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1. Introduction

Strongly interacting matter is expected to posses a rich phase structure. In particular, com-
pressed baryonic matter may exhibit a first-order phase transition that persists up to a certain crit-
ical temperature [1] and experimental efforts are underway to search for evidence of this phase
transition and the associated critical end point [2, 3, 4].

For these endeavors to be successful, it is important to identify observable effects that may
serve as signals of the phase structure. This is a challenging task because the colliding system
is relatively small, non-uniform, far from global equilibrium, and rapidly evolving. Therefore, to
understand how the presence of a phase transition may manifest itself in the experimental observ-
ables, it is necessary to carry out dynamical simulations of the collisions with suitable transport
models.

Many numerical simulations of high-energy nuclear collisions have employedideal or viscous
fluid dynamics which has the important advantage that the equation of state (EoS) appears explic-
itly. The focus up to now has mainly been on bulk observables and their dependence on a softening
of the EoS. For this purpose, the instabilities associated with a first-order phase transition were
usually removed by means of a Maxwell construction, thereby ensuring that bulk matter remains
mechanically stable throughout the expansion.

However, when a first-order phase transition exists, a low-density confined phase (a hadronic
resonance gas) may coexist thermodynamically with a high-density deconfined phase (a baryon-
rich quark-gluon plasma) and, consequently, bulk matter prepared at intermediate densities would
be unstable and seek to separate into the two coexisting phases. In a nuclear collision, when the
dynamical evolution drives the bulk density into the phase coexistence region, the instabilities will
be triggered. In particular, the spinodal instabilities [5, 6, 7, 8, 9] may generate a non-equilibrium
evolution that in turn may generate observable fluctuations in the baryon density [10, 11, 12, 13]
and the chiral order parameter [14, 15]. Furthermore, nucleation and bubble formation may also
contribute towards the phase separation process.

In order to ascertain the degree to which these mechanisms may manifest themselves in actual
nuclear collisions, we have performed numerical simulations with finite-density fluid dynamics,
incorporating a gradient term in the local pressure [18]. This refinement emulates the finite-range
effects that are essential for a proper description of the phase transition physics [5, 6, 8, 16]. In
particular, the gradient term ensures that two coexisting bulk phases will develop a diffuse interface
and acquire an associated temperature-dependent tension. Furthermore, of key importance to the
present study, the gradient term also causes the dispersion relation forthe collective modes in the
unstable phase region to exhibit a maximum, as is a characteristic feature of spinodal decomposition
[5]. Thus we employ a transport model that has an explicitly known two-phase equation of state
and that treats the associated physical instabilities in a numerically reliable manner.

2. The Equation of State

In order to obtain a suitable equation of state, we employ the method developed inRef. [8].
Thus we work (at first) in the canonical framework and, for a givenT, we obtain the free energy
density fT(ρ) in the phase coexistence region by performing a suitable spline between two ideal-
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Figure 1: The growth of harmonic density undulations inside the spinodal region as obtained with standard
ideal fluid dynamics, shown by the symbols for various valuesof the wave numberk, together with the
resulting fits to the expected analytical form (3.5), shown by the continuous curves.

ized systems (either a gas of pions and interacting nucleons or a bag of gluons and quarks) held at
that temperature. In Ref. [8] the focus was restricted to subcritical temperatures,T < Tcrit, so for
eachT the spline points were adjusted so the resultingfT(ρ) would exhibit a concave anomaly,
i.e. there would be two densities,ρ1(T) andρ2(T), for which the tangent offT(ρ) would be com-
mon. This ensures phase coexistence,i.e. the chemical potentials match,µT(ρ1) = µT(ρ2), because
µT(ρ) = ∂ρ fT(ρ), and so do the pressures,pT(ρ1) = pT(ρ2), becausepT(ρ) = µT(ρ)ρ − fT(ρ).
Ref. [18] extended the equation of state toT > Tcrit by using splines that are convex, as is char-
acteristic of single-phase systems. After having thus constructedfT(ρ) for a sufficient range ofT
andρ, we may obtain the pressure, as well as the energy densityεT(ρ) = fT(ρ)−T∂T fT(ρ), by
suitable interpolation and then tabulate the equation of state,p0(ε ,ρ), on a convenient Cartesian
lattice.

3. Fluid Dynamical Clumping

For our present investigation, we describe the evolution of the colliding system by ideal fluid
dynamics, because dissipative effects are not expected to play a decisive role for the spinodal
clumping [16]: Although the inclusion of viscosity generally tends to slow the growth, the dissi-
pative mechanisms responsible for the viscous effects also lead to heat conduction which has the
opposite effect and also enlarges the unstable region (from the isentropic to the isothermal bound-
ary).

The basic equation of motion in ideal fluid dynamics expresses four-momentumconservation,
∂µTµ = 0, where the stress tensor is given by

Tµν(x) = [p(x)+ ε(x)]uµ(x)uν(x)− p(x)gµν , (3.1)

whereuµ(x) is the four-velocity of the fluid. When taking account of the baryon current den-
sity, Nµ(x) = ρ(x)uµ(x), the basic equation of motion is supplemented by the continuity equation,
∂µNµ = 0. These equations of motion are solved by means of the code SHASTA [17]in which the
propagation in the three spatial dimensions is carried out consecutively.
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Figure 2: (a): The baryon density distribution in the transverse plane (atz= 0) at timet = 2.5 fm of a single
event with the Maxwell constructed equation of state (b): The baryon density distribution in the transverse
plane (atz= 0) at timet = 2.5 fm of the same event as in (a), this time with the unstable equation of state.

As mentioned above, a proper description of spinodal decomposition requires that finite-range
effects be incorporated [5, 6]. Therefore, following Refs. [8, 16], we write the local pressure as

p(r) = p0(ε(r),ρ(r))−a2εs
ρ(r)
ρs

∇2 ρ(r)
ρs

, (3.2)

where we recall thatp0(ε ,ρ) is the equation of state, the pressure in uniform matter characterized
by ε andρ. With ρs= 0.153/fm3 being the nuclear saturation density andεs≈mNρs the associated
energy density, the gradient term is normalized such that its strength is conveniently governed by
the length parametera, which we will set toa= 0.033 [18] for the following results.

Uniform matter inside the spinodal region (wherev2
s < 0) is mechanically unstable and density

ripples of wave numberk will be amplified at a rateγk(ρ,ε). The spinodal growth rates can be
extracted by following the time evolution of small harmonic perturbations of uniform matter. Thus,
imposing periodic boundary conditions, we consider initial systems of the form

ρ(r) = ρ̄ +δρ(0)sin(kx) , ε(r) = ε̄ +δε(0)sin(kx) , (3.3)

where(ρ̄, ε̄) lies inside the spinodal phase region and the amplitudesδρ(0) andδε(0) are suitably
small. Because the frequency is purely imaginary,ωk = ±iγk, the early time evolution of the
amplitudes will consist of growing and decaying exponentials having equalweights (because the
initial state (3.3) is prepared without any flow) [19],

δρ(t)≈ δρ(0)cosh(γkt) , δε(t)≈ δε(0)cosh(γkt) , (3.4)

and it is then straightforward to extract the rateγk from the calculated amplitude growth.
This is illustrated in figure 1 for the phase point(ρ̄, ε̄) = (6ρs,10εs), which lies well inside

the spinodal region, and using(δρ(0),δε(0)) = (0.1ρs,0.2εs). The subsequent time evolution is
obtained with ideal fluid-dynamics (without the gradient term for this illustration) and the Fourier
components of the density are extracted. The resulting time-dependent amplitudesδρk(t) are then
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Figure 3: Density difference in the transverse plane (atz= 0) at timet = 2.5 fm of the events displayed in
figure 3. The contour separates regions where the density is enhanced from regions where it is depleted.

fitted with the analytical form (3.4). As the figure brings out, the expected form is indeed produced,
indicating that the numerical propagation of the unstable system is reliable.

4. Cluster Growth

In the present scenarios, spatial irregularities are present already inthe initial state, whereas
the fluid-dynamical propagation does not generate any spontaneous fluctuations in the course of the
evolution (such fluctuations are generally produced at finite temperatures[20] but this refinement
has not yet been incorporated into the fluid-dynamical transport treatments of nuclear collisions).

To estimate the effect of the non-equilibrium phase transition we create ensembles of initial
states for different beam energies of collisions of lead nuclei using the UrQMD transport model
[21, 22, 23]. For any given event, and at any given time, parts of the system may lie within the
unstable or metastable region, and local density irregularities may then becomeamplified, whereas
the rest of the matter is situated in a stable phase region where irregularities tend to erode. In
order to ascertain the effect of those instabilities, we also carry out corresponding simulations with
the one-phase Maxwell partner equation of state which contains no instabilities but is otherwise
identical.

The difference in the density evolution is illustrated in figures (2a) and (2b). Both baryon
density distributions, (a) and (b), are extracted after the same fluid dynamical evolution timet = 2.5
fm and from identical initial conditions. While in figure (2a) we used the Maxwell constructed
equation of state, (2b) shows the reults with the unstable phase. It is clear that several regions with
enhanced density appear when the system passes a region of instabilty. The difference of the two
figures (2a) and (2b) is shown in figure (3), where the contour line separates regions with enhanced
density from regions which are depleted of baryon number (due to the conservation of the total
baryon number).

A convenient quantitative measure of the resulting degree of “clumping” in the system is pro-
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Figure 4: Mean maximum enhancement of the normalized density momentsfor N=7,5 (squares, circles)
as obtained for various energies using either the two-phaseequation of state (solid) or its one-phase Maxwell
partner (dashed).

vided by the moments of the baryon density densityρ(r),

〈ρN〉 ≡
1
A

∫
ρ(r)Nρ(r)d3r , (4.1)

whereA =
∫

ρ(r)d3r is the total (net) baryon number. The corresponding normalized moments,
〈ρN〉/〈ρ〉N, are dimensionless and increase with the orderN, for a given density distributionρ(r);
the normalized moment forN = 1 is unity.

The degree of density clumping generated during a collision depends on how long time the
bulk of the matter is exposed to the spinodal instabilities. The optimal situation occurs for colli-
sion energies that produce maximum bulk compressions lying well inside the unstable phase region
because the instabilities may then act for the longest time [8, 16, 18]. At lowerenergies an ever
smaller part of the system reaches instability and the resulting enhancements are smaller. Con-
versely, at higher energies the maximum compression occurs beyond the spinodal phase region and
the system is exposed to the instabilities only during a relatively brief period during the subsequent
expansion. For still higher energies the spinodal region is being missed entirely.

Figure 4 shows the (ensemble average) maximum enhancement achieved asa function of the
beam energy for the two equations of state. The existence of an optimal collision energy is clearly
brought out. While the presently employed equation of state suggests that thisoptimal range is
Elab ≈ 2−4AGeV, it should be recognized that others may lead to different results.

To gain a more detailed understanding of the clumping phenomenon, we have studied the
distribution of the clump sizes. Although the “clumps” tend to remain fairly diffuse, we may define
their extension by means of a specified density cutoff,ρmin, and then extract the total net baryon
number contained within the resulting volume. Figure 5 shows the size distributionobtained for a
density cutoff ofρmin = 7ρs, for central lead-lead collisions at 3AGeV.

The initial size distribution is approximately exponential and that feature is wellpreserved
during the evolution with the one-phase equation of state which produces negligible amplification.
The spinodal instabilities in the two-phase equation of state leads to a preferential amplification
of length scales near the optimum size, as is brought out by the differencebetween the two-phase
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Figure 5: The size distribution of the density clumps produced in central lead-lead collisions at 3AGeV
usingρmin = 7ρs to define the clump boundary. The solid histogram shows the distribution obtained for the
two-phase equation of state and the solid line represents anexponential fit. The distribution obtained with
the one-phase equation of state is shown by the dotted histogram and the difference between the two size
distributions is also depicted.

size-distribution and the one obtained with the Maxwell partner; this difference peaks at clumps
containing 5-8 baryons. Nevertheless, for a wide intermediate range, from about 3 to about 16, the
resulting two-phase size distribution retains an approximately exponential appearance, but with a
significantly gentler slope.

5. Summary

As reported recently [18], we have augmented an existing finite-density ideal fluid dynam-
ics code with a gradient term and thereby obtained a transport model that issuitable for simulating
nuclear collisions in the presence of a first-order phase transition. It describes both the temperature-
dependent tension between coexisting phases and the amplification of the spinodal modes. Apply-
ing this novel model to lead-lead collisions, using an equation of state with a first-order phase
transition, we found that the associated instabilities may cause significant amplification of initial
density irregularities, relative to what would be obtained without the phase transition.

In particular, we extracted the density enhancement and the clump size distribution.
Perhaps most importantly our study supports the general existence of an optimal collision en-

ergy range within which the phase-transition instabilities have the largest effects on the dynamical
evolution. Our results suggest that this energy corresponds to several GeV per nucleon of kinetic
energy for a fixed-target configuration, a range that may be too low to access effectively at RHIC
but which should match well with both FAIR and, especially, NICA.
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