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Abstract

Introduction: Electrical impedance tomography (EIT) is an emerging clinical tool for monitoring ventilation distribution in
mechanically ventilated patients, for which many image reconstruction algorithms have been suggested. We propose an
experimental framework to assess such algorithms with respect to their ability to correctly represent well-defined
physiological changes. We defined a set of clinically relevant ventilation conditions and induced them experimentally in 8
pigs by controlling three ventilator settings (tidal volume, positive end-expiratory pressure and the fraction of inspired
oxygen). In this way, large and discrete shifts in global and regional lung air content were elicited.

Methods: We use the framework to compare twelve 2D EIT reconstruction algorithms, including backprojection (the
original and still most frequently used algorithm), GREIT (a more recent consensus algorithm for lung imaging), truncated
singular value decomposition (TSVD), several variants of the one-step Gauss-Newton approach and two iterative algorithms.
We consider the effects of using a 3D finite element model, assuming non-uniform background conductivity, noise
modeling, reconstructing for electrode movement, total variation (TV) reconstruction, robust error norms, smoothing priors,
and using difference vs. normalized difference data.

Results and Conclusions: Our results indicate that, while variation in appearance of images reconstructed from the same
data is not negligible, clinically relevant parameters do not vary considerably among the advanced algorithms. Among the
analysed algorithms, several advanced algorithms perform well, while some others are significantly worse. Given its vintage
and ad-hoc formulation backprojection works surprisingly well, supporting the validity of previous studies in lung EIT.
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Introduction

Electrical impedance tomography (EIT) has been proposed as a

tool to monitor and guide ventilator therapy in mechanically

ventilated patients [1–4]. Medical interest in EIT is driven by the

discovery of the injurious effects of artificial ventilation [5] and,

thus, the importance of lung protective ventilation strategies [6,7].

No consensus exists as to how optimal ventilator settings (i.e. least

harmful and still securing proper gas exchange) should be chosen

in an individual patient [8]. However, there is a clear need for

continuous assessment of regional lung ventilation. No medical

examination technique is available at the bedside allowing this

type of monitoring. With its inherent advantages of the radiation-

free measuring principle, good time resolution, portability and

ability to assess rapid changes in regional lung air content, EIT

promises to fulfil many of the requested criteria for such patient

monitoring.

A growing body of research seeks to develop and evaluate EIT-

based parameters to guide ventilator therapy [1]. Most of these

studies used versions of the original back-projection algorithm of

[9] for image reconstruction; for recent examples see e.g. [10–17].

Newer types of image reconstruction procedures allow theoretical

advantages [18–21]; however, these algorithms have not been

systematically compared against each other, and often have not

been tested in vivo. This paucity of systematic validation and

comparison of EIT algorithms hampers its entrance into clinical

practice.

The ability of EIT to measure regional distribution of

ventilation has been validated against several established high-

resolution imaging modalities like X-ray computed tomography

[22,23], electron beam computed tomography [24], single photon

emission computed tomography [25,26] and positron emission

tomography [27].

Such validation of EIT to anatomical references is important,

but exhibits certain drawbacks. Most such studies have not used

anatomical models for EIT reconstruction (typically using circles

on a 32|32 pixel grid) making comparison with morphologically
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accurate images problematic. Also, the inherent low resolution of

EIT creates large partial volume effects [28], while the scan rate of

EIT is much higher (§50 frames/s for some devices) than those of

the reference radiological techniques. The most important

drawback of such studies, however, is that anatomical validation

is primarily sensitive to morphological accuracy, and thus less

sensitive to the functional performance of EIT imaging. We

believe that a functional imaging technique should also have a

functional validation methodology. Thus, we propose a more

functional approach for validation and comparison of EIT images

obtained with different reconstruction algorithms where the ability

to provide clinically relevant information is tested directly.

Therefore, the aim of our study was to develop a framework to

validate and compare EIT images by testing their ability to

correctly reflect clinically significant changes in regional lung

ventilation (or lack thereof). The backbone of our framework is an

experimental EIT data set acquired in mechanically ventilated

pigs. By manipulating three clinically relevant ventilator settings –

tidal volume (VT), peek end-expiratory pressure (PEEP) and the

O2 fraction in inspired gas (FIO2) – we were able to achieve

different regional ventilation distributions following well defined

large and discrete shifts in global and regional lung air content.

We used the proposed framework to compare the performance

of a number of popular reconstruction algorithms, including

GREIT [29] and backprojection. We sampled the analysed

algorithms mainly from the large class of sensitivity-based methods

available in the EIDORS suite [30]. In doing so, we studied the

effect of individual design choices in assembling such algorithms.

Other approaches, such as those based on a Bayesian framework

(e.g. [31]), monotonicity (e.g. [32]), level sets (e.g. [33,34]),

factorisation (e.g. [35], or the D-Bar method (e.g. [36]) were not

evaluated, as they have seen little evaluation for thoracic EIT data

(but see [37,38]. However, we make the data and software publicly

available to allow extending the comparison to a wider range of

present and future algorithms.

Methods

Ethics statement
After approval by the Committee for Animal Care of the

Christian-Albrechts University Kiel (Permit Number: V742-

72241.121-39), the study was conducted in compliance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health.

Evaluation framework
Since the potential role of EIT in ventilation therapy is to detect

changes in the regional distribution of ventilation, our proposed

validation framework is explicitly designed to test its ability to do

so. An overview of the framework is presented in Fig. 1.

First, we conducted an experiment in healthy pigs ventilated

mechanically to produce shifts in ventilation distribution while

keeping VT constant. Ventilation with pure O2 is known to induce

absorption atelectasis in the dependent, i.e. posterior in supine

animals, lung regions [39,40], while PEEP leads to a redistribution

of inspired VT with more gas entering the dependent lung regions

[41]. These well-known effects of changing PEEP and FIO2 settings

allowed the definition of distinct changes in global and regional

ventilation, which are summarized in Table 1.

Second, EIT-derived measures of VT and distribution of

ventilation along the gravitational axis were calculated for each

analysed algorithm for each animal and condition. These values

were used to test each algorithm by comparing against the

expected findings, or physiological references (Table 1). For

example, VT is a known volume change in the lung. While the

distribution of VT changes with PEEP, the volume is fixed. Thus,

using this physiological constant, we can test that an EIT

algorithm which is equally sensitive to volume across the image

will, correctly, identify VT as constant, while an EIT algorithm

which has spatially varying volume response, may see varying VT.

Similarly, the known movement of VT toward dependent lung

with increases in PEEP can be used to test the sensitivity of EIT

algorithms to movement within the image. The complete list of

physiological references is given in Table 4.

Experimental protocol. The study was performed at the

University Medical Center of Schleswig-Holstein, Campus Kiel in

Germany. The experiments were carried out on eight anesthetized

pigs (body weight (bw): 39+4 kg, mean+standard deviation (SD))

in supine position. The animals were at first sedated with azaperon

(8 mg/kg bw). Anaesthesia was achieved by a continuous

intravenous infusion of propofol (6 to 12 mg/kg bw per hour)

and sufentanile (10 mg/kg bw per hour). Subsequently, the animals

were intubated and connected to a ventilator (Siemens Servo 900

C ventilator, Siemens-Elema, Solna, Sweden). Haemodynamic as

well as ventilatory parameters including heart rate, partial pressure

of CO2 (PCO2) in respired gas, arterial O2 saturation (SaO2), airway

pressures and respiratory system compliance were continuously

monitored using the S/5 anaesthesia monitoring system with a

gas-density compensated module (M-CAIOV, Datex Ohmeda,

Helsinki, Finland). All animals were ventilated in a volume-

controlled mode with a constant VT, respiratory rate (20 breaths/

min) and inspiration-to-expiration ratio of 1:2 in order to maintain

normocapnia (end-tidal PCO2 35–45 mmHg). If required, vecur-

onium bromide (0.1 mg/kg bw) was administered for muscle

paralysis to suppress spontaneous breathing activity and thus avoid

disturbance of the volume-controlled ventilation measurements.

During the examination period of 60 min, the animals were

ventilated with different combinations of end-expiratory pressures

and FIO2 (Table 2). FIO2 was consecutively changed from 21% to

100% and back to 21% and at each FIO2, the animals were at first

ventilated with zero end-expiratory pressure (ZEEP) and then with

PEEP of 5 cmH2O. In each condition, one EIT measurement was

performed meaning that a total of six measurements was obtained

in each animal.

EIT examinations were performed using the Goe-MF II EIT

device (CareFusion, Höchberg, Germany). Sixteen self-adhesive

electrodes (Blue Sensor BR-50-K, Ambu, Bad Nauheim, Ger-

many) were placed on the chest circumference in one transverse

plane lying approximately at the level of the 6th intercostal space.

Electrical currents (50 kHz, 5 mArms) were applied through

adjacent pairs of electrodes in a rotating mode. After each current

injection, the resulting potential differences were measured by the

remaining electrode pairs. EIT data were acquired at a frame rate

of 13 images/s during 60 s time intervals.

EIT algorithms
We review EIT image reconstruction algorithms and develop a

taxonomy of approaches. A representative sample of algorithm

choices are selected for evaluation.

EIT image reconstruction. The recovery of information

about internal conductivity distribution from surface voltage

measurements is a severely ill-posed non-linear inverse problem.

Time difference EIT (TD-EIT), which compares two sets of

measurements, is much less sensitive to uncertainties in electrode

placement, thorax geometry and some hardware errors (such as

gain variability between channels), than algorithms that attempt to

reconstruct the absolute conductivity distribution [42]. This paper

considers only TD-EIT algorithms. Specifically, TD-EIT seeks to
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reconstruct an image of the change in conductivity (Ds) between

EIT measurements v and v r, where v represents the current frame

of EIT measurements, while v r is the reference measurement

frame, typically calculated by averaging over periods when

conductivity distribution in the region of interest is stable. We

use the notation (d) for time difference data and (m) for the

conductivity change image (or model) m~Ds. Depending on the

image reconstruction approach, the image may be represented as

a pixel grid, or on a finite element model (FEM) discretization. Of

the many TD-EIT algorithms proposed (see references of [20,29])

we consider only those that are applicable to the most common

case for which clinical and experimental thoracic EIT measure-

ments have been made. Thus, we assume: 1) TD-EIT measure-

ments; 2) placement of 16 EIT electrodes in a single plane around

the thorax; 3) measurement performed using adjacent stimulation

and measurement (the Sheffield protocol); and 4) reconstruction of

images onto a circular domain, since this is a common capability of

all algorithms. We organize the space of EIT algorithms as in Fig.

2; first, algorithms are classified on the features used in the forward

problem (and sensitivity matrix) and then on the inverse solution.

Two main classes of image reconstruction procedures were chosen

for analysis, based on backprojection, and sensitivity matrix (FEM)

based solutions; the latter category is subdivided into regulariza-

tion and optimization based methods. We review the formulation

of each approach in the following subsections. Clearly, the possible

combinations of algorithm variants are very large, and thus

difficult to test. Instead, we define a "baseline" algorithm, R0

which represents the simplest approach, and consider modifica-

tions from it. For each variation, we define a default case (which is

part of R0) and a variant case, which is tested in an algorithm

(Table 3).

Figure 1. Overview of the proposed methodology. PEEP – positive end-expiratory pressure; FIO2 - fraction of oxygen in inspired gas; V – air
volume; t – time; VT – tidal volume; CoV - centre of ventilation; FEM – finite element model.
doi:10.1371/journal.pone.0103045.g001

Table 1. Expected effects of changes in ventilation therapy.

Intervention Tidal volume Ventilation distribution

Increase in PEEP no change increased ventilation in dependent lung areas

100% FIO2 no change decreased ventilation in dependent lung areas

Return to baseline no change return to baseline

PEEP, positive end-expiratory pressure; FIO2, fraction of O2 in inspired gas.
doi:10.1371/journal.pone.0103045.t001
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Backprojection sensitivity model. The backprojection

algorithm was developed [43] for the original Sheffield EIT

system, and has seen numerous variants and improvements. Using

an analogy to X-ray CT backprojection, normalized measure-

ments are "backprojected" onto the equipotential region in the

image, and the image is subsequently filtered. Improvements to

account for the diffuse nature of electrical current propagation in

the body were subsequently made; a good mathematical

characterization is given by Santosa and Vogelius [44]. While

many variants of Sheffield backprojection (RSBP) exist, clinical and

experimental EIT has largely used only the one which was

distributed in the Sheffield Mark I EIT system [45]. In discussions

with the algorithm authors, it appears that the exact formulation of

this algorithm has been lost. In order to accurately represent this

algorithm, we obtained permission to reverse engineer RSBP from

a Sheffield Mk I device, as described in [29].

Table 2. Lung function and ventilation parameters + SD during study period.

Stage I II III IV V VI

Time period, min 0–15 15–20 20–35 35–40 40–55 55–60

PEEP, cmH2O 0 5 0 5 0 5

FIO2, % 21 21 100 100 21 21

VT , ml/kg bw 10.1+1.6 9.9+1.7 10.3+1.8 10.0+1.7 9.9+1.5 9.9+1.7

Ppeak , cmH2O 21+6 23+5 20+4 23+5 20+5 23+5

Pplat , cmH2O 16+5 20+4 15+4 19+4 16+4 20+4

Crs, ml/cmH2O 26.4+4.2 27.0+4.5 28.4+4.8 25.7+4.0 28.2+4.2 27.1+4.0

SaO2, % 95+3 97+3 98+4 98+2 97+2 96+3

PEEP, positive end-expiratory pressure; FIO2, fraction of O2 in inspired gas; VT , tidal volume; bw, body weight; Ppeak, peak airway pressure; Pplat, inspiratory plateau airway
pressure; Crs, respiratory system compliance; SaO2, saturation of O2.
doi:10.1371/journal.pone.0103045.t002

Figure 2. Taxonomy of direct EIT reconstruction algorithms, classified in terms of the selection of forward and inverse model
parameters.
doi:10.1371/journal.pone.0103045.g002
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Numerical sensitivity model. The forward model, F (:), in

EIT simulates the measured data vector d for a given vector of

model parameters m, as d~Fsr
(m). The data vector, d, represents

each measured voltage for each applied current pattern in a data

frame; for the Sheffield stimulation protocol on 16 electrodes, this

yields 16|13~208 measurements per frame, of which 104 are

independent, due to reciprocity [46]. F(:) is typically based on a

finite element model (FEM) and each parameter of the conduc-

tivity distribution is usually modelled in m as the piecewise

constant conductivity on a tetrahedral element. The forward

model is used to calculate a Jacobian, J, or sensitivity matrix,

which describes the sensitivity of each data element to each model

parameter.

½J�i,j~
L½Fsr (m)�i

L½m�j
, ð1Þ

where the FEM estimate depends on the background conductivity,

sr, around which the conductivity changes m occur. The following

section discusses various approaches to numerical (forward)

models (F (:)), considering the baseline approach and its variants.

Model dimension: 2D FEM / 3D FEM. The choice of

model dimension affects the relative magnitude of measured

voltage in regions further from the current stimulations. Real

voltage measurements occur in three dimensions, and are thus

mismatched to 2D models. Early EIT algorithms used 2D FEM to

reduce computational time; however, many recent algorithms

continue to use 2D. One consequence is errors in the

reconstructed position of objects because sensitivity falls off faster

with distance in 3D than 2D.

The baseline model uses a circular 2D FEM (Fig. 3A), and the

variant uses a cylindrical 3D FEM of height equal to the medium

diameter, and the electrode plane in the centre (Fig. 3B). FEM

models are constructed using Netgen [47] by specifying the region

geometry and circular electrode contact regions.

Difference data: normalized diff. data / diff. data. TD-

EIT defines difference data d in terms of the current, v, and

reference, v r measurements. The majority of experimental and

clinical algorithms (including RSBP) have used normalized

difference imaging, where data d are defined as

½d�i~½v{vr�i=½vr�i~½v�i=½vr�i{1. If difference imaging (without

normalization) is used, then data d are defined as d~v{vr. By

normalizing, small measurement values are scaled up, and have a

larger impact on the reconstructed images.

The baseline model uses normalized difference data, while the

variant model uses difference data (without normalization).

Conductivity background: homogeneous sr / lung

�sr. TD-EIT assumes conductivity changes occur with respect

to a reference conductivity, sr, which defines the sensitivity matrix,

J. The most common choice for EIT algorithms is a homogeneous

value for sr, which is clearly a poor model for the thorax, in which

the lungs are far less conductive than other tissues. The use of a

homogeneous thorax conductivity distorts the position and

amplitude of reconstructed contrasts [48].

The baseline model uses a homogeneous sr (Fig. 3B), while the

variant model defines lung tissue with a relative conductivity of

0:25 of that of other tissues [42]. The lung region is defined from

CT images of pigs of similar size to those used in our experiments

(Fig. 3C). We evaluate the effect of lung sr in a 3D FEM, since a

full dimensional model is required to get more accurate current

flow in the thorax.

Model electrode movement: static model / elec.

move. One key difficulty with EIT measurements is due to
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the position uncertainty of the electrodes, especially for thoracic

measurements, in which the body surface moves during breathing

and posture change. Several approaches have been proposed to

reduce the effect of electrode movements on the reconstructed EIT

conductivity changes. We select the algorithm of [21,49] based on

using an augmented J, sensitive to impedance changes, electrode

movement, and shape deformation in the model. This approach

allows estimation of the shape changes, which we do not use here;

instead, by allowing calculation of movement, certain artefacts in

the conductivity image may be reduced. This approach can be

shown to be equivalent to formulating electrode movement as a

structured noise term which is added to the measurement noise

variance, Sn. Following [49],

S�n~SnzJmSmJm ð2Þ

where Sn and S�n represent the original and updated estimates of

data noise variance, respectively. Jm is the movement sensitivity

matrix (change in data for each electrode coordinate change) and

Sm is a prior estimate of the covariance of electrode movement.

The baseline model assumes electrode position to be fixed, while

the variant model updates noise estimates using (2).

Regularized EIT reconstruction. The class of linear

regularized EIT reconstruction algorithms seeks a solution m̂m
which minimizes the expression

m̂m~ argmin
m

W(d{Jm)k knd
nd

z lL(m{m0)k knm
nm

ð3Þ

The first term, EW(d{Jm)End

nd
is the data error term, the

mismatch between the model and the measured data weighted by

a matrix W, which models the measurement error on each data

channel. The data error term has a norm nd [ ½1, 2�. If a Gaussian

model of data errors is used (nd~2), the data weighting matrix, W,

is related to the channel noise covariance, Sn, by S{1
n ~WtW.

This formulation is also used to incorporate the structured noise

due to electrode movement, S�n in (2). The second term,

EL(m{m0)Enm

nm
is a regularization term designed to address the

ill-conditioning intrinsic to EIT; it serves as a penalty function

which "discourages" unlikely (but otherwise feasible) solutions. It

calculates the mismatch between the m and prior constraints on

"likely" models. m0 is the prior mean and has always been set to

zero for TD-EIT, since conductivity is as likely to increase as

decrease. L implements a penalty for large changes or non-smooth

conductivities. The model error term has a norm nm [ ½1,2�. l
controls the relative strength of data and model error terms, and is

typically called the regularization hyperparameter. As l increases,

the solution matches more closely to the model, and becomes

increasingly smooth. In order to adequately compare different

algorithms, functionally equivalent values of l are chosen. Many

strategies to choose an appropriate value have been presented (see

references of [50]). We choose the "Noise Figure" approach [51],

in which l is chosen such that the ratio of values of signal to noise

ratio (SNR) between d and m̂m is required to be constant across

algorithms. Since we have no control of the parameters of the SBP

algorithm, all other algorithms are normalized to its value.

The most commonly studied case is for quadratic norms

nm~nd~2, which has the advantage of modelling Gaussian error,

and yielding a closed form, linear solution:

m̂m~ JT WT WJzl2LT L
� �{1

JT WT Wd~Rd: ð4Þ

EIT algorithms of this form are known as one-step Gauss Newton

solvers (GN) [52]. One important advantage is that image

reconstruction can be expressed as matrix multiplication by R;

since R may be pre-calculated, reconstruction is rapid and may be

implemented in real-time. If either nm or nd are not quadratic,

image reconstruction must be formulated iteratively.

In general, regularized EIT image reconstruction techniques are

popular due to their flexibility to represent arbitrary body

geometry, measurement configurations, and mathematical models

of the conductivity distribution. Many papers have used the basic

regularized formulation, and have explored the choices of

parameter values. In this paper, the baseline reconstruction

algorithm, R0, follows an early widely used regularized approach,

NOSER [52], which makes the following parameter choices: it is

quadratic, nm~nd~2, data noise is modelled to be identical on

each channel W~I, and the regularization matrix, L, is diagonal

such that, diag LT L~ diag JT J, which implies an assumption

that inter-element correlations are zero.

The following section discusses various approaches to regular-

ized image reconstruction (I), considering the baseline approach

and its variants.

Data noise model (W): uniform / weighted. The most

common approach is to "trust" all EIT data equally, and thus to

model each channel with equal, uniform noise (W~I). It is not

necessary to set the actual noise intensity, since the data to model

noise trade-off is set by the hyperparameter, l. In practice,

however, EIT noise can vary considerably between data channels,

most likely due to variability in electrode contact quality. Such

variations in data quality can be addressed by decreasing W on

channels with larger noise. One practical approach to setting an

appropriate W is to calculate the reciprocity error [53] (the

difference between data values that should be equal by reciprocity

Figure 3. Finite element models used. Electrode nodes are indicated in green. A: 2D circular uniform FEM (R0) B: 3D cylindrical uniform FEM
(R3D) C: 3D cylindrical FEM with lung regions (Rbkg) D: 2D circular uniform FEM with electrode movement (Rmv) (with arrows showing representative
electrode movement).
doi:10.1371/journal.pone.0103045.g003
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[46]) and to use this value to scale W. Clearly, modelling data

noise would be expected to be more useful for lower quality data;

we consider the EIT data in this study to be representative of

relatively good measurements.

The baseline model sets W~I, and the variant model sets W
using the reciprocity error approach [53], setting the parameter

t~10{5. This parameter choice implied data were on average

weighted at 0:66 of their weighting in the baseline model.

Data norm (nd ): Gaussian, nd~2 /robust, nd~1. As

mentioned, a Gaussian (nd~nm~2) model and data norms allow

calculation of a linear matrix inverse. One disadvantage of this

formulation is that it emphasizes larger errors (since the effect of an

error is squared). One approach to address such errors is the use of

a nd~1 data norm. While such as approach has been relatively

recently proposed in medical EIT [54], it has been widely used in

the geophysical EIT literature, and is referred to as "robust error

norms".

The baseline model uses a Gaussian data norm nd~2, while the

variant uses nd~1 using the formulation of [54].

Prior model (L): diagonal / smoothing. The regulariza-

tion matrix, L, is chosen to penalize unlikely solutions. The

NOSER [52] regularization matrix is diagonal, and thus penalizes

large image amplitudes. Several studies have suggested that a

better prior model is a smooth, rather than simply low amplitude

distribution [51,55,56]. To achieve such smoothing, L is designed

to penalize non-smooth m, imposing a filter across nearby model

elements. One key difference between an amplitude and a

smoothing filter is its behaviour as a function of model element

density. As density increases, amplitude penalties tend to show a

more "speckled" pattern of noise, since each image element is

independent in this case.

The baseline model sets L to penalize image amplitude [52],

and the variant model uses the spatial high pass filter [51], in

which L is calculated to apply Gaussian filter where spatial

wavelengths below 10% of the medium diameter are penalized.

Prior model (L): diagonal / truncated SVD. The

function of regularization may be understood via the singular

value decomposition (SVD) of the Jacobian, J~UDVt, as the

pseudo-inverse of J, with the elimination of small singular values.

Here, U and V are orthonormal matrices and D is diagonal. Thus

RTSVD~J{~VD{Ut ð5Þ

where

½D{�i,i~
(½D�i,i)

{1 if iƒT ,

0 otherwise
ð6Þ

The threshold T functions like a regularization parameter. We

choose its value to enforce the noise figure constraint similar to the

other algorithms. RTSVD forms a linear inverse and may be

represented in the form of (4) with the values W~I (uniform

independent noise), a very large value of l, and L equal to Vt with

its first T rows set to zero [57].

The baseline model sets L to penalize image amplitude [52],

and the variant model uses the truncated SVD to set L as

indicated above.

Model norm (nm): Gaussian / Total Variation. One

disadvantage of a Gaussian (nm~2) model norm is that it blurs

edges in images, which is physiologically unrealistic, since organ

boundaries are anatomically well-defined. This blurring can be

addressed using the Total Variation (TV) formulation [58], with

nm~1. While TV produces apparently sharper images, there is

some debate as to whether such images can give the appearance of

features where none exist, especially in the context of EIT data

errors.

The baseline model uses a Gaussian model nm~2, while the

variant implements TV nm~1 using the formulation of [54,58].

Optimization based EIT reconstruction. One recent EIT

reconstruction algorithm formulation is GREIT [29]. This

algorithm proposes an approach to image reconstruction designed

to implement a set of requirements (or figures of merit) on which a

group of experts reached consensus. The parameters of a linear

reconstruction matrix, R, are chosen to best satisfy the listed

requirements. This approach is similar in many ways to

regularized image reconstruction; however it is the reconstruction

matrix, R, rather than the image, m̂m, which is the target in the

objective function formulation. Thus, we classify GREIT as an

"optimization-based EIT reconstruction". The GREIT approach

provides a number of different parameters which can be selected

for an image; however, in this paper we choose the circular model

reconstruction matrix evaluated in [29].

EIT algorithms evaluated. In order to test the large variety

of possible combinations of EIT reconstruction algorithms, we

evaluate a baseline algorithm, R0, and modifications of it in a

single variation. The list of considered algorithms is summarized in

Figure 4. Sample image and identified end-inspiratory (blue) and end-expiratory (red) events. Left: Image of average tidal volume
change Right: Average EIT signal (arbitrary units) vs time (s) showing identified events.
doi:10.1371/journal.pone.0103045.g004
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Table 3. We thus consider R0 and nine variations, as well as SBP

and GREIT, for a total of twelve algorithms.

Data analysis
Image reconstruction. Each EIT algorithm identified in

Table 3 was implemented using EIDORS version 3.6 [30] and

used to reconstruct real conductivity change in each EIT frame in

each series of EIT scans, representing 60 seconds of recording for

each animal and condition. The reference data set, vr was chosen

to be an average of data scans at end-expiration. Images

reconstructed onto an FEM were interpolated onto a 64|64
pixel grid (RSBP and RGR create a 32|32 pixel image directly).

Modern algorithms can be tuned to control the trade-off

between resolution and noise performance, generally via a

"hyperparameter". To fairly compare algorithms, it is essential

that the individual hyperparameters are set to equivalent values

using an objective measure. Several such measures have been

proposed [50]. In this study we chose to tune all algorithms such

that the noise figure (NF) measure, first proposed for EIT by [51],

for changes half the model radius away from the centre was 1:0.

This particular value was chosen as it matched the performance of

the backprojection algorithm, which does not have a tunable

hyperparameter.

Ventilation pattern evaluation. From each sequence of

EIT data, an average end-inspiratory and end-expiratory data

scan was calculated and used for subsequent analysis. The average

data scan was calculated by, first, identifying candidate end-

inspiratory (end-expiratory) time points from the maximum

(minimum) values in the average time course of EIT data. These

candidate points were reviewed by a human operator in order to

identify and, if necessary, reject physiologically infeasible time

points. An example of identified (and rejected) events is shown in

Fig. 4. The remaining points were averaged to create a single data

scan, one for end-inspiration and one for end-expiration. Using

these data, functional EIT scans were generated showing the

distribution of local VT by plotting the average tidal differences

between the end-inspiratory and end-expiratory values in corre-

sponding pixel locations.

Lung areas (AL) in images were identified as regions with an

EIT ventilation signal above 20% of the maximum found in the

image. This approach was recommended e.g. in [59]. These were

aggregated over all 6 recordings to provide a single lung region of

interest (ROI) for each animal and algorithm. The size and shape

of the lung ROI varies for different algorithms, since some tend to

"squeeze" image contrasts toward the image centre. For each

measurement, we calculate VT by summing all pixel values within

the lung ROI; we characterized the distribution of ventilation

along the dorsoventral axis within the lung ROI as centre of

ventilation (CoV), calculated analogously to centre of gravity, such

that CoV ~0 in the image centre and positive in non-dependent

(ventral) lung regions; {1ƒCoVƒ1. The CoV values depend on

the position of the lung ROI within the EIT image. A decrease in

CoV reflects a shift of ventilation distribution towards the

dependent lung.

Statistical analysis. Statistical tests are performed as follows:

to test for inequality (avb), we use the one-tailed t-test to test

rejection of the null hypothesis, H0:a§b; to test for equality

(a~b), we use the two-tailed t-test to test rejection of the null

hypothesis, H0:Da{bDw0:1| 1
2
DazbD for VT, and

H0:Da{bDw0:03 for CoV. Thus we consider EIT-derived VT

values equal when their means differ by less than 10%. We treat

mean CoV values equal when they differ by less than 0.03, which

corresponds to half a pixel height in a 32|32 image. For each test

a p value is calculated, and pv:05 is considered significant.

The t-test requires an assumption of a normal distribution of

data. We investigated this assumption using two approaches. First,

the distribution of each set of calculated parameters was tested

against the normal distribution using the Kolmogorov-Smirnov

normality test, using a~0:05. Next, data were analysed using the

same protocol, but with the Wilcoxon signed rank test instead of

the t-test.

Results

Images were reconstructed for all animals for each case and

algorithm. Fig. 5 shows representative images of tidal change VT

at PEEP and ZEEP in three animals under 21% FIO2.

Qualitative assessment
All algorithms successfully reconstructed the lungs as a central

object with conductivity changing with ventilation (shown in blue

as decrease in conductivity between expiration and inspiration).

Images for different algorithms vary qualitatively in the shape of

the lung region and the type and amount of artefacts in the images

(Fig. 5). We qualitatively identify five types of artefacts: 1)

boundary artefacts, especially near the electrodes, represented as

image contrasts at the image edge; 2) speckle, showing high spatial

frequency contrasts especially visible at the lung boundary

(especially Rdif , RTSVD); 3) ringing, showing inverse contrast near

larger image contrasts (ie. red regions adjacent to blue lungs) (Rn,

Rmv, RTSVD); 4) spatial distortions, which disturb the shape, visible

especially in the shape of the lung regions (Rdif ); and 5) streak

artefacts, showing contrasting lines radially projecting toward the

electrodes (Rmv, Rn, RSBP). The presence of such artefacts disturbs

the analysis of the images in several ways, primarily by introducing

noise in the images, and by disturbing the analysis of the regional

distribution of ventilation.

Images reconstructed with the baseline algorithm R0 show the

lungs as a single object. Although the images are generally smooth,

boundaries of individual triangular finite elements on which the

images are reconstructed prior to rasterization are clearly visible

giving the appearance of implausible structures. This is true of all

algorithms beside RSBP and RGR which reconstruct directly onto a

pixel grid. Artefacts are clearly visible on the periphery near the

electrodes (mostly in red).

Modifications of the numerical sensitivity model (algorithms

R3D to Rmv) generally have an obvious and pronounced impact on

the reconstructed EIT images. Only images obtained with R3D,

which differs from R0 only in that a 3D forward model is used, do

not show appreciable difference with respect to R0. Reconstruc-

tions of difference data with Rdif , as opposed to normalized

difference data as in R0, show much more artefacts than the other

algorithms. However, although the lung shape appears distorted, it

shows clear separation between the two lungs. The replacement of

homogeneous sr with one that includes lung tissue contrast in Rbkg

produces images with clearly separated lungs but slightly more

artefacts than R0. Reconstructions with electrode movement Rmv

show virtually no boundary artefacts. However, the lungs appear

slightly smaller and more round in comparison to R0.

Modifications of the parameters of regularized reconstruction

also dramatically affect the appearance of EIT images. Noise

weighting based on reciprocity in Rn produced images with less

artefacts than R0, but more than Rmv. However, tidal changes

seem to be pushed together and toward the centre resulting in

comparatively smaller lungs. RHPF also offers limited reduction in

boundary artefacts. In contrast, images reconstructed with RTSVD

show increased artefacts compared with R0; the lungs have a

speckled appearance. As expected, RTV produced images with

Validation and Comparison Framework for Lung EIT
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sharp boundaries. However, the resulting lung shape does not look

plausible. Perhaps surprisingly, the use of the robust data norm

with nd~1 in RL1 seems to offer no advantage in terms of

boundary artefacts over R0 in our data set, but it reconstructs the

lungs as bigger and, in some cases, better separated. Images

produced with RGR and RSBP stand out for their smoothness and

lack of boundary artefacts. RGR is most comparable with Rmv in

terms of the shape of the lung region, although the lungs appear

slightly smaller and less separable. Images obtained with RSBP are

similar to those obtained with RGR, but the lungs appear even

smaller while their shape is less smooth. It also seems to be

distorted – tidal changes are pushed toward the centre and streak

artefacts pointing outwards seem to show implausible structures.

Functional assessment
The changes in ventilation pattern apparent in the reconstruct-

ed images were tested against physiological references, listed in

Table 4, where p values of the corresponding statistical tests are

also reported. The p-values are based on the t-test, which assumes

parameter values are normally distributed. We justify this

assumption as follows. First, all parameter values pass the

Kolmogorov-Smirnov normality test (at a~0:05). Second, we

recalculated all p values using the Wilcoxon signed rank test,

which showed substantially similar results; compared to the values

in Table 4, the ordering of algorithms by p-value was close to

identical for all parameter values.

The independence of VT from airway pressure was confirmed

for most algorithms at FIO2 of 100% (pv0:05 in Table 4). Notable

exceptions are: RTV, Rdif and, surprisingly, Rbkg. However, at

FIO2 of 21% VT was less stable and only five algorithms passed the

independence test (Rmv, Rn, RL1, RGR and RSBP). Nonetheless,

VT was independent of FIO2 for all algorithms. Repeated

measurements at the same settings showed very little variation in

VT, which was reproducible for all algorithms.

At 21% FIO2, no significant decrease in CoV associated with the

introduction of PEEP was detected, save by the Rn and RGR

algorithms. In contrast, at 100% FIO2, the distribution of

ventilation was significantly more skewed towards ventral lung

regions at ZEEP as compared to PEEP. This is reflected in the

decrease in CoV associated with the introduction of PEEP, which

was detected by all algorithms but Rbkg and RL1 where it narrowly

escaped significance. Accordingly, we found that the increase in

FIO2 from 21% to 100% produced for all algorithms a significant

increase in CoV, i.e. a shift of ventilation distribution towards

ventral regions, at ZEEP but not at PEEP. Repeated EIT recordings

with the same ventilator settings produced equivalent values of

CoV for all algorithms at PEEP. At ZEEP, CoV was reproducible at

pƒ0:05 only for six algorithms (Rbkg, Rn, RL1, RTV, RGR and

RSBP), although only for Rdif and RTSVD did p exceed 0:1.

Discussion

EIT shows significant promise as a technique to monitor

regional changes in lung ventilation, and to improve patient

outcomes by informing ventilator therapy [4]. Since EIT is a

challenging mathematical problem, many advanced reconstruc-

tion procedures have been developed, each offering potentially

useful advances in terms of image quality or robustness against

data noise. However, such advanced reconstruction schemes have

seen little application to clinical or experimental EIT research,

with the exception of GREIT [29] algorithm, which has seen some

recent use.

Figure 5. EIT images for all algorithms from three representative animals. For each animal, images of VT at ZEEP and PEEP are shown
individually normalized to the maximum amplitude in each image (Blue: decrease in conductivity, Red: increase in conductivity). Each column shows
images for a different algorithm. PEEP, positive end-expiratory pressure; ZEEP, zero end-expiratory pressure; VT tidal volume.
doi:10.1371/journal.pone.0103045.g005
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In this paper, we propose a framework for functional validation

and comparison of lung EIT images. This framework is then used

to evaluate whether some advanced algorithms for EIT image

reconstruction improve its ability to resolve the distribution of lung

ventilation. As proposed, our validation focuses on EIT’s ability to

represent two key parameters, VT and CoV, in accordance with

known physiology. These are currently the most important for the

proposed clinical applications of EIT; they have been applied in

recent work by e.g. [60–62]. Additionally, our framework permits

straightforward addition of new parameters by an extension of the

evaluation software. Rather than using simulations or a saline

phantom (e.g. [63]), our approach is more clinically orientated in

that we use measures based on an in vivo experimental model.

The key innovation is that we directly test reconstructed images

against physiological "knowns". In particular, we test for the

presence of significant changes in the reconstructed images as a

result of experimental interventions with known physiological

consequences. In the current study we do not assess the magnitude

of these changes, although the presented framework could be

extended in the future to include such assessment, once a number

of technical difficulties are overcome. These include the use of

normalized difference data, which hinders quantitative compari-

son of image pixel values to expected conductivity changes in

experimental data; and the use of incorrect model geometry

(discussed further below) resulting in spatially distorted images.

We consider algorithms based on a sensitivity model of EIT,

which can be expressed in terms of a direct minimization of an

error expression (eqn. 3). This includes many possible "ingredi-

ents": the dimension and background conductivity of the FEM;

electrode movement modelling and reconstruction; time-difference

vs. normalized time-difference measurement; data noise model;

data and model norms; assumptions about the conductivity

distribution imposed through the prior model; and method of

calculating the pseudo-inverse of the sensitivity matrix. We do not

consider all available algorithms; direct inversion methods (such as

D-bar), those based on a Bayesian framework or non-linear

sensitivity models (e.g. level set, monotonicity, or factorization)

were not evaluated. We have designed our evaluation software to

make it straightforward to add such comparisons as implementa-

tions of these algorithms become available. Even with the nine

factors considered, it would not be possible to evaluate the full set

of possible algorithms; instead we define a baseline algorithm and

variants of it, yielding twelve algorithms, which were evaluated

based on two approaches. First, representative images of

ventilation were studied visually to assess the relative amount

and character of artefacts as well as the shape of the region

showing tidal changes. Second, measures of tidal changes and their

distribution in the reconstructed images were tested against known

physiological behaviour in experimental data.

To fairly compare algorithms we chose their hyperparameters,

which control the trade-off between resolution and noise

performance, such that the value of the noise figure (NF) metric

[51] for a specific change in of RSBP. Still, because the NF of

algorithms varies across the image, sometimes greatly, this

approach to comparison is not completely fair for conductivity

changes elsewhere in the domain. Moreover, this high value of NF

means that for some of the tested algorithms the amount of

regularization was insufficient to fully appreciate the nature of the

prior.

Based on the results in Table 4, algorithms which exhibit a

better p-value are interpreted as offering an improved correspon-

dence to known physiological "ground-truths", and are thus better.

We do not select an overall "best", as that would amount to

ranking the relative importance of the different tests, which is

problematic. For example, the ability to accurately represent VT

may be more important relative to CoV in some clinical

applications, but not others. Overall, we note that there is a

general trend in which a ranking of algorithms by p-value

performance in various tests are substantially consistent. Based on

the images in Fig. 5, we make the following observations: 1)

Artefacts on the image boundary are reduced in Rmv, RGR and

RSBP, since these algorithms explicitly compensate for noise close

to the electrodes; 2) The lung regions are better separated in Rbkg

which exhibits increased sensitivity in the lung regions "pulling"

them apart; 3) Reconstructions using difference – rather than

normalized difference – data exhibit strong artefacts, likely due to

the variation in gain on individual channels in the Goe-MF II EIT

system; 4) Numerous "streak" artefacts are generated by RSBP,

which are a result of wrong assumptions in the backprojection

sensitivity model; 5) RTSVD, the only algorithm whose regulariza-

tion is represented in terms of sensitivity matrix singular values –

and thus not on the image space – produces strong "speckle"

artefacts; 6) Algorithms using a spatial filter (RHPF and RGR)

produce spatially smoother images; 7) On the other hand, RTV –

designed to preserve boundaries – creates an image with

implausible shapes; 8) The use of a 3D forward model, R3D vs.

R0, shows little appreciable difference despite the fact that EIT

data from a 3D domain is incompatible with a 2D model [64],

since the use of a circular shape is incorrect in both cases.

Overall, this means the variation in appearance of images

reconstructed from the same data with different algorithms is not

negligible. This poses a challenge to efforts to analyse the images at

the level of individual pixels to derive diagnostic information. At

the same time, the strength of our functional validation is evident

in that we were able to detect clinically relevant physiological

changes in spite of the varied appearance of the images. This is in

contrast to methods based on comparison with images more

faithful to anatomy that are primarily sensitive to morphological

distortions.

Our results address two important questions:

1) Do advanced image reconstruction algorithms provide advan-
tages over the original Sheffield backprojection when applied to
in vivo data? Yes, some advanced algorithms offer a small,

but significant advantage. Of the linear, one-step (i.e. fast)

algorithms considered, RGR is the current best choice. Several

other algorithms also offer advantages, such as those that

consider electrode movement and the background lung

conductivity; however, these "ingredients" can – and should

– be included in an improved GREIT-like algorithm.

Considering both the images and the significance values in

our tests, the best approach (but at the cost of significantly

higher computational complexity) is RL1, which uses robust

error norms. We also note that several algorithms do not

perform well.

2) Do clinically relevant EIT measures characterizing lung
ventilation depend on the algorithm used? For ventilation

therapy, EITs clinical relevance is driven by its ability to

determine information on the changes in volume and its

distribution, which we seek to capture in our evaluation

framework. A first reading of Table 4 would indicate that the

choice of algorithm affects the significance. Many algorithms

have significantly worse p-values than the original RSBP, with

which most clinical and experimental results have been

analysed (ie. R0, R3D, Rdif , Rbkg, RTSVD, RHPF, RTV). The

remaining algorithms (Rmv, Rn, RL1, RGR) show similar, or in

some cases improved, p-values to RSBP. This group of

algorithms may be characterized as "advanced in that they
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model additional image and sensor characteristics above that

available in a classic GN regularized formulation. We note

that the RSBP algorithm works surprisingly well given its

vintage and ad-hoc formulation. Overall, our analysis does

not suggest reconsideration of the validity of previous analyses

of EIT data.

Our analysis is limited in that we only considered 2D electrode

placement and adjacent injection and measurement patterns.

These have prevented us from evaluating 3D reconstructions and

limited the sensitivity in the centre of the image [49]. This,

however, remains the de-facto standard for in vivo studies. We also

purposefully used a circular (cylindrical in 3D) forward model for

all algorithms, as this is what RSBP assumes, although using

accurate body shape (e.g. derived from CT data) is known to

decrease artefacts and improve positional accuracy [28,65]. The

effects of using a circular model do not affect our analysis of tidal

volume changes, since VT is a scalar not affected by the

distribution of pixel values within the ROI used for its calculation.

Furthermore, because CoV is a gross measure also defined on a

ROI, it is unlikely that using an anatomically accurate model

would substantially improve the performance of the evaluated

algorithms in detecting shifts in CoV. However, the use of circular

models is likely to have adversely affected our analysis of

background modelling in Rbkg, since realistic organ shape could

not be incorporated into the forward model. Last but not least, our

analysis considered the effect of each "ingredient" individually.

Clearly, a combination of the more promising ones is likely to yield

a better reconstruction algorithm than any of those tested here.

However, naı̈ve combinations are unlikely to produce good results.

Instead, careful calibration and testing of many combinations will

be needed, for which, we hope, the proposed evaluation

framework will prove a useful tool.

Conclusions

We present a methodology to experimentally evaluate lung EIT

algorithms, and use it to analyse and compare recent work. The

methodology is based on testing the algorithms ability to correctly

detect physiological changes (or lack thereof) in a bespoke

experimental data set. The basic idea behind this methodology

allows it to be easily expanded to incorporate additional tests in the

future. Several promising algorithm ingredients are identified; and

we recommend research to evaluate approaches combining these

factors, as well as other, non-linear algorithms. In order to support

such investigation, we release the data and software for this study

under a free license, so that it can be used and modified by others

(http://sf.net/p/eidors3d/code/HEAD/tree/trunk/pubs/papers/

compare-algs-2014).
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47. Schöberl J (1997) NETGEN an advancing front 2D/3D-mesh generator based
on abstract rules. Comput Visual Sci 1: 41–52.

48. Grychtol B, Adler A (2013) Uniform background assumption produces
misleading lung EIT images. Physiol Meas 34: 579–93.

49. Adler A, Lionheart WRB (2011) Minimizing EIT image artefacts from mesh

variability in finite element models. Physiol Meas 32: 823–834.

50. Graham BM, Adler A (2006) Objective selection of hyperparameter for EIT.

Physiol Meas 27: S65–S79.

51. Adler A, Guardo R (1996) Electrical impedance tomography: regularized

imaging and contrast detection. IEEE Trans Med Imag 15: 170–179.

52. Cheney M, Isaacson D, Newell JC, Simske S, Goble J (1990) NOSER: An

algorithm for solving the inverse conductivity problem. Int J Imag Sys Technol

2: 66–75.

53. Hartinger AE, Guardo R, Adler A, Gagnon H (2009) Real-time management of

faulty electrodes in electrical impedance tomography. IEEE Trans Biomed Eng

56: 369–377.

54. Borsic A, Adler A (2012) A primal–dual interior-point framework for using the

L1 or L2 norm on the data and regularization terms of inverse problems. Inverse

Probl 28: 095011.

55. Polydorides N, Lionheart WR (2002) A Matlab toolkit for three-dimensional

electrical impedance tomography: a contribution to the Electrical Impedance

and Diffuse Optical Reconstruction Software project. Meas Sci Technol 13:

1871.

56. Vauhkonen M, Vadász D, Karjalainen PA, Somersalo E, Kaipio JP (1998)

Tikhonov regularization and prior information in electrical impedance

tomography. IEEE Trans Med Imag 17: 285–293.

57. Murai T, Kagawa Y (1985) Electrical impedance computed tomography based

on a finite element model. IEEE Trans Biomed Eng 32: 177–184.

58. Borsic A, Graham BM, Adler A, Lionheart WRB (2010) In vivo impedance

imaging with total variation regularization. IEEE Trans Med Imag 29: 44–54.

59. Pulletz S, van Genderingen HR, Schmitz G, Zick G, Schädler D, et al. (2006)
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