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Introduction

Der Weg zum besseren Billard ist der Weg zur Vereinfachung – einfaches
Billard ist gutes Billard. (Andreas Huber, Billiard Coach)

One of the most simple ways to look at billiards is to consider just one ball as a
point without extension that moves without any friction in unit speed on straight lines
satisfying “angle of incidence equals angle of reflection” at the boundary. While the
dynamics of these idealized billiards are quite easy on a rectangular billiard table, they
become more complicated and interesting if one permits tables of more general shapes,
e.g. the shape of an arbitrary polygon whose angles are rational multiples of π. Such a
polygon is called a rational polygon.

Applying an unfolding construction first described by Katok and Zemlyakov ([ZK75])
we obtain a surface called translation surface and the trajectory of the ball becomes a
geodesic with a constant direction on this surface. The unfolding construction and an
accurate definition of translation surfaces are given in Chapter 2. For now, we can think
of a translation surface as the Riemann surface X obtained from a rational polygon with
pairs of parallel sides by identifying these sides by translations.

The next step in describing the dynamics of the billiard ball is to define the Veech
group of a translation surface X: we consider first the translation group Trans(X) con-
sisting of all orientation-preserving homeomorphisms f : X → X which are translations
in each chart. Then the affine group Aff(X) consists of all orientation-preserving home-
omorphisms f : X → X which are affine in each chart. The derivative of such an affine
self-homeomorphism is globally constant a 2× 2-matrix with determinant 1. The Veech
group is the image of Aff(X) in SL2(R) under the derivation map:

SL(X) := {γ ∈ SL2(R) | ∃f ∈ Aff(X) with derivative γ}

These groups give a short exact sequence Trans(X) ↪→ Aff(X) � SL(X). Since
SL(X) is a discrete subgroup of SL2(R), Veech groups are Fuchsian groups, i.e. they act
properly discontinuously on the hyperbolic plane.

For the hyperbolic plane we use the upper half plane model H = {z ∈ C | im(z) > 0}
with the metric ρH. The orbit of a base point under the action of a Fuchsian group Γ
accumulates only at points in the boundary ∂H = R ∪ {∞}. The set of all these limit
points is called the limit set Λ(Γ). There is a rough sizing of Fuchsian groups regarding
the limit set: If |Λ| is finite, it is 0, 1 or 2 and Γ is called elementary. If |Λ| is infinite,
Γ is non-elementary. Additionally, if the limit set is the whole boundary, Γ is called
Fuchsian group of the first kind, otherwise of the second kind. A Fuchsian group of finite
co-volume is called a lattice. Lattices are exactly the finitely generated Fuchsian groups
of the first kind.

A translation surface whose Veech group is a lattice is called a Veech surface. They
are of special interest because of the famous Veech dichotomy: on a Veech surface for
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any direction θ either every trajectory in direction θ is periodic or every trajectory in
this direction is equidistributed. A big set of Veech surfaces are the so-called square-tiled
surfaces, which are coverings of the square torus branched over one point. Their Veech
group is arithmetic and in the space of translation surfaces of genus g the square-tiled
surfaces form a dense subset. The first examples of non-arithmetic Veech surfaces were
the regular double n-gons for odd n ≥ 5 and the regular n-gons for even n ≥ 8 given by
Veech ([Vee89]).

The next “smaller” Fuchsian groups are groups that are still of the first kind, but not a
lattice and thus infinitely generated. Until the beginning of this millennium not even the
existence of translation surfaces with infinitely generated Veech groups was known. In
[McM03] McMullen and in [HS04] Hubert and Schmidt give two different constructions
of such surfaces with an infinitely generated Veech group. In Chapter 2 we will briefly
present their constructions. We will focus on the approach of Hubert and Schmidt who
use coverings of Veech surfaces branched at the singularities and one special marked
point – a non-periodic connection point. Their Veech group is commensurable to the
subgroup of the unmarked surface’s Veech group consisting of all elements stabilizing the
marked point. The surfaces we will consider are the translation surfaces LD (with D > 0
and D ≡ 0 mod 4 not a square) obtained from an L-shaped polygon with vertical side

lengths (from left to right) w :=
√

D
4 , w−1, and 1 and horizontal side lengths (from top

to bottom) 1, w and 1 + w. In [McM05] McMullen shows that LD is a Veech surface of
genus 2 and that in some sense many of the Veech surfaces of genus 2 are more or less
of this form (for more details see Chapter 2).

Another way to associate some kind of “size” to a Fuchsian group Γ is to look at its
critical exponent δ(Γ), which is defined as

δ(Γ) := inf{a ∈ R :
∑
γ∈Γ

e−aρH(i,γ(i)) <∞}.

There exist some general bounds on the critical exponent of Fuchsian groups:

• For all Fuchsian groups the critical exponent is at most 1.

• If Γ is a lattice, δ(Γ) = 1.

• If Γ is finitely generated and of the second kind, δ(Γ) < 1

• If Γ is non-elementary and contains a parabolic element, δ(Γ) > 1
2 .

In this context, we can state our main result:

Main Theorem A. For every non-periodic connection point P on the Veech surface
LD (with D ≡ 0 mod 4 not a square) the (infinitely generated) stabilizer subgroup
SL(LD;P ) := StabSL(LD)(P ) has critical exponent strictly between 1

2 and 1.

In [GJ00] Gutkin and Judge show that the Veech groups of coverings like the one an-
alyzed by Hubert and Schmidt are commensurable to SL(LD;P ). Since commensurable
groups have the same critical exponent, we obtain the following theorem:
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Main Theorem B. There exist translation surfaces whose Veech group is infinitely
generated with critical exponent strictly between 1

2 and 1. More precisely this is the
case for every affine covering of LD (with D ≡ 0 mod 4 not a square) branched at any
non-periodic connection point P .

Note that the restriction to D ≡ 0 mod 4 is made for technical reasons, and the result
propably is true also for D ≡ 1(4) and the surfaces LD,±1 defined in Definition 2.17. For
details see Section 6.2.3.

The proof of Main Theorem A can be found in Chapter 6. We use a result of Roblin
and Tapie ([RT13]), which implies that δ(SL(LD;P )) < 1 if the Schreier graph of SL(LD)
with respect to SL(LD;P ) and any finite generating set S of SL(LD) is non-amenable.
Their proof is described in Chapter 5, after we give some background on the critical
exponent of Fuchsian groups.

Studying the group SL(LD;P ) and its critical exponent one easily checks that for all
points Q in the SL(LD)-orbit of P the groups SL(LD;P ) and SL(LD;Q) are conjugate
and thus have the same critical exponent. Hence the question which points belong to
the orbit of P arises very naturally.

We will examine this question in Chapter 4:

Theorem C. Given a connection point∗ P =
(
xr + xiw; yr + yiw

)
∈ LD with reduced

fractions xr, xi, yr, yi ∈ Q, set N(P ) to be the least common denominator of xr, xi, yr,
and yi. All points Q in the SL(LD)-orbit of P also have both coordinates in Q(w). Let
N(Q) be the least common denominator of the four reduced fractions describing Q. Then

N(Q) = N(P ).

In particular, there are infinitely many distinct orbits of connection points.

In the special case D = 8 we can be more precise:

Theorem D. Let D = 8 and w =
√

2 and fix N ∈ N. The set of all non-periodic†

points P of the form P = (xr + xiw; yr + yiw) with xr, xi, yr, yi reduced fractions with
least common denominator N decomposes into a finite number of orbits under the action
of 〈A,B〉 = SL(L8).

The remaining chapters are dedicated to the description of the action of SL(LD) on
LD (Chapter 3), background on translation surfaces and Veech groups (Chapter 2) and
Schreier graphs (Chapter 1). In the last-mentioned chapter we explore a method to show
non-amenability of (Schreier) graphs:

Theorem E. Let G be a graph. If it is possible to omit edges of G obtaining a forest G′

in which every connected component is an infinite simple tree without leaves, then

c(G) ≥ 1

2n(G′) + 2
,

where n(G′) is the supremum of the lengths of connected pieces of G′, where every vertex
has valency 2. In particular, if n(G′) <∞ then G is non-amenable.

∗All points of this form are connection points, see Proposition 2.22.
†this excludes exactly the 6 Weierstraß points

6



Acknowledgments

I am very grateful for all the support I have received while researching and writing this
dissertation.

First of all, I would like to thank my supervisor Martin Möller for his continuous
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1 Graphs and Amenability

In this chapter we will define some vocabulary about graphs – especially Schreier graphs –
and amenability of graphs. Amenability originally was defined as a property of groups. A
countable group Γ is called amenable if there exists a left-invariant mean λ : `∞(Γ)→ R.
There is a nice criterion sufficient for a group to be non-amenable, namely the existence
of a free non-abelian subgroup. Given a normal subgroup Π / Γ the existence of a free
non-abelian subgroup z that has trivial intersection with Π is sufficient for the non-
amenability of the factor group.

Amenability of graphs is defined via the Cheeger constant of the graph and it is well-
known (see e.g. [Woe00], Proposition 12.4) that Cayley graphs with respect to finite
generating sets are amenable if and only if the corresponding finitely generated group is
amenable. Schreier graphs are a generalization of Cayley graphs of factor groups – the
subgroup does not need to be normal. Hence one could hope that also for the Schreier
graph of Γ with respect to Π < Γ in order to be non-amenable it is sufficient to find a
non-abelian free subgroup of Γ with trivial intersection with Π. But unfortunately this
is not true and we will give a counterexample. In this counterexample the subgroup Π
is not finitely generated. The question, whether the condition for factor graphs can be
extended to Schreier graphs with finitely generated subgroups remains open.

Thus we have to find another method to prove non-amenability of (Schreier) graphs.
Such a method is provided in the second section of this chapter and summarized by
Theorem E.

1.1 Basics About Graphs

We will use two different notions of graphs and start by defining them.

Definition 1.1. A directed graph G is a tuple (V,E, α, β) consisting of a nonempty set
V = V (G), a set E = E(G) and two maps α and β : E → V . We call V the vertex set,
its elements v vertices, E the edge set and the elements e ∈ E edges. The vertex α(e) is
called the origin and β(e) the destination of the edge e. Both together are the endpoints
of e.

Definition 1.2. A simple graph is a pair (V,E) consisting of a nonempty vertex set V
and an edge set E ⊆ {{v, w} | v, w ∈ V, v 6= w}. For an edge {v, w} the vertices v and w
are called the endpoints of this edge.

In particular, in a simple graph the edges do not have a direction or orientation. And
there are no edges with only one endpoint and no multi-edges, both allowed in a directed
graph. In most cases it will be clear out of context, which kind of graph we mean, hence
we denote also simple graphs by G.
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1. Graphs and Amenability

Convention 1.3. Throughout the thesis we only consider locally finite graphs – i.e.
graphs, in which every vertex is endpoint of only finitely many edges.

For both, directed and simple graphs, we introduce the terms paths and connectivity
and then equip connected graphs with a metric. First we will do this for simple graphs:

Definition 1.4. A path π of length l(π) = n in a simple graph G = (V,E) is a sequence
of vertices [v0, v1, . . . , vn] with the property that {vi, vi + 1} ∈ E for all i = 0 . . . n − 1.
The vertex v0 is called starting point and vn terminal point of the path. Furthermore
for all vertices v ∈ V there is a path [v] of length 0, called the empty path from v to
v (because it contains no edges). If all the vertices v0, . . . , vn are different, we call π
a simple path. If v0, . . . , vn−1 are different vertices and vn = v0, the path π is called a
circle.

Definition 1.5. Let G = (V,E) be a simple graph.

• For a path π = [v0, . . . , vn] let π be the inverse path [vn, . . . , v0].

• If for two vertices v, w ∈ V there is a path with starting point v and terminal point
w, we say v and w are connected. If all pairs (v, w) ∈ V are connected, the graph
G is called connected.

• For connected graphs G we define a map

dG : V × V → N
(v, w) 7→ min{l(π) |π a path from v to w}.

The map dG is a metric, called the edge metric, so (V, dG) becomes a metric space
and a path from v to w of length dG(v, w) is called a geodesic.

• A graph that does not contain a circle is called a forest. A connected forest is
called a tree.

Remark 1.6. If G is not connected, it decomposes into connected components and we
define d as above for vertices in the same connected components and extend it to V ×V
by defining d(v, w) :=∞ if v and w are not connected.

Before we define the same terms analogically for directed graphs we have to introduce
inverse edges, because we want to allow a path to use a directed edge in the inverse
direction, too. We can then see a pair of edge and inverse edge as a “geometrical edge”

Definition 1.7. Given a directed graph G = (V,E, α, β) for every edge e ∈ E we
formally define an inverse edge e−. This leads to the sets E− = {e−|e ∈ E} and
E± = E t E−. We extend inversion, α and β from E to E± by setting (e−)− = e,
α(e−) = β(e) and β(e−) = α(e).

Since we may have multi-edges in directed graphs, the definition of a path is slightly
different because the sequence of edges cannot be recovered from the sequence of vertices.
However, knowing the edges we also know the sequence of vertices.
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1. Graphs and Amenability

Definition 1.8. An edge path π of length l(π) = n in a directed graph G = (V,E, α, β)
is a finite sequence [e1, e2, . . . , en] with ei ∈ E± and the property that α(ei+1) = β(ei)
for i = 1, . . . , n − 1. We can extend α and β to the set of all edge paths by setting
α([e1, e2, . . . , en]) := α(e1) and β([e1, e2, . . . , en]) := β(en). Also in this case for every
vertex v we define an empty edge path []v with α([]v) = β([]v) = v and for π there is an
inverse edge path π− = [e−n , . . . , e

−
1 ]. The terms circle, connectivity, tree, the distance

function dG and the term geodesic are defined as above. In directed graphs there may
be circles of length 1, which are called loops.

Sometimes we will not only look at the graph G as a whole, but also at a “smaller
part” of it, a subgraph:

Definition 1.9. An induced subgraph G′ = (V ′, E′, α′, β′) of a graph G = (V,E, α, β)
is a graph with V ′ ⊂ V , E′ = {e ∈ E |α(e), β(e) ∈ V ′}, α′ = α|E′ and β′ = β|E′ . An
induced subgraph of a simple graph G = (V,E) is defined analogically.

The last basic definitions about graphs deal with the local structure of a graph at a
vertex v:

Definition 1.10. Let G be a simple graph and v ∈ V (G) a vertex.

• A vertex w 6= v is called a neighbor of v if {v, w} ∈ E.

• The number of edges that have v as one endpoint (= the number of neigbors of v)
is called the valency of v, denoted by valG(v). The valency of v in a subgraph G′

is called the G′-valency of v, denoted by valG′(v).

Let G be a directed graph and v ∈ V (G) a vertex.

• A vertex w (not necessary 6= v) is called a neighbor of v if there is a edge e ∈ E±
with α(e) = v and β(e) = w, i.e. if there is an (geometrical) edge with endpoints
v and w.

• The number of edges e ∈ E± with α(e) = v is called the (total) valency of v,
denoted by valG(v). Note that this is the number of geometrical edges with end-
points v and some other vertex plus twice the number of loops at the vertex v. The
valency of v in a subgraph G′ is called the G′-valency of v, denoted by valG′(v) .

For both – directed and simple graphs G – we define:

• A vertex with valency 1 is called a leaf.

• If the valency of vertices in V (G) is bounded, we call

valmax(G) := max{valG(v) | v ∈ V (G)}

the maximal valency of G.

• If all vertices have the same valency ρ, the graph is said to be ρ-regular or ρ-valent.
A finite tree T always contains leaves, so we call T already ρ-valent if every vertex
that is not a leaf has valency ρ.
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1. Graphs and Amenability

Now we introduce special types of directed graphs that are attached to groups, first
Cayley graphs and then Schreier coset graphs:

Definition 1.11. For a group Γ and a nonempty finite subset S ⊂ Γ consider the
following directed graph GΓ,S :

• The vertex set V is the set of elements of Γ.

• The edge set E+ is Γ× S with α((γ, s)) = γ and β((γ, s)) = γs.

• Moreover we add to every edge (γ, s) the label s. So GΓ,S is 2|S|-regular, at every
vertex for each s ∈ S there is one outgoing edge labeled with s and one incoming
s-edge. Walking an edge incoming at the vertex g labeled with s backwards means
to multiply g by s−1.

Obviously this graph is connected if and only if S± := S ∪ S−1 is a generating set for Γ.
In this case GΓ,S is called the Cayley graph of Γ with respect to S.

Remark 1.12. We already mentioned that a connected graph together with the edge
metric becomes a metric space. Also for finitely generated groups there is a metric – the
word metric with respect to a generating set S:

dΓ,S(γ1, γ2) := |γ−1
1 γ2| := min{length of w |w a word in S with w =Γ γ

−1
1 γ2}

By definition the word metric for a group Γ with respect to S is exactly the edge metric
of GΓ,S .

As an example for a Cayley graph – especially viewed as metric space – we look at
the free abelian group of rank k with respect to a basis {x1, . . . , xk} and investigate the
ball Bn(0) of radius n with center 0:

Example 1.13. For a free abelian group of rank k the following is a presentation:
〈x1, . . . xk | [xi, xj ] = 1〉. We can identify the generators with the standard basis vectors
ei of Rk and the elements of the free abelian group – i.e. the vertices of its Cayley graph
– with the points of Zk ⊂ Rk. In the Cayley graph there is an edge from a ∈ Zk to
b ∈ Zk labeled with xi if and only if b− a = ei.

The ball Bn(0) of radius n with center 0 is the set of all vertices v with dG(0, v) ≤ n.
The vertices with distance exactly n form the sphere Sn(0). We want to estimate |Sn(0)|
and |Bn(0)|, the number of different vertices with distance to 0 exactly n, respectively
at most n. Clearly |Sn(0)| is bounded below by the number of words that can be build
by choosing n of the k generators with repetitions allowed but without taking order into
account, which is

|Sn(0)| ≥
(
n+ k − 1

k − 1

)
=

(n+ k − 1) · (n+ k − 2) · . . . · (n+ 1)

(k − 1)!
,

a polynomial in n of degree k − 1. This would count the words with only “positive”
generators xi, but there are also the inverse letters x−1

i . There are 2k ways to choose the
sign of the exponents of the k letters x±1

i . This does not give the exact value of |Sn(0)|,
because not in all words all letters occur. But we obtain the upper bound

|Sn(0)| ≤ 2k ·
(
n+ k − 1

k − 1

)
,
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1. Graphs and Amenability

which is a polynomial in n of degree k − 1, too. By Faulhaber’s formula ([Knu93]) the
number |Bn(0)| = ∑n

k=0 |Sn(0)| can be bounded below and above by two polynomials in
n of degree k − 1 + 1 = k.

These estimates show, what one might have guessed already: that the “volume” of
the n-ball in Zk is asymptotically cBn

k and the “area” of the “boundary” – the n-sphere
– is asymptotically cSn

k−1 for some constants cB and cS .

In the example we have chosen a special vertex 0 – the vertex representing the empty
word or the identity element – as center for the balls. But we could choose any vertex
and would obtain the same result, which is a consequence of the following

Remark 1.14. Any group Γ acts on its Cayley graph – with respect to any generating
set – by left-multiplication. This means there is a homomorphism

φ : Γ→ AutGΓ,S

γ 7→ (fγ : GΓ,S → GΓ,S , G 3 v 7→ γv),

where γv means the product in the group Γ, which is defined because every vertex of
G is a group element of Γ. In particular Cayley graphs are vertex-transitive – for all
vertices v and w ∈ V there is a automorphism f with f(v) = w. Roughly spoken this
means that the graph “looks the same” at every vertex.

For many applications this is a very usefull fact, but we will see, that this in general
is not true anymore, if we replace Cayley graph by the objects we are interested in and
that seem to be very similar to Cayley graphs – the Schreier coset graphs. But let us
first define the latter:

Definition 1.15. To a group Γ, a subgroup Π < Γ and a nonempty finite subset S ⊂ Γ
we assign the following directed graph GΓ,Π,S :

• The vertex set V is the set of right cosets of Π in Γ:

V (GΓ,Π,S) := {Πγ|γ ∈ Γ}.

• The edge set is

E+ := V × S with α((Πγ, s)) = Πγ and β((Πγ, s)) = Πγs.

• Moreover we add to every edge (Πγ, s) the label s.

If S± is a generating set for Γ, the graph GΓ,Π,S is called the Schreier coset graph∗ of Γ
with respect to Π and S.

Comparing Definition 1.11 and Definition 1.15 one easily sees that Cayley graphs
and Schreier graphs are quite similar. Like Cayley graphs Schreier graphs are 2|S|-
regular, the Schreier graph GΓ,{id},S is exactly the Cayley graph GΓ,S and if Π is a
normal subgroup of Γ, then GΓ,Π,S equals the Cayley graph of the factor group Γ/Π
with respect to {sΠ|s ∈ S}.

But as mentioned above a crucial difference concerns the automorphisms of Schreier
graphs:

∗in the following just: Schreier graph

12



1. Graphs and Amenability

Example 1.16. In general GΓ,Π,S is not vertex-transitive. In particular though left-
multiplication by Γ is an action on the cosets, in general it is not an action on the graph
GΓ,Π,S :

Let Γ = 〈a, b|−〉 be the free group of rank 2. We set Π = 〈a〉, the subgroup generated
by a, and S = {a, b}. Then GΓ,Π,S looks as presented in Figure 1.1.

H

a

b

Figure 1.1: The root-looped 4-valent tree: a Schreier graph that is not vertex-transitive.

In particular the edge (Π, a) is a loop and it is the only loop. Hence every automor-
phism of GΓ,Π,S has to fix the vertex Π, which implies that GΓ,Π,S is not vertex transitive
and left-multiplication by Γ is not an action.

Remark 1.17. We name the graph shown in Figure 1.1 root-looped 4-valent tree, even
though as a directed graph it is not a tree because of the loop at one vertex. This vertex
is called the root.

Remark 1.18. We are particularly interested in the following setting: The group Γ is
the Veech group of an L-shaped Veech surface L and acts on the points of the surface
LD (from the right). The Schreier graph we investigate is G = GΓ,ΓP ,S where ΓP is the
stabilizer of a non periodic connection point P and S is a finite generating set of Γ. In
this setting the vertices of the Schreier graph, the right cosets, can be identified with
the points of the Γ-orbit of P :

• the subgroup ΓP itself is identified with P .

• the vertex ΓPγ
−1 is identified with γ(P ) =: γ ◦ P

This is well-defined because ΓPγ
−1
1 = ΓPγ

−1
2 is equivalent to γ−1

1 γ2 ∈ ΓP and thus to
γ1 ◦ P = γ2 ◦ P . Because of the left-right twist the label s of an edge from ΓPγ

−1 to
ΓPγ

−1s becomes an s−1 on the edge from γ ◦ P to s−1γ ◦ P . But for the question of
amenability the direction of the edges does not matter, so we do not have to be too
worried about.

13
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1.2 Amenability

1.2.1 Amenability of Groups

In this section we give a short overview about amenability of countable groups and also
recommend [Pat00] as well as the nice blogpost [Tao11].

Given a countable group Γ and a map f : Γ→ R for any x ∈ Γ the left-translation by
x is defined as τxf(γ) := f(x−1γ). A mean on Γ is a linear functional λ : `∞(Γ) → R
such that λ(1) = 1 and λ(f) ≥ 0 for all f with f(γ) ≥ 0 for all γ.

Definition 1.19. A countable group Γ is called amenable, if there exists a left-invariant
mean on Γ.

This definition was given by von Neumann when he analyzed the Banach-Tarski para-
dox. Obviously, the following subgroup-criterion holds:

Proposition 1.20. Closed subgroups of amenable groups are amenable. Hence a discrete
group containing a non-amenable subgroup is non-amenable.

Følner found an equivalent definition of amenability:

Theorem 1.21 ([Fol55]). A countable group Γ is amenable, if and only if there exists a
so called Følner sequence: a sequence (Ai) of non-empty finite subsets Γ such that

|(γ ·Ai)∆Ai|
|Ai|

→ 0 as i→∞ for all γ ∈ Γ.

Here, ∆ denotes the symmetric difference.

Examples of amenable groups are finite groups, abelian groups and virtually solvable
groups. Proofs can be found in [Tao11] and in [Pat00].

From the criterion of Følner one easily sees that groups of polynomial growth are
amenable, since the i-balls around 1 (with respect to the word metric) build a Følner
sequence. For details on the growth of a group and a proof that groups of intermediate
growth are supramenable and thus amenable see for instance [Wag93].

On the other hand not every group of exponential growth is non-amenable:

Example 1.22. for example the Baumslag-Solitar group BS(1, 2) = 〈a, b | ab = b2a〉 is
a semi-direct product of Z[1

2 ] and Z and thus metabelian and solvable. But it contains
the free monoid 〈a, ba〉mon , and hence is of exponential growth. That this monoid is
indeed free can be easily seen, when one views the Cayley graph of BS(1, 2) in the form
shown in Figure 1.2.1†. The horizontal edges are labeled with b, while the upgoing edges
are labeled with a. Two different words in a+ and (ba)+ lead to different vertices of
the Cayley graph, since a and ba lead to different limbs of the underlying infinite binary
tree.

Let us finish this section with an example of a non-amenable group:

†The picture is taken from en.wikipedia.org/wiki/Baumslag-Solitar_group.
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1. Graphs and Amenability

Figure 1.2: Cayley graph of BS(1, 2).

Example 1.23. The free group z = 〈a, b | −〉 of rank 2 is non-amenable. If it was
amenable, there would be an invariant mean λ. Denote by A1, A−1, B1 and B−1 ⊂ z the
set of all words beginning with a, a−1, b or b−1, respectively. Since B1 ⊂ (a−1A1)−A1,
we conclude λ(1B1) ≤ λ(τa−11A1) − λ(1A1) = 0. Similarly also A1,A−1 and B−1 and
obviously also the empty word have zero mean. Thus λ would be identically zero, what
is a contradiction to λ(1) = 1.

Hence a way to show non-amenability of a group is to find a free subgroup of rank ≥ 2.
Until 1980 there was the von Neumann conjecture, that possibly a group is amenable
if and only if it contains a free non-abelian subgroup. This conjecture was disproved
by Alexander Ol’shanskii in [Ol’82]: he showed that the Tarski monster group, which
was known to not contain a free non-abelian subgroup, is non-amenable. For linear
groups however, there is the Tits alternative [Tit72], which shows that the von Neumann
conjecture is true in this case.

1.2.2 Amenability of Graphs

Let us now define amenability for graphs. In addition to the basic definitions from the
beginning of this chapter we need the notion of the (vertex-) boundary of a set M ⊂ V :

∂M = {vertices of M that have a neighbor in M c}

15
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Accordingly the interior is M̊ := M − ∂M .

Definition 1.24. Let G = (V,E, α, β) respectively G = (V,E) be a graph.

• For a finite nonempty set of vertices M ⊂ V we define

c(M) :=
|∂M |
|M | .

• The Cheeger constant of G is

c(G) := inf
finite M⊂V

c(M).

• If c(G) = 0, the graph G is called amenable; otherwise it is non-amenable.

• If we focus on the interior of M instead of counting the boundary vertices we define

ι(M) :=
|M̊ |
|M | = 1− c(M) and i(G) := sup

finite M⊂V
ι(M) = 1− c(G).

Remark 1.25. The Cheeger constant depends not only on the vertex set but also on the
edges. This dependence can be found in the numerator |∂M |. But it does not depend
on the direction or orientation of edges. Hence in the case of directed graphs (as Cayley
or Schreier graphs) we can replace the oriented geometrical edges by undirected and
unoriented edges. Also loops and multiedges do not change the number of boundary
vertices or the Cheeger constant, so we can omit them, too, to get a simple graph with
the same Cheeger constant.

As a first example of a graph for which we can calculate the Cheeger constant we take
the free abelian group of rank k:

Example 1.26. As in Example 1.13 let Γ be the free abelian group of rank k, presented
by 〈x1, . . . xk | [xi, xj ] = 1〉 and let GΓ,{x1,...,xk} be its Cayley graph (identified with Zk).
Since the group Γ is abelian and therefore also amenable, we would hope that also its
Cayley graph is amenable and so want to find a sequence (Mn) of finite vertex sets such
that c(Mn) tends to 0 as n goes to infinity: We already estimated the size of the n-ball
and the n-sphere with center 0, so let us try the sequence Mn := Bn(0). Obviously ∂Mn

is exactly the sphere Sn(0). Hence comparing with the results from Example 1.13 we
get

c(Mn) =
|∂Mn|
|Mn|

=
|Sn(0)|
|Bn(0)| ∼

cSn
k−1

cBnk
=
cS
cB
· 1

n
.

So c(Mn) tends to zero for n→∞ and GΓ,{x1,...,xk} is indeed amenable as we guessed.

Unfortunately there are not many results on (non-) amenability of graphs. As de-
scribed and used in [Kap02] the main technique is the following due to Bartholdi. He
generalizes a result of Grigorchuk about Cayley graphs ([Gri80]) to all regular graphs:

Theorem 1.27 ([Bar99]). Let G = (V,E) be a connected d-regular graph, choose a point
v0 ∈ V and let an be the number of reduced edge-paths of length n from v0 to v0. Then
G is amenable if and only if lim supn→∞ n

√
an = d− 1.
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The graph we want to analyze is a Schreier graph and thus regular, but the groups
that come into play are too complicated to count the reduced edge-paths. Hence we
want to find another (more elementary) method to prove non-amenability of a Schreier
graph. Let us begin by collecting some facts about Cheeger constants that will help us:

First it is obvious that a graph containing a finite connected component C is amenable
since |∂C| = 0. But on the other hand we have

Proposition 1.28. If G = (V,E) is an amenable graph without any finite connected
component, then for any finite subset F ⊂ V the subgraph induced by V ′ = V − F is
amenable too.

Proof. Since G is amenable there exists a sequence of finite sets Mi ⊂ V with c(Mi)→ 0
as i → ∞. There is no finite connected component, hence each Mi has at least one
boundary vertex, |∂Mi| ≥ 1. Thus |Mi| has to tend to infinity to make c(Mi) = |∂Mi|

|Mi| → 0
possible.

Now let us set M ′i := Mi − P = Mi ∩ V ′ and look at the sequence (c(M ′i)):

c(M ′i) =
|∂M ′i |
|M ′i |

≤ |∂Mi|
|Mi| − |F |

.

The inverse of this term is

|Mi| − |F |
|∂Mi|

=
|Mi|
|∂Mi|

− |F |
|∂Mi|

.

The minuend tends to infinity, the subtrahend is bounded above by |F | and hence

c(M ′i)→ 0 as i→∞.

Thus the subgraph induced by V ′ is amenable.

Proposition 1.29. Let G = (V,E) be graph with connected components Ki and let M
be a finite subset of the vertex set V . Setting Mi := M ∩Ki the following holds:

min
i|Mi 6=∅

|∂Mi|
|Mi|

≤ |∂M ||M | ≤ max
i|Mi 6=∅

|∂Mi|
|Mi|

Proof. Since the Mi are in different connected components the boundary ∂Mi is the
intersection of Mi with ∂M . First consider the case of two components, so M is the
disjoint union M1 tM2, and ∂M = (∂M ∩M1) t (∂M ∩M2) = ∂M1 t ∂M2. Without

loss of generality we assume c(M1) = |∂M1|
|M1| ≤

|∂M2|
|M2| = c(M2). This is equivalent to

|∂M1| ≤ |M1|·|∂M2|
|M2| . Thus we obtain

c(M) =
|∂M |
|M | =

|∂M1|+ |∂M2|
|M1|+ |M2|

≤
|M1|·|∂M2|+|M2|·|∂M2|

|M2|

|M1|+ |M2|
=
|∂M2|
|M2|

= c(M2).

Analogically one gets c(M) ≥ c(M1). Note that M is finite and thus only finitely many
Mi are non-empty. Since min{a, b, c} = min{min{a, b}, c}, inductively we obtain the
general case of arbitrary many connected components.
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Corollary 1.30. Let G be a graph with connected components Ki. Then

c(G) = inf
i
c(Ki).

Proof. That c(G) ≤ infi c(Ki) is clear by definition of the Cheeger constant.
To show c(G) ≥ infi c(Ki) let M be an arbitrary (nonempty) finite set of vertices and

Mi := M ∩Ki as in Proposition 1.29. Thus c(Mi) ≤ c(M) for at least one i.
Now let (Mj)j∈N be a sequence of finite vertex sets with infj c(Mj) = c(G) and let

Mj,i be Mj ∩Ki. Since for all j there exists an i such that c(Mj) ≥ c(Mj,i), it follows

c(G) = inf
j
c(Mj) ≥ inf

j
inf
i
c(Mj,i) = inf

i,j
c(Mj,i) = inf

i
inf
j
c(Mj,i) ≥ inf

i
c(Ki).

Proposition 1.31. If a graph G′ arises from a graph G by ommiting some edges, then
the Cheeger constants satisfy:

c(G′) ≤ c(G).

Proof. For every finite set M clearly the number |∂′M | is at most |∂M |, where ∂′M
denotes the (vertex) boundary of M in G′. Hence

c(G′) = inf
finite M⊂V

|∂′M |
|M | ≤ inf

finite M⊂V

|∂M |
|M | = c(G).

Later on we want to show non-amenability of a Schreier graph and for this want to
choose the generating set such that it contains special elements. This will be allowed by
a result of Woess about metrically equivalent graphs.

Definition 1.32. Let G = (V,E) and G′ = (V ′, E′) be graphs with edge metrics d and
d′, respectively. The graphs G and G′ are called metrically equivalent, if there exists a
surjective map ϕ : V � V ′ and a constant A ≥ 1 such that

d(v, w)

A
≤ d′(ϕ(v), ϕ(w)) ≤ Ad(v, w)

for all v, w ∈ V .

Proposition 1.33. Let G = GΓ,Π,S and G′ = G′Γ,Π,S′ be Cayley or Schreier graphs with
respect to finite generating sets S and S′ of Γ and let d and d′ be the edge metrics of G
and G′, respectively. Then G and G′ are metrically equivalent.

Proof. Since S = {s1, . . . , sn} and S′ = {s′1, . . . s′m} are finite and G and G′ are connected
also maxi=1,...n;j=1,...m(d′(Π,Πsi), d(Π,Πs′j)) is finite. Set A to be this number and ϕ as
the identity map on V (G) = V (G′).

Theorem 1.34 ([Woe00], Theorem 4.7). Let G and G′ be connected graphs with bounded
vertex degrees. If G and G′ are metrically equivalent, then G is amenable if and only
if G′ is amenable. In particular, for Cayley graphs and Schreier graphs amenability is
independent of the choice of a finite generating set.
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Let us now consider an example of a non-amenable Cayley graph, the Cayley graph
of a free group of finite rank ≥ 2:

Example 1.35. Let Gzk be the Cayley graph of a free group of rank k ≥ 2 with respect
to a free generating set: zk = 〈a1, . . . , ak|−〉:

As described in Remark 1.25 we can ignore the direction of the edges and get an
infinite 2k-regular tree. We want to find a lower bound for c(M) for finite vertex sets
M . By Proposition 1.29 we can assume that M is connected. If the interior M̊ is
empty, c(M) = 1. So let us assume |M̊ | = n ≥ 1 and let v be an inner vertex. We
mark v as the root of M and divide the other vertices of M in levels corresponding
to their distance to v. Now we can view the tree M from the root and estimate the
total number of vertices: There are v and its 2k neighbors in M and every further
inner vertex has 2k − 1 neigbors on a higher level that are not already counted. Hence
|M | ≥ 1 + 2k + (n− 1)(2k − 1) = n(2k − 1 + 2

n) and

c(M) = 1− |M̊ ||M | ≥ 1− n

n(2k − 1 + 2
n)

=
2k − 2 + 2

n

2k − 1 + 2
n

. (1.1)

For increasing n this expression is decreasing, whence we get the lower bound for n→∞:

c(M) ≥ 2k − 2

2k − 1
.

Since for balls with center 0 the inequality (1.1) becomes an equality, the sequence Bn
converges to the last expression and we get the exact value of the Cheeger constant

c(Gzk) =
2k − 2

2k − 1

and thus the non-amenability of the infinite 2k-regular tree.

Remark 1.36. In particular, for the Cayley graph of the free group of rank 1 – which
is Z – this value is 0 and we again see amenability of this graph. Of course the above
calculation can be made analog for k-regular infinite trees Tk-reg also for k odd and we
get

c(Tk-reg) =
k − 2

k − 1
.

Knowing this result we could be tempted to ask the following question about an
analog statement to the fact that a group containing a free non-abelian subgroup is
non-amenable:

Question 1.37. Let Π < Γ be groups. Is it true that if there exists a free non-abelian
subgroup z < Γ with trivial intersection with Π, the Schreier graph G{Γ,Π,S} is non-
amenable?

The existence of such a free group implies that the Schreier graph contains a subgraph
isomorphic to the Cayley graph of the free group, which is non-amenable as we just saw.
For arbitrary graphs one can easily construct a counterexample by combining a graph
isomorphic to the Cayley graph of Z and a graph isomorphic to the Cayley graph of a
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free group of rank two. For example take both as seperated connected components or
connect them at a single common vertex. Surely this graph is amenable.

But Schreier graphs are more special and in some aspects quite similar to Cayley
graphs, where the question can be answered with “yes” (cf. Theorem 1.34). If we
additionally assume that Π is finitely generated, we do not know the answer. But we
now give a counterexample with an infinitely generated subgroup Π.

Example 1.38. Let Γ = 〈a, b | −〉 be the free group in two generators and Π the subgroup〈
{akba−k}k∈Z−{0}

〉
. Then the Schreier graph GΓ,Π,{a,b} is amenable, but there is a free

non-abelian subgroup z with trivial intersection with Π.

Proof. All cosets Πak are different, because

Πam = Πan ⇔ Πam−n = Π⇔ am−n ∈ Π⇔ m = n.

From Πak there is an outgoing edge labeled with a to Πak+1 and an incoming from
Πak−1. Since Πakb = Πak ⇔ akba−k ∈ Π the b-edges from Πak are loops at Πak for all
k ∈ Z − {0}. Summed up this part of the coset graph looks like the Cayley graph of Z
with an additional loop at almost every vertex. Only at the origin, the vertex Π = Π1,
there are an incoming and an outgoing b-edge connecting this part to the following part:

All cosets Πw and Πw′ with w 6= w′ and w and w′ reduced words starting with b±1

are different vertices since Πw = Πw′ ⇔ ww′−1 ∈ Π, which is not true since every
(nontrivial) element in the subgroup Π begins and ends with a or a−1. Furthermore
no Πw with w starting with b±1 is adjacent to one of the Πak (k 6= 0), because of the
4-regularity of the Schreier graph. So the Schreier graph looks as illustrated in Figure 1.3.

Now we can easily give a sequence of finite vertex sets with the property that the
quotient of boundary vertices to all vertices of one set tends to zero:

(Mi)i∈N with Mi = {Πak : |k| ≤ i}}

In Mi there are three boundary vertices Π, Πai and Πa−i, whereas |Mi| = 2i + 1, so
c(M) = 3

2i+1 → 0 for i→∞.
It remains to find a (free non-abelian) subgroup z < Γ that intersects with Π only

trivially: One can easily check that the subgroup z =
〈
bab, b2

〉
is such a group: As a

subgroup of a free group it is free, obviously of rank > 1, and every nontrivial word in
z begins with b±1 and thus is not in Π.

So we have seen that the answer to Question 1.37 in general is “no”, if infinitely
generated subgroups are allowed.

Furthermore, nearly directly from the definition of amenability the following subgraph
criterion – inspired by the last example – is clear:

Proposition 1.39. If a graph G contains an infinite connected amenable subgraph G′

that is connected to G−G′ only at finitely many vertices of G′, then also G is amenable.

Proof. Since the subgraph G′ is amenable there is a sequence of finite sets Mi ⊂ V (G′)

with cG′(Mi) =
|∂G′Mi|
|Mi| → 0. Since G′ is connected and infinite, every Mi has at least

one boundary vertex. Hence |Mi| has to tend to infinity. Thus the same sequence
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Π

b

a

b

Figure 1.3: Schreier graph GΓ,Π,S : amenable although Γ contains a free subgroup inter-
secting Π only trivially.

regarded as subsets of V (G) still has the property that cG(Mi) = |∂GMi|
|Mi| → 0, because

only finitely many of the vertices of
⋃
Mi are boundary vertices with respect to G but

not with respect to G′.

But now having in mind Corollary 1.30, Proposition 1.31 and Example 1.35 we want
to get back to trees and obtain a criterion for the (non-)amenability of an arbitrary
infinite tree that does not contain a leaf. In order to do this we first have to introduce
some notation and investigate simple finite trees.

Definition 1.40. We call a subgraph Z of a (simple) graph G a Z-piece, if it is connected
and consitsts only of vertices v with valG(v) = 2. The number |V (Z)| is called the length
of the Z-piece. Let n(G) denote the supremum of |V (Z)| over all Z-pieces Z.

Lemma 1.41. A finite tree T with k leaves not containing vertices of valency 2 has at
most 2k − 2 vertices.‡

Proof. Let us first prove the statement for 3-valent finite trees with k leaves, i.e. all
vertices but the leaves have valency 3. This is done by induction on k. For k = 3 there
is only one trivalent finite tree, that has 4 = 3 · 2 − 2 vertices. Since the tree is finite,
for k > 3 there exist two leaves adjacent to the same vertex v. If we remove these two
leaves and the corresponding edges, v becomes a leave and we get a trivalent finite tree

‡exactly 2k − 2 if and only if T is 3-valent

21



1. Graphs and Amenability

. . ....
...

Z-piece

Figure 1.4: A Z-piece.

with k−1 leaves. By induction this has 2(k−1)−2 vertices. Thus the tree with k leaves
has 2 more vertices, which is 2k − 2.

An arbitrary finite tree T with k leaves that does not contain vertices of valency 2
can be transformed to a trivalent one with the same number of leaves by repeating the
following procedure: For every vertex w of valency greater than 3 replace this vertex by
a segment of one edge and two vertices w′ and w′′, such that exactly two of the former
neighbors of w are adjacent to w′ and the others to w′′.

w w w′

Figure 1.5: From an arbitrary tree to a 3-valent tree.

In each step the number of vertices increases while the number of leaves stays constant.
Hence T has at most 2k − 2 vertices.

Remark 1.42. With an analog induction we can prove that a k-valent finite tree with
n leaves§ has exactly k + 1 + k−1

k−2(n− k) vertices.

Remark 1.43. In the following proposition we will use the well-known fact (easily
provable by induction), that in a finite simple tree T the number of vertices |V (T )| and
the number of edges |E(T )| differ by 1, i.e. |E(T )| = |V (T )| − 1.

Proposition 1.44. A (infinite¶) simple tree T that does not contain leaves is non-
amenable if and only if n(T ) <∞.

Proof. If n(T ) = ∞ then there exists a sequence of Z-pieces Zi with |Zi| → ∞. Since
|∂Zi| = 2 for all i, the sequence c(Zi) tends to 0 and T is amenable.

For the other implication let n(T ) be n < ∞. For an arbitrary finite vertex set
M ⊂ V (T ) we want to give a lower bound for c(M). We already know that it is
sufficient to find such a bound for sets such that the induced finite subgraph T ′ is

§In such trees n has to be at least k and n− k has to be divisible by (k − 2)
¶obsolete because finite trees always have leaves
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connected (Proposition 1.29). Obviously T ′ is a finite tree. Let k denote the number of
leaves of T ′.

First consider the case that T ′ consists only of vertices of valency 1 or 2. Then k = 2
and T ′ looks as follows:

. . .

We notice that although apart from the 2 leaves T ′ looks like a Z-piece the number of
vertices does not need to be bounded, because there might be vertices that have valency
greater than 2 in T , but only 2 of the neighbors are also in T ′. Let l ≥ 0 denote the
number of such vertices of valency 2 with neighbors in T −T ′. So these vertices and the
two leaves are the boundary vertices of M .

If we replace every part of T ′ that is a Z-piece in T together with its two boundary
edges by an edge, the resulting tree T ′′ has the same number of boundary vertices
|∂T ′′| = |∂T ′| = l + 2 . This is also the number |T ′′| of all vertices of T ′′. Hence
c(T ′′) = l+2

l+2 . The fraction c(T ′) differs only in the denominator |T ′|. To get back from
T ′′ to T ′ we have to add at most n vertices per edge in T ′′. Remember that a finite tree
with l+ 2 vertices has l+ 1 edges. Hence we get the upper bound |T ′| ≤ l+ 2 + (l+ 1)n
and the lower bound

c(T ′) ≥ l + 2

l + 2 + (l + 1)n
=

1

1 + l+1
l+2n

.

Regarded as a function in l this expression is increasing, which implies

c(T ′) ≥ 1

1 + n
2

=
2

n+ 2
> 0.

Now we want to get a lower bound for c(T ′) in the case that T ′ has at least one vertex
of T ′-valency at least 3. To do this we partition the tree in disjoint parts and apply
Proposition 1.29.

1. The Z-pieces Zl,i of T ′ that contain l ≥ 1 vertices with valency ≥ 3 in T . These are
basically trees of the form analyzed in the first step of this proof‖, but the leaves
are missing. Thus

|∂T ′ ∩ Zi|
|Zi|

≥ l

l + (l + 1)n
≥ 1

1 + 2n
.

2. The rest, i.e. the other Z-pieces – that are Z-pieces also in T – and the vertices of
valency 1 (the k leaves) or at least 3 in T ′. We want to work with a tree, so we
connect the rest by adding an edge joining the two neighbors (in T ′) of each Zl,i we
have removed. Let T ′′ denote the resulting tree and T ′′′ the tree arising from T ′′

by replacing all remaining Z-pieces by an edge between the respective neighbors.
This tree has k leaves and no vertices of valency 2. So we can apply Lemma 1.41
and get the upper bound 2k − 2 for the total number of vertices of T ′′′. Since the
number of vertices of a Z-piece in T ′′ is bounded by n and there are 2k − 3 edges
in T ′′′, we get

|Vertex set of T ′′| ≤ 2k − 2 + (2k − 3) · n = k

(
2 + 2n− 2 + 3n

k

)
.

‖with l ≥ 1 instead of l ≥ 0
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At least every leaf of T ′′ has a neighbor in T − T ′ and thus belongs to ∂T ′ and
∂T ′′. Hence we conclude

|∂T ′ ∩ T ′′|
|T ′′| ≥ k

k
(
2 + 2n− 2+3n

k

) .
This expression is decreasing for increasing k, hence it is bounded below by

|∂T ′ ∩ T ′′|
|T ′′| ≥ 1

2 + 2n
.

With Proposition 1.29 we conclude

c(T ′) ≥ min

{
1

2 + 2n
,

1

1 + 2n

}
=

1

2 + 2n
> 0,

which means that also in this case the tree T is indeed non-amenable.

This proposition confirms what one might have guessed already: Among the infinite
trees with bounded n(T ) <∞ and without leaves, the infinite 3-valent tree with all edges
replaced by Z-pieces of the maximal allowed length has the smallest Cheeger constant. In
this tree the balls of radius i with any center Bi(∗) have c(Bi(∗))→ 1

2+2n(T ) . Therefore,
considering also the results of the proof of the theorem this tree has exactly this term
as Cheeger constant, which is the smallest possible.

Combining Corollary 1.30, Proposition 1.31 and Proposition 1.44 we get the following

Theorem E. Let G be a graph. If it is possible to omit edges of G and get a forest G′

with every connected component an infinite simple tree without leaves, then

c(G) ≥ 1

2n(G′) + 2
,

where n(G′) is the supremum of the lengths of the Z-pieces in G′. In particular if
n(G′) <∞ then G is non-amenable.

A special graph that will play an important role in Chapter 6 is the root-looped
4-valent tree Trl4 seen in Figure 1.1. Proposition 1.44 implies that this graph is non-
amenable and the lower bound on the Cheeger constant given in Theorem E yields
c(Trl4) ≥ 1

4 . But for this graph we can get a better result:

Remark 1.45. The Cheeger constant of the root-looped 4-valent tree Trl4 is c(Trl4) = 2
3 .

Proof. First we observe that the Z-piece at the root has length 1, so if we take M to be
the root and it’s two neighbors, then c(M) = 2

3 , whence c(Trl4) ≤ 2
3 follows.

For the other direction let M be any finite vertex set. If the root is not in M̊ , we have
seen in Example 1.35 that c(M) ≥ 2

3 . If otherwise the root is one of n inner vertices of
M , then (using the same arguments as in Example 1.35) M has at least 1+2+3 · (n−1)
vertices. Hence c(M) ≥ 1 − n

1+2+3(n−1) = 2
3 and we get c(Trl4) ≥ 2

3 , what finishes the
proof.
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1. Graphs and Amenability

1.3 The Combinatorial Spectrum of a Graph

In Chapter 5 we will need some information on the spectrum of a graph G with infinite
vertex set, in particular on its bottom µ0(G). This is why we provide some basic facts
about the combinatorial Laplacian in this section.

Let G = (V,E) be a connected graph with maximal valency k > 0. We define the
gradient ∇ as an operator sending a map b : V → R to the map

∇b : E → R, (i, j) 7→ b(i)− b(j)

and the combinatorial Laplacian ∆G as

∆Gb(i) =
∑

j:{i,j}∈E

b(i)− b(j)

for all maps b, which are in l2(V ), i.e. the maps with 〈b, b〉 :=
∑

i b(i)
2 < ∞. The

combinatorial Laplacian is a bounded operator self-adjoint with respect to the quadratic
form q(b) =

∑
{i,j}∈E(b(i)−b(j))2 =: 〈∆Gb, b〉. If G has a finite vertex set V , the constant

maps are eigenfunctions with eigenvalue λ0(G) = 0. For connected graphs the eigenvalue
0 has multiplicity 1 and the difference µ0(G) = λ1(G) − λ0(G) is called spectral gap. If
V is infinite, we set the spectral gap µ0(G) to be the smallest eigenvalue µ0(G) of ∆G.

Let us now assume that G has infinitely many vertices. By the Min-Max principle the
spectral gap satisfies

µ0(G) = inf
b

∑
{i,j}∈E(b(i)− b(j))2∑

i∈V b(i)
2

= inf
b

||∇b||2
||b||2 . (1.2)

There are upper and lower bounds on µ0(G) in terms of the Cheeger constant c(G):

Theorem 1.46 (Cheeger). Let G = (V,E) be a connected graph with |V | = ∞ and
maximal vertex valency k. Then the following inequalities for the spectral gap µ0(G)
hold:

c(G)2

2k
≤ µ0(G) ≤ kc(G).

A proof of a similar theorem can be found in [Ver93], Section 2. But note that he
defines the Cheeger constant via the edge boundary ∂EA, which consists of all edges
that connect vertices of A and Ac. We will just use the first inequality and thus also
prove just this one:

Proof. Let b : V → R have finite support. We define

S :=
∑
{i,j}∈E

|b2(i)− b2(j)|

and by the Cauchy-Schwartz inequality for 〈∇b, b(i) + b(j)〉 combined with the estimate∑
{i,j}∈E |b(i)|+ |b(j)| ≤ 2k

∑
i∈V |b(i)| we obtain

S ≤
√

2k||∇b|| · ||b||.
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1. Graphs and Amenability

On the other hand S =
∑
b2(i) − b2(j), where the sum is taken over all (oriented)

edges (i, j) with b2(i) ≥ b2(j). The image of b is finite and we sort the values of b2

obtaining a0 = 0 < a1 < . . . < ar and define

Al := {i ∈ V | b2(i) ≥ al}.

Then we can write the sum S as
∑

(al − al−1), where each summand al − al−1 appears
with multiplicity equal to the number of edges (i, j) with b2(i) ≥ al and b2(j) < al.
This number is bounded below by |∂Al|. With the definition of the Cheeger constant

c(G) < |∂Al|
|Al| and thus

S ≥ c(G)

r∑
l=1

(al − al−1)|Al| = c(G)||b||2

follows. All together we finish the proof by obtaining

||∇b||2
||b||2 ≥

c(G)2

2k
.

Thus for G having a strictly positive spectral gap µ0(G) is equivalent to having a
strictly positive Cheeger constant c(G) and hence also to being non-amenable.
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2 Background on Translation Surfaces

After we dealt with graphs and the question when they are non-amenable in the previous
chapter we now introduce the objects we are mainly interested in: translation surfaces.
There are three equivalent ways to define them: via translation structures, i.e. sur-
faces with an atlas such that all transition maps are translations, as a Riemann surface
equipped with a holomorphic 1-form or – as we will do – as polygons with parallel sides
glued together. For details of the first two definitions and the equivalence of those see
for instance the survey [Mas06]. The second part of this chapter is a short summary of
known results concerning the size of Veech groups with focus on surfaces with infinitely
generated Veech group and on Veech surfaces of genus 2.

2.1 Translation Surfaces and Veech Groups

2.1.1 Translation Surfaces

Definition 2.1. Let {P1, . . . Pn} be a finite set of polygons embedded in the Euclidean
plane such that

• the boundary of every polygon is oriented counterclockwise, i.e. such that the
polygon lies on the left of each side.

• the set of sides decomposes into pairs of sides, each pair consisting of parallel,
reverse oriented sides of the same length.

The surface X obtained by gluing together these pairs of sides by translations is called
a translation surface.

In the following we will additionally assume that translation surfaces are connected.
Furthermore we will sometimes permit also translation surfaces with boundary, i.e. a set
of polygons, where not every side is glued to another one.

Remark 2.2. Immediately from the definition we see:

• Moving along a glued pair of sides {s, t} one of the corresponding polygons appears
to the left and the other one to the right.

• The total angle around each vertex v is 2πmv with mv a positive integer. The
vertex v is called a singularity and the number mv − 1 its order. The set of all
singularities is denoted by S(X).

• The group GL2(R) acts as linear maps on the plane and thus also on the polygons.
This action maps parallel reverse oriented sides with the same length to parallel
reverse oriented sides with the same length. Hence the action on the polygons
induces an action on translation surfaces.
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2. Background on Translation Surfaces

Remark 2.3. By identifying R2 with C this definition of translation surfaces yields a
Riemann surface X together with

• an atlas such that away from the singularities all transition maps are translations

or

• a holomorphic one-form η coming from the differential dz on the Euclidean plane.

Definition 2.4. • The collection of polygons glued at some of the identified sides
and embedded in the plane together with markings for the identified sides, which
are not glued yet, is called a pattern of the translation surface.

• A geodesic emanating from a singularity is called a separatrix. A geodesic, with-
out singularities in its interior, which connects two singularities is called a saddle
connection.

• A nonsingular point P is a connection point of a translation surface X if every sep-
aratrix without singularities in its interior that passes through P can be extended
to a saddle connection.

• A translation/affine covering of X by Y is a continuous map p : Y → X, such that
p−1(S(X)) = S(Y ) and p|Y−S(Y ) : Y −S(Y )→ X −S(X) is locally a translation/
affine map.

By the Gauß-Bonnet theorem the genus of the translation surface X can be calculated
from the equation

∑
v∈S(X)(mv − 1) = 2g − 2. The space ΩMg of all pairs (X, η) with

X a Riemann surface of genus g and η a holomorphic one-form can be stratified by the
orders of the singularities, e.g. for g = 2 there are two strata: ΩM2(1, 1) – the translation
surfaces with two singularities of order 1 – and ΩM2(2) – the translation surfaces with
a single singularity of order 2. We will deal with these two spaces – especially the latter
– later in Section 2.2.2. Note that the strata are preserved under the action of GL2(R)
described above.

2.1.2 From Billiards to Translation Surfaces

A comprehensive survey about rational billiards and translation surfaces is the article
[MT02] of Masur and Tabachnikov. As mentioned in the introduction there is an un-
folding process that assigns a translation surface X to the billiard dynamics on a given
rational polygon P . We shortly describe this construction from [ZK75]:

Let the boundary of P1 := P be oriented counterclockwise, set X ′ := {P} and choose a
side e ∈ ∂P1. Reflect P1 in this side, call the resulting polygon P2, reverse the orientation
of its boundary (such that it is oriented counterclockwise), add P2 to X ′ and mark the
side e ∈ ∂P1 and its image e ∈ ∂P2 as one of the pairs of sides which are parallel, reverse
oriented and of the same length. Continue with all sides that are not yet marked, but if
the reflected polygon differs from one that is already in the set X ′ just by a translation,
do not add it. Since all angles of P are rational multiples of π, this procedure yields
a finite set X ′ of polygons and thus finitely many sides, partitioned in pairs of parallel
sides of the same length with reversed orientation, resulting in a translation surface X.
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Figure 2.1: Translation surface L from unfolding an L-shaped polygon.

The big advantage of this construction is that the path of an billiard ball on the billiard
table becomes a straight line on the translation surface. In Figure 2.1 the resulting
translation surface L of the unfolding process of an L-shaped table is shown. Since the
sides are glued, we can cut and glue the pattern of the surface – without changing the
surface – and get an L-shaped pattern with side identifications representing the same
translation surface (see Figure 2.2). We see that this pattern has the form of the original
L-shaped billiard table and is just scaled by a factor 2 in the horizontal and in the vertical
direction each.

2.1.3 Veech Groups

Definition 2.5. Let X and Y be translation surfaces (or translation surfaces with
boundary) with singularities S(X) and S(Y ), respectively. A map f : X → Y is called
a affine map, if it is locally affine on X − S(X)→ Y − S(Y ). Accordingly f is called a
translation map, if it is locally a translation on X − S(X)→ Y − S(Y ).

Now we can define three groups assigned to a translation surface X:

Definition 2.6. Let X be a connected translation surface (with finite volume).

1. The translation group Trans(X) consists of all translation self-homeomorphisms
f : X → X, which map S(X) to itself.

2. The affine group Aff(X) consists of all orientation-preserving affine self - homeo-
morphisms f : X → X, which map S(X) to itself. Note that, since X is connected
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Figure 2.2: Another pattern for the translation surface from Figure 2.1.

and of finite volume, the linear part – i.e. the derivative – of f is a globally constant
2× 2-matrix Df = A of determinant 1.

3. The Veech group SL(X) is the image of Aff(X) in SL2(R) under the derivation
map.

Remark 2.7. • Note that the Veech group SL(X) also can be characterized by the
action of SL2(R) on the space of translation surfaces. The Veech group SL(X) is
the stabilizer of X under this action, because A ∈ StabSL2(R)(X) acts by an affine
self-homeomorphism and an affine self-homeomorphism stabilizes X. This means,
that A is in SL(X), if and only if it is possible to apply A to a pattern of X and
get this pattern (with correct side identifications) back by a “cut & glue” process.

• Sometimes the Veech group is not defined as above, but as the image of the above
group in PSL2(R), because the latter is a group acting faithfully on the hyperbolic
plane.

Proposition 2.8. Let X be a translation surface. Then the following holds:

1. The groups Trans(X), Aff(X) and SL(X) form a short exact sequence:

Trans(X) ↪→ Aff(X)� SL(X).

2. The Veech group SL(X) is a discrete subgroup of SL2(R).

3. The translation group Trans(X) is finite; it is trivial, if X is in ΩM2(2).

4. Given any M ∈ GL2(R) and any translation surface X the Veech group SL(M ◦X)
satisfies SL(M ◦X) = M SL(X)M−1.
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2. Background on Translation Surfaces

The statement of item 3 is the reason why for X ∈ ΩM2(2) we can and will identify
elements γ of the Veech group with the corresponding affine map.

Proof. We give sketches of the proofs:

1. Obviously every translation self-homeomorphism is also affine and an affine self-
homeomorphism φ is in the kernel of the derivation map if and only if the linear
part is the identity matrix and thus φ ∈ Trans(X).

2. A proof of this statement can be found for example in [HS06a], Section 1.3. It is
first shown that the set of saddle connection vectors is discrete in R2. Thus for
a sequence {γn} of Veech group elements tending to the identity there exist two
linearly independent saddle connection vectors which are fixed by γn for all n large
enough. But this means that γn already is the identity.

3. The second statement is Proposition 4.4 of [HL06]: Let f ∈ Trans(X) be a non-
trivial translation. Then f fixes the singularity – there is only one for X ∈ ΩM2(2).
For ε smaller than the length of the shortest saddle connection consider the points
at distance ε from the singularity in a given direction. Since the total angle around
the singularity is 3 · 2π, there are exactly 3 such points. The translation f has to
permute them. This permutation has no fixed points, otherwise f would be the
identity. This implies that the orbit of every point beside the singularity has size
3. But on the other hand by [Möl06], Theorem 5.1, there are exactly 6 points on
X with finite SL(X)-orbit and f also has to permute them with the singularity as
the only fixed point. This is a contradiction.

The general statement is proven similar, using that there are only finitely many
singularities of X.

4. Any γ ∈ SL(X) stabilizes X, and thus MγM−1 ◦ (M ◦X) = Mγ ◦X = M ◦X.
Hence M SL(X)M−1 ⊆ SL(M ◦ X). By the same argument with M and M−1

switched also M−1 SL(X)M ⊆ SL(M ◦X) and thus M SL(X)M−1 = SL(M ◦X)
hold.

We call an element A ∈ SL2(R) elliptic, if | tr(A)| < 2, parabolic, if A 6= ±I and
| tr(A)| = 2, and hyperbolic, if | tr(A)| > 2. To find parabolic elements of the Veech
group, it is useful to decompose the translation surface into cylinders. We will define
the notion of a cylinder and discuss how to use them in order to find parabolic elements
of the Veech group:

Definition 2.9. A cylinder C of heigth h and circumference c in a translation surface
X is the image of a [0, c] × (0, h) rectangle with the identification (0; y) ∼ (c; y) (see
Figure 2.3) under a map φ = f◦R with R a rotation and f a translation homeomorphism.
Its modulus µ is the quotient µ := c

h .

For a cylinder we call the image of ±
(

1
0

)
under the rotation R the direction of the

cylinder. If the direction is ±
(

1
0

)
or ±

(
0
1

)
, we call the cylinder horizontal or vertical,

respectively. This might be a bit confusing because it seems as a cylinder with R = id
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2. Background on Translation Surfaces

should be vertical and not horizontal (see Figure 2.3), but it is the horizontal direction,
that is special here, since all horizontal straight lines in the interior of the cylinder build
closed geodesics.

(c; 0)(0; 0)

(c;h)(0;h)

− −

c

h

Figure 2.3: Preimage of a cylinder.

Definition 2.10. A cylinder decomposition of a translation surface X in direction θ is
a finite collection of disjoint cylinders of direction θ such that their closures cover X.

Next, we will discuss when and how we get a parabolic element B with eigenvector
(

1
0

)
of the Veech group from a horizontal cylinder decomposition. For an arbitrary direction
θ = R(

(
1
0

)
) we can rotate the translation surface, such that θ becomes the horizontal

direction – i.e. we act by R−1. If we find a parabolic element B of the Veech group
of the rotated surface, the element RBR−1 is the corresponding element of the original
surface’s Veech group fixing the direction θ.

Proposition 2.11. Let {Ci}i∈I be a horizontal cylinder decomposition of a translation
surface X and µi the modulus of Ci. If for a fixed j ∈ I and all i ∈ I the quotient
µi
µj

= qi is rational∗, we set k to be the least common multiple of the numerators of the

qi (written as reduced fractions). Then the matrix B =
(

1 kµj
0 1

)
is in the Veech group

SL(X).

Proof. We first consider just a single horizontal cylinder Ci of height hi, circumference
ci. The matrix

(
1 x
0 1

)
shears the [0, c]× (0, h) rectangle and thus twists the cylinder. A

full twist is reached for x = µi = ci
hi

(see Figure 2.4), accordingly x = kiµi performs
ki full twists. Note that for full twists the horizontal sides of the cylinder’s closure are
fixed pointwise. This is why we can perform full twists on each cylinder and they will
“fit together” at the intersection of their closures, the horizontal sides.

If for all i ∈ I the quotient µi
µj

= qi is rational and we set k as the lcm of the numerators

of the reduced fractions qi, the parabolic matrix B =
(

1 kµj
0 1

)
is in the Veech group.

2.1.4 Fuchsian Groups

As seen in Proposition 2.8 the Veech group of a translation surface is a discrete subgroup
of SL2(R). Hence it is a Fuchsian group, i.e. it acts properly discontinuously on the

∗in this case, we say the moduli of the cylinder are commensurable.
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Ci
(
1 µi
0 1

)
Ci

(c; 0)(0; 0)

(c;h)(0;h)

− −− −

Figure 2.4: Sheared cylinder and cutting.

(hyperbolic) upper half plane H by Moebius transformations. Fuchsian groups are a
well-studied subject – see for instance [Bea83] and [Kat92] – and we will now recall some
important notions.

Fix a point of H – we choose the point i – as a base point and let Γ be a Fuchsian
group. Note that all accumulation points of the orbit Γi have to be at the boundary
∂H = R ∪ {∞}, because otherwise the action would not be properly discontinuous.

Definition 2.12. Let Γ < SL2(R) be a Fuchsian group.

• For a Fuchsian group Γ the limit set Λ is the set of all accumulation points r ∈ ∂H
of the orbit Γi. If the limit set is finite, Γ is called elementary, otherwise non-
elementary. Non-elementary groups whose limit set is the whole boundary are
called Fuchsian groups of the first kind, other non-elementary groups of the second
kind.

• If Γ has a convex fundamental domain with finitely many sides, it is called geo-
metrically finite, if it has a fundamental domain, which has finite hyperbolic area,
it is called of finite covolume or lattice.

• Two Fuchsian groups Γ and Γ′ are said to be commensurate, if they have a commom
subgroup of finite index in both, Γ and Γ′. They are called commensurable, if they
have subgroups of finite index, which are conjugate by an element of SL2(R).

The following lemma plays a crucial role in the construction of infinitely generated
Veech groups by McMullen as well as in the construction by Hubert and Schmidt:

Lemma 2.13 ([HS04], Lemma 3). A Fuchsian group of the first kind either is a lattice
or it is infinitely generated.

Proof. Let Γ be of the first kind and finitely generated. By Theorem 4.6.1 of [Kat92],
Γ is geometrically finite. And by Theorem 4.5.1 also of [Kat92], a geometrically finite
Fuchsian group of the first kind is a lattice.

Another important result comparing different Veech groups is the following by Gutkin
and Judge:

Theorem 2.14 ([GJ00], Theorem 4.9). Let p : Y → X be an affine covering of transla-
tion surfaces.Then the groups SL(Y ) and SL(X) are commensurable. If p is a translation
covering, then they are commensurate.
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2. Background on Translation Surfaces

2.2 The “Size” of a Veech Group

2.2.1 Small Veech Groups

When talking about Veech groups and their size we should first mention a result of
Möller describing the Veech group of a translation surface with genus at least 2, which
is “generic” in its stratum. Here generic in its stratum means lying outside a count-
able union of real co-dimension one submanifolds in its stratum. Furthermore, surfaces
admitting a hyperelliptic involution (having −I as linear part), are called hyperelliptic.

Theorem 2.15 ([Möl09], Theorem 1.1). For g(X) ≥ 2, the Veech group of a generic
translation surface X is isomorphic to Z/2Z or trivial, depending on whether X belongs
to a hyperelliptic component of its stratum or not.

The next larger groups are cyclic groups. Whereas in every stratum there exists
a translation surface, whose Veech group is cyclically generated by a parabolic element
([Möl09], Proposition 1.4), it is still an open question, if there exists a translation surface
with Veech group cyclically generated by a hyperbolic element.

2.2.2 Lattices

There exist translation surfaces with a very large Veech group: Fuchsian groups of the
first kind and in particular the finitely generated ones – lattices in SL2(R). A translation
surface whose Veech group is a lattice is called Veech surface and these are the objects
of the famous Veech dichotomy:

Theorem 2.16 ([Vee89]). If X is a Veech surface, then for each direction either

1. all geodesics are uniformly distributed, in particular dense, or

2. all geodesics are closed or saddle connections.

The directions in 2. are called periodic.
For genus 2 there in ([Cal04]) Calta constructs Vecch surfaces and independently in

([McM05] and [McM06]) McMullen gives a classification of all Veech surfaces of genus 2.
In [McM05] he defines a prototype for each GL2(R)-orbit of Veech surfaces in ΩM2(2).

We choose another normalization in each orbit – we want the lower left part to be a 1×1-
square - and define (cf. Figure 2.5):

Definition 2.17. Let D ≥ 5 be a positive integer ≡ 0 or 1 mod 4.

• If D ≡ 0 mod 4, set w :=
√

D
4 and define LD to be the translation surface

obtained from the L-shaped polygon with horizontal side lengths (from top to
bottom) 1, w, and 1 + w, and vertical side lengths (from left to right) w, w − 1,
and 1 by gluing together the opposite sides†.

• If D ≡ 1 mod 4, set w := 1+
√
D

2 and define LD,−1 to be the translation surface
obtained from the L-shaped polygon with horizontal and vertical side lengths (from

†Treat the left/bottom side as two sides each
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2. Background on Translation Surfaces

bottom to top and from left to right) w, w−1, and 1 by gluing together the opposite
sides‡.

• Additionaly, if D ≡ 1 mod 8 and D 6= 9, define LD,+1 to be the translation
surface obtained from the L-shaped polygon with horizontal side lengths (from
top to bottom) 1, w, and 1+w, and vertical side lengths (from left to right) w−1,
w − 2, and 1 by gluing together the opposite sides§.

1 + w

1

w

w

1

w − 1

1 1

2 2
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3 4

4

w =
√
2

L8
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w − 1
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3 4

4

w = 1+
√
17
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1 + w

1

w

w − 1
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w − 2

1 1

2 2

3

3 4
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w = 1+
√
17

2

L17,+1

Figure 2.5: The surfaces L8, L17,−1, and L17,+1.

Theorem 2.18 ([McM05], Corollary 1.3). The translation surfaces LD, LD,−1, and
LD,+1 are Veech surfaces. Every Veech surface X of ΩM2(2) is in the GL2(R)-orbit of
one of these for an suitable D.

The number D in the above theorem is the discriminant of the trace field of X, the
number field Q adjoint all traces of elements of the Veech group SL(X).

One year later he succeeded in classifying the primitive Veech surfaces in ΩM2(1, 1),
i.e. the Veech surfaces that are not coverings of surfaces of lower genus.

‡Treat the left/bottom side as two sides each
§Treat the left/bottom side as two sides each
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Theorem 2.19 ([McM06], Theorem 1.1). All primitive Veech surfaces in ΩM2(1, 1) are
in the GL2(R)-orbit of the surface obtained from a regular decagon by gluing opposite
sides.

Remark 2.20. If D is a square, then all side lengths of LD (or LD,±1) are rational
numbers. Thus in this case the translation surface is square-tiled. Since in the following
we will need primitive Veech surfaces, we will assume from now on that D is not a square.
Furthermore, we will concentrate on the discriminants D ≡ 0 mod 4 and the surfaces
LD.

The surfaces LD for D ≡ 0 mod 4 not a square are an important ingredient of our
Main Theorem A. Thus we need to understand which points are periodic points – i.e.
have a finite orbit under the action of the Veech group – and which points are connection
points.

Theorem 2.21 ([Möl06], Theorem 5.1). The only periodic points on a primitive Veech
surface in ΩM2(2) are the fixed points of the hyperelliptic involution.

We choose the coordinates of LD, such that the origin
(
0; 0
)

is in the lower left corner.
For the points of the glued sides we take the coordinates of the left or lower side. The
action of the hyperelliptic involution’s derivative −I on LD is illustrated in Figure 2.6.
It has 6 fix points shown in Figure 2.7.

(−1− w;−1)

(−1;−w)

(0; 0)

(1 + w; 1)

(1;w)

t−I,P

Figure 2.6: The action of −I on L8: P 7→ −P + t−I,P .

In Section 4.1 we will define the group of periods as a subgroup of (R2,+) and see
that all periods have both components in the field Q(w). The same holds for all saddle
connection vectors since LD has only one singularity and thus saddle connection vectors
are periods. Moreover, by Theorem A.1 from [McM03] the set of periodic directions
of LD is precisely P1(Q(w)). In Section 3.2 of [HS04] translation surfaces with these
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(0; 0)

(0;w) (1;w)

(1; 1)

(1 + w; 0)

Figure 2.7: The 6 periodic points of LD.

properties are called of strong holonomy type and it is shown that exactly the points
with both coordinates in the field Q(w) are connection points. Thus we obtain:

Proposition 2.22. The connection points of LD are exactly the points of the form

P =
(
xr + xiw; yr + yiw

)
with w =

√
D
4 and xr, xi, yr, yi ∈ Q.

2.2.3 Infinitely Generated Veech Groups

At the beginning of this millennium McMullen and independently Hubert and Schmidt
could prove the existence of translation surfaces with infinitely generated Veech groups.
We will shortly describe the two different approaches:

In [McM03], Theorem 10.1 McMullen shows that for translation surfaces of genus 2
the limit set is either empty, a single point or the whole boundary ∂H. In particular,
if the Veech group contains a hyperbolic element, the group is of the first kind. By
Lemma 2.13 a Fuchsian group of the first kind is either a lattice or infinitely generated.
Using this he gives concrete examples (Figure 2.8) of translation surfaces X ∈ ΩM2(1, 1)
with infinitely generated Veech group by showing that they contain a hyperbolic element
(with irrational trace), but are not Veech surfaces.

Later he completed the classification of primitive Veech surfaces of genus 2 (Theo-
rem 2.19), that states that all primitive Veech surfaces with two singularities of order
1 are in the same GL2(R)-orbit – the orbit of the regular decagon surface. Every non-
primitive Veech surface of genus 2 is in the orbit of a square-tiled surface and for these
surfaces all elements of the Veech group have rational trace. This implies:

Theorem 2.23 ([McM06], Theorem 1.3). Every translation surface X ∈ ΩM2(1, 1)
which contains a hyperbolic element with irrational trace either is in the GL2(R)-orbit
of the regular decagon surface or has an infinitely generated Veech group.

Also Hubert and Schmidt constructed translation surfaces, such that the Veech group
is of the first kind, but not a lattice. We sketch this construction from [HS04] which we
will use during this thesis.

37



2. Background on Translation Surfaces

1× 1

(1 + a)× (1 + a)

a× a

a = b− 1 +
√
b2 − b+ 1 /∈ Q with b ∈ Q

1 1

2 2

3

3 4

4 5

5

Figure 2.8: McMullen‘s examples of translation surfaces with infinitely generated Veech
group.

Definition 2.24. Given a translation surface X with singularities S(X) and a non-
singular point P define the marking of X at P as a new translation surface (X;P ) by
adding P to the set of singularities. Let the group of affine diffeomorphisms of (X;P )
be the subgroup of Aff(X) consisting of the maps that fix P . Accordingly define the
Veech group SL(X;P ) as the stabilizer subgroup of P in SL(X).

As seen in Remark 1.18 there is a bijection between the right cosets of SL(X) modulo
SL(X;P ) and the orbit points of P under the action of SL(X). Thus the non-periodicity
of P guarantees, that SL(X;P ) is of infinite index in SL(X) and hence not a lattice.

To show that SL(X;P ) is of the first kind, Hubert and Schmidt use Proposition 3.1
of [Vor96], which states that the set of directions of geodesic segments emanating from
P and encountering a singularity is dense in S1 = ∂H. If P is a connection point,
this means the set of directions of saddle connections through P is dense in S1. To
each of these saddle connections belongs a parabolic element of SL(X) fixing the saddle
connection pointwise, particularly fixing P . A group containing a parabolic element
with eigenvector

( x
y

)
has the fixed direction y

x in its limit set. Hence the limit set of
SL(X;P ) is dense in S1, which is not possible for groups of the second kind (see for
instance Theorem 3.4.6 of [Kat92]). This yields

Theorem 2.25 ([HS04], Proposition 1). Let P be a non-periodic connection point on a
Veech surface X, then SL(X;P ) is infinitely generated.

By Theorem 2.14 the Veech groups of affine coverings of (X;P ) are commensurable to
SL(X;P ). Thus they are also infinitely generated and it remains to find Veech surfaces
with non-periodic connection points. But we have seen in Proposition 2.22 that the Veech
surfaces in ΩM2(2) have infinitely many connection points; thus the following proposition
holds and gives us candidates for Veech surfaces of the first kind with critical exponent
strictly smaller than 1 (for the definition of the critical exponent see Chapter 5):

38



2. Background on Translation Surfaces

Proposition 2.26. An affine covering of the Veech surface LD ramified over the sin-

gularity and a point P of the form P =
(
xr + xiw; yr + yiw

)
with w =

√
D
4 and

xr, xi, yr, yi ∈ Q is of the first kind and has infinitely generated Veech group.

In this context note that the question, whether there exist translation surfaces whose
Veech group is of the second kind, is still open. But as mentioned above, by [McM03],
Theorem 10.1, such surfaces cannot have genus 2. For an short overview, which types
of Fuchsian groups appear as Veech groups, see Table 2.1.

Veech group |Λ| Existence

finite 0 X [Möl09]

(virtually) cyclic parabolic 1 X [Möl09]

(virtually) cyclic hyperbolic 2 open

finitely generated of 2nd kind ∞, Λ 6= ∂H open, “no” in genus 2 [McM03]

infinitely generated of 2nd kind ∞, Λ 6= ∂H open, “no” in genus 2 [McM03]

lattices ∞, Λ = ∂H X [Vee89] & square-tiled surfaces

infinitely generated of 1st kind ∞, Λ = ∂H X [HS04], [McM03]

Table 2.1: Overview which types of Fuchsian groups appear as Veech groups.
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3 The Prototypes LD

In this chapter we take a closer look at the Veech surfaces LD for D ≡ 0 mod 4 not
a square which we defined in the previous chapter. In Proposition 2.11 we have seen
that we can obtain a parabolic element of the Veech group SL(LD) from a cylinder
decomposition of LD. There are two directions for which it is very easy to see a cylinder
decomposition of LD, namely the horizontal and the vertical direction (cf. the first
pictures of Figure 3.3 and Figure 3.4).

We need to know not only the corresponding parabolic Veech group elements B and
A, but also how they act on the points of LD. Therefore we introduce coordinates for the
points P of LD and obtain formulas for the coordinates of Bl◦P and Ak ◦P . Afterwards,
we will concentrate on points of the form P =

(
xr +xiw; yr + yiw

)
with xr, xi, yr, yi ∈ Q

and prove some quite technical lemmata concerning the change of s(P ) := |xi|+ |yi| by
the action of Ak and Bl and concerning the points which are periodic under A or B.
These lemmata will be used in Chapter 6.

3.1 Horizontal and Vertical Direction of the Prototype LD

As mentioned in Remark 2.20 we are interested in the surface LD obtained from the L-
shaped polygon with horizontal side lengths (from top to bottom) 1, w, and 1 +w, and
vertical side lengths (from left to right) w, w− 1, and 1 by gluing together the opposite
sides∗ (see Figure 3.1). Here D is a positive integer congruent 0 modulo 4 that is not

a square and w =
√

D
4 . We choose the lower left corner as the origin of our coordinate

system. Then the coordinates of the other points are uniquely defined by the differential
dz = dx+ idy on the Euclidean plane, since the L-shaped polygon is simply connected.

We now want to find the parabolic elements A and B corresponding to the vertical,
respectively the horizontal, cylinder decomposition. Moreover, we need a description of
the action of A and B on P ∈ LD, i.e. we want to know the coordinates of A ◦ P and
B ◦ P given the coordinates of P . Therefore, we analyze the cylinder decomposition in
more detail than in Chapter 2 and start with one cylinder.

3.1.1 A Single Cylinder

Since we are not just interested in the Veech group element but also in its action on the
points, let us again analyze Figure 2.4 and follow a point

(
x; y
)

of the cylinder under
the action of the matrix

(
1 µ
0 1

)
. In the first step,

(
x; y
)

is mapped to
(
x+ µy; y

)
. Then,

if x + µy ≥ c, we have to push it back into the original rectangle to express it in the
original coordinates, i.e. translate it by

(−c
0

)
. If x + µy < c, the point already lies in

∗For the gluing treat the left/bottom side as two sides each.

40
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(0; 0)

(0;w) (1;w)

(1 + w; 0)

1 1

2 2

3

3 4

4

Figure 3.1: The L-shaped polygon LD with side identifications.

the original rectangle and we do not translate it. Doing this translation is the same as
picking the representative of x+ µy mod c, that is between 0 and c.

For a multiple twist
(

1 kµ
0 1

)
the point

(
x; y
)

is moved to
(
x + kµy mod c; y

)
. The

translation to push
(
x+ kµy; y

)
back in the rectangle is

(
l · c; 0

)
for some 0 ≤ l < k.

To divide the rectangle into parts with the same translation, consider the points(
x; y
)
, such that

(
1 kµ
0 1

)(
x; y
)

has x-component exactly (l + 1) · c. These are the lines

y = − 1
kµx+ (l+1)h

k . The resulting division is illustrated in Figure 3.1.1.

Ci

(
1 2µi
0 1

)
Ci

(c; 0)(0; 0)

(c;h)(0;h)

− −− −

Figure 3.2: Division of the rectangle into parts with the same translation part for the
action of

(
1 2µ
0 1

)
.

Note that these translations are not the same as the elements of the translation group
Trans(X) of a translation surface X or the translations of the affine maps z 7→ Az + b,
which depend only on the chosen chart.

3.1.2 The Horizontal Direction

Using the results of the previous subsection we can now find a parabolic element of the
Veech group SL(LD) fixing the horizontal direction

(
1
0

)
and can describe its action on

the points of LD.
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3. The Prototypes LD

The surface LD decomposes into two cylinders whose circumferences are in the hor-
izontal direction: the upper cylinder Cu = [0, 1]× (1, w)

/
∼ and the lower cylinder

Cd = [0, 1 + w]× (0, 1)
/
∼. The moduli are µu = 1

w−1 and µd = 1+w
1 . The quotient

of the moduli is µd
µu

= (w + 1)(w − 1) = w2 − 1 = d−1
1 . Hence the desired parabolic

element in SL(LD) is

B :=

(
1 1 + w
0 1

)
=

(
1 1 · µd
0 1

)
=

(
1 (d− 1) · µu
0 1

)
.

This means B twists the lower cylinder once and the upper cylinder d− 1 times.
The computations of the previous subsection imply, for

(
x; y
)
∈ Cd:(

1 1 + w
0 1

)
◦
(
x; y
)

=
(
x+ (1 + w)y mod 1 + w; y

)
For the action on points of Cu we have to bear in mind that the lower left corner of

the upper cylinder’s closure has coordinates
(
0; 1
)
, not

(
0; 0
)
. This is why we have to

replace y by y− 1, apply the action described in the previous section and then shift the
image point 1 upwards again:(

1 1 + w
0 1

)
◦
(
x; y − 1

)
=
(
x+ (1 + w)(y − 1) mod 1; y − 1 + 1

)
Note that, as the y-coordinate is not changed by B, the image points always lie in the

same cylinder as
(
x; y
)
. Knowing this and the description of the action of B, we also

know the action of Bl for all l ∈ Z:

Bl ◦
(
x; y
)

=

{(
x+ l(1 + w)y mod 1 + w; y

)
if y ≤ 1(

x+ l(1 + w)(y − 1) mod 1; y
)

if y > 1.
(3.1)

Figure 3.3 illustrates the action of B considering the cylinders divided into parts having
equal translation part. Viewing the action in this way will be useful in Chapter 4.

The points of LD we are interested in are the connection points which by Propo-
sition 2.22 are the points with coordinates in Q(w). We will write them in the form
(x, y) = (xr + xiw, yr + yiw) and call xr, yr ∈ Q the rational parts and xi, yi ∈ Q the
irrational parts.

For the horizontal parabolic element B =
(

1 1+w
0 1

)
, a point Q = (xr + xiw, yr + yiw)

and an integer l the x-coordinate of the point Bl ◦Q is denoted by xBl . For its rational
part and irrational part we write xBl,r and xBl,i, respectively. The difference xBl,i − xi
is denoted by ∆Bl(Q).

For points Q = (x, y) = (xr+xiw, yr+yiw) ∈ LD with y ≤ 1, i.e. Q ∈ Cd, Equation 3.1
states xBl = x+l(1+w)y mod 1+w. Hence the difference of the irrational parts amounts
to

∆Bl(Q) = l(yr + yi)− qy,l with qy,l = blyc or dlye,
which implies that for all Q ∈ Cd and all l ∈ Z there exists an r ∈ (−1, 1) such that
∆Bl(Q) = lyr + lyi − ly − r = lyi(1− w)− r.

42



3. The Prototypes LD

(0; 0)

(0;w) (1;w)

(1 + w; 0)

z 7→ Bz

(0; 0)

(0;w)

(1 + w; 0)

after translation

(0; 0)

(4 + w;w)

(
0
0

)

−
(
1+w

0

)

−
(
2+w

0

)

−
(
3+w

0

)

Figure 3.3: The action of B considering the cylinders divided into parts having equal
translation part.

For points Q of the upper cylinder Cu – the points with y > 1 – Equation 3.1 states
xBl = x + l(1 + w)y − l(1 + w) mod 1. Therefore, in this case the difference of the
irrational parts is

∆Bl(Q) = l(yr + yi − 1).

In summary we have the following results for ∆Bl(Q):

∆Bl(Q) =

{
lyi(1− w)− r for an r ∈ (−1, 1) if y ≤ 1

l(yr + yi − 1) if y > 1.
(3.2)

3.1.3 The Vertical Direction

We now want to analyze the parabolic elements of SL(LD) with eigenvector
(

0
1

)
using

the vertical cylinder decomposition of LD.
Also in the vertical direction, the surface LD decomposes into two cylinders: the left

cylinder Cl = (0, 1)× [0, w]
/
∼, and the right one Cr = (1, 1 + w)× [0, 1]

/
∼. Here ∼

is the identification of top and bottom of the rectangles, so compared to Section 3.1.1
the cylinders are rotated by 90◦. We could apply the rotation

(
0 1
−1 0

)
, act as described

in Section 3.1.1 and rotate back. But in this case it seems easier to do the analogous
calculations as above just with horizontal and vertical direction as well as circumference
and height swapped appropriately. The desired matrix has the form

(
1 0
µ 1

)
.

For the moduli we get µl = w
1 and µr = 1

w . The quotient of the moduli is µl
µr

= w2 = d,
yielding the Veech group element

A :=

(
1 0
w 1

)
=

(
1 0

1 · µl 1

)
=

(
1 0

d · µr 1

)
.
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3. The Prototypes LD

For the action of Ak on
(
x; y
)

we have to look at the two cylinders separately. Remem-
ber that the right cylinder has its “origin” in

(
1; 0
)

instead of
(
0; 0
)

and note that under
the action of A the x-coordinate stays unchanged resulting in the following description:

Ak ◦
(
x; y
)

=

{(
x; y + kxw mod w

)
if x ≤ 1(

x; y + k(xw − w) mod 1
)

if x > 1.
(3.3)

Figure 3.4 illustrates the action of A considering the cylinders divided into parts having
equal translation part.

(0; 0)

(0;w) (1;w)

(1 + w; 0)

z 7→ Az

(0; 0)

(0;w)

(1 + w; 0)

after

translation

(0; 0)

(1 + w; 4 + w)

(
0
0

)

−
(
0
w

)

−
(

0
w+0

)

−
(

0
w+1

)

−
(

0
w+2

)

−
(

0
w+3

)

Figure 3.4: The action of A considering the cylinders divided into parts having equal
translation part.

Similarly to the notation xBl we introduce the notations yAk for the y-coordinate of
Ak ◦ Q as well as yAk,r and yAk,i for the rational part and the irrational part of yAk ,
respectively. Furthermore we define ∆Ak(Q) := yAk,i − yi and compute this value for
points Q of the left and right cylinder separately:

For points Q = (x, y) = (xr+xiw; yr+yiw) ∈ LD with x ≤ 1, i.e. Q ∈ Cl, Equation 3.3
states yAk,i = yi + kxr mod w. Hence we see that the difference of the irrational parts
is

∆Ak(Q) = kxr − qx,k with qx,k = bkxc or dkxe,
which implies that for all Q ∈ Cl and all k ∈ Z there is an r ∈ (−1, 1) such that
∆Ak(Q) = kxr − kx− r = −kxiw − r.

For points Q of the right cylinder Cr – the points with x > 1 – Equation 3.3 states
yAk,i = yi + k(xr − 1). Hence in this case the difference of the irrational parts is

∆Ak(Q) = k(xr − 1).
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3. The Prototypes LD

In summery we have the following results for ∆Ak(Q):

∆Ak(Q) =

{
−kxiw − r for an r ∈ (−1, 1) if x ≤ 1

k(xr − 1) if x > 1.
(3.4)

3.2 Points Periodic Under A or B

Given a parabolic element γ of the Veech group of a Veech surface, it is easy to check
whether a point

(
x; y
)

is periodic under the action of this element: by the Veech di-
chotomy, parabolic elements correspond to cylinder decompositions of the surface in
the direction of the corresponding eigenvector. The well-known fact of Proposition 3.3
states that a point is periodic under γ, if and only if the splitting ratio of the point in
its cylinder is rational. In this section, the term splitting ratio is defined and conditions
on the points periodic under A and the points periodic under B are deduced.

Definition 3.1. Consider a point Q in the closure of a cylinder C and its preimage(
x; y
)

in [0, c]× [0, h]
/
∼ as in Section 3.1.1. The splitting ratio of Q in C is the point’s

height compared to the height of the cylinder: srC(Q) := y
h .

Remark 3.2 ([HS06b] Lemma 4 and Corollary 1). The splitting ratio is GL2(R)-
invariant and preserved under affine diffeomorphisms.

Proposition 3.3. Let
⋃
Ci be a cylinder decomposition of a translation surface with

corresponding parabolic Veech group element γ. Then a point Q in a cylinder Cj is
periodic under γ if and only if the splitting ratio srCj (Q) is rational.

Proof. Without loss of generality we assume the cylinders to have their circumference
in the horizontal direction and the cylinder Cj to be the cylinder C = [0, cj ]× [0, hj ]

/
∼.

Then γ is of the form
(

1 µ
0 1

)
, where µ is a multiple of the modulus of each cylinder, in

particular there is an n ∈ Z with µ = n · cjhj .

Let srCj (Q) = α. This means, the y-coordinate of Q is α · hj . The image under the

action of
(

1 kµ
0 1

)
is
(
x; y + kn

cj
hj
αhj mod cj

)
=
(
x; y + knαcj mod cj

)
.

If α = p
q is rational, the y-coordinate is shifted by knp

q cj . This shift is 0 mod cj if knp
q

is an integer, which is the case if k is a multiple of q
gcd(q,n) . The behavior of the sequence

of shifts for k ∈ Z is obviously the same as the behavior of the sequence k(nα) mod 1
and nα is irrational if and only if α is irrational. It is well known that for irrational α
this sequence is equidistributed modulo 1 and in particular not periodic.

Lemma 3.4. A point Q =
(
x; y
)

=
(
xr + xiw; yr + yiw

)
∈ LD is periodic under the

action of B if and only if one of the following two conditions holds:

1. y ≤ 1 and yi = 0.

2. y > 1 and yr = 1− yi
In particular if Q is periodic under B then 0 ≤ yi < 1.
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3. The Prototypes LD

Proof. By Proposition 3.3 the point Q is periodic under B if and only if its splitting
ratio in the corresponding cylinder is rational.

If y ≤ 1, the point is in the lower cylinder Cd which has height 1. The height of Q in
Cd is y (see Figure 3.2), therefore the splitting ratio is srCd(Q) = y

1 = yr + yiw. This is
rational if and only if yi = 0.

If y > 1, the point is in the upper cylinder Cu which has height w − 1. The height of
Q in Cu is y − 1, therefore the splitting ratio is

srCu(Q) =
y − 1

w − 1
=

(y − 1)(w + 1)

d− 1
=

1

d− 1
(yr + dyi − 1 + (yr + yi − 1)w).

This is rational if and only if yr = 1− yi.
For the additional conclusion we observe that solving the inequality 1 ≤ yr + yiw < w

for yr and setting yr = 1− yi yields 1− yiw ≤ 1− yi < w − yiw, which is equivalent to
0 ≤ yi < 1.

(0; 0)

(0;w) (1;w)

(1 + w; 0)

Q

y
1

(0; 0)

(0;w) (1;w)

(1 + w; 0)

Q
y − 1

w − 1

Figure 3.5: The splitting ratio of Q in the horizontal cylinders.

Lemma 3.5. A point Q =
(
x; y
)

=
(
xr + xiw; yr + yiw

)
∈ LD is periodic under the

action of A if and only if one of the following two conditions holds:

1. x ≤ 1 and xi = 0.

2. x > 1 and xr = 1

In particular if Q is periodic under A then 0 ≤ xi < 1.

Proof. By Proposition 3.3 the point Q is periodic under A if and only if its splitting
ratio in the corresponding cylinder is rational. Note that the corresponding cylinders
are Cl and Cr, whose circumferences are in the vertical direction and whose heights are
in x-direction.

If x ≤ 1, the point is in the left cylinder Cl which has height 1. The height of Q in Cl
is x (see Figure 3.6). Therefore, the splitting ratio is srCl(Q) = x

1 = xr + xiw. This is
rational if and only if xi = 0.

If x > 1, the point is in the right cylinder Cr which has height 1 + w − 1 = w. The
height of Q in Cr is x− 1. Therefore, the splitting ratio is

srCr(Q) =
x− 1

w
=

(xr − 1)

w
+ xi.
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3. The Prototypes LD

This is rational if and only if xr = 1.
For the additional conclusion we solve the inequality 1 ≤ xr + xiw < 1 +w for xi and

obtain 1−xr
w ≤ xi < 1+w−xr

w . For xr = 1 this becomes 0 ≤ xi < 1.

(0; 0)

(0;w) (1;w)

(1 + w; 0)

Q

x

1
(0; 0)

(0;w) (1;w)

(1 + w; 0)

Q

x− 1

1 + w − 1 = w

Figure 3.6: The splitting ratio of Q in the vertical cylinders.

3.3 The Action of A and B in More Detail

To obtain some information about the structure of the Schreier graph from the action
of Ak and Bl on a point Q, we will analyze how the absolute values of the coordinates
change. Since the x-coordinate and the y-coordinate are bounded below by 0 and above
by w and 1 + w, respectively, if the absolute value of an irrational part grows, usually
also the corresponding rational part’s absolute value grows. This is why we will look at
the sum of the irrational part’s absolute values, which will be denoted by

s(Q) := |xi|+ |yi|.

Another notation needed is the following: Suppose Q =
(
xr + xiw; yr + yiw

)
and

xr, xi, yr, yi are reduced fractions with denominators qxr, qxi, qyr and qyi respectively.
Then we define N(Q) to be the least common denominators of xr, xi, yr and yi,

N(Q) := lcm(qxr, qxi, qyr, qyi).

Now we can formulate some quite technical lemmata, which will help to prove the
non-amenability of the Schreier graph of SL(LD) modulo SL(LD;P ) with respect to any
finite generating set in Chapter 6.

Lemma 3.6. Let Q =
(
xr + xiw; yr + yiw

)
and set N = N(Q). If Q is periodic under

A but not under B, there exists an l0, such that for all l with |l| ≥ l0 the following
inequality holds:

s(Q) < s(Bl ◦Q).

Lemma 3.7. Let Q =
(
xr + xiw; yr + yiw

)
and set N = N(Q). If Q is periodic under

B but not under A, there exists a k0, such that for all k ∈ Z with |k| ≥ k0 the following
inequality holds:

s(Q) < s(Ak ◦Q)
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3. The Prototypes LD

Proof of Lemma 3.6. Since Bl does not change yi, it increases s(Q) if and only if it
increases |xi|. But we know the bounds 0 ≤ xi < 1 for a point periodic under A by
Lemma 3.5. Hence s(Q) < s(Bl ◦Q) is guaranteed if the absolute value of the change of
xi by Bl – which is |∆Bl(Q)| – is greater than 2. We will show the existence of l0 for Q
in the lower and upper cylinder separately:

If Q is in the lower cylinder Cd, Equation 3.2 states that Bl changes the irrational
part of x by

∆Bl(Q) = lyi(1− w)− r for a r ∈ (−1, 1).

By the reverse triangle inequality we obtain |∆Bl(Q)| = |lyi(1−w)−r| ≥ |lyi(1−w)|−|r|
and |lyi(1 − w)| ≥ 3 would imply |∆Bl(Q)| > 2. Since Q is not periodic under B, we
know yi 6= 0 (Lemma 3.4) and thus |yi| ≥ 1

N . Thus we can choose

l0,d =
3N

w − 1

and we obtain |l| ≥ 3N
w−1 ≥ 3

(w−1)|yi| for all l with |l| ≥ l0,d. This finally implies |lyi(1−
w)| = |l|(w − 1)|yi| ≥ 3 as required.

If Q is in the upper cylinder Cu, by Equation 3.2 ∆Bl(Q) equals l(yr+yi−1). Since Q
is not periodic under B, we know yr+yi−1 6= 0 (Lemma 3.4) and thus |yr+yi−1| ≥ 1

N .
Then

l0,u = 2N + 1

implies |∆Bl(Q)| ≥ |l| 1
N > 2 for all l with |l| ≥ l0,u.

Hence we get the statement of the lemma with

l0 = max{l0,d, l0,u} = max

{
3N

w − 1
, 2N + 1

}
.

Proof of Lemma 3.7. By analogy to the proof of Lemma 3.6 this lemma is certainly true
if |∆Ak(Q)| > 2. We will show the existence of k0 for Q in the left and right cylinder
separately:

If Q is in the left cylinder Cl, Equation 3.4 states that Ak changes the irrational part
of y by

∆Ak(Q) = −kxiw − r for a r ∈ (−1, 1).

From the reverse triangle inequality |∆Ak(Q)| = | − kxiw− r| ≥ |kxiw| − |r| follows and
|kxiw| ≥ 3 would imply |∆Ak(Q)| > 2. Since Q is not periodic under A, we know xi 6= 0
(Lemma 3.5) and thus |xi| ≥ 1

N . Thus we can choose

k0,l =
3N

w

and obtain |k| ≥ 3N
w ≥ 3

|xi|w for all k with |k| ≥ k0,l. This implies |kxiw| = |k|w|xi| ≥ 3
as desired.

If Q is in the right cylinder, ∆Ak(Q) = k(xr − 1) by Equation 3.4. Since Q is not
periodic under A, we know xr − 1 6= 0 (Lemma 3.5) and thus |xr − 1| ≥ 1

N . Then

k0,r = 2N + 1
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3. The Prototypes LD

implies for all k with |k| ≥ k0,r, that |∆Ak(Q)| ≥ |k| 1
N > 2 holds.

Hence we get the statement of the lemma with

k0 = max{k0,l, k0,r} = max

{
3N

w
, 2N + 1

}
.

For the proof of the next two lemmata, which will help prove Lemma 3.10, we will use
the fact that |a± b| > |b| implies sgn(a± b) = sgn(a).

Lemma 3.8. If Q ∈ LD is not periodic under A, then the signs of ∆Ak(Q) and ∆A−k(Q)
are different for all k > k0.

Proof. If Q is in the right cylinder, ∆A±k(Q) = ±k(xr − 1). Since Q is not periodic
under A, we have xr 6= 1 and k(xr − 1) and −k(xr − 1) have different signs.

If the point Q is in the left cylinder, ∆A+k(Q) = −kxiw − r for some r ∈ (−1, 1) and
∆A−k(Q) = kxiw+r′ for an r′ ∈ (−1, 1). As seen in the proof of Lemma 3.6, the absolute
value of these changes is greater than 2 for k > k0, hence | − kxiw − r| and |kxiw + r′|
are bigger than |r| and |r′|. Thus the first term – ∆A+k(Q) – has sign sgn(−kxi), which
is not 0 because Q is not periodic under A, whereas the second one – ∆A−k(Q) – has
sign sgn(kxi) = − sgn(−kxi).

Lemma 3.9. If Q is a point not periodic under B, then the signs of ∆Bl(Q) and ∆B−l(Q)
are different for all l > l0.

Proof. If Q is in the upper cylinder, ∆B±l(Q) = ±l(yr + yi− 1). Since Q is not periodic
under B, we have yr + yi 6= 1 and l(yr + yi − 1) and −l(yr + yi − 1) have different signs.

If the point Q is in the lower cylinder ∆B+l(Q) = lyi(1−w)− r for a r ∈ (−1, 1) and
∆B−l(Q) = lyi(1 − w) + r′ for some r′ ∈ (−1, 1). For l > l0 the absolute value of these
changes is at least 2 – as shown in the proof of Lemma 3.7 – hence |lyi(1− w)− r| and
|lyi(1 − w) + r′| are bigger than |r| and |r′|. Since 1 − w is negative, the first term –
∆B+l(Q) – has sign sgn(−lyi), whereas ∆B−l(Q) has sign sgn(lyi) = − sgn(−lyi).

Lemma 3.10. Let Q =
(
xr + xiw; yr + yiw

)
be a point periodic neither under A nor

under B and set N = N(Q). Then there are numbers k1 and l1 such that for all pairs
(k, l) with k > k1 and l > l1 at least three of the following four inequalities hold:

s(Q) < s(Ak ◦Q),

s(Q) < s(A−k ◦Q),

s(Q) < s(Bl ◦Q),

s(Q) < s(B−l ◦Q).

Proof. As a first observation, we see that since A does not change xi and B does not
change yi, we only have to look at the effect of A±k on |yi| and of B±l on |xi| to see the
effect on s(Q) = |xi|+ |yi|.

The second step is to apply Lemma 3.8 and Lemma 3.9: Since the changes of yi by
Ak and by A−k have different signs, one of them has the same sign as yi itself and thus
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the corresponding A±k increases |yi|. By analogy one of B±l has sgn ∆B±l(Q) = sgn(xi)
and thus increases |xi|. Hence at least two of the four inequalities hold. For the third
one we have to show that one of the two ∆’s with the opposite sign from yi respectively
xi is big enough to nevertheless increase |yi| respectively |xi|, i.e. is bigger than 2|yi|
respectively 2|xi|:

If |xi| ≥ |yi| this will be ∆Ak(Q) for k with |k| big enough, otherwise it will be ∆Bl(Q)
for l with |l| big enough. To finish the proof, we distinguish these two cases:

First Case |xi| ≥ |yi|: Let us first find a k1 with the property that for all k ∈ Z with
|k| > k1 the inequality |∆Ak(Q)| > 2|xi| holds. In particular for points with |xi| ≥ |yi|
this inequality implies |yAk,i| = |yi + ∆Ak(Q)| > |xi| ≥ |yi|.

We distinguish by the cylinder containing Q:
If Q is in the left cylinder, ∆Ak(Q) = −kxiw− r for an r ∈ (−1, 1). With the reversed

triangle inequality we get |−kxiw− r| > 2|xi|, if |k||xi|w > 2|xi|+ |r|. This again would
be implied by |k||xi|w ≥ 2|xi|+ 1, which is equivalent to |k| ≥ 2

w + 1
|xi|w . Since Q is not

periodic under A, we know (from Lemma 3.5) that xi 6= 0 and thus |xi| ≥ 1
N . Hence the

above inequality is fulfilled if

|k| ≥ 2 +N

w
.

If Q is in the right cylinder, the x-coordinate satisfies 1 < xr + xiw < 1 + w and
therefore there is a q ∈ (0, w), such that xr = −xiw + 1 + q. The change of yi is
∆Ak(Q) = k(xr − 1). Using the reversed triangle inequality we obtain for the absolute
value |∆Ak | = |k| · |−xiw+q| ≥ |k|(|xiw|−|q|) > |k|(|xi|w−w). Hence |∆Ak(Q)| > 2|xi|,
if |k| ≥ 2

w ·
|xi|
|xi|−1 . This term decreases for |xi| > 1.

The smallest possible value for |xi| > 1 is |xi| = 1+ 1
N . Thus for points Q with |xi| > 1

the inequality |∆Ak(Q)| > 2|xi| is guaranteed, if

|k| ≥ 2(N + 1)

w
.

For points Q with |xi| ≤ 1 already |k| > k0 suffices, because the same computations as
in the proof of Lemma 3.7 show |∆Ak(Q)| > 2 ≥ 2|xi| for all points Q not periodic under
A and all k with |k| > k0.

Summarizing, |∆Ak(Q)| > 2|xi| holds for all k with |k| > k1, where

k1 = max

{
2 +N

w
, k0,

2(N + 1)

w

}
,

where 2+N
w can be omited because it is always smaller than 2(N+1)

w .
Second Case |xi| < |yi|: we have to find an l1 satisfying |∆Bl(Q)| > 2|yi| for all

l ∈ Z with |l| > l1. In particular, for points with |xi| < |yi| this inequality implies
|xBl,i| = |xi + ∆Bl(Q)| > |yi| > |xi|.

We distinguish by the cylinder that contains Q:
If Q is in the lower cylinder, |∆Bl | is greater than |lyi(1−w)|−1 by the same arguments

as in the proof of Lemma 3.6. Therefore, it is greater than 2|yi|, if |l|(w−1)|yi| ≥ 2|yi|+1,
and this is equivalent to |l| ≥ 2

w−1 + 1
(w−1)|yi| . Since Q is in the lower cylinder but not

periodic under B, we know that yi 6= 0 and thus |yi| ≥ 1
N . Hence the inequality holds if

|l| ≥ 2 +N

w − 1
.

50
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If Q is in the upper cylinder, the y-coordinate satisfies 1 < yr +yiw < w and therefore
there is a q ∈ (0, w − 1), such that yr = −yiw + 1 + q. The change of xi is ∆Bl(Q) =
l(yr + yi − 1). Again, the reversed triangle inequality implies for the absolute value
|∆Bl | = |l| · |(yi(1 − w) + q)| ≥ |l|(|yi(1 − w)| − |q|) > |l|((w − 1)|yi| − (w − 1)). Hence

|∆Bl(Q)| > 2|yi|, if |l| ≥ 2
w−1 ·

|yi|
|yi|−1 . This term is decreasing for |yi| > 1.

The smallest possible value for |yi| > 1 is |yi| = 1+ 1
N . Thus for points Q with |yi| > 1

the inequality |∆Bl(Q)| > 2|yi| is guaranteed, if

|l| ≥ 2(N + 1)

w − 1
.

For points Q with |yi| ≤ 1, already |l| > l0 suffices, because the same computations as
in the proof of Lemma 3.6 show |∆Bl(Q)| > 2 ≥ 2|yi| for all points Q not periodic under
B and all l with |l| > l0.

Summarizing |∆Bl(Q)| > 2|yi| holds for all l with |l| > l1, where

l1 = max{2 +N

w − 1
, l0,

2(N + 1)

w − 1
},

where 2+N
w−1 can be omited because it is always smaller than 2(N+1)

w−1 .
All in all we proved that for all points Q with |xi| ≥ |yi| the following inequalities hold

for all pairs (k, l) with k > k1 and l > l1:

s(Q) < s(Ak ◦Q),

s(Q) < s(A−k ◦Q),

at least one of s(Q) < s(Bl ◦Q) and s(Q) < s(B−l ◦Q).

For points Q with |xi| < |yi| the following inequalities hold for all pairs (k, l) with
k > k1 and l > l1:

s(Q) < s(Bl ◦Q),

s(Q) < s(B−l ◦Q),

at least one of s(Q) < s(Ak ◦Q) and s(Q) < s(A−k ◦Q).
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4 SL(LD)-Orbits of Connection Points

Hubert and Schmidt’s construction of translation surfaces with infinitely generated Veech
groups (described in Chapter 2) uses a marking of a non-periodic connection point P on a
Veech surface X. Let us instead consider a point γ◦P for an element γ ∈ SL(X). Clearly,
the corresponding stabilizer subgroups are conjugate: SL(X; γ ◦ P ) = γ SL(X;P )γ−1.
Since conjugate Fuchsian groups have the same dynamics at the boundary of the hyper-
bolic plane and the same critical exponent (cf. Chapter 5) the following question arises
naturally:

Question 4.1. What are the orbits of the non-periodic connection points under the
action of the Veech group?

In our context the answer to this question is important for another reason already seen
in Remark 1.18: The vertices of the Schreier graph GSL(LD),SL(LD;P ),S can be identified
with the points in the orbit of P . This is why we dedicate this chapter to – at least
partially – answering the question for the surfaces LD.

In the first section we get a necessary condition for two connection points to be in the
same orbit: For a point Q =

(
xr + xiw; yr + yiw

)
with xr, xi, yr yi reduced fractions let

N(Q) be the least common denominator of these fractions. Then two points P and P ′

can be in the same orbit only if N(P ) = N(P ′).
In the second section we analyze the case D = 8 and derive finite bounds on the

number of orbits with fixed number N(P ).

4.1 General Restrictions on the SL(LD)-Orbit of P ∈ LD

Following the idea of the proof of Lemma 5 of [HS06b] we get a first observation con-
cerning the orbit of points of LD.

Proposition 4.2. The SL(LD)-orbit of any point P ∈ LD that is not periodic under
both, A and B, is dense in LD.

Proof. Without loss of generality assume P =
(
x; y
)

is not periodic under A. Let Q be
an arbitrary point of LD. The y-coordinate of Ak ◦ P is y + kxw mod 1 or mod w,
depending on which vertical cylinder contains P . The associated sequence can only be
either periodic or equidistributed in the interval [0, 1] or [0, w], respectively. Since P is
not periodic under A, it is equidistributed and in particular it is dense in [0, 1] or [0, w].
In the proof of Lemma 5 in [HS06b] it is shown that only finitely many members of this
sequence have rational splitting ratio in their horizontal cylinder. This also follows from
Theorem C because there exist only finitely many points with fixed x-coordinate, fixed
least common denominator, and rational splitting ratio in the horizontal cylinder (see
also Lemma 3.4).

52



4. SL(LD)-Orbits of Connection Points

Hence with a suitable power k1 the point Ak1 ◦P is in the same horizontal cylinder as
Q and has an irrational splitting ratio in it. Thus it is not periodic under B and with a
suitable power l the point BlAk1 ◦P has x-coordinate arbitrary close to the x-coordinate
of Q. Additionally we can choose l such that the resulting point has irrational splitting
ratio in its vertical cylinder and thus is not periodic under A. Now in the last step we
find a number k2, such that Ak2BlAk1 ◦ P is arbitrary close to Q.

Since this does not tell us anything about the number of orbits, we have to get further
information: We need to consider the homology H1(LD,Z). A basis for this homology
consists of the 2g = 4 paths h1, h2, v1 and v2 shown in Figure 4.1. Remember that we
identify R2 and C and that the differential form dz = dx + idy on the plane yields a
holomorphic one-form η on LD. The group of periods of LD (more precisely (LD, η))
is the additive subgroup {

∫
π η | π ∈ H1(LD,Z)} < C. For every closed path π on LD

this gives a complex number or – after identifying C = R2 – a vector in R2, that is a
Z-linear combination of the vectors

(
1
0

)
,
(

1+w
0

)
,
(

0
1

)
and

(
0
w

)
corresponding to the paths

h1, h2, v1 and v2, respectively.
Knowing this we can prove the following two propositions:

v2

v1h2

h1

Figure 4.1: A basis of H1(LD,Z).

Proposition 4.3. The Veech group SL(LD) is contained in SL2(Z[w]).

Proof. Let γ =
(
a b
c d

)
be an element of the Veech group SL(LD). Thus γ ◦ LD = LD

and in particular the group of periods of γ ◦ LD equals the set of periods of LD. The
image of a period is again a period; hence γ ·

(
1
0

)
=
(
a
c

)
as well as γ ·

(
0
1

)
=
(
b
d

)
can be

written as a Z-linear combination of
(

1
0

)
,
(

1+w
0

)
,
(

0
1

)
and

(
0
w

)
. Since all these vectors

have their components in Z[w], also a, b, c and d have to be in Z[w].

Proposition 4.4. For all γ ∈ SL(LD) and all Q =
(
x; y
)
∈ LD the translation part tγ,Q

added to γ ·
(
x; y
)

to describe the point γ ◦ Q in the L-coordinates (see Chapter 3) has
both components in Z[w].
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4. SL(LD)-Orbits of Connection Points

Proof. To understand the action of γ ∈ SL(LD), we want to describe the coordinates
of γ ◦ Q in the coordinates from the L-shaped polygon (as in Chapter 3). We get the
coordinates

(
x; y
)

of Q by integrating a path π starting at the singularity and ending in
Q, which does not leave the L-polygon, against η. For the image γ ◦Q we do the same:
choose a path starting in the singularity ending in γ ◦ Q, which does not leave the L.
This path differs from γ ◦ π by some element h ∈ H1(LD,Z). Hence the coordinates of
γ ◦Q are γ ·

(
x; y
)

+ tγ,Q with tγ,Q = −
∫
h η a period.

But as seen in the proof of the last proposition all periods are Z-linear combinations
of
(

1
0

)
,
(

1+w
0

)
,
(

0
1

)
and

(
0
w

)
and thus in Z[w]2.

This completes the proof, but we want to give another point of view to understand
which role the periods play here: As mentioned in Chapter 2, for γ to be in the Veech
group means that there is a way to “cut & glue” the polygon γ · L and get back the
polygon L with the correct side identifications. The periods corresponding to the basis
of the homology (Figure 4.1) are exactly the translation vectors of the side identifications
of the original L-polygon. The idea of the proof is that all translations needed to glue the
polygon after cutting are γ-images of these four vectors. Since γ and these vectors have
all of their components in Z[w], so does the translation part tγ,Q for every point.

These two propositions together prove:

Theorem C. Given a connection point P =
(
xr + xiw; yr + yiw

)
∈ LD with reduced

fractions xr, xi, yr, yi ∈ Q, set N(P ) to be the least common denominator of xr, xi, yr,
and yi. All points Q in the SL(LD)-orbit of P also have both coordinates in Q(w). Let
N(Q) be the least common denominator of the four reduced fractions describing Q. Then

N(Q) = N(P ).

In particular, there are infinitely many distinct orbits of connection points.

Proof. By the two last propositions, γ ∈ SL(LD) maps P to γ ◦ P = γ · P + tγ,P with
all entries of γ and of tγ,P in Z[w]. Hence also γ ◦ P has both components in Q[w] and
the least common denominator will not increase. But it will also not decrease; otherwise
γ−1 ∈ SL(LD) would increase it.

4.2 The Special Case D = 8

In the special case D = 8 (and thus w =
√

2) the group generated by A and B – the
parabolic elements fixing the vertical or horizontal direction, respectively – is conjugate
to a subgroup of the Hecke triangle group H8 of index 2. Let H be the group conjugate
to H8 containing 〈A,B〉. An element of H − 〈A,B〉 is R =

(
0 1
−1 0

)
, the rotation by

−π
2 . But this element is not in the Veech group SL(L8). If it was, the rotated L-

shaped polygon would have the same Veech group as the original, but SL(L8) contains
the element B =

(
1 1+w
0 1

)
, whereas SL(R ◦ L8) contains RAR−1 =

(
1 w
0 1

)
. These two

elements generate the group
(

1 Z[
√

2]
0 1

)
, which is not discrete in SL2(R). Moreover, the

Hecke triangle groups are maximal Fuchsian groups, i.e. after adding any element of
SL2(R) the resulting group would no longer be discrete. This shows that SL(L8) is
generated by A and B.
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Recall that the action of A and B can be described as follows:
A±1 ◦

(
xr + xi

√
2; yr + yi

√
2
)

=
(
xr + xi

√
2; y′r + y′i

√
2
)

with

y′r = yr ± 2xi ∓ tA,r with tA,r ∈ {0, 1, 2}
y′i = yi ± xr ∓ tA,i with tA,i ∈ {0, 1}

B±1 ◦
(
xr + xi

√
2; yr + yi

√
2
)

=
(
x′r + x′i

√
2; yr + yi

√
2
)

with

x′r = xr ± yr ± 2yi ∓ tB,r with tB,r ∈ {0, 1, 2}
x′i = xi ± yr ± yi ∓ tB,i with tB,i ∈ {0, 1}

As seen in the previous section, there are infinitely many orbits of connection points
under the action of SL(L8), because all points

(
xr + xi

√
2; yr + yi

√
2
)

in the same orbit
share the least common denominator of the four components xr, xi, yr, yi ∈ Q of any
point – denoted by N . But even for a fixed N there is not always just one orbit. To find
a lower bound on the number of orbits with fixed N , consider the following equivalence
relation on the points P =

(
xr+xi

√
2; yr+yi

√
2
)

with the four components xr, xi, yr and
yi reduced fractions with least common denominator N : for all such points expand the
four components to fractions with N as denominator. Then two points are equivalent,
if and only if the two vectors consisting of the numerators modulo N are the same.
This yields the set V = {[a, b, c, d] ∈ Z/NZ | gcd(a, b, c, d,N) = 1} as quotient. Since
all the tA/B,r/i in the description of the action of A and B are integers, adding them
corresponds to adding multiples of N to the numerators of the expanded fractions and
the action descends to an action on V . Let GN be the graph describing this action, i.e.
the following graph:

• The vertex set is V = {[a, b, c, d] ∈ Z/NZ | gcd(a, b, c, d,N) = 1}.

• The edges E are labeled with A or B and go from v ∈ V to v′ ∈ V , if and only if for
any point P represented by v the point A ◦P or B ◦P , respectively, is represented
by v′.

Obviously, the number of connected components C(N) of this graph GN is a lower
bound on the number of orbits of the action of SL(L8) for fixed N , since SL(L8) = 〈A,B〉.
The graph G2 is illustrated in Figure 4.2, the number of connected components for small
values N is listed in Table 4.1.

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C(N) 1 5 1 8 1 5 3 8 1 5 1 8 1 15

N 15 16 17 18 19 20 21 22 23 24 25 26 27 28

C(N) 1 8 3 5 1 8 3 5 3 8 1 5 1 24

Table 4.1: The number of connected components C(N) of the graph GN .

Conjecture 4.5. The values of C(N) for small N shown in Table 4.1 indicate that the
function C : N 7→ C(N) is weakly multiplicative, i.e. C(NM) = C(N)C(M) for all
co-prime natural numbers N and M . Furthermore, we conjecture that, if N = pk is a
power of an odd prime, C(N) equals C(p).
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[1, 0, 0, 0] [1, 0, 0, 1] [1, 1, 0, 1] [1, 1, 0, 0]
A B A

B B

[0, 0, 1, 0] [1, 1, 1, 0] [1, 1, 1, 1] [0, 1, 1, 1]
B A B

A A

[0, 1, 1, 0] [1, 0, 1, 0] [1, 0, 1, 1] [0, 0, 1, 1]
B A B

A A

[0, 1, 0, 1] [0, 0, 0, 1]
B

A A

[0, 1, 0, 0]

A

B

Figure 4.2: The graph G2 with 5 connected components.

Remark 4.6. The action on V can be described as follows:

A ◦ [a, b, c, d] = [a, b, c+ 2 · b, d+ a] mod N

B ◦ [a, b, c, d] = [a+ c+ 2 · d, b+ c+ d, c, d] mod N

So the edges can be computed very easy, but notice that the vertex set V grows quite
fast for growing N : it has approximately N4 elements.

On the other hand the number of orbits for every fixed N is finite:

Theorem D. Let D = 8 and w =
√

2 and fix N ∈ N. The set of all non-periodic∗

points P of the form P =
(
xr + xiw; yr + yiw

)
with xr, xi, yr, yi reduced fractions with

least common denominator N decomposes into a finite number of orbits under the action
of 〈A,B〉 = SL(L8).

Proof. Consider the following set of points of L8:

S = {
(
xr + xiw; yr + yiw

)
∈ L8 | |xi|, |yi| ≤ 35 + 24w}.

Since N is fixed, there are only finitely many possible values of xi and yi. Moreover,
with 0 ≤ x = xr + xiw < 1 + w and 0 ≤ y = yr + yiw < w, also the number of possible
values of xr and yr is bounded. Thus the set S is finite. The idea of the proof is to
give an algorithm which finds a word in A± and B±, that connects an arbitrary point
P with least common denominator N to a point in S. Then |S| is an upper bound on
the number of orbits for fixed N .

In Algorithm 1 we describe how we find a word W in A± and B± with W ◦ P is an
element of S, when a non-periodic point P

(
xr + xiw; yr + yiw

)
∈ L8 is given as input.

∗this excludes exactly the 6 Weierstraß points
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Algorithm 1: Finding a word W mapping P to an element of S.

Input: A non-periodic point P =
(
xr + xiw; yr + yiw

)
with xr, xi, yr, yi reduced

fractions with least common denominator N
Output: A word W in A± and B± with W ◦ P ∈ S
W ← empty word;
while P /∈ S do

if P is periodic under B; // Case 1
then P ← A−1B−1A ◦ P , W ← concat(A−1B−1A,W );

else if P is periodic under A; // Case 2
then P ← B−1A−1B ◦ P , W ← concat(B−1A−1B,W );

else if |xi| < |yi| ; // Case 3
then if x < 1 then k ← d 1

|xi|we else k ← 1;

if |yAk,i| ≤ |yA−k,i| then P ← Ak ◦ P , W ← concat(Ak,W );

else P ← A−k ◦ P , W ← concat(A−k,W ) ;
else if |xi| ≥ |yi| ; // Case 4

then if y < 1 then l← d 1
|yi|(w−1)e else l← 1;

if |xBl,i| ≤ |xB−l,i| then P ← Bl ◦ P , W ← concat(Bl,W );

else P ← B−l ◦ P , W ← concat(B−l,W ) ;

end
return W

Obviously, the conditions |xi| < |yi| and |xi| ≥ |yi| of case 3 and 4, respectively,
guarantee that all points are covered by the algorithm. To see that the algorithm ter-
minates and thus yields a word W with W ◦ P ∈ S we consider the values |xi|, |yi| and
m := max(|xi|, |yi|) and will prove that in all cases – with one exception – m is reduced.
The exception is in case 4, if |xi| = |yi|: since B does not change y, after applying B±l

the value of m will still be |yi|, but then, in the next step P will be in case 3 or 2 and
thus m will be reduced. Hence after finitely many steps we get a point in the orbit of
P , which is in S.

In the following we will often use these two inequalities that hold for every point in
L8:

0 ≤ xr + xiw < 1 + w (4.1)

0 ≤ yr + yiw < w (4.2)

Case 1: Let us begin with the case that P /∈ S is periodic under B. As seen in
Section 3.2, in this case for the irrational part yi the inequalities 0 ≤ yi < 1 hold. Since
P is not in S, the absolute value of xi is at least 35 + 24w and m = |xi|.

The algorithm tells us to compute A−1B−1A ◦ P . We will do this step by step,
beginning with A ◦ P :

A ◦ P =
(
x; yr + 2xi − t1 + (yi + xr − t2)w

)
with t1 ∈ {0, 1, 2} and t2 ∈ {0, 1}
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The y-coordinate of B−1A ◦ P is the same as for A ◦ P and the x-coordinate has

rational part x′r = −xr − 2xi − yr − 2yi + t1 + 2t2 + t3 with t3 ∈ {0, 1, 2} and

irrational part x′i = −xr − xi − yr − yi + t1 + t2 + t4 with t4 ∈ {0, 1}
The last step – applying B−1 – does not change the x-coordinate, but the y-coordinate:
If we write the point A−1B−1A ◦ P in the form

(
x′r + x′iw; y′r + y′iw

)
, we get x′r and x′i

as above and for y:

y′r = 2xr + 4xi + 3yr + 2yi − 3t1 − 2t2 − 2t4 + t5 with t5 ∈ {0, 1, 2} and

y′i = 2xr + 2xi + yr + 3yi − t1 − 3t2 − t3 + t6 with t6 ∈ {0, 1}
We have to show that m′ := max(|x′i|, |y′i|) < m = max(|xi|, |yi|) = |xi| and we do this

by showing:

a) if xi > 35 + 24w, then |x′i| < |xi|.
b) if xi < −(35 + 24w), then |x′i| < |xi|.
c) if xi > 35 + 24w, then |y′i| < |xi|.
d) if xi < −(35 + 24w), then |y′i| < |xi|.

Note that since |xi| > 35 + 24w the sign of xr + xi is − sgn(xi) and that this implies
|xr + xi| = sgn(xi)(xr + xi).

a) xi > 35 + 24w > 4
2−w : This implies xi > wxi − xi + 4 and with Equation 4.1

xi > −xr − xi + 4.

Furthermore we know that the possible values of −yr− yi + t1 + t2 + t4 lie between
0 and 4. Hence we can estimate

|xi| = xi > −xr − xi + 4 ≥ | − xr − xi|+ | − yr − yi + t1 + t2 + t4| ≥ |x′i|.

b) xi < −(35 + 24w) < −5+w
2−w : This inequality together with Equation 4.1 implies

−xi > −xiw + 1 + w + xi + 4 > xr + xi + 4

and
|xi| = −xi > | − xr − xi|+ | − yr − yi + t1 + t2 + t4| ≥ |x′i|.

c) xi > 35 + 24w > 7
3−2w : Together with Equation 4.1 this inequality implies

xi > 2xiw − 2xi + 7 ≥ −2xr − 2xi + 7.

Since the value of yr + 3yi− t1− 3t2− t3 + t6 is between −7 and 4 we can estimate

|xi| = xi > |2xr + 2xi|+ |yr + 3yi − t1 − 3t2 − t3 + t6| ≥ |y′i|.

d) xi < −(35 + 24w) = −9+2w
3−2w : Together with Equation 4.1 this implies

−xi > 2 + 2w − 2xiw + 2xi + 7 > 2xr + 2xi + 7

and
|xi| = −xi > |2xr + 2xi|+ |yr + 3yi − t1 − 3t2 − t3 + t6| ≥ |y′i|.

This completes case 1 and we continue with
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Case 2: Now P /∈ S is periodic under A and we have to compare P with B−1A−1B ◦P .
The latter is of the form

x′r =3xr + 2xi + 4yr + 6yi − 3t1 − 2t2 − t3 − 2t4 + t5

x′i =xr + 3xi + 3yr + 4yi − t1 − 3t2 − t3 − t4 + t6

y′r =− 2xi − yr − 2yi + 2t2 + t3

y′i =− xr − yr − yi + t1 + t4

with t1, t3, t5 ∈ {0, 1, 2} and t2, t4, t6 ∈ {0, 1}

Since in this case all computations are very similar to the previous case – just use
Equation 4.2 instead of Equation 4.1 – we will just give the bounds, that guarantee
m′ < m. Note that points periodic under A have |xi| < 1 and thus m = |yi|. Furthermore
we use sgn(3yr + 4yi) = − sgn(yi) = sgn(yr + yi).

a) if yi > 35 + 24w > 8
5−3w , then |x′i| < |yi|.

b) if yi < −(35 + 24w) < −8+3w
5−3w , then |x′i| < |yi|.

c) if yi > 35 + 24w > 3
2−w , then |y′i| < |yi|.

d) if yi < −(35 + 24w) < −3+w
2−w , then |y′i| < |yi|.

Case 3: Now |xi| < |yi| and we want to show that the power of A given by the algorithm
reduces |yi| and thus reduces m.

Remember that the difference between the irrational parts of the y-coordinate of P
and of Ak ◦ P is denoted by ∆Ak(P ) and by Equation 3.4 this difference is

∆Ak(P ) =

{
−kxiw − r for an r ∈ (−1, 1) if x ≤ 1

k(xr − 1) if x > 1.

• If x ≤ 1 and k = d 1
|xi|we = 1

|xi|w + s for an s ∈ (0, 1) we get

∆Ak(P ) = − sgn(xi)− sxiw − r+ and ∆A−k(P ) = sgn(xi) + sxiw − r−.

Since |r| < 1, the signs of ∆Ak(P ) and ∆A−k(P ) are different: one is positive, the
other is negative. Moreover, |∆A±k(P )| ≤ 1 + s|xi|w + 1 < 2|yi|. Thus either Ak

or A−k reduces the absolute value |yi| and m.

• If x > 1 and k = 1, we have ∆A±k(P ) = ±(xr − 1). Since P is not periodic under
the action of A, the rational part xr 6= 1. Moreover,

|∆A±k(P )| ≤ |xr|+ 1 < 1 + w + w|xi|+ 1 < 2|yi|.

Thus either A or A−1 reduces the absolute value |yi| and m.
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Case 4: Now |yi| ≤ |xi| and we have to show that the power of B given by the algorithm
reduces |xi|. Remember Equation 3.2:

∆Bl(Q) =

{
lyi(1− w)− r for an r ∈ (−1, 1) if y ≤ 1

l(yr + yi − 1) if y > 1.

• If y ≤ 1 and l = d 1
|yi|(w−1)e = 1

|yi|(w−1) + s for an s ∈ (0, 1) we get

∆Bl(P ) = − sgn(yi)−syi(w−1)−r+ and ∆B−l(P ) = sgn(yi)+syi(w−1)−r−.
Since |r| < 1, the signs of ∆Bl(P ) and ∆B−l(P ) are different. Moreover,

|∆B±l(P )| ≤ 1 + s|yi|(w − 1) + 1 < 2|yi| ≤ 2|xi|.
Thus either Bl or B−l reduces |xi|.
• If y > 1 and l = 1, we have ∆B±l(P ) = ±(yr+yi−1). Since P is not periodic under
B, the change ∆ is not 0. Moreover, yr and yi have different signs and |yi| < |yr|
unless both |yr| and |yi| are much smaller than 35+24w. Hence |∆B±l(P )| < 2|xi|.
Thus either B or B−1 reduces |xi|.

This completes the proof, since in all cases m = max(|xi|, |yi|) is reduced: in the case
|xi| = |yi| after two steps, otherwise in each step. This finally leads to a point with
|xi|, |yi| < 35 + 24w, which is in the finite set S.

Remark 4.7. Points in S can have approximately ((35+24w) ·2N)2 different values for
xi and yi and for each such pair there might be up to ((1+w) ·N) ·(w ·N) possible values
for xr and yr. Thus the upper bound on the number of orbits with fixed N given by the
theorem is about (35 + 24w)2(w+ 2)N4 = (8114 + 5737w)N4 ≈ 16227N4. This is a very
bad upper bound, supposably the correct number of orbits is very close (or equal) to
the lower bound given by the number of connected components of the graph described
in the beginning of this section. In particular for N = 1 with a little bit more work one
can show that, indeed, all non-periodic points are in the same orbit. This means that
for all non-periodic points P =

(
xr + xiw; yr + yiw

)
with xr, xi, yr, yi ∈ Z the groups

SL(L8;P ) are conjugate and have the same critical exponent.

Remark 4.8 (Other discriminants D). As mentioned in Theorem 2.18 there exist L-

shaped Veech surfaces also for D ≡ 1 mod 4. For D = 5 set w5 := 1+
√

5
2 . One easily

checks that A5 =
(

1 0
w5 1

)
and B5 =

(
1 w5
0 1

)
are the vertical respectively horizontal primi-

tive parabolic elements of the Veech group SL(L5,−1). It is known that also in this case
the Veech group is generated by these two elements. All methods of this section should
apply also to the orbits of SL(L5,−1) on L5,−1.

For bigger D however, one should not expect too much: The bigger D gets, the
smaller is 〈AD, BD〉 compared to SL(LD). Thus the method to find a lower bound on
the number of orbits for fixed N will not work, because even though we can define the
graph GN as described at the beginning of this chapter one would need to know the
action of all generators of SL(LD). Also Algorithm 1 will not work as stated: For big
D there exist (many) points, such that no non-trivial element of 〈A,B〉 – which by the
ping-pong lemma is a free subgroup for D big enough – decreases the absolute values of
the irrational parts of the coordinates.
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5 Critical Exponent and Graph-Periodic
Manifolds

The critical exponent of a Fuchsian group serves as a way to describe the dynamics of
the group’s action at the boundary of the upper half plane or more precisely at the
limit set. Roughly spoken it measures how fast the orbit of a base point tends to the
boundary. For instance in [BJ97] Bishop and Jones show that the critical exponent of
non-elementary Fuchsian groups equals the Hausdorff dimension of the conical limit set
– the set of points x ∈ ∂H = R∪{∞} for which there exists a sequence of group elements
transporting the base point to x within a bounded distance to a geodesic ending in x.

In the first section of this chapter we define the critical exponent of Fuchsian groups
and collect some known results bounding it. Further background on the critical exponent
viewed from different perspectives can be found in [Nic89].

The aim of the second section is to build a bridge from specific Fuchsian groups
– subgroups of lattices – (see Chapter 2) and their critical exponent to amenability
of Schreier graphs (described in Chapter 1). We use a concept introduced by Tapie
([Tap10]): graph-periodic manifolds M over a cell C, i.e. manifolds consisting of isometric
copies of another manifold glued together according to the structure given by a graph.
Following [RT13] we compare the bottom of the spectrum of C and of M = H/SL(LD;P )
and in doing so we prove that the critical exponent of SL(LD;P ) < SL(LD) is strictly
smaller than 1, if the Schreier graph GSL(LD),SL(LD;P ),S is non-amenable for a finite set
S generating SL(LD).

5.1 The Critical Exponent

Let us first define the term critical exponent and collect some basic properties. Therefore
let ρH be the hyperbolic metric on the upper half plane H.

Definition 5.1. Let Γ be a Fuchsian group and ∗ ∈ H. The Poincaré series to the
exponent a ∈ R and the base point ∗ is the series

∑
γ∈Γ e

−aρH(∗,γ(∗)). The infimum of
exponents a, for which the Poincaré series converges is called the critical exponent δ(Γ):

δ(Γ) := inf
{
a ∈ R |

∑
γ∈Γ

e−aρH(∗,γ(∗)) <∞
}

Remark 5.2. Because of the triangle inequality the convergence of the Poincaré series
and thus also the critical exponent are independent of the choice of base point. Usually
we will set ∗ = i.

Our first observations concern the critical exponent of commensurable groups. Recall
that two subgroups Γ and Γ′ of SL2(R) are called commensurable if there exist subgroups
Π < Γ and Π′ < Γ′ of finite index each, that are conjugate in SL2(R).
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Proposition 5.3. If Γ and Γ′ are conjugate by g ∈ GL2(R), then δ(Γ) = δ(Γ′).

Proof. Let Γ′ = gΓg−1 and α ≥ δ(Γ′). Then the series
∑

γ′∈Γ′ e
−αρH(i,γ′(i)) converges

absolute and equals
∑

γ∈Γ e
−αρH(i,gγg−1(i)). Since g and g−1 act as isometries, this series

equals
∑

γ∈Γ e
−αρH(g−1(i),γg−1(i)), which – because of the independence of the choice of the

base point – converges if and only if
∑

γ∈Γ e
−αρH(i,γ(i)) converges. Hence δ(Γ) ≤ δ(Γ′).

A symmetric argument yields δ(Γ) ≥ δ(Γ′) and thus δ(Γ) = δ(Γ′)

Proposition 5.4. If Π < Γ is a subgroup of finite index [Γ : Π] = n < ∞, then
δ(Π) = δ(Γ).

Proof. The inequality δ(Π) ≤ δ(Γ) is clear by definition.
To show δ(Π) ≥ δ(Γ), assume that δ(Π) < δ(Γ) and fix a δ ∈ (δ(Π), δ(Γ)) as well as

a transversal {γ1, . . . , γn} for the left cosets of Γ with respect to Π. Since δ > δ(Π),
the series

∑
π∈Π e

−δρH(i,π(i)) converges. But then also the series
∑

π∈γ−1
i Π e

−δρH(i,γiπ(i))

converges, because γiπ runs through Π as π runs through γ−1
i Π. The index of Π in Γ is

finite, thus also
∑n

i=1

∑
π∈γ−1

i Π e
−δρH(i,γiπ(i)) converges and as all summands are positive,

it converges absolutely. Hence we can rearrange the summands and (remember that
Γ =

⊔n
i=1 γiΠ) get the convergence of

∑
γ∈Γ e

−δρH(i,γ(i)), in contradiction to δ < δ(Γ).

Corollary 5.5. Commensurable Fuchsian groups have the same critical exponent.

In general it is quite hard to find the exact critical exponent of a group. But there
are some general bounds that can be found in an elementary way:

Proposition 5.6. Let Γ be a Fuchsian group. Then the following holds:

1. If |Γ| =∞, then δ(Γ) ≥ 0.

2. A cyclic group generated by a hyperbolic element has critical exponent 0.

3. Let Π < Γ be a subgroup, then δ(Π) ≤ δ(Γ).

4. If Γ contains a parabolic element, then δ(Γ) ≥ 1
2 .

Proof. 1. If Γ is an infinite group, then the Poincaré series with exponent a = 0
obviously diverges.

2. In Proposition 5.3 we showed that conjugate groups have the same critical expo-

nent. Thus we can assume that Γ = 〈γ〉 for some γ =
(
λ

1
2 0

0 λ−
1
2

)
with λ > 1. The

image of the base point i under γn is λni. The hyperbolic distance from i to γn ◦ i
is lnλ|n| and thus the Poincaré series to the base point i becomes∑

γ∈Γ

e−aρH(i,γ(i)) =
∑
n∈Z

λ−|n|a = 1 + 2 ·
∑
n∈N

(
1

λa

)n
This is a geometric series and converges if and only if 1

λa < 1, which is the case if
and only if a > 0.

3. Clear by definition of δ.
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4. Consider the cyclic group Π generated by the parabolic element. After conjugation
we can assume that Π = 〈

(
1 1
0 1

)
〉 and compute δ(Π) = 1

2 . Now the statement follows
from 3.

Further bounds on the critical exponent of Fuchsian groups are given in the following
four theorems. They are summarized in Table 5.1.

Theorem 5.7 ([Nic89], Theorem 1.6.1). For all Fuchsian groups Γ the critical exponent
is at most 1.

Proof. We define the orbital counting function as

N(r, x, y) := |{γ ∈ Γ | ρH(x, γ(y)) < r}|.

It was already shown in [Hop36] that for all Fuchsian groups there is a constant k1 such
that N(r, x, y) < k1e

r. Let us consider the partial sums

∑
γ∈Γ:ρH(i,γ(i))<R

e−aρH(i,γ(i)) =

∫ R

0
e−atdN(t, i, i) = N(R, i, i)e−aR + a

∫ R

0
N(t, i, i)e−atdt.

Using the above estimate N(t, i, i) < k1e
t we obtain the convergence of the Poincaré

series for all a > 1.

Theorem 5.8 ([Nic89], Theorem 1.6.3). If Γ is a lattice, then δ(Γ) = 1.

Proof. In Theorem 1.5.2 of [Nic89] Nicholls proves that if Γ is a lattice there exists a
constant k2 and a r0 such that for all r > r0 the orbital counting function is bounded
below by

N(r, x, y) > k2e
r.

If we again consider the partial sums as in the last proof, we see that for lattices the
Poincaré series diverges for a = 1. Together with Theorem 5.8 the proof is completed.

Theorem 5.9 ([Bea68]/[Pat76a]). If Γ is non-elementary and contains a parabolic ele-
ment, then δ(Γ) > 1

2 .

Proof. For γ ∈ Γ we define f(γ) := eρH(i,γ(i)). Moreover, we set φ(Γ, a) :=
∑

γ∈Γ−I f(γ)−a.
Thus the Poincaré series of Γ to the exponent a equals 1+φ(Γ, a). Finally, for all a > δ(Γ)
we define

ψ(Γ, a) :=
φ(Γ, a)

1 + φ(Γ, a)
.

Since Γ is non-elementary, there exists a subgroup Γ0 < Γ that is a free product of two
cyclic groups Γ1 and Γ2. We choose Γ1 to be generated by a parabolic element and
conclude that δ(Γ1) = 1

2 (Proposition 5.6).
Now fix a number a0 > δ(Γ2) and choose ε < ψ(Γ2, a0). For elementary groups and

thus in particular for the cyclic group Γ1 the Poincaré series to its critical exponent
diverges: φ(Γ1, a)→∞ for a→ 1

2 = δ(Γ1) from above. For decreasing a the function φ
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and because of the monotony of ψ = φ
1+φ in φ also ψ increase. This implies that there

is an a1 with a0 ≥ a1 >
1
2 such that ψ(Γ1, a1) > 1− ε. Hence

ψ(Γ1, a1) + ψ(Γ2, a1) > 1− ε+ ε = 1.

In the following lemma we show that δ(Γ0) ≥ a for all a with ψ(Γ1, a) +ψ(Γ2, a) ≥ 1.
This finishes the proof by setting a = a1.

Lemma 5.10. Let Γ be a Fuchsian group and the free product of Γ1 and Γ2. Then

ψ(Γ, a) ≥ ψ(Γ1, a) + ψ(Γ2, a).

If ψ(Γ1, a) + ψ(Γ2, a) ≥ 1, then the Poincaré series to the exponent a diverges and thus
the critical exponent satisfies δ(Γ) ≥ a.

Proof. We observe that by the triangle inequality the function f(γ) = eρH(i,γ(i)) satisfies

f(γγ′) ≤ f(γ)f(γ′).

Using this together with the normal form of elements of the free product we obtain

φ(Γ1 ∗ Γ2, a) ≥ (1 + φ(Γ1, a))(1 + φ(Γ2, a))

∑
n≥0

(φ(Γ1, a)φ(Γ2, a))n

− 1.

This expression diverges for φ(Γ1, a)φ(Γ2, a) ≥ 1.
For φ(Γ1, a)φ(Γ2, a) < 1 we have a geometric series and obtain

φ(Γ1 ∗ Γ2, a) ≥ (1 + φ(Γ1, a))(1 + φ(Γ2, a))

1− φ(Γ1, a)φ(Γ2, a)
− 1.

By the definition and the monotony of ψ(Γ, a) this yields

ψ(Γ, a) ≥ ψ(Γ1, a) + ψ(Γ2, a)

and the condition φ(Γ1, a)φ(Γ2, a) ≥ 1 is equivalent to ψ(Γ1, a) + ψ(Γ2, a) ≥ 1.

Since we will not deal with Fuchsian groups of the second kind, we will not prove the
following theorem but refer to [Bea68] or [Pat75].

Theorem 5.11 ([Bea68]/[Pat75]). If Γ is finitely generated and of the second kind, then
δ(Γ) < 1.

Another very useful result concerns a connection between the critical exponent δ(Π)
of a Fuchisan group Π and the smallest eigenvalue λ0(M) of the Laplacian ∆M on
the hyperbolic manifold M = H/Π. It was first proven by Patterson in [Pat76b] for
geometrically finite Fuchsian groups and generalized by Sullivan in [Sul79] to all discrete
groups acting on the hyperbolic space Hd+1 by isometries∗:

∗Note that H = H2 = H1+1.
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|Γ| =∞ δ(Γ) ≥ 0

Γ contains a parabolic element δ(Γ) ≥ 1
2

Γ contains parabolic & is non-elementary δ(Γ) > 1
2

Γ is finitely generated & of second kind δ(Γ) < 1

all Fuchsian groups Γ δ(Γ) ≤ 1

Γ is a lattice δ(Γ) = 1

Table 5.1: General bounds on the critical exponent of Fuchsian groups.

Theorem 5.12 ([Pat76b]/[Sul79]). Let Π be a Fuchsian group and M = H/Π. Then
the smallest eigenvalue λ0 of the Laplacian on M is

λ0(M) =

{
δ(Π)(1− δ(Π)), if δ(Π) ≥ 1

2
1
4 , if δ(Π) ≤ 1

2 .

In particular, λ0(M) > 0 implies δ(Π) < 1. This is why we will take a closer look
at the Laplacian on hyperbolic manifolds and the bottom of its spectrum in the next
section.

5.2 From Hyperbolic Surfaces to Schreier Graphs

In this section we follow the ideas of Tapie and Roblin ([Tap10], [RT13]). They discuss
Riemannian coverings and a generalization – graph-periodic manifolds – in order to
obtain a lower bound on the smallest eigenvalue of the manifold’s Laplacian. Roughly
spoken, a graph-periodic manifold consists of isometric copies of a smaller manifold with
boundary, which are glued together according to the structure given by a regular graph.
The lower bound is given in Théorème 0.2 of [RT13] for Riemannian coverings and in
Théorème 1 of [Tap10] for graph-periodic manifolds. We will introduce the notion of
graph-periodic manifolds, explain how our situation fits into this concept and prove a
variation of these theorems giving a lower bound for our special case.

Definition 5.13. Let k ∈ N be fixed. A marked cell of valency k is a set {C,H1, . . . ,Hk}
where C is a smooth Riemannian manifold with piecewise C1 boundary and Hi ⊂ ∂C
are pairwise disjoint compact codimension 1 submanifolds which are C1 with piecewise
C1 boundary (of codimension 2). The Hi are called transition zones, C is called the cell.

Definition 5.14. Let G = (V,E) be a graph of constant valency k and {C,H1, . . . ,Hk}
be a marked cell of valency k. A manifold M is called marked G-periodic over C if it
satisfies the following conditions:

1. For all v ∈ G there exist submanifolds Cv ⊂ M with pairwise disjoint interiors
such that M =

⋃
v∈V (G)Cv. Furthermore there exists an isometry Jv : Cv → C.

2. For all v, w ∈ V there is an edge {v, w} ∈ E if and only if Jv(Cv ∩ Cw) ⊂ ∂C
contains a unique transition zone, which we will denote by Hvw.
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3. For all edges {v, w} ∈ E the map Jw ◦ J−1
v : Jv(Cv ∩ Cw)→ Jw(Cv ∩ Cw) induces

an isometry from Hvw to Hwv.

Let us now describe how the situation of this thesis fits into the concept of graph-
periodic manifolds. Afterwards we will look at a small example using well-known groups:

Given a lattice Fuchsian group Γ and a subgroup Π there are the corresponding quo-
tients N = H/Γ and M = H/Π. Thus there are three covering maps: p : M → N and
the universal coverings πΓ : H → N and πΠ : H → M . Since Γ is a lattice, there is a
fundamental domain FΓ ⊂ H of finite volume and with finitely many sides for the action
of Γ on H, such that pairs of sides correspond to a set S = {γ1, . . . , γn} of elements
generating Γ (usually a Dirichlet fundamental domain). We set C = FΓ and mark C by
choosing for any of these pairs a transition zone Hi on one of the sides and the γi-image
of Hi on the other side. Then C is a marked cell of valency 2 · n and M consists of
Γ-images of πΠ(C), one for each coset Πγ. Setting G to be the Schreier graph GΓ,Π,S ,
we see that M is a G-periodic manifold over C.

Example 5.15. Let Γ be the modular group SL2(Z) and Π be the principal congru-
ence subgroup Γ[2]. The fundamental domains FΓ, FΓ[2] and the Schreier coset graph
GΓ,Γ[2],{S,T} for S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
are shown in Figure 5.1. The main difference

between this example and the situation we are interested in is that in this example the
subgroup has finite index; hence the Schreier graph G is finite and thus in particular
amenable. Moreover, N = H/Γ and M = H/Γ[2] have finite volume and thus the small-
est eigenvalues λ0(N) and λ0(M) are 0, since any constant function φ0 : N or M → R
is a valid eigenfunction with eigenvalue 0.

Before we state the main result of this section we collect some facts about the Laplacian
∆N on a hyperbolic manifold N = H/Γ. For the definitions of divergence divf , gradient
∇f and the Laplacian ∆ = div(∇f) see Chapter 1 of [Cha84].

For a hyperbolic manifold M let L2(M) be the space of measurable maps f : M → R
with

∫
M |f |2 <∞. On L2(M) there is the inner product 〈f, g〉M :=

∫
M fg and the norm

||f ||2M := 〈f, f〉M . Furthermore, we define the Rayleigh quotient as

RM (f) =
||∇f ||2M
||f ||2M

.

The Min-Max-principle implies that the smallest eigenvalue λ0(M) satisfies

λ0(M) = inf
f∈H1(M)

RM (f),

where H1(M) ⊂ L2(M) is the Sobolev space of maps f ∈ L2(M), whose gradient is a L2

vector field. Moreover, if φ0 : M → R is a eigenfunction to the eigenvalue λ0(M), then

λ1(M) = inf{RM (f) | f ∈ H1(M), 〈f, φ0〉M = 0}. (5.1)

The lower bound on λ0(H
/

Π) obtained in the main result will depend on the spectral
gap ν := λ1(C) − λ0(C) of the Laplacian on C (with Neumann boundary conditions).
Therefore it is important that in our case, where C is a (Dirichlet) fundamental domain
of a lattice Γ, the smallest eigenvalue λ0(C) is isolated and thus the spectral gap is
strictly positive. This is shown in three steps:
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Figure 5.1: H
/

Γ[2] as G-periodic manifold over a fundamental domain FΓ of Γ = SL2(Z).

• By Lemme 5.2 of [RT13] the eigenvalue λ0(C) is an isolated eigenvalue of multi-
plicity 1, if λ0(C) < λess0 (C), where λess0 (C) is the bottom of the essential spectrum
of C, i.e. the infimum of the real numbers for which a so-called Weyl’s sequence
exist.

• Since C has finite volume, the constant functions are in H1(C) and thus λ0(C) = 0.

• It holds λess0 (C) > 0:

Lemma 5.16 ([RT13], Lemme 5.4). Let C be a Dirichlet fundamental domain of a
lattice. The bottom of the essential spectrum λess0 (C) is at least 1

4 .

Proof. By Lemme 5.3 of [RT13], if there exists a compact subset K ⊂ C and a function
φ : C −K → (0,∞) with gradient ∇φ tangent on ∂C −K that satisfies ∆φ ≥ λφ, then
λess0 (C) ≥ λ ∈ R.

Since C is the Dirichlet fundamental domain of a lattice, there exists a compact set
K such that C −K is a disjoint union of finitely many cusps. We define such a function
φ only on a cusp at ∞, since all cusps are conjugate to such a cusp. It has the form
{(x, y) ∈ H | a ≤ x ≤ b ∧ y ≥ c} for some a, b, c ∈ R with c > 0. Setting φ((x, y)) = y

1
2 ,

one easily sees that φ is strictly positive, ∇φ is tangent on ∂C −K and that ∆φ = 1
4φ.

Hence λess0 (C) ≥ 1
4 .
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Summarized this yields:

Proposition 5.17. Let C be a Dirichlet fundamental domain of a lattice. The spectral
gap ν := λ1(C) − λ0(C) = λ1(C) of the Laplacian on C (with Neumann boundary
conditions) is strictly positive: ν > 0.

Let us now state the main result of this section. The proof is basically a special case
of the proof of Théorème 4.3 of [RT13].

Proposition 5.18. Let Γ be a lattice, Π < Γ a subgroup, C a Dirichlet fundamental
domain of Γ and G = GΓ,Π,S the Schreier graph of Γ with respect to Π and the finite
generating set S obtained from C. Then M = H/Π is a marked G-periodic manifold
over C as described above. The bottom of the spectrum λ0(M) can be bounded above by

λ0(M) ≥ min

{
A
V ν

ν + A
V µ0(G)

µ0(G), ν

}
,

where A > 0 is a constant depending on the geometry of C in a neighborhood of the
transition zones, ν > 0 is the spectral gap of C, V is the (finite) volume of C and µ0(G)
is the spectral gap of the combinatorial Laplacian on the graph G.

Combining this proposition with Theorem 5.12, Theorem 1.46, and Theorem 1.34 this
implies:

Corollary 5.19. Let Γ be a lattice and Π < Γ a subgroup. The critical exponent δ(Π)
is strictly smaller than 1, if the Schreier graph GΓ,Π,S is non-amenable for any finite set
S generating Γ.

Proof. [Proposition 5.18] First observe that since Γ is a lattice, C has finite volume V
and thus the constant map 1C : C → {1} ⊂ R is an eigenfunction to the eigenvalue
λ0(C) = 0. We can lift 1C to the map 1M : M → {1}, but in the following we will just
write 1 for both maps.

In Equation 5.1 we saw that λ0(M) = inff∈H1(M)R(f). Let fε be a smooth map with

compact support satisfying R(fε) = ||∇fε||M
||fε||M ≤ λ0(M) + ε.

For every vertex i ∈ V (G) we write Ci for the image of the cell C corresponding to
this vertex and define

• fε,i := fε|Ci ,

• bi := 1
V 〈fε,i,1〉Ci = 1

V

∫
Ci
fε,i · 1, and

• gi := fε,i − bi1.

One easily checks that gi and 1 are orthogonal (with respect to the inner product on
Ci) and hence R(gi) ≥ λ1(C) = ν. Moreover by bilinearity of the inner product we have
||gi||2C = ||fε,i||2C − b2iV .

We want to estimate λ0(M) + ε and know that it is at least
||∇fε||2M
||fε||2M

=

∑
i∈V (G) ||∇fε||2Ci∑
i∈V (G) ||fε||2Ci

.

We continue by giving a lower bound on the numerator and an upper bound on the
denominator.
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The first is done in Lemme 4.8 of [RT13], which states, that there is a constant A > 0
depending on neighborhoods of the transition zones such that∑

i∈V (G)

||∇fε,i||2Ci ≥ A
∑

{i,j}∈E(G)

(bi − bj)2.

The proof is done by estimating ||∇fε,i||2Hij×[0,R] in terms of the Newtonian Capacity of

the “rectangles” Hij × [−R,R]. These are tubular neigborhoods of the transition zones,
which have one part in the cell Ci and one in the cell Cj for each edge {i, j} ∈ E(G).
This is technical and we will not give the details here.

For the upper bound on
∑

i∈V (G) ||fε||2Ci let us estimate ||∇fε,i||2Ci = ||∇(bi1)+∇gi||2Ci .
The first summand obviously vanishes and we obtain

(λ0(M) + ε)
∑

i∈V (G)

||fε,i||2Ci ≥
∑

i∈V (G)

||∇fε,i||2Ci

≥
∑

i∈V (G)

||∇gi||2Ci

≥
∑

i∈V (G)

ν||gi||2Ci

≥ ν
∑

i∈V (G)

||∇fε,i||2Ci − ν
∑

i∈V (G)

b2iV.

Assume that λ0(M) + ε < ν. Otherwise the proposition is clearly true. Then the above
inequality is equivalent to

∑
i∈V (G)

||fε,i||2Ci ≤ V
(

1− λ0(M) + ε

ν

)−1 ∑
i∈V (G)

b2i .

With these bounds on the numerator and denominator we summarize:

λ0(M) + ε ≥
∑

i∈V (G) ||∇fε||2Ci∑
i∈V (G) ||fε||2Ci

≥ A

V

∑
{i,j}∈E(G)(bi − bj)2∑

i∈V (G) b
2
i

(
1− λ0(M) + ε

ν

)
.

By Equation 1.2 the quotient
∑
{i,j}∈E(G)(bi−bj)2∑

i∈V (G) b
2
i

is greater or equal to the spectral gap

µ0 of the graph G. Inserting this observation and solving for λ0(M) + ε yields

λ0(M) + ε ≥
A
V ν

ν + A
V µ0(G)

µ0(G).

Since all constants on the right-hand side are independent of ε this finishes the proof.
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6 Conclusion

6.1 Proofs of the Main Theorems

After we provided the auxiliary material in the previous chapters in this final chapter
we can reap the fruit of our labor and prove our main theorems:

Main Theorem A. For every non-periodic connection point P on the Veech surface
LD (with D ≡ 0 mod 4 not a square) the (infinitely generated) stabilizer subgroup
SL(LD;P ) := StabSL(LD)(P ) has critical exponent strictly between 1

2 and 1.

As already mentioned in the introduction by Theorem 2.14 the Veech groups of affine
coverings of LD branched at the singularity and P are commensurable to SL(LD;P ).
By Corollary 5.5 commensurable Fuchsian groups have the same critical exponent and
the other main theorem follows:

Main Theorem B. There exist translation surfaces whose Veech group is infinitely
generated with critical exponent strictly between 1

2 and 1. More precisely this is the
case for every affine covering of LD (with D ≡ 0 mod 4 not a square) branched at the
singularity and one non-periodic connection point P .

In Chapter 5 we have seen, that δ(SL(LD;P )) > 1
2 , since SL(LD;P ) is non-elementary

and contains a parabolic element (Proposition 5.6). Furthermore, by Corollary 5.19 the
critical exponent δ(SL(LD;P )) is strictly smaller than 1 if the Schreier graph of SL(LD)
with respect to SL(LD;P ) and any finite generating set S of SL(LD) is non-amenable.

So let us now show that for every non-periodic connection point P and any finite set
S generating Γ = SL(LD) the graph GΓ,Π,S is non-amenable, where in order to improve
readability Π denotes the subgroup SL(LD;P ). Theorem 1.34 tells us that we can change
the finite generating set. Thus GΓ,Π,S is non-amenable if and only if G = GΓ,Π,S∪{Ak,Bl}
is non-amenable.

Let G′ be the graph induced by all vertices of G that correspond∗ to points that are
not periodic under both A and B. Remember that by Proposition 2.22 the point P is of
the form P =

(
xr+xiw; yr+yiw

)
with xr, xi, yr, yi ∈ Q. If all these rational numbers are

reduced fractions, we denoted the least common denominator by N(P ). In Theorem C
we have seen that all points Q in the orbit of P are of the same form and have the
same least common denominator. Hence all vertices of the Schreier graph correspond
to points Q ∈ LD with N(Q) = N(P ). The points periodic under A and under B are
described in Section 3.2, and since the denominators of xr, xi, yr and yi are bounded by
N(P ), there are only finitely many such points. Thus we can apply Proposition 1.28
and non-amenability of G′ implies non-amenability of G.

∗Πγ ↔ γ ◦ P
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The last step to simplify the graph is to omit all edges that are not labeled with Ak

or Bl. We call this graph G′′. Omitting edges does not increase the Cheeger constant
(Proposition 1.31). Hence the graphs G′, G and GΓ,Π,S are non-amenable if G′′ is non-
amenable.

That G′′ is indeed non-amenable follows from:

Proposition 6.1. There are numbers k and l depending only on N := N(P ) and w,
such that every connected component of G′′ is either isomorphic to the infinite 4-valent
tree or to the root-looped 4-valent tree (cf. Figure 6.1).

Figure 6.1: The infinite 4-valent and the root-looped 4-valent tree.

As seen in Example 1.35 and Remark 1.45 both graphs have Cheeger constant 2
3 ,

hence this Proposition together with Corollary 1.30 implies the non-amenability of G′′

and thus gives also:

Corollary 6.2. The graph G{Γ,Π,S} is non-amenable for any nonperiodic connection
point P and any finite generating set S of Γ.

Proof of Proposition 6.1. We will analyze the points corresponding to the vertices of G′′

and the sum of the absolute values of their irrational parts. Remember that for a point
Q =

(
xr + xiw; yr + yiw

)
this sum |xi|+ |yi| is denoted by s(Q).

1. For every point Q in the orbit of P periodic under A (resp. B) the period divides
N since N(Q) = N (Section 3.2). Hence in G′′ the circle at the periodic point Q
is in fact a loop, i.e. of length 1, if we choose k (resp. l) to be a multiple of N .

ThusQ has exactly two neighbors 6= Q, namelyBl◦Q andB−l◦Q (resp. (Ak◦Q and

A−k ◦Q)). Lemma 3.6 and Lemma 3.7 state that for l > l0 = max
{

3N
w−1 , 2N + 1

}
s(Q) < s(Bl ◦Q) and s(Q) < s(B−l ◦Q)

(resp. for k > k0 = max
{

3N
w , 2N + 1

}
the analogous statement for s(A±k ◦ Q))

holds.
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2. In Lemma 3.10 we have seen that if we choose k > k1 = max
{
k0,

2(N+1)
w

}
and

l > l1 = max
{
l0,

2(N+1)
w−1

}
, for all points Q neither periodic under A nor under B

at least three of the following inequalities hold:

s(Q) < s(Ak ◦Q)

s(Q) < s(A−k ◦Q)

s(Q) < s(Bl ◦Q)

s(Q) < s(B−l ◦Q).

All these conditions on the choice of k and l only depend on N and w. Hence we can and
do choose k as the smallest multiple of N bigger than k1 and l as the smallest multiple
of N bigger than l1 and analyze which graphs can occur as connected components of G′′

in this case:
First Case: in the connected component there is a point Q periodic under

A or B:
Let us remove the loop at Q and look at an path of length n starting in Q = Q0

visiting the points Q0, Q1, . . . Qn with Q1 6= Q0 and Qj+2 6= Qj . From item 1 we know
that s(Q1) > s(Q). Thus Q1 has a neighbor with smaller s-value and can not be periodic
under A or B. Furthermore we also know the one and only neighbor of Q1 that has a
lower s-value than Q1 is Q0 (because of item 2) and we get s(Q2) > s(Q1). The same
argument for the following points show that none of the points Qj , j ≥ 1 is periodic
under A or B and (s(Qj))j=0,...,n is strictly increasing. In particular there is no circle in
this connected component, all vertices beside Q in the same component have valency 4.
This component is isomorphic to the root-looped 4-valent tree.

Second Case: in the connected component there is no point periodic under
A or B, so all vertices have valency 4:

Suppose in the connected component there is a circle [v0, v1, . . . , vn−1, v0] with corre-
sponding points [Q0, Q1, . . . , Qn−1, Q0]. Then the set {s(Q0), . . . , s(Qn−1)} is finite and
thus contains its maximum. Let Qj be a point with s(Qj) this maximum. This implies
s(Qj−1) ≤ s(Qj) and s(Qj+1) ≤ s(Qj), which is a contradiction to item 2. Thus in this
case the connected component is the infinite 4-valent tree.

This completed the proof of our main theorems and we will finish with some remarks
in the next section.

6.2 Final Remarks

6.2.1 Effective Bounds on the Critical Exponent

Since the constant A > 0 of Proposition 5.18 is given explicitly in [RT13], we would
obtain an effective estimate on the upper bound of the critical exponent δ(SL(LD;P )),
if we have lower bounds on the spectral gap η = λ1(C) of the cell C and on the spectral
gap µ0(G) of the combinatorial Laplacian on the graph G.

By Theorem 1.46 µ0(G) ≥ c(G)2

2 valmax
, so one would like to have a lower bound for the

Cheeger constant c(G).
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Using the notation of Section 6.1 we saw in the proof of Proposition 6.1 that the
graph G′′ has Cheeger constant c(G′′) = 2

3 and c(G′) ≥ c(G′′). The next step to prove
non-amenability of G and the first problem for getting an quantitative bound on c(G′) is
applying Proposition 1.28, which is just qualitative. The graphs G and G′ differed by a
finite number of vertices – the vertices corresponding to non-periodic connection points
in the orbit of P periodic under both A and B. But for N(P ) = 1 there are no such
points (see Lemma 3.5 and Lemma 3.4).

But the really crucial step is the change of the (finite) generating set of SL(LD), where
we use Theorem 1.34 to see that this does not concern amenability of the Schreier graph.
Also this step, which has to be done no matter what N(P ) is, is just qualitative and we
do not know any estimates on the change of the Cheeger constant.

This is why we unfortunately do not obtain a effective bound on the critical exponent
δ(SL(LD;P )).

6.2.2 McMullen’s Infinitely Generated Veech Groups

In Section 2.2.3 we described not only Hubert and Schmidt’s approach but also the one of
McMullen ([McM03] and [McM06]) to find translation surfaces with infinitely generated
Veech group. Obviously, it would be interesting to analyze also the critical exponent
of the groups found by McMullen. But unfortunately our method using the concept of
graph-periodic manifolds of Roblin and Tapie is not applicable here.

6.2.3 The Veech Surfaces LD,±1 for D ≡ 1 mod 4

In McMullen’s classification of primitive Veech surfaces in ΩM2(2) (Theorem 2.18) the
surfaces LD for D ≡ 0 mod 4 that we analyzed are just one of three types of L-shaped
Veech surfaces. The whole theory of this thesis works analogously for the two other

types, if we set w to be 1+
√
D

2 . The only thing one has to check is, that the technical
lemmata of Section 3.3 also hold for the corresponding vertical and horizontal primitive
parabolic elements AD,±1 and BD,±1 of SL(LD,±1), which differ a little bit from the
matrices A and B we used.

For the surfaces LD,−1 these matrices are AD,−1 =
(

1 0
w 1

)
and BD,−1 =

(
1 w
0 1

)
. Be-

cause of the symmetry of the horizontal and vertical direction of LD,−1 (see Figure 2.5)
some of the computations become even a little bit easier. The remaining surfaces are
the surfaces LD,−1, where the vertical and horizontal primitive parabolic elements are
AD,+1 =

(
1 0

w−1 1

)
and BD,+1 =

(
1 w+1
0 1

)
.

After proving the corresponding variants of Lemma 3.6 – Lemma 3.10, the proof that
δ(SL(LD,±1;P ) is strictly between 1

2 and 1 works exactly as the proof for D ≡ 0 mod 4
described in Section 6.1 and the main theorems can be extended to all affine coverings
of Veech surfaces of ΩM2(2) branched at the singularity and a non-periodic connection
point.
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Zusammenfassung

Die zentralen Objekte dieser Dissertation sind Translationsflächen X. Dabei handelt
es sich um Riemann’sche Flächen, die aus einer endlichen Menge von in die euklidi-
sche Ebene eingebetteten Polygonen durch Verkleben von parallelen gleichlangen Sei-
ten entstehen. Zwei Translationsflächen sind gleich, wenn es möglich ist, die Polygone
durch

”
Zerschneiden und mittels Translationen neu Zusammenkleben“ ineinander zu

überführen. Die Gruppe GL2(R) operiert auf der Menge der Translationsflächen via der
linearen Abbildungen auf den Polygonen. Der Stabilisator einer Translationsfläche X un-
ter dieser Operation wird die Veech-Gruppe von X genannt und mit SL(X) bezeichnet.
Die Veech-Gruppe ist eine diskrete Untergruppe von SL2(R) und damit eine Fuchs’sche
Gruppe.

Fuchs’sche Gruppen operieren durch Möbius-Transformationen auf der oberen Halb-
ebene H und werden je nach ihrer Limesmenge in elementare und nicht-elementare Grup-
pen eingeteilt. Letztere wiederum unterteilt man in Gruppen erster oder zweiter Art.
Fuchs’sche Gruppen mit endlichem co-Volumen heißen Gitter und sind genau die endlich
erzeugten Gruppen erster Art. Translationsflächen X, deren Veech-Gruppe ein Gitter ist,
heißen Veech-Flächen und sind von besonderem Interesse, da für sie die Veech Alterna-
tive gilt, die besagt, dass für eine Richtung θ entweder alle geodätischen Strahlen auf X
in Richtung θ periodisch oder alle solche Strahlen gleichverteilt sind.

Ein feineres Maß für die
”
Größe“ einer Fuchs’schen Gruppe Γ ist der kritische Expo-

nent δ(Γ). Er ist definiert als das Infimum aller reellen Zahlen a, für die die Poincaré
Reihe

∑
γ∈Γ exp(−aρH(i, γ ◦ i)) konvergiert. Es gilt 0 ≤ δ(Γ) ≤ 1 für alle unendlichen

Fuchs’schen Gruppen Γ.
Hauptziel der Dissertation ist der Beweis von

Theorem 1. Es gibt Translationsflächen, für die der kritische Exponent ihrer Veech-
Gruppe echt zwischen 1

2 und 1 liegt.

Der kritische Exponent von elementaren Gruppen ist höchstens 1
2 . Translationsflächen

mit elementaren Veech-Gruppen sind also als Kandidaten für das Theorem ausgeschlos-
sen. Ist Γ ein Gitter, so gilt δ(Γ) = 1. Also scheiden auch Veech-Flächen für das Theorem
aus.

Bis zum Jahr 2003 waren Gitter die einzigen bekannten nicht-elementaren Veech-
Gruppen. McMullen klassifizierte die Veech-Flächen vom Geschlecht 2 und zeigte, dass
jede solche Fläche, die nur eine Singularität besitzt, in der GL2(R)-Bahn der Fläche LD
liegt, die aus einem L-förmigen Polygon mit geeigneten von D abhängigen Seitenlängen
entsteht.

Während auch heute noch keine Translationsfläche mit Veech-Gruppe von zweiter Art
bekannt ist, fanden McMullen und unabhängig davon Hubert und Schmidt Konstruktio-
nen unendlich erzeugter Veech-Gruppen von erster Art. Eine Abschätzung des kritischen
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Exponenten dieser Gruppen war 10 Jahre lang eine wichtige offene Frage, die nun durch
Theorem 1 beantwortet wird.

Punkte P ∈ X mit der Eigenschaft, dass alle geodätischen Strahlen, die in einer Sin-
gularität von X starten und durch P verlaufen, so erweitert werden können, dass sie in
einer Singularität enden, heißen Verbindungspunkte. Diese sind zentral in der Konstrukti-
on von Hubert und Schmidt. Sie konstruieren Translationsflächen, deren Veech-Gruppen
kommensurabel zu der Stabilisatoruntergruppe SL(X;P ) von P sind und damit den
gleichen kritischen Exponenten haben. Für Verbindungspunkte mit unendlicher SL(X)-
Bahn (diese Punkte heißen nicht-periodisch) ist SL(X;P ) unendlich erzeugt und von
erster Art.

Wir zeigen Theorem 1, indem wir zeigen, dass für jedes D ≡ 0 mod 4, welches keine
Quadratzahl ist, und jeden nicht-periodischen Verbindungspunkt P der kritische Expo-
nent der Gruppe SL(LD;P ) echt zwischen 1

2 und 1 liegt.
Eine natürliche Frage in diesem Zusammenhang ist die Abhängigkeit von P : Liegt

ein Punkt P ′ in der SL(LD)-Bahn von P , so ist auch er ein nicht-periodischer Verbin-
dungspunkt und die zugehörigen Gruppen SL(LD;P ) und SL(LD;P ′) sind konjugiert
zueinander, haben also die gleiche Dynamik am Rand der hyperbolischen Ebene. Daher
widmen wir uns in Kapitel 4 der Bestimmung der SL(LD)-Bahn von nicht-periodischen
Verbindungspunkten P .

Diese haben die Form P = (xr+xiw; yr+yiw) mit xr, xi, yr, yi ∈ Q und w :=
√
D
2 . Wir

zeigen, dass jede Bahn dicht in LD liegt und dass der Hauptnenner N(P ) der (gekürzten)
Brüche xr, xi, yr, yi dieser Darstellung eine Invariante der Bahn ist. Daraus folgt:

Theorem 2. Es gibt unendlich viele verschiedene Bahnen von nicht-periodischen Ver-
bindungspunkten von LD. Diese liegen alle dicht.

Wir kennen die Operation der zwei Elemente A :=
(

1 0
w 1

)
und B :=

(
1 1+w
0 1

)
der Veech-

Gruppe SL(LD). Im Spezialfall D = 8 erzeugen diese beiden Elemente die ganze Gruppe
und wir geben je ein Verfahren an, um eine untere und eine obere Schranke an die Anzahl
der Bahnen von nicht-periodischen Verbindungspunkten P mit fixiertem Hauptnenner
N(P ) zu finden. Damit zeigen wir:

Theorem 3. Die Menge der Verbindungspunkte P = (xr + xiw; yr + yiw) mit festem
Wert N(P ) zerfällt in eine endliche Anzahl von Bahnen der Operation von SL(L8).

Im Verlauf des Beweises von Theorem 1 ist es nötig, die Nichtmittelbarkeit eines
Graphen G zeigen. Da wir nur sehr wenige Informationen über die Struktur von G in
unserer konkreten Situation haben, entwickeln wir in Kapitel 1 die folgende Methode:

Theorem 4. Sei G ein Graph, den man durch Weglassen von Kanten in einen Wald
G′ ohne Blätter überführen kann, bei dem das Supremum der Längen von zusammen-
hängenden Valenz-2-Teilgraphen von G′ beschränkt ist. Dann ist G nichtmittelbar.

Um diese Methode anzuwenden, ordnen wir jeder Ecke P von G ein Komplexitäts-
maß s(P ) zu und weisen nach, dass dieser Wert für Worte in A- und B-Potenzen mit
wachsender Wortlänge

”
tendenziell wächst“.

Im Folgenden werden wir die wichtigsten Resultate der einzelnen Kapitel zusammen-
fassen, um schließlich den Beweis aus Kapitel 6 skizzieren zu können.
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Graphen und Mittelbarkeit

Es tauchen zwei verschiedene Arten von Graphen auf: Schreier-Graphen sind gerich-
tete reguläre Graphen mit Kantenbeschriftungen und gegebenenfalls Multikanten und
Schleifen, während die Cheeger-Konstante für einfache Graphen definiert wird, da sie
unabhängig von der Richtung und Beschriftung der Kanten sowie dem Auftauchen von
Multikanten und Schleifen ist. Daher werden wir auch ohne weitere Erwähnung zwischen
diesen beiden Arten von Graphen wechseln.

Sei nun also G = (V,E) ein Graph mit Eckenmenge V und Kantenmenge E. Für eine
Teilmenge M ⊂ V seien

∂M := {v ∈M | v hat einen Nachbarn in M c} und c(M) :=
|∂M |
|M | .

Die Cheeger-Konstante von G ist definiert als

c(G) := inf
M⊂V endlich

c(M)

und G heißt genau dann mittelbar, wenn c(G) = 0 ist.
Mit Hilfe der folgenden Propositionen wird eine Methode entwickelt, um für bestimmte

Graphen nachzuweisen, dass sie nichtmittelbar sind:

Proposition 5. Sei G = (V,E) ein mittelbarer Graph ohne endliche Zusammenhangs-
komponenten. Dann is für jede endliche Menge F ⊂ V auch der von V − F induzierte
Untergraph mittelbar.

Proposition 6. Sei G ein Graph mit Zusammenhangskomponenten Ki. Dann gilt

c(G) = inf
i
c(Ki)

.

Proposition 7. Entsteht ein Graph G′ aus einem Graphen G durch Weglassen von
Kanten, so gilt c(G′) ≤ c(G).

Daraufhin bestimmen wir eine untere Schranke für die Cheeger-Konstante eines Baums
ohne Blätter und erhalten damit Theorem 4.

Außerdem stellen wir fest, dass die Mittelbarkeit von Schreier-Graphen unabhängig
von der Wahl eines endlichen Erzeugendensystems der Obergruppe ist.

Abschließend sei noch erwähnt, dass für Cayley-Graphen von Faktorgruppen Γ
/

Π ein
Kriterium für Nichtmittelbarkeit existiert: Enthält Γ eine freie Gruppe z vom Rang
mindestes 2, die den Normalteiler Π nur trivial schneidet, so ist der Cayley-Graph von
Γ
/

Π nichtmittelbar. Da Schreier-Graphen in mancherlei Hinsicht Cayley-Graphen sehr
ähneln, könnte man hoffen, dass das gleiche Kriterium auch für Schreier-Graphen gilt.
In Kapitel 1 geben wir allerdings ein Gegenbeispiel an: Dabei ist Γ = 〈a, b〉 und die
Untergruppe Π =

〈
{akba−k}k∈Z−{0}

〉
. Die freie Untergruppe mit trivialem Schnitt mit

Π ist z =
〈
bab, b2

〉
.
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Grundlagen zu Translationsflächen

Dieses Kapitel widmet sich dem Sammeln grundlegender Definitionen und Sätze über
Translationsflächen und Veech-Gruppen. Insbesondere wird McMullens Klassifikation
aller primitiven Veech-Flächen vom Geschlecht 2 vorgestellt. Die Veech-Flächen LD,
die in den weiteren Kapiteln behandelt werden sollen, entstehen aus einem L-förmigen
Polygon mit den folgenden Seitenlängen durch Verkleben der gegenüberliegenden Seiten.
Die vertikalen Seitenlängen sind von links nach rechts w, w − 1 und 1, die horizontalen
sind von unten nach oben 1 +w, w und 1. Dabei sind D eine positive Zahl kongruent 0

modulo 4 (die kein Quadrat ist) und w =
√

D
4 .

Die Stabilisatoruntergruppe SL(LD;P ) < SL(LD) ist von erster Art, aber kein Gitter
(also unendlich erzeugt), wenn P ein nicht-periodischer Verbindungspunkt ist. Diese sind
von der Form (xr + xiw; yr + yiw) mit xr, xi, yr, yi ∈ Q.

Die Prototypen LD

Zwei parabolische Elemente A und B der Veech-Gruppe SL(LD) sind besonders leicht
zu bestimmen: diejenigen primitiven parabolischen Elemente, die die vertikale bzw. ho-
rizontale Richtung fixieren. Auch die Operation von A und B auf den Punkten von LD
wird in diesem Kapitel beschrieben. Dies geschieht mittels einer Zerlegung der Fläche LD
in vertikale bzw. horizontale Zylinder. Für diese Elemente A =

(
1 0
w 1

)
und B =

(
1 1+w
0 1

)
und ihre Operation auf einem Punkt Q = (xr + xiw; yr + yiw) mit xr, xi, yr, yi ∈ Q wer-
den dann einige technische Lemmata bewiesen, die den Wert s(Q) := |xi|+ |yi| betreffen.
Dabei wird ein weiterer Wert verwendet, der jedem Punkt obiger Form zugeordnet ist,
nämlich der Hauptnenner N(Q) der gekürzten Brüche xr, xi, yr und yi.

Die folgenden Lemmata präzisieren, was wir in der Einleitung mit dem
”
tendenziellen

Wachstum“ von s(Q) bezeichnet haben.

Lemma 8. Falls Q periodisch unter A, nicht aber unter B ist, dann existiert ein l0
abhängig von N(Q) und w, sodass für alle l mit |l| ≥ l0 die Ungleichung s(Q) < s(Bl◦Q)
erfüllt ist.

Lemma 9. Falls Q periodisch unter B, nicht aber unter A ist, existiert ein k0 abhängig
von N(Q) und w, sodass für alle k mit |k| ≥ k0 die Ungleichung s(Q) < s(Ak ◦Q) erfüllt
ist.

Lemma 10. Falls Q weder periodisch unter A noch unter B ist, dann existieren k1

und l1 abhängig von N(Q) und w, sodass für alle Paare (k, l) mit k > k1 und l > l1
mindestens drei der folgenden vier Ungleichungen erfüllt sind:

s(Q) < s(Ak ◦Q),

s(Q) < s(A−k ◦Q),

s(Q) < s(Bl ◦Q),

s(Q) < s(B−l ◦Q).
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SL(LD)-Bahnen

Hauptresultat dieses Kapitels ist, dass die oben definierte Zahl N(P ) eine Invariante der
SL(LD)-Bahn von P ist. Für jeden Punkt P hat die Operation von γ ∈ SL(LD) die
Form γ ◦P = γ ·P − t für ein t ∈ R2, wobei γ ·P die gewöhnliche lineare Abbildung der
2 × 2-Matrix γ bezeichnet. Wir beweisen dieses Hauptresultat, indem wir zeigen, dass
sowohl alle Einträge von γ als auch von t Elemente von Z[w] = Z + Zw sind.

Daraus folgt insbesondere, dass es unendlich viele verschiedene SL(LD)-Bahnen gibt
(Theorem 2).

Der Rest des Kapitels widmet sich dem Spezialfall D = 8 und dem Nachweis, dass die
Anzahl der SL(L8)-Bahnen von Punkten P mit fest gewähltem N(P ) endlich ist:

Dies geschieht durch die Angabe eines Algorithmus’, der zu einem beliebigen Punkt
Q = (xr + xiw; yr + yiw) mit xr, xi, yr, yi ∈ Q mit Hauptnenner N(Q) = N ein Wort in
den Gruppenerzeugern A und B findet, das Q auf einen Punkt einer Menge S abbildet.
Die Menge S besteht dabei aus den Punkten, für die |xi| und |yi| höchstens gleich 35+24w
sind. Da N fest gewählt ist, liegen in S nur endlich viele Punkte und Theorem 3 folgt.

Kritischer Exponent und Graph-periodische Mannigfaltigkeiten

Um die Suche nach dem kritischen Exponenten von SL(LD;P ) < SL(LD) mit der Nicht-
mittelbarkeit von Graphen zu verbinden, betrachten wir in diesem Kapitel – den Ideen
von Roblin und Tapie folgend – Graph-periodische Mannigfaltigkeiten: Dies sind Man-
nigfaltigkeiten M , die aus isometrischen Kopien einer anderen Mannigfaltigkeit C mit
Rand bestehen, die entsprechend der von einem regulären Graphen G vorgegebenen
Struktur verklebt sind. Konkret handelt es sich in unserer Situation um die hyperbo-
lische Fläche M = H/SL(LD;P ), einen Dirichlet-Fundamentalbereich C des Gitters
SL(LD) und den Schreier-Graph G von SL(LD) bezüglich SL(LD;P ) und dem durch
den Dirichlet-Fundamentalbereich gegebenen Erzeugendensystem von SL(LD).

Mit den folgenden Ergebnissen lässt sich so ein Zusammenhang zwischen δ(SL(LD;P ))
und c(G) finden.

Theorem 11 (Patterson/Sullivan). Sei Γ eine Fuchs’sche Gruppe und M die hyperbo-
lische Fläche H/Γ. Für den kleinsten Eigenwert λ0(M) des Laplace-Operators ∆ auf M
gilt:

λ0(M) =

{
δ(Π)(1− δ(Π)), wenn δ(Π) ≥ 1

2
1
4 , wenn δ(Π) ≤ 1

2 .

Der kritische Exponent δ(Γ) ist also genau dann kleiner als 1, wenn der kleinste Ei-
genwert λ0(M) echt positiv ist.

Im Folgenden verwenden wir, dass der kleinste Eigenwert λ0(C) des Laplace-Operators
auf C (mit Neumann-Randbedingungen) 0 ist und mit Vielfachheit 1 auftritt. Die spek-
trale Lücke η := λ1(C)− λ0(C) ist also strikt positiv.

Theorem 12 (Roblin/Tapie). Seien M , C und G wie oben. Dann gilt

λ0(M) ≥ λ0(C) +Aηµ0(G),
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wobei A > 0 eine Konstante abhängig von einer Markierung von Übergangszonen des
Randes von C ist, und µ0(G) der kleinste Eigenwert des kombinatorischen Laplace-
Operators auf G ist.

Der Wert µ0(G) kann durch Terme in c(G) abgeschätzt werden und ist genau dann
positiv, wenn G nichtmittelbar ist, womit wir die Brücke zwischen dem kritischen Ex-
ponenten von SL(LD;P ) und der Cheeger-Konstante von G geschlagen haben.

Endergebnis

In diesem Kapitel schließlich werden alle Resultate zusammengeführt, um die Nicht-
mittelbarkeit des Schreier-Graphen G und damit δ(SL(LD;P )) < 1 zu beweisen. Wir
skizzieren die Beweisstrategie:

Da es sich bei der Untergruppe um den Stabilisator eines Punktes P handelt, können
wir die Ecken von G mit den Punkten in der SL(LD)-Bahn von P identifizieren: die
Rechtsnebenklasse SL(LD;P )γ entspricht dem Punkt γ◦P . Um die technischen Lemmata
aus Kapitel 3 benutzen zu können, fügen wir dem Erzeugendensystem der Obergruppe
die Elemente Ak und Bl für feste, von N(P ) abhängige, Werte k und l hinzu und erhalten
einen Graphen G′, der genau dann mittelbar ist, wenn G mittelbar ist. Im nächsten
Schritt erhalten wir G′′, indem wir zunächst aus technischen Gründen eine bestimmte
– wiederum von N(P ) abhängige – endliche Menge von Ecken und anschließend alle
Kanten, die nicht mit Ak oder Bl beschriftet sind, entfernen. Aus den Propositionen des
ersten Kapitels folgt, dass G nichtmittelbar ist, falls G′′ nichtmittelbar ist.

Mit den technischen Lemmata aus Kapitel 3 kann man schließlich zeigen, dass jede
Zusammenhangskomponente von G′′ isomorph ist entweder zum 4-valenten unendlichen
Baum oder zu einem unendlichen Baum, der eine Wurzel von Valenz 2 hat, ansonsten
aber 4-valent ist. In beiden Fällen ergibt sich eine Cheeger-Konstante von 2

3 . Also sind
G′′ und damit auch G nichtmittelbar und δ(SL(LD;P )) < 1.

Abschließend bleibt noch zu bemerken, dass die Einschränkung auf Veech-Flächen mit
D ≡ 0 mod 4 nicht nötig ist und das gleiche Verfahren auch für die anderen Prototypen
LD aus McMullens Klassifikation, für die D ≡ 1 mod 4 ist, funktioniert. Was dazu
zu überprüfen ist, ist, dass die technischen Lemmata bezüglich des Komplexitätsmaßes
s(Q) = |xi|+ |yi| auch für diese Fälle ihre Gültigkeit behalten.

83


	Introduction
	Acknowledgments
	Graphs and Amenability
	Basics About Graphs
	Amenability
	The Combinatorial Spectrum of a Graph

	Background on Translation Surfaces
	Translation Surfaces and Veech Groups
	The ``Size'' of a Veech Group

	The Prototypes LD
	Horizontal and Vertical Direction of the Prototype LD
	Points Periodic Under A or B
	The Action of A and B in More Detail

	SL(LD)-Orbits of P in LD
	General Restrictions on the `39`42`"613A``45`47`"603ASL(LD)-Orbit of PLD
	The Special Case D=8

	Critical Exponent and Graph-Periodic Manifolds
	The Critical Exponent
	From Hyperbolic Surfaces to Schreier Graphs

	Conclusion
	Proofs of the Main Theorems
	Final Remarks

	List of Figures
	Bibliography
	Zusammenfassung

