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Zusammenfassung

Das Standardmodell der Teilchenphysik beschreibt die kleinsten Bausteine der Materie.
Im Rahmen einer Quantenfeldtheorie erklärt es die elektromagnetische, schwache und
starke Wechselwirkung der Elementarteilchen. Der Erfolg des Standardmodells geht auf
die überragende Übereinstimmung seiner Voraussagen mit dem Experiment zurück. Als
ein aktuelles Beispiel führen wir den 2013 erbrachten experimentellen Nachweis des
Higgs Bosons an, welches bereits 1964 von Brout, Englert und Higgs innerhalb des
Standardmodells vorhergesagt wurde.
Die starke Wechselwirkung ist für den Zusammenhalt unserer Materie auf kleinsten

Skalen verantwortlich. Ihre fundamentale Beschreibung erfolgt über die Quantenchromo-
dynamik (QCD), welche mathematisch eine nicht-abelsche Eichtheorie mit Symmetrie-
gruppe SU(3) darstellt. Sie erklärt das Zusammenspiel der Konstituenten hadronischer
Materie, den Quarks und Gluonen. Dabei wird die Erfahrungstatsache, dass freie Quarks
nicht beobachtet werden können, als con�nement bezeichnet. Ein weiterer wesentlicher
Bestandteil der QCD ist der Aspekt der asymptotischen Freiheit, welche besagt, dass mit
steigender Energieskala die Stärke der Wechselwirkung zwischen den Quarks abnimmt.
Bereits in den 1970er Jahren realisierte man, dass bei hohen Energien die asymptoti-
sche Freiheit zumindest eine partielle Au�ösung des con�nements zur Folge haben muss.
Dieser neue Zustand der QCD-Materie wird als Quark-Gluon-Plasma bezeichnet und
ist zentraler Forschungsgegenstand dieser Dissertation.
Die zur Produktion eines Quark-Gluon-Plasmas benötigte hohe Energiedichte kann in

Schwerionenkollisionen an Teilchenbeschleunigern erreicht werden. Dabei werden schwe-
re Atomkerne wie die von Blei oder Gold auf nahezu Lichtgeschwindigkeit beschleunigt
und dann zum Zusammenstoÿ gebracht. Am Relativistic Heavy Ion Collider (RHIC)
des Brookhaven National Laboratory wurden dabei erstmals 2005 experimentelle Hin-
weise auf ein Quark-Gluon-Plasma gefunden. Diese wurden in weiteren Experimenten
am RHIC und am Large Hadron Collider (LHC) des Conseil Européen pour la Recher-
che Nucléaire (CERN) bestätigt. Die Beschleunigeranlage Facility for Antiproton and
Ion Research (FAIR), welche sich gerade im Bau be�ndet, wird die Erforschung dieses
neuen Materiezustands noch weiter vorantreiben. Neben dem Auftreten eines Quark-
Gluon-Plasmas in Schwerionenkollisionen, favorisieren aktuelle kosmologische Modelle,
dass dieser Zustand auch im frühen Universum existierte.
Eine besondere Eigenschaft, die dem Quark-Gluon-Plasmas zugeordnet wird, ist, dass

es sich wie eine fast perfekte Flüssigkeit verhält. Diese Aussage folgt aus der Überein-
stimmung einer Beschreibung des elliptischen Flusses in relativistischer Hydrodynamik
mit experimentellen Daten. Die Berücksichtigung dissipativer E�ekte in einer Flüssig-
keit erfolgt über das Hinzufügen weiterer Terme zu den hydrodynamischen Bewegungs-
gleichungen. Diese Terme sind proportional zu Transportkoe�zienten, welche Parameter
der Hydrodynamik darstellen und nicht aus dieser selbst hervorgehen. Die Transportko-
e�zienten sind durch die zugrunde liegende mikroskopische Theorie festgelegt, welche
im Fall des Quark-Gluon-Plasmas die QCD ist. Ein Ergebnis dieser Arbeit ist die Be-
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rechnung des Transportkoe�zienten zweiter Ordnung κ im Rahmen der QCD.
Der zweite Forschungsschwerpunkt dieser Arbeit beschäftigt sich mit der Therma-

lisierung des Quark-Gluon-Plasmas. Die Beschreibung von aus Schwerionenkollisionen
gewonnenen experimentellen Daten mit thermischen Modellen, insbesondere mit relati-
vistischer Hydrodynamik, setzt ein zumindest lokales thermisches Gleichgewicht voraus.
Durch die Lorentzkontraktion der beiden Schwerionen erwartet man, dass der Zustand
direkt nach der Kollision durch eine Impulsanisotropie in der transversal-longitudinalen
Ebene bestimmt wird. Somit setzt das Erreichen eines thermischen Gleichgewichts zu-
nächst eine Isotropisierung voraus. Bisherige Studien haben gezeigt, dass gluonische
Moden bei dieser Isotropisierung durch Verursachung einer Instabilität eine entschei-
dende Rolle spielen. Diese Instabilität soll analog zur Weibel Instabilität im elektroma-
gnetischen Plasma verlaufen und wird deshalb unter Einbeziehung der Farbladung des
gluonischen Feldes chromo-Weibel-Instabilität genannt. Alles bisherigen auf der QCD
basierenden Betrachtungen der Isotropisierung durch eine chromo-Weibel-Instabilität
beruhen nur auf der Dynamik gluonischer Felder und haben zumeist die Farbsymmetrie
SU(2) benutzt. Ausgehend von der QCD untersuchen wir in dieser Arbeit die gluonische
Dynamik mit der korrekten QCD-Farbsymmetrie SU(3) und schlieÿen zum ersten Mal
dynamische Fermionen in die Betrachtung mit ein.
Fundamentale theoretische Aussagen über Eigenschaften des Quark-Gluon-Plasmas

setzen das Lösen des QCD-Pfadintegrals in einem thermischen System voraus. Als Folge
der asymptotischen Freiheit wird die QCD bei Energien oder Temperaturen deutlich grö-
ÿer als die der intrinsischen Energieskala ΛQCD ≈ 200MeV zu einer schwach gekoppelten
Theorie und kann im Rahmen einer Störungsrechnung zu bestimmter Ordnung in der
Kopplung gelöst werden. Allerdings werden in thermischen Systemen analytische Vor-
hersagen durch infrarote Divergenzen erschwert und durch das Linde Problem, welches
ab einer gewissen Ordnung einen Zusammenbruch der Störungsentwicklung verursacht,
unmöglich. Die Einschränkung perturbativer Methoden auf schwache Kopplungen er-
laubt deren Anwendung nur in einem kleinen Bereich des in einer Schwerionenkollision
durchlaufenen Energiespektrums.
Die 1974 von Wilson eingeführte Gitterregularisierung ermöglicht einen nicht-pertur-

bativen Zugang zur QCD. Diese beruht auf einem Übergang zu euklidischer Raumzeit
durch eine Wickrotation, der Transformation reeller zu imaginärer Zeit, und einer an-
schlieÿenden Diskretisierung der Raumzeit durch ein vierdimensionales hyperkubisches
Gitter mit Gitterabstand a. Der endliche Gitterabstand dient als Regulator, indem er
Impulse gröÿer als π

a abschneidet und so das Auftreten ultravioletter Divergenzen ver-
hindert. Die Diskretisierung erlaubt es Pfadintegrale numerisch zu berechnen und so-
mit QCD-Vakuumerwartungswerte auszuwerten. Analog zum Imaginärzeitformalismus
der Quantenfeldtheorie in kontinuierlicher Raumzeit, kann auf dem Gitter die eukli-
dische Zeitrichtung mit der Temperatur identi�ziert werden, was die Berechnung von
Erwartungswerten im thermischen Gleichgewicht ermöglicht. Mit der Gittereichtheorie
existiert eine nichtperturbative Methode zur Berechnung von Observablen. Allerdings
hilft sie uns durch ihre Beschränkung auf imaginäre Zeit beziehungsweise Systeme im
thermischen Gleichgewicht in der Bestimmung von Transportkoe�zienten oder der Un-
tersuchung von Isotropisierungsprozessen zunächst nicht weiter.
Transportkoe�zienten entsprechen den Proportionalitätskoe�zienten in hydrodyna-

mischen Gleichungen, die die Relaxation einer Flüssigkeit oder eben eines Quark-Gluon-
Plasmas von einer kleinen Störung beschreiben. Damit sind sie unmittelbar mit reeller
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Zeit verknüpft und zunächst nicht durch die Gitter-QCD zugänglich. Als Folge des
Fluktuations-Dissipations-Theorems lassen sie sich jedoch in Quantenfeldtheorien über
Kubo-Formeln mit Gleichgewichtserwartungswerten retardierter Korrelatoren verknüp-
fen. Damit werden sie zwar für die QCD im thermischen Gleichgewicht zugänglich,
jedoch nicht für die Gitter-QCD. Diese ist durch die Wickrotation zu euklidischer Raum-
zeit auf die Berechnung euklidische Korrelatoren beschränkt. Der Transportkoe�zient κ
ist dadurch ausgezeichnet, dass er eine triviale analytische Fortsetzung vom euklidischen
zum retardierten Korrelator besitzt und somit direkt in Gittereichtheorie berechnet wer-
den kann. Im Gegensatz zur Scherviskosität oder elektrischen Leitfähigkeit müssen für
die analytische Fortsetzung keine weiteren Annahmen wie zum Beispiel die Maximum-
Entropie-Methode getro�en werden.
Der Prozess der Isotropisierung �ndet unmittelbar nach der Kollision der Schwerionen

statt und läuft somit fern vom Gleichgewicht ab. Weiterhin ist die Isotropisierung ein
dynamischer Vorgang dessen Betrachtung echte Zeit benötigt. Deshalb ist die Standard-
formulierung der Gittereichtheorie keine geeignete Methode zur Beschreibung des Isotro-
pisierungsprozesses. Allerdings lassen sich die für das Problem relevanten niederenergeti-
schen gluonischen Moden klassisch nähern. Dabei nutzen wir eine Gitterregularisierung,
um die Moden mit hohen Impulsen abzuschneiden. Die Diskretisierung der Raumzeit
ermöglicht eine numerische Behandlung der mit einer klassischen Theorie verknüpften
Bewegungsgleichungen. Diese spiegeln die Dynamik des Systems wieder. Intrinsische
Eigenschaften des Systems werden durch Anfangsbedingungen festgelegt.
Die beiden in dieser Arbeit vorgestellten Zugänge werden verwendet, um auf reel-

ler Zeit basierende Observablen, sogenannte real time observables, des Quark-Gluon-
Plasmas zu bestimmen. Wir präsentieren die Bestimmung des Transportkoe�zienten κ
in Gittereichtheorie für das Yang-Mills-Plasma. Weiterhin untersuchen wir den durch
eine chromo-Weibel-Instabilität angetriebenen Prozess der Isotropisierung des Quark-
Gluon-Plasmas unter Verwendung der korrekten QCD-Farbsymmetrie SU(3) und dem
Einschluss dynamischer Fermionen.
Nach der Einleitung werden im zweiten und dritten Kapitel die theoretischen Grund-

lagen vorgestellt. In Kapitel 2 beschäftigen wir uns mit der QCD im Kontinuum und der
Einführung der Temperatur. Insbesondere leiten wir die analytische Fortsetzung vom
euklidischen zum retardierten Korrelator her, welche in der Bestimmung des Transport-
koe�zienten κ eine entscheidende Rolle spielt. Kapitel 3 behandelt die Formulierung
der Yang-Mills-Theorie im thermischen Gleichgewicht auf dem Gitter. Wir diskutieren
die Übertragung der vierdimensionalen euklidischen Raumzeit auf einen anisotropen
Hyperkubus mit periodischen Randbedingungen sowie die Diskretisierung der Wirkung.
Weiterhin stellen wir die Gitterstörungstheorie vor, welche perturbative Rechnungen in
diskreter Raumzeit ermöglicht. Das Kapitel schlieÿt mit der Vorstellung des benutzten
numerischen Algorithmus' und einer Überprüfung der korrekten Implementierung.
Kapitel 4 behandelt die Bestimmung des Transportkoe�zienten κ. Wir beginnen mit

seiner De�nition in relativistischer Hydrodynamik. Transportkoe�zienten können sys-
tematisch mittels einer Gradientenentwicklung hergeleitet werden. Wir betrachten diese
Entwicklung zu zweiter Ordnung in gekrümmter Raumzeit und �nden neben fünfzehn
weiteren Transportkoe�zienten zweiter Ordnung den Transportkoe�zienten κ. In Bezug
auf das Quark-Gluon-Plasma sind alle gefundenen Transportkoe�zienten durch die zu-
grunde liegende mikroskopische Theorie � die QCD � festgelegt und über Kubo-Formeln
mit retardierten Korrelatoren des Energie-Impuls-Tensors im thermischen Gleichgewicht
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verknüpft. Der Transportkoe�zient κ geht aus einer Impulsentwicklung eines der retar-
dierten Korrelatoren als führender Koe�zient hervor. Wie bereits angesprochen, besitzt
der für den Transportkoe�zienten κ relevante retardierte Korrelator eine triviale ana-
lytische Fortsetzung zum euklidischen Korrelator, was eine Bestimmung des Transport-
koe�zienten κ direkt in Gittereichtheorie ermöglicht.
Da eine Berechnung des Transportkoe�zienten κ unter Einbeziehung dynamischer

Fermionen den Bereich numerischer Durchführbarkeit verlässt, bestimmen wir κ in rei-
ner Gittereichtheorie. Dies erfordert zunächst eine Diskretisierung des Energie-Impuls-
Tensors, welcher der Noetherstrom bezüglich Translationen ist. Da die Symmetrie unter
Translationen auf dem Gitter reduziert ist, ist eine multiplikative Renormierung des
Energie-Impuls-Tensors erforderlich. Auf einem anisotropen Gitter erfordert das die Be-
stimmung von zwei Renormierungskonstanten. Unser Renormierungsschema teilt sich
in die nichtperturbative Bestimmung des Verhältnisses der beiden Renormierungskon-
stanten sowie eines absoluten Faktors auf. Das Verhältnis kann über zusätzliche Git-
tersimulationen aus Renormierungsgruppen-invarianten Observablen bestimmt werden.
Den absoluten Faktor erhalten wir aus einer Identi�kation der räumlichen Diagonalele-
mente des Energie-Impuls-Tensors mit dem Druck eines Yang-Mills-Plasmas, welcher
aus Gittersimulationen bekannt ist.
Der benötigte Korrelator im Impulsraum geht aus einer Fouriertransformation des

Energie-Impuls Korrelators hervor. Allerdings ist der Korrelator ultraviolett divergent,
was eine additive Renormierung notwendig macht. Da die Divergenz temperaturunab-
hängig ist, entfernen wir sie durch eine Subtraktion des Vakuumerwartungswertes des
Korrelators. Dadurch erfordert jede Berechnung des Transportkoe�zienten κ bei einer
unterschiedlichen Temperatur eine zusätzliche Simulation mit erhöhter zeitlichen Git-
terausdehnung.
Weiterhin ist zu beachten, dass der Transportkoe�zient κ aus einer Impulsentwicklung

des Korrelators extrahiert wird, die nur für gegenüber der Temperatur kleine Impulse
Gültigkeit besitzt. Diese Beschränkung führt dazu, dass für die numerische Bestimmung
Gitter mit sehr vielen räumlichen Gitterpunkten benötigt werden. Wie nutzen ein ani-
sotropes Gitter, um diese Anforderung abzuschwächen.
Wir berechnen den Transportkoe�zienten durch Monte-Carlo Simulationen für ver-

schiedene Temperaturen sowie in Gitterstörungstheorie. Aufgrund der asymptotischen
Freiheit ermöglicht die Simulation bei einer Temperatur von T ≈ 2, 7GeV den Ver-
gleich mit der Berechnung in Gitterstörungstheorie. Wir �nden eine Übereinstimmung
beider Vorhersagen innerhalb der statistischen Fehler. Aus den weiteren Gittersimula-
tionen extrahieren wir eine Temperaturabhängigkeit des Transportkoe�zienten κ ∼ T 2.
Dieses Resultat stimmt mit analytischen Berechnungen aus AdS/CFT (Anti-de Sit-
ter/Conformal Field Theory) Korrespondenz und einer Yang-Mills-Schwachkopplungs-
entwicklung in idealer Gas Näherung überein. Mit einem über die bestimmten Tempe-
raturen gemittelten Wert von κavr = 0.36(15)T 2 liegt unser Ergebnis zwischen diesen
beiden Vorhersagen, welche den Grenzfall starker und schwacher Kopplung darstellen.
Am Ende des Kapitels stellen wir Forschungsperspektiven mit Hinblick auf eine Verrin-
gerung des statistischen Fehlers vor.
In Kapitel 5 führen wir das semi-klassische Modell der QCD auf dem Gitter ein. Im Be-

reich schwacher Kopplung und hoher gluonischen Besetzungen können die bosonischen
Freiheitsgrade klassisch angenähert werden. Die unterdrückten hochenergetischen Mo-
den werden durch eine Gitterregularisierung vollends abgeschnitten. Da für Fermionen

viii



eine klassische Beschreibung nicht möglich ist, behandeln wir diese quantenmechanisch.
Dazu führen wir im Rahmen der kanonischen Quantisierung eine Entwicklung der fer-
mionischen Felder in Modenfunktionen durch. Die Zeitentwicklung der Fermionen ist
dann über diese Modenfunktionen gegeben. Eine numerische Ausführung eines Zeit-
schrittes erfordert das Lösen der Dirac-Gleichung für jede Mode an jedem Gitterpunkt,
also das Lösen eines Systems, das eine Anzahl proportional zum Quadrat des Gittervolu-
mens an gekoppelten Di�erentialgleichungen enthält. Dieser hohe numerische Aufwand
kann durch eine Approximation der Fermionen durch stochastische Fermionen reduziert
werden. Dabei werden fermionische Korrelatoren durch einen entsprechenden Ensemble-
Mittelwert stochastischer Fermionen ersetzt.
Auf dieser Basis leiten wir ausgehend von der QCD-Wirkung in diskreter Minkowski-

Raumzeit über den Hamiltonformalismus die Bewegungsgleichungen des Systems her.
Diese enthalten die gesamte Dynamik des Systems und sind durch die diskrete Raumzeit
numerisch zugänglich. Über die Anfangsbedingungen werden intrinsische Eigenschaften
des Systems festgelegt. Wir stellen eine Initialisierung der bosonischen und fermionischen
Felder für ein thermisches Gleichgewicht vor und betrachten die QCD-Evolution, also die
Dynamik bosonischer und fermionischer Felder mit Farbsymmetrie SU(3) in reeller Zeit,
in drei räumlichen Dimensionen. Dabei �nden wir während der Evolution einen Übertrag
bosonischer Energie auf die Fermionen bis eine Saturierung einsetzt. In Abhängigkeit
der gewählten Fermionenmasse erfolgt dieser Übertrag unterschiedlich schnell. Es ist das
erste Mal, dass diese semi-klassische Näherung mit stochastischen Fermionen auf die
QCD angewendet wird. Wir schlieÿen mit einer Vorstellung von Einsatzmöglichkeiten
des entworfenen Modells im thermischen Gleichgewicht.
Weiterhin benutzen wir das semi-klassische Gittermodell der QCD in Kapitel 6 um

den Isotropisierungsprozess des in einer Schwerionenkollision erzeugten Quark-Gluon-
Plasmas durch eine chromo-Weibel-Instabilität zu untersuchen. Die kollidierenden Ionen
können als Farbglaskondensat beschrieben werden. Die Idee des Farbglaskondensats be-
ruht auf der durch tie�nelastische Streuexperimente bei HERA gefundenen Erkenntnis,
dass bei hohen Beschleunigerenergien die Gluonen die Partonverteilungsfunktion eines
Nukleus dominieren. Eine Annahme im Modell ist, dass der Anteil der Gluonen so-
weit ansteigt, bis es auf Grund ihrer nichtlinearen Wechselwirkung zu einer Saturierung
kommt. Diese Saturierung ist mit einem Impuls verknüpft, der deutlich gröÿer als die
QCD-Skala ΛQCD ist. Somit sind diese Gluonen schwach gekoppelt und können in einer
e�ektiven QCD-Theorie, der colour glass condensate e�ective theory, beschrieben wer-
den. Sie erlaubt einen theoretischen Zugang zu den ersten Augenblicken einer Schwer-
ionenkollision und wir nutzen eine entsprechende Übertragung auf den diskreten Raum
zur Festlegung unserer Anfangsbedingungen im semi-klassischen Modell. Die schwache
Kopplung und die hohe gluonische Besetzung erlaubt die Anwendung des Modells zur
Beschreibung der Dynamik der ersten Phasen einer Schwerionenkollision.
Ausgehend von auf der Theorie des Farbglaskondensats basierenden Anfangsbedin-

gungen untersuchen wir den Isotropisierungsprozess des Quark-Gluon-Plasmas. Der
Grad der Isotropie kann durch das Verhältnis von longitudinalem zu transversalem
Druck erfasst werden. Anzeichen für das Auftreten einer chromo-Weibel-Instabilität ist
das Au�üllen des gluonischen Spektrums ausgehend von weichen Moden. Bezüglich der
spektralen Zerlegung der gluonischen Felder führen wir eine neue Observable ein, die
eichinvariant ist. Dadurch wird ein numerisch teures Fixieren der Eichung unnötig.
Zuerst studieren wir den Fall reiner Eichtheorie mit Farbsymmetrie SU(3). Dabei
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�nden wir Anzeichen für das Auftreten einer chromo-Weibel-Instabilität. Weiterhin �n-
det eine Isotropisierung statt. Die dabei durchlaufene Dynamik des longitudinalen und
transversalen Drucks gleicht der einer äquivalenten Studie mit Farbsymmetrie SU(2).
Bezüglich der Isotropisierungszeit, also der Zeit wann ein bestimmtes Verhältnis von
longitudinalem zu transversalem Druck erreicht ist, �nden wir allerdings signi�kante
Unterschiede. Schlieÿen wir Vakuumfermionen in die Betrachtung mit ein, �nden wir wie
schon im thermischen Gleichgewicht einen Energieübertrag von bosonischen zu fermio-
nischen Freiheitsgraden. Weiterhin haben die Fermionen Ein�uss auf die Dynamik der
Isotropisierung und beein�ussen vor allem die Isotropisierungszeit.
In dieser ersten Studie haben wir gezeigt, dass die Einbeziehung fermionischer Frei-

heitsgrade eine Auswirkung auf den Isotropisierungsprozess hat. Die Betrachtung der
korrekten QCD-Farbsymmetrie SU(3) hat auf die allgemeine Dynamik des Isotropisie-
rungsprozesses keinen Ein�uss, wohl aber auf die Extraktion konkreter Zahlen. Wir
schlieÿen das Kapitel mit Forschungsperspektiven für weitere Anwendungen des semi-
klassischen QCD-Modells fern vom Gleichgewicht.
Die Arbeit endet mit einer Zusammenfassung der Ergebnisse in Kapitel 7. Im Anhang

folgen Anmerkungen zur Notation und mathematischen Konventionen (A), analytische
Rechnungen bezüglich des Transportkoe�zienten κ (B) und Datensätze der zugehörigen
numerischen Simulation, die eine Reproduktion erlauben (C). Weiterhin präsentieren wir
die Herleitung der Bewegungsgleichungen des semi-klassischen Modells der QCD und
die Einführung stochastischer Fermionen (D). In Anhang E gehen wir auf Diskretisie-
rungsartefakte des semi-klassischen Modells ein.
Zusammenfassend beschäftigt sich diese Arbeit mit der Berechnung von dynamischen

Gröÿen und Prozessen des Quark-Gluon-Plasmas in der fundamentalen Theorie der
starken Wechselwirkung � der QCD. Die Anwendung einer Gitterregularisierung er-
laubt es, Aussagen über nichtperturbative Bereiche zu tre�en. Durch Verwendung von
Kubo-Formeln und einer klassisch-statistischen Näherung, ist es möglich, auf reeller
Zeit basierende Gröÿen, sogenannte real time observables, zu berechnen. Ausgehend von
diesen Methoden haben wir unter Verwendung der Gittereichtheorie den Transport-
koe�zienten κ für das Yang-Mills-Plasma bestimmt. Weiterhin haben wir mittels eines
semi-klassischen Modells der QCD Isotropisierungsprozesse im Quark-Gluon-Plasma un-
tersucht. Dabei haben wir zum ersten Mal Fermionen in die Dynamik mit eingeschlossen.
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1 Introduction

Daÿ ich erkenne, was die Welt
Im Innersten zusammenhält [. . . ].
� J.W.Goethe (1749�1832), Faust

Giving a scienti�cally established answer to the question raised in Goethe's quote
took until the second half of the 20th century, i.e. when the standard model of particle
physics was developed. This model constitutes a quantum �eld theory unifying the
electromagnetic, weak and strong interactions between fundamental particles. Its great
success derives from a wide variety of predictions coinciding excellently with experi-
mental results, see for instance [1, 2] for an overview. One remarkable recent result is
the discovery of the Higgs boson at the Large Hadron Collider (LHC) [3, 4], which had
already been predicted by the standard model in 1964 by Brout and Englert [5] as well
as Higgs [6]. The prediction was awarded with the Nobel prize 2013.
The existence of bound states of matter is explained by the theory of quantum chro-

modynamics (QCD) dealing with the strong interaction. QCD is a non-abelian gauge
theory with symmetry group SU(Nc = 3) describing the interactions between quarks
and gluons, both fundamental particles. QCD matter is characterised by two peculiar
properties: On the one hand, there is colour con�nement. It is the phenomenon that
colour charged particles as quarks and gluons can not be isolated and thus escape di-
rect observation. On the other hand, there is asymptotic freedom. It states that the
interaction strength between those particles decreases as the energy is increased.
It was realised in the 1970s [7�9], that asymptotic freedom implies the existence of a

state of matter with at least partially decon�ned quarks and gluons at high energies �
the quark-gluon plasma. Nowadays, �ndings of the experimental heavy ion programme
at the collider facilities RHIC (Relativistic Heavy Ion Collider) and LHC (Large Hadron
Collider) give evidence for the emergence of a quark-gluon plasma from heavy ion colli-
sions [10�13]. In future the research programme at FAIR (Facility of Antiproton and Ion
Research) is going to promote this exploration. Among others, enhanced strangeness
production [14], jet quenching [15] as well as anomalous J/Ψ suppression and regenera-
tion [16] are experimental signatures of a quark-gluon plasma. Alongside its occurrence
in heavy ion collisions, it is assumed that the quark-gluon plasma was formed in the
early stages of our universe and thus plays an important role in cosmology.
As indicated in the phase diagram of QCD (see �gure 1.1 and [17,18] for reviews), as

the temperature T increases hadronic matter passes into a quark-gluon plasma. Simu-
lations in lattice gauge theory allow a determination of the transition's nature as well as
the critical temperature at vanishing chemical potential µ = 0. Concerning pure gluody-
namics, the Polyakov loop serves as an order parameter signalling spontaneous breaking
of the centre symmetry and thus a transition to the decon�ned phase at a critical tem-
perature of Tc ≈ 270MeV [19]. Including dynamic fermions breaks the centre symmetry
explicitly and instead of the Polyakov loop, one uses the chiral quark condensate as an

1
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Figure 1.1: Phase diagram of QCD matter with temperature T and chemical potential µ.
Increasing the chemical potential at low temperatures results in nuclear matter undergoing a
�rst order liquid gas phase transition. Then one enters the hypothetical regime of quark matter
phases and colour superconducting phases. Increasing the temperature at vanishing chemical
potential, lattice simulations show that QCD matter undergoes a crossover to the quark-gluon
plasma. The �rst order lines of the quark-gluon plasma transition are predictions of non-
fundamental models. In particular the existence of a critical endpoint is an open question.

indicator for the transition to the decon�ned phase1. One �nds the transition to be a
crossover with a pseudo-critical temperature in the range of Tpc ≈ 150− 170MeV [20].
Since an inclusion of a �nite chemical potential in lattice gauge theory is a�icted by
the sign problem, see e.g. [19, 21], the other transition lines in �gure 1.1 indicating
a decon�nement transition or chiral restoration are based on QCD-inspired e�ective
models like the Nambu-Jona-Lasinio model [22], but they are not �rst principle calcula-
tions. However, recent developments promise a workaround of the sign problem [23�26]
and �rst perturbative QCD calculations including a �nite chemical potential have been
performed [27�29].
One of the most astonishing observations regarding the quark-gluon plasma is its

behaviour as an almost ideal �uid. This conclusion is based on the fact that relativistic
hydrodynamics excellently describes experimental data obtained in heavy ion collisions
[30�36]. Figure 1.2 illustrates the success of hydrodynamic �ts to Au+Au data from the
PHOBOS and STAR experiments at RHIC. Whereas in the case of ideal hydrodynamics,
the only input required is the equation of state, the case of viscous hydrodynamics
including dissipative e�ects needs further parameters � the transport coe�cients. Their
theoretical prediction should be based on the underlying theory of the quark-gluon
plasma, QCD. In this work we compute the second order transport coe�cient κ from
�rst principles employing the framework of lattice gauge theory at �nite temperature.
Up to a few times the transition temperature of the quark-gluon plasma, the QCD

coupling is not weak enough for perturbative methods to apply. Lattice gauge theory
o�ers a non-perturbative evaluation of the QCD path integral by transferring Euclidean

1Strictly speaking the chiral quark condensate is an order parameter indicating restoration of chiral
symmetry. The common believe is that decon�nement and chiral restoration occur at the same
temperature.
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Figure 1.2: Elliptical �ow v2 versus transverse momentum pT . The experimental data was
taken from Au+Au collisions with a centre of mass energy of

√
S = 200GeV at RHIC and is

�tted to relativistic hydrodynamics of various viscosity ratios η/s, where η is the shear viscosity
and s the entropy density. Taken from [30].

space time to a hypercubic lattice. This renders the path integral �nite dimensional
and thus makes it amenable to numeric methods. Remarkable achievements of lattice
gauge theory are the identi�cation of the transition type of the quark-gluon plasma [20]
as well as the computation of its equation of state [37] or the calculation of a variety of
hadron masses in perfect accordance with their experimental values [38].

Unfortunately, lattice QCD is a�icted by a loss of real time due to the transition to
Euclidean space time incorporating only imaginary time. Furthermore an investigation
of thermal systems necessitates an identi�cation of imaginary time with temperature
restricting the application of lattice gauge theory to systems in thermal equilibrium.
This is unfortunate because transport coe�cients and many other phenomena of the
quark-gluon plasma are of true dynamic nature, demanding a real time formulation.
As a consequence, a calculation of transport coe�cients like the shear viscosity [39] or
electric conductivity [40,41] is not directly possible in lattice gauge theory, but requires
additional input, e.g. an ansatz for the spectral function or the use of the maximum
entropy method. Among others the second order transport coe�cient κ is special in
the sense that its real time de�nition, based on a retarded correlator of the energy-
momentum tensor, explicitly coincides with the corresponding Euclidean correlator,
which is suitable for an evaluation using lattice gauge theory. Thus the transport co-
e�cient κ is directly accessible from lattice gauge theory without having to resort to
maximum entropy methods or functional input.

In this thesis we present the �rst computation of the second order transport coe�cient
κ from �rst principles using the framework of pure lattice gauge theory. We extract
the transport coe�cient from the low momentum expansion of a suitable two-point
function of the energy-momentum tensor. In order to approach the zero momentum
limit, very large lattices are required, demanding an enormous numeric e�ort already in
pure gauge theory. Additionally, the need for additive and multiplicative renormalisation

3
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Figure 1.3: Space time evolution of a heavy ion collision. The two nuclei collide at time
t ≈ 0 fm/c. After a time t ≈ 1 fm/c the produced medium is equilibrated and a quark-gluon
plasma is formed. Due to the longitudinal expansion (z-direction in the sketch) the medium
cools down until the temperature drops below the con�nement temperature Tc. Consequently,
matter reenters the hadronic phase. Finally, at t ≈ 10 fm/c, a dilute gas of free streaming
particles evolves, which can be observed by detectors.

of the discretised energy-momentum tensor complicates the computation. The work is
published in [42].
The second part of this thesis deals with formation of a quark-gluon plasma in heavy

ion collisions whose space time evolution is sketched in �gure 1.3. Due to Lorentz con-
traction of the colliding nuclei, a momentum anisotropy in the longitudinal-transverse
plane is expected. The success of relativistic hydrodynamics in describing data from
heavy ion collisions at LHC and RHIC suggests a local equilibrium implying isotropy
shortly after the collision. The rapid isotropisation can easily be achieved if the plasma is
strongly coupled [43]. However, asymptotic freedom in conjecture with the high energies
of relativistic heavy ion collisions suggests a weakly coupled medium and the question
arises, which QCD processes drive the fast isotropisation. At the moment of writing
unstable plasma modes leading to a chromo-Weibel instability are the most promising
candidates [44�46].
The early stages of the quark-gluon plasma are a system far from equilibrium. A

powerful tool for studying non-equilibrium physics, is the classical model of weakly
coupled Yang-Mills theory, which naturally involves real time in its equations of mo-
tion. It has been applied in several studies on isotropisation via the chromo-Weibel
instability [47�60]. A drawback is that only bosonic degrees of freedom can be approxi-
mated classically. In this work we present the �rst attempt to include fermionic degrees
of freedom to the isotropisation process of the quark-gluon plasma. To this end we
complement the classical approximation of Yang-Mills theory with quantum mechanical
fermions establishing a semi-classical model of QCD.
In this approach, equations of motion determine the QCD dynamics, while intrinsic

features of the system under investigation are incorporated by specifying appropriate ini-
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tial conditions. We review initial conditions for QCD in thermal equilibrium and study
their evolution. However, the focus of our research lies on the isotropisation of the
quark-gluon plasma. We employ initial conditions inspired by the colour glass conden-
sate e�ective theory [61�63]. It describes the highly anisotropic momentum distribution
in terms of classical �elds in the early stages of heavy ion collisions. Then we de�ne
observables indicating isotropisation and appearance of a chromo-Weibel instability.
We solve the equations of motion numerically in the case of pure SU(3) gluodynamics.
Thereby we reproduce results from a similar investigation with gauge group SU(2) [60].
Furthermore we solve the full system of semi-classical QCD investigating the e�ect of
fermionic degrees of freedom on the isotropisation process for the �rst time.
The thesis is organised as follows: QCD is introduced in chapter 2. We discuss the

inclusion of �nite temperature by the imaginary time formalism, which is the standard
approach regarding systems in thermal equilibrium and also plays a major role in the
introduction of temperature in lattice QCD. Furthermore we discuss the real time for-
malism, which additionally allows us to treat systems far from equilibrium. The chapter
concludes with a discussion of the scale hierarchy arising in weakly coupled thermal sys-
tems and its consequences.
In chapter 3, we deal with �nite temperature Yang-Mills theory on an anisotropic

lattice. The second part of the chapter is devoted to perturbation theory within the
lattice framework, the numeric algorithms as well as some consistency checks of the
implementation.
We apply the established framework of lattice Yang-Mills theory in chapter 4 in or-

der to compute the second order transport coe�cient κ. We start with reviewing its
de�nition from relativistic hydrodynamics and its connection to thermal �eld theory.
Afterwards we review predictions for κ from AdS/CFT duality as well as from a con-
tinuum weak coupling expansion in pure gluodynamics in the ideal gas limit. Next we
discuss how to extract κ from lattice Yang-Mills theory as well as discretisation and
renormalisation of the energy-momentum tensor. Finally, we compute the transport
coe�cient in lattice perturbation theory and from Monte Carlo simulations. We iden-
tify its temperature dependence and compare our lattice result against both weak and
strong coupling predictions. We give a �rst conclusion on the lattice computation of the
transport coe�cient κ as well as perspectives on computation improvements.
In the next chapter 5 we discuss our semi-classical approach to QCD. It is based on a

classical description of the bosonic degrees of freedom, whose validity is explained in the
�rst section, and a quantum mechanical treatment of fermionic degrees of freedom by
their mode function expansion. We derive the corresponding equations of motion from
the lattice QCD Hamiltonian and discuss their numeric evaluation. The introduction
of low-cost fermions [64] reduces the numeric e�ort, enabling us to perform simulations
in three spatial dimensions. We present results of simulations of pure bosonic and pure
fermionic systems as well as QCD including one quark �avour in thermal equilibrium.
The chapter concludes with research perspectives on further applications of the semi-
classical model of QCD in thermal equilibrium.
In chapter 6 we deal with the isotropisation of the quark-gluon plasma produced

in a heavy ion collision via a chromo-Weibel instability. We give an overview of the
formation of the quark-gluon plasma and discuss isotropisation by means of a chromo-
Weibel instability. Furthermore we review a description of the early stages of a heavy ion
collision within the colour glass condensate e�ective theory de�ning initial conditions

5
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regarding an investigation of the isotropisation process in a classical approach. Next we
discuss the transfer of the colour glass condensate inspired initial conditions to the lattice
and introduce observables indicating isotropisation and the emergence of a chromo-
Weibel instability. Finally, we simulate the early stages of a heavy ion collision within
the semi-classical approach. We �rst stick to a pure bosonic treatment, but encompass
the correct colour group of QCD, SU(3), and afterwards we investigate the dynamics
in a full semi-classical approach. We �nish the chapter with conclusions as well as
perspectives on future research projects concerning dynamics of the quark-gluon plasma
within the semi-classical approach.
Last but not least we summarise conclusions of the whole work in chapter 7. Attached

are �ve appendices: In appendix A, we discuss the used system of units and mathemat-
ical conventions. Appendix B gives detailed calculations regarding the transport coe�-
cient κ, while appendix C gives selected numeric results to facilitate a reproduction of
the computation. Since we have derived the semi-classical approach to QCD for the �rst
time, we give the corresponding calculations in more detail in appendix D. Additionally,
we give a short review on Lagrangian and Hamiltonian mechanics. The last appendix
E contains numeric checks regarding simulations of chapter 6.
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2 Aspects of quantum chromodynamics

at �nite temperature

At high temperature hadronic matter passes over to a new state � the quark-gluon
plasma. The fundamental theory describing hadronic matter is quantum chromody-
namics (QCD), a non-abelian gauge theory with symmetry group SU(3) describing the
strong interactions between quarks and gluons. Over the years much experimental ev-
idence for the correctness of QCD has been gathered, see for instance [1, 2, 38]. We
review aspects of QCD at �nite temperature, which are relevant for a description of the
quark-gluon plasma.

2.1 Quantum chromodynamics

The quantum �eld theory representing strong interactions, namely quantum chromody-
namics (QCD), is a fundamental building block in the standard model of elementary
particle physics. Its origin lies in the years 1961, when Gell-Mann and Ne'eman or-
dered the hadrons into SU(3)-multiplets, the so called eightfold way [65, 66], and 1964,
when Gell-Mann and Zweig proposed the quarks as constituents of hadrons [67, 68].
These propositions required the introduction of an additional quantum number, colour,
which �tted nicely into the non-abelian gauge theory formulated by Yang and Mills in
1954 [69]. Nineteen years later, Politzer, Gross and Wilczek discovered [70, 71] that
the non-abelian �eld theory is asymptotically free, that their interaction strength de-
creases at small length scales. By contrast, the interaction strength increases for larger
distances, featuring colour con�nement, the phenomenon that colour charged particles,
such as quarks or gluons, never appear as free particles in nature. It was not until 1971,
when 'tHooft proved renormalisability of gauge theories with and without spontaneous
symmetry breaking [72,73], that QCD was acknowledged by the scienti�c community.
In the following sections we discuss aspects of continuum QCD, which we will use

later, based on [74�76]. This includes a discussion of the QCD action in section 2.1.1
and the running coupling in 2.1.2.

2.1.1 Continuum action

The non-observability of the new quantum number colour is re�ected in QCD being a
local gauge theory invariant under SU(3) colour transformations. The standard choice of
an action ful�lling the requirements of renormalisability, gauge invariance and Lorentz
invariance reads1 in Minkowski space(see appendix A.2)

S[ψf , ψf , Aµ] =

∫
d4x (LF + LG) , (2.1)

1Natural units are used throughout this thesis. For conventions consult appendix A.1.
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2 Aspects of quantum chromodynamics at �nite temperature

with the fermionic and pure gluonic Lagrangians

LF[ψf , ψf , Aµ] =
∑
f

ψf (x) (iγµDµ −mf )ψf (x), (2.2a)

LG[Aµ] = −1

4
F aµν(x)Fµν,a(x). (2.2b)

The Dirac spinor ψf ≡ ψf,α,c carrying a colour index c as well as a spinor index α corre-
sponds to a quark �eld with �avour f and mass mf . It forms a Lorentz scalar2 with the

�eld ψf ≡ ψ†fγ
0. Their spinor representation is connected to the vector representation

of the Lorentz group by the gamma matrices γµ (see appendix A.4).
The quarks are coupled to the gluonic gauge �elds Aµ ≡ AaµT

a via the covariant
derivative

Dµ = ∂µ + igAµ, (2.3)

which is constructed in a way leaving the Lagrangian invariant under local SU(3) trans-
formations. The gauge �elds transform in the adjoint representation of SU(3), whereas
the quark �elds transform in the fundamental representation. The corresponding local
gauge transformations with G(x) ∈ SU(3) read

ψ → ψ′(x) = G(x)ψ(x), (2.4)

Aµ → A′µ(x) = G(x)Aµ(x)G†(x) +
i

g
(∂µG(x))G†(x). (2.5)

The covariant derivative also de�nes the �eld strength tensor Fµν ≡ F aµνT a by

[Dµ,Dν ] = igFµν . (2.6)

The eight generators T a of the SU(3) gauge group form a Lie algebra according to[
T a, T b

]
= ifabcT c, (2.7)

where fabc are the totally antisymmetric structure constants. The generators are nor-
malised by Tr

(
T aT b

)
= 1

2 δ
ab. Equations (2.3) and (2.6) give the �eld strength tensor:

F aµν(x) = ∂µA
a
ν(x)− ∂νAaµ(x) + gfabcAbµ(x)Acν(x), (2.8)

which builds the kinetic term for the gauge �elds in the QCD Lagrangian. The non-
abelian structure of the gauge group distinguishes it from quantum electrodynamics
(QED) and gives rise to the cubic and quartic self-interactions for the gluons.

2.1.2 Running coupling

The asymptotic freedom of QCD is directly connected to the running of the coupling

strength α(µR) = g2(µR)
4π governed by the renormalisation group equation with the QCD

beta function βQCD and renormalisation scale µR

dα(µR)

d lnµR
= βQCD(α(µR)). (2.9)

2If not stated otherwise, Einstein's sum convention is implied.
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2.1 Quantum chromodynamics

Figure 2.1: Comparison of the QCD running coupling αs versus the respective energy scale Q
between measurements by di�erent experiments and perturbative QCD. High energies facilitate
a perturbative treatment of QCD. Taken from [2].

An expansion of the beta function βQCD(α) in the region of vanishing coupling can be
calculated perturbatively and is universal up to next-to-leading order, i.e. independent
of the renormalisation scheme. In QCD with Nf �avours the expansion leads to [2]

βQCD(α) = −
(
b0α

2 + b1α
3 +O(α4)

)
, (2.10a)

b0 =
1

12π
(33− 2Nf ), (2.10b)

b1 =
1

24π2
(153− 19Nf ). (2.10c)

The minus sign ensures asymptotic freedom for Nf < 17. By means of the QCD beta
function (2.10) equation (2.9) can be solved analytically. One �nds for the running
coupling to �rst order

α(µR) =

(
b0 ln

(
µR

ΛQCD

))−1

, (2.11)

where ΛQCD ≈ 200MeV is a constant of integration indicating the non-perturbative scale
of QCD. Its inverse corresponds to Λ−1

QCD ≈ 1 fm, what is approximately the radius of a
nucleus.
The momentum scale Q of a given physical process enters through the renormalisation

scale µR and determines the e�ective interaction strength α(µR ≈ Q). As illustrated in
�gure 2.1 QCD enters a weakly coupled regime at high momentum transfers Q, which
allows for a perturbative treatment, e.g. by a weak coupling expansion [74, 76]. For a
discussion of the running coupling at �nite temperature and its consequences refer to
section 2.2.3.
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2 Aspects of quantum chromodynamics at �nite temperature

2.2 Thermal �eld theory

After thermalisation, see section 6 for a detailed discussion of the thermalisation process,
the quark-gluon plasma has a large temperature and the emerging fundamental physics
should be described in the framework of thermal �eld theory. The common approach to
incorporate temperature is the imaginary time formalism [77,78]. As explained in section
2.2.1 it is based on trading the temporal coordinate for the system's temperature. As
discussed in section 3.1.3 the strong resemblance between the imaginary time formalism
and lattice QCD allows for a straightforward introduction of temperature to this non-
perturbative approach to QCD.
A way to introduce temperature to the system, without sacri�cing the time direction,

is the real time formalism discussed in section 2.2.2. It allows a description of systems
far from equilibrium, such as the thermalisation process of the QGP discussed in chap-
ter 6. Additionally, it can be applied to systems in equilibrium to calculate dynamic
observables like transport coe�cients. To achieve this, we make use of linear response
theory [77, 79], which states that an equilibrium ensemble encodes the response of the
system to a disturbance, which dissipates in real time. We will then see in section 2.2.3
that a perturbative approach su�ers from infrared divergences. but has been done for
a number of transport coe�cients using resummation [80,81]. A computation in lattice
QCD requires an analytic continuation from the Euclidean to the retarded correlator,
which usually is an ill-posed problem [82]. We discuss in chapter 4 why this problem
does not arise in a lattice computation of the second order transport coe�cient κ.

2.2.1 Imaginary time formalism

Generally, the expectation value of an observable O in a statistical quantum system,
characterised by the density matrix %, is given by

〈O〉 =
1

Z
Tr (O%) , (2.12)

where the normalisation Z is de�ned by Z = Tr %. For a system in thermal equilibrium
the density matrix takes the form

% =
1

Z
e−β(H−µiNi), (2.13)

where the normalisation Z corresponds to the grand-canonical partition function. The
term H is the system's Hamiltonian, β = 1

T is the inverse temperature and µi are the
chemical potentials for conserved particle numbers 〈Ni〉. As discussed in the introduc-
tion we only treat the case of vanishing chemical potential µi = 0.
Evaluating the trace (2.13) by an integral over all degrees of freedom gives the parti-

tion function

Z =
∑
a

∫
dφa

〈
φa|e−βH |φa

〉
. (2.14)

The formal similarity to the transition amplitude
〈
φa|e−iHt|φa

〉
can be made genuine

by a Wick rotation from real to imaginary time t→ iτ illustrated in �gure 2.2 and the

10



2.2 Thermal �eld theory

exchange of the time direction with a dimension of �nite extent β = 1
T , de�ning the

temperature.
The partition function can be written as a path integral and reads for QCD

Z =

∫
D
[
ψ,ψ,Aµ

]
exp

{
−
∫ β

0
dτ

∫
d3x LE[ψ,ψ,Aµ]

}
, (2.15)

with the Euclidean QCD Lagrangian

LE[ψf , ψf , Aµ] =
∑
f

ψf (x) (γµDµ +mf )ψf (x) +
1

4
F aµν(x)F aµν(x). (2.16)

Periodic and antiperiodic temporal boundary conditions

Aµ(0,x) = Aµ(β,x), (2.17a)

ψ(0,x) = −ψ(β,x) (2.17b)

account for the di�erence between bosons and fermions. In particular being distributed
according to the Bose-Einstein and Fermi-Dirac distribution in the non-interacting case:

nB =
1

eE/T − 1
, (2.18a)

nF =
1

eE/T + 1
, (2.18b)

where E denotes the relativistic energy. As a consequence of these boundary conditions
the back transformation of the temporal Fourier integral is replaced by a Fourier sum,
c.f. (A.17) and the corresponding momenta become discrete, de�ning the Matsubara
frequencies

ωn =

{
2nπT for bosons

(2n+ 1)πT for fermions
, n ∈ Z . (2.19)

The bosonic zeroth component of momentum k0 in Euclidean space time is illustrated
in �gure 2.2. Due to the Wick rotation and the periodic boundary conditions, it only
takes discrete and imaginary values.
Finally, the expectation value of an observable O in the imaginary time formalism is

calculated from the functional integral

〈O〉 =
1

Z

∫
D
[
ψ,ψ,Aµ

]
O e−SE[ψ,ψ,Aµ], (2.20)

with the Euclidean action SE =
∫ β

0 dτ
∫

d3x LE. Thermodynamic quantities, such as
pressure p or energy density ε can directly be derived from the partition function by the
standard statistical relations, see e.g. [77],

ε = − 1

V

∂

∂β
lnZ, (2.21)

p =
1

β

∂

∂V
lnZ. (2.22)

11



2 Aspects of quantum chromodynamics at �nite temperature

t

iτ t

Re k0

Im k0 k0

Figure 2.2: The left hand side illustrates schematically the Wick rotation t → iτ going from
Minkowski to Euclidean space time. As a consequence of the Wick rotation and of periodic
boundary conditions in bosonic �elds the zeroth momentum component k0 only assumes ima-
ginary and discrete values as shown on the right hand side.

2.2.2 Real time formalism

For quantum �eld theories out of equilibrium [83, 84] all information can be deduced
from the generating functional for correlation functions

ZG[J,R; %0] = Tr

{
%0TC exp

(
i

∫
x
J(x)Φ(x) +

i

2

∫
xy

Φ(x)R(x, y)Φ(y)

)}
, (2.23)

where J and R denote the source terms. We consider for simplicity scalar �elds. The
time coordinate x0 is evaluated along a closed real time contour C,

∫
x =

∫
C dx0

∫
d3x,

which is depicted in �gure 2.3. Contour time ordering is denoted by TC with usual
time ordering along the forward piece C+ and reverse ordering along the backward piece
C−. The speci�cation of an initial state enters through the initial density matrix %0.
De�ning the location of the �eld's Φ(x0,x) time argument x0 on the contour C± by
writing Φ±(x0,x) one evaluates the trace by introducing a set of eigenstates

Φ±(t0,x)
∣∣ϕ±〉 = ϕ±0 (x)

∣∣ϕ±〉 . (2.24)

After replacing the resulting matrix element by its functional integral representation
including the corresponding Lagrange density L[ϕ] the generating functional reads

ZG[J,R; ρ0] =

∫
dϕ+

0 dϕ−0 〈ϕ+|%0|ϕ−〉

×
∫ ϕ−0

ϕ+
0

D′ϕ exp

(
i

∫
x
L[ϕ] + i

∫
x
J(x)ϕ(x)

+
i

2

∫
xy
ϕ(x)R(x, y)ϕ(y)

)
. (2.25)

The functional integral D′ϕ goes over �eld con�gurations ϕ(x) satisfying the boundary
conditions ϕ±(x0 = t0,x) = ϕ±0 (x) with x0 > t0, but excludes the �elds with x0 = t0.
The �rst integral describes statistical �uctuations weighted by the initial density matrix
%0, whereas the second integral describes quantum �uctuations.
The real time formalism can also be applied to systems in thermal equilibrium by

identifying the density matrix with (2.13) and interpreting it as an evolution operator

12



2.2 Thermal �eld theory

Re t
ti = 0

C+

C−

tf → ∞ Re t

ti → −∞ C+

C−

tf →∞

ti − iβ

Figure 2.3: The �gures show the real time contour C in the complex time plane x0 ≡ t. The
left hand side illustrates the non-equilibrium case whereas the contour on the right hand side
is followed by an imaginary time branch incorporating the temperature β = 1/T in equilibrium
scenarios. The latter one is called the Schwinger-Keldysh contour.

in imaginary time. One accounts for the last point by adding an imaginary time branch
to the contour C. The resulting contour is called Schwinger-Keldysh contour and is
illustrated on the right hand side of �gure 2.3. In perturbative calculations both �elds
Φ±(x) enter as degrees of freedom and the propagator for a neutral boson with zero
spin φ becomes a 2× 2 matrix. De�ning the Wightman functions

D>(x, x′) =
〈
φ(x)φ(x′)

〉
, (2.26a)

D<(x, x′) =
〈
φ(x′)φ(x)

〉
= D>(x′, x) (2.26b)

and x0 ≡ t the propagator reads after a basis change [85]

D(x, x′) =

(
F (x, x′) GR(x, x′)
GA(x, x′) 0

)
, (2.27)

where the symmetric, retarded and advanced correlators are given by

F (x, x′) =
1

2

(
D>(x, x′) +D<(x, x′)

)
, (2.28a)

GR(x, x′) = iθ(t− t′)
(
D>(x, x′)−D<(x, x′)

)
, (2.28b)

GA(x, x′) = −iθ(t′ − t)
(
D>(x, x′)−D<(x, x′)

)
. (2.28c)

The Heavyside step function θ(x) is de�ned in appendix A.5.1. Performing a Fourier
transform to momentum space as de�ned in appendix A.5 the propagators can be ex-
pressed in terms of the spectral function

ρ(q) = D>(q)−D<(q), (2.29)

by using the KMS (Kubo-Martin-Schwinger) condition G>(q) = eβq
0
G<(q):

F (q) =

(
nB(q0) +

1

2

)
ρ(q), (2.30)

GR(q) =

∞∫
−∞

dq′0
2π

ρ(q′0,q)

q′0 − q0 − iη
. (2.31)

We use the expression for the symmetric correlator F in chapter 5 to justify a classical
approach to QCD.
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2 Aspects of quantum chromodynamics at �nite temperature

The retarded correlator is the relevant quantity in the calculation of transport co-
e�cients [78]. Their non-perturbative determination, as pursued in this thesis, of the
transport coe�cient κ su�ers from the restriction of the lattice formalism to Euclidean
space time. On the lattice only the Euclidean correlator

GE(τ,x) =

∫
dq0

2π
e−q0τD>(q0,x) (2.32)

is accessible and the connection to real time quantities, i.e. the retarded correlator
requires an analytic continuation. Writing both correlators in their spectral representa-
tion, (2.31) and

GE(iωn,q) =

∞∫
−∞

dq0

2π

ρ(q)

q0 − iωn
, (2.33)

one �nds for this analytic continuation with appropriate boundary conditions [79]

GR(q0,q) = GE(iωn → q0 + iη,q). (2.34)

This relation is useful, since it connects a non-perturbatively accessible quantity, e.g. the
Euclidean correlator GE, to one in real time, e.g. the retarded correlator GR. We will
use a more speci�c version of this relation at vanishing frequency in chapter 4 in order to
compute the second order transport coe�cient κ. Further applications and limitations
of this relation are illustrated in [82].

2.2.3 Weak coupling techniques at �nite temperature

For thermal systems, the renormalisation scale is set by the temperature µR ∼ T [76,77].
As a consequence the coupling runs with the temperature (2.9). For T � ΛQCD the
coupling is su�ciently small and thermal QCD can be treated by a weak coupling ex-
pansion. In contrast to a weak coupling expansion in quantum �eld theory at vanishing
temperature, the expansion in thermal �eld theory su�ers from infrared divergences
caused by Matsubara zero-modes [78]. Due to a missing Matsubara zero-mode (2.19)
fermions are purely perturbative in this scenario.
The bosonic infrared divergences are related to particular degrees of freedom. We

identify the following three momentum scales with hierarchy g2T < gT < 2πT :

• The hard scale ∼ (2πT ), where partons are only weakly a�ected by the heatbath
due to their hard momenta.

• The soft or electric scale ∼ (gT ), where colour-electric screening in�uences the
longitudinal gluons and collective e�ects arise.

• The ultra-soft or magnetic scale ∼ (g
2T
π ), where static colour-magnetic screening

of transversal gluons is absent.

This hierarchy is particularly interesting since various physical properties of QCD are
sensitive to the di�erent scales [86]. For instance, hydrodynamic transport coe�cients
for the quark-gluon plasma like the shear viscosity or κ are sensitive to the hard mo-
mentum scale, whereas thermalisation processes in the quark-gluon plasma are sensitive
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2.2 Thermal �eld theory

to the soft scale. An observable sensitive to the ultra-soft scale is the Chern-Simons
di�usion rate. In the following we discuss models dealing with these di�erent scales.
Due to the separation of scales at high temperatures, QCD can be investigated by

e�ective �eld theories. They are based on the idea to 'average' the behaviour of the
underlying theory at large momentum scales in order to obtain a simpli�ed model at
low momentum scales. Examples for e�ective �eld theories are hard thermal loop ef-
fective �eld theory (HTL) [87�89] as well as dimensional reduction [90, 91]. However,
perturbation theory breaks down completely at the magnetic scale, since all infrared
diagrams contribute to the same order, e.g. for the partition function Zl ∼ g6T 4. This
issue is known as Linde problem [92]. Recent progress on this topic has been made in
reference [93].
One way to avoid the problems caused by infrared divergences is to use a classical

description of Yang-Mills theory. As argued by Grigoriev and Rubakov [94] and shown
formally by Bödeker [95], a classical approach o�ers a non-perturbative approach to
the soft and ultra-soft scale. The quantum mechanical e�ect of suppressing thermal
excitations at the hard scale can be remedied by using lattice regularisation. In chapter 5
we present a semi-classical approach to QCD on the lattice based on a classical treatment
of bosons, but a quantum mechanical treatment of fermions. The fact that the semi-
classical model automatically incorporates real time allows us to study non-equilibrium
physics. We apply it to thermalisation processes of the quark-gluon plasma in chapter 6.
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3 Lattice gauge theory

In the case of strong couplings the validity of a perturbative approach to QCD becomes
questionable. Lattice gauge theory provides a mathematically well-de�ned regularisa-
tion of QCD and allows to solve the functional integral (2.20) non-perturbatively. It
dates back to the 1970s and has primarily be developed by Wilson. It is based on a dis-
cretisation of Euclidean space time, which renders the functional integral �nite. When
interpreting the weight exp(−S) as a statistical Boltzmann factor it can be evaluated
via Monte Carlo simulations. Temperature is introduced analogous to the imaginary
time formalism, by identifying the temporal lattice direction with temperature.

3.1 Lattice Yang-Mills theory

This section summarises the main aspects concerning the formulation of Yang-Mills
theory in the lattice framework. First, we discuss the discretisation of space time in
section 3.1.1 leading to a loss of Poincaré invariance. Then we use the speci�c feature of
the lattice regularisation, manifestation of gauge invariance, to build a gluonic action in
section 3.1.2. Finally, we de�ne physical variables, such as coupling and temperature on
the lattice in section 3.1.3. A detailed version of the following summary can be found
in one of the many textbooks on lattice gauge theory, e.g. [19,96�98].

3.1.1 Discretisation of space time

We discretise Yang-Mills theory in Nd = 4 dimensional Euclidean space time by the
introduction of an anisotropic hypercubic lattice with periodic boundary conditions

Λ =

{
x
∣∣∣ xµ
aµ
∈ Z, µ = 1, 2, 3, 4

}
, (3.1)

where aµ denotes the lattice spacings

aµ =

{
aσ for µ = 1, 2, 3

aτ for µ = 4
(3.2)

and the anisotropy is de�ned by

ξ ≡ aσ
aτ
. (3.3)

The lattice has an extent of Nσ points in the spatial and Nτ points in the temporal
direction1. A section of discretised space time, including the main variables on the

1We never imply a sum over the indices of aµ or Nµ.
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3 Lattice gauge theory

aσ = ξaτ

aτ Ui(x)

Uiτ (y)

Nτ

Nσ

y

x

Figure 3.1: The left �gure shows a two dimensional anisotropic lattice with Nτ points in the
temporal, Nσ points in the spatial direction and lattice spacings aτ and aσ accordingly. Due to
periodic boundary conditions it is compacti�ed to a torus shown on the right hand side. On the
lattice gauge �elds Aµ(x) are replaced by link variables Uµ(x). The smallest gauge invariant
object is the trace over the plaquette Uµν(x).

lattice, is illustrated in �gure 3.1. The di�erential operator is replaced by either forward,
backward or central �nite di�erences

∂f
µf(x) ≡ 1

aµ
(f(x+ µ̂)− f(x)) = ∂µf(x) +O(aµ), (3.4a)

∂b
µf(x) ≡ 1

aµ
(f(x)− f(x− µ̂)) = ∂µf(x) +O(aµ), (3.4b)

∂c
µf(x) ≡ 1

2

(
∂f
µ + ∂b

µ

)
f(x) =

1

2aµ
(f(x+ µ̂)− f(x− µ̂)) = ∂µf(x) +O(a2

µ), (3.4c)

where the central di�erence is favourable due to its improved discretisation error. The
four-dimensional lattice Laplacian reads

∂c
µ

2f(x) ≡
∑
µ

1

a2
µ

(f(x+ µ̂)− 2f(x) + f(x− µ̂)) = ∂2
µf(x) +O(a2

µ). (3.5)

The discrete and periodic structure of position space transfers to periodic momentum
space with discrete momenta

qµ =
2π

aµNµ
nµ, nµ = 0, 1, . . . , Nµ − 1 , (3.6)

residing in the �rst Brillouin zone. For the de�nition of the Fourier transform on Eu-
clidean lattices refer to (A.18) in appendix A.5.
The discretisation of space time leads to a reduction of symmetry. QCD in continuous

space time is invariant under transformations belonging to the Poincaré group. These
are transformations

TΛ,a : x→ TΛ,ax
µ = Λµνx

ν + aµ (3.7)
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3.1 Lattice Yang-Mills theory

with translations a ∈ R1+3 and Lorentz transformations Λµν . The set of all Lorentz
transformations forms the Lorentz group, corresponding to the generalised orthogonal
group O(1, 3). Transferring QCD to the lattice reduces these symmetries to discrete
groups. The Lorentz group is reduced to the hypercubic group and translations are only
allowed to be a multiple of the lattice spacing corresponding to discrete translations.

3.1.2 Anisotropic Wilson gauge action

The de�ning quantity for the gauge action is the covariant derivative (2.3), which re-
quires a rede�nition on the lattice due to discrete space time. By analogy to the contin-
uous gauge �elds, Aµ(x), describing an in�nitesimal parallel transport in colour space
we introduce the link variable describing a �nite parallel transporter between two space
time points x and x+ aµ̂ on the lattice

U(x+ aµµ̂, x) ≡ Uµ(x). (3.8)

Throughout this thesis, at every shift, a factor of the lattice spacing aµ is implied,
x+ µ̂ ≡ x+aµµ̂. The link variables are elements of the adjoint representation of SU(3).
Their connection to the elements of the SU(3)-Lie-algebra Aµ(x) is given by

Uµ(x) = eigaµAaµ(x)Ta , (3.9)

and they behave under local gauge transformations, G(x) ∈ SU(3) like

Uµ(x)→ U ′µ(x) = G(x)Uµ(x)G†(x+ µ̂). (3.10)

The Wilson gauge action [99] is constructed from an elementary gauge invariant object
built of link variables, the trace of the plaquette TrUµν(x) with the plaquette being
de�ned as

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x). (3.11)

Link variable and plaquette are illustrated in �gure 3.1. On a anisotropic lattice [100]
the gauge action reads

S[U ] =
β

Nc
Re Tr

 1

ξ0

∑
x,i<j

(1− Uij(x)) + ξ0

∑
x,i

(1− Ui0(x))

 , (3.12)

where β = 2Nc
g2

denotes the lattice coupling1, Nc = 3 the number of colours and ξ0 the
bare anisotropy, which weights the aligned plaquettes according to the lattice spacing of
their direction. We discuss in the following section, how the bare anisotropy is connected
to the actual anisotropy ξ. Expanding the links by (3.9) and performing the continuum
limit aµ → 0 in the Wilson gauge action we recover its Euclidean continuous equivalent

SE =
1

4

∫
d4x F aµν(x)F aµν(x), (3.13)

which is a requirement of any lattice action.

1The lattice coupling is often mistaken for the inverse temperature. From here on we use β solely to
denote the lattice coupling.
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3 Lattice gauge theory

3.1.3 Lattice spacing, bare anisotropy and temperature

The discretisation of space time is connected to a momentum cuto� π
a , which serves as

a regulator for the quantum �eld theory. Furthermore, it introduces a renormalisation
scale connecting the lattice spacing to the running coupling. In accordance to (2.9) the
renormalisation group equation reads

dg(aσ)

d ln aσ

∣∣∣
ξ

= βQCD(g(aσ)), (3.14)

and the lattice coupling β = 2Nc
g2

sets the scale aσ = aσ(β, ξ) at a given anisotropy
ξ. With (2.10) the di�erential equation can in principle be solved on a perturbative
level. However, in lattice gauge theory (at least when simulating at large coupling) it is
preferable to set the scale non-perturbatively, which can be achieved by computing the
static quark potential via Wilson loops [101,102].
Wilson loops are also used to calculate the renormalisation factor

η(β, ξ) =
ξ

ξ0(β, ξ)
, (3.15)

relating the actual anisotropy (3.3) to its bare value ξ0. They deviate from each other due
to quantum �uctuations. The renormalisation factor η(β, ξ) has been computed non-
perturbatively for the range of anisotropies 1 ≤ ξ ≤ 6 and lattice couplings 5.5 ≤ β ≤ ∞
[103]:

η(β, ξ) = 1 +

(
1− 1

ξ

)
η̂1(ξ)

6

1 + a1g
2

1 + a0g2
g2, (3.16)

η̂1(ξ) =
1.002503ξ3 + 0.39100ξ2 + 1.47130ξ − 0.19231

ξ3 + 0.26287ξ2 + 1.59008ξ − 0.18224
, (3.17)

with a0 = −0.77810 and a1 = −0.55055.
Analogous to the imaginary time formalism (see section 2.2.1) the compacti�ed tem-

poral lattice direction can be identi�ed as the system's temperature

T =
1

aτNτ
. (3.18)

By (3.14) and (3.3) the temporal lattice spacing aτ and thus the temperature is con-
nected to the lattice coupling β. Varying the temperature in lattice simulations can
be performed by altering the lattice extent but keeping the lattice spacing �xed. This
approach is called �xed-scale approach, since it reproduces the same scale for every
temperature.

3.2 Lattice perturbation theory

As in the continuous case, c.f. section 2.1.2, the running lattice coupling depends on
the temperature. At high temperatures the discretised theory enters a weakly coupled
regime and a perturbative treatment becomes possible. Applications of lattice pertur-
bation theory are the calculation of renormalisation factors required for comparison
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between lattice regularisation and continuum schemes, or an investigation of the con-
tinuum approach including e.g. the restoration of symmetries broken by discretisation.
In this thesis we apply lattice perturbation theory to make a prediction for the second
order transport coe�cient κ, including leading order discretisation errors. This can
be found in section 4.4.1. The calculation is performed at vanishing coupling, which
simpli�es the formalism introduced in e.g. [98,104].
In lattice perturbation theory the gauge �elds Aµ(x) are once again the relevant

degrees of freedom. Expanding the links in the lattice action in terms of the gauge
�elds creates new interaction vertices. Additionally, transforming the so-called Haar
measure from the links DUµ to the gauge �elds DAµ introduces a Jacobian resulting in
a further contribution to the action. However, a computation in free Yang-Mills does
not su�er from these di�culties since it only requires the free gauge �eld propagator
at tree-level. Note that the reduction of N -point correlation functions into products
of two-point correlation functions by Wick's theorem [105] does not change in lattice
perturbation theory. Following the gauge �xing procedure of Faddeev and Popov [106]
one obtains for the free gauge �eld propagator in Feynman-'tHooft gauge

∆ab
µν(q) =

δabδµν
q̃ 2

, (3.19)

where q̃µ denotes the lattice momenta. As a consequence of introducing a momen-
tum cuto�, Lorentz symmetry is reduced and the lattice momenta turn into sinusoidal
functions

q̃µ ≡
2

aµ
sin
(aµqµ

2

)
, (3.20a)(

k̃µ + qµ

)
≡ 2

aµ
sin

(
aµ(kµ + qµ)

2

)
, (3.20b)

q̃ 2 ≡
∑
µ

q̃ 2
µ ≡

∑
µ

4

a2
µ

sin2
(aµqµ

2

)
. (3.20c)

It is favourable to perform calculations in the in�nite volume limit converting momentum
sums into integrals. Since temperature is incorporated in the imaginary time, we only
let the spatial coordinates go to in�nity. The Fourier transform of the gauge �eld and
its inverse are then given by

Aµ(q) = a3
σaτ

Nτ∑
n=1

∑
x

e
−i

(
x+

aµµ̂

2

)
q
Aµ(x), (3.21a)

Aµ(x) =
∑∫
q

e
i
(
x+

aµµ̂

2

)
q
Aµ(q),

∑∫
q

≡ 1

aτNτ

Nτ∑
n=1

π
aσ∫

− π
aσ

d3q

(2π)3
, (3.21b)

where we add a shift x+ µ
2 in position space, which naturally arises from the gauge �eld

being in the middle of the link. It also simpli�es the calculations.

3.3 Monte Carlo simulations

The application of Monte Carlo simulations in lattice �eld theories is motivated by the
resemblance of Euclidean functional integrals with statistical physics. The expectation
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value in lattice Yang-Mills theory is given by

〈O〉 =
1

Z

∫
DU e−S[U ]O[U ], Z =

∫
DU e−S[U ], (3.22)

where the for vanishing chemical potential real and positive weighting factor exp(−S[U ])
can be identi�ed as a Boltzmann factor. Due to the �nite number of degrees of freedom
in discretised space time the Haar measure DU becomes �nite and the functional integral
can be approximated by an average over Nens gauge �eld con�gurations U(n) ≡ U , called
ensemble,

〈O〉 ≈ 1

Nens

Nens∑
n=1

O[U(n)], (3.23)

with the gauge �eld con�gurations generated according to the probability exp(−S[U ]).
In the limit of an in�nite amount of con�gurations Nens →∞ the approximation coin-
cides with the actual functional integral. Considering only a �nite ensemble introduces
an uncertainty to our estimate which behaves like O

(√
Nens

)
. Due to the probability

entering the functional integral it is su�cient to consider only con�gurations with the
largest weight and thus to only create a relevant subset of all possible con�gurations.
This approach is called importance sampling. For a detailed description of Monte Carlo
methods refer to [19,96,107].
The sections 3.3.1 and 3.3.2 deal with the numeric implementation of a Monte Carlo

simulation in lattice Yang-Mills theory. We discuss the analysis of observables computed
by Monte Carlo sampling including the errors in section 3.3.3. Numeric details and
checks of the implementation are given in section 3.3.4.

3.3.1 Monte Carlo algorithm

The gauge �eld con�gurations are sampled according to the probability distribution
density

dP (U) =
eS[U ]DU∫
DU eS[U ]

, (3.24)

called the Gibbs measure. In order to create a new con�guration we start from some
arbitrary one and modify it by an update f : U → U ′. The transition probability
Wf (U → U ′) for one update step has the properties

0 ≤Wf (U → U ′) ≤ 1,

∫
dU Wf (U → U ′) = 1. (3.25)

Sampling a functional integral by constructing a sequence of con�gurations, called
Markov chain, the update f has to ful�l two requirements. Firstly, it preserves the
equilibrium distribution peq(U) ∼ exp(−S[U ])∫

dU Wf (U → U ′)peq(U) = peq(U ′), (3.26)
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3.3 Monte Carlo simulations

Figure 3.2: Sketch of a Markov chain traversing con�guration space.

which corresponds to having a �xed point peq(U). In practice this requirement is usually
exchanged with the su�cient condition of detailed balance

Wf (U → U ′)

Wf (U ′ → U)
=
peq(U ′)

peq(U)
, (3.27)

which is easier to implement in algorithms. Secondly, starting from any con�guration
repeated updates bring one arbitrarily close to any other con�guration U ′, called strong
ergodicity: ∫

dU Wf (U → U ′) > 0. (3.28)

Both properties guarantee that a Markov chain built of a su�cient amount of con�gu-
rations approaches the equilibrium distribution peq(U) and the equilibrium distribution
can be reached from any initial con�guration. The process of equilibrating con�gurations
by a sequence of updates is called thermalisation. However, the number of update steps
required for thermalisation is a priori not predictable. Figure 3.2 sketches a Markov
chain in the con�guration space, where dots represent visited con�gurations. Assuming
con�gurations in the centre of the region have a larger probability the Markov chain
chooses more con�gurations there according to importance sampling. Due to strong
ergodicity the Markov chain is able to visit any con�guration inside the region.

3.3.2 Heatbath algorithm for lattice gauge theory

The heatbath algorithm ful�ls the requirements of detailed balance and strong ergodicity
and can be applied in lattice gauge theory at every lattice site x and in every direction
µ to insert a new link Uµ(x) according to the local probability distribution

dP (U) = dU e
β
Nc

Re Tr(UA) , (3.29)

derived from the Wilson gauge action (3.12). Simplifying notation we consider an
isotropic lattice, aτ = aσ. Since during the update all links besides U are held �xed,
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Uµ

ν

µ

x

Figure 3.3: The �gure illustrates two of the six staples surrounding the link Uµ(x).

only the link U and its sum of neighbours A enters the probability distribution. The
term A is built from so-called staples surrounding the link U = Uµ

A ≡
∑
ν 6=µ

(
Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x) + U †ν (x+ µ̂− ν̂)U †µ(x− ν̂)Uν(x− ν̂)

)
, (3.30)

as depicted in �gure 3.3.
In the case of SU(2), treated by Creutz [108], the sum of staples A is proportional to

another SU(2) matrix given by

V =
A

a
, a ≡

√
det(A). (3.31)

Utilising the invariance of the Haar measure under the transformation U → U ′ = XV †

the probability distribution (3.29) simpli�es to

dP (X) = dX e
β
Nc
aRe TrX . (3.32)

By parametrising the matrix X ∈ SU(2) and the Haar measure according to

X = x0 · 12×2 + ixiσi, x2
0 + x2

i = 1, (3.33)

with four real numbers xµ ∈ R and the Pauli matrices σi de�ned in (A.8) the distribution
(3.32) takes the form

dP (X) =
1

2π2

√
1− x2

0 eβax0 dcosθ dφ dx0 , (3.34)

with x0 ∈ [−1, 1], cos θ ∈ [−1, 1] and φ ∈ [0, 2π). Drawing these numbers randomly from
their distributions (3.34) the matrix X can be constructed by (3.33) and �nally related
to the new link U ′ = XV †. Kennedy and Pendleton [109] improved this algorithm by
increasing the acceptance rate of (3.34).
Since the projection (3.31) of the sum of two group elements back to the group does

not work for SU(3), constructing links for this symmetry is more involved. Cabibbo and
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3.3 Monte Carlo simulations

Marinari developed a pseudo heatbath algorithm [110], which is based on applying the
upper algorithm to the SU(2) subgroups r, s, t of SU(3). The subgroups are de�ned by

R =

r11 r12 0
r21 r22 0
0 0 1

 , S =

s11 0 s12

0 1 0
s21 0 s22

 , T =

1 0 0
0 t11 t12

0 t21 t22

 , (3.35)

where Y = R · S · T is one possible element of SU(3). Modifying the old link by left
multiplication with e.g. R and denoting W ≡ UA the probability distribution (3.29)
reads

dP (U) = dU e
β
Nc

Re Tr(RW ) . (3.36)

Evaluating the trace in the exponent gives

Tr (RW ) = r11w11 + r12w21 + r21w12 + r22w22 + terms without rij , (3.37)

which allows to compute rij by applying once again the SU(2) heatbath algorithm with
wij playing the role of A. The other SU(2) subgroups s and t are determined analogously
by changing W → W ′ = RW and W → W ′′ = RSW , respectively. The new link is
given by U → U ′ = TSRU .
Iterated production of gauge �eld con�gurations by the heatbath algorithm creates a

Markov chain, which involves a correlation between the generated con�gurations. The
correlation can be reduced by the overrelaxation algorithm [19, 97], which spreads the
links in con�guration space. The idea of the algorithm is to compute a gauge group
element V which transforms the link by

U → U ′ = V †U †V † , (3.38)

but leaves the action invariant. For SU(2) the matrix V can be constructed similar to
the heatbath algorithm, V = A

a . The extension to SU(3) follows closely the method of
Cabibbo and Marinari. The transformation (3.38) moves the link in the group manifold
and one alters the gauge con�guration without changing the action. However, sampling
the con�guration space on the subspace of constant action is not ergodic and one only
describes a microcanonical ensemble. For this reason the overrelaxation algorithms
should be alternated with heatbath steps.

3.3.3 Data analysis

As already stated in the introduction of this chapter the generated ensemble of gauge
�eld con�gurations is used to compute the expectation value of observables (3.23). One
estimator for the expectation value is the average

x̄ =
1

N

N∑
n=1

x , (3.39)

over a set of N data points. The statistical process of averaging involves a variance,
e.g. the standard deviation. However, one should account for the not statistically inde-
pendent distribution of the data set caused by correlated con�gurations by e.g. jackknife-
resampling [19].
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Figure 3.4: Plotting the estimated error versus the bin size k allows to identify the optimal
bin size from a plateau. The jackknife resampling is performed with this value.

One divides the data set into Nk bins of size k and calculates the mean x̃i by averaging
over all data points not belonging to the block i. For a large enough number of bins
Nk the central limit theorem justi�es application of the usual Gaussian variance with x̄
being the average over the original data set

σ2
x̄ =

Nk − 1

Nk

Nk∑
i

(x̃i − x̄)2 , (3.40)

but for the removal of correlations a smaller number of bins Nk corresponding to a larger
bin size k is preferable. Plotting the variance as a function of the bin size k the optimal
amount of bins can be determined from a plateau as illustrated in �gure 3.4.
Besides the overrelaxation algorithm one method to reduce correlation between data

points is to omit con�gurations in the averaging process. The optimal number of skipped
con�gurations is determined from the autocorrelation time [96]. However, in our studies
of the transport coe�cient κ producing the con�gurations is numerically costly and we
do not discard any con�gurations, but account for the error by jackknife resampling.
In addition to the speci�ed statistical errors one encounters systematic errors intro-

duced by the discretisation of space time. Lattice actions and observables di�er with
their continuum equivalent on a power of the lattice spacing O(an), n ∈ N. This lattice
artefacts can be investigated in a lattice perturbation theory calculation or removed
by extrapolating simulations to the continuum limit a → 0. Therefore, one performs
simulations with decreasing lattice spacing keeping the physical conditions, e.g. the tem-
perature, which also depends on the lattice spacing (3.18), �xed. In lattice Yang-Mills
theory the lattice artefacts are always an even power of the lattice spacing O(a2n). In
order to avoid another systematic error introduced by simulating in a �nite volume one
chooses each spatial lattice dimension larger than the real mean free path of involved
processes at �nite temperature. Additionally, one should check the volume dependence
of observables by altering the lattice size.
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Figure 3.5: Summed plaquette P versus update steps. After a thermalisation phase the en-
semble follows its equilibrium distribution peq(U) independent of the initial con�guration.

The heatbath algorithm starts from an initial gauge �eld con�guration. One distin-
guishes between a cold start setting all links to the identity U = 1Nc×Nc and a hot start
�lling the links with Gaussian distributed numbers and projecting them to the group
SU(3). Both approaches involve a thermalisation phase, driving the con�gurations to
their equilibrium distribution peq(U). In order to re�ect the correct distribution in an
expectation value one has to discard all con�gurations from this phase. The end of the
thermalisation can be noted by monitoring an observable, e.g. the summed plaquette

P = NP

∑
x

∑
µ,ν
ν<µ

Re TrUµν , NP ≡ 2
(
(NτN

3
σ)(NcNd(Nd − 1))

)−1
, (3.41)

versus the update steps as shown in �gure 3.5.

3.3.4 Application programming interface QDP++

The presented lattice QCD algorithms are implemented by use of the C++ application
programming interface QDP++ developed by the Scienti�c Discovery through Advanced
Computing (SciDAC) [111]. It provides an interface of data-parallel routines and data
types suitable to lattice gauge theory and is the leading building block of the Chroma

library.
The main idea of QDP++ is to introduce lattice templates, which consist of data prim-

itives over all sites and primarily operate on these templates. For instance the following
QDP++ types are implemented by this tensor product structure:

Template Lattice Colour Spin Complexity
LatticeColorMatrix Lattice ⊗ Matrix(Nc) ⊗ Scalar ⊗ Complex
LatticeDiracFermion Lattice ⊗ Vector(Nc) ⊗ Vector(Ns) ⊗ Complex
Real Scalar ⊗ Scalar ⊗ Scalar ⊗ Scalar
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Figure 3.6: Left hand side: Average computing time versus lattice size for the anisotropic SU(3)
heatbath algorithm implemented in QDP++ and run on the LOEWE-CSC using a various amount
of cores. The �gure illustrates the scaling with an increasing number of cores. Right hand side:
Performance of our heatbath implementation run on the clusters JUQUEEN, LOEWE-CSC
and JUROPA on a lattice of size 1203 × 24. The bad performance for the fastest cluster,
the JUQUEEN, is explained by a missing optimisation of QDP++ regarding Blue Gene/Q. We
performed the benchmark before the LOEWE-CSC has been upgraded.

The type LatticeColorMatrix de�nes on every lattice site a Nc ×Nc colour matrix
built of complex numbers and corresponds to a link. The type LatticeDiracFermion

is a tensor product of vectors in Nc dimensional colour space and Ns dimensional spin
space with complex entries on every lattice site. The type Real is a real number a ∈ R
on every site.
The interface based on lattice templates provides a high level of abstraction and hides

architectural dependencies like mapping the logical problem grid onto the machine layout
or the parallel communication. The parallelisation is incorporated by the library QMP

(Lattice QCD Message Passing) based on MPI. The left hand side of �gure 3.6 illustrates
the scaling of our anisotropic SU(3) heatbath implementation in QDP++. We compare
the run time on di�erent clusters on the right hand side. Our code performs best on the
JUROPA [112]. Although the JUQUEEN [113] is inherently faster, we perform worse
due to a missing optimisation of QDP++ regarding Blue Gene/Q. Since our computation
time on the JUROPA is rather limited, we run all simulations on the LOEWE-CSC [114].
In order to examine the validity of our implementation we compute plaquette averages

and compare them to results from literature [100]. On an anisotropic lattice it is common
to distinguish between spatial and temporal plaquettes

Pσσ = NP,σ

∑
x

∑
µ,i
i<µ

Re TrUµi, NP,σ ≡ 2
(
(NτN

3
σ)Nc(Nd − 1)(Nd − 2)

)−1
, (3.42)

Pστ = NP,τ

∑
x

∑
µ

Re TrUµ0, NP,τ ≡
(
(NτN

3
σ)Nc(Nd − 1)

)−1
. (3.43)

Figure 3.7 and table 3.1 compare the computed spatial and temporal plaquette aver-
ages with their literature values. The agreement shows that our implementation of the
anisotropic SU(3) heatbath algorithm is correct.
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Figure 3.7: Comparison of spatial Pσσ and temporal Pστ plaquette averages to literature [100].
The runs are performed on 163 × 8 lattices with an anisotropy of ξ = 2. We use an ensemble
size of 3000 con�gurations and alternate each heatbath update with four overrelaxation steps.
The exact values are listed in table 3.1.

β Pσσ P lit
σσ Pστ P lit

στ

5.76 0.45274(7) 0.45278(3) 0.68275(3) 0.68278(1)
5.81 0.46490(7) 0.46491(4) 0.69026(3) 0.69028(2)
6.00 0.49176(4) 0.49177(2) 0.70940(1) 0.709406(6)
6.80 0.56623(3) 0.56622(2) 0.76068(1) 0.760672(4)

Table 3.1: Comparison of spatial Pσσ and temporal Pστ plaquette averages to literature [100].
Within the errors the values agree con�rming a correct implementation of the anisotropic SU(3)
heatbath algorithm.

29





4 Second order transport coe�cient κ

One of the major �ndings of the experimental heavy ion programme is that QCD matter
at high temperatures and low densities behaves as a nearly ideal �uid. This conclusion
is based on the fact that experimental data are excellently described by relativistic
hydrodynamics. The parameters of viscous hydrodynamics are the transport coe�cients.
Unfortunately, lattice simulations of real time quantities like transport coe�cients

are in general severely limited by the need for analytic continuation. As discussed in
section 3 lattice gauge theory at �nite temperature is inherently connected to thermal
equilibrium. Only Euclidean correlators are available on the lattice and a computation of
real time quantities necessitates an analytic continuation to retarded correlators. This
analytic continuation is usually based on the maximum entropy method or a model
ansatz both requiring functional input and thus compromising the lattice approach
being a �rst principle calculation.
The second order transport coe�cient κ is an exception to this conceptual di�culty.

Being de�ned from a correlator at vanishing frequency it is of thermodynamic nature
and the analytic continuation becomes trivial. It is directly accessible from the lattice
without having to resort to maximum entropy methods or functional input for the
retarded correlator.

4.1 De�nition of the second order transport coe�cient κ

Transport coe�cients can be derived from a gradient expansion of the dissipative energy-
momentum tensor in relativistic hydrodynamics as we discuss in section 4.1.1 below.
Expanding to second order in curved space time gives the second order transport co-
e�cient κ, which couples to the Riemann and Ricci tensor. The respective values of
the transport coe�cients are determined by the underlying microscopic theory, which is
QCD in the case of the quark gluon plasma. They can be �xed from calculations within
this theory or from experiments. We pursue the former approach in this chapter.
To this end we use a connection of transport coe�cients to thermal �eld theory

established by linear response theory. Remarkably, an equilibrium ensemble encodes in-
formation on the real time quantities and thus allows their computation from correlators
evaluated in thermal equilibrium.

4.1.1 Relativistic hydrodynamics

Our review of relativistic hydrodynamics follows [115]. The basic quantity in hydro-
dynamics is the energy-momentum tensor, which can be decomposed into an ideal part
Tµν(0) and a dissipative one Πµν

Tµν = Tµν(0) + Πµν . (4.1)
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For a relativistic system its degrees of freedom are the total energy density ε, the �uid's
four-velocity uµ and the pressure p. Lorentz symmetry and the identi�cations T 00

(0) = ε,

T 0i
(0) = T i0(0) = 0 and T ij(0) = p δij in the local rest frame restrict the form of the ideal part

to

Tµν(0) = εuµuν + p (gµν + uµuν) , (4.2)

where gµν is the metric tensor in Minkowski space (A.5). The equations of relativistic
ideal hydrodynamics are derived from conservation of the energy-momentum tensor
∂µT

µν
(0) = 0 and are given by

Dε+ (ε+ p)∂µu
µ = 0, (4.3a)

(ε+ p)Duα −∇αp = 0, (4.3b)

where we introduce the notations

D ≡ uµ∂µ, ∇α ≡ ∆αµ∂µ, ∆µν = gµν − uµuν . (4.4)

The latter one is a projector in spatial directions. The equations (4.3) reproduce the
classical Euler equation and continuity equation [116] in the non-relativistic limit.
Considering viscous e�ects inside the �uid the equations (4.3) must be supplemented

with the dissipative contribution of the energy-momentum tensor. In a system without
conserved charges we choose the Landau-Lifshitz ansatz de�ning the local rest frame as
the frame, where the energy density is at rest, uµΠµν = 0. From the energy-momentum
tensor's conservation follows

Dε+ (ε+ p)∂µu
µ = Πµν∇(µuν), (4.5a)

(ε+ p)Duα −∇αp = −∆α
ν ∂µΠµν (4.5b)

with the symmetrised notation A(µBν) = 1
2(AµBν + AνBµ). In order to complete the

viscous description one must specify the dissipative contribution Πµν , which is usually
split into a traceless part πµν and a remainder with non-vanishing trace Π

Πµν = πµν + ∆µνΠ. (4.6)

One way of determining the dissipative part Πµν is based on the covariant formulation
of the second law of thermodynamics

∂µs
µ ≥ 0, (4.7)

where s denotes the entropy density. Rewriting it in terms of the hydrodynamic degrees
of freedom, it is ful�lled for the following dissipative energy-momentum tensor

πµν = η∇<µuν>, Π = ζ∇αuα, (4.8)

where we use the notation ∇<µuν> ≡ 2∇(µuν) − 2
3∆µν∇αuα. In the non-relativistic

limit one obtains the Navier-Stokes equations [116] indicating that η and ζ are the
shear viscosity and bulk viscosity, respectively. The relativistic Navier-Stokes equations
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do not constitute a causal theory [115, 117] and su�er from numeric instabilities [118].
These problems can be overcome by including more terms into the de�nition of Πµν .
An organised way of doing so is a gradient expansion [115] of the energy-momentum

tensor (4.1). To zeroth order it reproduces the ideal hydrodynamic equations (4.3) and
to �rst order the Navier-Stokes equations including the �rst order transport coe�cients
η and ζ. Adding second order gradients in �at space time results in the Israel-Müller-
Stewart theory [119, 120] providing a causal and numerically stable description of rela-
tivistic hydrodynamics. Whereas the gradient expansion to �rst order resulting in the
Navier-Stokes equations is complete, the classi�cation of second order gradients in the
Israel-Müller-Stewart theory is not. In particular the second order transport coe�cient
κ is absent.
A gradient expansion up to second order giving all second and lower order transport

coe�cients has to be done in curved space time and gives for the dissipative energy-
momentum tensor (4.6) [121]

πµν = −ησµν + ητπ

(
〈Dσµν〉+

∇u
3
σµν
)

+ κ
(
R<µν> − 2uαuβR

α<µν>β
)

+ λ1σ
<µ
λ σν>λ + λ2σ

<µ
λ Ων>λ + λ3Ω<µ

λ Ων>λ + κ∗2uαuβR
α<µν>β

+ ητ∗π
∇u
3
σµν + λ4∇<µ ln s∇ν> ln s, (4.9a)

Π = −ζ∇u+ ζτΠD∇u+ ξ1σ
µνσµν + ξ2(∇u)2 + ξ3ΩµνΩµν + ξ4∇⊥µ ln s∇µ⊥ ln s

+ ξ5R+ ξ6u
αuβRαβ, (4.9b)

where we use the notation ∇µ⊥ ≡ ∆µν∇ν and

〈Aµν〉 ≡ A<µν> ≡
1

2
∆µα∆νβ(Aαβ +Aβα)− 1

3
∆µν∆αβ, (4.10)

which gives symmetrised, space-projected and trace-subtracted indices. The shear and
vorticity tensors are given by

σαβ ≡ ∇⊥αuβ +∇⊥β uα −
2

3
∆αβ∇u, (4.11a)

Ωµν ≡
1

2

(
∇⊥µ uν −∇⊥ν uµ

)
. (4.11b)

The Riemann tensor Rαµνβ , the Ricci tensor Rµν = Rλµλν and the Ricci scalar R =

Rµµ are involved due to curved space time. The �rst terms on the right hand side of
equations (4.9a) and (4.9b) are of �rst order and include the familiar shear viscosity
coe�cient η and bulk viscosity coe�cient ζ, respectively. There are �fteen further
transport coe�cients τπ, τ∗π , κ, κ

∗, λ1, λ2, λ3, λ4, τΠ, ξ1, ξ2, ξ3, ξ4, ξ5 and ξ6, which are
of second order. They can be classi�ed according to their thermodynamic or dynamic
nature [122]. A transport coe�cient is called thermodynamic if it can contribute to the
energy-momentum tensor Tµν , when the system is in equilibrium. For instance this can
be the case for curved but time-independent geometries. The quantities κ, κ∗, λ3, λ4,
ξ3, ξ4, ξ5 and ξ6 are of thermodynamic nature.
At very high temperature the quark-gluon plasma can be treated as a conformal

�uid [121]. This additional symmetry restricts the number of possible gradients and
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reduces the number of transport coe�cients. The second order transport coe�cient κ
does not vanish due to this enhanced symmetry [121].
The de�nition of transport coe�cients is based on a gradient expansion of the energy-

momentum tensor in relativistic hydrodynamics, but their respective values have to be
determined from experiment or an underlying microscopic theory. For the quark-gluon
plasma this theory is QCD. We see in the next section that thermodynamic coe�cients
� such as κ � are connected to thermal �eld theory by retarded correlation functions
evaluated at vanishing frequency and thus are accessible from the lattice.

4.1.2 Thermal �eld theory

For the computation of transport coe�cients from QCD a relation between its de�nition
in relativistic hydrodynamics and thermal �eld theory is necessary. Such a relation can
be established by applying the �uctuation-dissipation theorem. It states that enforcing
some small perturbation on a system generates a linear response, which is expressed
in terms of �uctuations of the system in thermal equilibrium. Thus the equilibrium
ensemble encodes information on the relaxation process and in particular on the involved
transport coe�cients. Via Kubo formulae [123] the transport coe�cients can be directly
connected to linear response functions, which in quantum �eld theory are related to
retarded two-point correlation functions providing a measure of �uctuations in a system.
The transport coe�cient κ can be derived by an expansion in the background geom-

etry [122, 124]. The idea is to introduce non-vanishing shear and vorticity (4.11) to an
equilibrium system in �at space time. This can be achieved by adding a perturbatively
weak and slowly varying space time non-uniformity to the metric tensor

g′µν(x) = gµν + hµν(x), (4.12)

which couple to the energy-momentum tensor Tµν . A treatment of the perturbation hµν
in linear response theory gives an expansion in correlation functions of multiple energy-
momentum tensors. Their coe�cients are the response of the energy-momentum tensor
to a non-uniformity in the �uid and correspond to the di�erent transport coe�cients.
The detailed calculation in [122,124] gives the following Kubo formula regarding the

second order transport coe�cient κ:

κ = lim
qz→0

∂2

∂q2
z

GR
xy,xy(ω,q)

∣∣
ω=qx=qy=0

(4.13)

or equivalently [115,121]

GR
xy,xy(ω = 0,q) = G(0) +

κ

2
q2
z +O(q3

z). (4.14)

In contrast to [124] we changed the sign of the κ term due to using a di�erent metric
convention. The retarded correlator corresponds to a two-point function of the energy-
momentum tensor evaluated in thermal equilibrium and reads

GR
xy,xy(x, y) = 〈[Txy(x), Txy(y)] θ(x0 − y0)〉 . (4.15)

Its Fourier transform is given by (A.15). The transport coe�cient κ can be identi�ed as
the leading coe�cient in a low momentum expansion of the retarded correlator at zero
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frequency ω = 0. In this de�nition the spatial momenta are aligned orthogonally to the
respective channel of the correlator, i.e. q = (0, 0, qz) for TxyTxy.
Connecting the transport coe�cient κ to the retarded correlator (4.15) by relation

(4.14) allows to determine a real time observable from a quantity evaluated in thermal
equilibrium. In particular it facilitates a computation of the transport coe�cient κ
from lattice gauge theory. However, on the lattice, only Euclidean correlators are acces-
sible. Rewriting the latter and retarded correlators in their spectral representation, we
�nd that they are connected by an analytic continuation, see section 2.2.2. Since ther-
modynamic transport coe�cients are de�ned from correlators at vanishing frequency,
the analytic continuation (2.34) becomes trivial. The connection between retarded and
Euclidean correlator for ω = 0 reads

GR(ω = 0, ~q) = GE(ω = 0, ~q) +B, (4.16)

where the Euclidean correlator for the transport coe�cient κ is given by

GE(x, y) = 〈Txy(x)Txy(y)〉 , (4.17)

and its Fourier transform by (A.17a). The contact term B arises from the missing
commutator in the de�nition of the Euclidean correlator (4.17) compared to its retarded
analogue (4.15) and corresponds to the correlator evaluated at equal space time points,
e.g. ∼ Txy(0)Txy(0). An investigation of the contact term B by an operator product
expansion [74] gives [125]

B ≈
∑
µ

Cµ 〈Tµµ(0)〉 δ(x), (4.18)

with Cµ being Wilson coe�cients. A perturbative evaluation to leading order [126]
results in

B =
2

3
〈T00〉+

1

6

〈
F aµνF

a
µν

〉
, (4.19)

and shows that the contact term is momentum independent. Hence equation (4.14) can
be rewritten

GE
xy,xy(ω = 0, qz) ≡ GE(ω = 0, qz) = G′(0) +

κ

2
q2
z +O(q3

z), (4.20)

where we absorbed the constant G(0) and the contact term B, both momentum inde-
pendent, into G′(0) ≡ G(0) − B. The transport coe�cient κ can be obtained as the
slope of the low momentum correlator GE(q2

z), which provides a possibility for a direct
computation using lattice gauge theory.
Besides κ there are two other independent thermodynamic transport coe�cients given

by the following Kubo formula [122]

λ3 = 2κ∗ − 4 lim
pz ,qz→0

∂2

∂pz∂qz
GE
xt,yt,xy(p, q)

∣∣
p0,q0=0

, (4.21a)

λ4 = −2κ∗ + κ− c4
s

2
lim

px,qy→0

∂2

∂px∂qy
GE
tt,tt,xy(p, q)

∣∣
p0,q0=0

. (4.21b)
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4 Second order transport coe�cient κ

They are connected to Euclidean three-point functions of the energy-momentum tensor.
The quantity cs denotes the speed of sound. The further thermodynamic transport
coe�cients κ∗, ξ3, ξ4, ξ5 and ξ6 can be determined in terms of κ, λ3 and λ4 by �ve
independent conditions found in [127,128] and listed in [122].
In general all thermodynamic transport coe�cients can be connected to Euclidean

correlators with vanishing frequency and are thus directly accessible from the lattice.
This is in contrast to the transport coe�cients η, ζ, τπ, τ∗π , λ1, λ2, τΠ, ξ1 and ξ2,
which are true dynamic quantities. Since their Kubo formulas involve a non-vanishing
frequency [124], the analytic continuation (2.34) becomes non-trivial. It even constitutes
a numerically ill-posed problem [82], since reconstructing a complex function from a
�nite amount of data points is required. For instance a lattice calculation of the shear
viscosity η by the use of Kubo formulas requires a determination of the spectral function
ρ(ω) (2.29) involving an analytic continuation of a Euclidean correlator to Minkowski
space time. As illustrated in �gure 2.2 in Euclidean space time the frequency is a
discrete quantity, the Matsubara frequency. Furthermore the number of Matsubara
frequencies (2.19) is restricted by the temporal lattice extent Nτ . Thus a computation
of dynamic transport coe�cients from lattice calculations as performed for the shear
viscosity [39] and electrical conductivity [40,41] requires additional input, e.g. an ansatz
for the spectral function or the maximum entropy method leaving the regime of a �rst
principle calculation.

4.2 Continuum results for the transport coe�cient κ

In the last section we established a connection between the transport coe�cient κ and a
Euclidean correlator of the energy-momentum tensor evaluated in thermal equilibrium,
which allows us to compute the transport coe�cient κ from QCD, which is the fun-
damental theory describing the quark-gluon plasma. Since an inclusion of fermions in
our lattice simulations is numerically not a�ordable, we only deal with pure Yang-Mills
theory.
We derive the energy-momentum tensor and give an analytic result for the transport

coe�cient κ from a weak coupling expansion in continuum in section 4.2.1. The calcula-
tion in �at space gives a non-vanishing value for the transport coe�cient κ, although it
is related to the Riemann and Ricci tensor by its de�nition in relativistic hydrodynamics
(4.9a). Furthermore we review predictions of the transport coe�cient κ from N = 4
supersymmetric Yang-Mills theory applying strong-weak duality in section 4.2.2.

4.2.1 Yang-Mills theory

The basic quantity entering the computation of transport coe�cients is the energy-
momentum tensor. It is the Noether current regarding invariance of the Lagrangian
under space time translations. In order to construct a symmetric and gauge invariant
energy-momentum tensor, it is favourable to use the invariance of the Lagrangian under
Poincaré transformations (3.7). Following [129] one �nds for the energy-momentum
tensor

Tµν = 2
∂L
∂F aµρ

F aνρ − δµνL. (4.22)
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4.2 Continuum results for the transport coe�cient κ

It is only conserved at classical level. The inclusion of quantum corrections leads to a
breaking of scale invariance [74]. The same theory referred to another scale involves a
di�erent value of the renormalised coupling as discussed in section 2.1.2. As a conse-
quence the trace of the energy-momentum tensor takes a nonzero value leading to the
trace anomaly.
Finally, the energy-momentum tensor of Yang-Mills theory is

Tµν = θµν +
1

4
δµνθ, (4.23)

θµν =
1

4
δµνF

a
αβF

a
αβ − F aµαF aνα, (4.24)

where F aµν denotes the �eld strength tensor (2.8). The term θ = βQCD(g)F aαβF
a
αβ is the

trace anomaly including the QCD beta function (2.10) with Nf = 0. Since the transport
coe�cient κ is extracted from a correlator including only the channel TxyTxy, the trace
anomaly does not enter the computations.
The transport coe�cient κ has been determined in pure gluodynamics by a weak

coupling expansion [122, 130]. Considering the ideal gas limit, i.e. vanishing coupling
g = 0, an evaluation of the correlator (4.20) at low momentum gives

κ = (N2
c − 1)

T 2

18
. (4.25)

Although the transport coe�cient κ solely arises from a gradient expansion in curved
space time (4.9a), its value determined by a weak coupling expansion in �at space time
is �nite.

4.2.2 Strong-weak duality

The anti-de Sitter/conformal �eld theory (AdS/CFT) correspondence provides a toolkit
for studying strongly coupled quantum �eld theories [131]. It is based on a strong-
weak duality: a strongly interacting �eld theory corresponds to a weakly interacting
gravitational �eld theory, which is easier to treat mathematically. The duality allows
to make predictions for the physics of the quark-gluon plasma by using string theory
[132,133].
The AdS/CFT correspondence for N = 4 supersymmetric Yang-Mills theory in the

limits Nc →∞ and g2Nc →∞ predicts for the transport coe�cient [121]

κ =
η

πT
. (4.26)

A comparison between the results for κ from AdS/CFT and QCD requires a matching
of the degrees of freedom. Since κ is an extensive quantity, it scales with the number of
degrees of freedom. In order to compare with Yang-Mills theory calculations we rewrite
(4.26)

κ

T 2
=
η

s
· s

πT 3
(4.27)

and use the AdS/CFT result for the ratio shear viscosity over entropy density η
s = 1

4π ,
but take the entropy density s from a SU(3) gauge theory lattice calculation [134].
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4 Second order transport coe�cient κ

Determining the entropy density by its connection to the interaction measure I and
pressure p

s

T 3
=
I + 4p

T 4
, (4.28)

we �nd for κ
T 2 the values listed in table C.1 in appendix C.1, which we use in section

4.4.4.
Note that the description of the gluon plasma by AdS/CFT correspondence is valid

for N = 4 supersymmetric Yang-Mills, which does not coincide with SU(3) Yang-Mills
theory1 and consequently does not constitute the correct fundamental theory. Although
we match the �eld contents of both theories, further signi�cant di�erences like a missing
running coupling, no con�nement or conformal invariance exist. In section 4.4.4 we
investigate the e�ect of these discrepancies in terms of the transport coe�cient κ.

4.3 Transport coe�cient κ from lattice Yang-Mills theory

This section deals with the framework regarding a computation of the transport coe�-
cient κ in lattice Yang-Mills theory. It relies on the content established in chapter 3. We
discretise the energy-momentum tensor by plaquette variables in section 4.3.1. Its corre-
lator entering the computation of the transport coe�cient κ is transferred to the lattice
in the next section 4.3.2. Thereby we derive a constraint on the temporal and spatial
lattice extents restricting simulations to large lattice sizes. Due to reduced Poincaré
symmetry on the lattice, a multiplicative renormalisation of the energy-momentum ten-
sor becomes necessary. We discuss this and the need for additive renormalisation in
section 4.3.3.

4.3.1 Energy-momentum tensor on the lattice

The lattice calculation of the transport coe�cient κ based on the momentum expansion
(4.20) of the correlator (4.17) requires a discretisation of the energy-momentum tensor
of Yang-Mills theory (4.23). As explained in section 4.2.1 the energy-momentum tensor
is the Noether-current regarding symmetry of the Lagrangian under translations. In
the continuum it is protected from renormalisation by Ward-identities [135]. However,
on the lattice translations are restricted to being a multiple of the lattice spacing aµ
and thus only form a discrete group. As a consequence the energy-momentum tensor
requires multiplicative renormalisation.
For this purpose it is favourable to express the Euclidean correlator (4.17) in terms

of diagonal energy-momentum tensor elements instead of non-diagonal ones. This is
achieved by exploiting rotation invariance. As shown in appendix B.1 rotating the lattice
by π

4 in the plane of the corresponding channel, i.e. the (x, y)-plane for q = (0, 0, qz),
gives for the correlator

〈Txy(x)Txy(y)〉 =
1

2

(
〈θxx(x)θxx(y)〉 − 〈θxx(x)θyy(y)〉

)
. (4.29)

1It neither coincides with full QCD.
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4.3 Transport coe�cient κ from lattice Yang-Mills theory

The trace anomaly θ does not enter the transformed correlator, although it includes
diagonal elements of the energy-momentum tensor. Additionally, temporal and spa-
tial elements of the energy-momentum tensor require separate renormalisation factors
Zτ and Zσ on an anisotropic lattice. A renormalised diagonal element of the energy-
momentum tensor reads

a3
σaτθii(x) =

β

Nc
Re Tr

(
Zτ (β, ξ)θτii(x) + Zσ(β, ξ)θσii(x)

)
, (4.30)

where we refer to the lattice framework established in section 3.1. The bare elements
are given by

θτii(x) ≡ ξ0F̂
2
0i(x)− ξ0

∑
k 6=i

F̂ 2
k0(x), (4.31a)

θσii(x) ≡ − 1

ξ0

∑
k,j 6=i
k<j

F̂ 2
kj(x) +

1

ξ0

∑
k

F̂ 2
ki(x). (4.31b)

In the naive discretisation [136] the terms F̂ij are implemented as ordinary plaquette
variables (3.11), F̂ij = Uij . As illustrated in �gure 4.1 and discussed in [137] an imple-
mentation by Clover plaquettes, F̂ij = F̃ij , produces a better signal-to-noise ratio. The
Clover plaquette [138] consists of four ordinary plaquettes surrounding the point x as
depicted in �gure 4.2. It is given by

F̃µν(x) ≡ 1

8
(Qµν(x)−Qνµ(x)) , (4.32a)

Qµν(x) ≡ 1

4
(Uµν(x) + Uν−µ(x) + U−µ−ν(x) + U−νµ(x)) . (4.32b)

4.3.2 Correlator GE on the lattice

In order to extract κ numerically from equation (4.20), we compute the Euclidean corre-
lator (4.17) within the lattice framework and perform a Fourier transform to momentum
space with vanishing frequency ω = 0 and spatial momentum q = (0, 0, qz). With the
discrete Fourier transform (A.18a) the correlator on the lattice reads

a3
σaτG

E(qz) =
1

N3
σNτ

∑
x,y

e−iqz(xz−yz) 〈Txy(x)Txy(y)〉 . (4.33)

The two-point function 〈Txy(x)Txy(y)〉 is rewritten in terms of diagonal elements using
the relation (4.29) and the energy-momentum tensor is discretised by means of equations
(4.30), (4.31) and (4.32). The correlator is invariant under translations, it only depends
on the distance x− y, so that we average all points with the same distance to improve
statistics. Additionally, due to rotation invariance the correlator channel TxyTxy is
equivalent to TxzTxz as well as TyzTyz. Aligning the spatial momenta accordingly,
q = (0, qy, 0) for TxzTxz and q = (qx, 0, 0) for TyzTyz, allows us to average all channels.
Simplifying the notation we only point out the correlator TxyTxy with momenta q =
(0, 0, qz) in the following and imply the mean over other channels.
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Figure 4.1: Computation of the energy-momentum tensor element θ11 in the plaquette and
Clover discretisation on an isotropic 163 × 6 lattice for β = 7.1 . The Clover discretisation has
an improved signal-to-noise ratio.

Having computed the correlator (4.33) for di�erent momenta qz allows for extracting
the transport coe�cient κ from the momentum expansion (4.20) as the slope of a linear
function GE(q2

z). One prerequisite concerning the momentum expansion is that the
momenta are small compared to the temperature of the system, which sets the relevant
scale, i.e. qz

T < 1. With the discretised versions of temperature (3.18) and momenta
(3.6) we �nd for the ratio

qz
T

=
2πNτ

ξNσ
nz < 1, (4.34)

where the lattice spacings aτ and aσ are completely absorbed by the anisotropy (3.3).
In order to �t the transport coe�cient κ to equation (4.17), we need at least three
di�erent momenta nz > 2 satisfying this constraint (4.34). Thus the simulation requires
large spatial lattice extents Nσ, which makes the calculation costly. This can be partly
moderated by working with anisotropic lattices ξ > 1.

4.3.3 Renormalisation

The correlator de�ned in (4.17) su�ers from ultraviolet divergences. An operator pro-
duct expansion at short distances gives [125]

〈Txy(x)Txy(0)〉 ≈ CT
1

|x |8 +
∑
µ

Cµ 〈Tµµ(0)〉 δ(x) + . . . , (4.35)

where the second term on the right hand side corresponds to the contact term B, which
we discussed in section 4.1.2. The �rst term ∼ |x |−8 diverges for small x causing an
ultraviolet divergence. We remove it by additive renormalisation of the correlator. Since
the divergent term is temperature independent, subtracting the vacuum part from the
correlator at �nite temperature eliminates the divergence. The vacuum part corresponds
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µ

ν

Qµν(x)

Figure 4.2: The Clover plaquette (4.32b) used in the discretisation of the energy-momentum
tensor. It consists of four ordinary plaquettes surrounding the red point x.

to the correlator evaluated at vanishing temperature. We de�ne a new vacuum corrected
expectation value

〈O〉 ≡ 〈O〉T − 〈O〉Tvac , (4.36)

where 〈O〉T is an observable evaluated at a given temperature T and 〈O〉Tvac its vacuum
contribution, i.e. evaluated at vanishing temperature Tvac = 0.
As discussed in section 4.3.1, the discretised energy-momentum tensor requires multi-

plicative renormalisation due to reduced translational invariance on the lattice. For an
isotropic lattice the �nite renormalisation factor only depends on the lattice coupling
β, whereas on an anisotropic lattice it also depends on the anisotropy ξ. Addition-
ally, temporal and spatial part of the energy-momentum tensor (4.31) require separate
renormalisation factors Zσ(β, ξ) and Zτ (β, ξ) [139].
Our non-perturbative renormalisation scheme only works for diagonal elements of the

energy-momentum tensor. For this reason we rewrite the correlator (4.33) in terms of
diagonal elements (4.30) employing the cubic symmetry (4.29)

a3
σaτG

E(qz) =
1

2V

∑
x,y

e−iqz(xz−yz)
(
Z2
τG

τ
0(x, y) + ZτZσG

τσ
0 (x, y)

+ Z2
σG

σ
0 (x, y)

)
. (4.37)

The newly de�ned bare correlators read

Gτ0,T (x, y) ≡ 〈θτ11(x)θτ11(y)− θτ11(x)θτ22(y)〉T , (4.38a)

Gτσ0,T (x, y) ≡ 〈θτ11(x)θσ11(y) + θσ11(x)θτ11(y)− θτ11(x)θσ22(y)− θσ11(x)θτ22(y)〉T , (4.38b)

Gσ0,T (x, y) ≡ 〈θσ11(x)θσ11(y)− θσ11(x)θσ22(y)〉T , (4.38c)

where we introduce their vacuum subtracted versions according to (4.36)

Gi0(x, y) = Gi0,T (x, y)−Gi0,Tvac(x, y), i ∈ {τ, τσ, σ} . (4.39)

In order to compute the renormalisation factors Zτ and Zσ, it is favourable to recast
(4.30) into

θii = Zτ (β, ξ)

(
θτii +

Zσ(β, ξ)

Zτ (β, ξ)
θσii

)
, (4.40)
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so that the renormalisation procedure splits into determining the ratio Zσ(β,ξ)
Zτ (β,ξ) and the

absolute scale Zτ (β, ξ).
The former can be obtained from renormalisation group invariant quantities [139]. To

this end, one introduces four expectation values on di�erently sized lattices

〈O〉1 =̂ 2L× L× L× L, 〈O〉2 =̂ L× 2L× L× L,
〈O〉3 =̂ L× L× 2L× L, 〈O〉4 =̂ L× L× L× 2L, (4.41)

and the renormalisation group invariant quantities

F1 = L4 〈θ00〉1 , F2 = L4 〈θ11〉2 , F3 = L4 〈θ22〉3 , F4 = L4 〈θ33〉4 . (4.42)

Since the renormalisation factors do not depend on temperature, all directions are sym-
metric and it follows

F1 = F2 = F3 = F4. (4.43)

Applying equation (4.40) one can compute the ratio of renormalisation factors. Averag-
ing the equivalent equations (4.42) one obtains

Zσ(β, ξ)

Zτ (β, ξ)
=

1

3

(
〈θτ00〉1 − 〈θτ11〉2
〈θσ11〉2 − 〈θτ00〉1

+
〈θτ00〉1 − 〈θτ11〉3
〈θσ11〉3 − 〈θτ00〉1

+
〈θτ00〉1 − 〈θτ11〉4
〈θσ11〉4 − 〈θτ00〉1

)
. (4.44)

It is possible to determine a non-perturbative value for the ratio of renormalisation
factors by evaluating the expectation values by lattice simulations, c.f. chapter 3. This
requires four simulations, one per lattice size given in equation 4.41. Since the ratio
depends on the anisotropy ξ and lattice coupling β, we have to recalculate it for every
modi�cation in these parameters.
We obtain the absolute renormalisation factor by using the physical interpretation

of the energy-momentum tensor, whose diagonal spatial elements are equivalent to the
pressure

〈θii〉 = p. (4.45)

The absolute renormalisation factor enters into the energy-momentum tensor correlator
quadratically. Therefore the renormalisation procedure is very sensitive to the exact
value of the pressure and encourages us to use a highly precise value for it. For this
reason we use the continuum extrapolated lattice data from [134]. Figure 4.3 illustrates
the di�erence between the continuum value of the pressure and the not multiplicatively
renormalised energy-momentum tensor. The di�erence between the two at a given
temperature corresponds to the absolute renormalisation factor.

4.4 Results for the transport coe�cient κ from lattice
Yang-Mills theory

Finally, we present the computation of the transport coe�cient κ from the lattice. In
the �rst section 4.4.1 we analytically calculate κ in lattice perturbation theory. In the
next section 4.4.2 we discuss our choice of simulation parameters regarding a numeric
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Figure 4.3: Comparison of the not multiplicatively renormalised energy-momentum tensor
〈θbare
ii 〉/T 4 forNτ = 6 and ξ = 2 to the continuum extrapolated pressure p/T 4 from the lattice [134],

where the line is obtained by a cubic spline interpolation. The di�erence between them at a
given temperature corresponds to the absolute renormalisation factor.

computation. They basically follow the constraint of having low momenta for the energy-
momentum tensor correlator. Then we compute κ by means of Monte-Carlo simulations
in sections 4.4.3 and 4.4.4. Performing a simulation at high temperature, T ≈ 10Tc,
allows to make contact with the weak coupling regime and justi�es a comparison to
the results from lattice perturbation theory. Furthermore we compute the temperature
dependence of κ and check it against predictions from both weak and strong coupling
methods.

4.4.1 Determination of κ from lattice perturbation theory

In order to estimate lattice artefacts and to provide a check of our numeric implemen-
tation, we �rst calculate the transport coe�cient κ in lattice perturbation theory, see
section 3.2. The computation is done in the ideal gas limit, g = 0, on an anisotropic
lattice. As a consequence of the missing interaction no multiplicative renormalisation is
involved.
In lattice perturbation theory the gauge �elds Aµ(x) become once again the rele-

vant degrees of freedom. Expanding the links in the lattice expression for the energy-
momentum tensor by (3.9) gives for the correlator (4.17) on the lattice

GE(x, y) =
〈(
∂c

1A
a
α(x)− ∂c

αA
a
1(x)

)(
∂c

2A
a
α(x)− ∂c

αA
a
j (x)

)
×
(
∂c

1A
b
β(y)− ∂c

βA
b
1(y)

)(
∂c

2A
b
β(y)− ∂c

βA
b
2(y)

)〉
, (4.46)

where ∂c
µ denotes the central di�erence (3.4c). The momentum expansion of GE involves

a Fourier transform of sixteen terms of the generalised form

Ci1i2j1j2l1l2m1m2(x, y) =
〈
∂c
i1A

a
i2(x)∂c

j1A
a
j2(x)∂c

l1A
b
l2(y)∂c

m1
Abm2

(y)
〉

(4.47)

to momentum space. Because of translational invariance it is su�cient to consider
Ci1i2j1j2l1l2m1m2(x, 0). Transforming the individual gauge �elds Aµ(x) to momentum
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space by (3.21b) results in

Ci1i2j1j2l1l2m1m2(x, 0) =
〈
i4
∑∫
k1,k2,k3,k4

Aai2(k1)Aaj2(k2)Abl2(k3)Abm2
(k4)eix(k1+k2)

× e
i

(
î2
2
k1+

ĵ2
2
k2+

l̂2
2
k3+

m̂2
2
k4

)
k̃i11 k̃

j1
2 k̃

l1
3 k̃

m1
4

〉
(4.48)

with lattice momenta k̃ as de�ned in (3.20). We evaluate the expectation value by
Wick's theorem using the free gauge �eld propagator (3.19). Considering only connected
diagrams and performing the outer Fourier transform with momentum q we obtain

Ci1i2j1j2l1l2m1m2(ω, ~q) = (N2
c − 1)

∑∫
k

k̃l1(k̃ + q)m1

k̃2(k̃ + q)2

×
(
δi2l2δj2m2 k̃i1(k̃ + q)j1 + δi2m2δj2l2 k̃j1(k̃ + q)i1

)
. (4.49)

Applying this relation to the correlator (4.46) in momentum space and aligning the
outer spatial momentum to q = (0, 0, qz) we �nd

GE(q) =
(
N2
c − 1

)∑∫
k

1

k̃2(q̃ + k)2

(
4k̃2

xk̃
2
y − 2k̃(q̃ + k)(k̃2

x + k̃2
y) + k̃2k̃2

x

+ (q̃ + k)2k̃2
y +

(
k̃(q̃ + k)

)2
)
. (4.50)

After solving the Matsubara sums and the spatial integrals, we extract the transport
coe�cient κ as the low momentum coe�cient in a momentum expansion (4.20) of this
formula. In contrast to continuous thermal �eld theory the Matsubara sums are �nite.
The basic step in solving them is applying the residue theorem in terms of the formula
[140]

1

Nτ

Nτ∑
n=1

g(z) = −
∑
i

Resz̄i
(

1
zg(z)

)
z̄Nτi − 1

. (4.51)

In appendix B.2 we list the results for the �ve individual terms and present the complete
evaluation of one �nite Matsubara sum in detail. In order to avoid ultraviolet diver-
gences, we perform the additive renormalisation addressed in section 4.3.3 by subtracting
the vacuum part. This corresponds to excluding temperature independent pieces from
the results for the �nite Matsubara sums (B.23). The three-momentum integration can
be performed analytically after expanding the integrals around the continuum limit.
This step extends the integration measure to in�nite volume [−π/a, π/a]3 → R3 and pro-
duces correction terms in lattice spacings aσ. Applying the expansion in small momenta
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q3, the remaining integrals can be solved analytically. One �nds for the di�erent terms

∑∫
k

4k̃2
xk̃

2
y

k̃2(q̃ + k)2
=

π2

45(aτNτ )4
+

π4a2
σ

(aτNτ )6

(
1

135
+

5

189ξ2

)

− q2

72(aτNτ )4
+

π2a2
σq

2

(aτNτ )4

(
− 1

1440
− 13

4320ξ2

)
, (4.52a)

−
∑∫
k

2k̃(q̃ + k)(k̃2
x + k̃2

y)

k̃2(q̃ + k)2
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∑∫
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+

π2a2
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)
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As an example we present the calculation of (4.52c) in appendix B.3. For �xed temper-
ature T = (aτNτ )−1 we can rewrite the dependence on lattice spacings aτ and aσ as a
dependence on the temporal lattice extentNτ and the anisotropy ξ = aσ

aτ
. Combining the

results (4.52) we obtain the following expression for the dimensionless energy-momentum
tensor correlator expanded in momentum space at vanishing frequency

GE(qz)

T 4
= (N2

c − 1)

{
π4

N2
τ

(
2ξ2

945
+

4

189

)

+
q2
z

T 2

(
1
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+
π2

N2
τ

(
− ξ2

240
+

49

2160

))}
+O

(
q4
z , N

−4
τ

)
, (4.53)

from which we identify the dimensionless transport coe�cient κ
T 2 as

κ

T 2
= (N2

c − 1)

(
1

18
+
π2

N2
τ

(
− ξ2

120
+

49

1080

))
+O

(
q4
z , N

−4
τ

)
. (4.54)

At �xed temperature the continuum limit aµ → 0 is performed by taking Nτ → ∞,
where we reproduce the continuous result of equation (4.25).
Although the calculation has been performed in the ideal gas limit and thus lacks

corrections in the coupling g, it serves as a check of our numeric implementation in
section 4.4.3. Performing simulations at high temperature enables a comparison, since
we approach the ideal gas limit due to the running of the coupling.
Furthermore the result helps to estimate the size of cuto� e�ects. The computed

correction in the inverse temporal lattice extent suggests an anisotropy of ξopt ≈ 2.33
in order to eliminate leading order lattice artefacts as illustrated in �gure 4.4. In the
case of other values for the anisotropy we can estimate the required temporal lattice
extent to decrease the leading discretisation error under a desired threshold. As stated
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Figure 4.4: Results for the transport coe�cient κ/T 2 from lattice perturbation theory in the

ideal gas limit versus anisotropy ξ. The leading order result (κ/T 2)
(0)

is independent of the

anisotropy and temporal lattice extent, whereas the absolute value of the correction (κ/T 2)
(2)

is
plotted for di�erent Nτ . The �gure illustrates the quadratic increase of the discretisation error
with higher anisotropies as well as the quadratic reduction with the temporal lattice extent.
The vertical line marks the value of ξopt = 2.33 eliminating leading order lattice artefacts. We
perform our simulations at ξ = 2 with Nτ = 6 having a reduction of leading order corrections
in the ideal gas limit below 10 %.

in section 4.4.2 we set ξ = 2 in order to apply previous results for setting the scale. Thus
a temporal lattice extent of Nτ ≥ 6 is required in order to reduce the leading lattice
artefacts below 10 % in the ideal gas limit.
Computing κ by means of lattice gauge theory bene�ts from a larger value for the

anisotropy, ξ > 1, since it mildens the constraint (4.34). Increasing the anisotropy allows
a decrease of the spatial lattice extent, which reduces the numeric e�ort. Notably a linear
growth of the anisotropy goes along with a cubic reduction of spatial lattice points. One
drawback is that an anisotropy di�erent from ξopt 6= 2.33 causes a quadratic increase
of the lattice artefacts seen in �gure 4.4. This e�ect also emerges in calculations of the
pressure [141,142].

4.4.2 Numeric setup

Our lattice simulations require to set the anisotropy ξ, the lattice coupling β as well as
the spatial and temporal lattices extents Nσ and Nτ , respectively. These parameters
determine the lattice spacing, volume and temperature and thus the simulated physics.
All simulation parameters are summarised in table 4.1.
By investigating the transport coe�cient κ in lattice perturbation theory, we �nd an

optimal value for the anisotropy, ξopt = 2.33, eliminating leading order discretisation
artefacts in the ideal gas limit. However, we choose a value of ξ = 2 of the anisotropy,
which is only close to the optimal value, but simpli�es setting the scale. As discussed in
section 3.1.3, the scale is set by the lattice spacing aσ = aσ(β, ξ) in dependence on the
chosen lattice coupling and anisotropy. In case of ξ = 2 we can use results from [100]
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4.4 Results for the transport coe�cient κ from lattice Yang-Mills theory

Run i ii iii iv

β 7.1 7.1 6.68 6.14
Nτ 6 8 6 6
Nσ 120 120 120 120
Nvac
τ 72 72 42 24
ξ 2 2 2 2

aσ [fm] 0.026 0.026 0.044 0.094
T/Tc 9.4 7.1 5.6 2.6
Tvac/Tc 0.8 0.8 0.8 0.7

Nens for T 500800 434480 403500 542000
Nens for Tvac 455000 455000 429000 421250

Table 4.1: Simulation parameters for four evaluations of the transport coe�cient κ. The
temporal lattice extent Nvac

τ corresponding to the temperature Tvac/Tc is required for additive
renormalisation. The number of con�gurations entering one ensemble is Nens, see section 3.3.

for aσ(β, ξ = 2). Considering a �xed temporal lattice extent of Nτ = 6, this leads to an
increase of about 6 % in the leading order lattice artefacts in comparison to the optimal
value ξopt obtained in the ideal gas limit.
The choice of the temporal lattice extent Nτ = 6 is based on a compromise between

numeric e�ort and discretisation errors. The constraint of having low momenta (4.34)
dictates the number of lattice points in spatial directions Nσ relative to the anisotropy
ξ and temporal lattice extent Nτ . Table 4.2 illustrates the increase in the leading
order lattice artefacts (4.54) with respect to the deviation from their evaluation at
optimal anisotropy ξopt as well as the required spatial lattice extent for six momenta,
ni ≤ 6. Reducing the artefacts below 10 % requires a temporal lattice extent Nτ > 4.
A choice of Nτ = 6 already requires a spatial lattice extent of Nσ = 113, which enters
the computational e�ort cubically. A temporal lattice extent of Nτ = 8 reduces the
discretisation errors below 5 %, but requires production of gauge con�gurations on an
at least 2263 ×Nτ sized lattice, which is numerically too costly. Hence we perform our
simulations with a temporal lattice extent of Nτ = 6 and a spatial one of Nσ = 120.
We increase the spatial lattice extent from Nσ = 113 to Nσ = 120, since parallelised
codes favour an even lattice extent and regarding simulations on the LOEWE-CSC the
number of lattice points should be divisible by 24, which is the number of cores per
node.
The remaining parameter is the lattice coupling β, which is connected to the lattice

spacing aσ, see section 3.1.3. In terms of the experimental string tension σexp and the
dimensionless lattice string tension σlat this connection reads

a−1
σ (β, ξ) =

√
σexp√

σlat(β, ξ)
. (4.55)

For a speci�c value of the anisotropy, ξ = 2, the lattice string tension σlat has been
extracted from the static quark potential in [100]. By comparing this lattice result to
the experimental string tension,

√
σexp = 440MeV [143], we obtain the lattice spacing

relative to the lattice coupling, aσ(β, ξ = 2). Determining the temporal lattice spacing
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4 Second order transport coe�cient κ

ξ Nτ Deviation to ξopt Nσ

2 4 13.4% 75
2 6 5.9% 113
2 8 3.3% 151
1 6 18.3% 226

Table 4.2: In dependence on the anisotropy ξ and temporal lattice extent Nτ the table shows
the increase of leading order lattice artefacts (4.54) by deviating from its evaluation at optimal
anisotropy ξopt = 2.33. Furthermore it shows the required spatial lattice extent Nτ to ful�l the
constraint (4.34) with six momenta ni ≤ 6. Reducing the discretisation errors below 10 % and
ensuring numeric feasibility we simulate with parameters ξ = 2 and Nτ = 6. The values of the
last row indicate the bene�t of introducing an anisotropic lattice.
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Figure 4.5: Dimensionless temperature T/Tc versus lattice coupling β for di�erent temporal
lattice extents Nτ .

aτ from its relation to the anisotropy (3.3) we obtain the temperature from equation
(3.18). It is plotted in �gure 4.5 as a function of the lattice coupling β for di�erent
temporal lattice extents. As further discussed in sections 4.4.3 and 4.4.4 we choose
the lattice couplings β = {6.14, 6.68, 7.1}. Their respective lattice spacings and tem-
peratures are listed in table 4.1. In the decon�ned phase topological �uctuations are
suppressed [144] and we expect no di�culties in using very �ne lattices.
In the following we specify parameters concerning the renormalisation procedure, see

section 4.3.3. The additive renormalisation requires a determination of the vacuum
contribution that is a computation of the correlator (4.37) at vanishing temperature. In
order to keep constant physics, we reduce the temperature by increasing the temporal
lattice extent Nvac

τ instead of the lattice spacing. For our �ne and spatially large lattices
this is very costly. We therefore choose Tvac ≈ 0.8Tc. For our purposes this temperature
is low enough since �rst the vacuum divergence is temperature independent. Second, it
is well known that the pressure or the deviation of screening masses from their vacuum
values are exponentially small in the con�ned phase, see [134, 145�147] for numeric
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Figure 4.6: Correlators (4.38) entering the computation of the transport coe�cient κ versus
momenta at di�erent vacuum temperatures. The agreement of our chosen temperature Tvac ≈
0.8Tc corresponding to Nτ = 24 with a lower value of Tvac ≈ 0.4Tc corresponding to Nτ = 40
justi�es use of a vacuum temperature unequal to zero. The large error bars of the simulation
at Nτ = 40 originate from a factor of ∼ 55 lower statistics.

evidence and [148] for an analytic explanation. Furthermore �gure 4.6 illustrates the
di�erence regarding the correlator (4.38) between the used vacuum temperature Tvac ≈
0.8Tc and a lower value of Tvac ≈ 0.4Tc corresponding to a temporal lattice extent of
Nτ = 24 and Nτ = 40, respectively.
The multiplicative renormalisation procedure necessitates knowledge of the renor-

malisation factor ratio Zσ(β, ξ)/Zτ (β, ξ). As described in section 4.3.3 we determine
it from a computation of renormalisation group invariant quantities (4.42) on lattices
(4.41) with L = 48. The simulations must be performed for every lattice coupling
β = {6.14, 6.68, 7.1}. The absolute renormalisation factor Zτ (β, ξ) is obtained from
an identi�cation of the spatial diagonal energy-momentum tensor elements with the
pressure (4.45). Since determining the transport coe�cient κ goes together with the
computation of the bare diagonal energy-momentum tensor elements (4.31), we extract
the quantities from the simulations listed in table 4.1.

4.4.3 Numeric reproduction of results from lattice perturbation theory

Our �rst simulation aims at making contact to lattice perturbation theory, section 4.4.1.
The weak coupling regime is reached for high temperatures. For �xed anisotropy and
temporal lattice extent the temperature is raised by increasing the lattice coupling β.
Choosing β = 7.1 for the lattice coupling corresponds to a temperature of T = 9.4Tc.
The full set of parameters is given in column (i) of table 4.1. In the following we give a
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4 Second order transport coe�cient κ

q2/T 2 0.02 0.10 0.22 0.39 0.62
G(q)/T 4 0.68(6) 0.72(6) 0.77(6) 0.75(6) 0.82(6)

Table 4.3: Numeric results of run (i) of table 4.1 regarding the dimensionless correlator G(q)/T 4.

detailed description of determining the transport coe�cient κ, which directly transfers
to the other simulations. Intermediate numeric results are shown in table C.2 to C.5 in
appendix C.2.
In order to compute the transport coe�cient κ we calculate the bare diagonal energy-

momentum tensor elements (4.31) using the Clover discretisation (4.32) in lattice Yang-
Mills theory. The additive renormalisation requires a computation of these elements
on two lattices. On the one hand, with temporal lattice extent Nτ = 6, giving the
�nite temperature contribution. On the other hand, with Nvac

τ = 72, giving the vacuum
contribution. The elements enter the bare correlators in position space (4.38) and are
used along with the renormalisation group invariant quantities (4.42) to compute the
multiplicative renormalisation factors Zτ (β, ξ) and Zσ(β, ξ). Table C.2 shows numeric
results of the bare correlators and table C.3 for the vacuum subtracted ones. The data
of the renormalisation group invariant quantities are shown in table C.4 and the one
relevant for determining the absolute renormalisation factor in table C.5. After Fourier
transforming the bare correlators to momentum space we perform the additive and
multiplicative renormalisation to build the �nal Euclidean correlator (4.37), listed in
table 4.3.
As discussed in the previous section we choose our simulation parameters in such a

way that the momenta ful�l the constraint (4.34). This allows us to extract the transport
coe�cient κ from a momentum expansion of the computed correlator according to (4.20).

Figure 4.7 shows the dimensionless correlator GE(q)
T 4 for di�erent momenta q2

T 2 < 1.
Fitting the data points to a line [149]

GE
(
q2

T 2

)
T 4

=
G′(0)

T 4
+

κ

T 2

q2

2T 2
(4.56)

yields for the y-intercept G
′(0)
T 4 = 0.69(4) and for the transport coe�cient κ

T 2 = 0.40(26).
These numbers are consistent with the leading order lattice perturbation theory results
G′LPT(0)

T 4 = 0.64 and κLPT
T 2 = 0.47, respectively. Full agreement is not yet expected since

at T = 9.4Tc there are still signi�cant corrections due to interactions, i.e. we are still
far from the ideal gas limit.
Sources for statistical errors are the Monte Carlo sampling, see section 3.3, the multi-

plicative renormalisation scheme (4.45), adding the error of the continuum extrapolated
lattice pressure and the linear �t of the correlator (4.56). The large error bars of the
correlator are almost entirely due to the additive renormalisation procedure. In table
C.2 there are data of the bare correlators (4.38) regarding this simulation, whereas table
C.3 shows the data of the additively renormalised correlators (4.39). The vacuum sub-
traction causes a signi�cant loss of accuracy as schematically illustrated in �gure 4.8.
Computing the pressure by means of the interaction measure [145] su�ers from the same
phenomenon. Thus, we create a large amount of statistics, see table 4.1, to provide a
signi�cant signal for the correlators. In terms of error reduction it is highly favourable
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Figure 4.7: Correlator G
E(q)/T 4 for momenta q2/T 2 < 1 compared to results from lattice per-

turbation theory (LPT). The slope of the linear �t gives κ/2. The exact data points of the
correlator are listed in table 4.3.

to perform the additive renormalisation before the multiplicative one. Otherwise, the
propagated errors entering from the multiplicative renormalisation add to the described
loss of precision.

4.4.4 Temperature dependence

This section deals with computing the temperature dependence of the transport coef-
�cient κ. In principle, the temperature can be varied at �xed lattice coupling β and
lattice spacing by changing Nτ , where lower temperature implies larger Nτ . Thus one
keeps constant physics, while altering the temperature. However, due to the constraint
on momenta from equation (4.34), this would require an increase of the spatial volume
and thus an approximately cubic growth of the numeric e�ort. Hence the �xed scale
approach is not practical for temperatures approaching the phase transition.
We therefore investigate the temperature dependence of κ at �xed Nτ

Nσ
by simulating at

various lattice couplings β listed in table 4.1. In this case the di�erent temperatures are
evaluated at di�erent lattice spacings, and consequently also di�erent spatial volumes
in physical units. However, since our lattice spacings are all aσ < 0.1 fm, we expect
the lattice artefacts on the temperature dependence of the transport coe�cient κ

T 2 to
be negligible. As a check for this, we perform simulations at di�erent temperatures,
T = 9.4Tc and T = 7.1Tc, but same lattice spacing, aσ = 0.026 fm. All other parameters
are given in lines (i) and (ii) of table 4.1.
The results of all four simulations are shown in table 4.4 and �gure 4.9. The extrac-

tion of the transport coe�cient κ from the correlator in momentum space follows the
procedure presented in section 4.4.3. We check the e�ect of varying both temperature
and lattice spacing by comparing the values of κ

T 2 for T = 9.4Tc and T = 7.1Tc. The
data point at T = 7.1Tc su�ers from large error bars, since the spatial lattice extents
have been kept �xed while increasing the temporal lattice extent Nτ . This results in
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0
T Tvac T − Tvac

Figure 4.8: Schematic illustration of additive renormalisation, i.e. subtracting the vacuum part.
Subtracting two equally sized numbers including errors shown on the left causes a signi�cant
loss of precision as shown on the right. We use high statistics to avoid a correlator consistent
with zero.

T/Tc 9.4 7.1 5.6 2.6
aσ [fm] 0.026 0.026 0.044 0.094

κ/T 2 0.40(26) 0.41(84) 0.39(30) 0.28(20)

Table 4.4: Lattice results for the transport coe�cient κ/T 2 at di�erent spatial lattice spacings
aσ and temperatures T/Tc.

less momenta ful�lling the constraint (4.34) and generates a loss of accuracy in the �t
(4.56). Within the error bars, the data points are consistent suggesting that we do not
alter the physics in our approach.
Taking the other simulations at T = 5.6Tc and T = 2.6Tc into account, we �nd that

the temperature dependence of the transport coe�cient κ behaves like κ ∼ T 2. This
result agrees with predictions of perturbative methods both in the continuum (4.25) and
on the lattice (4.54) in the ideal gas limit. Additionally, it coincides with the prediction
of AdS/CFT correspondence (4.26) using η ∼ s ∼ T 3. Since the former represents
the weak coupling limit and the latter the strong coupling limit, we expect the lattice
result to lie in between. Indeed, rescaling the AdS/CFT result to the �eld content of
Yang-Mills theory by (4.27), we �nd this expectation con�rmed as illustrated in �gure
4.9.
Since we do not resolve a temperature dependence beyond κ ∼ T 2, we may increase

the accuracy of our lattice results by averaging the data points with Nτ = 6 to give our
�nal result,

κavr = 0.36(15)T 2. (4.57)

4.4.5 Noise reduction methods

The lattice computation of the transport coe�cient κ su�ers from large statistical errors.
The largest contribution to the statistical errors arises from the additive renormalisation.
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Figure 4.9: Temperature dependence of the transport coe�cient κ/T 2 from lattice Yang-Mills
theory. The lines mark the prediction of AdS/CFT correspondence (4.27) and lattice perturba-
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As discussed in section 4.4.3 the vacuum correction causes a signi�cant loss of accuracy.
Usually, improving the signal of the correlator by numeric means helps in alleviating
this loss.
One way to improve the correlation signal is the smearing of gauge �elds removing

short distance �uctuations. Smearing algorithms connect the endpoints of a given link
along certain paths. APE smearing [150], HYP smearing [151] and Stout smearing [152]
are variants of smearing algorithms. Figure 4.10 illustrates the increased numeric cost
for applying smearing algorithms to our implementation.
Although the smearing procedure modi�es the short-distance behaviour of the cor-

relator of interest, it might not alter the result for the transport coe�cient κ. The
extraction of the transport coe�cient rests upon a low momentum expansion of the cor-
relator, which corresponds to large distances. Thus modi�cations on short scales should
be negligible. As an example performing one APE smearing iteration on an isotropic
lattice increases the width of a plaquette from one lattice spacing to three, a→ 3a. We
establish a connection of this width to our momenta, q

T < 1, by means of the de Broglie
wavelength, λ = 3aµ = 2π

q ,

3 =
λ

a
< 2πNτ ≤

2πNτ

q/T
. (4.58)

This condition is easy to ful�l with an appropriate choice for the temporal lattice extent.
The e�ect of smearing links on the transport coe�cient κ should be checked numer-

ically. A �rst study of the vacuum corrected correlator G(z) ≡ 〈Tii(z)Tii(0)〉, which
enters the calculation of the transport coe�cient κ, based on smeared gauge �eld con-
�gurations is illustrated in �gure 4.11. On the one hand, the smeared correlators show
reduced statistical errors, on the other hand, the data points di�er regarding the (not)
applied smearing routines. A full calculation of the transport coe�cient κ, ful�lling
the momentum constraint, which implies large lattice sizes as well as enough statistics,
is required to investigate these e�ects. However, as shown in �gure 4.10 smearing the
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Figure 4.11: Correlator G(z) ≡ 〈Tii(z)Tii(0)〉 entering the calculation of the transport co-
e�cient κ based on not, APE and HYP smeared gauge �eld con�gurations. The upper plot
illustrates the dependence on the distance z of the correlator and the lower plot shows the
corresponding error bars. All error bars begin from the x-axis. On the one hand, the smeared
correlators show reduced statistical errors, on the other hand, the data points di�er regarding
the (not) applied smearing routines even including the error bars. A full computation of the
transport coe�cient κ is required to check the e�ect of smearing routines on its value.
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gauge �eld con�gurations increases the already high numeric e�ort even more with the
consequence of leaving the regime of numeric feasibility. One solution to this problem
is to analyse e�ects of the smearing routines on the transport coe�cient κ for a reduced
colour symmetry, e.g. SU(2).

4.5 Future research perspectives

In the following we discuss di�erent ideas to improve the numeric results. One con-
tribution to the large statistical errors is our multiplicative renormalisation procedure.
Matching the spatial diagonal energy-momentum tensor elements to the continuum ex-
trapolated lattice pressure and computing the renormalisation factor ratio introduces
errors, which enter quadratically into the correlator of interest. We review two other
ideas of renormalisation schemes, which might reduce the errors.
Giusti and Meyer propose a renormalisation scheme based on lattice Ward identi-

ties [153]. In �nite volume Poincaré symmetry implies exact relations among energy-
momentum tensor correlations de�ned with di�erent sets of periodic boundary con-
ditions. This relations can be used to compute the required renormalisation factors
non-perturbatively.
Moore and Sohrabi suggest a renormalisation procedure [122], which uses the con-

nection of the energy-momentum tensor to curvature of space time. The strategy is to
add an energy-momentum tensor component with small coe�cient to the action and
investigate its e�ect on the lattice spacing, e.g. by evaluating the static quark potential.
Both approaches refer to isotropic lattices and should be generalised to anisotropic ones
in order to milden the constraint on momenta (4.34).
This constraint basically dictates the high numeric e�ort. We have mildened this

constraint by using an anisotropic lattice with ξ = 2. Introducing higher anisotropies
lowers the required spatial lattice volume, e.g. setting ξ = 4 allows to run the simulations
of section 4.4 with a lattice size of 603 × Nτ points. Choosing an anisotropy ξ 6= 1 or
ξ 6= 2 goes along with two disadvantages. Firstly, as our investigation of the transport
coe�cient κ in lattice perturbation theory shows, changing the anisotropy from its
optimal value ξopt 6= 2.33 involves a quadratic rise of lattice artefacts. This problem
can be remedied by taking the continuum limit. This step might necessitate the usage
of an improved lattice action and improved observables, e.g. following the Symanzik
improvement programme [154, 155]. Secondly, since the lattice spacing depends on the
anisotropy, aµ = aµ(β, ξ), extra simulations are required to set the scale for anisotropic
lattices, where aµ(β, ξ) has not been determined, i.e. lattices with ξ 6= 1 or ξ 6= 2. The
running of the lattice spacing can be obtained from the static potential [100].
All in all we suggest the following steps to facilitate an advanced calculation of the

transport coe�cient κ: First, study the e�ects of using APE and HYP smeared gauge
�eld con�gurations on the transport coe�cient κ. Check if the modi�cations of the cor-
relator alter the value of the transport coe�cient and if they improve the signal-to-noise
ratio. Since this analysis will be numerically costly, we recommend a �rst investigation
in the colour group SU(2) instead of SU(3). Secondly, try the other proposed multiplica-
tive renormalisation schemes and check if they result in lower statistical errors. Last but
not least use higher anisotropies ξ > 2 to reduce the required spatial lattice volume and
thus the numeric cost. Improved lattice formulations might be necessary to compensate
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the e�ect of lattice artefacts.
If one makes progress in these aspects further studies of thermodynamic transport

coe�cients from the lattice become numerically feasible. Further possible investigations
include a determination of the temperature dependence for a continuum extrapolated
transport coe�cient κ or a calculation of other thermodynamic transport coe�cients.

4.6 Conclusions

We have calculated the second order hydrodynamic transport coe�cient κ for the Yang-
Mills plasma using lattice perturbation theory as well as Monte Carlo simulations. The
transport coe�cient parametrises the low momentum behaviour of a retarded correlator
of the energy-momentum tensor. Since the retarded correlator is evaluated at vanishing
frequency, the analytic continuation of the corresponding Euclidean correlator becomes
trivial and makes a pure lattice computation possible.
Due to the need for additive and multiplicative renormalisation of the energy-momen-

tum tensor the lattice calculation is rather involved. Additionally, the realisation of the
correlator as a low momentum expansion requires large spatial lattice extensions, making
a numeric computation very challenging. As a consequence, our results su�er from
large statistical errors. We investigated �rst steps towards reducing noise by applying
smearing routines.
In the evaluated temperature range 2Tc < T < 10Tc our data are consistent with

κ ∼ T 2, as predicted both by weak and strong coupling methods. Because of large error
bars, our result also quantitatively covers both the leading order perturbative result as
well as the AdS/CFT prediction rescaled by the Yang-Mills entropy. This would suggest
that, besides improved simulation methods, next-to-leading order analytic calculations
should be able to give a result closer to the real value of κ.
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chromodynamics

We saw in the last chapter that a computation of the second order transport coe�cient
κ is possible from thermal equilibrium, even though it is a real time quantity. Unfor-
tunately, to predict many other physical phenomena a true real time treatment is still
necessary. One example is the evolution from the early stages of a heavy ion collision
to a quark-gluon plasma, which we investigate in chapter 6. A mighty tool for study-
ing these far from equilibrium physics is a classical approximation of Yang-Mills theory
on the lattice. It naturally incorporates an evolution in real time by the equations of
motion and is straightforward to implement on the lattice.
The �rst reduction to a classical theory was realised by Grigoriev and Rubakov [94].

Later followed studies of electroweak sphaleron transitions [156�159], the static potential
in hot QCD [160], string-breaking [161] and in particular the early stages of the quark-
gluon plasma (for citations refer to chapter 6) within the framework of classical Yang-
Mills theory on the lattice.
We establish a real time lattice formulation of full QCD in this chapter. Since fermions

can not be approximated classically, we treat the fermionic degrees of freedom quantum
mechanically by a mode function expansion [162] resulting in a semi-classical formulation
of QCD. The introduction of stochastic fermions [64] reduces the numeric e�ort and
enables simulations in three-dimensional space. Although the semi-classical approach
to QCD can in principle handle a �nite chemical potential [163], we do not include it
due to the exploratory nature of this study. The next section deals with the validity of
a classical approximation of Yang-Mills theory de�ning its range of application.

5.1 Classical approximation of Yang-Mills theory

The classical approximation of quantum �eld theories at �nite temperature is a powerful
tool to study time dependent phenomena in a non-perturbative regime. In the following,
we discuss the validity of this approximation.
The basic quantity for a perturbative treatment of massless bosons in the real time

formalism is the propagator matrix (2.27), where temperature only enters through the
symmetric propagator (2.30). An expansion of the involved Bose-Einstein distribution
function (2.18a) for infrared momenta at high temperatures (q0 � T ) yields a behaviour

∼ T
q0

+ O( q
0

T ) for the correlator [164]. Following [85] the classical correlator analogous

to (2.30) is proportional to ∼ T
q0
. Hence, the infrared regime of a bosonic quantum

�eld theory at high temperature behaves classically1 at leading order. Expanding the
symmetric correlator in the fermionic case with the Bose-Einstein distribution replaced
by the Fermi-Dirac distribution (2.18b) one �nds its �rst contribution at ∼ O( q

0

T ).

1This also holds for massive bosons, if T � m.
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5 Semi-classical formulation of quantum chromodynamics

Consequently, a classical description of fermions is not possible. Refer to section 5.2.3
for an inclusion of quantum mechanical fermions in the classical theory.
As discussed in section 2.2.3 the high temperature limit requires the classical approxi-

mation to correspond to a weakly coupled theory, which allows for an identi�cation of
the infrared momentum regime with scales gT and g2T . Thus, the soft and ultra soft
momentum scales of a weakly coupled Yang-Mills theory can be described by a classical
theory. However, the classical theory does not approximate the hard scale ∼ 2πT . A
natural way of excluding these non-classical hard modes but preserving gauge invariance
is the introduction of a momentum cuto� by a lattice regularisation, c.f. chapter 3. The
ultraviolet cuto� makes the classical theory well-de�ned since it removes the Rayleigh-
Jeans divergences [158].
Naturally, one must deal with the missing ultraviolet behaviour of the theory. Its

perturbative e�ects on the infrared scale can be expressed in the framework of hard
thermal loop e�ective theory, which in turn can be connected to kinetic theory [77,79].
The corresponding transport equations are the Boltzmann-Vlasov equations [165�167].
In this thesis we pursue a pure classical treatment of Yang-Mills theory ignoring its
ultraviolet sector. This approach is justi�ed for physical phenomena and observables
dominated by infrared modes as originally suggested by [94]. In general Yang-Mills
theory with a high occupation of gauge �elds can be treated classically, since then
quantum �uctuations are suppressed compared to statistical �uctuations [168,169].
All in all, the dynamics of gauge �elds with a high occupation in weakly coupled Yang-

Mills theory is classical in nature and we investigate it by real time lattice techniques.
Moreover, the classical approximation does not loose its validity in systems far from
equilibrium [83, 169] and facilitates the study of early stages of the QGP addressed in
chapter 6.

5.2 Lattice formulation of semi-classical QCD

In the last section we have learnt that under certain conditions a weakly coupled Yang-
Mills theory can be treated classically. As the classical approximation is not valid
for fermionic degrees of freedom, we employ the framework of canonical quantisation
and rewrite the fermions in a mode function expansion including anticommuting ladder
operators. In order to reduce the numeric e�ort for dealing with mode functions in three-
dimensional space, we apply a stochastic quantisation. For that the anticommutator
relations of ladder operators are replaced by Gaussian distributed complex numbers.
We discuss these steps in section 5.2.3. Treating the bosons classically and the fermions
quantum mechanically we end up with a semi-classical model for QCD.
We investigate this semi-classical system by solving its equations of motion in a lattice

framework. To this end, we derive the Hamiltonian of QCD in discretised space in section
5.2.1 and the corresponding equations of motion by Hamilton's principle in section 5.2.2.
Applying the classical formulation for the �rst time to full QCD, we give the relevant
calculations in some detail in appendix D.
In the last section of this chapter, we explain how to calculate observables in the

derived model. The computation is based on averaging trajectories dictated by the
equations of motion, which start from random initial conditions. We introduce the
energy-density and discuss the requirements as well as the consequences of gauge �xing.
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pµ

f(pµ)

− π
aµ

π
aµ

Figure 5.1: The lattice propagator has additional poles at +π/aµ, which give rise to the doubling
of fermionic degrees of freedom. Note that momenta −π/aµ do not give additional poles, since
they are not within the �rst Brillouin zone.

5.2.1 QCD Hamiltonian in discrete space

In contrast to section 3.1 we transfer the fermionic and gluonic Lagrangians de�ned
in (2.2) to a hypercubic lattice in Minkowski space time. We discretise the gluonic
contribution analogous to (3.12) but account for the di�erent metric by an extra minus
sign in the �rst term

LM
G [U ] =

1

a3
σaτ

β

Nc
Re Tr

− 1

ξ0

∑
i<j

(1− Uij(x)) + ξ0

∑
i

(1− Ui0(x))

 . (5.1)

At the classical level a renormalisation of the anisotropy is not required, ξ0 = ξ.
A discretisation of the fermionic part requires a more sophisticated approach due to

its equations of motion being of �rst order. Substituting the continuum derivative with
a naive �nite di�erence (3.4) in the free Lagrangian (2.2a) one �nds for the massless
propagator in momentum space and its continuum limit

D−1(p)
∣∣
m=0

= −
∑

µ a
−1
µ γµ sin(aµpµ)∑

µ a
−2
µ sin2(aµpµ)

→ −
∑

µ γµpµ

p2
. (5.2)

On the lattice, new poles arise at the edge of the Brillouin zone as illustrated in �gure
5.1 and cause a doubling of fermionic degrees of freedom. One solution, which removes
the unphysical poles at pµ = + π

aµ
but keeps the physical one with p = 0 is to add a

so-called Wilson term to the Dirac operator. In momentum space it reads

D(p) ∼ −
∑
µ

r

aµ
(1− cos(pµaµ)) (5.3)

with the Wilson parameter r ∈ {0, 1} switching the Wilson term o� and on. It removes
the additional poles by providing an extra contribution at pµ = + π

aµ
acting as an

additional mass term, which vanishes in the continuum limit. As a direct consequence
of the Nielsen-Ninomiya theorem [170�172], the introduction of a Wilson term leads to
a loss of chiral symmetry even in the massless case.
In order to ensure gauge invariance of the Lagrangian, one introduces covariant deriva-

59



5 Semi-classical formulation of quantum chromodynamics

tives according to

Df
µψ(x) ≡ 1

aµ
(Uµ(x)ψ(x+ µ)− ψ(x)) , (5.4a)

Db
µψ(x) ≡ 1

aµ

(
ψ(x)− U †µ(x− µ)ψ(x− µ)

)
, (5.4b)

D̃µψ(x) ≡ 1

2

(
Df
µ +Db

µ

)
ψ(x) =

1

2aµ

(
Uµ(x)ψ(x+ µ)− U †µ(x− µ)ψ(x− µ)

)
, (5.4c)

as in the continuous case (2.3). Finally, the discretised fermionic Lagrangian in Minkow-
ski space time with a Wilson term reads

LM
F [ψ,ψ, U ] =iψ(x)γ0D̃0ψ(x) + iψ(x)γiD̃iψ(x)−mψ(x)ψ(x)

+
raσ
2
ψ(x)Db

i Df
iψ(x). (5.5)

We do not introduce a temporal Wilson term for reasons discussed at the end of this
section. Furthermore the sign of the Wilson term is opposite to its Euclidean formulation
in order to account for the likewise opposite sign of the mass term in Minkowski space
time. The total Lagrangian is given by

LM
tot[ψ,ψ, Uµ] = LM

F [ψ,ψ, Uµ] + LM
G [Uµ]. (5.6)

The classical equations of motion follow from the principle of stationary action, which
is re�ected in the theory of Hamiltonian mechanics discussed in appendix D.1. However,
for gauge theories, the equations of motion loose their unambiguity due to the action's
invariance under temporal gauge transformations or stated in other words, due to gauge
freedom the stationary point is not unique. We remedy this situation by applying a
temporal gauge

A0(x) = 0 ⇔ U0(x) = 1, (5.7)

which only �xes the gauge partially up to time independent gauge transformations. We
de�ne the chromo-magnetic and the chromo-electric �elds as

Ui(x) = eigaσAi(x), (5.8a)

Ei(x) =
.
Ai(x) (5.8b)

with
.
Ai(x) = ∂0Ai(x) being the time derivative. The links Ui and gauge �elds Ai ≡

Aai T
a are in the adjoint representation of SU(Nc). The �elds transform under local

gauge transformations G(x) ∈ SU(Nc) as follows

Ei(x)→ E′i(x) = G(x)Ei(x)G†(x), (5.9a)

Ui(x)→ U ′i(x) = G(x)Ui(x)G†(x+ î), (5.9b)

ψ(x)→ ψ′(x) = G(x)ψ(x). (5.9c)

Following the calculation in appendix D.2 with the canonical coordinates

φaG,i(x) = Aai (x), πaG,i(x) = Eai (x), (5.10a)

φF(x) = ψ(x), πF(x) = iψ(x)γ0, (5.10b)
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5.2 Lattice formulation of semi-classical QCD

the Hamiltonian function can be derived from a Legendre transformation of the La-
grangian and reads in terms of the rescaled �elds and mass (D.15)

H[Ui, Ei, ψ, ψ] =
1

aσ

∑
x

{
β
∑
i<j

(
1− 1

Nc
Re TrUij(x)

)
+

β

4Nc
Eai (x)Eai (x)

− i

2
ψ(x)γi

(
Ui(x)ψ(x+ î)− U †i (x− î)ψ(x− î)

)
− r

2

∑
i

ψ(x)
(
Ui(x)ψ(x+ î)− 2ψ(x) + U †i (x− î)ψ(x− î)

)
+mψ(x)ψ(x)

}
. (5.11)

We end up with a Hamiltonian discretised on a three-dimensional spatial lattice as
�rst employed by Kogut and Susskind [173]. Without loss of generality we assume the
time dimension to still be continuous. Consequently, no temporal fermionic doublers
occur and we only add a spatial Wilson term to remove the spatial doublers. Under
certain conditions, described in section 5.1, the pure bosonic part of the Hamiltonian
already approximates quantum e�ects. By contrast, the fermionic part still requires a
quantisation, which we perform in section 5.2.3. Beforehand we derive the equations of
motion governing the �eld dynamics.

5.2.2 Equations of motion

In the case of chromo-electric �elds Ei and fermionic �elds ψ we derive the equations of
motion from Hamilton's equations (D.5), while we employ Poisson brackets (D.6) for the
links Ui(x). The fermionic �elds ψ = ψ†γ0 do not form independent degrees of freedom.
The complete derivation is given in appendix D.3. The �eld dynamics are governed by1

.
Ui(x) =

i

aσ
Ei(x)Ui(x), (5.12)

.
Ei(x) = − 2

aσ
T a
∑
j 6=i

Im Tr

{
T a
(
Uij(x)− Uij(x− ĵ)

)}

− Nc

βaσ
T a
(
ψ(x)γiT

aUi(x)ψ(x+ î) + ψ(x+ î)γiU
†
i (x)T aψ(x)

)
+ i

rNc

βaσ
T a
(
ψ(x)T aUi(x)ψ(x+ î)− ψ(x+ î)U †i (x)T aψ(x)

)
, (5.13)

.
ψ (x) = −i

m

aσ
γ0ψ(x)− 1

2aσ
γ0γi

(
Ui(x)ψ(x+ î)− U †i (x− î)ψ(x− î)

)
+ i

r

2aσ
γ0

∑
i

(
Ui(x)ψ(x+ î)− 2ψ(x) + U †i (x− î)ψ(x− î)

)
. (5.14)

Equations (5.12) and (5.13) are the lattice versions of Faraday's law of induction and
Ampere's circuital law, respectively. An additional constraint is derived considering the
variation regarding the gauge �eld in temporal direction Aa0 before �xing the gauge.

1We never imply Einstein's sum convention in the evolution equations of Ui and Ei.
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5 Semi-classical formulation of quantum chromodynamics

Since the formulation of a Hamiltonian requires a temporal gauge, we derive this con-
straint, the so-called Gauss law, from the Euler-Lagrange equations (D.2). The Gauss
constraint reads

Nc

β
ψ(x)γ0T

aψ(x) =
∑
i

Re Tr

{
T a
(
Ei(x)− U †i (x− î)Ei(x− î)Ui(x− î)

)}
(5.15)

We discretise the time direction in section 5.3 in order to evaluate the equations of
motion numerically.
Taking the continuum limit aσ → 0 we reproduce the continuum equations of motion.

One expands the links (3.9) in small lattice spacings and reverses the �eld's rescaling
(D.15). A Taylor expansion of the shifted fermionic �elds gives ψ(x+ î) = ψ(x)+O(ai).
We obtain Faraday's law of induction, Ampere's circuit law, Gauss law and the Dirac
equation

.
B = −D ×E, (5.16)
.
E = D ×B− j, (5.17)

D ·E = −j0, (5.18)

0 = (iγµDµ −m)ψ(x), (5.19)

where Dµ denotes the covariant derivative (2.3), jµ the fermionic current

jaµ(x) =
g2

2
ψ(x)γµT

aψ(x), (5.20)

and B the magnetic �eld

Ba
i (x) = −1

2
εijkF

a
jk(x). (5.21)

The next section deals with a quantum mechanical description of fermions in our model.

5.2.3 Mode function expansion with stochastic fermions

The classical approximation discussed in section 5.1 is not valid for fermions and a
quantisation of the fermionic degrees of freedom is required. Following the framework of
canonical quantisation [74] an expansion of the fermionic �elds with the anticommuting
ladder operators {

ar(p), a†s(q)
}

=
{
br(p), b†s(q)

}
= (2π)3δ(p− q)δrs (5.22)

in mode functions reads

ψ(x) =

∫
d3p

(2π)3

1√
2p0

∑
s

(
as(p)us(p)e−ipx + b†s(p)vs(p)eipx

)
, (5.23a)

ψ(x) =

∫
d3p

(2π)3

1√
2p0

∑
s

(
a†s(p)ūs(p)eipx + bs(p)v̄s(p)e−ipx

)
. (5.23b)
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The expansion in mode functions incorporates the time evolution of the initial ladder
operators as a Bogolyubov transformation [174�176] and, as pursued in e.g. [162], the
time evolution of the fermions can be completely transferred to the mode functions,
which obey the same Dirac equation (5.14). However, a numeric evaluation of the
evolution of one fermionic �eld requires the solution of a coupled set of 16×N6

σ complex
ordinary di�erential equations2.
Borsányi and Hindmarsh improved numeric feasibility by the introduction of low-

cost fermions [64] reducing at least on higher dimensional lattices the numeric e�ort
by several orders of magnitude. Their idea is to substitute the ladder operators in
fermionic correlators by an ensemble of complex numbers. This can be achieved by the
introduction of stochastic fermions

ψM/F(x) =
1√
2

∫
d3p

(2π)3

1√
2p0

∑
s

(
ξs(p)us(p)e−ipx ± ηs(p)vs(p)eipx

)
, (5.24a)

ψM/F(x) =
1√
2

∫
d3p

(2π)3

1√
2p0

∑
s

(
ξ∗s (p)ūs(p)eipx ± η∗s(p)v̄s(p)e−ipx

)
. (5.24b)

The only di�erence between male ψM and female ψF fermions is the di�erent sign ±,
combining the waves propagating in forward and backward direction. If the complex
numbers are sampled according to

〈ξs(p)ξ∗r (q)〉 = (2π)3δ(p− q)δrs, (5.25a)

〈ηs(p)η∗r (q)〉 = (2π)3δ(p− q)δrs, (5.25b)

the ensemble average can be used to reproduce physical correlators. The presented ini-
tialisation applies to vacuum fermions. It can easily be extended to thermal equilibrium
by adding the Fermi-Dirac distribution (2.18b) to the sampling

〈ξs(p)ξ∗r (q)〉 = (2π)3δ(p− q)δrs (1− 2nF(p)) , (5.26a)

〈ηs(p)η∗r (q)〉 = (2π)3δ(p− q)δrs (1− 2nF(p)) . (5.26b)

Following the computation in appendix D.4 one �nds the following substitution rules
for correlators 〈

ψ(x)ψ(y)
〉

= −1

2

(〈
ψM(x)ψF(y)

〉
e

+
〈
ψF(x)ψM(y)

〉
e

)
, (5.27a)〈[

ψα(x), ψβ(y)
]〉

=
1

2

(〈
ψM
α (x)ψ

F
β(y)

〉
e

+
〈
ψF
α(x)ψ

M
β (y)

〉
e

)
, (5.27b)

where we have used the interchangeability of male and female fermions. The calculation
in appendix D.4 shows that only one gender, either male or female, is insu�cient to
build the correlators. The substitution rules also hold for bilinear covariants.
In order to reproduce the correlators of complex numbers, (5.25) and (5.26), correctly,

an ensemble of stochastic fermions is necessary. To produce the correct physics we
have to average over this ensemble in the fermionic correlators (5.27) and their bilinear
covariants. The quantity 〈. . . 〉e denotes the ensemble average overNe gendered fermions.

2On a three-dimensional lattice a fermionic �eld consists of 2N3
σ momentum modes each being a

spinor (4) with two spin states (2) and must be computed on every lattice site (N3
σ).

63



5 Semi-classical formulation of quantum chromodynamics

However, every member of the ensemble as well as any gender must be evolved separately
by the fermionic equation of motion (5.14).
The numeric bene�t of this approach is that instead of the full set of N3

σ momentum
modes, only an ensemble of 2Ne stochastic fermions must be evolved. Naturally, check-
ing for the dependence of observables on the ensemble size Ne is required, especially
since statistical errors are transferred to the bosonic degrees of freedom by the coupled
equations of motion.
We initialise the stochastic fermions by solving the free Dirac equation on the lattice.

Following the calculation in appendix D.5 we recover the continuum form of the Dirac
equation by de�ning

s0 ≡ ξ sin(aτp0), si ≡ sin(aσpi), µ ≡ m+ r
∑
i

(1− cos(aσpi)) , (5.28)

where the lattice mass µ includes the Wilson term, and the energy-momentum relation
is

s0(p) =
√
s2
i (p) + µ2(p). (5.29)

In the following lines we do not explicitly write the dependence on momenta, sµ =
sµ(p) and µ = µ(p). Solutions to the free Dirac equation with γ-matrices in Dirac
representation (c.f. appendix A.4) are given by the spinors in spin states s = 0, 1

u0(p) = N


s0 + µ

0
s3

s1 + is2

 , u1(p) = N


0

s0 + µ
s1 − is2

−s3

 , (5.30a)

v0(p) = N


s3

s1 + is2

s0 + µ
0

 , v1(p) = N


s1 − is2

−s3

0
s0 + µ

 . (5.30b)

They are normalised by

N ≡
√

2µ

(s0 + µ)2 − s2
i

=

√
1

µ+ s0
(5.31)

according to

ūr(p)us(p) = 2µδrs, v̄r(p)vs(p) = −2µδrs, (5.32a)

u†r(p)us(p) = 2s0δ
rs, v†r(p)vs(p) = 2s0δ

rs. (5.32b)

The computed initial conditions (5.30) together with the sampled complex numbers
(5.25) or (5.26) enable us to construct initial male and female fermions (5.24). The
detailed numeric implementation is discussed in section 5.4.2.
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5.2.4 Determination of physical observables

In the framework of the Hamiltonian formalism with canonical coordinates φ and π the
basic quantity in non-equilibrium statistical mechanics is the phase space distribution
%[φ, π, t]. Its time evolution is governed by Liouville's equation [177]

∂0%[φ, π, t] = {H, %}. (5.33)

The expectation value of an observable at time t is given by a with %[φ, π, t] weighted
average over the phase space [178]

〈O(t)〉 =

∫
dφ dπ %[φ, π, t]O[φ, π, t]. (5.34)

However, the evaluation of Liouville's equation as a partial di�erential equation is in
practice di�cult, due to the large number of degrees of freedom. An equivalent approach
is to start from an initial phase space distribution %0 ≡ %[φ0, π0, t0] and average over
all phase space trajectories (φcl, πcl) dictated by Hamilton's equations (D.5). Then
the expectation value corresponds to an integral over the observable evaluated at all
trajectories starting from equivalent initial conditions and reads [179]

〈O(t)〉 =

∫
dφ0 dπ0 %0O[φcl, πcl, t]. (5.35)

It bears resemblance to (2.25), where the path integral is replaced by a classical ap-
proximation in terms of trajectories following Hamilton's equations. Since the initial
�eld con�gurations φ0 and π0 are based on random numbers as discussed in section
5.4, equation (5.35) can be evaluated by means of Monte Carlo sampling. We generate
an ensemble of Nens initial �eld con�gurations and evolve each independently in time
de�ning the trajectories (φncl, π

n
cl). Then the expectation value can be approximated in

analogy to (3.23) by

〈O(t)〉 ≈ 1

Nens

Nens∑
n=1

O[φncl, π
n
cl, t] (5.36)

and we take the average (3.39) as an estimator for the expectation value. In contrast
to the Monte Carlo algorithm of section 3.3 based on a Markov chain, the classical
con�gurations (φncl, π

n
cl) are completely uncorrelated. Thus the statistical error can be

estimated without any binning by the standard deviation [149]

σx̄ =

(
1

N − 1

N∑
i=1

(xi − x̄)2

)1/2

. (5.37)

One standard observable in semi-classical approaches is the system's energy density.
The energy corresponds to the element T 00 of the energy-momentum tensor, which can
be connected to the Hamiltonian function [74] by

H =

∫
d3x T 00. (5.38)
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The total energy density can be separated into the contributions of the �elds Ei, Ui as
well as ψ and is given by

εtot = εE + εB + εψ =
H

V
, (5.39)

where V denotes the volume. Although the separate contributions are time dependent
ε = ε(t), the total energy density is constant due to energy conservation. We derive the
explicit lattice expressions from the Hamiltonian function (5.11)

a4
σεE(t) =

β

2NcN3
σ

∑
x

Re Tr (Ei(x)Ei(x)) , (5.40a)

a4
σεB(t) =

β

N3
σ

∑
x

∑
i<j

(
1− 1

Nc
Re TrUij(x)

)
, (5.40b)

a4
σεψ(t) =

1

N3
σ

∑
x

(
i
1

2

〈
ψM(x)γiUi(x)ψF(x+ î)− ψM(x)γiU

†
i (x− î)ψF(x− î)

〉
e

+
r

2

∑
i

〈
ψM(x)Ui(x)ψF(x+ î)− 2ψM(x)ψF(x)

+ψM(x)U †i (x− î)ψF(x− î)
〉

e

−m
〈
ψM(x)ψF(x)

〉
e

)
, (5.40c)

where we substitute fermionic correlators by their ensemble average over stochastic
fermions (5.27a). We omit the average over interchanged genders to simplify notation.
The computation of the fermionic energy density requires an additive renormalisation
in terms of subtracting the vacuum energy. We discuss this in more detail in section
5.4.2.

If an observable under investigation is not gauge invariant, one has to handle redun-
dant degrees of freedom in the �eld variables. This can be prevented by �xing the gauge.
Initially, we only �xed the gauge in temporal direction (5.7), leaving the freedom of spa-
tial gauge transformations. We remedy this in case of gauge dependent observables by
applying the Coulomb gauge

∂iAi(x) = 0. (5.41)

We deal with its numeric implementation in section 5.3.2. Gribov discovered that the
gauge �xing is not necessarily unique [180]. From a geometrical point of view the gauge
orbit, de�ned by the �eld AG as a function of the gauge transformation G, can intersect
the plane de�ned by the gauge condition f(AG) = 0 more than once as depicted in
�gure 5.2. These Gribov copies can disturb the lattice measurement, e.g. as a source of
additional statistical noise in Monte Carlo sampling [181]. Unfortunately, an exclusion
of Gribov copies is in practice not possible and their occurrence should be kept in mind
for the evaluation of gauge �xed observables.
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A3

A1, A2

AG

f(AG) = 0

Figure 5.2: Schematic illustration of the appearance of Gribov copies. The gauge orbit AG

intersects the submanifold de�ned by the gauge condition f(AG) = 0 several times and each
intersection point represents one Gribov copy. Ideally, there is only one point of intersection,
corresponding to a unique gauge �xed con�guration.

5.3 Details of numeric implementation

Having established a semi-classical formulation of QCD on the lattice in the last section,
we now discuss details of the numeric implementation. In order to solve the equations of
motion, we discretise the time dimension in section 5.3.1. From the Courant condition
[149] follows a constraint on the ratio of spatial to temporal lattice spacing, i.e. aσaτ > 3.
We propose algorithms to enforce Gauss law and �x the gauge in section 5.3.2 and check
that our enforcement of Gauss law is implemented correctly. Additionally, we introduce
a further check of our code by random gauge transformations.

5.3.1 Equations of motion in discrete time

A numeric treatment of the classical lattice system (5.12) to (5.15) requires a discreti-
sation of time. We divide the total time into Ntime discrete steps of size aτ . One point
of time is given by t ≡ aτ∆t with ∆t = 0, 1, . . . , Ntime−1 counting the number of steps.
Replacing the continuous time derivative with �nite di�erences (3.4) in the equations
of motion (5.12) to (5.14) and Gauss law (5.15) we �nd

Ui(x+ 0̂) = exp
(
iξ−1Ei(x)

)
Ui(x), (5.42a)

Ei(x+ 0̂) = Ei(x)− 2

ξ
T a
∑
j 6=i

Im Tr

{
T a
(
Uij(x)− Uij(x− ĵ)

)}

+
Nc

βξ
T a
〈
ψM(x)γiT

aUi(x)ψF(x+ î) + ψM(x+ î)γiU
†
i (x)T aψF(x)

〉
e

− i
rNc

ξβ
T a
〈
ψM(x)T aUi(x)ψF(x+ î)

− ψM(x+ î)U †i (x)T aψF(x)
〉

e
, (5.42b)
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ψG(x+ 0̂) = ψG(x− 0̂)− i
2m

ξ
γ0ψG(x)

− 1

ξ
γ0γi

(
Ui(x)ψG(x+ î)− U †i (x− î)ψG(x− î)

)
+ i

r

ξ
γ0

∑
i

(
Ui(x)ψG(x+ î)− 2ψG(x) + U †i (x− î)ψG(x− î)

)
, (5.42c)

0 =
Nc

2β

〈
ψM(x)γ0T

aψF(x+ 0̂) + ψM(x+ 0̂)γ0T
aψF(x)

〉
e

−
∑
i

Re Tr

{
T a
(
Ei(x)− U †i (x− î)Ei(x− î)Ui(x− î)

)}
, (5.42d)

where we evolve each of the Ne gendered fermions ψG = ψM/F and substitute fermionic
correlators by their ensemble average over stochastic fermions (5.27a). We omit the
average over interchanged genders to simplify notation. Rewriting the time evolution
of the links (5.42a) as an exponential is favourable to incorporate the matrix structure
of the chromo-electric �eld, Ei = Eai T

a. The exponential function is evaluated by a
Taylor series expansion in the inverse anisotropy ξ−1, which is small as explained later.
A numeric evaluation of the equations of motion requires an explicit representation of
the generators T a. We choose the Gell-Mann matrices given in equation (A.9) in the
appendix.
A numerically stable as well as physically meaningful simulation requires a ful�lment

of Gauss law at all times. To this end we introduce an algorithm to reduce the Gauss
violation in section 5.3.2. Furthermore the order in which we evaluate the equations
of motion is crucial in order to conserve Gauss law. Since the colour-magnetic and
fermionic �elds enter the Gauss constraint, it is necessary to directly evolve the chromo-
electric �eld after Gauss law has been enforced. Because of that we use the following
sequence of evaluation:

1. Enforce Gauss law on the chromo-electric �eld by the algorithm we give in section
5.3.2 or by construction.

2. Evolve the chromo-electric �eld according to (5.42b).

3. Evolve the ensemble of gendered fermionic �elds according to (5.42c).

4. Evolve the links according to (5.42a).

The steps 2 to 4 are repeated to compute the evolution of the �elds. We discuss the
initialisation of the �elds in thermal equilibrium in section 5.4.
After discretising the time dimension, the system's evolution is determined by the

anisotropy ξ instead of the spatial or temporal lattice spacing aσ and aτ . Consequently,
the system's scale is completely set by the initial conditions imposed on the �elds. As
illustrated in �gure 5.3 the Courant condition [149]

3
|v|aτ
aσ

< 1 (5.43)

with v being the speed of propagating information gives an upper bound for the an-
isotropy. The factor 3 originates from having three spatial dimensions. Solving partial
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aτ

x

t a′τ > aτ

x

t

Figure 5.3: A solution to partial di�erential equations at one time depends on information
within some domain of dependency to the past, e.g. the initial conditions. This area is illustrated
blue shaded. Evolving to this time from one time slice before requires consideration of points
connected by the red line. Their in�uence on the new time point is depicted by the dashed
red lines. If the shaded area is within this dashed triangle the Courant condition (5.43) is
ful�lled. Thus the left hand side is numerically stable whereas the right hand side is not due to
an increased temporal lattice spacing a′τ > aτ .

di�erential equations the Courant condition is a necessary condition for numeric stabil-
ity. In case of elementary particle physics v corresponds to the speed of light c = 1 and
it follows for the anisotropy ξ−1 < 1

3 . We show the emergence of numeric instabilities
originating from too small anisotropies in �gure 5.11 of section 5.4.1.

5.3.2 Gauss law, gauge �xing and random gauge transformations

When solving the equations of motion we also have to satisfy Gauss law (5.42d). The
Gauss constraint is preserved as can be shown by performing explicitly the time deriva-
tive and plugging in the equations of motion. Thus we enforce Gauss law only on the
initial conditions and check for numeric errors, which could violate the constraint, during
the time evolution.
Concerning a bosonic system in thermal equilibrium we implement an enforcement of

Gauss law following [163]. The Gauss violation in matrix form reads

C(x) ≡ Nc

2β
T a
〈
ψM(x)γ0T

aψF(x+ 0̂) + ψM(x+ 0̂)γ0T
aψF(x)

〉
e

− T a
∑
i

Re Tr

{
T a
(
Ei(x)− U †i (x− î)Ei(x− î)Ui(x− î)

)}
. (5.44)

The idea is to correct the electric �eld repeatedly for the amount it violates Gauss law

Ei(x)→ Ei(x) + γ
(
UiC(x+ î)U †i (x)− C(x)

)
, (5.45)

where the optimal parameter γ can be obtained from a Fourier analysis of C(x). Ac-
cording to the reference we choose γ = 0.12. A measure for the Gauss violation at time
t is given by

C(t) ≡
√∑

x

TrC†(t,x)C(t,x). (5.46)
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Figure 5.4: Reduction of the Gauss violation C by the relaxation algorithm on a 43 sized
lattice for a pure bosonic system on the left hand side and a system including vacuum fermions
on the right hand side. The simulation parameters are g = 0.2, ξ = 20, aσm = 0, r = 0, and
Ne = 20.

The left hand side of �gure 5.4 illustrates the decrease of the measure per application
of the relaxation algorithm. We only compute observables when the Gauss violation is
reduced below a certain threshold. Additionally, we monitor its value for the total time
evolution. The relaxation algorithm can also be applied to systems including fermions.
As illustrated on the right hand side of �gure 5.4 the enforcement of Gauss law needs
many more iterations. While the pure bosonic system requires ∼ 230 iterations to
decrease the Gauss violation below machine precision, the combined system requires ∼
10000 steps.
As discussed in section 5.2.4 some observables require an entirely �xed gauge �eld.

In addition to the temporal gauge (5.7) one has to �x the spatial degrees of freedom.
This can be accomplished by applying the Coulomb gauge (5.41). On the lattice �xing
a link con�guration to Coulomb gauge translates to minimising the functional [182]

F [G] ≡ −
∑
x,i

Re TrU
G(x)
i (x), (5.47a)

0 =
δF

δG

∣∣∣∣
G∗
, (5.47b)

where G denotes a gauge transformation and G∗ the �nal gauge �xing transformation.
Imposing the requirement (5.47) iteratively on every lattice site at �xed time by

G′(x) = V (x)G(x), (5.48a)

V (x) =
∑
i

(
G(x)Ui(x)G†(x + î) +G(x− î)U †i (x− î)G†(x− î)

)
SU(3)

, (5.48b)

U
G(x)
i (x) = G′(x)Ui(x)G†′(x + î), (5.48c)

we approach the �nal gauge �xing transformation G∗ step by step. Since the sum of
two SU(3) matrices leaves the group closure, the matrix V must be projected back to
the group SU(3). This can be achieved by a decomposition into its SU(2) subgroups as
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Figure 5.5: Deviation of the functional (5.47a) from its value at the �nal gauge �xing transfor-
mation. The required number of iterations to �x the gauge up to a precision of 10−10 depends
strongly on the overrelaxation parameter ω.

discussed in section 3.3.2. A slight variation of the vector x in (3.33) by a parameter
ω ∈ [1, 2) can be used to speed up the gauge �xing procedure. This algorithm is called
overrelaxation and is especially useful to moderate the critical slowing-down for larger
lattices [183,184].
The procedure stops, when the next computed gauge �xing transformation does not

di�er from the former one up to a prede�ned precision or when a maximum number of
gauge �xing steps NOR is exceeded. Figure 5.5 shows the gauge �xing procedure up to
a precision of 10−10 for di�erent overrelaxation parameters ω. The optimal value of ω =
1.8 only requires half as many iterations as ω = 1, corresponding to no overrelaxation.
Because of that we determine the optimal overrelaxation parameter for every simulation
run on a di�erent lattice size. Figure 5.6 shows the composition of the total computation
time ≈ 42 h for a run on a 322 × 96 sized lattice from chapter 6. We �xed the gauge in
each of the 8000 time steps. The fact that the gauge �xing procedure takes the majority
of the computation time, is one reason to investigate gauge invariant observables.
The gauge freedom in the directions can be used to check the numeric implementation.

Applying a random gauge transformation V (x) to the �elds Ei, Ui and ψG should not
change the expectation value of gauge invariant observables. Figure 5.7 shows the
di�erence between the energy densities 5.40a to 5.40c based on usual and random gauge
transformed �elds. The minor deviation attests a correct numeric implementation of
the semi-classical model. We perform this test for every gauge invariant observable
including those introduced in chapter 6.

5.4 Thermal equilibrium

In order to become acquainted to the formalism developed in the last sections, we apply
it to a system in thermal equilibrium. We perform consistency checks, especially to test
the numeric implementation of the model. We start with the study of a pure bosonic
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Figure 5.6: The gauge �xing procedure constitutes the major contribution to the total com-
putation time of a run from chapter 6. We request a precision of 10−10 with a maximum of
8000 iterations for the gauge �xing procedure.
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Figure 5.7: Di�erence in the energy densities between usual and random gauge �xed �elds
Ei, Ui and ψG run on a 83 sized lattice. The minor deviation is caused by the �nite machine
precision.
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5.4 Thermal equilibrium

Run βcl Nσ ξ Nens Nreinit Ntherm Ntime

i 66.7 8 20 30 10 200 2000
ii 24 � 20 5 10 500 4000

Table 5.1: Simulation parameters for pure bosonic runs. The second run (ii) is performed on
a 322 × 96 lattice to accommodate more momentum modes.

system with colour group SU(3) in section 5.4.1. Most of the former work on classical
bosonic systems as for instance [86, 156, 158, 163, 185] is limited to the colour group
SU(2). Although an investigation within SU(3) would be interesting, we proceed to our
primarily goal, the inclusion of fermions.
To this end we study an ideal Fermi gas in section 5.4.2 and a system consisting

of bosonic and fermionic �elds in section 5.4.3. The semi-classical model has already
been applied to fermion production in QED [186, 187] and scalar theories [64] as well
as to the weak sector of the standard model describing baryogenesis [188�190]. We
present the �rst study of full QCD within the semi-classical description. However, we
only use the thermal equilibrium case to get acquainted to the formalism and check our
numeric implementation. We ultimately apply the semi-classical model to isotropisation
processes of the quark-gluon plasma in chapter 6. Since all statistical errors are below
1 %, we do not show any error bars in our plots.

5.4.1 Pure bosonic system

We determine the initial bosonic �elds by a Monte Carlo sampling. In the case of
classical Yang-Mills theory in thermal equilibrium the �elds are distributed according
to

δ(G)e−
1
T
HB , (5.49)

where δ(G) enforces the Gauss constraint (5.15) and HB is the pure bosonic part of the
lattice Hamiltonian (5.11). De�ning an e�ective classical coupling

βcl ≡
2Nc

Tg2aσ
, (5.50)

the chromo-electric �eld amplitudes Eai can be drawn from a Gaussian distribution

g(x) =
1

σ
√

2π
e
− 1

2

(
x−µG
σ

)2

(5.51)

with mean µG = 0 and squared width σ2 = βcl
4Nc

and combined with the matrix Ei =
Eai T

a. Gauss law is enforced by applying (5.45) several times. Starting from cold initial
links Ui = 1, they are thermalised by a pure bosonic evolution in time, (5.42b) and
(5.42a), which mixes the chromo-electric and chromo-magnetic �elds [163]. A repeated
reinitialisation of Ei, keeping the Ui untouched, thermalises the system according to
the Boltzmann weight given in (5.49). Figure 5.8 illustrates the bosonic thermalisation
process for simulation parameters (i) shown in table 5.1.
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Figure 5.8: Thermalisation procedure for bosonic degrees of freedom according to run (i) of
table 5.1. We reinitialise the chromo-electric �elds Ei every ∆t = 200 time steps according to
their distribution (5.49). The links Ui are thermalised by interaction with the Ei through their
equations of motion (5.12) and (5.13), excluding the fermionic contributions.

The e�ective classical coupling is the only parameter entering a pure bosonic simula-
tion. It can be used to set the scale by connecting it to the Debye mass. Its continuum
value for Yang-Mills theory is given by [79]

m2
D =

Nc

3
g2T 2, (5.52)

whereas its lattice value in three-dimensional Yang-Mills theory is [191]

m2
D,L =

NcΣg
2T

2πaσ
, Σ = 3.175911536 . . . . (5.53)

Equating both expressions relates the spatial lattice spacing to the Debye mass

a2
σ =

N2
c Σ

πβclm
2
D

, (5.54)

or equivalently to the temperature

aσ =
3Σ

2πT
. (5.55)

Our lattice cuto� being proportional to the Debye mass, Λ ∼ 1
aσ
∼ mD, is exactly what

we want in order to separate the ultraviolet scale from the soft scales. The further
requirement of soft �eld modes with a high population can be checked by introduc-
ing estimates for the occupancy of transversal and longitudinal chromo-electric �eld
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Figure 5.9: Normalised estimates for the occupation of chromo-electric �eld modes in thermal
equilibrium with simulation parameters given of run (ii) of table 5.1. Transversal and longitu-
dinal occupation sum to the total occupation, fE = fEt

+ fEl
. The classical approximation is

valid, if the estimated occupation for low momentum modes is larger than one, fE(kz)×k/T > 1.

modes [185]

fEt(t,p) =
PTijδab

2(N2
c − 1)|p |

∫
d3x e−ipx

〈
Eai (x)Ebj (0)

〉
, (5.56a)

fEl
(t,p) =

pipjδ
ab

(N2
c − 1)|p |3

∫
d3x e−ipx

〈
Eai (x)Ebj (0)

〉
, (5.56b)

where PT
ij = δij− pipj

|p |2 is the transversal projection operator. The lattice equivalents are
given by

fEt(t, pz) =
1

(N2
c − 1)pz

∑
x

e−ipzz Tr 〈E1(x)E1(0) + E2(x)E2(0)〉 , (5.57a)

fEl
(t, pz) =

2

(N2
c − 1)pz

∑
x

e−ipzz Tr 〈E3(x)E3(0)〉 . (5.57b)

Since these observables are not gauge invariant, we �x the gauge to Coulomb gauge by
the algorithm discussed in 5.3.2. Figure 5.9 shows the simulation results normalised
to the prediction from hard thermal loop e�ective theory [185]. Since the occupation
number within a pure bosonic thermal system is a static quantity, we enlarge our Monte
Carlo ensemble by including each time step as a con�guration. The classical regime
of validity is reached for normalised occupation numbers f(qz)

qz
T > 1. We perform

the normalisation by using that the temperature is proportional to the inverse lattice
spacing (5.55). On our lattice with 322 × 96 lattice sites and a classical coupling of
βcl = 24 the low momentum modes are inside the regime of validity.
We show the time evolution of a pure bosonic system in �gure 5.10 using parameters

(i) of table 5.1. The thermalisation process has already been depicted in �gure 5.8. The
energy from the chromo-electric �elds is transferred to the chromo-magnetic one and
vice versa leaving the total energy density constant up to numeric �uctuations. Figure
5.11 illustrates the evolution of energy density for di�erent temporal lattice spacings
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Figure 5.10: Evolution of a pure bosonic system with parameters according to run (i) of table
5.1. The chromo-electric energy density is denoted E and the chromo-magnetic one B. The
total energy is conserved as should be the case in a �nite box.

aτ , but �xed spatial lattice spacing aσ. A numeric instability arises for anisotropies not
ful�lling the Courant condition (5.43).

5.4.2 Pure fermionic system

The initialisation of stochastic fermions introduced in section 5.2.3 on the lattice follows
from a straightforward discretisation of the gendered fermions (5.24) at initial time t = 0

ψM/F(t = 0,x) =
1√
2N3

σ

∑
n

∑
s

(
ξs(n)us(n)ei 2π

Nσ
nx ± ηs(n)vs(n)e−i 2π

Nσ
nx
)
, (5.58a)

ψM/F(t = 0,x) =
1√
2N3

σ

∑
n

∑
s

(
ξ∗s (n)ūs(n)e−i 2π

Nσ
nx ± η∗s(n)v̄s(n)ei 2π

Nσ
nx
)
, (5.58b)

where we include the normalisation 1√
2p0

in the de�nition of the spinors (5.30) and

the three-vector n originates from the lattice momenta (3.6). The distributions of the
complex numbers (5.26) replacing the ladder operators read in discretised form〈

ξs,a(n)ξ∗r,b(m)
〉

= N3
σδ(n−m)δrsδab (1− 2nF(n)) , (5.59a)〈

ηs,a(n)η∗r,b(m)
〉

= N3
σδ(n−m)δrsδab (1− 2nF(n)) . (5.59b)

They are sampled by a decomposition into

ξr,a(n) = Ar,a(n)eiφr,a(n), ηr,a(n) = Br,a(n)eiθr,a(n), (5.60)

drawing the momentum dependent amplitudes Ar,a and Br,a from a Gaussian with mean
µG = 0 and squared width σ2 = N3

σ (1− 2nF(n)) and drawing the phases φr,a(n) and
θr,a(n) uniformly distributed on the interval (−π, π]. Since male and female fermions
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Figure 5.11: Total energy density versus time for di�erent anisotropies ξ in a pure bosonic
run. If the anisotropy does not ful�l the Courant condition (5.43), a numeric instability arises.

use the same ξ and η, we have to generate 4×2×Nc×N3
σ×Ne random numbers for each

initialisation. Finally, the gendered fermions in position space (5.58) are obtained by
the Fourier transform of the created complex random numbers multiplied by the spinor
solutions (5.30) of the free Dirac equation including the normalisation factor. Discretis-
ing the fermionic equation of motion (5.42c) by a central di�erence (3.4c) requires a
further initial �eld ψG(x− t̂), which we generate by one free (Ui = 13×3) evolution step

ψG(x− 0̂) = ψG(x) + i
m

ξ
γ0ψG(x) +

1

2ξ
γ0γi

(
ψG(x+ î)− ψG(x− î)

)
− i

r

2ξ
γ0

∑
i

(
ψG(x+ î)− 2ψG(x) + ψG(x− î)

)
. (5.61)

Employing relation (5.40c) to compute the fermionic energy density gives a negative
result. This can be explained in terms of vacuum fermions. In the continuum the
fermionic vacuum can be described as a Dirac sea [192] �lled with an in�nite amount
of particles with negative energy. On the lattice the energy density becomes �nite due
to the ultraviolet cuto� resulting in negative values for the energy density. Since a
measurement of energy and equivalently energy density is identical to measuring an
energy di�erence, we shift our fermionic observables by subtracting the corresponding
vacuum expectation value

〈εψ(t)〉 = 〈εψ(t)〉T − 〈εψ(t = 0)〉Tvac . (5.62)

The correlator 〈εψ〉Tvac can be evaluated by initialising the gendered fermions according
to (5.59) with T = 0.
In the following we check the initialisation procedure by an investigation of the ideal

Fermi gas. To this end we compare the initial energy density for di�erent temperatures
to its analytic value. In the continuum the energy density of a relativistic ideal gas of
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Figure 5.12: Fermionic energy density versus lattice temperature for an ideal Fermi gas on
a 83 sized lattice. The other parameters are Ne = 50, aσm = 0 and r = 0. We compare the
numeric result initialised according to (5.59) with the analytic result (5.64). The numeric data
points overlay the error bars.

Nσ ξ Nens Ntime Ne aσm aσT r

8 20 30 2000 50 0.2 6 1

Table 5.2: Simulation parameters for a pure fermonic run. The coupling does not enter in the
pure fermionic case. Additionally, the fermionic initialisation does not require any thermalisa-
tion.

fermions is given by [193]

εcont
ψ = gψ

∫
d3p

(2π)3
E(p)nF(p), (5.63)

where E(p) is the energy and gψ the degeneracy factor. The latter one takes a value of
gψ = 2×2×3 = 12 corresponding to fermions and antifermions, two polarisation states
and three colours. Restricting the momenta to the �rst Brillouin zone and rewriting the
momenta as sinusoidal functions (5.28) the energy density on the lattice takes the form

εψ = gψ

∫ π

−π

d3p

(2π)3
s0(s)nF(s). (5.64)

Concerning the massless case, we solve the integral numerically and compare it to the
result of our simulation for di�erent temperatures in �gure 5.12. We reproduce the
analytic prediction for the fermionic energy density and the Fermi-Dirac distribution.
A further check of the initialisation and the fermionic equation of motion is to compute

the evolution of the energy density, which should be constant in a �nite box. To this
end we run a simulation with parameters given in table 5.2. Figure 5.13 shows that the
energy density �uctuates around a constant value, εψ(t) = ε0.

5.4.3 Semi-classical QCD

In this section we investigate a system in thermal equilibrium including both bosonic
and fermionic degrees of freedom. Figure 5.14 sketches the semi-classical real time
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Figure 5.13: Energy density of an ideal Fermi gas over time. The simulation parameters are
given in table 5.2.

Run g Nσ ξ Nens Nreinit Ntherm Ntime Ne aσm aσT r

i 2 8 20 12 5 200 8000 50 0 0 1
ii 2 8 20 � 5 200 8000 � 0.2 0 1
iii 2 8 20 � 5 200 8000 50 � 0 1
iv 2 8 20 14 5 200 8000 50 0 0 0
v 2 8 20 14 5 200 8000 50 0.2 10 1

Table 5.3: Simulation parameters for runs in thermal equilibrium. Zero temperature corre-
sponds to vacuum initialised fermions. We vary the fermionic ensemble size in run (ii) using
Ne ∈ {50, 75, 100} on Nens ∈ {14, 9, 6} con�gurations, respectively. The mass is varied in run
(iii) using aσm =∈ {0, 0.2, 0.4, 0.6, 0.8} onNens ∈ {11, 14, 11, 14, 11} con�gurations, respectively.

algorithm. The fermionic �elds are initialised according to the procedure described in
section (5.23). The initialisation of the bosonic �elds follows the strategy of section
5.4.1, but we include the fermions into the enforcement of Gauss law as well as the time
evolution.
We show simulation parameters in table 5.3. Some of the listed parameters correspond

to more than one run, since we vary di�erent parameters. Our �rst simulation (i) aims
at illustrating the thermalisation process as well as the time evolution. In the next
simulation, run (ii), we vary the fermionic ensemble size Ne in order to study the e�ect
of stochastic fermion modelling. We investigate the e�ects of adding a �nite mass to
the fermions and neglecting the Wilson term by simulations (iii) and (iv), respectively.
The last run, (v), uses fermions initialised from a thermal distribution. At the end of
this section we employ a di�erent thermalisation procedure with the parameters given
in table 5.4.
Figure 5.15 illustrates the time evolution of bosonic and fermionic �elds on the basis

of the corresponding energy densities (5.40) with simulation parameters given in (i) of
table 5.3. During the �rst time steps, 0 < t

aτ
< 1000, energy is shifted from the chromo-
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Ui = 1 Draw ψM/F Ne

Draw Ei
Enforce

Gauss

Evolve Ui,

Ei, ψM/F

Ntherm

Nreinit

Evolve Ui,

Ei, ψM/F
Observables

Ntime

Nens

Figure 5.14: Sketch of the complete semi-classical real time algorithm for thermal equilibrium.
The blue �eld indicates the initialisation process, the red �eld the time evolution. The initialisa-
tion starts from cold links and an ensemble of gendered fermions of size Ne initialised according
to section 5.2.3. The next step is to draw a set of Ei from the corresponding Gaussian (5.49).
After enforcing Gauss law the links Ui are thermalised by their interaction with the Ei and
ψM/F through the equations of motion. After Ntherm steps, new Ei are drawn, but the Ui and
ψM/F kept �xed. Repeating this procedure Nreinit times, the �elds Ui are thermalised. Evolving
all �elds according to their equations of motion allows for a measurement of observables at
progressing times. After an evolution with Ntime steps, one repeats the algorithm another Nens

times to produce a Monte Carlo sample for the measured observables.
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Figure 5.15: Thermalisation and evolution of a system consisting of fermionic and bosonic
�elds. The simulation parameters are given by run (i) of table 5.3. The thermalisation phase
ends at t/aτ = 1000 and is indicated by the black dashed line.

electric �eld to the chromo-magnetic �eld, thermalising the chromo-magnetic �elds. The
heavy �uctuations of the fermionic energy density in the �rst 20 time steps are due to
the Wilson term. We discuss this aspect later. The steps in the total energy density
arise from the reinitialisation of the chromo-electric �elds pumping new energy into the
system. After the thermalisation phase ended, the total energy density is conserved as
should be the case in a �nite box. The �elds keep on interacting and more energy is
transferred to the fermionic �eld until at t

aτ
≈ 3000 saturation sets in. In order to keep

the following plots straightforward, we do not show all energy densities in every plot. If
�elds are not depicted, their dynamics are similar to the curves depicted in �gure 5.15.
We check that during the evolution the total energy is always conserved.

We investigate the e�ect of the fermionic ensemble size Ne on the dynamics in run
(ii) of table 5.3 and show results in �gure 5.16. At time t

aτ
≈ 7000 the fermionic energy

densities are εψ = {19.39(2), 19.71(2), 19.91(2)} with ensemble sizes Ne = {50, 75, 100},
respectively. As found by other authors using stochastic fermions [190] a �xed value
is reached by increasing the ensemble size. Not being interested in a high precision
measurement of an observable, our small ensemble sizes are su�cient for now, especially
since the �eld dynamics do not change with the fermionic ensemble size. Note that the
di�erent ensemble sizes are also re�ected in the bosonic energy density due to coupled
equations of motion.

Figure 5.17 shows the evolution of the fermionic energy density using di�erent masses,
see run (iii) of table 5.3. All fermionic �elds acquire energy over time and saturate around
an energy density εψ ≈ 19, as illustrated by the curves aσm = 0 and aσm = 0.2. The
heavier fermonic �elds have a higher energy density. Furthermore it takes much longer
to excite the heavier fermionic �elds.

The Wilson term can be interpreted as an additional mass. We study its e�ect by the
runs (i) and (iv) and show the outcome in �gure 5.18. As with the massive fermions,
the excitation of the fermionic �eld including a Wilson term takes much longer and the
saturated energy density is larger. The heavy �uctuations in the �rst 20 time steps do
not arise when we neglect the Wilson term. In particular the fermionic energy density
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Figure 5.16: Evolution of energy densities for di�erent fermionic ensemble sizes Ne, see run (ii)
of table 5.3. We summarise chromo-magnetic and chromo-electric energy densities as a bosonic
energy density. The solid lines correspond to the bosonic energy density and the dashed lines
to the fermonic ones. The inlet shows an enlarged snippet of the fermionic curves.
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Figure 5.17: Thermalisation and evolution of the fermionic energy density using di�erent
masses, see run (iii) of table 5.3. The dashed line at t/aτ = 1000 indicates the end of the
thermalisation phase.
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5.4 Thermal equilibrium

g Nσ ξ Nens Nreinit Ntherm Ntime Ne aσm aσT r

2 6 20 5 5 200 8000 20 0.4 0 1

Table 5.4: Simulation parameters for a run in thermal equilibrium using a di�erent thermali-
sation procedure.
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Figure 5.18: Thermalisation and evolution of the fermionic energy density with and without
Wilson term, see runs (i) and (iv) of table 5.3. The dashed line at t/aτ = 1000 indicates the end
of the thermalisation phase. The �gure also shows the results of run (v) including a thermal
initialisation of the fermionic �elds with temperature aσT = 10.

stays positive. The �gure also shows the fermionic energy density of run (v) including a
thermal initialisation of the fermionic �elds. The thermal fermions have a much larger
initial energy density, as already found in �gure 5.12. Their saturated energy density is
also higher.

Finally, we present the evolution of the �elds applying a di�erent thermalisation al-
gorithm. The bosonic and fermionic �elds are independently thermalised and merged
afterwards. Before merging we reinitialise the chromo-electric �eld once more and en-
force Gauss law including the fermionic current. The evolution is shown in �gure 5.19
and the simulation parameters are given in table 5.4. Although the fermionic �eld is not
involved in the thermalisation process, it gains energy. This is due to the links entering
the fermionic energy density (5.40c). In principle this additional energy shift can be
removed by the additive renormalisation (5.62). Apart from that, the thermalisation
procedure resembles the pure bosonic process discussed in section 5.4.1. The further
evolution of the �elds is similar to the other results of this section with the di�erence
that the energy transfer between the bosonic and fermionic �elds is enhanced due to
the lower fermionic energy density at time t

aτ
≈ 1000.
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Figure 5.19: Thermalisation and evolution of a system consisting of fermionic and bosonic
�elds using a di�erent thermalisation procedure. The procedure is described in the text. The
simulation parameters are given by (vi) of table 5.4. The upper plot shows the thermalisation
and the lower plot the subsequent evolution.
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5.5 Future research perspectives

Possible applications of the semi-classical model of QCD in thermal equilibrium are an
investigation of fermion production via the Schwinger mechanism in QCD, see reference
[186] for a semi-classical real time treatment of this aspect in QED or the inclusion of
external magnetic and electric �elds allowing for an investigation of the chiral magnetic
e�ect [194]. The magnetic �eld can be introduced in analogy to the implementation in
lattice gauge theory [195,196]. A further topic is the computation of the imaginary part
of the static potential [160] or the momentum di�usion constant of heavy quarks [197]
including dynamic fermions.
An even wider range of applications is given by the �eld of non-equilibrium physics,

which are directly accessible by the semi-classical model. In the next chapter 6 we
investigate thermalisation processes of the quark-gluon plasma in the early stages of
heavy ion collisions.

5.6 Conclusions

Many phenomena related to standard model physics at �nite temperature involve true
dynamic processes and require a treatment in real time. In this chapter we presented
an approach to QCD incorporating real time. It is based on a semi-classical description
of QCD on the lattice.
We implemented initial conditions describing thermal equilibrium and investigated the

�eld dynamics of systems including bosons, fermions and both types of �elds. In the
pure fermionic system we reproduced the energy density of an ideal Fermi gas. With
the full system we found an enhancement of the fermionic energy density by energy
transfer from the bosonic �elds. Introducing a fermionic mass term to the simulations
re�ected the physical expectation, namely a delayed excitation from the bosonic degrees
of freedom and a higher saturated energy density.
The established semi-classical model of QCD is the foundation for an investigation of

isotropisation processes in the quark-gluon plasma in the next chapter 6.
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6 Isotropisation of the quark-gluon

plasma via the chromo-Weibel

instability

The success of equilibrium models in describing data from heavy ion collisions at LHC
and RHIC suggests a local equilibrium shortly after the collision. Due to Lorentz con-
traction of the colliding nuclei, a momentum anisotropy in the longitudinal-transverse
plane is expected. However, thermal equilibrium implies isotropy and we therefore in-
vestigate the process of isotropisation towards a thermalised quark-gluon plasma. The
isotropisation time can be inferred from studies of elliptical �ow using ideal hydrody-
namics. Results from RHIC give tiso ≈ 1 fm [32,34,198,199]. Such a short isotropisation
time can be explained assuming a strongly coupled quark-gluon plasma [43] and has
been reproduced by computing holographic thermalisation processes in gauge-string
dualities [200�204]. However, due to the high energy density in heavy ion collisions,
the quark-gluon plasma is usually assumed to be weakly coupled because of asymp-
totic freedom. With this, the question arises: Which processes drive the isotropisation
fast enough to obtain an isotropisation time competitive with predictions from strongly
coupled approaches or hydrodynamics? First theoretical estimates based on perturba-
tive scattering processes [205, 206] yield too long isotropisation times. They miss one
essential aspect of plasma dynamics, which is the development of plasma instabilities.
Unstable chromo-electric and chromo-magnetic modes can lead to a fast restoration of
momentum space isotropy in the early stages of the quark-gluon plasma [44�46].
In this work we investigate the isotropisation of the quark-gluon plasma via the

chromo-Weibel instability. In particular, we are interested in the e�ect of fermions
on the isotropisation process. In order to capture the far from equilibrium real time dy-
namics of the involved processes, we employ the semi-classical lattice approach to QCD
presented in chapter 5. In the weak coupling limit, the colliding nuclei may be described
as colour glass condensates. One intrinsic feature of a colour glass condensate is a high
population of gauge �elds, which justi�es a classical approximation of the bosonic de-
grees of freedom. Additionally, the colour glass condensate e�ective theory serves as an
inspiration for the initial conditions which describe the early stages of a heavy ion colli-
sion within the semi-classical approach. Due to the explorative nature of this study, we
only simulate in a static system instead of an expanding one. Although the expansion
has a large e�ect on the gauge dynamics, and consequently the isotropisation, a static
simulation should be su�cient for a �rst estimate on the impact of fermions.

6.1 Formation of the quark-gluon plasma

The formation of a quark-gluon plasma in relativistic heavy ion collisions is a dynamic
process far from equilibrium. As we discuss in section 6.1.1 the colliding nuclei can be de-

87



6 Isotropisation of the quark-gluon plasma via the chromo-Weibel instability

Figure 6.1: Schematic picture of the thermalisation process at weak coupling. The �gure shows
the ratio of longitudinal over transverse pressure versus longitudinal proper time τ . It indicates
the di�erent dynamic regimes discussed in section 6.1. Taken from [207].

scribed in the colour glass condensate framework. The evolution towards a thermalised
quark-gluon plasma starts at a time immediately after the collision and is governed
by di�erent dynamic regimes. Considering a longitudinally (in z-direction) expanding
medium, they are characterised by longitudinal proper time τ ≡

√
(x0)2 + z2 and mo-

mentum scale Q. The pre-equilibrium stage of a heavy ion collision is believed to consist
of four distinct regimes [178,207] (the mentioned time scales are indicative approxima-
tions):

• Strong �elds (0 < Qτ . 1): This initial state is described within the colour glass
condensate framework.

• Plasma instabilities (1 . Qτ . log2(α−1
s )): The anisotropic medium leads to an

instability, i.e. the chromo-Weibel instability discussed in section 6.1.2, which in
turn isotropises the medium partially.

• Turbulent regime (log2(α−1
s ) . Qτ . α

−3/2
s ): Turbulences drive the system to-

wards a scaling behaviour indicated by an attractor solution.

• Quantum thermalisation (Qτ & α
−3/2
s ): Finally, quantum e�ects become relevant

and the classical approximation breaks down.

This thermalisation process is depicted in �gure 6.1 in terms of the ratio of longitudinal
over transverse pressure. Describing the colliding nuclei as colour glass condensates, the
stages towards forming a thermalised quark-gluon plasma are called glasma [63,208], a
contraction of the words �glass� and �plasma�.
In this work we study the �rst two regimes. We use the semi-classical model of QCD

employed in chapter 5 to investigate the isotropisation of the medium formed in heavy
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6.1 Formation of the quark-gluon plasma

Figure 6.2: Results for the parton distribution function xf versus Bjorken-x from deep inelastic
e−p scattering experiments at HERA [209] with four-momentum transfer Q2 = 10GeV2.

ion collisions via chromo-Weibel instabilities. We obtain the required initial conditions
from the colour glass condensate e�ective theory.

6.1.1 Colour glass condensate

The �rst stages of an ultra relativistic heavy ion collision involve dynamics far from
equilibrium. Consequently, a �rst principles description requires a real time treatment
of QCD according to equation (2.25), where the initial density matrix consists of two
incoming nuclei. Although a full computation in QCD is beyond the scope of our
theoretical models, the problem can be approximated by the colour glass condensate
e�ective theory as can be seen in the following consideration. For a more detailed
review on the colour glass condensate e�ective theory refer to e.g. [61�63].
We show results for the parton distribution function in a proton obtained from deep

inelastic e−p scattering experiments at HERA [209] in �gure 6.2. The quantity Q2 =
10GeV2 represents the squared four-momentum transferred in the scattering process,
and x = Q2

2Mν is the Bjorken-x variable with energy loss ν of the incoming electron, and
M the target nucleon mass. As Bjorken-x is the longitudinal momentum fraction carried
by the parton, it is a measure of inelasticity of scattering processes and is inversely
proportional to the rest frame energy. Thus small x values correspond to deep inelastic
scattering processes. This is also the regime for heavy ion collisions. As can be seen
in �gure 6.2, at small x, the contribution of valence quarks to the parton distribution
function xf is negligible compared to the gluonic contribution. Furthermore sea quarks
produced from gluon splitting g → qq̄ are suppressed by the coupling α. Hence as an
approximation, the colour glass condensate e�ective theory takes only gluonic �elds into
account .
Due to non-linear interactions among the gluons, the growth of the gluon distribution

is limited. This limit is associated with a saturation momentum Qs of the gluons, which
is proportional to the collision energy. Refer to �gure 6.3 for a descriptive explanation.
In ultra-relativistic heavy ion collision experiments at RHIC and the LHC, Qs takes
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Low energy High energy

Figure 6.3: Following [61], we descriptively identify the inverse gluon momentum with the size
of a gluon. At a given momentum only a �nite amount of gluons can be packed into a nucleon.
At higher momenta the gluon size becomes smaller and more gluons can be added. Increasing
the momentum, at some point their density becomes so large that interactions between them
can not be neglected anymore. As a consequence the density saturates. The corresponding
gluon momentum is called saturation momentum Qs.

values of approximately 2GeV and 2 − 3GeV respectively [210]. Since the saturation
momentum is much larger than the QCD scale, Qs � ΛQCD ≈ 0.2GeV, a weak coupling
treatment of the saturated gluons inside the colliding nuclei is justi�ed.
Although the interaction strength is weak, the system eludes a perturbative treatment.

The high gluon density goes along with a high interaction probability, de�ned as the
relevant parton cross-section times the parton density. Thus the e�ects of the interaction
are ampli�ed by the large gluon density, and a resummation of high density e�ects
becomes necessary. A computation up to order g2 in the coupling requires a resummation
of all tree-level diagrams, which can be performed in classical Yang-Mills theory.
The e�ective degrees of freedom are the gluonic �elds at small x. Due to time dilata-

tion, the nuclei being colour sources can be seen as static. When looking at a heavy ion
collision they are described as a colour current of the form

Jµa (t,x⊥, z) = δµ+ρa1(x⊥)δ(x−) + δµ−ρa2(x⊥)δ(x+), (6.1)

where we employ light-cone coordinates de�ned in appendix A.2.2. The Kronecker-
deltas, δµ+ and δµ−, indicate that the colour charge densities ρam(x⊥) of the two nuclei
m ∈ {1, 2} are on the light cone. The δ-distributions re�ect the Lorentz contraction
of the nuclei towards sheets of vanishing width. The colour charges are distributed
randomly from event to event. The classical gluonic �elds are obtained by solving the
Yang-Mills equations in the presence of the two sources

DµF
µν = Jν . (6.2)

In section 6.2.1 the solution of this equation enters our initial conditions regarding the
formation of a quark-gluon plasma in heavy ion collisions.

6.1.2 Chromo-Weibel instability

The colour �elds existing in the early stages of nucleus-nucleus collision may exhibit
instabilities [211�213], which drive the fast isotropisation of the glasma [44�46,205]. One
candidate for such an instability is the chromo-Weibel instability. Its occurrence has
been investigated in di�erent approaches such as Vlasov-Yang-Mills simulations [47�51],
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Figure 6.4: Formation of the Weibel instability in a medium with anisotropic momentum
distribution. This sketch was �rst shown by Mrówczy«ski at Quark Matter 1993. This �gure
is a revised version made by Strickland. The �uctuating current (6.3) pointing in x-direction
generates a magnetic �eld (6.4) in y-direction, which in turn produces �laments aligned in z-
direction. The arrows in the �rst �lament on the left indicate a particle's movement and its
change due to the Lorentz force (use Fleming's right-hand rule). Particles moving up (+ex)
are transferred to the left (−ez), whereas particles moving down (−ex) are transferred to the
right (+ez), thus enhancing the left and right currents. In turn the increased currents enhance
the magnetic �elds, leading to the Weibel instability. If one adds charged particles moving
in z-direction, their magnetic �eld would reduce the By magnetic �eld, hence reducing the
instability.

classical Yang-Mills simulations [52�60] or analytic studies [214, 215], including both
expanding or non-expanding backgrounds.
The mechanism of the chromo-Weibel instability is analogous to the Weibel instabil-

ity [216] arising in electromagnetic plasmas with anisotropic momentum distribution.
Consider the setup of an anisotropic electromagnetic system with a �uctuating current
of magnitude j in direction ex [217,218]

j(x) = j cos(kzz)ex. (6.3)

From this and ∇×B(x) = j(x) follows that a magnetic �eld in the y-direction emerges

B(x) =
j

kz
sin(kzz)ey. (6.4)

As illustrated in �gure 6.4, the �uctuating current creates �laments with particles mov-
ing in opposite x-directions. The Lorentz force moves particles to their corresponding
�laments, thus enhancing the current and consequently the magnetic �eld. Thus the
magnetic Weibel instability appears. Due to the creation of �laments it is also referred
to as �lamentation instability. This mechanism can be transferred to colour �elds and is
assumed to occur in the early phases of the quark-gluon plasma, driving isotropisation.
As a consequence, a local momentum space anisotropy in the quark-gluon plasma

causes soft transverse modes to grow exponentially. Due to the non-abelian interaction
these unstable modes generate longitudinal chromo-electric and chromo-magnetic colour
�elds, which grow even faster and thus lead to an isotropisation of the system [219]. We
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formulate anisotropic initial conditions inspired by the colour glass condensate in order
to investigate the isotropisation using a classical real time lattice simulation in the next
section 6.2.

6.2 Real time simulations on the lattice

As discussed in the last section, the formation of the quark-gluon plasma is a dynamic
process far from equilibrium. The semi-classical lattice approach to QCD established
in chapter 5 o�ers a suitable framework to describe the physical processes in real time.
Imposing a colour glass condensate as initial state, the requirements concerning a valid
classical description, large gluon occupation numbers as well as weak coupling, are met.
At �rst we establish the framework for a pure bosonic investigation and add fermions in
section 6.4. Due to the explorative nature of the inclusion of fermions, we only consider
a non-expanding system. However, in contrast to most other works, we account for the
full non-abelian gauge group of QCD, SU(3).
During this chapter we distinguish between the longitudinal and transverse dimen-

sions. We identify the former with the z-direction and the latter with the corresponding
perpendicular xy-plane. Accordingly, we have the longitudinal lattice spacing az and
lattice extent Nz as well as the perpendicular values, a⊥ and N⊥. We de�ne transverse
and longitudinal displacement vectors by x⊥ = (x, y) and xz = z, respectively. A func-
tion depending on only one of these displacements vector is meant to be kept constant
along the absent direction, e.g. f(x⊥) is constant along the longitudinal z-direction.
We review in section 6.2.1 initial conditions inspired by the colour glass condensate

which describe our initial state. Section 6.2.2 deals with the simulation parameters.
In particular we explain how to obtain dimensional physical quantities. We introduce
observables relevant for isotropisation and the appearance of a chromo-Weibel instability
in section 6.2.3. In particular we introduce a gauge invariant spectral decomposition,
which avoids numerically costly gauge �xing.

6.2.1 Colour glass condensate inspired initial conditions on the lattice

Describing the evolution of the non-equilibrium system produced in ultra-relativistic
heavy ion collision in the classical-statistical model requires us to specify the initial
conditions. As we have learnt in section 6.1.1, this initial state can be treated as a
colour glass condensate. In this approximation, the colliding nuclei are colour sources,
see equation (6.1), which are distributed randomly from event to event. According to
the McLerran-Venugopalan model [220�222] they have a Gaussian distribution〈

ρam(x⊥)ρbn(y⊥)
〉

= g4µ2a2
⊥δmnδ

abδ(x⊥ − y⊥). (6.5)

The variance is closely related to the saturation momentum, g2µ ≈ Qs. The quantity
µ2 ∼ A1/3 fm−2 is the colour charge squared per unit area in one of the colliding nu-
clei with atomic number A. Since it is the only dimensionful parameter in the initial
conditions, we use it to set the scale in our simulations, see section 6.2.2.
Imposing the Gaussian distribution of the colour sources on the current (6.1) allows

us to solve the equation of motion (6.2). The solutions are chromo-electric and chromo-
magnetic �elds describing the colour glass condensate state to leading order. We use
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these �elds as initial conditions for our semi-classical model. Following [223] they can
be transferred to the lattice.
On the lattice the chromo-magnetic �elds Ui and chromo-electric �elds Ei are con-

structed from intermediate quantities Umi with m = {1, 2} for each nuclei. Starting
from the colour sources ρam they are computed by:

∆LΛam(x⊥) = −ρam(x⊥), (6.6a)

V m(x⊥) = exp (iΛm(x⊥)) , (6.6b)

Umi (x⊥) = V m(x⊥)V m(x⊥ + î), i = x, y, (6.6c)

where the colour sources ρam are sampled from equation (6.5). The shorthand notation
Umi (x⊥) means that Umi (x) is kept constant along the z-direction. Equation (6.6a) is
the Poisson equation with the lattice Laplacian in the transverse plane

∆LΛ(x⊥) =
∑
i=x,y

(
Λ(x⊥ + î)− 2Λ(x⊥) + Λ(x⊥ − î)

)
. (6.7)

We discuss its numeric solution in appendix E.1. Fukushima suggests [60] a momentum
cuto� of 3.4GeV to be introduced, since the initial energy density is ultraviolet divergent.
Because of that, we drop modes with k⊥ > 3.4GeV when solving the Poisson equation.
In the non-expanding case the transverse links are constructed from

Ui(x⊥) =
(
U

(1)
i (x⊥) + U

(2)
i (x⊥)

)(
U

(1)†
i (x⊥) + U

(2)†
i (x⊥)

)−1
, i = x, y, (6.8)

where we project the result back to the group SU(3). A summation over i is not implied.
The longitudinal link is given by

Uz(x) = 13×3 (6.9)

and the longitudinal chromo-electric �eld by

Eaz (x⊥) = − i

4

∑
i=x,y

Re Tr

{
T a
(

(Ui(x⊥)− 13×3)
(
U

(1)†
i (x⊥) + U

(2)†
i (x⊥)

)
+
(
U †i (x⊥ − î)− 13×3

)
×
(
U

(2)†
i (x⊥ − î)− U (1)†

i (x⊥ − î)
)
− (h.c.)

)}
. (6.10)

The transverse chromo-electric �elds are

Eai (x) = 0, i = x, y. (6.11)

More realistic initial conditions for a heavy ion collision are obtained by adding �uc-
tuations to the recently de�ned background [54, 55, 60]. This corresponds to violating
boost invariance of an expanding medium as well as smearing the colour sources (6.5)
in x±-direction instead of using the idealised δ-distributions. The �uctuations δEi are
added on top of the background initial conditions for the chromo-electric �eld

Ei(x)→ Ei(x) + δEi(x). (6.12)
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6 Isotropisation of the quark-gluon plasma via the chromo-Weibel instability

The transverse �elds, i = x, y, are constructed by

δEai (x) = (f(z)− f(z − ẑ)) ξai (x⊥), (6.13a)〈
ξai (x⊥)ξbj(y⊥)

〉
= δabδijδ(x⊥ − y⊥), (6.13b)

f(z) = ∆ cos

(
2πz

Nz

)
, (6.13c)

where the seed ∆ controls the magnitude of the �uctuations. Although it is in principle
determined by the colour glass condensate initial conditions, there is no theoretical
prediction for its value. We will vary it in our simulations. The longitudinal component
is created so that it ful�ls Gauss law (5.42d) without fermions

δEz(x) = −f(z)
∑
i=x,y

(
ξi(x⊥)− U †i (x⊥ − î)ξi(x⊥ − î)Ui(x⊥ − î)

)
. (6.14)

In contrast to the bosonic initialisation in thermal equilibrium, see section 5.4.1, we do
not need to apply an algorithm enforcing Gauss law, since it is ful�lled by construction
and continues to be so due to its conservation.
The presented initial conditions are anisotropic and as we see in section 6.3 lead to

formation of a chromo-Weibel instability in our classical real time approach.

6.2.2 Parameters and setting the scale

For real time simulations in non-equilibrium, the scale of the system is set by the initial
conditions. Regarding our initial conditions from section 6.2.1 the only dimensional scale
introduced is g2µ, where one assumes for simulations of collisions at RHIC [56,224]

g2µ = g2µ
L

a⊥
≈ 2GeV (6.15)

with g = 2 and the dimensionless quantity µL ≡ a⊥µ. Additionally, the lattice size
should correspond to the radius RA = 1.2A1/3 fm ≈ 7 fm of an Au atom with atomic
number A = 197, πR2

A = N2
⊥a

2
⊥. Combining both scales gives

g2µLN⊥ = 120. (6.16)

In our lattice simulations we set the spatial lattice extents N⊥ and Nz �rst. Then we
use equation (6.16) to determine the value of g2µL = 120

N⊥
. The transverse lattice spacing

follows from equation (6.15)

a⊥ =
g2µL

2GeV
, (6.17)

where the conversion from energy to length can be performed according to appendix
A.1. Following the literature we specify the time in units of g2µ. Since we simulate in
a static box, our lattice is isotropic in spatial directions, implying a⊥ = az.
Further parameters entering our simulations are the anisotropy ξ relating temporal

and spatial lattice spacings, the longitudinal lattice extent Nz and the magnitude of
�uctuations ∆. Ful�lling the Courant condition (5.43) we choose the anisotropy to be
ξ = 20. We show in appendix E.2 that our results are independent of variations of this
parameter. We choose the longitudinal lattice extent larger than the spatial one in order
to accommodate as many longitudinal momenta as possible.
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6.2 Real time simulations on the lattice

6.2.3 Observables

In this section we introduce observables in order to investigate the isotropisation of the
quark-gluon plasma as well as the appearance of a chromo-Weibel instability. There-
fore it is favourable to obtain separate information on the longitudinal and transverse
directions. In analogy to (5.40) we introduce the chromo-electric and chromo-magnetic
energies

HE
i (t,x) =

β

2Nc
Re Tr (Ei(x)Ei(x)) , (6.18a)

HB
i (t,x) = β

∑
j<k
j,k 6=i

{
1− 1

Nc
Re Tr (Ujk(x))

}
, (6.18b)

which de�ne the transverse and longitudinal energy densities regarding the chromo-
electric �eld

εE⊥(t) =
1

N2
⊥Nz

∑
x

∑
i=x,y

HE
i (x), (6.19a)

εEz(t) =
1

N2
⊥Nz

∑
x

HE
z (x) (6.19b)

and the chromo-magnetic �eld

εB⊥(t) =
1

N2
⊥Nz

∑
x

∑
i=x,y

HB
i (x), (6.20a)

εBz(t) =
1

N2
⊥Nz

∑
x

HB
z (x). (6.20b)

The composite energies are obtained from

εE(t) = εE⊥(t) + εEz(t), (6.21a)

εB(t) = εB⊥(t) + εBz(t), (6.21b)

εtot(t) = εE(t) + εB(t). (6.21c)

From the spatial diagonal elements of the energy-momentum tensor Tii we �nd the
transverse and longitudinal pressure [55]

PT(x) = −1

2

(
T xx (x) + T yy (x)

)
, (6.22a)

PL(x) = −T zz (x). (6.22b)

Their ratio PL
PT

is a measure for the system's isotropisation. Since we only consider
an anisotropic distribution of the bosonic degrees of freedom, see section 6.2.1, we do
not include the fermionic contribution to the pressure. Employing explicitly the energy-
momentum tensor of Yang-Mills theory (4.24) we �nd for the transverse and longitudinal
pressure in the continuum

PT(t) = εEz(t) + εBz(t), (6.23a)

PL(t) = εE⊥(t)− εEz(t) + εB⊥(t)− εBz(t). (6.23b)
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6 Isotropisation of the quark-gluon plasma via the chromo-Weibel instability

Their discretisation follows from the lattice versions (6.19) and (6.20) of the energy
densities.
An e�ect of the chromo-Weibel instability is a population of higher momentum modes,

which can be investigated by computing the spectral decomposition of the chromo-
electric �eld. Due to the instability being connected to a rapid growth of modes in
longitudinal direction, one computes the spectrum as a function of the longitudinal
momentum kz, while the other momentum modes kx and ky are averaged. The usual
approach to de�ning the spectrum is based on the Fourier transform of the chromo-
electric �eld

Ei(t,k) =
∑
x

e−ikxEi(x) (6.24)

and reads

Σ(t, kz) =
β

2NcN2
⊥

∑
kx,ky

∑
i

Re Tr
(
Ei(t,k)E†i (t,k)

)
. (6.25)

This de�nition does not constitute a gauge invariant quantity and one has to �x the
gauge, e.g. by applying Coulomb gauge (5.41). The gauge �xing routine is numerically
expensive, especially in the case of SU(3). Furthermore the choice of gauge is arbitrary
restricting the signi�cance of the observables. Because of that we give an alternative
de�nition for the spectral decomposition, which is gauge invariant. It is based on the
Fourier transform of the energy

HE(t,k) =
∑
x

e−ikx
∑
i

HE
i (x) (6.26)

and is given by

ΣH(t, kz) =
1

N2
⊥

∑
kx,ky

∣∣HE(t,k)
∣∣ . (6.27)

We investigate both approaches in section 6.3.1. Since the connection between the
links and the chromo-magnetic �elds B is non-trivial [56], especially for SU(3), we only
consider the spectral decomposition of chromo-electric �elds.

6.3 Classical SU(3) Yang-Mills theory

We investigate the evolution of observables de�ned in the previous section in the frame-
work of classical SU(3) Yang-Mills theory on the lattice. From a physical point of view
one expects simulations of the non-equilibrium stage to be highly sensitive to the cho-
sen initial conditions. We use initial conditions inspired by the colour glass condensate
e�ective theory. We compute all observables by a Monte Carlo sampling according to
(3.23) with an ensemble size of Nens con�gurations. Since all statistical errors are below
1 %, we do not show any error bars in our plots.
We investigate our gauge invariant implementation of the spectral decomposition in

section 6.3.1. Section 6.3.2 deals with observables indicating the process of isotropisation
and section 6.3.3 with the emergence of a chromo-Weibel instability.
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6.3 Classical SU(3) Yang-Mills theory

g2µL N⊥ Nz ξ ∆ Nens Ntime

3.75 32 96 20 0.4 5 8000

Table 6.1: Simulation parameters for the investigation of the gauge invariant and gauge de-
pendent spectral decomposition.

6.3.1 Gauge invariant and gauge dependent spectral decomposition

In section 6.2.3 we proposed two approaches to compute the spectral decomposition of
the chromo-electric �eld. Whereas the �rst one (6.25) is based on the product of chromo-
electric �elds in momentum space Ei(t, kz)E

†
i (t, kz), the second one (6.27) is based on

the chromo-electric energy (6.18a) in momentum space. Thus the latter one constitutes
a gauge invariant object. In the following we investigate their di�erences by simulations
with parameters given in table 6.1. Concerning the gauge dependent observable (6.25)
we �x the gauge to Coulomb gauge by the algorithm explained in section 5.3.2.

The spectral decomposition for both observables is shown in �gure 6.5. We give
a physical interpretation of the results in section 6.3.3. Focusing on the di�erences
between the two observables, we note that concerning the observable Σ(t, kz) the hard
momentum modes are populated more quickly than ΣH(t, kz). This can be explained by
the additional peak in the ultraviolet region of Σ(t, kz) at initial time. It is an artefact
of the gauge �xing procedure. Another di�erence is that at initial time, ΣH(t, kz) has
three soft occupied modes aσkz = 0, 1, 2, whereas Σ(t, kz) only has two, aσkz = 0, 1.

All in all, the two approaches give similar results. For all further investigations in
this chapter, we choose the gauge invariant observable ΣH . It does not necessitate
gauge �xing, which consumes a large amount of computation time as shown in �gure
5.6 for the Coulomb gauge �xing procedure given in section 5.3.2. Furthermore gauge
invariant observables give a cleaner physical interpretation, since they do not include
any ambiguities such as the choice of gauge or Gribov copies, see section 5.2.4.

6.3.2 Isotropisation

In order to learn something about the isotropisation of the created medium we study
the time evolution of the energy densities (6.21) as well as transverse and longitudinal
pressures (6.23). We initialise the chromo-electric and chromo-magnetic �elds according
to the colour glass condensate inspired initial conditions presented in section 6.2.1. In
the following we discuss the results of the simulation with parameters given in table 6.2.

Figure 6.6 shows the results for the energy densities. At initial time the chromo-
electric energy density dominates. Over time energy is transferred from the chromo-
electric �eld to the chromo-magnetic one until both carry the same amount of energy at
approximately aτ∆t ≈ 700. The total energy density mildly �uctuates until a balance
is reached. The total energy of the system is conserved as should be the case in a �nite
box.

The longitudinal and transverse pressure and their ratio are plotted in �gure 6.7. The
upper plot shows the two pressure components separately. As discussed in section 6.1.1
the state immediately after the collision can be described as a colour glass condensate.
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6 Isotropisation of the quark-gluon plasma via the chromo-Weibel instability
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Figure 6.5: Spectral decomposition of the chromo-electric �eld at di�erent times. The lower
plot shows the gauge invariant de�nition (6.27), whereas the upper plot shows the gauge de-
pendent one (6.25). Simulation parameters are given in table 6.1.

g2µL N⊥ Nz ξ ∆ Nens Ntime

3.0 40 126 20 0.4 15 8000

Table 6.2: Simulation parameters for our run with the largest lattice extents.

The corresponding energy-momentum tensor to leading order is given by [208]

TµνCGC,LO = diag (ε, ε, ε,−ε) , (6.28)

which indicates a longitudinal pressure opposite to the transverse one, PL = −PT. The
negative pressure re�ects the force between the two colliding nuclei. Our simulation ex-
actly reproduces this initial condition. Due to exchange of energy between the longitu-
dinal and transverse �eld components the corresponding pressures approach each other.
When PL = PT, the system is completely isotropised. However, studies in viscous rel-
ativistic hydrodynamics [30,120,225�230] and AdS/CFT correspondence [204,231,232]
suggest that hydrodynamic models are already applicable at a pressure ratio of PL

PT
≈ 0.7.

Therefore in the following we describe the system as isotropised with a pressure ratio of
PL
PT
≈ 0.7 and call the time it takes, isotropisation time tiso. We plot the ratio PL

PT
ob-

tained from our simulation in the lower part of �gure 6.7. The peak at time g2µt ≈ 2.3 is
followed by an oscillating phase until the system isotropises. The oscillating behaviour
of the pressure originates from turbulent pattern formation and di�usion [60]. Note that
the oscillating pressure corresponds to a fast time component in the equation of state
and thus does not allow an application of hydrodynamics. An anisotropy of PL

PT
≈ 0.7
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6.3 Classical SU(3) Yang-Mills theory
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Figure 6.6: Energy densities of the bosonic �elds from the run with parameters given in table
6.2. Chromo-electric and chromo-magnetic �elds exchange energy until the system is in balance.
The total energy density is conserved up to small �uctuations.
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Figure 6.7: Longitudinal PL and transverse pressure PT versus time from the simulation with
parameters given in table 6.2. The lower plot shows the ratio of both pressures. We say that
isotropisation is reached, when the ratio takes a value PL

PT
≈ 0.7, which is indicated by the grey

line. Its intersection with the curve is enlarged in the embedded plot.
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6 Isotropisation of the quark-gluon plasma via the chromo-Weibel instability

is reached at time step g2µt ≈ 580.8. Following section 6.2.2 this corresponds to an
isotropisation time of tiso ≈ 57 fm, which is larger than the prediction of hydrodynam-
ics, tiso ≈ 1 fm. We reach a smaller isotropisation time by increasing the seed ∆.
We investigate the dependence on the �uctuation seed ∆ by means of the ratio of

longitudinal over transverse pressure. We present selected results of simulations with
parameters given in table 6.3 in �gure 6.8. To guide the eye we draw a straight line
at PL

PT
= 0.7 indicating isotropisation. Within the investigated range, all seeds give

the same overall behaviour of PL
PT

. Due to the initial conditions the ratio starts from
PL
PT

= −1 and isotropises at some point. In between, the curve has one dominant peak

at g2µt ≈ 3 and oscillatory behaviour afterwards. The amplitude of the peak takes its
maximum value for ∆ = 0.3 and decreases for higher or lower seeds. Increasing the seed
the oscillation decreases and the system isotropises faster until the seed is ∆ > 1, when
the isotropisation time grows again. Using the seed ∆ = 1.5 the initial peak is almost
gone, and no oscillation occurs. Since the seed determines the initial energy density of
the �uctuations, the �uctuations exceed the background and the initial condition does
not re�ect the correct colour glass condensate initial state anymore. The isotropisation
times are listed in table 6.4.
An isotropisation time of tiso ≈ 9.3 fm for ∆ = 0.7 is comparable to the prediction of

Fukushima tiso ≈ 8 fm [60] employing same initial conditions but simulating with colour
symmetry SU(2). However, his results are computed with a seed of ∆ = 0.2. Thus our
SU(3) simulation requires a larger seed to achieve isotropy in a similar time. The overall
dynamics of the pressure ratio show close resemblance to our results.
As we check in appendix E.2 discretisation artefacts caused by the �nite volume or

time discretisation do not have an e�ect on our simulations. However, when it comes
to the spectral decomposition of the �elds, which we discuss in the next section, it is
favourable to have larger lattices accommodating more momenta.

6.3.3 Emergence of a chromo-Weibel instability

The growth of the ratio of longitudinal over transverse pressure towards isotropy is
caused by a chromo-Weibel instability. In this section we show evidence that the �elds
exhibit such an instability.
As discussed in section 6.1.2 a requirement for the chromo-Weibel instability is a

�uctuating current, which is incorporated in our anisotropic initial conditions. Figure
6.9 shows the ratio of longitudinal over transverse pressure for a small seed ∆ = 0.05
compared to a vanishing seed ∆ = 0 which excludes �uctuations altogether. Without
�uctuations no instability sets in and the longitudinal pressure approaches zero after
the oscillatory phase.
A further e�ect of the chromo-Weibel instability is that harder modes get populated

during evolution in time. We show the gauge invariant spectral decomposition of the
chromo-electric energy density (6.27) in �gure 6.10 at di�erent times. Starting from
soft modes aσkz = 0, 1 the population of higher modes during the evolution is clearly
recognisable.
Plotting the chromo-electric and chromo-magnetic energies (6.18a and 6.18b) in po-

sition space, we can even see the �laments created by the chromo-Weibel instability.
Figures 6.11, 6.12 and 6.13 show the evolution of the energy of the �eld components
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6.3 Classical SU(3) Yang-Mills theory

Run g2µL N⊥ Nz ξ ∆ Nens Ntime

i 3.75 32 96 20 0.05, 0.1 30 20000
ii 3.75 32 96 20 0.2, 0.3 30 12000
iii 3.75 32 96 20 0.4 30 8000
iv 3.75 32 96 20 0.5, 0.7, 0.8, 0.9, 1.0, 1.5 30 6000

Table 6.3: Simulation parameters used when studying dependence on the �uctuation seed ∆.
Since the value of ∆ in�uences the isotropisation time, we adapt the number of time steps.
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Figure 6.8: Ratio of longitudinal over transverse pressure at di�erent �uctuation seeds ∆ from
selected runs of table 6.3. The grey line indicates a ratio of PL

PT
= 0.7. Its intersection with the

curves is enlarged in the embedded plots.

∆ 0.3 0.4 0.5 0.7 0.8 0.9 1.0 1.5

tiso [fm] 202.3 72.1 31.5 9.3 6.1 3.8 2.7 5.8

Table 6.4: Isotropisation time from ratio of longitudinal over transverse pressure of PL

PT
≈ 0.7

for di�erent �uctuation seeds ∆. With values ∆ ∈ {0.05, 0.1, 0.2}, no isotropisation was reached
within the limited simulation time.
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Figure 6.9: Ratio of longitudinal over transverse pressure for vanishing and small seed ∆. The
other simulation parameters are given as (i) in table 6.3.
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Figure 6.10: Population of momentum modes during evolution in time indicated by the gauge
invariant spectral decomposition of the chromo-electric energy density. Every tick on the x-axis
corresponds to one momentum mode.
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6.4 Semi-classical QCD
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Figure 6.11: Energy of the �eld component Ex in the yz-plane at di�erent times. The vertical
axis denotes the z-direction.

Ex(x), By(x) and Ez(x), respectively. We illustrate the amplitude of the energy in a
plane transverse to the direction of the �eld component, e.g. in �gure 6.11 we plot Ex(x)
in the yz-plane. We average over the remaining direction.
The �uctuating current (6.3) causing the chromo-Weibel instability is given by im-

posing �uctuations (6.13c) on our initial conditions. The current creates �laments in
the xz and the yz-plane, which dissolve in time. No �laments arise in the xy-plane as
shown in �gure 6.13.

6.4 Semi-classical QCD

Finally, we investigate the e�ect of fermions on the isotropisation process. We initialise
the bosonic �elds according to the colour glass condensate inspired initial conditions
given in section 6.2.1 as we have done in the last section. We then add vacuum fermions
initialised by equation (5.25) to the dynamics, and solve the full set of equations of
motion (5.42). Since the colour charge of vacuum fermions does not a�ect the colour
�elds at the initial time, we correct the fermionic current in Gauss law (5.42d) by a
vacuum subtraction analogous to the energy density (5.62). Thus Gauss law is ful�lled
at initial time. During the evolution it is only violated by numeric rounding errors,
which are much smaller than the statistic errors.
The simulation parameters are given in table 6.5. For comparison we perform pure

bosonic SU(3) simulations based on the same parameters. Investigating a system far
from equilibrium, our simulations do not include a non-physical thermalisation phase.
Because of that, the heavy �uctuations encountered by including a Wilson term, see for
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Figure 6.12: Energy of the �eld component By in the xz-plane at di�erent times. The vertical
axis denotes the z-direction. The pattern at time aτ∆t = 0 originates from the initial conditions.
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Figure 6.13: Energy of the �eld component Ez in the xy-plane in the upper plots and of the
�eld component Bz in the xy-plane in the lower plots. The vertical axis denotes the y-direction.
No �laments arise during the whole evolution.
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6.5 Future research perspectives

g2µL N⊥ Nz ξ ∆ Nens Ntime Ne aσm aσT r

3.75 32 96 20 0.7 5 8000 50 0 0 0

Table 6.5: Simulation parameters for a run including fermions. As a comparison we use the
same parameters in a pure bosonic SU(3) simulation (Ne = 0).

instance �gure 5.18, present a severe problem, which we avoid by temporarily neglecting
the Wilson term. Analogous to the other sections we omit error bars below 1 % in the
plots.
We show results for the evolution of the energy densities in �gure 6.14. The upper

plot illustrates the evolution in the pure bosonic case, whereas the lower plot includes
fermions. The oscillating behaviour of the chromo-electric and chromo-magnetic �elds
is similar in both cases. However, in the full system, energy is successively transferred
from the bosonic �elds to the fermions. While the bosonic �elds are strongly oscillating,
0.5 . g2µt . 6, only a small amount of energy is shifted. At later times the oscillation
amplitude becomes smaller and the energy transfer increases. The fermionic energy
density saturates at g2µt ≈ 300, when almost the entire bosonic energy has been shifted
to the fermions. Using a logarithmic abscissa gives the impression that the fermionic
energy density is negative during the �rst time steps. Indeed it is only negative at one
time step (∆t = 1), which is a consequence of the numeric implementation and should
be avoidable by using a smaller temporal lattice spacing.
Next we compute the isotropisation time for a system including fermions. We plot the

pressure ratio PL
PT

in �gure 6.15 and compare it to the corresponding pure bosonic run.
We �nd that the initial peak has a larger amplitude and occurs earlier in time. Further-
more the subsequent oscillations have a larger frequency, which is directly connected
to the additional oscillations in the energy densities, see �gure 6.14. A comparison be-
tween the isotropisation times in the pure bosonic system, tiso ≈ 9.3 fm, and the system
including fermions, tiso ≈ 13.2 fm, shows that the composite system isotropises slower.
Last but not least, we compare the spectral decomposition of the chromo-electric

energy density from an evolution including fermions with a pure bosonic evolution in
�gure 6.16. The agreement of the initial modes shows that our inclusion of fermions
does not modify the anisotropic initial conditions. However, we �nd a rapid occupation
of the full spectrum in the case including fermions. The spectrum is already �lled up
after a time g2µt = 4, whereas it takes a time g2µt = 112 in the pure bosonic case. Due
to the energy shift from bosons to fermions in the fermionic system, the �nal spectral
amplitude is smaller.

6.5 Future research perspectives

First of all, the heavy �uctuations in the fermionic energy density caused by the Wilson
term have to be removed. Reducing the temporal lattice spacing could solve the prob-
lem. However, being interested in the dynamics' late time behaviour, simulations get
numerically costly with a smaller temporal lattice spacing. Use of an adaptive step size
method [149] avoids this problem.
The next important step is to account for the mainly longitudinal expansion of the
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Figure 6.14: Evolution of the energy density for systems including bosons and fermions (lower
plot) as well as only bosons (above) from simulations with parameters given in table 6.5.
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Figure 6.15: Evolution of the ratio of longitudinal over transverse pressure indicating isotropi-
sation of the systems. The inlet enlarges the region, where isotropisation is reached. Simulation
parameters according to table 6.5.
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Figure 6.16: Evolution of the spectral decomposition of the chromo-electric energy density
with fermions (lower plot) and without fermions (upper plot). Simulation parameters according
to table 6.5.

medium produced in a heavy ion collision. Furthermore, including additional observ-
ables like a pseudo occupation number for fermions [233] will give an improved un-
derstanding of the ongoing physics. During our work, new colour glass condensate
inspired initial conditions were been developed by Gelis and Epelbaum [234], which
when implemented in pure SU(2) simulations gave an isotropisation time comparable
to hydrodynamic results [58]. The question arises, if the isotropisation time remains
competitive with hydrodynamics, when the correct gauge group of QCD is used.
A more theoretical consideration is the study of Gribov copies. Although a gauge

�xed spectral decomposition of �elds is frequently used in the study of thermalisation
processes, so far the e�ect of Gribov copies has never been studied. Having implemented
a gauge �xing routine on the lattice Gribov copies can easily be produced by the mother
and daughter method [181].
Besides isotropisation of the quark-gluon plasma, one could study the e�ect of fer-

mions on other processes regarding thermalisation such as turbulences and cascades [207,
235�237], emergence of an attractor [57, 238] or Bose-Einstein condensation [239, 240].
The in�uence of magnetic and electric �elds on the fermions or the inclusion of a �nite
chemical potential are further studies within the semi-classical model of QCD with
respect to the quark-gluon plasma.

6.6 Conclusions

In this chapter we investigated the isotropisation of the quark-gluon plasma produced in
a heavy ion collision via a chromo-Weibel instability. We treated the emerging far from
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6 Isotropisation of the quark-gluon plasma via the chromo-Weibel instability

equilibrium dynamics in a semi-classical approach to QCD on the lattice. The required
initial conditions were borrowed from colour glass condensate e�ective theory.
Based on these initial conditions we have performed the �rst bosonic SU(3) simula-

tions. In agreement with other studies of classical dynamics [53, 159], we have found
that choosing a di�erent gauge group does not change the overall dynamics, but it has
an e�ect on precise numbers. In order to achieve an isotropisation time comparable
with results from equivalent SU(2) simulations we had to increase the �uctuation seed
from ∆ = 0.2 to ∆ = 0.7.
We also found evidence for the emergence of a chromo-Weibel instability using the

colour group SU(3). For that we employed a new observable, the energy density mapped
to two-dimensional position space, which displayed the �laments created by the insta-
bility. Furthermore we developed a new approach to the spectral decomposition of the
chromo-electric �eld, which in contrast to older observables constitutes a gauge invariant
quantity. It excludes ambiguities concerning the gauge freedom and is free of Gribov
copies. Additionally, it reduces the numeric e�ort drastically, since no numerically ex-
pensive gauge �xing routine is required.
For the very �rst time we investigated the e�ect of fermions on the isotropisation

process by employing the semi-classical approach to QCD established in chapter 5. We
observed a transfer of energy from the bosons to the fermions, which can be interpreted
as fermion production from highly populated bosonic �elds as found in a 2PI (two
particle irreducible) approach [241]. Furthermore the interaction of the bosonic �elds
with the fermions in�uences the isotropisation time. Compared to a pure bosonic run
we have found an increase of the isotropisation time from tiso ≈ 9.3 fm to tiso ≈ 13.2 fm.
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7 Summarising conclusions

In this thesis we studied real time quantities and processes of the quark-gluon plasma.
We employed the fundamental theory of QCD allowing for predictions from �rst princi-
ples. Treating QCD on the lattice enabled us to access non-perturbative regimes and for
the very �rst time we computed a hydrodynamic transport coe�cient without having
to resort to maximum entropy methods or functional input. Furthermore we estab-
lished a semi-classical formulation of QCD that we applied to investigate the e�ects of
dynamic fermions as well as of using the correct colour group of QCD, SU(3), on the
isotropisation process of the quark-gluon plasma.
In this work we have calculated the second order hydrodynamic transport coe�cient

κ for the Yang-Mills plasma using lattice perturbation theory and Monte Carlo simu-
lations. From calculations both in strong and weak coupling limits, we expect a tem-
perature dependence of κ ∼ T 2. In the investigated temperature range 2Tc < T < 10Tc

our data is consistent with this expectation. Our quantitative result for the transport
coe�cient is κ = 0.36(15)T 2. Within the error bars, it agrees with predictions from
AdS/CFT correspondence rescaled to the �eld content of Yang-Mills theory as well as
leading order perturbation theory.
An investigation of the isotropisation process via a chromo-Weibel instability is im-

peded by the fact that the pre-equilibrium phase in a heavy ion collision constitutes a
system far from equilibrium. Furthermore isotropisation is a dynamic process and its
investigation requires a treatment in real time. For this reason we established a semi-
classical lattice approach to QCD facilitating a �rst principle description of real time
processes far from equilibrium.
In the investigation of the isotropisation process in heavy ion collisions, we borrowed

initial conditions from the colour glass condensate e�ective theory. Studying the pure
bosonic dynamics with colour group SU(3) in a static box, we found evidence for the
emergence of a chromo-Weibel instability. We used a new gauge invariant approach
to the spectral decomposition of the chromo-electric �eld, avoiding numerically costly
gauge �xing routines. As for isotropisation, we observed similar overall dynamics, when
compared to equivalent SU(2) studies. However, computing the isotropisation time we
have found a signi�cant di�erence. This suggests that the di�erence between di�erent
colour groups is not negligible when it comes to precise numbers.
For the very �rst time we investigated quantitatively the e�ect of fermions on the

isotropisation process using a semi-classical approach to QCD. The observed energy
transfer from bosons to fermions can be interpreted as fermion production from highly
populated bosonic �elds. In comparison to the pure bosonic study, the inclusion of
fermions increased the isotropisation from 9.3 fm to 13.2 fm using a �uctuation seed of
∆ = 0.7. This �rst study suggests that the inclusion of fermions has a non-negligible
e�ect on the isotropisation process.
Overall, in this thesis we provide extensive studies on real time observables of the

quark-gluon plasma. Based on a computation of the transport coe�cient κ as well as
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7 Summarising conclusions

an investigation of isotropisation processes, we demonstrated that selected real time
observables relevant in heavy ion collisions are accessible by lattice QCD and thus from
�rst principles. This is particular important to give reliable predictions regarding the
study of heavy ion collisions at RHIC, LHC and FAIR.
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A Conventions

A.1 System of units

Throughout the whole thesis we work in natural units with ~ = c = kB = 1. Thus all
units are given by some power of energy. The conversion to the International System of
Units is performed by the constants from [2]

~ = 1.054571726(47) · 10−34 J s , (A.1)

c = 299792458ms−1 , (A.2)

kB = 8.6173324(78) · 10−5 eVK−1 . (A.3)

Lattice spacings di�er from this rule and are given in units of length, 'fm'. The conver-
sion from energy to length and vice versa can be performed with

~c = 1 = 197.3269718(44)MeV fm . (A.4)

A.2 Notation for relativity

A.2.1 Minkowski space time

In Minkowski space time we use the metric tensor

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (A.5)

with Greek indices running over µ = 0, 1, 2, 3 and Roman indices denoting only spatial
components i = 1, 2, 3. Three-vectors are denoted by boldface type. The contravariant
and covariant displacement vectors read xµ =

(
x0,x

)
and xµ =

(
x0,−x

)
, respectively.

Note that the derivative operator is 'naturally lowered' ∂µ = ∂
∂xµ =

(
∂
∂x0

,∇
)
.

A.2.2 Light-cone coordinates

Describing an ultra-relativistic heavy ion collision using light-cone coordinates is highly
favourable. In light-cone coordinates the two coordinates

x± ≡ t± z√
2

(A.6)

are null coordinates and all other coordinates x⊥ are spatial. The light-cone is de�ned by
x± = 0. In ultra-relativistic heavy ion collisions the nuclei travel close to the light-cone
and collide at x+ = x− = 0.
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A Conventions

A.2.3 Euclidean space time

By a Wick rotation from real to imaginary time t→ iτ we change from Minkowski space
time to Euclidean space time, where the metric tensor reads

δµν =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (A.7)

To distinguish between both notations the Euclidean time component is labelled τ or
x4. Contravariant and covariant vectors are treated equally and the displacement vector
reads xµ = xµ = (x, x4).

A.3 Representations of SU(2) and SU(3) generators

As a representation for the generators of the group SU(2) we choose the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.8)

One representation for the generators of the group SU(3) are the Gell-Mann matrices

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
1 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ7 =
1√
3

1 0 0
0 1 0
0 0 −2

 (A.9)

with the generators given by

T a =
1

2
λa. (A.10)

A.4 Dirac matrices

Imposing the anticommutation relation in Minkowski space time

{γµ, γν} = 2gµν × 14×4 , (A.11)

the four Dirac matrices or γ-matrices generate a matrix representation of the Cli�ord
Algebra. The Minkowski metric gµν is given by (A.5) and 1n×n denotes the n × n
identity matrix. Throughout this thesis we work with the Dirac representation for the
Dirac matrices, i.e.

γ0 =

(
12×2 0

0 −12×2

)
, γi =

(
0 σi
−σi 0

)
, (A.12)

where the σi are the Pauli matrices (A.8).
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A.5 Fourier transforms and distributions

A.5 Fourier transforms and distributions

A.5.1 Heavyside step function and Kronecker delta

The Heavyside step function is given by

θ(x) =

{
0 for x < 0

1 for x ≥ 0
. (A.13)

The Kronecker delta is de�ned as

δij =

{
0 for i 6= j

1 for i = j
. (A.14)

A.5.2 Fourier transforms in Minkowski space time

The Fourier transforms in Minkowski space time read

f(q) =

∫
d4x e−iqxf(x) , (A.15a)

f(x) =

∫
d4q

(2π)4
eiqxf(q) . (A.15b)

The δ-distribution is de�ned by

δ(x− y) =

∫
d4q

(2π)4
eiq(x−y) . (A.16)

A.5.3 Fourier transforms in Euclidean space time

The Fourier transforms in continuous Euclidean space time at �nite temperature read

f(q) =

∫ 1/T

0
dτ

∫
d3x e−iqxf(x) , (A.17a)

f(x) = T
∞∑

ωn=−∞

∫
d3q

(2π)3
eiqxf(q) , (A.17b)

whereas on the lattice they are

f(q) =
∑
x

e−iqxf(x) , (A.18a)

f(x) =
1

V

∑
q

eiqxf(q) , (A.18b)

with the lattice volume V =
∏
µ aµNµ = T−1

∏
i aiNi.
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B Calculations regarding the transport

coe�cient κ

B.1 Hypercubic symmetry of the energy-momentum tensor

The correlator 〈Txy(x)Txy(y)〉 ≡ 〈T12(x)T12(y)〉 can be expressed in terms of diagonal
energy-momentum tensor elements by exploiting rotation invariance

〈T ′12(x)T ′12(y)〉 = 〈T12(x)T12(y)〉 , (B.1)

on a spatially isotropic lattice (and medium) under rotations by α = π
4 about the

z-direction. The transformation of a second rank tensor reads

T ′µν(x) =
(
M−1
z

)
µα

(
M−1
z

)
νβ
Tαβ(x), (B.2)

and the corresponding transformation matrix is given by

M−1
z =


1 0 0 0
0 cosα sinα 0
0 − sinα cosα 0
0 0 0 1

 =
1√
2


√

2 0 0 0
0 1 1 0
0 −1 1 0

0 0 0
√

2

 . (B.3)

For the energy-momentum tensor components of interest, this means

T ′12(x) =
1

2
(T22 − T11) , (B.4)

where we use T12 = T21. With the de�nition of the energy-momentum tensor (4.23) we
�nd for the correlator

T ′12(x)T ′12(y) =
1

4
(T22(x)T22(y)− T22(x)T11(y)− T11(x)T22(y) + T11(x)T11(y))

=
1

4
(θ22(x)θ22(y) + θ11(x)θ11(y)− θ22(x)θ11(y)− θ11(x)θ22(y)) . (B.5)

Note that the trace anomaly θ cancels completely. From rotation invariance follows

〈θ22(x)θ11(y)〉 = 〈θ11(x)θ22(y)〉 , 〈θ11(x)θ11(y)〉 = 〈θ22(x)θ22(y)〉 , (B.6)

and the correlator expressed in diagonal elements reads

〈T12(x)T12(y)〉 =
1

2
(〈θ11(x)θ11(y)〉 − 〈θ11(x)θ22(y)〉) . (B.7)

115



B Calculations regarding the transport coe�cient κ

B.2 Results for �nite Matsubara sums

Exemplary, we present the computation of the �nite Matsubara sum

1

Nτ

Nτ∑
n=1

1

k̃2
(B.8)

in more detail. Introducing the following de�nition for spatial momenta

4

a2
τ

ω2 ≡ k̃2
i , (B.9)

and inserting the de�nition of lattice momenta (3.20) for k0 results in

1

Nτ

Nτ∑
n=1

1

k̃2
=

1

Nτ

Nτ∑
n=1

−a2
σ

eik0aτ − 2 + e−ik0aτ − 4ω2
. (B.10)

By introducing the function g(z)

1

z
g(z) ≡ 1

z2 − 2z − 4ω2z + 1
, z ≡ eik0aτ , (B.11)

we can solve the �nite Matsubara sum by applying the formula [140]

1

Nτ

Nτ∑
n=1

g(z) = −
∑
i

Resz̄i
(

1
zg(z)

)
z̄Nτi − 1

. (B.12)

We compute the residua by identifying the poles of g(z)z as

z1 = 1 + 2ω2 + 2ω
√
ω2 + 1, (B.13a)

z2 = 1 + 2ω2 − 2ω
√
ω2 + 1, (B.13b)

which can be simpli�ed to

z1 = eaσE1 , z2 = e−aσE1 , (B.14)

by using

ω2 =
a2
τ

4
k̃2
i = sinh2

(
aσE1

2

)
(B.15)

with E1 to be determined later. Then the �nite Matsubara sum reads

1

Nτ

Nτ∑
n=1

1

k̃2
=

a2
τ

2 sinh(aσE1)

(
1 +

2

eaσNτE1 − 1

)
. (B.16)

Using the de�nition of lattice momenta (3.20) we determine E1 from the equation

ω2 = ξ−2
∑
i

sin2

(
aσki

2

)
= sinh2

(
aσE1

2

)
. (B.17)
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B.2 Results for �nite Matsubara sums

Lattice perturbation theory operates at small lattice spacings. A Taylor expansion of
(B.17) in lattice spacings gives

ξ−2
∑
i

k2
i − ξ−2a

2
σ

12

∑
i

k4
i +O(a4

σ) = E2
1 +

a2
σ

12
E4

1 +O(a4
σ). (B.18)

Making an ansatz

E1 = E(0) − a2
σE

(2) +O(a4
σ), (B.19)

we can solve the de�ning equation (B.18) and �nd

E1(ki) ≡ ξ−1|ki | −
a2
σ

24|ki |

(
ξ−1

∑
i

k4
i + ξ−3|ki |4

)
+O(a4

σ). (B.20)

In the following we de�ne

E1 ≡ E(ki), (B.21a)

E2 ≡ E(ki + qi). (B.21b)

Plugging (B.20) into (B.16) gives the �nal result for the Matsubara sum. The additive
renormalisation in terms of subtracting the vacuum contribution discussed in section
4.3.3 can easily be performed by discarding the temperature independent term in (B.16).
Note that on the lattice the temperature is given by (3.18).
With the de�nitions

A ≡ 1

cosh(aσE1)− cosh(aσE2)
, (B.22a)

B ≡ 1

tanh(aσE2)

1

eaσNτE2 − 1
− 1

tanh(aσE1)

1

eaσNτE1 − 1
, (B.22b)

C1 ≡
1

sinh(aσE1)
, (B.22c)

C2 ≡
1

sinh(aσE2)
, (B.22d)

the evaluation of the other �nite Matsubara sums (4.50) gives the following results

1

Nτ

Nτ∑
n=1

1

(k̃ + q)2
=
a2
τ

2

(
1 +

2

eaσNτE2 − 1

)
C2, (B.23a)

1

Nτ

Nτ∑
n=1

1

k̃2(k̃ + q)2
=
a4
τ

4

(
C2eaσE2 − C1eaσE1

)
A+

a4
τ

2
AB, (B.23b)

1

Nτ

Nτ∑
n=1

k̃(k̃ + q)

k̃2(k̃ + q)2
=

a2
τ

eaσNτE2 − 1
C2 +

a4
τ

2

(
k̃i(k̃i + qi)− k̃2

i

)
AB, (B.23c)

1

Nτ

Nτ∑
n=1

(
k̃(k̃ + q)

)2

k̃2(k̃ + q)2
= − a2

τ

eaσNτE2 − 1

(
(k̃i + qi)− k̃i

)2
C2
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+
a4
τ

2

(
k̃i(k̃i + qi)− k̃2

i

)2
AB, (B.23d)

1

Nτ

Nτ∑
n=1

1

k̃2
=
a2
τ

2

(
1 +

2

eaσNτE1 − 1

)
C1. (B.23e)

B.3 Remaining three-momentum integration

As an example we compute the contribution

I1 ≡ (N2
c − 1)

π
aσ∫

− π
aσ

d3k

(2π)3

1

aτNτ

Nτ∑
n=1

k̃2
y

k̃2
(B.24)

to the transport coe�cient κ. Evaluating the �nite Matsubara sum by (B.16) gives

I1 = (N2
c − 1)aτ

π
aσ∫

− π
aσ

d3k

(2π)3

k̃2
y

2 sinh(aσE1)

(
1 +

2

eaσNτE1 − 1

)
. (B.25)

Expanding the integral around the continuum limit extends the integration limits to
in�nity. The corresponding Taylor expansion in small lattice spacings results in

I1 = (N2
c − 1)

aτ
a3
σ

∞∫
−∞

d3k̂

(2π)3

(
k̂2
y

a2
σ

−
k̂4
y

12aσ

)

×
(

1

ξ−1k̂
− ξ−1k̂

6
+

1

24k̂3ξ−2

(
ξ−1k̂4

i + ξ−3|k̂i |4
))

×

 1

eNτ k̂ξ−1 − 1
+

NτeNτ k̂ξ
−1(

eNτ k̂ξ−1 − 1
)2

1

24k̂

(
ξ−1k̂4

i + ξ−3|k̂i |4
) , (B.26)

where we make the substitution k̂ = aσk and omit terms of order O(a4
σ). Performing

the angular integration gives

I1 =
aτ
a5
σ

∫ ∞
0

dk̂

(2π)3

(
πk̂3

(
20240− 756k̂2(1 + 5ξ−2) + k̂4

(
−41 + 189ξ−2

))
22680ξ−1

× 1

eNτ k̂ξ−1 − 1

+
πk̂6

(
864864

(
3 + 5ξ−2

))
77837760

NτeNτ k̂ξ
−1(

eNτ k̂ξ−1 − 1
)2

)
. (B.27)

If the integration includes an outer momentum q, we would expand in this as well to
reproduce the low momentum expansion (4.20). Performing the remaining integrals∫ ∞

0
dk

k2n+1

eNτk − 1
,

∫ ∞
0

dk
NτeNτk

(eNτk − 1)
2 k

2n (B.28)
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B.3 Remaining three-momentum integration

with n ∈ N gives the result (4.52c):

I1 = (N2
c − 1)

π2

90

1

(aτNτ )4
+ (N2

c − 1)
1

(aτNτ )6

(
π4

378
a2
σ +

π4

378
a2
τ

)
. (B.29)

In general the calculation of the other integrals of (4.52) parallels the presented steps,
but is more involved due to the more complicated form and extra momentum q.
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C Numeric data regarding the transport

coe�cient κ

C.1 Transport coe�cient κ from AdS/CFT correspondence

T
Tc

κ
T 2

T
Tc

κ
T 2

T
Tc

κ
T 2

0.7 0.00042(6) 1.3 0.11324(7) 9 0.1641(1)
0.74 0.00064(7) 1.34 0.11639(7) 10 0.1647(1)
0.78 0.00092(8) 1.38 0.11917(6) 20 0.1676(2)
0.82 0.00127(6) 1.42 0.12165(6) 30 0.1686(2)
0.86 0.00175(5) 1.46 0.12388(6) 40 0.1692(2)
0.9 0.00239(6) 1.5 0.12588(7) 50 0.1695(2)
0.94 0.00337(9) 2 0.14083(7) 60 0.1698(2)
0.98 0.0053(1) 2.5 0.14776(8) 80 0.1703(2)
1 0.0276(2) 3 0.15193(9) 100 0.1706(3)

1.02 0.05842(6) 3.5 0.15468(9) 200 0.1714(3)
1.06 0.07632(9) 4 0.15666(8) 300 0.1718(3)
1.1 0.0869(1) 4.5 0.15819(8) 400 0.1721(3)
1.14 0.09450(8) 5 0.15939(9) 500 0.1722(3)
1.18 0.10062(7) 6 0.16118(9) 600 0.1724(3)
1.22 0.10560(9) 7 0.16242(9) 800 0.1726(3)
1.26 0.10968(7) 8 0.16337(9) 1000 0.1727(3)

Table C.1: AdS/CFT correspondence result for the second order transport coe�cient κ/T 2

matched to number of degrees in Yang-Mills theory according to the instructions in section
4.2.2.

C.2 Intermediate results regarding a computation of the
transport coe�cient κ in lattice Yang-Mills theory

In this section we present numeric intermediate results for run (i) of table 4.1.
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C Numeric data regarding the transport coe�cient κ

n Gτ0,T (q) Gτ0,Tvac(q) Gσ0,T (q) Gσ0,Tvac(q) Gτσ0,T (q) Gτσ0,Tvac
(q)

0 −0.3(6) 2.(2) 0.1(1) −0.5(4) 0.03(39) 0.4(1.3)
1 0.1982(2) 0.2009(2) 0.04092(4) 0.03768(4) 0.0283(1) 0.0320(1)
2 0.1985(2) 0.2005(2) 0.04092(4) 0.03766(4) 0.0280(1) 0.0319(1)
3 0.1984(2) 0.2003(2) 0.04076(4) 0.03759(4) 0.0278(1) 0.0314(1)
4 0.1983(2) 0.2002(2) 0.04071(4) 0.03743(4) 0.0273(1) 0.0312(1)
5 0.1981(2) 0.2000(2) 0.04059(4) 0.03730(4) 0.0271(1) 0.0308(1)

Table C.2: Simulation results for the bare correlators Gτ0,T , G
σ
0,T and Gτσ0,T and their vacuum

parts Gτ0,Tvac
, Gσ0,Tvac

, Gτσ0,Tvac
in momentum space for six momentum modes n ful�lling the

constraint (4.34).

n Gτ0(q) Gσ0 (q) Gτσ0 (q)

0 −3.(3) 0.7(5) −0.4(1.4)
1 −0.0027(3) 0.00324(5) −0.0037(2)
2 −0.0019(3) 0.00327(5) −0.0040(2)
3 −0.0020(3) 0.00317(5) −0.0035(2)
4 −0.0019(3) 0.00329(5) −0.0039(2)
5 −0.0019(3) 0.00329(5) −0.0036(2)

Table C.3: According to (4.39) vacuum subtracted correlators of table C.2.

i
〈
θi00

〉
1

〈
θi11

〉
2

〈
θi22

〉
3

〈
θi33

〉
4

τ −1.447172(1) 0.4823904(9) 0.4823868(9) 0.4823887(8)
σ 0.6218880(7) −0.2072959(4) −0.2072969(5) −0.2072961(1)

Table C.4: Diagonal energy-momentum tensor elements evaluated on lattices (4.41) in order
to compute the renormalisation ratio Zσ(β,ξ)/Zτ (β,ξ).

T Tvac

〈θτ11〉 −0.4768093(3) −0.48239182(8)
〈θτ22〉 −0.4768096(3) −0.48239191(8)
〈θτ33〉 −0.4768099(3) −0.48239181(8)

T Tvac

〈θσ11〉 0.2100439(1) 0.20729721(4)
〈θσ22〉 0.2100440(1) 0.20729719(4)
〈θσ33〉 0.2100438(1) 0.20729725(4)

Table C.5: Energy-momentum tensor elements required to compute the absolute renormalisa-
tion factor Zτ (β, ξ) from equivalence to the pressure.
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D Lattice formulation of semi-classical

quantum chromodynamics

D.1 Lagrangian and Hamiltonian mechanics

The law governing the Lagrangian and Hamiltonian mechanics [242,243] is the principle
of stationary action or Hamilton's principle

δS = 0. (D.1)

The system is described by an action S =
∫ t1
t0

dt L, where L(q,
.
q, t) denotes the system's

Lagrangian function and qi and
.
qi are the generalised coordinates and velocities, where

i = 1, . . . , s counts the number of degrees of freedom. Hamilton's principle can be
applied to derive the Euler-Lagrange equations

d

dt

∂L

∂
.
qi
− ∂L

∂qi
= 0, (D.2)

which correspond to the s equations of motion describing the system's time evolution.
A complete equivalent to the Lagrangian formalism is the Hamiltonian one based on
conjugated momenta

pi =
∂L

∂
.
qi
, (D.3)

instead of generalised velocities. The relevant Hamiltonian function is connected to the
Lagrangian function by a Legendre transformation

H(p, q, t) =
∑
i

pi
.
qi − L(p, q, t). (D.4)

The equations of motion can be derived from Hamilton's equations

.
qi =

∂H

∂pi
,

.
pi = −∂H

∂qi
. (D.5)

The time evolution of some function f(q, p, t) is given by

df

dt
=
∂f

∂t
+ {H, f}, {H, f} ≡

∑
i

(
∂H

∂pi

∂f

∂qi
− ∂H

∂qi

∂f

∂pi

)
, (D.6)

where {H, f} denotes the Poisson bracket.
Both formalisms can be extended to classical �eld theories by the following replace-

ments in the variables

qi → φ(t,x),
.
qi → ∂0φ(t,x), pi → π(t,x) = δL/δ(∂0φ), (D.7)
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D Lattice formulation of semi-classical quantum chromodynamics

the introduction of Lagrangian and Hamiltonian densities

L =

∫
d3x L[φ, ∂µφ], H =

∫
d3x H[φ, ∂µφ] (D.8)

and use of the functional calculus.

D.2 Derivation of the lattice QCD Hamiltonian

Starting from the system's Lagrangian LM
tot = LM

G + LM
F with the bosonic part de�ned

in (5.1) and the fermionic one in (5.5), we rewrite the gluonic part LM
G by using the

temporal gauge (5.7)

Tr

(
.
Ui
†
(x)

.
Ui(x)

)
= Tr

(
U †i (x)− U †i (x+ 0̂)

aτ

Ui(x)− Ui(x+ 0̂)

aτ

)
=

1

a2
τ

(
2Nc − 2 Re Tr

(
U †i (x)Ui(x+ 0̂)

))
=

2Nc

a2
τ

(
1− 1

Nc
Re Tr

(
U †i (x)U0(x)Ui(x+ 0̂)U †0(x+ î)

))
=

2Nc

a2
τ

(
1− 1

Nc
Re TrU0i(x)

)
. (D.9)

We can express the left hand side of the upper equation in terms of the chromo-electric
gauge �eld (5.8b)

Tr

(
.
Ui
†
(x)

.
Ui(x)

)
= Tr

{(
− igaσU

†
i (x)Ei(x)

)(
igaσEi(x)Ui(x)

)}
=
g2a2

σ

2
Eai (x)Eai (x) (D.10)

and obtain for the gluonic Lagrangian

LM
G [Ui, Ei] = − β

ξa3
σaτ

∑
i<j

(
1− 1

Nc
Re TrUij(x)

)
+

1

2
Eai (x)Eai (x). (D.11)

Choosing the bosonic and fermionic generalised coordinates to be

φaG,i(x) = Aai (x), ∂0φ
a
G,i(x) = Eai (x), (D.12)

φF(x) = ψ(x), ∂0φF(x) = D̃0ψ(x), (D.13)

where the temporal covariant derivative (5.4c) becomes trivial in temporal gauge, yields
for the conjugated momenta

πaG,i(x) = Eai (x), πF(x) = iψ(x)γ0. (D.14)

Rescaling the �elds and the mass term

ψ′(x) = a3/2
σ ψ(x), E′i(x) = a2

σgEi(x), m′ = aσm, (D.15)
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D.3 Derivation of the lattice QCD equations of motion

we �nd for the Hamiltonian function in Minkowski space time with the discrete covariant
derivatives de�ned in (5.4) the following expression:

H[Ui, Ei, ψ, ψ] = a3
σ

∑
x

H[Ui, Ei, ψ, ψ]

=
∑
x

{
β

aσ

∑
i<j

(
1− 1

Nc
Re TrUij(x)

)
+

1

2aσg2
Eai
′(x)Eai

′(x)

− iψ
′
(x)γiD̃iψ′(x) +

m′

aσ
ψ
′
(x)ψ′(x)

− aσr

2
ψ
′
(x)Db

i Df
iψ(x)

}
. (D.16)

D.3 Derivation of the lattice QCD equations of motion

Formally the equations of motion for the links are derived from the Poisson brackets. A
more elegant way is to directly apply the time derivative to the de�nition of the links
(5.8a) and plug in the chromo-electric �elds (5.8b). In terms of the rescaled �elds (D.15)
one �nds

.
Ui(x) =

i

aσ
Ei(x)Ui(x). (D.17)

We derive the equations of motion for the fermions from Hamilton's equations

.
ψ(x) = −i

δH

δψ†(x)
= −i

m

aσ
γ0ψ(x)− 1

2aσ
γ0γi

(
Ui(x)ψ(x+ î)− U †i (x− î)ψ(x− î)

)
+ i

r

2aσ
γ0

∑
i

(
Ui(x)ψ(x+ î)− 2ψ(x) + U †i (x− î)ψ(x− î)

)
,

(D.18)

as well as for the chromo-electric �elds1

.

Eai (x) = − δH

δAai (x)
≡

.

F ai (x) +
.

Gai (x), (D.19)

where we compute the fermionic and bosonic contributions,
.
F ai and

.
Gai , separately. The

fermionic contribution reads

.

F ai (x) = i
g2

aσ

∑
y

δab

{
i

2
ψ(y)γi

(
T bUi(y)ψ(y + î)δy,x + U †i (y − î)T bψ(y − î)δy−î,x

)
+
r

2
ψ(y)

(
T bUi(y)ψ(y + î)δx,y − U †i (y − î)T bψ(y − î)δy−î,x

)}

= − Nc

βaσ

(
ψ(x)γiT

aUi(x)ψ(x+ î) + ψ(x+ î)γiU
†
i (x)T aψ(x)

)
+ i

rNc

βaσ

(
ψ(x)T aUi(x)ψ(x+ î)− ψ(x+ î)U †i (x)T aψ(x)

)
, (D.20)

1Note that all equations of motion are derived for the rescaled �elds and we use the Hamiltonian
function instead of the density introducing further powers of aσ.
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D Lattice formulation of semi-classical quantum chromodynamics

while the bosonic one is given by

.

Gak(x) =
2

aσ

∑
y

∑
i<j

Re Tr

{
i
(
T bUij(y)δx,yδikδ

ab

+ Ui(y)T bUj(y + î)U †i (y + ĵ)U †j (y)δx,y+îδjkδ
ab

− Ui(y)Uj(y + î)U †i (y + ĵ)T bU †j (y)δy+ĵ,xδikδ
ab

− Ui(y)Uj(y + î)U †i (y + ĵ)U †j (y)T bδxyδjkδ
ab
)}

=
1

aσ

∑
j

Re Tr

{
iT a
(
Ukj(x)− Ukj(x− ĵ) + U †kj(x− ĵ)− U

†
kj(x)

)}

= − 1

aσ

∑
j

Im Tr

{
T a
(
Ukj(x)− U †kj(x) + U †kj(x− ĵ)− Ukj(x− ĵ)

)}

= − 2

aσ

∑
j 6=k

Im Tr

{
T a
(
Ukj(x)− Ukj(x− ĵ)

)}
. (D.21)

Thus the chromo-electric �elds evolve according to

.

Eai (x) = − 2

aσ

∑
j 6=i

Im Tr

{
T a
(
Uij(x)− Uij(x− ĵ)

)}

− Nc

βaσ

(
ψ(x)γiT

aUi(x)ψ(x+ î) + ψ(x+ î)γiU
†
i (x)T aψ(x)

)
+ i

rNc

βaσ

(
ψ(x)T aUi(x)ψ(x+ î)− ψ(x+ î)U †i (x)T aψ(x)

)
. (D.22)

We derive Gauss law by applying the Euler-Lagrange equations (D.2) with respect to
A0 before �xing the gauge. Separating the contributions, we �nd for the bosonic part(

∂0
δLM

G

δ
.
Aa0(x)

− δLM
G

δAa0(x)

)
Aa0=0

=
2aσ
gaτ

∑
i,y

Re Tr

{
i
(
T bU0i(y)δx,yδ

ab − U0(y)Ui(y + 0̂)

× U †0(y + î)T bU †i (y)δx,y+îδ
ab
)}

U0=1

=
2aσ
gaτ

∑
i

Re Tr

{
iT a
(
Ui(x+ 0̂)U †i (x)− Ui(x)U †i (x)

− U †i (x− î)Ui(x+ 0̂− î)

+ U †i (x− î)Ui(x− î)
)}

=
2aσ
g

∑
i

Re Tr

{
iT a
( .
Ui(x)U †i (x)− U †i (x− î)

.
Ui(x− î)
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D.4 Stochastic fermions

× U †i (x− î)Ui(x− î)
)}

= −2

g

∑
i

Re Tr

{
T a
(
Ei(x)− U †i (x− î)Ei(x− î)

× Ui(x− î)
)}

, (D.23)

where we used the unitarity of the links UiU
†
i = 1 and applied their equation of motion

(D.17). The fermionic contribution reads(
∂0

δLM
F

δ
.
Aa0(x)

− δLM
F

δAa0(x)

)
Aa0=0

=
g

2

∑
y

ψ(y)γ0

(
T bU0(y)ψ(y + 0̂)δx,yδ

ab

+ U †0(y − 0̂)T bψ(y − 0̂)δx,y−0̂δ
ab
)
U0=1

=
g

2

(
ψ(x)γ0T

aψ(x+ 0̂) + ψ(x+ 0̂)γ0T
aψ(x)

)
. (D.24)

Finally, Gauss law takes the form

0 =
∑
i

Re Tr

{
T a
(
Ei(x)− U †i (x− î)Ei(x− î)Ui(x− î)

)}

− Nc

2β

(
ψ(x)γ0T

aψ(x+ 0̂) + ψ(x+ 0̂)γ0T
aψ(x)

)
. (D.25)

D.4 Stochastic fermions

Our semi-classical formulation of QCD is based on the introduction of stochastic fer-
mions. In the following we derive the substitution rule ψ ↔ ψG for the correlator〈
ψ(x)ψ(y)

〉
.

We insert the mode function expansion of the fermionic �eld (5.23) into the correlator
and use that only

〈
bsb
†
r

〉
gives a non-vanishing contribution, which we evaluate by the

anticommutator rules (5.22). Performing one momentum integral as well as one spin
sum gives

〈
ψ(x)ψ(y)

〉∣∣
x0=y0

=

∫
d3p

(2π)3

1

2p0

∑
s

v̄s(p)vs(p)e−ip(x−y). (D.26)

With the normalisation of the spinors (5.32) follows

〈
ψ(x)ψ(y)

〉∣∣
x0=y0

= −
∫

d3p

(2π)3

2m

p0
e−ip(x−y). (D.27)

Next we evaluate the gendered correlator
〈
ψM(x)ψF(y)

〉
in the same way. Using the

mode function expansion of the gendered fermions (5.24) and the correlators of complex
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D Lattice formulation of semi-classical quantum chromodynamics

random numbers (5.25) we �nd

〈
ψM(x)ψF(y)

〉∣∣
x0=y0

=
1

2

∫
d3p

(2π)3

1

2p0

∑
s

(
ūs(p)us(p)eip(x−y)

− v̄s(p)vs(p)e−ip(x−y)
)
, (D.28)

where we have performed one momentum integral as well as one spin sum. Inserting
the normalisation of the spinors and substituting p→ −p gives

〈
ψ(x)ψ(y)

〉∣∣
x0=y0

=

∫
d3p

(2π)3

2m

p0
e−ip(x−y). (D.29)

Thus we �nd the substitution rule (5.27a). The rule regarding the other correlator
1
2

〈[
ψα(x), ψβ(y)

]〉
can be found analogously.

D.5 Lattice Dirac equation

In order to solve the classical equations of motion numerically, we have to discretise the
time direction as we discuss in section 5.3. Applying the central di�erence (3.4c) to
equation (5.14) the completely discretised free (Ui = 1) Dirac equation reads

0 = ψ(x− 0̂)− ψ(x+ 0̂)− 2iξ−1mγ0ψ(x)− ξ−1γ0γi

(
ψ(x+ î)− ψ(x− î)

)
+ irγ0ξ

−1
∑
i

(
ψ(x+ î)− 2ψ(x) + ψ(x− î)

)
. (D.30)

Being interested in initial conditions allows us to evaluate the Dirac equation at t = 0.
By inserting the ansatz ψ(t = 0,x) = u(p)exp(ipx) we �nd

0 = u(p)eipx
{(

eip0aτ − e−ip0aτ
)
− 2iξ−1mγ0 − ξ−1γ0

∑
i

γi
(
eipiaσ − e−ipiaσ

)
+ irγ0ξ

−1
∑
i

(
eipiaσ − 2 + e−ipiaσ

)}
(D.31)

= 2iξ−1
{
ξ−1 sin(aτp0)−mγ0 − γ0

∑
i

γi sin(aσpi)

− rγ0

∑
i

(1− cos(aσpi))
}
u(p)eipx. (D.32)

Introducing the notation

s0 ≡ ξ sin(aτp0), si ≡ sin(aσpi), µ ≡ m+ r
∑
i

(1− cos(aσpi)) , (D.33)

for lattice momenta and the mass including the Wilson term, we recover the usual
continuum Dirac equation in momentum space

(γµs
µ − µ)u(p) = 0. (D.34)
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D.5 Lattice Dirac equation

Making an ansatz

u(p) =

(
ϕ
ξ

)
(D.35)

for the spinor �eld u(p) we �nd the following solutions of the Dirac equation

us(p) =

(
s0(p) + µ(p)
σisi(p)

)
ξs, with ξ0 =

(
1
0

)
, ξ1 =

(
0
1

)
(D.36)

with the Pauli matrices (A.8). We obtain the solutions for antiparticles from the Dirac
equation with µ→ −µ. They read

vs(p) =

(
σisi(p)

s0(p) + µ(p)

)
ξs. (D.37)

Their explicit form is given in equation (5.30) with a normalisation according to (5.32)
by the normalisation factor (5.31).

129





E Isotropisation of the quark-gluon

plasma: Numeric details

E.1 Poisson equation

Setting up the colour glass condensate inspired initial conditions, see section 6.2.1,
requires solving the Poisson equation

d2φ(x)

dx2
= ρ(x). (E.1)

Firstly, we illustrate the idea in the continuous one dimensional case. Performing the
Fourier transform (A.15) on both φ(x) and ρ(x) one �nds

φ(k) = −ρ(k)

k2
. (E.2)

Going back to position space by another Fourier transform, the solution to the Poisson
equation reads

φ(x) = − 1

2π

∫
dk

σ(k)

k2
eikx. (E.3)

The two-dimensional Poisson equation on the lattice (6.6a), which we are interested
in, reads

1

a2
σ

(
φ(x+ 1, y) + φ(x− 1, y)− 2φ(x, y)

+ φ(x, y + 1) + φ(x, y − 1)− 2φ(x, y)
)

= −ρ(x, y). (E.4)

As in the continuous case we obtain the solution by going to momentum space using the
discrete Fourier transform (A.18). Employing periodic boundary conditions a separation
of variables gives the solution in momentum space

φ(kx, ky) =
a2
σρ(kx, ky)

4− e−ikx − eikx − e−iky − eikx
, (E.5)

with the Fourier transformed source ρ(kx, ky). The solution in position space is obtained
by another Fourier transform φ(kx, ky)→ φ(x, y).

E.2 Investigation of discretisation artefacts

Starting from the initial conditions discussed in section 6.2.1 we investigate the e�ect
of discretisation errors. To this end we compute the total energy density (6.21c) and
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E Isotropisation of the quark-gluon plasma: Numeric details

the ratio of pressures (6.23) for di�erent anisotropies ξ and transversal volumes N2
⊥.

The simulation parameters are listed table in E.1. As shown in �gure E.1 and E.2
discretisation errors for the energy density are negligible compared to the statistical
errors. Regarding the pressure ratio we are not able to resolve any discretisation errors.

Run g2µL N⊥ Nz ξ ∆ Nens Ntime

Anisotropy 5 24 48 16, 20, 25 0.6 5 1600, 2000, 2500
Volume 3.75 24, 32, 40 96 20 0.6 5 4000

Table E.1: Parameters for runs checking discretisation e�ects. In order to check for volume
e�ects we run three simulation on di�erent transverse lattice sizes N⊥. To check e�ects of the
temporal discretisation we vary the anisotropy ξ and concomitant the number of time steps
Ntime.
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PT
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ξ. Since the statistical errors do not change signi�cantly over time, we only show error bars at
one time step in the upper plot. In the lower plot the error bars are below 1 %.
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