16 mice per genotype; *p < 0.05, unpaired two-tailed Stu
(H) Intracellular Ca2þ responses of islets isolated frommale and femal
**p < 0.01, unpaired two-tailed Student’s t test).
(I) Impaired glucose (17 mM)- and KCl (30 mM)-induced insulin secr
mice per genotype; **p < 0.01, ***p < 0.001 unpaired two-tailed Stu
All data are represented as the mean 5 SEM.

The America
homeostasis in animals deleted globally (‘‘tm1a allele’’)56

(IMPC, Web Resources) for StarD10. This approach gener-

ates a null allele through splicing to a lacZ trapping

element inserted into the second intron of StarD10. Corre-

spondingly, StarD10 mRNA was eliminated from both

the liver and pancreatic islets (data not shown) and

STARD10 depletion from islets (Figure 4A) and liver (not

shown) was verified by western blotting. Body weights of

animals fed a normal chow diet were indistinguishable

between genotypes (Figure 4B). However, compared to

wild-type controls, male StarD10þ/– and StarD10–/– mice

exhibited higher fed glycemia from 14 weeks (Figure 4C)

and developed glucose intolerance from 16 weeks of age

(Figure 4D). StarD10þ/– and StarD10–/– mice also showed

markedly reduced insulin sensitivity (Figure 4E) and insu-

lin secretion in response to glucose was sharply reduced

in vivo (Figure 4F). In common with bStarD10 KO mice,

the ratio of circulating proinsulin:insulin was also dimin-

ished in StarD10–/– mice versus controls (Figure 4G).

Examined in isolated islets from male and female mice

combined, cytosolic Ca2þ responses to glucose, though

not KCl, were also decreased in StarD10-null animals,

compared to wild-type mice (Figure 4H). Correspondingly,

insulin secretion (Figure 4I) was markedly impaired in is-

lets from StarD10–/– versus wild-type mice. KCl-stimulated

insulin secretion was also strongly diminished in islets

from the null mice (Figure 4I, right). By contrast, b cell

mass was increased, though b:a cell ratio was not affected,

in null animals (Figure S4).

Glucose Homeostasis Is Improved in Mice

Overexpressing StarD10 in Pancreatic b Cells

In light of the findings above, we generated mice in which

StarD10 was overexpressed selectively in the b cell in

adults under the control of an insulin 2 promoter-driven

reverse tetracycline trans-activator (Rip7-rtTA).55 Trans-

gene expression was induced by doxycycline (2 g/L) at

5 weeks of age (Figure S5A). Transgenic animals fed a

normal chow diet displayed no alterations in body weight

(Figure S5B, solid lines) and exhibited similar glucose

tolerance compared to wild-type littermates (Figure S5C).

However, StarD10-tg male mice fed a high fat diet (HFD,

60% total calories from fat) (Figure S5C, dotted lines)

displayed improved intraperitoneal glucose tolerance

(16 weeks, AUC: WT: 2,586 5 153 M.min; StarD10-tg:

1,818 5 129 M.min; p < 0.05). These animals gained less
O littermates as assessed by intraperitoneal insulin tolerance test

aperitoneal glucose injection (3 g/kg) from 18-week-old male mice

week-old mice is decreased in bStarD10 KO compared to WT litter-
dent’s t test).
e mice to 17mMglucose and 20mMKCl (n¼ 5mice per genotype;

etion assessed in islets isolated from male and female mice (n ¼ 5
dent’s t test).

n Journal of Human Genetics 100, 238–256, February 2, 2017 247



Figure 4. Defective Glucose Homeostasis, Insulin Secretion, and Proinsulin Processing in StarD10 Global KO Mice
(A) Western blot analysis of STARD10 in pancreatic islets of StarD10þ/þ, StarD10þ/–, and StarD10–/– mice.
(B) Growth curves are similar in StarD10-WT (black), heterozygous (light blue), and null (dark blue) male littermates maintained on a
regular chow diet.

(legend continued on next page)
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weight than control littermates (Figure S5B, dotted lines;

16 weeks, WT: 39.13 5 1.91 g; StarD10-tg: 32.66 5

1.73 g; p < 0.01) though insulin sensitivity was not

significantly affected (Figure S5D). Glucose-induced cyto-

solic Ca2þ responses (Figure S5E) and insulin secretion

(Figure S5F) were indistinguishable between isolated islets

from StarD10-tg animals fed a normal chow diet and those

isolated from wild-type littermates.

Unaltered Glucose Homeostasis and Proinsulin

Processing after Deletion of Arap1 Selectively in the

Pancreatic b Cell

Wenext examined the impact of ablating Arap1 expression

selectively in the b cell. Mice bearing floxed alleles of Arap1,

in which LoxP sites were present at either side of exon 12,

were bred to mice carrying an Ins1Cre allele57 as above.

Islet ARAP1 immunoreactivity was reduced by >70%–

80% (Figure 5A), reflecting selective deletion from b cells.

Mice null for Arap1 displayed normal changes in

body weight (Figure 5B) and fed glycemia (Figure 5C), un-

altered glucose tolerance (Figure 5D), insulin sensitivity

(Figure 5E), and glucose-stimulated insulin secretion

in vivo (Figure 5F). In marked contrast to bStarD10 KO

mice, fasting proinsulin:insulin ratios (Figure 5G), intracel-

lular Ca2þ dynamics (Figure 5H), and insulin secretion

from isolated islets (Figure 5I) were indistinguishable be-

tween bArap1 KO mice and littermate controls.

Overexpression of ARAP1 in Pancreatic b Cells Does Not

Affect Glucose Homeostasis in Mice

Given that previous studies31 reported an association be-

tween the possession of risk alleles and increased expression

of ARAP1, we also explored the impact of overexpressing

ARAP1 in b cells (Figure S6A). There were no differences

in body weight between control (black) and transgenic

(red) animals (Figure S6B) fed either a regular chow (solid

lines) or a high fat diet (HFD; dotted lines). Transgenic an-

imals fed a regular chow diet (Figure S6C, solid lines)

showed little evidence of abnormal glucose tolerance until

16 weeks of age, other than a small increase in peak blood

glucose observed at 8 weeks of age. Similarly, transgenic
(C) Dose-dependant increases in fed glycemia in 14-week-old male d
Tukey post-test).
(D) Impaired glucose tolerance in 16-week-old male StarD10þ/– and S
peritoneal glucose tolerance (1 g/kg) (n¼ 8–12mice per genotype; *p
(E) Intraperitoneal insulin tolerance was assessed at 17 weeks of age i
sion and area under the curve (AUC) are shown (n¼ 8–12mice per ge
post-test).
(F) In vivo insulin secretionmeasured from plasma collected after intr
represented in ng/mL or as fold change over basal (inset) (n ¼ 7–8 m
(G) Decreased fasting plasma proinsulin:insulin ratio in 20-week-ol
10–17 mice per genotype, unpaired two-tailed Student’s t test).
(H) Impaired glucose (17 mM) induced calcium responses in male an
type; **p < 0.01, unpaired two-tailed Student’s t test).
(I) Impaired glucose (17 mM) and KCl (30mM) insulin secretion asses
littermates, in perifusion (left; (i), 4–6.5 min; (ii), 15–32 min) or static
***p < 0.001, unpaired two-tailed Student’s t tests).
All data are represented as the mean 5 SEM.
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animals fed a HFD (Figure S6C, dotted lines) presented

with no abnormalities in intraperitoneal glucose tolerance.

Intracellular free Ca2þ increases (Figure S6D) and insulin

secretion in response to high glucose (Figure S6E) were

also identical between the two genotypes.

These data further argue against a role for increased

ARAP1 expression in the b cell as responsible for the diabe-

togenic effects of T2D risk alleles at this locus.

Given the existence of insulin resistance in global

StarD10 mice, likely to be the result of changes in liver

function, we reassessed the impact of variants near

ARAP1 and STARD10 on this parameter in humans by

consulting previously published data.68 HOMA-IR revealed

no changes in insulin sensitivity in risk allele carriers

(results not shown).
Discussion

Our primary aim in the present study was to establish

which gene(s) at the previously identified T2D association

signal at the ARAP1/STARD10 locus contribute to altered

T2D risk in humans, and the likely tissue through which

these effects were observed. Using a combination of hu-

man pancreatic islet transcriptome data, in vitro studies,

and molecular genetics in mice, we provide evidence,

discussed in detail below, that the pathogenic action is

mediated, at least in large part, via decreases in STARD10,

but not ARAP1, expression in the b cell.

First, we identify a 5 kb region in intron 2 of STARD10

that: (1) captures the T2D GWAS association signal; (2) is

associated with STARD10, but not ARAP1, mRNA expres-

sion in human islets and physically interacts with the pro-

moter for the STARD10 isoform dominant in islets; (3)

overlays a stretch-enhancer in islets; (4) is correlated with

local chromatin structure in islets; and (5) contains allelic

variants shown experimentally to alter enhancer function.

Though this region contains several highly correlated

candidate variants, which may individually or jointly

contribute to T2D risk, we demonstrate that the variant

most likely to underlie the associations has a direct effect
eleted for StarD10, compared to WT littermates (one-way ANOVA,

tarD10–/– compared to StarD10þ/þ littermates as assessed by intra-
< 0.05, **p< 0.01, ***p< 0.001, two-way ANOVA, Sidak post-test).
n mice fed a regular chow diet (0.75 U/kg insulin). Glucose excur-
notype; *p< 0.05, **p< 0.01, ***p< 0.001, two-way ANOVA, Sidak

aperitoneal glucose injection (3 g/kg) from 18-week-oldmale mice,
ice per genotype; ***p < 0.001, two-way ANOVA, Sidak post-test).
d male and female StarD10–/– versus StarD10þ/þ littermates (n ¼

d female StarD10–/– versus StarD10þ/þ islets (n ¼ 4 mice per geno-

sed in islets isolated frommale and female bStarD10 KO versusWT
incubation (right) (n¼ 4 mice per genotype, *p< 0.05, **p< 0.01,
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Figure 5. Normal Glucose Homeostasis, Insulin Secretion, and Proinsulin Processing in bArap1 KO Mice
(A) Western blot analysis of ARAP1 in pancreatic islets of WT (Cre�) and Arap1 b cell KO mice (Creþ). The arrows depict the short
(130 kDa) and long (160 kDa) variants of ARAP1.
(B) Growth curves are similar in male WT and bArap1 KO littermates maintained on a regular chow diet.
(C) Fed glycemia are identical in 14-week-old male WT and bArap1 KO littermates.

(legend continued on next page)
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on local enhancer function. Of note, the risk allele of indel

rs140130268, a gain of a GTTT repeat, is associated with

lowered enhancer activity (Figure 2B). Such repeats are

associated with Crohn disease69 and neurodegenerative

disorders,70,71 in each case decreasing the transcription of

nearby genes.

In contrast to recent findings,31 but in line with other

studies,30,72 we obtained no evidence of an association be-

tween the risk allele at rs1552224 and increased ARAP1

expression levels in islets. On the other hand, when

we extended a previous study of human pancreatic islet

expression30 that had associated increased STARD10

expression with the minor (T2D-protective) allele at the

GWAS proxy variant rs1552224 and added human islet

data from two new independent subject groups provided

by the IMIDIA consortium, derived from both organ do-

nors and partial pancreatectomy patients, we could show

reproducible association with STARD10 expression. The

latter samples provide data for the first time from T2D sub-

jects: interestingly, both STARD10 and ARAP1 expression

were decreased in T2D islets versus non-diabetic controls,

the former in common with earlier findings,73 and further

suggesting that STARD10 depletion may impair insulin

production in the diseased state. Given the absence of a

cis-eQTL for ARAP1, we interpret the reduced expression

of this gene in T2D versus non-diabetic islets as being reac-

tive rather than causal.

Although the more marked glycemic phenotype of

global versus b cell-selective StarD10 mice might appear

to suggest an action of T2D-associated variants at the

ARAP1/STARD10 locus via the liver or other insulin-sensi-

tive tissues, several lines of evidence point away from

this possibility. First, changes in fed glycemia were similar

in both global and b cell-selective StarD10-null mice and

the lowering of plasma proinsulin:insulin ratio, which

characterizes carriers of the human risk alleles at this lo-

cus,19 was similarly recapitulated in both models. The

latter observation strongly suggests that alterations in pro-

insulin processing in the b cell, rather than preferential

clearance of proinsulin by the liver in the absence of

StarD10 in the latter tissue, are responsible for the altered

circulating levels of the two forms of insulin (Figures 3

and 4). Deletion of StarD10 selectively in liver cells will

be needed in the future to confirm or refute this point. Sec-

ond, previous GWASs and meta-analyses in man19,20,68

demonstrated that risk variants at this locus are associated
(D) Unaffected glucose tolerance in 8-, 12-, and 16-week-old male b
glucose tolerance tests (1 g/kg).
(E) Insulin sensitivity is similar in 17-week-old male WT and bArap1
(0.75 U/kg insulin). n ¼ 8–14 mice per genotype.
(F) In vivo insulin secretionmeasured from plasma collected after intr
remain unnaffected. n ¼ 7–10 mice per genotype.
(G) Fasting plasma proinsulin:insulin ratios are similar in 20-week-ol
per genotype.
(H) Calcium responses of isolated islets to 17 mM glucose and 20 m
(I) Insulin secretion assessed in isolated islets remain similar between
All data are represented as the mean 5 SEM.

The America
with a negative log HOMA-B, implying decreased b cell

function. By contrast, no associations were found with

HOMA-IR, thus indicating unaltered insulin sensitivity.

In line with this, decreased insulin secretion during

OGTT was observed in non-diabetic carriers of risk al-

leles,21,74 with no alteration of the insulin sensitivity

index. Third, a change in STARD10 (but not ARAP1)

expression associated with genotype was clearly observed

in islets as well as from pancreatic tissue obtained by

LCM and thus partially enriched in b cells (Table 1).

Fourth, analysis of active histone marks and DNAase hy-

persensitivity reveals that the implicated variants at this lo-

cus reside in large stretch-enhancer specific to islets but

largely absent from liver-derived cells (Figures 1C and

S1). Fifth, the identified variants were located in a region

shown by 3C analysis to be physically associated with

the STARD10 promoter in a human b cell-derived line

(Figure 2A). Interestingly, a physical association was also

detected between the ARAP1 promoter and the same re-

gion (Figure S2), though the functional significance of

this is obscure. Thus, sixth, eQTLs in significant LD with

the T2D locus are not detected in human liver samples

from the GTEx64 or STARNET65 consortia as well as sam-

ples from the ABOS consortium.66 Based on the power

calculation provided by the GTEx Consortium,75 and

given that the minor allele frequency for variants at the

STARD10/ARAP1 locus is 15%,19 then with a sample size

of n ¼ 186 (ABOS)66 or n ¼ 600 (STARNET,)65 we would

expect a power of 90% or 100%, respectively, to detect a

b of 0.15 at a 2.5 3 10–7. In neither of these cases, nor

in the GTex samples (n¼ 97),64 are liver cis-eQTLs detected

for either STARD10 or ARAP1. Although the above power

calculations75 are somewhat imprecise given differing

expression levels, the latter two studies65,66 are thus

adequately powered to detect cis-eQTLs for STARD10 or

ARAP1 in the liver of the same size or smaller than that

seen in islets. Instead, our analysis of more than 800 liver

samples from three separate groups fails to identify any

liver cis-eQTLs for either ARAP1 or STARD10 of comparable

size to that detected for STARD10 in islet samples from

341 subjects (Figure 1, Table 1). Nevertheless, we do not

exclude the possibility that future, even larger eQTL

studies, might identify more subtle effects on the expres-

sion of additional genes at this locus.

Studies in mice also provided further functional evi-

dence for STARD10 as the gene most likely to confer effects
Arap1 KO versus WT littermates as determined by intraperitoneal

KO littermates as assessed by intraperitoneal insulin tolerance test

aperitoneal glucose injection (3 g/kg) from 18-week-old male mice

d male and female WT and bArap1 KO littermates; n ¼ 16–23 mice

M KCl are unaffected.
genotypes; n ¼ 3–7 mice per genotype.
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on T2D risk at this locus. Thus, highly targeted disruption

of Arap1 in b cells had no effect on insulin secretion in vivo

or in vitro nor on circulating proinsulin:insulin ratios.

Furthermore, inducible overexpression of ARAP1 in b cells

in adult mice failed to exert substantial effects on insulin

secretion or glucose tolerance. Again, global or liver-spe-

cific deletion ofArap1will be useful in the future to exclude

any possible contribution of this gene to the action of risk

variants through the latter tissue.

Together, this body of evidence points toward an action

of the T2D-associated variants via the b cell and through

changes in STARD10 expression. Futher work will need

to be undertaken to explore the molecular mechanisms

through which the observed variants affect STARD10

expression, including the identification of transcription

factors which bind in this region. While interrogation

of the Islet Regulome browser (Web Resources)34 reveals

that none of five key b cell transcription factors examined

by ChIP-seq in human islets (FOXA2, MAFB, NKX2.2,

NKX6.1, and PDX1) bind at this site, the binding of High

Mobility Group Box 1 (HMGB1) is predicted to be affected

by GTTT deletion.76 However, our preliminary experi-

ments (not shown) have failed to provide any evidence

to support this possibility.

We would note that the relevance of changes in insulin

sensitivity in StarD10-null mice as regards impact of T2D

variants at the ARAP1/STARD10 locus is questionable,

given the absence of any evidence for an impact of this

locus on insulin signaling (see above). Nevertheless, the

more striking glycemic phenotype of the global versus

the b cell-selective StarD10-null mouse (Figure 3 versus

Figure 4) means that the extra-pancreatic actions of thera-

peutic agents that seek to target STARD10 will need to be

given careful consideration.

Possible Mechanisms of STARD10 Action on Insulin

Processing and Secretion

By what means may STARD10 depletion impair insulin

secretion while preserving proinsulin processing? First,

since STARD10 is concentrated in sperm flagella,26 a site

of vigorous energy comsumption, the enzyme might

conceivably be required for normal glucose metabolism

and signaling in the b cells.77 Supporting this view,

glucose-induced Ca2þ dynamics, likely reflecting glucose-

dependent ATP generation, were impaired in StarD10-

null b cells. On the other hand, preliminary lipidomic

analysis in liver (not shown) indicates changes that, if

they also affect the b cell granule or plasma membranes,

may impair exocytosis or favor intracellular retention of

unprocessed insulin. Finally, impaired exocytosis may of

itself improve processing by increasing dwell time in the

maturing granule.19 Interestingly, we saw no significant

change in the number of morphologically docked granules

at the plasma membrane by TIRF imaging (Figure S3),

despite a trend (p ¼ 0.06) toward a reduction in secretion

in response to depolarization with KCl, implying impaired

exocytotic competence of granules. This may be consistent
252 The American Journal of Human Genetics 100, 238–256, Februar
with altered granule membrane lipid composition

and defective incorporation of SNAP/SNARE proteins.78

Finally, transcriptional mechanisms, as proposed for the

control by STARD10 of PPARa (MIM: 170998),29 may also

play a role.

Conclusions

The present study has used multiple complementary ap-

proaches to assess the identity of the gene(s) and the site(s)

of action of variants at a locus on chromosome 11q associ-

ated with T2D risk in several earlier studies.19–22 This

multi-faceted approach has been adopted since, in our

view, no one single piece of evidence can be considered

definitive in connecting true GWAS signals to their down-

stream effectors as each has intrinsic limitations. Rather, it

is the alignment of multiple types of data, each supporting

the same hypothesis which, as here, provides compelling

evidence to establish a particular gene as the effector tran-

script at a given locus.

Although it is anticipated that future studies will bring

important additional insights, our findings challenge the

existing view that alterations in ARAP1 expression in the

b cell represent the sole or most important mechanism31

but instead imply a role for STARD10 in this tissue. The

molecular mechanisms through which the encoded lipid

transfer protein affects b cell physiology, and in particular

proinsulin processing, should provide exciting avenues for

future research and possibly therapeutic exploitation.
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U1016, Université Paris Descartes, Paris, France) for advice on

the use of EndoC-bH1 cells and Professor Timothy Frayling
y 2, 2017

http://dx.doi.org/10.1016/j.ajhg.2017.01.011
http://dx.doi.org/10.1016/j.ajhg.2017.01.011


(University of Exeter) for re-analysis of data from the MAGIC

consortium. A.L.G. is a Wellcome Trust Senior Fellow in Basic

Biomedical Science (095101/Z/10/Z). M.I.M. is a Wellcome Trust

Senior Investigator and received Wellcome Trust grants 090532,

098381, and 106130, NIH (US) awards UO1-DK105535 and

RO1-MH101814, MRC Programme MR/L020149/1, and funds

from the Oxford NIHR Biomedical Research Centre. M.v.d.B. is

supported by a Novo Nordisk postdoctoral fellowship run in part-

nership with the University of Oxford. Human islet isolation in

Edmonton was funded in part by the Alberta Diabetes Foundation

and the University of Alberta. P.E.M. was supported by a 2016-

2017 Killam Annual Professorship. K.J.G. is supported by NIH

grant P30-DK063491.

Received: July 25, 2016

Accepted: December 20, 2016

Published: January 26, 2017
Web Resources

BioGPS, http://biogps.org/

ClinicalTrials.gov, http://clinicaltrials.gov

DNase and ChIP pipeline, http://userweb.molbiol.ox.ac.uk/

public/telenius/PipeSite.html

European Nucleotide Archive, http://www.ebi.ac.uk/ena

FastQC, http://www.bioinformatics.babraham.ac.uk/projects/fastqc

IMIDIA, http://www.imidia.org

International Mouse Phenotyping Consortium, http://www.

mousephenotype.org/

Islet regulome, http://gattaca.imppc.org/isletregulome/home

Knockout Mouse Project (KOMP) Repository, https://www.

komp.org/

OMIM, http://www.omim.org/

PLINK, http://pngu.mgh.harvard.edu/~purcell/plink/

TrimGalore, http://www.bioinformatics.babraham.ac.uk/projects/

trim_galore/
References

1. Steiner, D.F. (1990). The biosynthesis of insulin. In Insulin, P.

Cuatracasas and S. Jacobs, eds. (Berlin, Heidelberg: Springer-

Verlag), pp. 67–92.

2. Thorens, B., Sarkar, H.K., Kaback, H.R., and Lodish, H.F.

(1988). Cloning and functional expression in bacteria of a

novel glucose transporter present in liver, intestine, kidney,

and beta-pancreatic islet cells. Cell 55, 281–290.

3. Matschinsky, F.M., and Collins, H.W. (1997). Essential

biochemical design features of the fuel-sensing system in

pancreatic beta-cells. Chem. Biol. 4, 249–257.

4. Rutter, G.A. (2004). Visualising insulin secretion. The Min-

kowski Lecture 2004. Diabetologia 47, 1861–1872.

5. Tarasov, A.I., Griffiths, E.J., and Rutter, G.A. (2012). Regulation

of ATP production by mitochondrial Ca(2þ). Cell Calcium 52,

28–35.

6. Ashcroft, F.M., and Rorsman, P. (2013). K(ATP) channels and

islet hormone secretion: new insights and controversies.

Nat. Rev. Endocrinol. 9, 660–669.

7. Rutter, G.A., Theler, J.-M., Murgia, M., Wollheim, C.B., Poz-

zan, T., and Rizzuto, R. (1993). Stimulated Ca2þ influx raises

mitochondrial free Ca2þ to supramicromolar levels in a
The America
pancreatic b-cell line. Possible role in glucose and agonist-

induced insulin secretion. J. Biol. Chem. 268, 22385–22390.

8. Henquin, J.C. (2000). Triggering and amplifying pathways

of regulation of insulin secretion by glucose. Diabetes 49,

1751–1760.

9. Rutter, G.A., Pullen, T.J., Hodson, D.J., and Martinez-Sanchez,

A. (2015). Pancreatic b-cell identity, glucose sensing and the

control of insulin secretion. Biochem. J. 466, 203–218.

10. Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A.,

and Butler, P.C. (2003). Beta-cell deficit and increased beta-

cell apoptosis in humans with type 2 diabetes. Diabetes 52,

102–110.

11. Del Guerra, S., Lupi, R., Marselli, L., Masini, M., Bugliani, M.,

Sbrana, S., Torri, S., Pollera, M., Boggi, U., Mosca, F., et al.

(2005). Functional and molecular defects of pancreatic islets

in human type 2 diabetes. Diabetes 54, 727–735.

12. Kahn, S.E. (2003). The relative contributions of insulin resis-

tance and beta-cell dysfunction to the pathophysiology of

type 2 diabetes. Diabetologia 46, 3–19.

13. Rutter, G.A., and Parton, L.E. (2008). The beta-cell in type 2

diabetes and in obesity. Front. Horm. Res. 36, 118–134.

14. Marullo, L., El-SayedMoustafa, J.S., and Prokopenko, I. (2014).

Insights into the genetic susceptibility to type 2 diabetes from

genome-wide association studies of glycaemic traits. Curr.

Diab. Rep. 14, 551.

15. Mohlke, K.L., and Boehnke,M. (2015). Recent advances in un-

derstanding the genetic architecture of type 2 diabetes. Hum.

Mol. Genet. 24 (R1), R85–R92.

16. Rutter, G.A. (2014). Dorothy Hodgkin Lecture 2014: under-

standing GWAS genes for type 2 diabetes. Diabet. Med. 31,

1480–1487.

17. Nolan, C.J., and Delghingaro-Augusto, V. (2016). Reversibility

of defects in proinsulin processing and islet b-cell failure in

obesity-related type 2 diabetes. Diabetes 65, 352–354.

18. Halban, P.A., Polonsky, K.S., Bowden, D.W., Hawkins, M.A.,

Ling, C., Mather, K.J., Powers, A.C., Rhodes, C.J., Sussel, L.,

and Weir, G.C. (2014). b-cell failure in type 2 diabetes: postu-

lated mechanisms and prospects for prevention and treat-

ment. Diabetes Care 37, 1751–1758.

19. Strawbridge, R.J., Dupuis, J., Prokopenko, I., Barker, A., Ahlqv-

ist, E., Rybin, D., Petrie, J.R., Travers, M.E., Bouatia-Naji, N.,

Dimas, A.S., et al.; DIAGRAM Consortium; GIANT Con-

sortium; MuTHER Consortium; CARDIoGRAM Consortium;

and C4D Consortium (2011). Genome-wide association iden-

tifies nine common variants associatedwith fasting proinsulin

levels and provides new insights into the pathophysiology of

type 2 diabetes. Diabetes 60, 2624–2634.

20. Voight, B.F., Scott, L.J., Steinthorsdottir, V., Morris, A.P., Dina,

C., Welch, R.P., Zeggini, E., Huth, C., Aulchenko, Y.S.,

Thorleifsson, G., et al.; MAGIC investigators; and GIANT

Consortium (2010). Twelve type 2 diabetes susceptibility

loci identified through large-scale association analysis. Nat.

Genet. 42, 579–589.

21. Nielsen, T., Sparsø, T., Grarup, N., Jørgensen, T., Pisinger, C.,

Witte, D.R., Hansen, T., Pedersen, O.; and Diabetes Genetics

Replication and Meta-analysis (DIAGRAM) Consortium

(2011). Type 2 diabetes risk allele near CENTD2 is associated

with decreased glucose-stimulated insulin release. Diabetolo-

gia 54, 1052–1056.

22. Dimas, A.S., Lagou, V., Barker, A., Knowles, J.W., Mägi, R., Hi-
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