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This work deals with the determination of the scale parameter ΛMS from lattice QCD and
perturbation theory results of the static quark-antiquark potential for nf = 2. The investigation
is done in momentum space. Lattice methods as well as perturbation theory calculations are
introduced. Another part of this work concerns the calculation of the quark-antiquark potential
from gauge link configurations for nf = 2 + 1 + 1.
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1. Introduction

1.1. Strong interaction

Quarks are the building blocks of matter. Hadrons, like the proton and the neutron, are composed
of them. Quarks come in 6 different masses. Protons and neutrons are build of rather light up and
down quarks. More exotic particles, that for example can be created in particle accelerators, are
also composed of strange, charm, bottom and top quarks. In a calculation nf denotes the number
of quark flavours. To describe a process that involves quarks one should actually consider six
quark flavours with six different masses. Because those calculations would be extremely elaborate
and time-consuming, one inspects models with less flavours to approximate reality. For example
a model with nf = 2 means to consider only the two lightest quark flavours (up quark and down
quark) which are assumed to have the same mass in this case. nf = 2 + 1 + 1 denotes two quark
flavours of the same mass plus a heavier one (strange quark) plus one even heavier one (charm
quark). The quark regime is ruled by the strong interaction. The quantum theory of the strong
interaction is called quantum chromodynamics (QCD). Strong interaction affects particles (like
quarks) that feature a quantum number called colour charge. Colour charge is different from
electromagnetic charge: There are three different states and each of them has an anti-state. One
calls those ”colours” (anti-)red, (anti-)blue and (anti-)green: r, r; b, b; g, g. The messenger that
submits information between quarks, the strong interaction, is called the gluon. The gluon is
colour charged by a combination of colour and anti-colour. There are 8 linearly independent
combinations, so gluons appear in 8 different states.

Because of their charge, gluons interact. The interaction is responsible for the different behaviour
of electromagnetic and strong interaction. While electrons that are subject to the electromagnetic
force can be separated with a little support of energy, this is (with our known instruments) not
possible for quarks. This phenomenon is called confinement.

The attractive potential energy between a quark and an antiquark is subject of particular interest
for physicists because it provides information about the sub-nuclear world. To calculate it one
has to solve path integrals that contain the action of QCD. The action contains terms beyond
quadratic order, so the integrals cannot be solved exactly analytically. For this reasons different
approaches have to be taken to learn about QCD.

1.2. Lattice QCD and perturbation theory

As mentioned in the previous section, there is no way to solve QCD path integrals exactly analyti-
cally. There are several ways to deal with this problem. One way is to choose the perturbative
approach and solve the path integrals by a series expansion in orders of the coupling constant
αs. This method is only reliable, if the coupling is small enough. This is the case in high energy
reactions, when the interaction of the involved particles is weak. The perturbative calculations
used in this work will be described in detail in chapter 2.

In the low-energy regime the coupling parameter of QCD becomes large. In this case one needs
to describe QCD with non-perturbative methods. In the 1970s, Kenneth Wilson proposed the
lattice QCD as an adequate theory based on discretized Euclidean space-time which avails itself
of techniques from statistical physics [1]. Theoretically, the lattice approach is able to describe
physics reliably in the high- as well as in the low-energy regime. Technically, lattice computations
are limited by the lattice spacing and extent. So lattice QCD can describe the quark-antiquark
potential at separations, which are large in comparison to the lattice spacing, but small compared
to the lattice extend, otherwise lattice errors predominate.
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1. Introduction

Effectively, both approaches describe the same physics at different energies. The difficulty is to
match them in an energy range where both theories overlap.

1.3. Motivation: The parameter ΛMS

The parameter Λ with dimension energy is a convenient choice to define a reference momentum
scale in perturbation theory. On the other hand, the Sommer parameter r0 defines the scale in
lattice QCD (cf. chapter 3). A result without a scale has no physical meaning. In order to
identify the scale, the quantity Λr0 can be determined. To that purpose, one needs to describe
a physical observable both on the lattice and with the perturbative approach and, as done in
this work, solve for Λ, if r0 is known. The quark-antiquark potential is a suitable observable
because there is a sufficiently quick way to compute it on the lattice and it is precisely analysed
in perturbation theory. If the calculations are done in the MS-renormalization scheme (modified
Minimal Subtraction Scheme), the energy scale is called ΛMS [2].

1.3.1. Determination of ΛMS in position space

In 2011 ΛMS was already determined by comparison of the perturbative potential with lattice
data for nf = 2 [3]. The comparison of lattice QCD and perturbation theory results was done in
position space. The result

ΛMS = 315(30)MeV (1.1)

was obtained. Lattice theory is usually done in position space and perturbation theory is done in
momentum space for convenience. So the idea was to Fourier-transform perturbation theory results
to position space before the comparison to lattice results. The problem was that perturbation
theory is wrong for momentum transfers < Λ (≈ 300 MeV). So the Fourier transform

Vpert(r) =

∫
d3p

(2π)3
ei~p·~rṼpert(p) (1.2)

has a systematic error.
In the hope of finding a more precise result for ΛMS the new idea formulated in this work is

to get the potential in momentum space directly from perturbation theory and consider it only
for sufficiently large momenta. This time the lattice results are transformed to momentum space,
which means that a discrete Fourier transform (DFT) is applied to a list of lattice data. The
systematic error due to considering perturbation theory in an inappropriate momentum range
does not occur anymore. In summary, the aim of this work is to reduce the error, which was
determined according to the former result, by the application of this momentum space-approach.
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2. Perturbation theory

Since QCD deals with strongly interacting quarks and gluons, it is described by the SU(3) compo-
nent of the standard model of physics. The aim of perturbation theory is to solve problems of QCD
analytically. Its physical limit is the increase of the coupling parameter αs at small momentum
transfers.

2.1. The renormalized coupling αs

The parameter of perturbation theory in QCD, besides the quark masses, is the coupling parameter
αs, s for strong interaction. αs depends on a dimensionful renormalization scale µ which has no
immediate physical impact. By choosing a scale in the order of the momentum transfer in the
considered process αs(µ) denotes the interaction strength in the process. Because of the scale
dependence αs(µ) is referred to as running coupling. The explicit value of αs(µ) is not independent
of the renormalizaton scheme it is evaluated in. A renormalization scheme is necessary to relate
observables computed in lattice simulations or perturbative calculations to phenomenology. The
most common scheme is the already mentioned Modified Minimal Subtraction scheme (MS) [2,4].

Evaluations presented in this work refer to MS.

2.2. Formula from perturbation theory used in this work

One of the challenges of perturbation theory is to compute the static quark-antiquark potential
order by order in αs(µ) analytically. The computation is done in momentum space.

Conventionally, the static potential has the form [3,5]:

Ṽ (p) = V0 − CF
4π

p2
α̃V [αs(µ), L(µ, p)] (2.1)

with

L(µ, p) = ln
µ2

p2
≡ L (2.2)

V0 is a constant energy offset. In the gauge group SU(3) in the fundamental representation the
eigenvalue of the quadratic Casimir operator is CF = 4

3 .
The most logic action now would be to expand the potential respectively α̃V in powers of the

coupling αs. But the calculation is more complicated [6, 7] since thousands of diagrams have to
be considered. In higher orders a strict power series expansion breaks down and there are also
logarithmic terms in αs [8]. The following terms are known explicitly:

α̃V [αs(µ), L(µ, p)] =αs(µ)
{

1 +
αs(µ)

4π
P1(L) +

(
αs(µ)

4π

)2

P2(L)

+

(
αs(µ)

4π

)3

[P3(L) + a3ln lnαs(µ)] + ...
}

(2.3)

The coefficients P1, P2, P3 and a3ln can be found in appendix A. For convenience the terms
of linear order in αs(µ) in the following are referred to as leading order (LO), up to O(αs(µ)

2
)

as next-to-leading order (NLO), up to O(αs(µ)3) as next-to-next-to-leading order (NNLO) and
O(αs(µ)4) as well as O(αs(µ)4 lnαs(µ)) as next-to-next-to-next-to-leading order (NNNLO).
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2. Perturbation theory

On the other hand since the scale µ is not physical, a physical observable must not depend
of this scale explicitly. One says, the potential is a renormalization group invariant and one can
require:

µ
d

dµ
α̃V [αs(µ), L(µ, p)]

!
= 0 (2.4)

This condition should hold for all orders of αs(µ). Since the potential is not known beyond
O(αs(µ)4), one actually has:

µ
d

dµ
α̃V [αs(µ), L(µ, p)] = O(αs(µ)5) (2.5)

As described in [9] and using a series expansion of (2.1) this can be converted to(
∂

∂L
+
αs(µ)

2
β[αs(µ)]

∂

∂αs(µ)

)
α̃V [αs(µ), L(µ, p)] = 0 (2.6)

with the QCD β-function

β[αs(µ)] =
µ

αs(µ)

dαs(µ)

dµ
(2.7)

which again can be expanded in αs(µ):

β[αs(µ)] = −αs(µ)

2π

∞∑
n=0

(
αs(µ)

4π

)n
βn (2.8)

The coefficients β0 up to β3 are known. The numerical values can be found in appendix A.
One can expand αs(µ) in orders of αs(ν):

αs(µ) =αs(ν)
[
1− αs(ν)

4π
β0 ln

µ2

ν2
+

(
αs(ν)

4π

)2(
β2

0 ln
µ2

ν2
− β1

)
ln
µ2

ν2

−
(
αs(ν)

4π

)3(
β3

0 ln2 µ
2

ν2
− 5

2
β0β1 ln

µ2

ν2
+ β2

)
ln
µ2

ν2

]
+O(αs(ν)5) (2.9)

This equation fulfils equations (2.7) and (2.8).
As an expansion parameter αs must be small for any momentum scale, i.e. αs(ν), αs(µ) � 1.

This requirement guarantees µ and ν to be in the same order of magnitude, which prevents the
logarithms in (2.9) from becoming large.

One can easily see, that insertion of (2.9) into equation (2.3) yields the same expressions as
before, replacing µ by ν. This confirms, that the scale µ in fact is only a parameter that can be
substituted by another.

It it easy to switch to another scale because the relation αs(µ) = f [αs(ν)] is known. Under the
constraints mentioned above, one is free to choose the most convenient parameter.

On the other hand this allows the inspection that there is no physical constraint to discover the
renormalization scale subjected to a natural energy scale. Not until the integration of (2.7) one
finds a reference parameter. One possible definition is ΛMS . There are different ways to compute
the integral differing in how many orders of the series expansion of the β-function and of αs(µ)
are considered and at which point a numerical calculation is applied. Starting point is equation
(2.7).

The easiest way is to integrate only considering the leading order (n = 0) with

β[αs(µ)] = −αs(µ)
2π β0, which yields:
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2. Perturbation theory

−αs(µ)

2π
β0 =

µ

αs(µ)

dαs(µ)

dµ

⇒ −β0

2π

∫ ΛMS

µ

1

µ′
dµ′ =

∫ ∞
αs(µ)

1

αs(µ′)2
dαs(µ

′)

⇒ ΛMS = µe
− 2π
β0αs(µ) (2.10)

As a boundary condition αs(µ) vanishes because of asymptotic freedom. One can easily understand
the meaning of ΛMS :

µ = ΛMS =⇒ αs(µ) =∞ (2.11)

Which means that perturbation theory is only reliable if µ� ΛMS .
Taking into account higher orders of (2.7) and (2.8) yields (cf. e.g. [3]):

ΛMS = µ

(
β0αs(µ)

4π

)− β1
2β2

0

exp

(
− 2π

β0αs(µ)
−
∫ αs(µ)

0

dα′s
α′s

(
1

β[α′s]
+

2π

β0α′s
− β1

2β2
0

))

⇒ ln

(
µ

ΛMS

)
= ln

(
β0αs(µ)

4π

) β1
2β2

0

+
2π

β0αs(µ)
+

∫ αs(µ)

0

dα′s
α′s

(
1

β[α′s]
+

2π

β0α′s
− β1

2β2
0

)
(2.12)

Inserting the whole known series expansion of the β-function (2.7) into (2.12) yields:

ln

(
µ

ΛMS

)
= ln

(
β0αs(µ)

4π

) β1
2β2

0

+
2π

β0αs(µ)

+

∫ αs(µ)

0

dα′s
α′s

(
−2π

α′s

(
β0 +

α′s
4πβ1 +

(
α′s
4π

)2

β2 +
(
α′s
4π

)3

β3

) +
2π

β0α′s
− β1

2β2
0

)
(2.13)

A Taylor series expansion of the first summand of the integrand in leading order yields:

−2π

α′s
2

(
β0 +

α′s
4πβ1 +

(
α′s
4π

)2

β2 +
(
α′s
4π

)3

β3

) =− 2π

β0α′s
2 +

β1

2β2
0α
′
s

− β2
1 − β0β2

8πβ3
0

+
β2

0β3 − 2β0β1β2 + β3
1

32π2β4
0

α′s +O(α′s
2
) (2.14)

Performing the dα′s integral yields:∫ αs

0

dα′s
−2π

α′s
2

(
β0 +

α′s
4πβ1 +

(
α′s
4π

)2

β2 +
(
α′s
4π

)3

β3

) =

[
4π

β0α′s
+

β1

2β2
0

lnα′s −
β2

1 − β0β2

8πβ3
0

α′s

+
β2

0β3 − 2β0β1β2 + β3
1

64π2β4
0

α′s
2

+O(α′s
3
)

]αs(µ)

0

(2.15)

Applying this expression to (2.13) leads to 1:

1Note that the 1
α′s

- and lnα′
s-terms of the primitive cancel, so the lower integral border 0 causes no difficulties.
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2. Perturbation theory

ln

(
µ

ΛMS

)
=

2π

β0αs(µ)
+

β1

2β2
0

ln

(
β0αs(µ)

4π

)
+
β0β1 − β2

1

8πβ3
0

αs(µ) +
β2

0β3 − 2β0β1β2 + β3
1

64π2β4
0

αs(µ)2

(2.16)
Inserting the numerical coefficients into (2.12) leads to the equation:

ln

(
µ

ΛMS

)
= ln

[
5.03839αs(µ)

345
841

(12.5664αs(µ) + 12.9623)
543062567
2000000000 ((12.5664αs(µ)− 2.32775)2 + 167.502)

0.0693473

]

+
0.649985

αs(µ)
− 0.3841 arccos

(
12.5664αs(µ)− 2.32775√

(12.5664αs(µ)− 2.32775)2 + 167.502

)
(2.17)

To derive ΛMS from the static potential, the expression (2.3) is inserted into (2.1). The expression
is fitted to the lattice potential in momentum space. Notice that the fit function has two degrees
of freedom: αs and an additional fitting parameter Ṽ0.

The fit result for αs is applied to (2.16) and (2.17). µ is chosen in the order of magnitude of the
momentum transfer. The formulae are solved for ΛMS .

To compute αs(µ) explicitly as a function of ln µ2

Λ2
MS

, αs(µ) is expanded in orders of ln µ2

Λ2
MS

and

the expression (2.16) is iteratively solved [3, 10]:

αs(µ) =
4π

β0l

{
1− β1

β2
0 l

ln l +

(
β1

β0β0l

)2 [
ln2 l − ln l − 1 +

β0β2

β2
1

]

−
(
β1

β2
0 l

)3 [
ln3 l − 5

2
ln2 l −

(
2− 3β0β2

β2
1

)
ln l +

1

2

(
1− β2

0β3

β3
1

)]}
(2.18)

with l = ln
µ2

Λ2
MS

(2.19)

Using this equation, ΛMS can be extracted directly from a fit of (2.1) to lattice data.
Briefly, the following equations are considered to determine ΛMS :

(2.16) : An equation for ΛMS that depends on αs(µ). To derive the equation, one Taylor series
expansion in αs(µ) is applied in equation (2.12) in order to solve the integral.

(2.17) : A similar equation for ΛMS , but this time the integral in (2.12) is solved numerically.
Since equations (2.16) and (2.17) should provide similar results they can be used to cross
check the algorithms of the lattice computations.

(2.18) : An explicit equation for αs(µ). ΛMS can be determined by a direct fit to lattice data.
To derive the equation, both a Taylor series expansion in αs(µ) and a series expansion in

ln µ2

Λ2
MS

is applied.
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3. Computation of the quark-antiquark
potential on the lattice

In this chapter lattice techniques are introduced using the example of the static quark-antiquark
potential. The potential is computed for nf = 2 + 1 + 1. The computation is done to determine
r0 and set the scale of a set of configurations recently generated by the ETMC1. Further analysis
will be done elsewhere in the future. The determination of ΛMS described in chapter 4 is based
on a potential for nf = 2 that had already been calculated in the context of [3]. However, the
methods used for calculating the potential are the same regardless of how many dynamical quark
flavours are considered. The basic theoretical concepts follow [11].

3.1. Lattice parameters

The parameters of a lattice calculation are the coupling constant β, the quark masses, the lattice
spacing a and the lattice extension L in space and T in time:

L = NLa T = NTa with NL, NT ∈ N (3.1)

A lattice quark field can be understood as a lattice site. The lattice spacing can be pictured as
the distance between two lattice sites (cf. figure 3.1).

Figure 3.1.: A space-time lattice sketched in two dimensions

Since QCD is described by the colour gauge group SU(3), a quark field Q transforms with
V (x) ∈ SU(3):

Q(x)→ Q′(x) = V (x)Q(x) (3.2)

Q(x)→ Q
′
(x) = Q(x)V †(x) (3.3)

1European Twisted Mass Collaboration
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3. Computation of the quark-antiquark potential on the lattice

with x = (~x, τ) a four-vector in Euclidean space-time. A lattice gluon field is a lattice link. It is
an element of SU(3) itself. Let µ̂ be the unit vector in direction µ. A gluon field U transforms
like:

Uµ(x)→ U ′µ(x) = V (x)Uµ(x)V †(x+ aµ̂) (3.4)

3.2. The quark-antiquark potential: determination

To determine the quark-antiquark potential, consider the case of infinitely heavy quarks at fixed
positions. Those quarks can neither be created nor annihilated, they simply exist. The potential
VQQ(r) between those quarks is the energy difference between the QCD vacuum state |Ω〉 and
the least excited state that contains one quark-antiquark pair with the spacial distance r. A
quark-antiquark state |Φ〉 can be described by the operator

OQQ(r) = Q(~x)U(~x, ~y)Q(~y) (3.5)

with r = |~x− ~y| and U(~x, ~y) the product of all links between the spacial points ~x and ~y and

|Φ(r)〉 = OQQ(r) |Ω〉 (3.6)

The behaviour of the quark-antiquark state over an Euclidean time τ can be described by the
correlation function

C(r, τ) = 〈Ω|O†
QQ

(r)e−HτOQQ(r)e+Hτ |Ω〉

=
∑
n

〈Ω|O†
QQ

(r)e−Hτ |n〉 〈n|OQQ(r)e+Hτ |Ω〉

=
∑
n

〈Φ(r) |n〉 〈n |Φ(r)〉 e−(En(r)−EΩ)τ

=
∑
n

| 〈Φ(r) |n〉 |2e−(En(r)−EΩ)τ (3.7)

Here states are expressed in the Heisenberg picture and in the third step a complete set of energy
eigenstates is inserted. Take a look at equation (3.7). For large τ higher excited energy states are
suppressed. The only summand that contributes is the one corresponding to the ground state |0〉:

lim
τ→∞

C(r, τ) = lim
τ→∞

∑
n

| 〈Φ(r) |n〉 |2e−(En(r)−EΩ)τ = | 〈Φ(r) | 0〉 |2e−(E0(r)−EΩ)τ (3.8)

And for the quark-antiquark potential one finds:

VQQ(r) = lim
τ→∞

1

∆τ
ln

C(r, τ)

C(r, τ + ∆τ)︸ ︷︷ ︸
Veff(r,τ)

=
1

∆τ
ln

| 〈Φ(r) | 0〉 |2e−(E0(r)−EΩ)τ

| 〈Φ(r) | 0〉 |2e−(E0(r)−EΩ)(τ+∆τ)

=
1

∆τ
ln e(E0(r)−EΩ)(τ+∆τ−τ)

=
1

∆τ
ln e(E0(r)−EΩ)∆τ

=E0(r)− EΩ (3.9)

Veff is called the effective quark-antiquark potential.
To actually compute the quark-antiquark potential, further considerations are necessary.
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3. Computation of the quark-antiquark potential on the lattice

The correlation function can be expressed as a function of the vacuum expectation value (VEV)
of the so called Wilson loop WC [A]

W (r, τ) = 〈WC [A]〉 (3.10)

with Aµ a gauge field. For large τ , one can identify

lim
τ→∞

W (r, τ) = F (r)e−E0(r)τ (3.11)

with F (r) the overlap of the quark-antiquark state with the ground state. Compare to equation
(3.8): In order to determine the quark-antiquark potential, one has to compute the VEV of the
Wilson Loop and solve for the quark-antiquark potential:

VQQ(r) = E0(r)− EΩ = − lim
τ→∞

1

τ
ln

W (r, τ)

W (r, τ + ∆τ)
(3.12)

3.2.1. Calculations on the lattice

As mentioned above, the aim is to compute the VEV of the Wilson loop. On the lattice, the
Wilson loop takes a simple form:

WC [U ] = Tr
∏
l∈CL

Ul (3.13)

with ∏
l∈CL

Ul = U(n,m)CL (3.14)

n and m are the lattice sites that correspond to one space-time point each which are connected
by a path CL. Ul denotes a lattice link along CL. The VEV of the Wilson loop reads:

W (R, T ) = 〈WC [U ]〉 =
1

Z

∫
DχDχDUexp[−S[χ, χ, U ]]WC [U ] (3.15)

This path integral can be treated as follows:
Any physical observable O can be calculated as VEV 〈O〉. In the path integral formalism for
nf = 2 the VEV takes the form

〈O〉 = 〈Ω|T{O(χ, χ, U)} |Ω〉 =
1

Z

∫
DχDχDUexp[−S[χ, χ, U ]]O(χ, χ, U) (3.16)

with Z =
∫

DχDχDUexp[−S[χ, χ, U ]]. T denotes the time-ordered product.
S[χ, χ, U ] = SF [χ, χ] + SG[U ] is the action. The gauge part of the action is tree-level Symanzik
improved [12]:

SG[U ] =
β

6

b0∑
x 6=y

Tr
(
1− U1×1(x, y)

)
+ b1

∑
x 6=y

(
1− U1×2(x, y)

) (3.17)

with U i×j(x, y) the product of links along loop of the size i× j, β the coupling and b0 = 1− 8b1
with b1 = − 1

2 . The quark part of the action is Wilson twisted mass:

SF [χ, χ] = a4
∑
x

χ(x)

{
1

2

(
γµ
(
5µ +5∗µ

)
− a5µ 5∗µ

)
+m0 + iµqγ5τ3

}
χ(x) (3.18)

Here 5µ and 5∗µ are the covariant forward and backward derivatives, τ3 is the third Pauli matrix
and m0 and µq are the bare twisted and the untwisted quark masses. The quark field χ is the
quark field in the twisted basis. For further details see [13, 14]. For nf = 2 + 1 + 1 the action is

15



3. Computation of the quark-antiquark potential on the lattice

slightly more complicated (cf. [15]). The integral (3.16) cannot be calculated analytically. The
Monte Carlo Method provides an unbiased estimate. Consider for clarity the more simple case

〈O〉 =
1

Z

∫
Dφexp[−S[φ]]O(φ) (3.19)

The expectation value can be approximated by

〈O〉 ≈ 1

K

K∑
j=0

O(φj) (3.20)

To compute the sum a Markow chain of field configurations is generated, weighted by the factor
exp[−S[φ]]. A more detailed presentation of Monte Carlo method can be found in [16].

Since the integral (3.15) involves only an integration over link variables, which takes a convenient
form, one can solve it with the Monte Carlo method. Briefly, given a set of configurations, Wilson
loops can be computed. From the VEV of the Wilson loop, one can determine the quark-antiquark
potential.

In this work a set of 184 configurations is used, that has recently been generated on a (32)3×64-
lattice for nf = 2 + 1 + 1 dynamical quark flavours and coupling β = 2.33, hopping parameter
κ = 0.151064 as well as quark masses µ = 0.0019, µσ = 0.0577 and µδ = 0.0663 (in units of the
lattice spacing). Correlation functions for r

a = 1, ..., 20 and τ
a = 1, ..., 20 were computed.

3.2.2. Smearing techniques

To compute the VEV of the Wilson loop one needs a quark-antiquark state with maximal over-
lap to the energy ground state referred to as F (r) in equation (3.11). Otherwise the expression
considered in equation (3.12) converges only for large τ to VQQ(r). To perform the average over
neighbouring spacial loops of links yields a better overlap for the quark-antiquark state. This
method is called APE-smearing2.

The spacial resolution of a Wilson loop is highly focused, since the lines along the loop have a
small spacial expense. A focused resolution in position space corresponds to a softened resolution
in momentum space. In other words, a significant amount of momenta that contributes to the
system’s description in momentum space is very large. This increases the systems self-energy.
Computing the quark-antiquark potential and the corresponding errors, one finds a bad signal
to noise ratio. The hypercubic smearing HYP2-smearing solves this problem. Considering all
temporal loops of links inside the hypercube of the width a around the line of links to soften the
resolution in position space yields a more focused resolution in momentum space. The self-energy
decreases. To learn more details about smearing techniques see [17,18].

3.3. The quark-antiquark potential: determination of the lattice
spacing

It turned out that application of APE- and HYP2-smearing sets the potential and its error to an
acceptable value.

Following the procedure described in the previous sections, the static quark-antiquark potential
can be calculated. The potential is determined according to the following steps:

1. Calculation of Veff(r, τ) for r
a = 1, ..., 20 (cf. figure 3.2)

2. Fit of a (temporal) constant VQQ(r) to Veff(r, τ) in the fit range τmin ≤ τ ≤ τmax for each
separation, cf. figure 3.2 and 3.3. The resulting function VQQ(r) is shown in figure 3.4.

2The term APE is based on Array Processor Experiment-machines, high performance computers used for QCD
computations (cf. http://hpc.desy.de/ape/).

16

http://hpc.desy.de/ape/


3. Computation of the quark-antiquark potential on the lattice
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Figure 3.2.: Fit of a temporal constant
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Figure 3.3.: Fit of a temporal constant in detail
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Figure 3.4.: VQQ(r)
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3. Computation of the quark-antiquark potential on the lattice

3.3.1. The Sommer parameter

The aim is to check, whether the lattice spacing for the configurations for nf = 2 + 1 + 1 is in the
same order of magnitude as the lattice spacing considered in the case of nf = 2. The configurations
were generated in order to deal with a similar lattice spacing. The Sommer parameter [19] is a
quantity frequently used to set the scale for lattice calculations. Lattice results come in units of
the lattice spacing a. To relate the lattice spacing a to a physical unit one can compare the lattice
result of an observable to the experimental result of the same observable.

A possible candidate is the quark-antiquark force FQQ(r) = d
drVQQ(r). The dimensionless

quantity FQQr
2 can be crudely estimated from hadron experiments. The phenomenological value

is
d

dr
VQQ(r)

∣∣∣
r=r0

r2
0 = 1.65 with r0 = 0.5fm (3.21)

r0 is the Sommer parameter.

3.3.2. Determination of the Sommer parameter

The lattice result r0lattice for the Sommer parameter can be determined the following way: A
function

V (r) = �+
�
r

+�r (3.22)

with fit parameters �, � and � is fitted to VQQ(r). Since

d

dr
V (r) = �− �

r2
(3.23)

and

d

dr
VQQ(r)

∣∣∣
r=r0lattice

r2
0lattice

= 1.65 (3.24)

which can be combined to(
�− �

r2

) ∣∣∣∣∣
r=r0lattice

r2
0lattice

= 1.65 ⇔ r0lattice =

√
1.65 +�
�

(3.25)

Now the fit to VQQ(r) is performed in a fit range rmin ≤ r ≤ rmax (cf. figure 3.5).
The next step is to find the relation to the lattice spacing a.
In [20] one can find a result for the Sommer parameter for a lattice calculation with nf = 2+1+1:

r0nf=2+1+1
= 0.4505fm (3.26)

By comparison to the dimensionless fit result r0lattice one finds a:

r0nf=2+1+1

r0lattice

= a (3.27)

To check for systematic errors, r0lattice is determined for several fit ranges in space and time.
One range is kept fixed at a time (cf. tables 3.1 and 3.2).
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3. Computation of the quark-antiquark potential on the lattice

Table 3.1.: spacial fit range fixed: 7a ≤ r ≤ 11a

τmin..τmax in a r0lattice error
10..15 10.499448 0.222224
9..14 10.294567 0.162429
8..13 10.060053 0.118867
10..13 10.445764 0.201179

Table 3.2.: temporal fit range fixed: 8a ≤ τ ≤ 13a

rmin..rmax in a r0lattice error
7..11 10.060053 0.118867
6..10 10.092749 0.125759
8..12 10.033586 0.104405
9..13 10.037696 0.104646

a=
2

V  a0

r/a

Figure 3.5.: Fit to determine r0lattice
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3. Computation of the quark-antiquark potential on the lattice

Now the mean of all values for r0lattice can be calculated. A (rather conservative) error is the
square root of the quadratic sum of the individual errors.

One finds r0lattice = 10.19± 0.43 .

With (3.27) the lattice spacing is

a =
r0nf=2+1+1

r0lattice

=
0.4505

10.19
fm = 0.0442fm (3.28)

For nf = 2 the finest lattice spacing is anf=2 = 0.042fm (cf. chapter 4).
The deviance from the just determined result is:

a− anf=2

a
=

0.0442fm− 0.0420fm

0.0420fm
=̂ 5.3% (3.29)

The lattice spacing for nf = 2 + 1 + 1 and the finest available lattice spacing for nf = 2 were
expected to be similar. Both results differ by only 5%, so the lattice spacing determined from the
data appears to be in a reasonable order of magnitude. However, the procedure described in this
work has only the aim to give a first impression of the lattice spacing. For further investigations
of the potential the choice of fit ranges in space and time might be improved, which might slightly
change the determined results.
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4. Preparation of lattice data

In the previous chapters methods to determine the quark-antiquark potential on the lattice, as
well as in perturbation theory, were shown. The next step is to prepare the lattice data for the
fitting procedure with perturbative formulae. Nonphysical lattice effects will be analysed and as
far as possible removed.

4.1. Data modelling and Fourier transform

4.1.1. Modelling of lattice data at large distances

Starting point are four ensembles of gauge link configurations (cf. table 4.1) for nf = 2 computed
by the ETMC.

Table 4.1.: The four ensembles of gauge link configurations

β a in MeV (La )3 × T
a mPS in MeV number of gauges

3.90 0.079(3) 243 × 48 340(13) 168
4.05 0.063(2) 323 × 64 325(10) 71

449(14) 100
517(16) 92

4.20 0.0514(8) 483 × 96 284(5) 46
4.35 0.0420(17) 323 × 64 352(22) 146

The quark-antiquark potential is computed analogous to the procedure presented in chapter 3
up to a quark-antiquark separation of r

a = 10. Calculations for large separations and especially
off-axis separations are very time-consuming. For those reasons the lattice potential for r

a > 10
has to be computed by modelling to create a space-time volume that is large enough for further
analysis. Because large distances correspond to small energies, the expectation is that details
of the potential do not play a crucial rule for the corresponding part of the potential, so crude
modelling is justified in this range. The first step to model data is to fit the formula, e.g.

V (r) = �+
�
r

+�r (4.1)

to the data by a χ2-minimizing fit in between a fit range rmin ≤ r ≤ rmax. The fit parameters
are �, � and �. In the next sections other fit functions will be investigated. The values that
correspond to r

a > 10 are calculated with the obtained fit formula. A scratch of the process is
shown in figure 4.1.

Further details about the modelling process can be found in appendix B.

4.1.2. Discrete Fourier transform

The next step is to Fourier-transform the data to momentum space. To illustrate what happens
in case of Fourier-transforming a quark-antiquark potential one can study a generic potential. In
the beginning the continuous potential

V (r) = V0 −
π

12r
+ σr with r =

√
x2 + y2 + z2 (4.2)
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Figure 4.1.: Extrapolation of lattice data

is considered. The string tension σ is given by the Sommer scale r0 by the relation

1.65 = |F (r0)|r0
2 =

∣∣∣∣ ddrV (r0)

∣∣∣∣ r0
2 with r0 = 0.5fm⇒ σ = σ(r0) = 5.55

1

fm2 (4.3)

Next the potential V (r) is discretized (cf. figure 4.2). With the lattice spacing a one finds for
the position vector ~r:

~r → a~n = a

nxny
nz

 . (4.4)

To get a dimensionless quantity, multiply with a:

V (~r)→ V̂ (r) = V (n)a = V0a−
π

12n
+ σa2n with n = |~n|, ~n ∈ N3 (4.5)

Although the potential is spherically symmetric it has to be considered as a three-dimensional
quantity. The DFT works in three dimensions. The potential values are stored in a three-
dimensional array. To underline this the potential will be referred to as V (~n). Implementing
the periodic boundary conditions, in detail the potential receives the following shape:

V (~n) = V (nx, ny, nz) =



V (nx, ny, nz) if nx ≤ N/2, ny ≤ N/2, nz ≤ N/2
V (N − nx, ny, nz) if nx > N/2, ny ≤ N/2, nz ≤ N/2
V (nx, N − ny, nz) if nx ≤ N/2, ny > N/2, nz ≤ N/2
V (nx, ny, N − nz) if nx ≤ N/2, ny ≤ N/2, nz > N/2
V (N − nx, N − ny, nz) if nx > N/2, ny > N/2, nz ≤ N/2
V (N − nx, ny, N − nz) if nx > N/2, ny ≤ N/2, nz > N/2
V (nx, N − ny, N − nz) if nx ≤ N/2, ny > N/2, nz > N/2
V (N − nx, N − ny, N − nz) if nx > N/2, ny > N/2, nz > N/2

(4.6)
The next step is to analyse the potential in momentum space. Therefore the discrete Fourier
transform (DFT) in three dimensions is applied. The DFT is:

V̂ (~n)→ ˆ̃V (~k) =
a√
N3

N−1∑
nx,ny,nz=0

V (~n)e
2πi~k·~n
N (4.7)
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Figure 4.2.: Generic potential in position space for L
a = 16

Looking at the continuum limit one finds the proportionality factor that is necessary to be able
to compare lattice to continuum results:

ˆ̃V (k)
~p= 2π~k

Na−→ lim
a→0

a
√
N

3

1

a3

N−1∑
nx,ny,nz=0

a3V (p)e
2πi~k·~na
Na

=
a

(
√
Na)3

∫
d3rV (r)ei~r·~p

=
1

a2

1
√
N

3

∫
d3rV (r)ei~r·~p

≡ Ṽ (p) (4.8)

The steps shown in this section are applied to the lattice data accordingly. In the following, mo-
mentum space results will be stated in physical dimensions MeV (for the momentum) and MeV−2

(for the potential). The plots in this work will show an energy range of at most [0MeV..25000MeV]
since the energy range beyond definitely does not yield reliable data for p > pmax = π

a ' 15000MeV
anyway.

4.1.3. The quark-antiquark potential for r = 0

For r = 0 no lattice data is available since at a quark-antiquark separation of 0 the potential is
physically not meaningful. A lattice computation only makes sense for lattice separations that are
large in comparison to the lattice spacing, otherwise the discretization effects take vast proportions.
Nevertheless this value is important to provide the full potential. The value of V (r) for r = 0 can
be chosen arbitrary. For the Fourier transform the choice of this value does not play a crucial role.
The following calculation shows this (for simplicity a continuous Fourier transform is considered):
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4. Preparation of lattice data

Ṽ (k) =

∫
dr(V0δ(r) + V (r))eikr

= V0

∫
drδ(r)eikr +

∫
drV (r)eikr

= V0eik0 +

∫
drV (r)eikr

= V0 +

∫
drV (r)eikr (4.9)

V0 is an additional constant. For the fitting procedure in momentum space the choice of the
additional constant in position space is irrelevant. One can choose V0 = 0.

4.1.4. Selecting momenta

In order to reduce nonphysical errors, a method of selecting data is applied [21] to the potential in
momentum space: The so called Cylinder Cut chooses potentials of momenta with at most a finite

number of momentum units of distance from the lattice diagonal
(
Ṽ (px, py, pz), px = py = pz

)
.

Experience shows that thereby lattice spacing errors carry less weight. The Cylinder Cut yields a
more distinct curve (cf. figure 4.3) which is beneficial for the fitting procedure. The cylinder cut
is applied to each data set considered in this work.
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Figure 4.3.: Selection of momenta (Cylinder Cut)

4.2. Lattice effects

To check for systematic errors due to finite lattice spacing and extent of the data set in momentum
space it is advisable to study the effects that depend on those parameters.

Before starting with advanced considerations some basic facts shall be contemplated. There are
two ways to get a physical result from a lattice calculation. Both approaches should describe the
same physics. Consider the 1d-case. NL is the spacial lattice extent and a the lattice spacing:

1. The volume NLa grows to infinity (NL →∞) for fixed a.

25



4. Preparation of lattice data

2. The volume becomes continuous (NLa = const, NL →∞, a→ 0).

In position space the separation on the lattice is

n =
r

a
with n ∈ [0, .., NL − 1] (4.10)

In case 1 the volume grows, i.e. NLa grows with growing NL. In case 2 the volume is constant,
i.e. NLa does not change with growing NL.

In momentum space it is the other way round. On the lattice the momentum p takes the values:

p ∈
[
−πNL
aNL

, ..,
π(NL − 1)

aNL

]
(4.11)

In case 1 the volume grows, the values of p do not change with increasing NL. In case 2 the volume
is constant, the values of p grow with increasing NL.

Those relations are important for labelling and scaling the axes correctly.

4.2.1. The infinite volume limit

How far the data is extrapolated does not play in important rule for the shape of the potential for
large momenta as the following analysis shows: The lattice spacing a is kept constant (a = 0.042fm)
for one of the given lattice ensembles (cf. table 4.1) and NL is varied, V0 = Ṽ0 = 0. The more NL
grows, the bigger the volume gets. In the plot the considered momentum range is the same for
each NL (cf. figure 4.4).
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Figure 4.4.: Comparison of lattice and continuum potential (increasing volume)

Note that for NL = 4 there is no extrapolation necessary, so all points are lattice data points1.

4.2.2. Continuum limit

To study the following effect the discretized version of the generic potential (4.7) is used. To check
the absence of discretization effects the volume aNL is kept constant, but a and NL are varied (cf.
figure 4.5).

1During the extrapolation process no replacement by generic values takes place, cf. listing B.2 in appendix B for
further details.
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Figure 4.5.: Comparison of lattice and continuum potential (constant volume)

One can see in figures 4.4 and 4.5 that for a large lattice extent (NL & 200) and a small lattice
spacing neither finite volume nor discretization effects play a crucial role in a momentum range
up to w 5000MeV. This observation will be important for the choice of fit range and lattice extent
for a fit to perturbative expressions (cf. chapter 5).

4.3. Analysis of artefacts that manifest in momentum space due
to modelling of the potential

Extrapolating lattice values to bigger distances means getting a point of transition between physi-
cal and generic values. At this point, discontinuities like gaps and kinks can appear which show
up clearly after a Fourier transform2, especially when looking at the derivative of the momentum
space potential (cf. equation 2.1) on the diagonal. This quantity can be understood as a sort of
tree-level coupling. It is referred to as α(p):

3p3

32π

V (pi+1)− V (pi)

pi+1 − pi
= α(p), p =

pi + pi+1

2
(4.12)

Looking at α(p), one finds a rather curly than monotonous behaviour.

2due to the Gibbs phenomenon [22]
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Figure 4.6.: The tree-level coupling α(p) on the lattice
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Figure 4.7.: α(p) from a derivative of generic data
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One might suspect that the curls do not depend of the periodic boundary conditions of the
potential. One can observe no curls in the case of a generic potential without extrapolated data.
In figure 4.7 α(p) for generic data is shown. The generic data has been created in the following
way: the potential (4.2) has been fitted to lattice data. Using the resulting fit parameters, a
generic data set has been created. α has been derived by application of (4.12).

Another observation is that the curls seem to be influenced by the variation of the range at which
the lattice values are fitted for modelling. The smaller the distance between upper boundary of
this fit range and the point of transition to modelled data at r

a = 10 is, the smaller the curls’
amplitude gets. To show this two different approaches to determine α(p) are presented:

1. derivation of α from a direct fit on the potential in momentum space (2.1) in leading order
on the basis of several fit windows of a width of 600MeV (label A)

2. derivation of α from (4.12) (label B)

The fit ranges for the data modelling in position space are varied in both cases. For approach
A on the horizontal axis the lower boundary of the fit window in momentum space pl and upper
boundary of the fit range in momentum space pl + 600MeV for each window l are plotted. On the
vertical axis the corresponding fit value is plotted. This yields a step-shaped graph. The results
can be found in figure 4.8. The graph is labelled with the fit ranges in position space as well as
with ’A’ or ’B’ according to the approach. Both approaches yield towards the same trend: The
closer the upper boundary of the fit range in position space to r

a = 10 the smaller the amplitude
of the curls. From this it follows that it is advisable to choose a fit range with the upper boundary
rmax = 10a.
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Figure 4.8.: α(p) from a derivative and directly fitted

4.3.1. The source of the curls

To receive a better understanding of the curly behaviour of α(p), in the following the situation is
reproduced on the basis of toy models. The curls apparently seem to depend on the position and
width of a discontinuity in the potential due to the data modelling in position space. Using the
toy model (2.1) one can investigate how a gap or a kink influences the amplitude and wavelength
of the curls of α(p).
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4. Preparation of lattice data

Provoking a gap in the position space potential at r
a = 10 by adding a constant for r

a > 10 (cf.
figure 4.9) causes a wavy behaviour of the momentum space potential (cf. figure 4.10) and the α
plot (figure 4.11) looks very much alike figure 4.6. If the gap has the width of 0.005a, the curls are
in the same order of magnitude as in the case of lattice data. This gap is too small to be visible
to the naked eye - if one looks at the position space potential, no gap can be identified (cf. 4.12).
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Figure 4.9.: Gap in position space
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Figure 4.10.: Momentum space
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Figure 4.11.: α (toy-model: gap)

Provoking a kink by variation of the ∼ 1
r -part of the potential one finds a similar behaviour.

The curves in figure 4.13, 4.14 and 4.15 are labelled with the relative factor

κ =
d
drVin(r)
d
drVout(r)

∣∣∣∣∣
r=10a

(4.13)

which measures the ratio of the gradients of the ”inner” ( ra ≤ 10.0) and the ”outer” ( ra > 10.0)
part of the potential at the r

a = 10. The curls of α(p) are in the same order of magnitude as in
the lattice data case, if κ = 1.12, which means that the gradients of the ”outer” and the ”inner”
part of the potential differ by 12% at the transition point (cf. figure 4.15).
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Figure 4.12.: Potential in position space: no discontinuities can be seen with the naked eye
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Figure 4.13.: Kink in position space
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Figure 4.14.: Momentum space
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Figure 4.15.: α (toy-model: kink)

One can collect further evidence about the brink or gap to be the cause of the curls measuring
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4. Preparation of lattice data

r0

δ
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)

(a) A location in position space...

99K

co
s(
r 0
p
)

p

(b) ...corresponds to a wave in momentum space.

Figure 4.16.

the wavelength of the curls in MeV in momentum space. So one can detect the location of the gap
respectively the kink. A position r0 described by δ(r−r0) in position space is a Fourier-transformed
(FT) cosine wave in momentum space (cf. figure 4.16 ):

δ(r − r0) =
1

2π

∫
dp eipr e−ipr0 = FT

(
e−ipr0

)
= FT (cos(r0p) + i sin(r0p)) (4.14)

Consider only the real part. The wavelength is about λp = 3000MeV. One finds3:

cos (r0p) = cos

(
2π

λp
p

)
= cos

(
2π

1800MeV
p

)
1=197MeV fm

= cos

(
2π197fm

1800
p

)
⇒ x0p =

197fm

1800
p

(4.15)
Solving for r0 yields: r0 = 0.413fm = r0

a a = 0.066
0.042a = 9.82a. The expected discontinuity are

located at 10a, so the estimated value is in the right order of magnitude.

4.3.2. Gaussian blur

In order to study the discontinuity in the potential due to the data modelling in position space
further, one can try to smooth the point of transition by applying a Gaussian blur to the modelled
data. Since the toy-model analysis in the previous section showed that discontinuities cause the
curly behaviour of α(p), it is expected to fade, if gaps and kinks in the potential are removed. To
apply a Gaussian blur means to weight neighboured points in a clever way (so-called masking).
The blur weights the points according to a Gaussian distribution with the width σGauss. The
process is iterated several times. The figures 4.17, 4.18 and 4.19 show the results in position and
momentum space as well as the behaviour of α(p).

One can see that the graphs look smooth in position space as well as in momentum pace. This
is also the case if no blur is applied, so the blur does not cause strong distortions of the potential.
Furthermore the amplitude of α(p) even grows as the number of iterations increase for each value
of σGauss. The blur does not show the desired effect at all. Against the expectation the blur
cannot improve the behaviour of α(p). The reasons for this are currently not understood.

4.3.3. Adaptation of the fitting procedure to make the curls vanish

One idea to make the curls vanish is to adapt the fit function for the data modelling in position
space. The fit function shall provide a smooth transition between lattice data and modelled data.
For example, one can improve the transition by performing a one-parameter fit with the constraint,

3conversion of MeV to fm in natural units, cf. e.g. [23]
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Figure 4.17.: Gaussan blur - position space
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Figure 4.19.: Gaussan blur - behaviour of α

that the fitted graph intersects the lattice point with the greatest distance. The fit model is:

V (r) = Ṽ + α

(
1

r
− 1

r̃

)
+ σfix(r − r̃) (4.16)

with σfix = 5.55 1
fm2 a2 and r̃ and Ṽ the largest available lattice distance and associated potential

value.
Another way to smooth the transition point between lattice data and modelled data is to vary

the number of fit parameters further. The following fit models have been investigated:

• 1 parameter: V1(r) = Ṽ +�
(

1
r −

1
r̃

)
+ σfix(r − r̃)

• 2 parameters: V2(r) = �− �
r + σfixr

• 3 parameters: V3(r) = �− �
r +�r

• 4 parameters: V4(r) = �− �
r +�r + �

r2

• 4 parameters: V ∗4 (r) = �− αfix
r + σfixr + �

r2 + �
r3 + ©

r4

• 5 parameters: V5(r) = �− �
r +�r + �

r2 + �
r3

With αfix = π
12 a phenomenological value (cf. the generic model 4.2). Symbols like � and �

stand for the fitting parameters. The fit ranges are as follows:

• 1 and 2 parameters: 8 ≤ r
a ≤ 10

• 3 parameters: 6 ≤ r
a ≤ 10

• 4 parameters: 4 ≤ r
a ≤ 10

• 5 parameters: 3 ≤ r
a ≤ 10

The fit ranges were chosen in the manner that the reduced χ2-value was small enough:

χ2

dof4 ≤ 1 (4.17)
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Figure 4.20.: α depending on the fit model

One can see the influence on α in figure 4.20.
The Fourier transform seems to be very sensitive to a discrepancy of the mathematical nature

of the lattice values and the modelling function. Only a many-parameter fit can very slightly
improve the behaviour of the curve. Generally there is no physical constraint for the choice of the
model. So there is no reason to prefer one of them. One can suspect that a many-parameter fit
can model the mathematical shape of the lattice data better. Anyway an increasing number of
parameters cannot improve the behaviour of α(p) satisfactorily.

In summary, the findings of the previous sections show that the curly behaviour of the tree level
coupling α(p) is due to discontinuities in the potential that occur because of the data modelling
for large distances. However, the application of a Gaussian blur does not show the desired effect
of smoothing the potential. Also a variation of the data model cannot solve the problem. The
phenomenon of the curls of α(p) is not fully understood yet. The curls cannot be completely
removed.

Nevertheless the perturbative formulae are fitted to the potential in momentum space and not
to its tree-level derivative. The wiggly behaviour is less significant to the potential itself.

4.4. Transition point

In the analysis in the following chapter, the point of transition between lattice and modelled data
will be at r

a = 10 to include as many physical results as possible. Nevertheless it is important to
check that a shift of the transition point to smaller distances has no crucial effect on the data.
For the check the 4-parameter fit model V4

∗(r) is used. The fit range is 7 ≤ r
a ≤ 10. Shifting the

point of transition to r
a = 8 or r

a = 7 means to use modelled data points for r
a > 8 respectively

r
a > 7. The shift of the transition point might have effects on the curly behaviour of the tree-level
coupling α(p). This should be analysed in the future. Nevertheless, figures 4.21, 4.22 and 4.23
show that the data does not change significantly as the transition point is shifted.

4degrees of freedom: number of values in fit range minus number of fit parameters
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Figure 4.22.: Shift of transition point - momentum space
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4. Preparation of lattice data

4.5. Symanzik improvement

For big momenta respectively small distances the Coulomb part of the physical potential domi-
nates. One can calculate the tree-level potential on a lattice using a special recursive method up
to arbitrary precision and compare it to the corresponding tree-level calculation in continuum.

The comparison shows how to shift the potential to annihilate discretization errors.
The shifts along the p-axis are afterwards applied to the momentum values of the extrapolated

lattice data. In figure 4.24 one can see the effect on the lattice data.
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Figure 4.24.: original data vs. improved data

This procedure is called Symanzik improvement. It is applied to all data analysed in this
work. In momentum space the effect is smaller than in position space (cf. [3]), nevertheless it is a
conceptual improvement. Details about the procedure can be found in appendix C.
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5. Fitting procedure

In this chapter ΛMS is determined by fitting perturbative formulae for the static quark-antiquark
potential in momentum space (cf. chapter 2) to the corresponding lattice results (cf. chapter 4).

5.1. The Jackknife error

To determine a proper error for lattice results the Jackknife method [24] can be applied. The proce-
dure is the following: Consider a list ofN measurements for a data set of J entries xi(1), xi(2), ..., xi(J)
with 1 ≤ i ≤ N . Let nj be the means of the full list.

1. The first measurement is thrown out.

2. A reduced set of N − 1 values is left behind.

3. Do a statistical analysis to the reduced sample, name the result nj1

4. Throw out the second measurement.

5. Do a statistical analysis to the reduced sample of N − 1 measurements, name it nj2

6. Repeat until a set of N (nj1, nj2, ...njN ) values is generated

Based on this list compute the Jackknife error σ:

σj =

√√√√(N − 1)

N∑
i=1

(nji − nj)2

N
(5.1)

The lattice data analysed in this work consists of a full set of lattice values for the static potential
as well as several reduced sets.

5.2. Variation of perturbative formulae and input parameters to
the fitting procedure

5.2.1. Fitting procedure for extrapolation in position space

In section 4.3.3 several models for the fit during the extrapolation procedure are introduced. In
the following three of them will be used in order to determine ΛMS :

• 2 parameters: V (r) = �− π
12

1
r + σr + �

r2 for 8 ≤ r
a ≤ 10

• 3 parameters: V (r) = �− �
r + σr for 6 ≤ r

a ≤ 10

• 4 parameters: V (r) = �− π
12

1
r + σr + �

r2 + �
r3 + �

r4 for 4 ≤ r
a ≤ 10

Note the phenomenological values π
12 for the coupling (Lüscher Term [25]) and σ = σfix (cf.

equation (4.16)). Symbols like � and � stand for the fitting parameters. The choice of the fit
model in position space causes a systematic error ∆fit for ΛMS . This error must be considered
in the final result. Unless explicitly specified otherwise the following fits will be applied to a data
set that was generated by modelling based on a 4-parameter fit.
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5. Fitting procedure

5.2.2. Variation of the fit formulae in momentum space

In chapter 2 different perturabtive expressions for the perturbative potential are presented. Fitting
those expressions to the lattice values yields ΛMS . One gets ΛMS either by determination of the
coupling αs(µ) and insertion of its value to the formula (cf. equations (2.16, 2.17)) or by a direct
fit to the data (cf. equation (2.18)). Furthermore in equation (2.18) one can set µ = p. The
different fit formulae are labelled as follows:

A : ΛMS in MeV according to eq. (2.16)

B : ΛMS in MeV according to eq. (2.17)

C : ΛMS in MeV according to eq. (2.18)

D : ΛMS in MeV according to eq. (2.18) with µ = p

5.2.3. Variation of input parameters

In formula A, B and C the input parameters for the fitting procedure are the lower border of the
momentum space fit range pmin, its upper border pmax and the scale µ. For formula D the input
parameters simply consist of pmin and pmax.

The input parameters take the following values:

• 1000MeV ≤ pmin ≤ 1750MeV

• 1750MeV ≤ pmax ≤ 2500MeV

• µ = pmin+pmax
2

In the range of 1000MeV...2500MeV the perturbation theory is expected to be quite reliable,
since αs(µ) . 0.3.

All investigations are performed for the finest lattice spacing according to β = 4.35 (cf. table
4.1) on a lattice of (La )3 = (256)3.

To exemplify the fitting procedure to lattice data, the fits of the different perturbative orders
are shown in figure 5.1.
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Figure 5.1.: Exemplary fits (formula A)

2 parameters 3 parameters 4 parameters
A NNLO 406...490 371...390 417...453

NNNLO 352...427 327...337 362...394
B NNLO 410...493 372...394 422...456

NNNLO 354...429 328...340 365...399
C NNLO 399...438 367...383 410...448

NNNLO 346...422 324...333 357...393
D NNLO 338...425 324...331 351...396

NNNLO 309...390 296...306 320...364

Table 5.1.: Results for ΛMS [MeV]: different fit models in position space (results for NNLO and
NNNLO)

For a first impression αs(µ) is determined by a fit of the different orders of (2.3) to the lattice
data. The figures are labelled by the corresponding results for ΛMS which are determined by
insertion of the respective αs(µ) value to A.

To determine the systematic error from the choice of the fit model in position space, one must
consider the different results for ΛMS . In figure 5.2 the results for ΛMS for the different pertur-
bative formula and a 2-parameter fit in position space can be found. In figure 5.3 a 3-parameter
and in figure 5.4 a 4-parameter fit is applied. The fit range has a width of 700MeV in each case.
The center of the fit range is plotted on the x-axis. In table 5.1 the numerical results for NNLO
and NNNLO can be found.

As mentioned above the systematic error ∆fit of the choice of the fit function in position
space must be considered. The 2-parameter fit is not included in the error determination, since
it appeared to be very sensitive to discontinuities in the lattice potential and is therefore not
considered to yield precise results (cf. chapter 4). C and D as well as the NNLO results are
not included, since the resulting values differ much from the other results. As the systematic
uncertainty the average deviation between the NNNLO result for ΛMS from the 3-parameter fit
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Figure 5.2.: ΛMS by a fit of different perturbative formulae in different orders on data based on
extrapolation with a 2-parameter fit in position space (fit range width=1000 MeV)
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Figure 5.3.: ΛMS by a fit of different perturbative formulae in different orders on data based on
extrapolation with a 3-parameter fit in position space (fit range width=700 MeV)
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Figure 5.4.: ΛMS by a fit of different perturbative formulae in different orders on data based on
extrapolation with a 4-parameter fit in position space (fit range width=700 MeV)

and the 4-parameter fit for A and B is considered (cf. table 5.1):

∆fit = 47MeV (5.2)

Another source of systematic error is given by the width of the fit range in momentum space.
Therefore, the fit range is varied to pmax − pmin = 1000MeV. The results are shown in figure 5.5.
On the horizontal axis the center of the fit range is shown. For data modelling in position space a
4-parameter is applied. For the fit range width of 1000MeV for different perturbative expressions
one finds the results for ΛMS for NNLO and NNNLO in table 5.2. For easier comparison with the
fit range width of 700MeV the 4-parameter data from table 5.1 is reproduced.

pmax − pmin = 1000MeV pmax − pmin = 700MeV
A NNLO 426...455 417...453

NNNLO 371...397 362...394
B NNLO 430...458 422...456

NNNLO 374...399 365...399
C NNLO 419...449 410...448

NNNLO 366...393 357...393
D NNLO 325...392 351...396

NNNLO 328...360 320...364

Table 5.2.: Results for ΛMS [MeV] for different fit range widths in momentum space (results for
NNLO and NNNLO)
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Figure 5.5.: ΛMS by a fit of different perturbative formulae in different orders on data based on
extrapolation with a 4-parameter fit in position space (fit range width=1000 MeV)

In LO and NLO the results for ΛMS differ much from those for NNLO and NNNLO (cf. figures
5.2, 5.3, 5.4 and 5.5). Also the results for expressions C and D differ significantly from those for
A and B, even for NNLO and NNNLO1. The reason is, that in the derivation of the perturbation
theory formula C respectively D in comparison to A and B one more approximation is applied
(cf. equation (2.18)). For further analysis this formula is less appropriate since there is no reason
for using an imprecise formula if there is a better one. However, the differences of the results of
A and B, respectively C and D show, that perturbation theory works well, since a more precise
formula yields a more precise result than a less precise formula. On the other hand, as expected,
expressions A and B yield similar results. For further analysis the two higher orders will be the
proper choice.

5.2.4. The systematic error of the fitting procedure

A large number of fits with input parameters randomly chosen is performed. The intervals for the
random choice of the input parameters are:

• pmin in 1000MeV...1750MeV

• pmax in 1750MeV...2500MeV

• µ in pmin...pmax

To ensure a fit range that is large enough to contain as many values to perform a fit reasonably,
the demand on the parameters is to form a fit range which measures at least a quarter of the
maximally possible range:

1Moreover the difference between the results from C and D seem alarming at first glance: The choice of µ = p
should not yield large deviations since, as stated in chapter 2, µ can be chosen arbitrarily. But there is an
explanation for the derivation: The choice of a fixed value of µ is better suited for the considered momentum
range than the choice of µ = p because of intrinsic properties of the perturbative formulae. In the considered
momentum range the choice of a fixed µ is justified [26].

44



5. Fitting procedure

pmax − pmin ≥
2500MeV − 1000MeV

4
= 375MeV (5.3)

The following fits are performed:

• expression A: 10,000 NNLO fits, 10,000 NNNLO fits

• expression B: 10,000 NNLO fits, 10,000 NNNLO fits

For the data modelling in position space a 4-parameter fit is applied. For the 40,000 values mean
and standard derivative are derived. The standard derivative is taken as systematic error ∆syst.

As a result, one finds:

ΛMS = 417(41)MeV (5.4)

Notice that the Jackknife error on the individual result for ΛMS is about 1MeV. Therefore it is
negligible compared to the standard derivative.

To show that it is possible to produce a result which is in agreement with the result from [3],
the same procedure is performed again with application of a 3-parameter fit in position space, a
limitation of the fit range width to 700MeV and with respect to NNNLO results exclusively.

The result is:

ΛNNNLO
MS

= 331(11)MeV (5.5)

It is consistent with the result determined earlier in this section within a 2∆fit-error range.

5.3. Systematic errors from the lattice computation

In the following systematic errors from the lattice computation are analysed.

5.3.1. Lattice discretization errors

First the lattice discretization error is analysed. There are four lattice ensembles available (cf.
table 4.1). The fit range in position space is kept constant in physical units as far as possible2.
The fit range in momentum space is kept constant at 1300MeV...2000MeV. The choice of µ is:
µ = 1300MeV+2000MeV

2 . The NNNLO fit for A is considered.

For the fit model V (r) = �− π
12

1
r + σr+ �

r2 + �
r3 + �

r4 fit ranges and results are (cf. figure 5.6):

β = 4.35 : 4.0a...10.0a ⇒ ΛMS = 383(16)MeV

β = 4.20 : 3.3a...8.2a ⇒ ΛMS = 366(12)MeV

β = 4.05 : 2.7a...6.7a ⇒ ΛMS = 381(24)MeV

β = 3.90 : 3.2a...5.6a ⇒ ΛMS = 408(37)MeV

The error is the quadratic sum of the Jackknife error and the lattice spacing error (cf. table 4.1).
The extrapolation to a→ 0 is done by a linear fit to the four data points assuming a dependence

of a2.
The slope of the fitted line is very small, which causes for example the difference between the

central values of ΛMS for the finest lattice spacing and the continuum extrapolation to be less
than 1MeV. The uncertainty caused by the lattice discretization can be neglected in the further
analysis.

2In the case of β = 3.90 an enlargement of the fit range is necessary to ensure that χ2

dof
≤ 1
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Figure 5.6.: ΛMS for different lattice spacings, 4-parameter fit in position space

5.3.2. Effects associated with r0
a

= 9.81(13)

Since the final result for ΛMS is listed not only in MeV but also in units of r0, the uncertainty on
the Sommer parameter r0

a = 9.81(13) must be considered (cf. [3]).

5.3.3. Finite volume effects

As one could assume from section 4.2.1, the finite volume effects are very small. The variation
of the result for ΛMS smaller than 1MeV if the lattice extent is reduced to Ns = 128. Since the
uncertainty is negligible compared to the systematic error determined in section 5.2.4, it will not
be considered in the final result.

5.3.4. Non-vanishing light quark masses

The effect that in perturbation theory dynamical quarks are considered massless while lattice
results use small finite quark masses has been investigated in [3]. The uncertainty was considered
negligibly small. For this reason, no significant corrections from non-vanishing quark masses are
expected in the present case. It will not be considered in the final result.

5.4. Final results for ΛMS

The final result for ΛMS for nf = 2 dynamical quark flavours based on lattice results for the finest
available lattice spacing (β = 4.25) is stated in the following. The result is quoted in MeV as well
as in units of r0. The following errors are taken into account:

• The error associated with the choice of the fit model in position space ∆fit = 47MeV (cf.
5.2.3).

• The systematic error associated with the fitting procedure ∆syst = 41MeV (cf. section
5.2.4).

• The errors associated with r0
a = 9.81(13) and the lattice spacing a = 0.0420(17) (cf. table

4.1)).

For the result in lattice units (respectively MeV) the error is calculated the following way:
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5. Fitting procedure

ΛMSa

a
→

ΛMSa±∆fita±∆systa

a±∆a

=
ΛMSa±∆fita±∆systa

a

(
1± ∆a

a

)
+O((∆a)2)

= ΛMS ±
∆fita±∆systa

a︸ ︷︷ ︸
error on ΛMS

±
ΛMSa∆a

a2︸ ︷︷ ︸
lattice spacing error

+O((∆a)2) (5.6)

Since they are all independent, the error on ΛMS as well as the lattice spacing error are added
quadratically:

∆ =

√(
ΛMSa∆a

a2

)2

+ (∆fit)
2

+ (∆syst)
2

(5.7)

For the result in units of r0 the calculation works analogous:

ΛMSa
r0

a
→ (ΛMSa±∆fita±∆systa)

(r0

a
±∆

r0

a

)
(5.8)

One finds:
ΛMS = 417(64)MeV respectively ΛMSr0 = 0.87(13) (5.9)

Compare to the results determined in [3]:

ΛMS = 315(30)MeV respectively ΛMSr0 = 0.658(55) (5.10)

The result determined in this work differs significantly from the one determined in 2011. Moreover,
its uncertainty is even larger.
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6. Conclusion and outlook

The result for ΛMS determined in this work is not in accordance with the result from 2011 [3].
The error could not be reduced but is even larger than in the preliminary work. On the one hand,
the a priory promising approach of a determination of ΛMS in momentum space has not kept
its promise. To avoid the error that occurs during a Fourier transform of perturbative results to
position space by transforming lattice data to momentum space is not sufficient.
Conversely, the transformation of lattice data holds further difficulties. One of the most important
sources of uncertainty is the fitting procedure in position space. The investigation in position
space did not require such a procedure, so the associated uncertainty was not considered. The
error determined in position space might be underestimated. Lattice data turned out to be very
sensitive to the choice of the fit model to model data at large distances. In the beginning of the
investigations presented in this work the assumption was that the modelled part of the lattice
data would not play a crucial role for the overall result. The results presented in table 5.1 show
the very reverse: A different choice of the fit model in position space affects the result remarkably.
Also the wiggly behaviour of the potential in momentum space presented in section 4.3 occurs
because of the extrapolation procedure. Briefly, the difficulties associated with the large distances
respectively small momenta that were observed in 2011 appear again.

One probably needs precise lattice results at large distances to reduce those difficulties.
Moreover the fitting procedure in momentum space influences the result. As one can see in sec-
tion 5.2.4 the result from 2011 can almost be reproduced by a choice of the proper parameters.
But there is no reason to prefer a certain parameter setup. This might indicate again that the
systematic errors in 2011 have been underestimated.

On the other hand, the differing result might have uncovered possible areas for improvement.
A final judgement on the quality of the result cannot be formed yet. The problem is, that objects
in momentum space are affected by the entire setup in position space and vice versa.

There is no exact mapping of the choice of the parameters in position space to the parameters
in momentum space. So the comparison of momentum space and position space results is highly
non-trivial and has to be studied in more detail. Future investigations should inquire the relation
of momentum and position space further.

48



A. Perturbative coefficients

The coefficients that occur in expressions associated with the quark-antiquark potential read [9]:

P1(L) = a1 + β0L (A.1)

P2(L) = a2 + (2a1β0 + β1)L+ β2
0L

2 (A.2)

P3(L) = a3 + (3a2β0 + 2a1β1 + β2)L+ β0

(
3a1β0 +

5

2
β1

)
L2 + β3

0L
3 (A.3)

where [27]

β0 =11− 2

3
nf (A.4)

β1 =102− 38

3
nf (A.5)

β2 =
2857

2
− 5033

18
nf +

325

54
n2
f (A.6)

β3 =

(
149753

6
+ 3564ζ(3)

)
−
(

1078361

162
+

6508

27
ζ(3)

)
nf

+

(
50065

162
+

6472

81

)
n2
f +

1093

729
n3
f (A.7)

Further [6, 7, 28]

a1 =
31

3
− 10

9
nf (A.8)

a2 =

(
4343

18
+ 36π2 − 9

4
π4 + 55ζ(3)

)
−
(

1229

27
+

52

3
ζ(3)

)
nf +

100

81
n2
f (A.9)

a3 =a3 + 144π2

(
ln 3 + γE −

5

6

)
(A.10)

a3 ln = 144π2 (A.11)

with γE the Euler–Masceroni constant and

a3 =a
(0)
3 + a

(1)
3 nf + a

(2)
3 n2

f + a
(3)
3 n3

f (A.12)

where

a
(0)
3 =27c1 +

15

1
c2 (A.13)

a
(1)
3 =

9

2
c3

5

96
c4 −

68993

81
+

16624

27
ζ(3) +

160

9
ζ(5) (A.14)

a
(2)
3 =

93631

972
+

16

45
π4 +

412

9
ζ(3) (A.15)

a
(3)
3 =− 1000

729
(A.16)
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A. Perturbative coefficients

and [6, 7]

c1 = 502.24(1) (A.17)

c2 =− 136.39(12) (A.18)

c3 =− 709.717 (A.19)

c4 =− 56.83(1) (A.20)
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B. Data modelling code

The modelling of lattice data is basically a spherically symmetric problem. In the following is
assumed that the data is given in a table form with four columns:

x y z V (r)
. . . . . . . . . . . .

Because the potential V (r) is symmetric it is enough to consider r-values given by r =
√
x2 + y2 + z2

with z ≤ y ≤ x. The quantities come in lattice units. The lattice data is stored in the arrays
inputX[ ], inputY[ ], inputZ[ ] and inputV[ ]. The extrapolation processes in two steps. First
a χ2-minimizing fit1 is applied to data within a fit range rmin ≤ r ≤ rmax. With the obtained
fit-function a 3-dimensional array V[L][L][L] is filled, L is the chosen lattice extend.

Listing B.1: Initialization with fit-function

// initialize a cubic lattice with fit -function V(r)

for(i1 = 0; i1 < L; i1++){

for(i2 = 0; i2 < L; i2++){

for(i3 = 0; i3 < L; i3++){

V[i1][i2][i3] = 0.0;

if(i1 != 0 || i2 != 0 || i3 != 0){

double x = (double)i1;

if(i1 > L/2)

x = (double)(L-i1);

double y = (double)i2;

if(i2 > L/2)

y = (double)(L-i2)

double z = (double)i3;

if(i3 > L/2)

z = (double)(L-i3);

double r = sqrt(x*x + y*y + z*z);

V[i1][i2][i3] = <FIT FUNCTION (r)>;

}

}

}

}

The second step is to replace those entries of the array for which values are available by real
lattice data. The following C++ code fragment shows the replacement algorithm.

Listing B.2: Replacement by lattice values

for(i1 = 0; i1 < inputX.size(); i1++){

if(inputX[i1] > L/2)

continue;

if(inputY[i1] > L/2)

continue;

if(inputZ[i1] > L/2)

1Realized using the GNU Scientific Library (GSL) which provides programming tools for numerical applications
in C/C++ (cf. http://www.gnu.org/software/gsl/).
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B. Data modelling code

continue;

double V_ = inputV[i1];

// permute x, y, z:

for(i2 = 0; i2 < 6; i2++){

int x_, y_, z_;

if(i2 == 0){

x_ = input_x_[i1];

y_ = input_y_[i1];

z_ = input_z_[i1];

}

if(i2 == 1){

x_ = input_z_[i1];

y_ = input_x_[i1];

z_ = input_y_[i1];

}

if(i2 == 2){

x_ = input_y_[i1];

y_ = input_z_[i1];

z_ = input_x_[i1];

}

if(i2 == 3){

x_ = input_z_[i1];

y_ = input_y_[i1];

z_ = input_x_[i1];

}

if(i2 == 4){

x_ = input_x_[i1];

y_ = input_z_[i1];

z_ = input_y_[i1];

}

if(i2 == 5){

x_ = input_y_[i1];

y_ = input_x_[i1];

z_ = input_z_[i1];

}

// the eight regions +/-x, +/-y, +/-z:

for(i3 = 0; i3 < 8; i3++){

int x__ , y__ , z__;

if(i3 == 0){

x__ = x_;

y__ = y_;

z__ = z_;

}

if(i3 == 1){

x__ = (L_-x_)%L_;

y__ = y_;

z__ = z_;

}

if(i3 == 2){

x__ = x_;

y__ = (L_-y_)%L_;

z__ = z_;

}

if(i3 == 3){

x__ = x_;

y__ = y_;

z__ = (L_-z_)%L_;

}

if(i3 == 4){

x__ = x_;

y__ = (L_-y_)%L_;

z__ = (L_-z_)%L_;
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}

if(i3 == 5){

x__ = (L_-x_)%L_;

y__ = y_;

z__ = (L_-z_)%L_;

}

if(i3 == 6){

x__ = (L_-x_)%L_;

y__ = (L_-y_)%L_;

z__ = z_;

}

if(i3 == 7){

x__ = (L_-x_)%L_;

y__ = (L_-y_)%L_;

z__ = (L_-z_)%L_;

}

V[x__][y__][z__] = V_;

}

}

}
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C. Symanzik improvement

A new position space technique allows to compute several complicated integrals more precisely
than with the standard Monte Carlo integration [29].

Consider first the 4d-case: Let the interaction only contain diagrams with free propagators ∼ 1
p̂2

on a 4d lattice Λ4 and lattice spacing a = 1. The momentum is

p = (p0, .., p3) and p̂µ = 2 sin

(
1

2
pµ

)
(C.1)

This scenario describes the case of pure gauge theory with standard Wilson action. As an example
look at the following integral:

A0 =

∫ +π

−π

d4k

(2π)4

d4q

(2π)4

1

k̂2q̂2(−k̂2 − q̂)2
(C.2)

Now the position space operator is introduced:

G(x) =

∫ +π

−π

d4p

(2π)4

eipx

p̂2
(C.3)

Perform the sum over the hypercube Λ4 and verify that:

A0 =
∑
x∈Λ4

G(x)3 (C.4)

G(x) is a propagator, so:

−4G(x) =

{
1 if x = 0
0 otherwise

(C.5)

One observes:

xµH(x) = (∇∗µ +∇µ)G(x) with H(x) =

∫ +π

−π

d4p

(2π)4
eipx ln p̂2 (C.6)

with the definition of the derivatives

∇µf(x) = f(x+ µ̂)− f(x), ∇∗µf(x) = f(x)− f(x− µ̂) (C.7)

µ̂ is the unit vector in µ-direction, one finds by summing equation (C.6) over µ:

H(x) =
2

ρ

∑
µ

(G(x)−G(x− µ̂)), ρ =
∑
µ

xµ (C.8)

With (C.7) one finds a recursive equation for the lattice operator:

G(x+ µ̂) = G(x− µ̂) + xµH(x) = G(x− µ̂) +
2xµ
ρ

∑
µ

(G(x)−G(x− µ̂)) (C.9)

so one can express G(x) as an equation of the values: G(0, 0, 0, 0), G(1, 0, 0, 0),.., G(1, 1, 1, 1).
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C. Symanzik improvement

For the improvement of the static quark-antiquark potential (in [3] for an, the 3d-application
has to be used. The Symanzik action is considered.

On the lattice, the force between two quarks can be expressed by

F (rI) =
V (r)− V (r − a)

a
(C.10)

rI is the distance at which the force has no deviations from the force in the continuum when it is
evaluated on tree-level. One says F (rI) is a tree-level improved observable.

Following [30] the force is:

Ftree(r
′) =

Vtree(r)− Vtree(r − a)

a

= −4

3
g2

0 [G(r, 0, 0)−G(r − a, 0, 0)] (C.11)

with G(~r) = 1
a

∫ +π

−π
d3k

(2π)3

∏
j

cos(
xjkj1

a )

4
∑
j sin2(

kj
2 )

the 3d-lattice propagator.

In short, the tree-level improved force is:

F (rI) =
4

3

g2
0

4πr2
I

+O(g4
0),

1

4πr2
I

= −G(r, 0, 0)−G(r − 1, 0, 0)

a
(C.12)

And the tree-level improved potential is:

1

4πrI
= G(~r) (C.13)

Only the O(g4
0)-part contains lattice artefacts.

The theory about this improvement that explains how to handle lattice artefacts is Symanzik’s
effective theory.

By solving the recursive equation in 3d

G(x+ ĵ) = G(x− ĵ) +
2xj
ρ

∑
i

(G(x)−G(x− î)) (C.14)

x = (x1, x2, x3), ĵ is the unit vector in j-direction, j = 1, 2, 3. Because of the isotropy of G(x), it
is enough to consider the case x1 ≥ x2 ≥ x3.

In order to compare physical potential and Coulomb potential, the propagator

G(~r) =

∫ +π

−π

d3k

(2π)3

∏
j cos(rjkj)

4
(∑

j sin2
(
kj
2

)
+ 4

3

∑
j sin4

(
kj
2

)) (C.15)

has to be computed [3]. To avoid large statistical errors because of the singularity at ~k = 0 one
can split the integral:

G(~r) = G1(~r) +G2(~r) (C.16)

with

G1(~r) =

∫ +π

−π

d3k

(2π)3

∏
j cos(rjkj)

4
(∑

j sin2
(
kj
2

)) (C.17)

and

G2(~r) =

∫ +π

−π

 d3k

(2π)3

∏
j cos(rjkj)

4
(∑

j sin2
(
kj
2

)
+ 4

3

∑
j sin4

(
kj
2

)) − ∏
j cos(rjkj)

4
(∑

j sin2
(
kj
2

))
 (C.18)
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C. Symanzik improvement

Because of numerical effects, computation of the propagator only makes sense in the region

rI ≤ rcrit (C.19)

beyond the critical distance the numerical errors become too large and the value of G(~r) turns out
to be nonphysical. The values G(~r) where |~r| ≥ rcrit are extrapolated by 1

4πr .
In this work, the investigation is performed in momentum space. So in a next step, the propaga-

tor values are discretely Fourier-transformed. Afterwards, those values and the analytical formula

Ṽ (p) =
1

p2
(C.20)

are matched. In the case of matching, according to (C.13) the new momenta are found.
The last step is to compare analytical and propagator values for each point p in momentum

space. The shifts for each point are stored (cf. table C.1).
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Figure C.1.: The propagator values are shifted to the analytical curve

For the improvement of lattice data, shifts are added to each data point according to table C.2.
The procedure shifts the propagator values to the 1

p2 -curve (cf. figure C.1). The improvement is

shown in figure (4.24).
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C. Symanzik improvement

p shift
p1 ∆p1

p2 ∆p2

p3 ∆p3

· · · · · ·

Table C.1.: Storage of shifts

p potential value new p improved potential

p1 Ṽ (p1) p1 + ∆p1 Ṽ (p1) = Ṽ improved(p1 + ∆p1)

p2 Ṽ (p2) p2 + ∆p2 Ṽ (p2) = Ṽ improved(p2 + ∆p2)

p3 Ṽ (p3) p3 + ∆p3 Ṽ (p3) = Ṽ improved(p3 + ∆p3)
· · · · · ·

Table C.2.: Assignment of new momenta
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