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Abstract

There has been a considerable debate about whether disaster models can rationalize
the equity premium puzzle. This is because empirically disasters are not single
extreme events, but long-lasting periods in which moderate negative consumption
growth realizations cluster. Our paper proposes a novel way to explain this stylized
fact. By allowing for consumption drops that can spark an economic crisis, we
introduce a new economic channel that combines long-run and short-run risk. First,
we document that our model can match consumption data of several countries.
Second, it generates a large equity risk premium even if consumption drops are of
moderate size.
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1 Introduction

Modern asset pricing has made significant progress in solving the equity premium puzzle.

There is now a variety of approaches that can all generate a sizeable equity risk premium.

This is achieved with moderate levels of risk aversion and without implausible implications

for the risk-free rate. Two of these approaches are disaster risk models and long-run risk

models.1 Disasters are the most extreme form of short-run consumption risk, which affects

the level of consumption, but not its growth rate. Rietz (1988) and Barro (2006) show

that even a small probability of large consumption drops can generate a sizeable equity

risk premium. Following Bansal and Yaron (2004) the classical example for a long-run-

risk variable is a stochastic mean growth rate of consumption. Even small changes in

this growth rate constitute a significant risk since they influence the economy over a

long time period. Therefore, investors with preferences for early resolution of uncertainty

demand a high premium for bearing this risk. Usually, asset pricing models focus either

on short-run or long-run risk.2 By contrast, the literature has hardly explored the effect

of combining these two channels. This is the focus of our paper. We show that a channel

which combines short-run and long-run risk adds a new component to the equity risk

premium. This component has about the same order of magnitude as the premium for

pure short-run risk or pure long-risk risk alone. In particular, our approach can generate

a realistic equity risk premium even if the possible consumption shocks are of moderate

size.

This feature of our model helps to address a fundamental critique on disaster models

raised by Constantinides (2008). He challenges the suggestion by Rietz (1988) and Barro

(2006, 2009) that the possibility of very large, but rare consumption shocks gives rise to a

reasonable risk premium on US equity. Assuming a small unconditional jump probability

of 1.7%, but an extreme average jump size of −36% leads to an equity premium of 5.4

percentage points with a risk aversion parameter of 4 in their model. Barro (2006) shows

that such disasters can be found in consumption time series of many countries, while the

US have been lucky to not experience such an event since World War II. Constantinides

(2008) argues that the peak-to-trough method of Barro and Rietz does not match the

consumption data. Disasters like World War II do not lead to a single shock of about

−40%, but unfold in a series of moderate shocks that add up to an overall drop of −40%.

Replacing one large shock by a series of smaller shocks in a model with CRRA preferences

1An alternative approach uses external habit formation. See Campbell and Cochrane (1999).
2The paper by Wachter (2013) is a notable exception.
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reduces the equity premium significantly. As mentioned above, this is not the case in our

model, though.

We also address the fundamental critique raised by Julliard and Ghosh (2012). These

authors show that, if the rare disaster model of Barro (2006) is used as a data-generating

model, the observation of the equity premium puzzle itself would be a rare event. In other

words, the observation of the equity premium puzzle is due to a so-called Peso problem3,

which means that the US consumption path over the past 60 years has just been a very

unlikely draw from a distribution with fat tails. We thus simulate our model and compute

the mean excess return of the equity claim including all negative shocks in the sample.

We find that the new channel of our model allows us to perfectly match the mean excess

return. This remains true even in samples where we observe several downward jumps in

stock prices. Our model can thus address the equity premium puzzle without relying on

a Peso problem explanation.

To describe our model in more detail, notice that it involves three types of risk channels:

short-run risk, long-run risk, and a combination of both. The short-run risk channel is

modeled via consumption drops that can happen with a certain probability. This channel

affects the level, but not the growth rate of consumption. Its impact is instantaneous. The

probability of a consumption drop is assumed to depend on the state of the economy (good,

bad) modeled by a two-state Markov chain. It is larger in the bad state. This constitutes

the long-run risk channel that affects the growth rate, but not the level of consumption.

Its effect is long-lasting. As a third and novel channel, we propose a blend of both channels

that has short-run and long-run implications. We model this idea by introducing jump-

induced regime switches that combine a consumption drop with a transition from the

good into the bad state. In other words, there are certain consumption drops in normal

times (good state) that spark an economic crisis (bad state). As a consequence, short-

run risk earns an additional long-run-risk premium, and long-run risk earns an additional

short-run risk premium. These effects do not simply add up, but reinforce each other.

Following Duffie and Epstein (1992a), Bansal and Yaron (2004) and Wachter (2013),

among others, we study an economy that is populated by a representative investor with

recursive utility. His risk aversion and intertemporal elasticity of substitution are both

larger than one. This implies that the investor has a preference for early resolution of

uncertainty and demands a risk premium for both short-run and long-run risk. We solve

for the equilibrium quantities in closed form, in particular for the equity risk premium.

3See, e.g., Goetzmann and Jorion (1999).
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This allows us to decompose the equity risk premium into its three components (short run,

long run, combined). To document that our new channel is of first-order importance for

the sizes of the equity risk premium and risk-free rate, we compare our model with jump-

induced regime switches to the following well-established alternatives: First, we consider a

model with separated regime switches where short-run risk is decoupled from long-run risk

in the sense that transitions to the bad state and consumption drops happen separately.

Second, we study a peak-to-trough model that involves only short-run risk. Therefore, the

whole dynamics of an economic crisis are condensed to one consumption drop which is

assumed to happen at a single point in time.4

We calibrate our model to consumption growth rates of 42 different countries.5 Our focus

is on matching both the unconditional distribution of annual consumption declines and

the clustering of downward jumps in bad times. This gives rise to a moderate jump size

of −3% to −7% and an unconditional jump intensity between 0.14 and 0.42. Our model

explains the left tail of the unconditional distribution of annual consumption growth rates

almost perfectly. It also reproduces the distributions of the lengths and sizes of crises in

the data. The hypothesis that the annual consumption data has been generated by our

model cannot be rejected. For a calibration with a jump size of −5%, the equity risk

premium in the good state is 6.94 percentage points. The premium for jump-induced

regime switches from the good to the bad state is 4.95 percentage points, which comprises

a premium of 0.28 percentage points for short-run jump risk, 2.22 percentage points for

long-run risk, and 2.45 percentage points for the combination of long- and short-run

risk. This last term is solely present in our model. In the model with separated regime

switches, the equity risk premium in the good state is only 4.99 percentage points. In

the peak-to-trough model with the same local consumption distribution, the premium is

2.9 percentage points. Notice that one can boost the values of the equity premium in

the model with separate regime switches and the peak-to-trough model. By allowing for

extreme consumption drops (peak-to-trough calibration), one can reach a higher equity

premium. But then the Constantinides (2008) critique applies and the calibration of the

consumption data is off. To summarize, only our model is able to achieve a realistic fit of

the consumption data and at the same time generate a realistic equity premium.

Finally, several robustness checks document that our results are not driven by one partic-

4Notice that all three models are silent on the economic reasons for crises. In this sense, they are

reduced-form approaches. For clarity, we also abstract from further risk factors like a stochastic drift or

stochastic volatility, which would distract from our new channel and obscure our main point.
5We thank Robert Barro for providing this dataset on his webpage.
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ular calibration of the model. The consumption data can be matched using different jump

sizes between −3% and −7%. All calibrations lead to a sizeable risk premium for our new

channel combining long-run and short-run risk. Regarding the preference parameters, we

show that the elasticity of intertemporal substitution (EIS) plays a key role in our model.

For low levels of the EIS where the investor no longer has a pronounced preference for

early resolution of uncertainty, the extra risk premium for jump-induced regime switches

shrinks dramatically and can even become negative. In particular, in the special case of

constant relative risk aversion (CRRA), the total risk premium is higher in a model with

separated regime switches than in a model with jump-induced regime switches. These

findings are in line with the long-run-risk literature (see, e.g., Bansal and Yaron (2004)).

Our paper is related to the literature on asset pricing with rare disasters. Rietz (1988)

and Barro (2006, 2009) entertain the disaster risk explanation to rationalize a high eq-

uity risk premium. Extensions of the basic model have been studied by Chen, Joslin,

and Tran (2012) and Julliard and Ghosh (2012), among others. Gabaix (2012) analyzes a

model with time-varying jump intensities. As a response to the critique by Constantinides

(2008), Barro, Nakamura, Steinsson, and Ursua (2013) propose and estimate a complex

macroeconomic model with recursive preferences where disasters unfold over several years

including a recovery period afterwards. Their paper is similar in spirit to ours, but the

mechanics of our model are simpler. For instance, this allows us to disentangle the impli-

cations of short-run and long-run risk in closed form and to explicitly assess the impact of

our combined channel of long-run and short-run risk. Similar to the critique of Constan-

tinides (2008), the assumption of extreme jumps is also questioned by Backus, Chernov,

and Martin (2011). They use index options to estimate the implied distribution of con-

sumption jumps and document that option prices imply more frequent but less extreme

outcomes than needed in disaster risk explanations of the equity premium. Finally, sev-

eral papers study the implications of jump risk and/or regime switching processes in

long-run risk models. Hung (1994) studies a model with Epstein-Zin utility in which mar-

ket fundamentals follow a bivariate Markov switching process. His setting is similar to the

model with separated regime switches that we consider as one possible benchmark. Ben-

zoni, Collin-Dufresne, and Goldstein (2011) analyze a model with jumps in the expected

growth rate and volatility and show that this model provides an equilibrium foundation

of the volatility smile. Drechsler and Yaron (2011) analyze the variance risk premium in a

long-run risk model with time-varying jump risk. Wachter (2013) proposes a time-varying

probability of rare disasters which can explain the high stock market volatility. Tsai and

Wachter (2014) apply this model to growth and value stocks.
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The remainder of the paper is organized as follows. Section 2 describes the different model

setups used in this paper. Section 3 provides details on the calibration and a comparison

with the stylized facts about consumption drops. Section 4 determines the equilibria of the

different models. Additionally, we study the equity risk premium and its components in

regime switching as well as disaster models. Section 5 performs robustness checks. Section

6 concludes. All proofs are in the Appendix.

2 Consumption Dynamics

2.1 Model with Jump-induced Regime Switches

We consider a continuous-time Lucas tree economy with an infinite horizon. There is one

tree generating a perishable consumption good which serves as numeraire. The economy

can be in either of two states which we denote by g and b (for ‘good’ and ‘bad’). The

states are formally captured by a Markov chain Z. Conditional on the state of the economy

Zt ∈ {g, b}, the outcome of the tree follows a jump-diffusion process. If the economy is in

the good state, then

dCt
Ct−

= µdt+ σdWt + LdN g,g
t + LdN g,b

t . (1)

In the bad state, the dynamics are

dCt
Ct−

= µdt+ σdWt + LdN b,b
t , (2)

where W is a Wiener process. The jump processes N g,g and N b,b count downward con-

sumption jumps in the good and the bad state that do not have an effect on the regime.

We refer to these drops as ‘normal jumps’. A transition from the good to the bad state

is captured by the jump process N g,b. The decisive feature of our model is that this

change comes together with a downward jump in consumption, i.e. we allow for the joint

occurrence of negative consumption realizations (’cash flow shocks’) and changes in the

distribution of future consumption growth (’regime shifts’). Regime switches from the bad

to the good state are triggered by a fourth counting process N b,g. These jumps only change

the state, but do not directly affect the level of consumption. For ease of exposition, we do

not include changes from the good to the bad state which are not linked to consumption

jumps.
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For simplicity, the drift µ, volatility σ and jump size L < 0 are constant and state-

independent.6 The jump intensity depends on the state Z of the economy. The parameter

λg,b captures the probability of a jump-induced regime switch in normal times, whereas

λg,g and λb,b denote the intensities for jumps that do not trigger regime switches. In line

with the interpretation of the states as ’good’ and ’bad’, we assume that consumption

shocks are more frequent in the bad state than in the good state, i.e. λg,g + λg,b < λb,b.

2.2 Model with Separated Regime Switches

To tease out the effect of jump-induced regime switches, we also consider a model with

regime switches that do not induce immediate negative consumption realizations. We refer

to these regime changes as ’separated regime switches’. The corresponding consumption

dynamics become
dCt
Ct−

= µdt+ σdWt + LdN g,g
t (3)

in the good state and
dCt
Ct−

= µdt+ σdWt + LdN b,b
t , (4)

in the bad state, respectively. The counting process N g,b still triggers a regime change

from the good to the bad state, but does not lead to an immediate consumption shock.

When we compare jump-induced and separated regime switches, we assume that the local

distribution of consumption and the transition probabilities of the Markov chain are the

same in both models. The jump intensities for the regime switches N g,b and N b,g are thus

identical, while the intensity of N g,g is larger with separated regimes than with jump-

induced regimes.

2.3 Peak-to-Trough Model

The second model that we use for comparison abstracts from different states and assumes

that consumption growth is i.i.d. The consumption dynamics are given by

dCt
Ct−

= µdt+ σdWt + LdNt, (5)

where N is a Poisson process with intensity λ. This model represents a special case of the

Barro (2006) model with constant jump size. It can explain the equity risk premium if

6These assumptions can be relaxed, but this would not add additional insights concerning our main

focus.
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jumps are disastrous but rare events. Barro (2006) calibrates the jump parameters to a

panel of consumption data from different countries and argues that there is indeed evidence

for disasters. An economic crisis is assumed to be a single (very) negative consumption

realization. The size of this consumption shock is usually calibrated to the observed con-

sumption drops from peak to trough. Crisis which may last over several years are thus

mapped into a single event. The dynamics of crises are disregarded, which is criticized by

Constantinides (2008).

We consider two calibrations of this model. In the first calibration (‘local calibration’), we

stick to the unconditional local distribution of consumption growth rates from the other

two models. Consequently, we set the jump intensity λ equal to the unconditional average

jump intensity and keep the jump size L fixed at the same value as in the other models.

The second calibration (‘disaster calibration’) follows the idea of Rietz (1988) and Barro

(2006) who model disasters as rare but extreme events. We set the jump size L equal to

the average consumption drop during a crisis from peak to trough. The jump intensity

in the disaster calibration is set equal to the probability of observing an extreme crisis in

the model with jump-induced regime switches. We thus condense a crisis which usually

stretches over several years to a single event. Consequently, under the disaster calibration,

jumps are less frequent but more severe than under the local calibration.

3 Data and Calibration

This section describes the data and explains how we calibrate the different models. First

we calibrate our model with jump-induced regime switches so that it matches both the

unconditional distribution of annual consumption growth rates and the durations of crises.

Naturally, we focus on the left-hand side of the distribution which contains information

about the nature of consumption crises. Then we turn to the model with separated regime

switches. This model is identical to our model except that jump-induced regime switches

are not possible. To tease out the effect of this channel, we take the calibration of the jump-

induced regime switching model as given, switch off the jump-induced regime switches and

then adjust the calibration such that the local distribution of consumption growth rates

and the transition probabilities are the same as in the model with jump-induced regime

switches.7 Finally, we consider the peak-to-trough model and provide two calibrations. In

7Alternative calibrations could either fit the consumption data or the equity premium, but not both.

See also Section 3.3.
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the first one, we match the local distribution of consumption, whereas in the second one

we apply the peak-to-trough approach by Barro (2006).

3.1 Data

All calibrations are based on the consumption dataset that is available on Robert Barro’s

webpage. This dataset contains annual consumption growth rates of 42 different countries

ranging (at most) from 1791 to 2009. Altogether, the dataset consists of 4,933 country-

year consumption growth observations. The dataset also contains GDP growth rates for

all the countries. Neither the parameters nor the numerical results will change significantly

if we use GDP growth rates. Therefore, we do not report the corresponding results here.

To mitigate potential Peso problems as discussed in Goetzmann and Jorion (1999), we

use the full dataset rather than just US consumption data. For the same reason, we also

do not exclude data points from the sample. We pool the consumption data from all

countries into one single time series by adding country after country.8 We exclusively

use consumption data to calibrate the model and do not rely on asset price data in this

section.

The row labeled ‘Data’ in Panel A of Table 1 reports the unconditional moments. The

mean annual consumption growth rate is 0.02 and thus similar to the value observed for

U.S. consumption data to which asset pricing models are usually calibrated. The stan-

dard deviation is 0.065 and significantly exceeds the value for U.S. data of around 0.02.

The distribution is slightly right-skewed with a skewness of 0.37, and highly leptokurtic

with a kurtosis of 10.04. Since the left tail of the growth rate distribution contains infor-

mation about consumption crises, Panel B reports values of the empirical unconditional

cumulative distribution function below zero. For instance, the probability that the annual

consumption growth is below 0 (−10%) amounts to around 30% (3.3%).

Constantinides (2008) points out that understanding the part of the equity risk premium

which can be attributed to potential consumption disasters requires a dynamic analysis.

In particular, the duration of crises is of crucial importance, since annual consumption

growth over the peak-to-trough period of a disaster is highly autocorrelated. Therefore,

Table 2 provides some evidence on the durations of crises. We define the length of a crisis

as the number of consecutive years where the consumption growth rates are below a given

threshold. For a threshold of 0%, there are 1,492 observations with consumption growth

8In our calibrations, we make sure that we do not create ‘artificial’ crises across countries through

this.
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rates below 0%. This gives rise to 906 crises periods of different lengths. Panel A of Table

2 reports the unconditional probabilities that a crisis in the sample has a length of one

up to ten years. For instance, 61.6% of all crises in the data last only one year, 23% have

a duration of two years and so on. Finally, there is exactly one recession of 10 years in

the dataset (India in the 1930s). Panels B and C report the corresponding probabilities

for more pronounced annual consumption drops of at least −5% and −10%, respectively.

Even if consumption growth were i.i.d., crises can last for several years. Therefore, clus-

tering per se should not be interpreted as evidence that observed crises are generated by a

model with regimes. To study whether consumption jumps are indeed more frequent than

in models with i.i.d. consumption growth, we calculate various conditional probabilities

that bad years follow an initial bad year. We then check wether these conditional prob-

abilities are larger than the corresponding unconditional probabilities. We formalize this

idea by studying sequences of Bernoulli trials. The year-t outcome Xt is 0 if “consumption

growth is above the threshold” and 1 if “consumption growth is below the threshold”. We

consider thresholds of 0%, −5%, or −10%, respectively. The numbers in Table 2 are the

probabilities for a certain duration of a crisis given that year t has been the beginning of

the crisis. For a threshold of 0%, the first four conditional probabilities are given by (see

first line in Panel A of Table 2):

Prob(Xt+1 = 0|Xt = 1, Xt−1 = 0) = 0.616 (6)

Prob(Xt+2 = 0, Xt+1 = 1|Xt = 1, Xt−1 = 0) = 0.230

Prob(Xt+3 = 0, Xt+2 = 1, Xt+1 = 1|Xt = 1, Xt−1 = 0) = 0.092

Prob(Xt+4 = 0, Xt+3 = 1, Xt+2 = 1, Xt+1 = 1|Xt = 1, Xt−1 = 0) = 0.038

For a threshold of 0%, the empirical unconditional probability of being in a crisis is

Prob(Xt = 1) = 0.302. Therefore, if the data were generated by a sequence of independent

identical Bernoulli trials9, then the probabilities (6) could be calculated in the following

way:

Prob(Xt = 0) = 0.698

Prob(Xt = 0)Prob(Xt = 1) = 0.698 · 0.302 = 0.211

Prob(Xt = 0)Prob(Xt = 1)2 = 0.698 · 0.3022 = 0.064

Prob(Xt = 0)Prob(Xt = 1)3 = 0.698 · 0.3023 = 0.019

i.e. only the unconditional probabilities of (not) being in a crisis would matter. Compared

to a model with i.i.d. consumption realizations, crises of length 3 years are 50% more likely

9Notice that this implies Prob(Xt+k = n) = Prob(Xt = n) for all k = 1, 2, . . . and n ∈ {0, 1}.
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in the data and crises of length 4 years are twice as likely. These results are in line with

Constantinides (2008) and provide evidence that consumption drops cluster in reality.

3.2 Model with Jump-induced Regime Switches

We calibrate our model so that it matches both the unconditional distribution of annual

consumption growth rates and the conditional distribution of the durations of crises.

The consumption dynamics in our model depend on seven parameters (µ, σ, L, and four

intensities λj,k). As we are going to show in the following, there is a range of plausible

parameter combinations that can match the data well. In particular, the fit is robust with

respect to choosing the loss size L. We calibrate the model in several steps: First, we fix

σ = 0.04. This choice makes sure that the probability for negative consumption growth

rates is already of the right order without jumps. Additionally, jumps are essential to

generate the right amount of severe negative outcomes. The loss size L is however hard to

estimate. Therefore, we study five alternative calibrations each involving a different value

of L. More precisely, we consider loss sizes of L = −0.03,−0.04, . . . ,−0.07 and choose

the jump intensities λj,k accordingly. Finally, we fix the drift parameter µ so that the

corresponding calibration matches the unconditional expected consumption growth.

Notice that there are trade-offs between the jump size and the jump intensities that can

be used to calibrate the jump intensities. A given unconditional distribution of annual

consumption growth rates can be fitted by a small value of L (e.g. −0.03) and a high

value of the average jump probability, i.e. large values of λg,g + λg,b and λb,b, or a large

value of L and a small average jump probability. The empirical properties of crises then put

restrictions on the relation between λb,b and λb,g. If the conditional jump probability in the

bad state is low (small λb,b), we need to extend the average duration of the bad regime,

i.e. reduce λb,g. Otherwise, we would not have sufficient autocorrelation in our model-

generated data. The unconditional probability to be in a bad state puts an additional

restriction on the relation between λg,b and λb,g. A small value of λb,g implies a small

value of λg,b and vice versa. Finally, for given values of λg,b and L, we choose the intensity

λg,g so that the sum λg,g + λg,b is in the right range.

The columns labeled ‘Jump-induced regime switches’ of Table 3 report the five different

calibrations described above. The drift rate µ is about 0.03. The jump intensity λg,g is

0.02 in all specifications. The other intensities decrease if L gets more extreme: λg,b ranges

from 0.12 to 0.04, λb,b from 2.9 to 0.9, and λb,g from 1.08 to 0.36. In all specifications,

the values of λb,g and λg,b imply unconditional probabilities of the two states of 90% and
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10%, respectively. Notice that the probability of entering a crisis becomes smaller if the

loss size L is larger.

To document that our calibrations can explain the consumption data, we focus on the

above-mentioned dimensions of the data: the unconditional distribution of consumption

growth rates and the dynamics of crises. For each of the five parameterizations in Table

3, we simulate 500,000 years of daily consumption realizations and aggregate the data

to annual time series of consumption growth rates. Table 1 reports the unconditional

moments and tail probabilities of these simulated annual consumption growth rates. In

all specifications, the unconditional annual mean consumption growth rate is 0.02, exactly

as in the data. The unconditional annual standard deviation of consumption is between

0.051 and 0.055 for all specifications. This is slightly below the value of 0.065 in the data.

Furthermore, Panel B documents that the model fits the left tail almost perfectly.

To formally assess the fit of the simulated to the empirical data, we perform a Kolmogorov-

Smirnov (KS) test. Since our focus is on the left tail of the distribution, we truncate the

distribution at a level of 0% (and also −2% and −4% as a robustness check). The null

hypothesis of the two-sample Kolmogorov-Smirnov test is that two data samples have

been generated by the same (unconditional) distribution. In our data, the p-value from

the KS test is always above 0.02 (and sometimes as high as 0.48 for a truncation level

of −4% and L = −0.05). Therefore, we cannot reject the null hypothesis at the 1% level

that a model with jump-induced regime switches has generated the empirical consumption

data.10

Our second objective is to match the dynamics of crises described by their lengths. For

all five parametrizations, Table 2 reports the distributions of the lengths of crises. In all

cases, our model matches the data well. Notice that for a threshold of −10% there are

132 crises only. All except of one have a duration of less than 4 years. The empirical

probability of 0.008 that a crisis lasts for exactly 4 years is thus due to a single crisis

(Netherlands 1940-1943).

To summarize, for all five parameterizations the left tail of the simulated consumption

distribution is not statistically significantly different from the tail of the empirical distri-

bution. Besides, the average durations of crises are similar to the durations in the empirical

data. Notice that we focus on crises, i.e. on the left tail of the consumption distribution.

10As a robustness check, we also performed KS tests at the country level, i.e. we compared the model-

generated time series to each of the 42 country-specific time series of consumption growth rates in the

dataset. For a truncation level of 0%, the p-values are above 0.01 for 37 countries and above 0.1 for 25

countries.
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By including features such as stochastic volatility, stochastic growth rates, or stochastic

jump sizes, one could also try to fit the right tail of the distribution. This is beyond the

scope of this paper.

3.3 Model with Separated Regime Switches

The model with separated regime switches (3) and (4) does not allow for jump-induced

regime changes. We choose the parameters such that the local distribution of consumption

growth rates and the transition probabilities are the same as in the model with jump-

induced regime switches. The columns labeled “Separated regime switches” of Table 3

summarize the five resulting calibrations. The parameters µ, σ and L remain unchanged.

Also the probability of consumption jumps in the good state is the same as before. There-

fore, the value of λg,g is now equal to the sum of λg,g and λg,b in the model with jump-

induced regime switches (e.g., we set λg,g = 0.02 + 0.12 = 0.14 for L = −0.03 in Case I).

The other jump intensities remain unchanged.

Crises periods no longer start with an initial drop in consumption, which implies that the

total consumption loss over a crisis is smaller. This also materializes in the simulations

of the five model calibrations. The probabilities for extreme crises are smaller, and the

measured durations of crises are also smaller than before. In line with these findings, the

KS test now rejects the hypothesis that the models with separated regime switches have

generated the empirical consumption data.

Alternatively, we could also calibrate the model such that it fits the consumption data as

close as possible. Results not reported here, show that one can find calibrations that the

KS test cannot reject. These calibrations differ only very slightly from the ones presented

above. One would have to set the volatility parameter σ to 0.042 instead of 0.04, increase

the jump intensities by a small amount etc. However, such calibrations generate an equity

premium that is still too low (about 4–5 percentage points). Only our model with jump-

induced regime switches is able to achieve a realistic fit of the consumption data and at

the same time generate a realistic equity premium.

3.4 Peak-to-Trough Model

For the peak-to-trough model (5), we consider two calibrations. In the first calibration

(reported in the columns labeled ‘local calibration’ of Table 3), we match the local dis-

tribution of consumption. The jump intensity λ is set to the unconditional average jump
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intensity in the model with jump-induced regime switches. The jump size L and the

volatility σ have the same values as in the previous models. Not surprisingly, simulations

show that the model fails to match the distribution of consumption growth rates over one

year and over several years. In particular, the model fails to generate enough long-lasting

crises of two or more consecutive years with consumption growth below −5% or −10%.

Nevertheless, we include this model in our asset pricing analysis. This allows us to not

only study the impact of jump-induced regime switches on asset prices, but also the effect

of regime switches per se. The local calibration of the peak-to-trough model serves as one

benchmark for this analysis.

The second calibration follows the peak-to-trough calibration approach of Barro (2006).

We use the model with jump-induced regime switches and simulate 500,000 years of

consumption realizations for each of our five parametrizations. We then extract all crises

with one or several consecutive years of negative consumption growth. The peak-to-trough

consumption loss is the total drop in consumption over these years. The number of crisis

periods in our simulated samples is roughly 98,000 for all five parametrizations. Figure

1 depicts the resulting histogram of peak-to-trough disaster sizes for Case III. We then

extract all crises for which the peak-to-trough disaster size exceeds −15%, which is also

the threshold used by Barro (2006). This leaves us with about 9, 000− 12, 000 disasters,

depending on the parametrization. For the peak-to-trough ‘disaster calibration’, we set

the jump intensity λ equal to the number of disasters divided by 500,000 and the jump size

equal to the average peak-to-trough consumption loss. The column ‘disaster calibration’

of Table 3 reports the exact parameter values.

The simulated time series generated from this disaster calibration are similar to the data-

generating processes used by Barro (2006) except that we assume a constant jump size.

It is not surprising that the disaster calibration of the peak-to-trough model is not able

to match the stylized facts of the consumption data. For instance, the KS tests reject

the peak-to-trough model for all values of L. Similar as the model with separated regime

switches, the peak-to-trough model cannot resolve the tradeoff between matching con-

sumption data and generating a sizeable equity premium.

4 Asset Pricing

We now turn to the asset-pricing implications of our model. In this section, we focus

on the parametrization with a loss size of L = −0.05 (Case III). Section 5 analyzes the
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alternative parametrizations.

4.1 Representative Investor

Our economy is populated by a representative investor with stochastic differential utility

as introduced by Duffie and Epstein (1992b). His subjective time preference rate is β,

his relative risk aversion is γ, and his elasticity of intertemporal substitution is ψ. The

investor has an infinite planning horizon, and his indirect utility function is

Jt = Et

[∫ ∞
t

f(Cs, Js)ds

]
,

where the aggregator f is given by

f(C, J) =
βC1− 1

ψ(
1− 1

ψ

) [
(1− γ)J

] 1
θ
−1
− βθJ

and θ = 1−γ
1− 1

ψ

. Following Bansal and Yaron (2004), among others, we assume γ > 1 and

ψ > 1. Therefore, the investor has a preference for early resolution of uncertainty. In the

numerical examples, we first assume β = 0.03, ψ = 2, and γ = 6. As a robustness check,

we also study alternative values of the preference parameters including the CRRA case,

ψ = 1
γ
, where the investor is indifferent towards the resolution of uncertainty.

4.2 Pricing Kernel

Following Duffie and Epstein (1992a,b) and Benzoni, Collin-Dufresne, and Goldstein

(2011), we solve for the pricing kernel.11 The agent’s indirect utility J is

Jt =
C1−γ
t

1− γ
βθeθv

Zt
.

The pricing kernel ξ is given by

ξt = βθC−γt e
−βθt+(θ−1)

(
t∫
0

e−v
Zu
du+vZt

)
, (7)

where vZt is the logarithm of the wealth-consumption ratio.12 It depends on the state of

the economy Z and can thus take only two values, vg and vb, which solve the following

11Details of the derivation as well as the proofs of all following results can be found in Appendix A.
12See, e.g., Campbell, Chacko, Rodriguez, and Viceira (2004) and Benzoni, Collin-Dufresne, and Gold-

stein (2011).
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system of equations:

0 = e−v
g − β +

(
1− 1

ψ

)
µ− 1

2
γ

(
1− 1

ψ

)
σ2

+
1

θ
λg,g

[
(1 + L)1−γ − 1

]
+

1

θ
λg,b

[
(1 + L)1−γeθ(v

b−vg) − 1
]

0 = e−v
b − β +

(
1− 1

ψ

)
µ− 1

2
γ

(
1− 1

ψ

)
σ2

+
1

θ
λb,b
[
(1 + L)1−γ − 1

]
+

1

θ
λb,g

[
eθ(v

g−vb) − 1
]
.

The wealth-consumption ratios are ev
g

= 32.65 in the good state and ev
b

= 30.25 in the

bad state. In line with intuition, the agent’s total wealth is smaller in the bad state, i.e.

vg > vb.

4.3 Price-Dividend Ratios

Given the pricing kernel (7), we can price all claims in the economy including the dividend

claim. Following Bansal and Yaron (2004) and Wachter (2013), among others, dividends

Dt are modeled as a levered claim to consumption. The dividend dynamics are

dDt

Dt−
= µdt+ φσdWt +

[
(1 + L)φ − 1

]
dN g,g

t +
[
(1 + L)φ − 1

]
dN g,b

t

in the good state and

dDt

Dt−
= µdt+ φσdWt +

[
(1 + L)φ − 1

]
dN b,b

t

in the bad state. We assume a leverage parameter φ = 2 for both diffusion risk and

jump risk.13 Following Longstaff and Piazzesi (2004), we choose the same drift rate µ for

consumption and dividends. The pricing equation for the dividend claim is

Dte
wt = Et

[∫ ∞
t

ξτ
ξt
Dτdτ

]
,

where w is the logarithm of the price-dividend ratio. Analogously to the log wealth-

consumption ratio, the log price-dividend ratio w depends on the state of the economy.

Its two possible values, wg and wb, satisfy a system of equations that is provided in

Appendix A.

13In the literature, one can find different choices of the leverage parameter. Barro, Nakamura, Steinsson,

and Ursua (2013) assume a rather low leverage of φ = 1.5, whereas Bansal and Yaron (2004) set φ = 3.

In the robustness checks, we will study alternative parametrizations.
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In our model with jump-induced regime switches, the price-dividend ratios are ew
g

= 11.91

in the good state and ew
b

= 9.38 in the bad state. Upon a jump from the good to the

bad state, the price-dividend ratio drops by 21.16%. In the model with separated regime

switches, the price-dividend ratios are ew
g

= 13.24 and ew
b

= 10.13, and the drop in the

price-dividend ratio is 23.49%. Compared to our model the higher price-dividend ratios

reflect the lower overall risk in this economy. Regime switches from the good to the bad

state are disentangled from consumption losses. Since the agent is less averse to two small

downward jumps in prices than to one large jump, prices are higher. With less risk in

the good state, the price difference has to be larger in the model with separated regime

switches, too.

In the peak-to-trough model, the price-dividend ratio is constant. It is equal to 19.31

for the local calibration and 17.19 for the disaster calibration. The price-dividend ratios

are larger than in each of the models with regimes. Since potential consumption jumps

are more severe, the peak-to-trough disaster calibration exhibits more short-run risk than

the previous models. There is however no long-run risk. Additional short-run risk lowers

the price-dividend ratio, while omitting long-run risk has the opposite effect. Our results

show that the impact of long-run risk on the price-dividend ratio dominates the impact

of short-run risk.

4.4 Equity Risk Premium

Table 4 reports the local equity risk premia resulting from the different approaches. In

the model with jump-induced regime switches, the local equity risk premium is 0.0694 in

the good state and 0.1956 in the bad state. Since the economy is in the good state 90%

of the time, this yields an unconditional equity risk premium of 0.0820. The model with

separated regime switches generates an equity risk premium of 0.0499 in the good state

and 0.2164 in the bad state, leading to an unconditional average of 0.0665. Finally, the

peak-to-trough model implies an equity risk premium of 0.0290 for the local calibration

and 0.0671 for the disaster calibration.

The local calibration of the peak-to-trough model thus results in the lowest equity risk

premium. The value of 0.029 is significantly smaller than the typical values of 0.05− 0.08

estimated from the data. The disaster calibration combines several small jumps to one

large jump, i.e. it amplifies the short-run risk. Barro (2006) shows that this crisis feature

increases the equity risk premium heavily. By contrast, the model with separated regime

switches involves long-run risk. As Bansal and Yaron (2004) document, changes in future
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consumption dynamics constitute a significant risk, for which an agent with a preference

for early resolution of uncertainty demands a high equity risk premium. Our model with

jump-induced regime switches entertains a third channel combining long- and short-run

risk. The extra risk premium arising from this new channel has about the same order of

magnitude as the premium for pure long-run risk.

Since we can solve our model in closed form, we can explicitly decompose the equity risk

premium into its components. This allows us to explicate the mechanism through which

our model generates a large equity premium. The instantaneous asset return is defined

by dR = dP/P + D/P dt. The expected excess return on the dividend claim can be

decomposed into diffusion and jump risk premia:

Et[dR
i
t]

dt
− rif = RP diff +

∑
k=g,b

RP i,k.

where i ∈ {g, b} denotes the state of the economy. The diffusion risk premium is given by

RP diff = φσ · γσ.

The first term captures the exposure of the price to diffusive risk. This coincides with the

exposure of the dividend to diffusive risk, since there is no diffusive state variable in the

models under consideration. The second term is the market price of risk which follows

from the dynamics of the pricing kernel. As the diffusion parameters are the same across

all specifications, the diffusion risk premium is equal to 0.0192 in all models.

The differences in the unconditional equity risk premia across models and parametriza-

tions arise from the jump risk premia. Each jump risk factor carries a jump risk premium,

i.e. there is one jump risk premium in the peak-to-trough model and two jump risk pre-

mia in every state of the models with regimes. Table 4 reports the components of the

conditional risk premia in all models. Since the good state prevails 90% of the time, the

unconditional risk premia mainly depend on the risk premia in the good state. Taking

this into account our numerical results show that the premium for jump-induced regime

switches is quantitatively the most important component of the unconditional risk pre-

mium. This holds true for our model, but also compared to the components of all other

model specifications.

To shed more light on this finding, we explicitly decompose the jump risk premia further

into their constituents. In general, the risk premium for a jump risk factor with constant

jump size and intensity is the product of three figures:

RP = λ · η · ζ.
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The amount of jump risk depends on the intensity λ and the exposure ζ. This exposure is

defined as the relative change of the asset price upon the corresponding event. It follows

from the equilibrium price dynamics. The market price of risk η measures the equilibrium

compensation for one unit of this risk. It follows from the dynamics of the pricing kernel.

Table 5 reports the intensities, market prices of risk and exposures for all jump risk factors

and all model specifications.14

In general, the market prices of risk and the exposures can involve a short-run and a

long-run component. An event which changes the consumption by X and/or switches the

state (and thus affects the valuation ratios) gives rise to the following market price of risk:

η = 1− (1 +X)−γ︸ ︷︷ ︸
SRR

· e(θ−1)(v after jump −v before jump )︸ ︷︷ ︸
LRR

.

The immediate consumption drop upon the event gives rise to a short-run component

(1 +X)−γ. If X < 0, the market price of jump risk 1− (1 +X)−γ for jumps that do not

change the regime (‘normal jumps’) is negative. The long-run component captures the

compensation for regime switches. A change in the future consumption dynamics affects

the agent’s continuation utility and thus the equilibrium wealth-consumption ratio. Since

θ < 1, the long-run component makes the market price of risk more negative if the wealth-

consumption decreases upon the jump. The change in the wealth-consumption ratio is

priced if the agent is not indifferent towards the timing of the resolution of uncertainty

(θ 6= 1). In the special case of CRRA preferences, the market price of jump risk involves

a compensation for short-run consumption risk only.

Similarly, the exposure of the dividend claim to an event that changes the consumption

by X and/or switches the state can be decomposed as follows:

ζ = (1 + X)φ︸ ︷︷ ︸
SRR

· ew after jump −w before jump︸ ︷︷ ︸
LRR

−1.

The price reaction comprises a dividend effect and a price-dividend ratio effect. If con-

sumption changes by X upon the event, the dividend changes by (1 + X)φ − 1 due to

leverage, reflecting the short-run risk. If X < 0, then (1+X)φ < 1. Therefore, the exposure

to normal jumps is negative and the risk premium for such jumps is positive. The price-

dividend ratio effect, ew after jump −w before jump , captures the long-run influence of such an

event. It is smaller than 1 if and only if e(θ−1)(v after jump −v before jump ) is greater than 1.

Consequently, the resulting premium for long-run risk is always positive.

14A detailed derivation can be found in Appendix A.
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Using the calibrations with a loss size of L = −0.05, Table 5 reports the decompositions

of the risk premium for all model specifications. The peak-to-trough model solely allows

for short-run risk leading to one jump risk premium only. Depending on the calibration,

this premium is either 0.0098 or 0.0479. The significant difference can be attributed to

the market price of risk. The amount of risk λ[(1 + L)φ − 1] is equal to −0.0273 in the

local calibration and −0.0105 in the disaster calibration. The market prices of risk are

−0.3604 and −4.5739, respectively. The disproportionally higher market price of risk in

the disaster calibration overcompensates the smaller amount of risk, which leads to a

larger equity risk premium. This finding mirrors the results of Barro (2006) and Rietz

(1988) who propose disaster models to solve the equity premium puzzle. A risk-averse

agent is more afraid of rare severe jumps as compared to frequent small jumps.

In the model with separated regime switches, there are two types of jump risk premia in

every state: normal jumps and jumps triggering separated regime switches. Normal jumps

denoted by the superscripts ‘g, g’ and ‘b, b’ lead to an immediate drop in consumption

and dividends, but have no effect on the regime. Consequently, the market prices of risk

ηg,g = ηb,b = 1−(1 + L)−γ = −0.3604 and the price exposures ζg,g = ζb,b = (1 + L)φ−1 =

−0.0975 only reflect short-run consumption risk. The risk premia λg,gηg,gζg,g and λb,bηb,bζb,b

thus only differ because of different jump intensities. On the other hand, separated regime

switches solely affect the economic regime, but have no immediate impact on consumption

and dividends. The premium for regime switches from the good to the bad state is given

by λg,bηg,bζg,b. The market price of risk ηg,b = 1 − e(θ−1)(v
b−vg) = −1.4494 reflects only

long-run risk. Since the agent has a preference for early resolution of uncertainty, he

demands a premium for the risk of adverse changes in the state variable. This implies

that ηg,b is negative. By a similar argument the market price ηb,g for switches from the

bad state to the good state is positive. The exposures are driven by the changes in the

price-dividend ratios of the dividend claim. We have ζg,b = ew
b−wg − 1 = −0.2334 and

ζb,g = ew
g−wb − 1 = 0.3045. Taken together, the agent demands a positive risk premium

for both regime switches. It is equal to 0.0272 in the good state and 0.1304 in the bad

state.

The model with jump-induced regime switches leads to the highest risk premium in the

good state. The biggest share of this risk premium can be attributed to the premium for

jump-induced regime switches. Since this regime switch happens simultaneously with a

consumption drop, the market price of risk provides a combined compensation for short-
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run and long-run risk:

ηg,b = 1− (1 + L)−γ︸ ︷︷ ︸
1−ηjump

e(θ−1)(v
b−vg)︸ ︷︷ ︸

1−ηRS
= ηjump + ηRS − ηjumpηRS. (8)

The market price of risk is not just the sum of the market prices of risk for consumption

jumps and regime switches, but involves an additional term −ηjumpηRS. In equilibrium,

the representative agent demands this extra premium since the consumption drop sparks

an economic crisis. Numerically, we get ηg,b = −2.1449, which can be decomposed into

ηjump = −0.3604, ηRS = −1.3118, and −ηjumpηRS = −0.4727. The value of the interaction

term is significant. In particular, its contribution to the market price of risk is larger than

the contribution of consumption losses.15

To provide an intuition for the additional term in the market price of risk, we draw

an analogy to the disaster model of Barro (2006) and Rietz (1988). In this model, the

representative agent favors small jumps occurring with a large probability over one large

jump happening with a small probability (given that the average loss is the same in both

cases). The market price of risk and in turn also the equity premium in disaster models

is thus nonlinear in the severity of the disasters. By the same line of argument, the agent

dislikes joint downward jumps in consumption and in the wealth-consumption ratio much

more than separate ones.

The exposure to jump-induced regime switches also combines a short-run and a long-run

component:

ζg,b = (1 + L)φ︸ ︷︷ ︸
1+ζjump

ew
b−wg︸ ︷︷ ︸

1+ζRS

−1 = ζjump + ζRS + ζjumpζRS. (9)

The term ζjump is equal to −0.0975 and thus equal to ζg,g. Moreover, we have ζRS =

−0.2116, and ζjumpζRS = 0.0206.16 Here the interaction term has a different sign than

the other two terms. Having jump-induced regime switches instead of separated ones thus

slightly reduces the overall exposure of the asset price to adverse jumps.

Finally, we turn to the risk premium for jump-induced regime switches which is the

15Notice that in the model with separated regime switches we have ηg,b = −1.4494. This is different

from ηRS in the model with jump-induced regime switches because the wealth-consumption ratios differ

in both economies.
16Note that, since the price-dividend ratios are in general different in the two models, ζRS is in general

not equal to the exposure ζg,b in the model with separated regime switches.
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combination of the market prices of risk and the exposure. It is given by

λg,b
[
(1 + ζjump)(1 + ζRS)− 1

][
1− (1− ηjump)(1− ηRS)

]
= λg,b

(
ζjump + ζRS + ζjumpζRS

)(
ηjump + ηRS − ηjumpηRS

)
.

Similar to the exposures and the market prices of risk, the risk premium is also superad-

ditive, i.e. it is bigger than the sum of the single risk premia. Table 6 decomposes this risk

premium into its components. The first part of the risk premium can be regarded as the

compensation for (hypothetical) pure consumption jumps and (hypothetical) pure regime

switches:

λg,bζjumpηjump + λg,bζRSηRS.

This term is structurally equal to the risk premium in a model with separated regime

switches.17 We get

λg,bηjumpζjump = 0.0028

λg,bηRSζRS = 0.0222 .

These two terms add up to around 0.025. In line with the long-run risk literature such as

Bansal and Yaron (2004), the risk premium earned on long-run risk is much larger than

the premium on short-run consumption risk.

The second part consists of cross risk premia. Since consumption jumps and regime

switches happen simultaneously, consumption jumps also earn the market price of risk

for regime switches, and vice versa:

λg,bζjumpηRS + λg,bζRSηjump.

These two terms are unique to our model. Combining long-run and short-run risk thus

increases the risk premium. This is so even without the super-additive terms in the expo-

sures and market prices of risk. Numerically, the cross risk premia amount to

λg,bηRSζjump = 0.0102

λg,bηjumpζRS = 0.0061 .

They add up to around 0.016. Both are economically significant since both the market

price of risk for long-run risk and the exposure to long-run risk are large.

17Numerically, it is slightly different since the changes in the price-dividend and wealth-consumption

ratios upon a regime switch are different in the two models.
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The third part of the risk premium are additional interaction terms resulting from super-

additivity:

λg,bζjumpζRS
(
ηjump + ηRS

)
− λg,b

(
ζjump + ζRS

)
ηjumpηRS − λg,bζjumpζRSηjumpηRS.

Numerically, they amount to

λg,bζjumpζRS(ηjump + ηRS) = −0.0028

−λg,b(ζjump + ζRS)ηjumpηRS = 0.0117

−λg,bζjumpζRSηjumpηRS = −0.0008 .

They add up to another 0.008. Here, the most important contribution comes from ηjumpηRS,

the super-additive component of the market prices of risk. Putting everything together,

the overall premium for jump-induced regime switches is around 0.05. About half of this

premium can be attributed to the joint occurrence of consumption jumps and regime

switches.

To summarize, the additional risk premium in a model with jump-induced regime switches

comes from two sources. First of all, consumption jumps inherit the market price of regime

switches and regime switches inherit the market price of consumption jumps if these two

events are tied together. Second, the superadditivity of exposures and market prices of

risk adds further interaction terms to the risk premium.

The unconditional equity risk premium is also the largest in the economy with jump-

induced regime switches. It exceeds the unconditional equity risk premium in a model with

separated regime switches by around 1.5 percentage points although the local distribution

of future consumption is the same in both economies. The link between long-run state

variable risk and short-run consumption risk adds a significant component to the risk

premium which is about the same order of magnitude as the premium for pure long-run

risk or pure short-run risk.

4.5 Risk-free interest rate

Table 7 reports the risk-free rates in all economies. The unconditional risk-free rate in

the model with jump-induced regime switches is 0.0155 and thus about 70 basis points

lower than in the model with separated regime switches. In the peak-to-trough model,

the numbers are 0.0284 (local calibration) and 0.0136 (disaster calibration). Similar to

the analysis of the equity premium, the numbers show that our model with jump-induced
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regime switches can also resolve the tradeoff between matching consumption data and

generating a low risk-free rate.

The risk-free rate follows from the (negative) expected growth rate of the pricing kernel.

It equals

rjf = β +
1

ψ

Et [dCt]

Ct dt
− πdiff −

∑
k=g,b

πj,k,

in state j ∈ {g, b}. The risk-free interest rate comprises the subjective time preference

rate β, the expected growth rate of consumption scaled by the inverse of the EIS, and

several precautionary savings terms for the different risk factors in our model:

πdiff =
1

2
γ(1 +

1

ψ
)σ2

πj,k = λj,k
[
−ηj,k +

1

ψ
L+

1− θ
θ

(
(1 + L)1−γeθ(v

k−vj) − 1
)]

.

for (j, k) ∈ {(g, g), (g, b), (b, b)} and

πb,g = λb,g
[
−ηb,g +

1− θ
θ

(
eθ(v

g−vb) − 1
)]

.

Table 7 also reports the decomposition of the risk-free rate into its components. The first

three components (time preference rate, expected consumption growth, precautionary

savings term for diffusive risk) are straightforward and identical across settings (except

for the expected consumption growth in the disaster calibration).18

Since the good state prevails 90% of the time, differences in the unconditional risk-free rate

are mainly driven by differences in the conditional risk-free rate in the good state. These

differences arise from the precautionary savings terms for jump risk. In the economy with

jump-induced regime switches, these terms reduce the risk-free rate by almost 1 percentage

point as compared to the model with separated regime switches. The mechanism driving

this finding is similar as for the equity premium. The precautionary savings term for

jump-induced regime switches is πg,b = 0.0140, compared to πg,b = 0.0053 with separated

regime switches.

18Notice that the expected consumption growth in the local calibration of the peak-to-trough model

equals the unconditional expected consumption growth in the other two models. However, the expected

consumption growth is slightly higher with the disaster calibration.
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5 Robustness Checks

5.1 Elasticity of Intertemporal Substitution

The upper panel of Figure 2 depicts the local equity premium in the good state in the

regime switching models and the unconditional local equity premium in the peak-to-

trough specifications as functions of the elasticity of intertemporal substitution ψ. The

other panels of Figure 2 depict the risk premium for regime switches from the good to the

bad state, the market price of risk ηg,b and the exposure ζg,b in the two regime switching

models. The independent variable EIS ranges from 0.02 to 2 so that the figures capture

our baseline case from above as well as the special case with CRRA preferences (ψ = 1/6)

which is indicated by the left dotted line. Table 8 reports the same equity premium

decomposition as Table 4, but for the power utility case (ψ = 1/6).

Comparing Table 8 to Table 4 confirms that only the risk premium for (jump-induced

or separated) regime switches depends on the EIS. All other risk factors in our model

(diffusion and normal jumps) are pure cash flow risk and do not affect the state variable.

Therefore the exact degree of the agent’s preference for early resolution of uncertainty

(i.e. the tradeoff between γ and ψ) does not matter for these risk premia. The only part

of the risk premium that changes upon a change in the EIS is the risk premium associated

with regime switches. Consequently, the risk premium in the peak-to-trough model does

not depend on ψ.

As Figure 2 shows, the total risk premia in the regime switching models are nonmonotonic

functions of ψ with minima around the CRRA case ( ψ = 1/6). This nonmonotonicity

derives from the premium for (jump-induced or separated) regime switches λg,bηg,bζg,b,

which is depicted in the second panel. The lower graphs of Figure 2 depict ηg,b and ζg,b as

a function of the EIS. The nonmonotonic behavior of the risk premium comes from two

ingredients: (i) the monotonicity of ηg,b and ζg,b and (ii) their signs.

The market price ηg,b is monotonically decreasing in ψ both for jump-induced and sepa-

rated regime switches. Recall that we can write this market price as

ηg,b = 1− (1 + L)−γ︸ ︷︷ ︸
1−ηjump

e(θ−1)(v
b−vg)︸ ︷︷ ︸

1−ηRS
.

As the market price ηjump does not depend on ψ, the monotonic pattern comes from the

market price for regime switches ηRS. For the log wealth-consumption ratios, it holds true

that vb > vg for ψ < 1 and vb < vg for ψ > 1. In the latter case, the substitution effect
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dominates the income effect and the wealth-consumption ratio is higher in the good state.

The term θ − 1 is negative for ψ > 1 and for ψ < 1/6 and positive in between. This

results in a monotonically decreasing ηRS. For ψ = 1/6, ηRS is equal to zero, since the

CRRA investor does not price state variable risk. For ψ > 1/6, adverse changes in the

state command a negative market price of risk, which increases in absolute terms in the

preference for early resolution of uncertainty (and thus in ψ).

In the model with separated regime switches, the market price ηg,b is essentially equal to

ηRS (except that the exact values for vg and vb are different). In the model with jump-

induced regime switches, the market price of risk is amplified by the term involving ηjump.

Therefore, ηg,b is always smaller than the market price in the model with separated regime

switches and has a null below ψ = 1/γ.

The exposures ζg,b are also decreasing in ψ. The more the investor cares about the timing

of the resolution of uncertainty, the larger the price difference between the good and the

bad state, and this price difference is reflected in the exposure ζg,b. The exposure is always

lower with jump-induced regime switches than with separated regime switches. This is

because of the additional cash flow shock to which the regime switch is coupled. Similar

to the market price of risk, the exposure switches sign and becomes positive if the EIS

becomes sufficiently low for both model specifications. If the preference for early resolution

of uncertainty is not very pronounced, a switch from the good to the bad regime increases

all prices in economy. For CRRA utility (ψ = 1/6), we thus find the usual counterintuitive

result that the price-dividend ratio is higher in bad states of the world than in good states.

For recursive utility with ψ > 1, the direction of the relation reverses. Consequently, the

exposure function has a null between ψ = 1/6 and ψ = 1.

The behavior of ηg,b and ζg,b explains the nonmonotonicity of the jump risk premium

depicted in the second graph. For high values of the EIS, both ηg,b and ζg,b are negative and

monotonically decreasing. Thus, their product is positive and monotonically increasing.

For very low values of the EIS, both ηg,b and ζg,b are positive and monotonically decreasing,

which results in a positive and monotonically decreasing risk premium. In between, the

risk premium has a minimum for ψ ≈ 0.2. For values of ψ around 1/6, the risk premium

λg,bηg,bζg,b becomes even negative, so that the total risk premium in the first graph is close

to zero.

Notice that the two curves in the first graph intersect around ψ = 0.25, i.e. for values below

ψ = 0.25 the total risk premium is higher in a model with separated regime switches than

with jump-induced regime switches. This is again in line with the well-known intuition
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from the long-run risk literature that state variable risk and recursive preferences are

necessary to generate sizeable risk premia. On the other hand, the difference in risk

premia between both models is still sizeable for intermediate values of ψ between 0.5 and

1.5. Our findings are thus robust to changes of the EIS as long as the preference for early

resolution of uncertainty is reasonably pronounced.

To summarize, the risk premium for regime switches reaches a minimum around ψ = 1/γ

which is the CRRA case. This minimum is even negative. For other values of ψ, the

risk premium can be significantly larger. This pattern is particularly pronounced in an

economy with jump-induced regime switches.

5.2 Jump Sizes and Intensities

The previous results have used the parametrization with a loss size of L = −0.05, i.e.

Case III of Table 3. Figure 3 depicts the unconditional local equity premium and the

risk-free rate for the other cases. The jump size L increases (in absolute terms) from

Case I to Case V, while the jump intensity decreases. The figure reveals that the equity

premium is high for all parametrizations of our model. It is the highest in Case IV.

Overall, we conclude that there are several parameterizations of our model that can match

the empirical consumption data and lead to a reasonable equity premium. In all cases,

our additional channel of jump-induced regime switches increases the equity premium

significantly. The additional premium is in all cases about the same order of magnitude

as the premium for separated regime switches which is a pure long-run risk premium à

la Bansal and Yaron (2004). The lower figure shows the risk-free rate for all cases. The

effect of our new channel on the risk-free rate is essentially a mirror image of the findings

for the equity premium.

5.3 Leverage

Figure 4 depicts the unconditional local equity premium as a function of the leverage

parameter φ ranging between 1 and 3. So far, we have assumed φ = 2. For large values of

φ, the two models with regimes generate higher premia than both parametrizations of the

peak-to-trough model. One reason for this finding is that the jump size in all our models

is constant. In the peak-to-trough model, this implies that there is only one jump risk

factor with a constant jump size, i.e. no jump size risk. In the regime switching models,

conditional on the state of the economy, there are always two jump risk factors which have
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different price impacts. Essentially, this is comparable to a situation with one jump risk

factor where the jump size is drawn from a distribution with two possible outcomes. Stated

differently, one can interpret the regime switching models, conditional on the economic

state, as models with constant jump intensity, but jump size risk. The larger the leverage

parameter, the larger is the average size and variance of price jumps. As compared to the

peak-to-trough model, the risk premium in the regime switching models thus increases

disproportionately as a function of the leverage parameter.

Finally, notice that the additional equity premium due to our jump-induced regime switch

channel is robust to changes in the leverage parameter. This can be seen by comparing

the red solid line and the blue dotted line. The difference shall be interpreted as this

additional premium. Obviously, it is almost constant across leverage levels.

6 Conclusion

This paper entertains a tractable way to model the joint occurrence of negative consump-

tion realizations and changes in the distribution of future consumption growth. This new

channel combines short-run and long-run risk. We calibrate our model to consumption

data covering 42 countries and show that it matches the data well. Our model gener-

ates disasters that are realistic both from their total size, but also from their duration.

In particular, it avoids the so-called peak-to-trough calibration where the total size of a

disaster is realized at a single point in time. By contrast, our model produces sufficiently

many long-lasting periods in which moderate negative consumption realizations cluster.

Nevertheless, this approach leads to a sizeable equity premium. Therefore, our results

address the critique by Constantinides (2008). We also find that a stylized model that

disentangles long-run and short-run risk cannot generate a realistic equity premium if the

risk aversion of the representative agent is in a reasonable range.

Since our novel channel leads to a tractable class of models and allows for closed-form

solutions of the equity premium and the risk-free rate, it could potentially be embedded in

other asset pricing models. This might help future research to match the equity premium

and the risk-free rate even if the focus is not particularly on this research question. In

other words, our findings support the argument that by incorporating a combination of

long-run and short-run risk one can achieve a sizeable equity premium without making

unrealistic assumptions about the dynamics of crises.
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A Solving for the Equilibrium

A.1 Wealth-Consumption Ratio

Let Zt ∈ {g, b} denote the state of the economy at time t. Then the representative investor has two value

functions, one for each state:

JZtt = Et

[∫ ∞
t

f
(
Cs, J

Zs
s

)
ds

]
.

For the sake of readability, we will, however, suppress the dependence of the value function, the pricing

kernel, the aggregate consumption and other variables on the state Zt ∈ {good, bad} in the following. As

usual, the aggregator f is defined as

f(C, J) =
βC1− 1

ψ(
1− 1

ψ

) [
(1− γ)J

] 1
θ−1
− βθJ.

β denotes the subjective time discount rate, ψ the elasticity of intertemporal substitution, and γ the

relative risk aversion. We also define θ = 1−γ
1− 1

ψ

. A Feynman-Kac-like computation then gives

0 = f (Ct, Jt) +DJt (10)

i.e. one Bellman equation for each state.

The dynamics of consumption in the good state are

dCt
Ct−

= µdt+ σdWt + LdNg,g
t + LdNg,b

t , (11)

its dynamics in the bad state are

dCt
Ct−

= µdt+ σdWt + LdN b,b
t . (12)

We apply the following conjecture for the functional form of the value function J :

J =
C1−γ

1− γ
βθeθv

Z

(13)

where vZ can take two values, one in each state. Campbell, Chacko, Rodriguez, and Viceira (2004) and

Benzoni, Collin-Dufresne, and Goldstein (2011) show that, with this conjecture, vZ is the log wealth-

consumption ratio. Plugging the guess (13) for J into the aggregator function results in

f (C, J) = θJ
(
e−v

Z

− β
)
.

The infinitesimal generator DJ follows via Itô’s Lemma:

DJ =

(
1− 1

ψ

)
θJgµ− 1

2
γ

(
1− 1

ψ

)
θJgσ2

+ λg,gJg
[
(1 + L)1−γeθv

g−θvg − 1
]

+ λg,bJg
[
(1 + L)1−γeθv

b−θvg − 1
]
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in the good state and

DJ =

(
1− 1

ψ

)
θJbµ− 1

2
γ

(
1− 1

ψ

)
θJbσ2

+ λb,bJb
[
(1 + L)1−γeθv

b−θvb − 1
]

+ λb,gJb
[
eθv

g−θvb − 1
]

in the bad state. Plugging these expressions into (10), dividing by θJg and θJb respectively, and rear-

ranging some terms gives the following two algebraic equations for the two unknowns vg and vb:

0 = e−v
g

− β +

(
1− 1

ψ

)
µ− 1

2
γ

(
1− 1

ψ

)
σ2

+
1

θ
λg,g

[
(1 + L)1−γ − 1

]
+

1

θ
λg,b

[
(1 + L)1−γeθ(v

b−vg) − 1
]

0 = e−v
b

− β +

(
1− 1

ψ

)
µ− 1

2
γ

(
1− 1

ψ

)
σ2

+
1

θ
λb,b

[
(1 + L)1−γ − 1

]
+

1

θ
λb,g

[
eθ(v

g−vb) − 1
]
.

A.2 Pricing Kernel

As Duffie and Epstein (1992a) and Benzoni, Collin-Dufresne, and Goldstein (2011) show, the pricing

kernel is given by

ξt = βθC−γt e
−βθt+(θ−1)

(
t∫
0

e−v
Zu
u du+v

Zt
t

)
. (14)

The dynamics of the pricing kernel can be computed via Itô’s Lemma. The partial derivatives of ξ with

respect to C and v follow from (14). The dynamics of C are given in (11) and (12). The dynamics of the

pricing kernel are

dξt
ξt−

=
[
−βθ + (θ − 1)e−v

g
]
dt− γµdt+

1

2
γ(1 + γ)σ2dt

−ηdiff,gdWt − dNg,g
t ηg,g − dNg,b

t ηg,b

in the good state and

dξt
ξt−

=
[
−βθ + (θ − 1)e−v

b
]
dt− γµdt+

1

2
γ(1 + γ)σ2dt

−ηdiff,bdWt − dN b,b
t ηb,b − dN b,g

t ηb,g

in the bad state. For later use, we abbreviate the drift of the pricing kernel by

µZξ = −βθ + (θ − 1)e−v
Z

− γµ+
1

2
γ(1 + γ)σ2.

The market price of diffusion risk is ηdiff,Z = γσ. The market prices of jump risk are

ηg,g = 1− (1 + L)
−γ

ηg,b = 1− (1 + L)
−γ

e(θ−1)(v
b−vg)

ηb,b = 1− (1 + L)
−γ

ηb,g = 1− e(θ−1)(v
g−vb).
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The risk-free rate is equal to the negative expected growth rate of the pricing kernel ξt:

rgf = β +
1

ψ

(
µ+ Lλg,g + Lλg,b

)
− 1

2
γ(1 +

1

ψ
)σ2

−λg,g
[
−ηg,g +

1

ψ
L+

1− θ
θ

(
(1 + L)1−γ − 1

)]
−λg,b

[
−ηg,b +

1

ψ
L+

1− θ
θ

(
(1 + L)1−γeθ(v

b−vg) − 1
)]

rbf = β +
1

ψ

(
µ+ Lλb,b

)
− 1

2
γ(1 +

1

ψ
)σ2

−λb,b
[
−ηb,b +

1

ψ
L+

1− θ
θ

(
(1 + L)1−γ − 1

)]
−λb,g

[
−ηb,g +

1− θ
θ

(
eθ(v

g−vb) − 1
)]
.

A.3 Pricing the Dividend Claim

For the price-dividend ratio of the claim to dividends, we apply the Feynman-Kac formula. Let w denote

the log price-dividend ratio. Defining g(ξ,D,w) = ξDew results in

g(ξt, Dt, wt) = ξtDte
wt = Et

[∫ ∞
t

ξτDτdτ

]
= Et

[∫ ∞
t

g(ξτ , Dτ , wτ )

ewτ
dτ

]
.

The Feynman-Kac formula yields

Dg(ξ,D,w) +
g(ξ,D,w)

ew
= 0 ⇐⇒ Dg(ξ,D,w)

g(ξ,D,w)
+ e−w = 0. (15)

The dividend dynamics in our model are

dDt

Dt−
= µdt+ φσdWt +

[
(1 + L)φ − 1

]
dNg,g

t +
[
(1 + L)φ − 1

]
dNg,b

t

in the good state and

dDt

Dt−
= µdt+ φσdWt +

[
(1 + L)φ − 1

]
dN b,b

t

in the bad state. Itô’s Lemma gives

Dg
g

= µξ + µD + µw +
1

2

d 〈wc〉
dt

+
d 〈ξc, Dc〉
ξDdt

+
d 〈wc, Dc〉
Ddt

+
d 〈wc, ξc〉
ξdt

+ Jump Terms.
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The log price-dividend ratio w can take the two values wg and wb only, i.e. µw is 0. From (15), we get

the following two algebraic equations:

0 = e−w
g

+ µgξ + µ− ηdiff,gφσ

+λg,g
[
(1− ηg,g)(1 + L)φ − 1

]
+λg,b

[
(1− ηg,b)(1 + L)φew

b−wg − 1
]

0 = e−w
b

+ µbξ + µ− ηdiff,bφσ

+λb,b
[
(1− ηb,b)(1 + L)φ − 1

]
+λb,g

[
(1− ηb,g)ew

g−wb − 1
]
.

A.4 Exposures and Equity Risk Premium

Conditional on the state, the dynamics of the asset price P = ewD follow via Itô’s Lemma. In the good

state, we have

dPt
Pt−

= µdt+ φσdWt +
[
(1 + L)φ − 1

]
dNg,g

t

+
[
(1 + L)φew

b−wg − 1
]
dNg,b

t .

In the bad state, the dynamics are

dPt
Pt−

= µdt+ φσdWt +
[
(1 + L)φ − 1

]
dN b,b

t

+
[
ew

g−wb − 1
]
dN b,g

t .

We abbreviate the sensitivities of the asset price to the different risk factors as

ζdiff = φσ

ζg,g = (1 + L)φ − 1

ζg,b = (1 + L)φew
b−wg − 1

ζb,b = (1 + L)φ − 1

ζb,g = ew
g−wb − 1.

The expected excess return on the dividend claim, i.e. the equity risk premium, follows from these

exposures and the respective market prices of risk. In the good state, it is equal to

γφσ2 + λg,g
[
1 + L)φ − 1

] [
1− (1 + L)

−γ
]

+ λg,b
[
(1 + L)φew

b−wg − 1
] [

1− (1 + L)
−γ

e(θ−1)(v
b−vg)

]
.

The equity risk premium in the bad state is

γφσ2 + λb,b
[
1 + L)φ − 1

] [
1− (1 + L)

−γ
]

+ λb,g
[
ew

g−wb − 1
] [

1− e(θ−1)(v
g−vb)

]
.
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Panel A: Mean and standard deviation of consumption growth rates

annual annual 5-year 5-year 10-year 10-year
mean std mean std mean std

Data 0.020 0.065 0.103 0.182 0.221 0.280

Model: Case I 0.020 0.051 0.083 0.118 0.198 0.200

Model: Case II 0.020 0.054 0.082 0.128 0.195 0.218

Model: Case III 0.020 0.056 0.082 0.132 0.197 0.228

Model: Case IV 0.020 0.055 0.084 0.130 0.201 0.226

Model: Case V 0.020 0.052 0.086 0.122 0.205 0.214

Panel B: Tail probabilities

Percentage of country-year observations below . . .
0 −0.02 −0.04 −0.05 −0.06 −0.08 −0.10 −0.15

Data 0.302 0.181 0.109 0.083 0.066 0.044 0.033 0.015

Model: Case I 0.312 0.189 0.111 0.084 0.064 0.038 0.023 0.005

Model: Case II 0.310 0.192 0.117 0.092 0.074 0.048 0.032 0.009

Model: Case III 0.306 0.190 0.117 0.093 0.075 0.051 0.035 0.013

Model: Case IV 0.302 0.185 0.112 0.088 0.071 0.047 0.032 0.012

Model: Case V 0.302 0.179 0.104 0.080 0.062 0.040 0.026 0.009

Table 1: Unconditional distribution of annual consumption growth rates

The table reports moments and tail probabilities of the unconditional distribution of
consumption growth rates. The rows labeled ‘Data’ are taken from the Barro dataset and
are discussed in Section 3.1. The model results have been obtained from Monte Carlo
simulations over 500,000 years and are analyzed in Section 3.2. For brevity, the table
reports results for the model with jump-induced regime switches only. The parameters for
these cases are reported in Table 3.

34



P
an

el
A

:
T

h
re

sh
ol

d
0%

1
ye

a
r

2
ye

ar
s

3
ye

ar
s

4
y
ea

rs
5

ye
ar

s
6

ye
ar

s
7

y
ea

rs
8

ye
ar

s
9

ye
ar

s
10

y
ea

rs

D
at

a
0.

61
6
0

0.
23

00
0.

09
20

0.
03

80
0.

01
40

0.
00

80
0

0.
00

20
0

0.
00

10

M
o
d

el
:

C
as

e
I

0.
64

8
5

0.
21

86
0.

08
06

0.
03

16
0.

01
26

0.
00

49
0.

00
21

0.
00

07
0.

00
03

0.
00

01
M

o
d

el
:

C
as

e
II

0.
64

8
4

0.
21

29
0.

08
17

0.
03

30
0.

01
36

0.
00

61
0.

00
23

0.
00

12
0.

00
04

0.
00

02
M

o
d

el
:

C
as

e
II

I
0
.6

5
59

0.
20

74
0.

07
78

0.
03

25
0.

01
56

0.
00

60
0.

00
28

0.
00

14
0.

00
04

0.
00

02
M

o
d

el
:

C
as

e
IV

0.
66

4
8

0.
20

50
0.

07
41

0.
03

12
0.

01
36

0.
00

61
0.

00
27

0.
00

15
0.

00
07

0.
00

02
M

o
d

el
:

C
as

e
V

0.
67

8
2

0.
20

42
0.

07
02

0.
02

71
0.

01
16

0.
00

49
0.

00
22

0.
00

10
0.

00
06

0.
00

02

P
an

el
B

:
T

h
re

sh
ol

d
−

5%
1

ye
ar

2
ye

ar
s

3
ye

ar
s

4
y
ea

rs
5

ye
ar

s
6

ye
ar

s
7

y
ea

rs
8

ye
ar

s
9

ye
ar

s
10

y
ea

rs

D
at

a
0.

79
9
0

0.
15

20
0.

03
40

0.
01

20
0

0.
00

30
0

0
0

0

M
o
d

el
:

C
as

e
I

0.
81

1
8

0.
14

88
0.

03
14

0.
00

64
0.

00
13

0.
00

01
0.

00
00

0.
00

00
0.

00
00

0.
00

00
M

o
d

el
:

C
as

e
II

0.
77

0
2

0.
17

18
0.

04
21

0.
01

19
0.

00
30

0.
00

06
0.

00
01

0.
00

01
0.

00
00

0.
00

00
M

o
d

el
:

C
as

e
II

I
0
.7

5
79

0.
17

26
0.

04
99

0.
01

39
0.

00
43

0.
00

11
0.

00
02

0.
00

01
0.

00
00

0.
00

00
M

o
d

el
:

C
as

e
IV

0.
76

9
7

0.
16

32
0.

04
80

0.
01

32
0.

00
42

0.
00

12
0.

00
02

0.
00

01
0.

00
01

0.
00

00
M

o
d

el
:

C
as

e
V

0.
80

9
7

0.
13

73
0.

03
88

0.
01

03
0.

00
29

0.
00

05
0.

00
03

0.
00

00
0.

00
01

0.
00

00

P
an

el
C

:
T

h
re

sh
ol

d
−

10
%

1
ye

ar
2

ye
ar

s
3

ye
ar

s
4

y
ea

rs
5

ye
ar

s
6

ye
ar

s
7

y
ea

rs
8

ye
ar

s
9

ye
ar

s
10

y
ea

rs

D
at

a
0.

82
6
0

0.
12

90
0.

03
80

0.
00

80
0

0
0

0
0

0

M
o
d

el
:

C
as

e
I

0.
90

9
9

0.
08

24
0.

00
71

0.
00

04
0.

00
02

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
M

o
d

el
:

C
as

e
II

0.
87

0
1

0.
11

37
0.

01
40

0.
00

19
0.

00
02

0.
00

00
1

0.
00

01
0.

00
00

0.
00

01
0.

00
01

M
o
d

el
:

C
as

e
II

I
0
.8

4
82

0.
12

93
0.

01
88

0.
00

31
0.

00
05

0.
00

01
0.

00
00

0.
00

00
0.

00
00

0.
00

00
M

o
d

el
:

C
as

e
IV

0.
85

0
7

0.
12

56
0.

02
03

0.
00

28
0.

00
06

0.
00

01
0.

00
00

0.
00

00
0.

00
00

0.
00

00
M

o
d

el
:

C
as

e
V

0.
87

1
9

0.
11

11
0.

01
48

0.
00

19
0.

00
02

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00

T
ab

le
2:

D
is

tr
ib

u
ti

on
s

of
th

e
le

n
gt

h
s

of
cr

is
is

p
er

io
d
s

T
h
e

ta
b
le

re
p

or
ts

th
e

u
n
co

n
d
it

io
n
al

d
is

tr
ib

u
ti

on
s

of
th

e
le

n
gt

h
s

of
cr

is
es

p
er

io
d
s

as
d
is

cu
ss

ed
in

S
ec

ti
on

s
3.

1
an

d
3.

2.
T

h
e

le
n
gt

h
of

a
cr

is
is

is
d
efi

n
ed

as
th

e
n
u
m

b
er

of
co

n
se

cu
ti

ve
ye

ar
s

w
h
er

e
th

e
co

n
su

m
p
ti

on
gr

ow
th

ra
te

s
ar

e
b

el
ow

a
th

re
sh

ol
d

(0
%

fo
r

P
an

el
A

,
−

5%
fo

r
P

an
el

B
,
−

10
%

fo
r

P
an

el
C

).
T

h
e

ta
b
le

re
p

or
ts

th
e

u
n
co

n
d
it

io
n
al

p
ro

b
ab

il
it

ie
s

th
at

a
cr

is
is

in
th

e
sa

m
p
le

h
as

a
le

n
gt

h
of

on
e

u
p

to
te

n
ye

ar
s.

T
h
e

ro
w

s
la

b
el

ed
‘D

at
a’

ar
e

b
as

ed
on

th
e

B
ar

ro
d
at

as
et

.
T

h
e

ot
h
er

ro
w

s
ar

e
d
er

iv
ed

fr
om

M
on

te
C

ar
lo

si
m

u
la

ti
on

s
ov

er
50

0,
00

0
ye

ar
s.

F
or

b
re

v
it

y,
th

e
ta

b
le

re
p

or
ts

re
su

lt
s

fo
r

th
e

m
o
d
el

w
it

h
ju

m
p
-i

n
d
u
ce

d
re

gi
m

e
sw

it
ch

es
on

ly
.

T
h
e

p
ar

am
et

er
s

fo
r

th
es

e
ca

se
s

ar
e

re
p

or
te

d
in

T
ab

le
3.

35



Jump-induced regime switches Separated regime switches
Case Case Case Case Case Case Case Case Case Case

I II III IV V I II III IV V

µ 0.032 0.033 0.033 0.032 0.03 0.032 0.033 0.033 0.032 0.03
σ 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
L −0.03 −0.04 −0.05 −0.06 −0.07 −0.03 −0.04 −0.05 −0.06 −0.07
λg,g 0.02 0.02 0.02 0.02 0.02 0.14 0.12 0.10 0.08 0.06
λg,b 0.12 0.1 0.08 0.06 0.04 0.12 0.1 0.08 0.06 0.04
λb,b 2.9 2.4 1.9 1.4 0.9 2.9 2.4 1.9 1.4 0.9
λb,g 1.08 0.9 0.72 0.54 0.36 1.08 0.9 0.72 0.54 0.36

λuncond. 0.416 0.348 0.28 0.212 0.144 0.416 0.348 0.28 0.212 0.144
pgood 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
pbad 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
duration(good) 8.33 10 12.5 16.67 25 8.33 10 12.5 16.67 25
duration(bad) 0.93 1.11 1.39 1.85 2.78 0.93 1.11 1.39 1.85 2.78

Peak-to-trough model
local calibration disaster calibration

Case Case Case Case Case Case Case Case Case Case
I II III IV V I II III IV V

µ 0.032 0.033 0.033 0.032 0.03 0.032 0.033 0.033 0.032 0.03
σ 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
L −0.03 −0.04 −0.05 −0.06 −0.07 −0.220 −0.237 −0.249 −0.251 −0.245
λ 0.416 0.348 0.28 0.212 0.144 0.018 0.023 0.024 0.022 0.018

Table 3: Parameters of the consumption processes

The table reports the parameters of the consumption processes resulting from the calibra-
tion in Section 3. All parameters are annualized. The quantities below the horizontal line,
λuncond,. . . , duration(bad), are derived from the parameters above the horizontal line.
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Diffusion Pure cons. Jump-induced Separated Total
risk jumps regime switches regime switches premium

Model with jump-induced regime switches

Good state 0.0192 0.0007 0.0495 —– 0.0694
Bad state 0.0192 0.0668 —– 0.1096 0.1956
Unconditional 0.0820

Model with separated regime switches

Good state 0.0192 0.0035 —– 0.0272 0.0499
Bad state 0.0192 0.0668 —– 0.1304 0.2164
Unconditional 0.0665

Peak-to-trough model

Local calibration 0.0192 0.0098 —– —– 0.0290
Disaster calibration 0.0192 0.0479 —– —– 0.0671

Table 4: Decomposition of the local equity risk premium

The table reports the local equity risk premium in the different economies as discussed in
Section 4.4 as well as a decomposition into its various components. The jump risk premia
in the second, third and fourth column are further decomposed in Table 5. The premium
for jump-induced regime switches in the first row is also decomposed in Table 6. All results
have been generated with the parameters from Case III reported in Table 3.

Model with jump-induced regime switches

λg,g 0.02 λg,b 0.08 λb,b 1.9 λb,g 0.72
ηg,g −0.3604 ηg,b −2.1449 ηb,b 0.3604 ηb,g 0.5682
ζg,g −0.0975 ζg,b −0.288 ζb,b 0.0975 ζb,g 0.268

RP g,g 0.0007 RP g,b 0.0495 RP b,b .0668 RP b,g 0.1096

Model with separated regime switches

λg,g 0.10 λg,b 0.08 λb,b 1.9 λb,g 0.72
ηg,g −0.3604 ηg,b −1.4494 ηb,b −0.3604 ηb,g 0.5917
ζg,g −0.0975 ζg,b −0.2349 ζb,b −0.0975 ζb,g 0.3070

RP g,g 0.0035 RP g,b 0.0272 RP b,b 0.0668 RP b,g 0.1304

Peak-to-trough model

local λ 0.28 disaster λ 0.024
calibration η −0.3604 calibration η −4.5739

ζ −0.0975 ζ −0.4360

RP 0.0098 RP 0.0479

Table 5: Decomposition of the jump risk premia

The table decomposes all jump risk premia from Table 4 into jump intensities λ, market
prices of risk η and price exposures ζ. All results have been generated with the parameters
from Case III reported in Table 3.
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Premium for pure consumption jumps λg,bηjumpζjump 0.0028
Premium for pure regime switches λg,bηRSζRS 0.0222
Cross risk premia λg,bηRSζjump 0.0102

λg,bηjumpζRS 0.0061
Super-additivity terms λg,b(ηjump + ηRS)ζjumpζRS −0.0280

−λg,bηjumpηRS(ζjump + ζRS) 0.0117
−λg,bηjumpηRSζjumpζRS −0.0008

Total λg,bηg,bζg,b 0.0495

Table 6: Decomposition of the risk premium for jump-induced regime switches

The table decomposes the risk premium for jump-induced regime switches given in the
first row of Table 4 into its components as discussed in Section 4.4. All results have been
generated with the parameters from Case III reported in Table 3.

Precautionary savings terms Total

β 1
ψ

Et[dCt]
Ct dt

Diffusion Pure cons. Jump-ind. Separated risk-free

risk jumps RS RS rate

Model with jump-induced regime switches

Good state 0.03 0.0140 −0.0072 −0.0003 −0.0140 —– 0.0226
Bad state 0.03 −0.310 −0.0072 −0.0262 —– −0.0137 −0.0481
Unconditional 0.0155

Model with separated regime switches

Good state 0.03 0.0140 −0.0072 −0.0014 —– −0.0053 0.0302
Bad state 0.03 −0.0310 −0.0072 −0.0262 —– −0.0152 −0.0496
Unconditional 0.0222

Peak-to-trough model

Local calibration 0.03 0.0095 −0.0072 −0.0039 —– —– 0.0284
Disaster calibration 0.03 0.0135 −0.0072 −0.0227 —– —– 0.0136

Table 7: Decomposition of the local risk-free rate

The table reports the local risk-free rate in the different economies as discussed in Section
4.5 as well as a decomposition into its various components. All results have been generated
with the parameters from Case III reported in Table 3.

38



Diffusion Pure cons. Jump-induced Separated Total
risk jumps regime switches regime switches premium

Model with jump-induced regime switches

Good state 0.0192 0.0007 −0.0160 —– 0.0039
Bad state 0.0192 0.0668 —– 0 0.0860
Unconditional 0.0121

Model with separated regime switches

Good state 0.0192 0.0035 —– 0 0.0227
Bad state 0.0192 0.0668 —– 0 0.0860
Unconditional 0.0290

Peak-to-trough model

Local calibration 0.0192 0.0098 —– —– 0.0290
Disaster calibration 0.0192 0.0479 —– —– 0.0671

Table 8: Decomposition of the local equity premium (CRRA utility)

The table reports the local equity premium in the different economies as discussed in
Section 5.1 as well as a decomposition into its various components. All results have been
generated with the parameters from Case III reported in Table 3, but with an EIS of
ψ = 1/γ = 1/6.
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Figure 1: Histogram of peak-to-trough disaster sizes

The figure depicts the histogram of disaster sizes in our simulated data, measured by the
peak-to-trough method. We simulate 500,000 years of consumption data using the model
with jump-induced regime switches and the parameters from Case III. Next, we isolate
all consumption-growth observations below 0%. Finally, if there are several consecutive
observations below 0%, we compute the total drop in consumption over all these years
and name this the peak-to-trough disaster size. The figures plot the histogram of these
peak-to-trough disaster sizes.
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Figure 2: Robustness check: elasticity of intertemporal substitution

The figure depicts the local equity premium in the good state (first picture), the risk
premium for jump-induced and separated regime switches from the good to the bad state
(second picture), the market price of risk ηg,b (third picture) and the exposure ζg,b (fourth
picture) as a function of ψ. The lines represent the model with jump-induced regime
switches (red solid line), separated regime switches (blue dashed line) and the peak-
to-trough model with local calibration (green dash-dotted line) and disaster calibration
(black dash-dotted line). The vertical dotted lines mark ψ = 1/γ = 1/6 and ψ = 1. All
results have been generated with the parameters from Case III reported in Table 3. All
numbers are annualized.
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Figure 3: Unconditional local equity premium and risk-free rate for all calibrations

The figure depicts the unconditional local equity premium (upper picture) and the un-
conditional local expected risk-free rate (lower picture) for all five cases reported in Table
3 (the numbers on the x-axis refer to the jump size). The lines represent the model with
jump-induced regime switches (red solid line), separated regime switches (blue dashed
line) and the peak-to-trough model with local calibration (green dash-dotted line) and
disaster calibration (black dash-dotted line). All numbers are annualized.
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Figure 4: Unconditional local equity premium as a function of the leverage parameter

The figure depicts the unconditional local equity premium as a function of φ . The lines
represent the model with jump-induced regime switches (red solid line), separated regime
switches (blue dashed line) and the peak-to-trough model with local calibration (green
dash-dotted line) and disaster calibration (black dash-dotted line). All results have been
generated with the parameters from Case III reported in Table 3. All numbers are annu-
alized.
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