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Global phosphoproteome analysis of human bone marrow reveals
predictive phosphorylation markers for the treatment of acute
myeloid leukemia with quizartinib

Leukemia (2014) 28, 716–719; doi:10.1038/leu.2013.347

Treatment with inhibitors of the receptor tyrosine kinase FLT3 are
currently studied as promising therapies in acute myeloid
leukemia (AML). However, only a subset of patients benefit from
these treatments and the presence of activating mutations within
FLT3 can predict response to a certain extent only. AC220
(quizartinib) is an example of a potent FLT3 inhibitor1 that was
studied in a recent phase II open-label study in patients with
relapsed/refractory AML. The complete remission rate (including
CRp and CRi) in FLT3-ITD-positive patients was 54% (50/92) and
the corresponding partial remission rate (PR) was 17% (16/92)2

Thus, although the FLT3-ITD mutation status correlates with
response, the error rate in stratification of patients into responders
and non-responders is high, as still 29% of the FLT3-ITD-positive
patients failed to respond. Exclusion of FLT3-ITD-negative patients
from AC220 treatment also seems critical, as the total response
rate (CRþ PR) in FLT3-ITD-negative patients is substantially
lower (41%, 17/41). As AC220 is a tyrosine kinase inhibitor,
we hypothesized that investigating phosphorylation-based signaling
on a system-wide scale in AML cells allows for identification of
markers enabling more accurate prediction of therapy response as
compared to commonly used genetic markers. Hence, we applied
quantitative mass spectrometry to decipher a multivariate
phosphorylation site marker, which we refer to as phospho-
signature, in patient-derived AML blasts that might be useful as
predictive biomarkers for AC220 treatment.

We first collected bone marrow aspirates of 21 patients
enrolled in the phase II clinical trial of AC220 monotherapy in
AML (ACE, NCT00989261) with FLT3-ITD before treatment
(Supplementary Table 1). We processed the aspirates according
to a previously established sample preparation workflow
(Figure 1 and Supplementary Methods). Twelve of the twenty-one

samples were processed at the beginning of this study (training
group) and were used to generate a training data-set for phospho-
signature identification. Nine additional samples were processed
toward the end of this study and were used for validating the
phospho-signature (validation group). All patients with CR or PR
were counted as responder in our study (6/12 in the training
subgroup and 6/9 in the validation subgroup).

To monitor quantitatively the phospho-proteomes of the
patient-derived AML blasts, we used super-SILAC in combination
with quantitative mass spectrometry (see Figure 1 and
Supplementary Methods). Data analysis was finally performed
by using the MaxQuant software3 and further bioinformatics
tools as outlined below. In total, 13 236 phospho-sites were
identified in the training group. Of these, 7831 were confidently
assigned to specific serine, threonine or tyrosine residues
(class I sites).

We first investigated whether we can identify differentially
regulated phospho-sites when comparing responder and non-
responder samples (Figure 2a). Only class I sites quantified in at
least two thirds of the experiments were used (2119 sites with
approximately 10.6% missing values on average). Indeed, applica-
tion of the mean-rank test4 revealed three significantly different
sites at a false-discovery rate of 10% (see Supplementary Table 2).
The first regulated site (S160) is located on the endonuclease/
exonuclease/phosphatase family domain-containing protein 1
(EEPD1). The protein carrying the second phosphorylation site
(S630) was B-cell lymphoma/leukemia 11A (BCL11A), which
functions as a myeloid and B-cell proto-oncogene and may play
a role in leukemogenesis and hematopoiesis.5 Furthermore, the
expression of BCL11A is associated with a poor outcome of AML
patients.6 The third phosphorylation site (S333) is located on Ran-
binding protein 3 (RANBP3). RANBP3 mediates nuclear export of
Smad2/3 and thereby inhibits TGF-b signaling.7 Furthermore, the
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Ras/ERK/RSK and the PI3K/AKT signaling pathways regulate the
activity of RANBP3.8 Both the pathways are activated in FLT3-ITD-
positive cells.9 To our knowledge, no function has been described
for these phospho-sites in AML so far. Interestingly, other
phosphorylation events that are downstream of FLT3-ITD, such
as phosphorylation of Y694 in STAT5A, were not differentially
regulated between the responder and the non-responder group
(Supplementary Figure 1). Hence, it appears that only certain
signaling pathways downstream of FLT3-ITD are differentially
regulated between responders and non-responders and these
pathways might contribute to resistance-mediating bypass
signaling.

Next, we sought to identify a phospho-signature that allows
prediction of responsiveness using a supervised machine learning
approach. We therefore applied our previously described work-
flow for detecting phospho-signatures.10 A detailed description of
the bioinformatics workflow is outlined in the Supplementary
Methods.

The resulting final phospho-signature consisting of five
phosphorylation sites strongly separates the classes of responder
and non-responder samples (Figures 2b and c, Supplementary
Figure 2 and Supplementary Table 2). Three of the five
phosphorylation sites (EEPD1-S160, BCL11A-S630, RANBP3-S333)
were already identified as significantly regulated between
responder and non-responder samples. The fourth phosphoryla-
tion site (S961) is located on the x-linked retinitis pigmentosa
GTPase regulator (RP3). RP3 is predicted to be a guanine-
nucleotide releasing factor and has a role in ciliogenesis.11

Lamins A/C (LMN1), which harbored the fifth site (S458) from

the phospho-signature, form the nuclear lamina and has an
important role in cell cycle-dependent regulation of nuclear
structure and gene transcription.12 All five sites were identified
and localized with high confidence (P40.98, see MS2 spectra in
Supplementary Figure 3).

The prediction performance of the phospho-signature was
determined by leave-one-out cross-validation. In each iteration of
cross-validation, the selection of phospho-site features and the
training of a support vector machine is repeated on the training
set reduced by the respective test sample. Notably, all samples
except one sample (AML008) were correctly classified (Figure 2b),
corresponding to a prediction accuracy of 92%. Similarly the area
under the receiver operating characteristic curve is 88%. Although
in case of AML008 no remission was observed, this patient also
harbored a FLT3-TKD (D835) mutation at disease progression
following 4 months of therapy, indicating FLT3 was inhibited as
the mechanism for clinical response, albeit less than protocol
defined PR.

We finally applied the identified phospho-signature to test its
predictive power on nine additional validation samples
(Figure 2d). These samples were processed independently of the
training samples. Notably, seven out of the nine samples were
predicted correctly, just one responder (AML031) and one non-
responder (AML033) were misclassified. AML033 was a borderline
candidate. Notably, the patient had FLT3-ITD-positive cells that
were sensitive and cleared by the drug treatment. However, the
patient eventually progressed with a FLT3 wild-type clone. Even if
taking this ambiguous call into account, the resulting sensitivity
on the validation samples is 83% and the specificity is 67%.
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Figure 1. Workflow of processing bone marrow aspirates and global quantitative phosphoproteome analysis. The leukemia cells were isolated
using density-gradient centrifugation and stored as vital cells for further processing at � 80 1C. Equal amounts of lysates from blasts and
Super-SILAC-standard were mixed. Proteins were extracted and digested with trypsin. The resulting peptides were separated into 12 fractions
by strong cation exchange (SCX) chromatography and the phosphopeptides were enriched using immobilized metal affinity chromatography
(IMAC). High-resolution LC-MS/MS data were processed using the MaxQuant software. Data from 12 patients (six responders and six non-
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The corresponding accuracy is 78% and therefore comparable to
the accuracy determined in cross-validation. This is a promising
result as the validation subgroup differed from the training
subgroup both in terms of the source and in terms of the day of
processing.

Differences in phosphorylation of a specific site may be caused
by either a difference in phosphorylation site stoichiometry,
a difference in expression of the corresponding protein, or by
a combination of both. In order to distinguish between these
three possibilities, we analyzed the proteome of six validation
samples (Supplementary Figure 4). For two of the five signature
proteins (EEPD1 and LMN1), we could quantify the predictive
phosphorylation site and protein abundance in at least 2/3 of the
samples. LMN1 shows a very high correlation between phospho-
rylation and protein expression (Pearson correlation r¼ 0.92,
P¼ 0.03). The correlation for EEPD1 is smaller and not significantly
different from 0 (r¼ 0.70, P¼ 0.18) due to one outlier sample
(Supplementary Figure 4A). Furthermore, although we enriched
for phosphorylated peptides, we identified and quantified non-
phosphorylated peptides of LMN1 in almost all training and
validation samples. We could therefore correlate the phosphoryla-
tion of LMN1 with its expression in these samples (Supplementary
Figure 4B) and again obtained a high correlation (r¼ 0.86,
P¼ 2.5� 10� 6).

These results show the utility of a global and unbiased
analysis to enable the identification of non-obvious but
highly predictive markers that have no known association with
the drug’s main target. For clinical application of the biomarker
signature, it would be sufficient to detect and quantify
five phosphorylation sites. Notably, economic targeted detection

methods, such as immunological methods or the mass
spectrometry-based multiple reaction monitoring13 could be
applied instead of global analysis strategies. Such targeted
methods can reproducibly detect and quantify given peptides
from relatively low sample amounts and can be routinely applied
to large number of samples. We also showed that at least one of
the phosphorylation markers, LMN1 (S458), strongly correlates
with the expression of the corresponding protein. This creates the
further option to measure LMN1 protein expression rather than
performing targeted phosphorylation site analysis.

In summary, phosphoproteomic analyses of primary AML bone
marrow by high-resolution quantitative mass spectrometry is
feasible and offers the opportunity to discover posttranslational
modifications as pre-therapeutic response parameters. A signature
consisting of five phosphorylation sites predicted the response to
treatment of AML patients with AC220.
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High prevalence of oncogenic MYD88 and CD79B mutations
in primary testicular diffuse large B-cell lymphoma

Leukemia (2014) 28, 719–720; doi:10.1038/leu.2013.348

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous class of
lymphomas, comprising of molecularly distinct subtypes that
differ in gene-expression profile (GEP), genetic aberrations, clinical
presentation and disease outcome.1,2 Within this lymphoma class,
primary testicular lymphoma (PTL) is a distinctive entity
characterized by unique clinical and molecular features,
including its exclusive manifestation in the immune-privileged
microenvironment of the testis and frequent dissemination to the
contralateral testis and the central nervous system (CNS).3,4

Although the incidence of PTL has significantly increased over
the last decades, there is at present no consensus on a standard
therapeutic regimen.3,4 A current GEP-based molecular
classification of DLBCL distinguishes two main subtypes:
activated B-cell-like (ABC) lymphoma and germinal-center B-cell-
like lymphoma.1 PTLs belong to the ABC-DLBCL subtype that is
characterized by constitutively active nuclear factor (NF)-kB
signaling.1,2 NF-kB pathway activation in DLBCL may result from
oncogenic CARD11 mutations and/or of CD79 mutations causing
chronic active B-cell receptor (BCR) signaling.5–7 In addition,
somatically acquired mutations in MYD88, an adaptor protein that
mediates toll-like receptor (TLR) and interleukin-1 receptor

signaling were shown to promote NF-kB and JAK-STAT3
signaling in this lymphoma type.8 Intriguingly, recent studies
indicate that the prevalence of oncogenic MYD88 mutations varies
greatly among the ABC–DLBCL presenting at different anatomical
sites: whereas MYD88 mutations show a high prevalence in
primary-CNS-lymphomas (PCNSLs) as well as in lymphomas arising
at some other extra-nodal sites, they are relatively uncommon in
primary nodal and gastro-intestinal DLBCL.9–11 In a survey of
genomic alterations in a large panel of DLBCL, we recently found
an activating MYD88 mutation in 10 out of 14 PTLs studied,11

suggesting a high mutation prevalence. Here we extended these
series to obtain robust evidence for a role of deregulated MYD88
signaling in PTLs.

The study material comprised a panel of 37 PTL diagnosed as
DLBCLs according the World Health Organization classification, 14
of which have been reported previously.11 All tumors were
extensively immuno-phenotyped, including antibodies against
CD20, CD10, MUM1, BCL-2 and BCL-6, and tested for Epstein–Barr
virus (EBV) expression by EBV-encoded RNA in-situ hybridization,
and tested for translocations of BCL-2, BCL-6 and c-MYC by
fluorescence in-situ hybridization (Supplementary Table 1).11

To detect somatic mutations in MYD88 and CD79B, a panel of
allele-specific PCRs covering all major mutation (hot) spots8 was
employed. As recently reported, this strategy permits efficient and
sensitive detection of mutations using DNA extracted from the
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