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Abstract

Riley (1979)’s reactive equilibrium concept addresses problems of equilibrium
existence in competitive markets with adverse selection. The game-theoretic
interpretation of the reactive equilibrium concept in Engers and Fernandez
(1987) yields the Rothschild-Stiglitz (1976)/Riley (1979) allocation as an equi-
librium allocation, however multiplicity of equilibrium emerges. In this note we
imbed the reactive equilibrium’s logic in a dynamic market context with active
consumers. We show that the Riley/Rothschild-Stiglitz contracts constitute
the unique equilibrium allocation in any pure strategy subgame perfect Nash
equilibrium.
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1 Introduction

Following the seminal work by Rothschild-Stiglitz (1976, RS in the following) on in-

surance markets with asymmetric information, the equilibrium non-existence problem

in competitive markets with adverse selection has given rise to an extensive litera-

ture.1 Riley (1979) proposed an equilibrium concept where firms anticipate that if

they offer contracts different from the equilibrium contracts, they expect that com-

petitors will react by adding new contracts as well. “A set of offers is a reactive

equilibrium if, for any additional offer which generates an expected gain to the agent

making the offer, there is another which yields a gain to a second agent and losses to

the first” (Riley, 1979). Engers and Fernandez (1987, EF in the following) generalize

results for the reactive equilibrium and provide a game-theoretic interpretation for

the equilibrium concept. In their game-theoretic modelling, EF assume that firms

offer contracts repeatedly, and privately informed consumers choose contracts only

after the final contract addition has been made (which might never occur if firms keep

on adding contracts).2 EF show that the Riley result, namely that the RS contracts

constitute equilibrium contracts, holds in their model. However, many other alloca-

tions are also possible, as the possibility to offer contracts immediately following a

deviation can be used as a punishment to sustain collusive outcomes. Thus the prob-

lem of non-existence of equilibrium has been replaced by the problem of multiplicity

of equilibria.

We embed the Riley logic in a dynamic set-up where consumers arrive at the

market in each period. So rather than waiting until all contracts have been added

as in EF, consumers enter the market frequently and choose among those contracts

which are on the table. By this we add a realistic component to the basic model

and allow for repeated market interaction. Firms’ choices in any period, in this case

to offer new contracts, are not made independent of the demand. It will be shown

that with this addition to the EF model, the RS allocation is the unique equilibrium

allocation of the game.

We use the insurance market à la RS as the canonical application to display our

results. In our model, new consumers which are either high or low risks arrive in

each period. Insurers live forever. In each period, insurers can add contracts to

their existing portfolio of contracts. A contract which has been offered cannot be

1For an overview see Mimra and Wambach (2014).
2Wilson (1977), Myazaki (1977) and Spence (1978) use an equilibrium concept where following

a deviating offer the other firms can withdraw their contracts rather than adding new contracts. A
game-theoretic modeling of this concept is provided in Mimra and Wambach, 2011.
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withdrawn.3

To gain some intuition for the result, consider first the case where insurers offer

cross subsidizing contracts, i.e. contracts are such that the low risks contract makes

a profit while the high risks contract makes a loss. Then, another insurer could enter

the market and, as the single crossing property holds, could cream skim the low risks,

i.e. the deviating company offers a new contract which only attracts the low risks and

which is profit making. This insurer is assured that the high risks remain with the

other insurers offering the original set of contracts, as these contracts remain in the

market. Now, the other insurers can start to cream skim the deviating insurer in the

next period, but if the profit of a single period is sufficiently large, cream skimming

low risks will still be attractive. Note that there is no way how the other insurers

can impose a loss on the deviating insurer, as it is them who are stuck with the

contract for the high risk type. As a result, any cross subsidizing pair of contracts

cannnot be an equilibrium. That is different to the outcome in EF. In their model,

cross subsidizing contracts, as well as other profit making contracts, can be part of an

equilibrium allocation, as any deviating insurer will be immediately cream-skimmed

himself. As consumers only enter once all contracts have been added, cream skimming

a deviator ensures that deviation is unprofitable.

The original RS/Riley contracts, however, which provide zero profit with each

type, do constitute an equilibrium allocation in our model. And this equilibrium

exists even in those cases where in the static model of RS an equilibrium in pure

strategies does not exist. The reason is as follows. If an insurer intends to deviate

from the RS contracts, he has to attract both high and low risks, e.g. by offering a

pooling contract. But now another insurer will find it profitable to cream skim the

deviator, so that the deviator is left with the high risks only and makes a loss. So

even if this deviator makes a profit for one period with the pooling contract, he will

face losses for all future periods, making deviation unattractive.

2 The model

The set-up inserts the static model by RS in a repeated framework, and adds con-

sumer arrival in each period to the dynamic model by EF.

In each period a continuum of individuals with mass 1 enter the insurance market

3By only allowing for addition of contracts, we model the situation analoguously to EF and
capture the notion of the Riley concept. In parallel work we investigate repeated market interaction
where insurers can also withdraw contracts with some probability.
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and stay there for one period. Each individual faces two possible states of nature: In

state 1, no loss occurs and the endowment is w. In state 2 a loss of size m occurs

and the endowment is w−m. There are two types of individuals, an individual may

be a high risk type (H) with loss probability pH , or a low-risk type (L) with loss

probability pL, with 0 < pL < pH < 1. The share of high risk types in each cohort is

given by γ with 0 < γ < 1.

Insurance is provided by insurers in the set I := {1, ..., i, ...n}. Insurers live forever

and discount their profit with discount rate δ ∈ (0, 1). In each period, insurers can

offer a menu of contracts. An insurance contract ω consists of a premium and an

indemnity: ω = (P, I). The set of feasible contracts, Ω, is given by Ω := {(P, I) ∈
R2}. As usual, insurers do not know any individual’s type.

Formally, the game proceeds as follows: There are t = 0, 1, 2, ... periods. In each

period t, the stage game is as follows:

Stage 0: Individuals of mass 1 enter the market. The risk type of each individual

is chosen by nature. Each individual has a chance of γ, 0 < γ < 1 to be a H-type,

and of (1− γ) to be a L-type.

Stage 1: Each insurer i ∈ I offers a compact set of contracts Ωt
i ⊂ Ω, which

contains the contracts from the previous period, i.e. Ωt−1
i ⊆ Ωt

i. Ω0
i = ∅.

Stage 2: Individuals choose among the contracts ∆t :=
⋃
F

Ωt
i or remain uninsured.

The game in each period with its three stages is equivalent to the RS game. The

only difference is that contracts from the previous period remain in the market. The

dynamic structure and stage 1 are similar to EF.4 While in EF consumers make their

choice only after all contracts have been offered, in our framework (new) consumers

arrive and choose contracts in each period.

The preferences by the policyholders satisfy the von Neumann-Morgenstern axioms.

The expected utility of a J-type individual, J ∈ {H,L} from chosing a contract

ω ∈ Ω is abbreviated by uJ(ω) := (1− pJ)v(w − P ) + pJv(w −m− P + I) where v

is a strictly increasing, twice continuously differentiable and strictly concave utility

index.

As policyholders only live for a single period, the game does not entail any strategic

4In EF insurers choose contracts sequentially rather than simultaneously, the order of moves
being exogenously given.
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role for them. Thus, we will henceforth assume that consumer strategy does not

depend on the history of play, and that consumers just choose the best contract

available in the market. If consumers are indifferent between contracts, they choose

the contract with the larger indemnity.

Since for all i ∈ I and t, Ωt
i is a compact subset of Ω, ∆t is compact. We denote by

ω̄tJ the contract such that

ω̄tJ ∈ arg max
ω∈∆t

uJ(ω)

and
ĪJ ≥ ĨJ ∀ ω̃J ∈ arg max

ω∈∆t
uJ(ω)

Let k̄tJ denote the number of firms offering ω̄tJ in t, i.e. K̄t
J := {i ∈ I| ω̄tJ ∈ Ωt

i} and

k̄tJ := |K̄t
J |. We assume throughout that the strategy of a consumer of type J is to

choose ω̄tJ at firm f ∈ K̄t
J with probability 1/k̄tJ . This allows us to insert consumer

choice directly into the firms’ objective function such that the game reduces to a game

of complete information between firms. With this we can reduce the stage game in

every t to a single stage, stage 1’.

Stage 1’: Each insurer i ∈ I offers a compact set of contracts Ωt
i ⊂ Ω, which

contains the contracts from the previous period, i.e. Ωt−1
i ⊂ Ωt

i. Ω0
i = ∅. Contract

ω̄tH (ω̄tL) will be chosen by the H(L)-type.

An insurer who offers contract ωtJ = (P t
J , I

t
J) will make a profit of πtJ = P t

J − pJI tJ
per customer of type J with J ∈ {L,H}. Call πti the profit in period t of insurer i.

Then the overall profit of insurer i is given by:

πi =
∞∑
t=0

δtπti (1)

The reduced game is an infinite horizon game with observed actions that is con-

tinuous at infinity. The corresponding equilibrium concept we will use is that of

subgame-perfect Nash equilibrium. The history of the game is given by the set of

all contracts being offered in each period, i.e. ht = (Ω1,Ω2, ...Ωt−1). The set of all

histories in period t is denoted by H t. A strategy for insurer i is a sequence of maps
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{sti}∞t=0 where each sti maps histories in sets of contracts, i.e.

sti : H t → Ω

ht 7→ Ωt
i

We say that a contract pair (ωL, ωH) constitutes an equilibrium allocation if an

equilibrium of the game exists where on the equilibrium path in each period the con-

sumers of type L (H) choose contract ωL (ωH).

3 Equilibrium analysis

Define ΩRS = (ωRSL , ωRSH ), as the RS contracts, where ωRSH is the full insurance con-

tract with fair premium for the high risks, and ωRSL gives partial insurance for the

low risks at their fair premium, and is such that high risks are indifferent between

ωRSH and ωRSL .

Two assumptions are required for our equilibrium analysis. First, the discount

rate δ should be sufficiently large, so that deviating behavior from the RS contracts

can be effectivly punished in future periods. Second, the number of insurers should

be sufficiently large, so that collusive agreements are not stable.

Assumption 1. (i) δ > K
K+1

with K being defined in Lemma 2 below.

(ii) n > 1
1−δ .

With these assumptions we can formulate our first proposition which shows that

no pair of profit-making contracts and no pair of cross-subsidizing contracts can

constitute an equilibrium allocation.

Proposition 1. No pair of contracts (ωL, ωH) 6= ΩRS can constitute an equilibrium

allocation.

Proof. First we will consider the symmetric case, where all firms offer the same con-

tracts in equilibrium. Suppose that for all firms i ∈ I and for all t, (ωL, ωH) ∈ sti where

(ωL, ωH) 6= ΩRS and ωJ = ω̄tJ , J ∈ {H,L} in equilibrium. There are four relevant

cases, either both ωL, and ωH are individually profit-making, or ωH is profit-making,

or ωL is profit-making, or both ωL and ωH are individually break even, but different

from RS contracts. Suppose that the contract menu is profit making with profit π for

the industry. Consider first the case where both contracts are profit-making. Then
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a deviating insurer could undercut both contracts slightly in some t, and attract all

types for one period. As both contracts are profit making, the deviating insurer will

not face losses in the future. Thus, the deviating insurer makes a profit no less than

π, while staying with the original contract gives a continuation profit of π
(1−δ)n . Given

assumption (ii), it is then profitable to deviate in some t. If only ωH is profit-making

with ωL zero profit or loss-making, i.e. cross-subsidization from high to low risks, a

deviating insurer can slightly undercut ωH in t = 0 without offering ωL. Thus the

deviator only attracts the high risks on which profits of no less than π are made. As

ωH is profit making, the deviating insurer will not face losses in the future. Again

given assumption (ii), it is then profitable to deviate in t = 0.

Next consider the case where only the low risk type contract is profit making, while

the high risk contract makes zero profit or a loss, i.e. (ωL, ωH) are cross subsidizing

from low to high risks. Then a deviator could cream skim the low risks in t = 0, and

would make a profit close to the profit of the low risks. As the contract of the high

risks is zero profit or loss making, the profit accruing to the deviator will be larger

than or equal to π. Given that the (loss-making) high risk contract remains on offer

for all subsequent t, the lower bound on deviator profits for all subsequent periods is

0. With the same reasoning as above it then holds that deviation is profitable.

Furthermore, if ωL and ωH do individually break even, but are different from RS

contracts, a deviating insurer could undercut both contracts slightly in some t such

that the high risk type contract remains break-even, the low risk type contract makes

a positive profit, and all types are attracted for one period. Again the lower bound

on deviator profits for all subsequent periods is 0 and with the same reasoning as

above it then holds that deviation is profitable.

Next consider asymmetric equilibria. Suppose that in equilibrium for all t, (ωL, ωH) ∈
sti for some firm i ∈ I where ωJ = ω̄tJ , J ∈ {H,L} and (ωL, ωH) 6= ΩRS. The set of

firms that offer the contracts which are bought by the consumers might well differ

between the periods. Then for some firm i ∈ I and some t̃, firm i’s continuation

payoff in t̃ is lower or equal to the continuation payoff when all firms i ∈ I set

(ωL, ωH) ∈ sti for t > t̃. But then, by the reasoning as above, there always exists a

profitable deviation.

Thus any profit making pair of contracts cannot be equilibrium outcomes, as

would be expected from a competitive market. This result is different from the

analysis in EF, where profit making contracts could be sustained. In their model,

insurers prevent undercutting by threatening to undercut the deviator. As consumers
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only enter once all contract additions have been made, this makes deviation from

profitable contracts unattractive.

Proposition 1 also shows that cross-subsidizing contracts, and in particular the

second best efficient pair of contracts (the MWS contracts, Miyazaki, 1977, Wilson,

1977, Spence, 1978) cannot be equilibrium outcomes. Here the dynamics as already

proposed by RS sets in: With cross subsidizing contracts, some insurers might find

it profitable to offer contracts which only attract the profit making part of the poli-

cyholders, i.e. to cream skim the low risks.

With Proposition 1, we can proceed to show that we can concentrate on equilibria

of the game where on the equilibrium path in each period the same menu of contracts

is chosen by consumers.

Lemma 1. No sequence of contract menus {(ωtL, ωtH)}∞t=0 where for some t > 0,

(ωtL, ω
t
H) 6= (ωt−1

L , ωt−1
H ), can constitute an equilibrium allocation.

Proof. In every period t, industry payoff is smaller or equal than the monopoly profit.

Thus, there exists a supremum for per period profit. For any sequence of contract

menus there exists a period t̂ where per period profit is within ε of the supremum.

With a similar argument as in proof of Proposition 1, there exists a profitable devi-

ation in t̂.

While so far our results agree with the analysis by RS, our next proposition shows

that in those cases where RS do not obtain an equilibrium, in our extended model

an equilibrium with the RS allocation always exists.

Proposition 2. The following strategies constitute a subgame perfect equilibrium:

t = 0: Each insurer i ∈ I offers the RS-contracts: s0
i = ΩRS.

t > 0: If in t − 1 only the RS contracts are offered, offer the RS-contracts again:

sti = ΩRS.

If in t−1 any contract ω′ 6= ωRSL was offered which attracted low risk customers, offer

in addition to ΩRS a contract ω̃ where ω̃ maximizes uL(ω̃) subject to uH(ω′) ≥ uH(ω̃)

and πL(ω̃) ≥ 0: sti = ΩRS ∪ {ω̃}.

In equilibrium all insurers offer the RS contracts and make zero profits. If someone

deviates, the other insurers will cream skim the deviator. Cream skimming is such

that the low risks obtain the best possible contract which is not attractive for the

high risks and which does not lead to a loss for the insurer. Thus by construction,

further cream skimming will not be possible.
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Proof. As the game is continuous at infinity, we can resort to the one-stage-deviation-

principle to prove the proposition (Fudenberg and Tirole, 1991, p. 109 ff.). Therefore

it is sufficient to analyse two cases: First, on the equilibrium path, where an insurer

contemplates to make a different offer than the RS contracts. Second, off the equi-

librium path, where an insurer contemplates to make an offer different from the RS

contracts jointly with ω̃.

Deviation on the equilibrium path is only possible by attracting both high and low

risks. The equilibrium strategies are such that low risks will then be cream skimmed,

and the deviator will be stuck with the high risks. Thus the optimal deviation will be

such that the high risks obtain full insurance, which minimizes the costs the deviator

has with the high risks for any given level of high risk type utility. Furthermore,

the deviation pair of contracts will be such that low risks do not obtain more utility

than they receive with the RS contracts, in order to maximize the profit with the

low risk types. We can thus classify the set of potential deviation contract menus by

{(ωH(∆), ωL(∆)}. For each ∆ the high risk contract specifies full insurance and a

premium below the fair premium.

ωH(∆) = (phm−∆,m)

Thus the (negative) profit the insurer makes with this contract is given by −∆. The

low risks contract ωL(∆) is such that high risk types are indifferent between their

deviating contract and the contract designed for the low risks, i.e. uH(ωH(∆)) =

uH(ωL(∆)) (IC constraint), and the low risks are indifferent between their contract

and the RS contract, i.e. uL(ωL(∆)) = uL(ωRSL ) (PC constraint). A natural upper

limit for ∆ is when the contract (pair) provides full insurance for both types at the

fair pooling premium. Thus 0 ≤ ∆ ≤ ∆∗ with ∆∗ = (pH − (γpH + (1− γ)pL)m.

Denote by πHL(∆) the profit an insurer makes if all high risks buy contract ωH(∆)

and all low risks buy contract ωL(∆). All low risks are cream skimmed after one period

by the other insurers such that the deviator is stuck with the high risks, which will

lead to a loss of γ∆. Thus the overall profit of a deviatior, who offers the contract

pair (ωL(∆), ωH(∆)) is given by:

πD(∆) = πHL(∆)− δ

1− δ
γ∆

The following lemma is necessary to show that with δ being large enough (Assumption

i), deviation is not profitable.
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Lemma 2. There exists a K such that for all ∆ ∈ [0,∆∗] it holds:

πHL(∆)

γ∆
< K.

Obviously, for any finite ∆ we can find a K large enough such that the inequality

is satisfied. So we only have to consider the case ∆→ 0. In that case, both numerator

and denominator go to zero. Applying L’Hospital’s rule gives a finite value for the

expression, as the derivative of the denominator is equal to γ, while the derivative of

the numerator is finite. Thus we can find a K large enough such that the inequality

holds.

Finally we need to show that if contracts different from the RS contracts are

offered (and bought) in period t− 1, then it is indeed optimal for any insurer to offer

the RS contracts ΩRS and to cream skim the low risks (with contract ω̃) in period

t. There are two cases to consider. First, suppose that after insurers made their

offers, low risks buy the contract ω̃. By construction of ω̃, this contract is zero profit

making, high risks are just indifferent between their contract and ω̃. Thus as all other

insurers offer this contract, a single insurer can offer no different contract which would

make a profit and which not be bought by the high risks. Second, suppose that all

policyholders buy the RS contracts, which would be the case if ω̃ is not attractive

for the low risks compared to the RS contract. Then we are back to the equilibrium

analysis above and again, deviation is unprofitable.

Propositions 1, 2 and Lemma 1 lead to our main result:

Corollary 1. The Rothschild-Stiglitz contracts are the unique equilibrium allocation

in any pure-strategy equilibrium.

4 Conclusion

Riley (1979) proposed the concept of a reactive equilibrium to tackle the equilibrium

non-existence problem in competitive markets with adverse selection (Rothschild and

Stiglitz, 1976). Engers and Fernandez (1987) gave a game-theoretic underpinning for

the Riley concept, assuming that insurers can add contracts repeatedly in the market.

However in their analysis many allocations can be sustained as equilibrium outcome

thus replacing the problem of equilibrium non-existence with that of multiplicity.

We include active consumers to the model of Engers and Fernandez by assuming

that after each round of contract additions, a group of privately informed consumers
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enters the market and chooses among the set of contracts. It is shown that then

the Rothschild-Stiglitz contracts are the unique equilibrium allocation in any pure-

strategy equilibrium, as originally proposed by Riley (1979).
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