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Abstract

In this thesis we investigate the role played by gauge fields in providing new observable signatures
that can attest to the presence of color superconductivity in neutron stars. We show that thermal
gluon fluctuations in color-flavor locked superconductors can substantially increase their critical
temperature and also change the order of the transition, which becomes a strong first-order
phase transition. Moreover, we explore the effects of strong magnetic fields on the properties
of color-flavor locked superconducting matter. We find that both the energy gaps as well as
the magnetization are oscillating functions of the magnetic field. Also, it is shown that the
magnetization can be so strong that homogeneous quark matter becomes metastable for a range
of parameters. This points towards the existence of magnetic domains or other types of magnetic
inhomogeneities in the hypothesized quark cores of magnetars. Obviously, our results only apply
if the strong magnetic fields observed on the surface of magnetars can be transmitted to their
inner core. This can occur if the superconducting protons expected to exist in the outer core
form a type-II superconductor. However, it has been argued that the observed long periodic
oscillations in isolated pulsars can only be explained if the outer core is a type-I superconductor
rather than type-II. We show that this is not the only solution for the precession puzzle by
demonstrating that the long-term variation in the spin of PSR 1828-11 can be explained in
terms of Tkachenko oscillations within superfluid shells.






Zusammenfassung

Die Farbsupraleitung war in den letzten Jahren Gegenstand intensiver Untersuchungen, ob-
wohl es bisher keine experimentellen Belege gibt, die die Existenz dieses Phédnomens bestéitigen
wiirden. Der wohl wichtigste Grund fiir dieses Interesse liegt darin, dass sich zeigen lasst, dass die
Existenz der Farbsupraleitung direkt aus der asymptotischen Freiheit der Quantenchromodyna-
mik (QCD) folgt. Da die QCD als die korrekte Theorie der starken Wechselwirkung angesehen
wird, geht es nur noch darum, Bedingungen zu finden, unter denen dieser neue Zustand der
Materie beobachtet werden kann.

In Anbetracht der speziellen Bedingungen, die fiir das Auftreten der Farbsupraleitung erfor-
derlich sind, stellt sich heraus, dass Quarkmaterie ohne Confinement am wahrscheinlichsten im
inneren Kern von Neutronensternen anzutreffen sein wird, wo Dichten von bis zum Zehnfachen
der nuklearen Séttigungsdichte und Temperaturen T' < 1 MeV vorherrschen. In der vorliegenden
Arbeit haben wir untersucht, welche Rolle Eichfelder spielen, um neue Observable zu fiir das
Auftreten von Farbsupraleitung im Zentrum kompakter Sterne zu finden. Wir diskutieren nun,
wie diese neuen observablen Effekte erhalten wurden.

Der Ordnungsparameter der “Color-flavor locked” (CFL) Phase bricht gleichzeitig die Farb-
und Flavor-Symmetrie. Daher bedingt die Ausbildung des farbsupraleitenden Zustands ein kom-
pliziertes Wechselspiel zwischen den Gluonen und den Cooper-Paaren, denn beide tragen nicht-
abelsche Farbladungen. In der CFL-Phase besitzen die Gluonen eine nichtverschwindende Farb-
Meissner-Masse, die eine wichtige Rolle spielt, wenn thermische Fluktuationen beriicksichtigt
werden. Wir haben systematisch den Effekt von Eichfeldfluktuationen auf die Ginzburg-Landau
(GL) freie Energiedichte eines homogenen CFL-Farbsupraleiters in Zweischleifenniherung be-
rechnet. In elektronischen Supraleitern induziert ein fluktuierendes elektromagnetisches Feld
einen schwachen Erste-Ordnung-Phaseniibergang. Analog dazu éndert das Hinzufiigen von ther-
mischen Fluktuationen zur GL freien Energiedichte bei einem CFL-Supraleiter die Ordnung des
Phaseniibergangs.

Wir haben die Temperatur des fluktuationsinduzierten Erste-Ordnung-Phaseniibergangs so-
wohl analytisch wie numerisch ermittelt und auch die latente Warme und die Maximaltempe-
ratur der iiberhitzten Superphase berechnet. Auch wurde gezeigt, dass der London-Limes fiir
farbmagnetische Wechselwirkung in CFL Farbsupraleitern nicht existiert. Dies ist eine Konse-
quenz der Schwéche der elektromagnetischen Wechselwirkung im Vergleich zur starken Wechsel-
wirkung, also a, < «s. Werden deshalb die thermischen Gluonen-Fluktuationen beriicksichtigt,
dann ist die Naherung lokaler Kopplung zwischen dem Ordnungsparameter der Farbsupraleitung
und den Gluonen in der CFL-Phase nicht giiltig.

Die kritische Temperatur der Supraleitung, die man fiir den Erste-Ordnung Phaseniibergang



erhilt, ist bedeutend grofler als der entsprechende Wert ohne Beriicksichtigung der Gluonenf-
luktuationen. Weiterhin #ndert sich die Energieliicke im Anregungsspektrum der Quasiteilchen
sprunghaft von Null (bei hoher Temperatur) auf einen endlich Wert bei der neuen kritischen
Temperatur. Die Frage ist noch offen, wie sich dieses Verhalten auf das Abkiihlen eines Proto-
Neutronensterns mit CFL-Kern auswirkt.

An der Oberfliche kompakter Sterne existieren starke Magnetfelder: zum Beispiel gilt fiir
gewohnliche Neutronensterne B < 102 G wihrend fiir Magnetare Feldstéirken bis B ~ 106 G
erreicht werden konnen. Oft kann man annehmen, dass die Leitfdhigkeit der Materie im Inne-
ren von Neutronensternen praktisch unendlich grof3 ist, da die Zeitskalen fiir Dissipation grof3
gegeniiber den anderen relevanten Zeitskalen sind. In diesem Fall sagen die magnetohydrody-
namischen Gleichungen vorher, dass der magnetische Fluss durch jede geschlossene Oberfléche,
die sich mit der Fliissigkeit bewegt, konstant ist. Unter der Annahme, dass die Feldlinen den
Innenbereich des Sterns durchdringen, folgt aus der Erhaltung des Magnetflusses, dass die ma-
gnetische Feldstirke im inneren Kern eines Magnetars Werte von iiber B ~ 10'® G erreicht.
Dieser grofie Wert entspricht bereits der physikalischen Obergrenze fiir das Magnetfeld eines
gravitativ gebundenen Sterns.

Der superdichte, kalte Kern von gewohnlichen Neutronensternen besteht sehr wahrscheinlich
aus irgendeiner Art farbsupraleitender Quarkmaterie. Es gibt keinen Grund, dieselbe Idee nicht
auch auf Magnetsterne anzuwenden. Die durch ein Feld von ungefihr 10'® G definierte Energies-
kala ist etwa von der Groflenordnung 100 MeV. Dies ist vergleichbar mit der farbsupraleitenden
Liicke, die im Energiespektrum der Quasiteilchen und in der Masse des s—Quarks auftaucht. Da
Quarks geladene Teilchen sind, ist anzunehmen, dass solch ein starkes magnetisches Feld die
Kopplung der Quarks beeinflusst.

CFL-Supraleiter sind keine elektromagnetischen Supraleiter, weil die anféngliche lokale Sym-
metrie, die dem Elektromagnetismus entspricht, im Medium nicht wirklich gebrochen, aber ro-
tiert ist. In dieser Arbeit haben wir die Effekte eines moderat starken magnetischen Feldes auf
die Dynamik der Bildung von Cooper—Paaren in kalter und dichter, masseloser Quarkmaterie,
bestehend aus Quarks mit drei unterschiedlichen Flavors, untersucht. Wir haben die entspre-
chende Gap—Gleichung numerisch gelost und die Magnetisierung fiir ein Vielzahl magnetischer
Felder (eB/u? < 1), wobei p das quarkchemische Potential ist, berechnet. Wir fanden, dass
mit anwachsendem magnetischen Feld das System einen kontinuierlichen Cross—Over von der
gewohnlichen CFL-Phase zur magnetischen CFL-Phase(mCFL) vollzieht. Bemerkenswert ist,
dass fiir eB/p? < 0.1, was (sofern p = 500 MeV) einem B < 4.2 x 10'® G entspricht, kein grofer
Unterschied zwischen der Liicke im Energiespektrum der mCFL— und der CFL—Phase besteht.

Unsere magnetischen Losungen fiir die Liicken im Energiespektrum spiegeln die magnetischen
Ostzillationen wieder, die eine direkte Konsequenz der Landau Quantisierung der Energieniveaus
im magnetischen Feld sind. Die Tatsache, dass die Liicke in der mCFL-Phase als Funktion
des magnetischen Feldes oszilliert, kann auch analytisch durch die Lifshitz-Kosevich Analyse
der Gap-Gleichung gezeigt werden. Ahnliche magnetische Oszillationen wurden fiir den Typ—
II des elektrischen Supraleiters vorhergesagt und spéter auch beobachtet. Die Folgen dieser
Oszillationen auf die Transporteigenschaften des mCFL—-Supraleiters sind bislang unverstanden.

Wir untersuchten, wie sich die unterschiedlichen Langenskalen, welche die mCFL-Phase de-
finieren, als Funktion von eB/u? verhalten. Die Kohirenzlingen sind umgekehrt proportional
zu den Liicken im Energiespektrum. Wenn die magnetische Lange so groflist wie der Abstand



zwischen den Quarks, was fiir © = 500 MeV bei B ~ 7 x 10" G auftritt, muss eine sorgfilti-
gere Analyse der Annahmen iiber die elektromagnetischen Eigenschaften des Farbsupraleiters
gemacht werden. Fiir stirkere Felder wird die magnetische Linge kleiner als der Abstand zwi-
schen den Quarks und in diesem Grenzfall besteht der wichtigste durch das Feld hervorgerufene
Effekt in der magnetischen Katalyse der chiralen Symmetriebrechung.

Die freie Energiedichte in der mCFL-Phase und die entsprechende Gap—Gleichung sind im
Prinzip ultraviolett divergent und miissen folglich regularisiert werden. In effektiven Quark—
Modellen wie dem Nambu-Jona-Lasinio (NJL) Modell, das hier benutzt wurde, wird gewshn-
lich der Phasenraum durch die Einfiihrung eines scharf definierten Cut—Offs im Impulsraum
beschrankt. Da allerdings das System in einem magnetischen Feld besondere Eigenschaften auf-
weist, ist ein solches Vorgehen nicht sehr niitzlich. Die Einfiihrung eines scharfen Cut—Offs fiir
ein Energiespektrum mit diskreten Landauniveaus fiihrt zu unphysikalischen Diskontinuitéten
in vielen thermodynamischen Groéfien.

Unter Verwendung der Methode der Eigenzeit Regularisierung wurden die Gapgleichungen
fiir die mCFL Phase analytisch untersucht. Es konnten analytische Lésungen fiir die Grenzfille
eines sehr starken und eines verschwindenden Magnetfeldes gefunden werden. Es konnte ausser-
dem gezeigt werden, dass Quarkmaterie in der mCFL Phase de Haas-van Alphen Oszillationen
unterliegt. Die Amplitude dieser Oszillationen kann dabei fiir einen grofien Teil des Parame-
terraumes die Grofle der magnetischen Feldstérke erreichen. Da die Magnetisierung dichter ha-
dronischer Materie vernachléssigbar ist, kénnte die endliche Magnetisierung von Quarkmaterie
im farbsupraleitenden Zustand neue Moglichkeiten bieten um rein hadronische Magnetare von
Magnetaren mit Farbsupraleitung zu unterscheiden. Die Oszillationen kénnten als Indiz dafiir
gewertet werden, dass homogene Quarkmaterie in einem fiir Magnetare relevanten Bereich des
Parameterraumes, instabil wird.

Die Art der gefundenen Instabilitdten deutet auf eine konkave freie Energiedichte in dem
besagten Parameterbereich hin. Als Interpretation hierfiir wird fiir gew6hnlich die Bildung von
magnetischen Doménen oder anderen Inhomogenitéiten herangezogen. Daher konnte hier ge-
schlossen werden, dass magnetische Inhomogenitéiten in den Quarkkernen von Magnetaren exi-
stieren. Es wurde daraufhin argumentiert, dass aufeinander folgende Phaseniibergéinge, die von
diskontinuierlichen Ubergéngen des magnetischen Feldes her riihren, eine grofie Menge an Ener-
gie frei setzen kann. Diese Energie wiirde wiederum den Stern aufheizen und dann durch Neutrino
Strahlung abgegeben werden. Daher sollten Magnetare mit einem farbsupraleitenden Kern nach
der Entleptonisierungs Phase eine grofie Menge an Neutrinos abstrahlen.

Etliche Fragen beziiglich farbsupraleitender Materie in Magnetaren bleiben bisher unbe-
antwortet. Man konnte zum Beispiel den Kiihlmechanismuses der stark magnetisierten Kerne
detailliert Untersuchen. Auch die Effekte der starken Magnetisierung auf die Globale Struktur
wie Masse und Radius des Sternes sollten noch untersucht werden. Ein sehr wichtiges Detail, das
bei der Berechnung von Masse und Radius eines Magnetars beriicksichtigt werden muss, ist die
starke Kriitmmung der Raumzeit, die die einfache sphérische Symmetrie des unmagnetisierten
Sternes aufhebt. Aus diesem Grund kénnen die Tolman- Oppenheimer- Volkoff Gleichungen, die
auf sphérischer Symmetrie basieren, nicht verwendet werden um Masse und Radius des Sternes
zu schitzen.

Geladen Mesonen sollten in niederenergetischer Naherung nur dann entkoppeln sobald eB 2,
12 gb% wobei ¢ die CFL Liicke (Gap) darstellt. Zufalligerweise entspricht dies der Region in der



auch die Oszillationen der Magnetisierung und der Liicke einen merklichen Effekt machen. Daher
stellt sich die Frage inwiefern die magnetischen Oszillationen die niederenergetische Dynamik der
mCFL Phase beeinflussen. Diese Fragen sollten, ebenso wie die Auswirkungen einer endlichen
Masse des s-Quarks auf Farbsupraleiter in der mCFL Phase, in zukiinftigen Studien untersucht
werden.

Bei moderaten Dichten hat neutrale farbsupraleitende Materie mit zwei Quarkarten (Flavors)
eine chromomagnetische Instabilitdt. Es wurde kiirzlich darauf hin gewiesen, dass diese Instabi-
litdt durch die Formierung eines innhomogenen Kondensats geladener Gluonen und des entspre-
chenden induzierten magnetischen Feldes, beseitigt werden kann. Dies konnte fiir Erkldrung der
starken magnetischen Felder und anderer ungewdthnlicher Eigenschaften von Magnetaren niitz-
lich sein. Die Feldstirken, die in diesem Ansatz verwendet wurden sind dhnlich denen die de
Haas-van Alphen Ostzillationen mit groler Amplitude hervorrufen. Daher sollten die Effekte der
starken Magnetisierung der Quarkmaterie in der mCFL Phase auch in solchen Untersuchungen
berticksichtigt werden. Es ist durchaus moglich, dass die kombinierten Effekte der de Haas-van
Alphen Oszillationen und des Gluonkondensates auch das Problem der chromomagnetischen
Instabilitdt von Farbsupraleitern 16sen konnten.

Unsere Ergebnisse sind natiirlich nur anwendbar, wenn das starke Magnetfeld, das auf der
Oberfliche des Magnetars beobachtet wird, bis in den inneren Kern eindringt. Dies kann passie-
ren, wenn die supraleitenden Protonen, die man in der dufleren Kruste erwartet, einen Typ II-
Supraleiter bilden, sodass das duflere magnetische Feld in Form von Wirbeln vordringen kann. Es
wurde dargelegt, dass die langen periodischen Schwingungen von isolierten Pulsaren nur erklért
werden kénnen, wenn die duflere Kruste ein Typ [-Supraleiter und kein Typ II-Supraleiter ist.
Die Ursache hierfiir liegt in einer freien Prizessionsbewegung, die bei starker Kopplung nicht
auftreten kann und als Standard-Erkldrung fiir die Zeitvariation dient. Wenn es sich bei der
duBeren Kruste von Neutronensternen tatséchlich um einen Typ I-Supraleiter handelt, dann
konnten die Storungsmodelle, die auf den Wechselwirkungen zwischen den Neutronen-Wirbeln
und den Protonen-Flussrohren beruhen, nicht ldnger angewendet werden.

In den spiten 60er Jahren hat Tkachenko bewiesen, dass der niedrigste Energiezustand einer
unendlichen Anordnung von Wirbeln in einem inkompressiblen Suprafluid auftritt, wenn die Wir-
bel ein zweidimensionales dreieckiges Gitter formen. Das Gitter unterstiitzt kollektive elastische
Moden, die so genannten Tkachenko-Wellen, bei denen die Wirbellinien Parallelverschiebungen
mit elliptischer Polarisation in der zu der Drehachse senkrechten Ebene vollzichen. Diese Mo-
den koénnen nicht innerhalb der Standard-Bekarevich-Khalatnikov-Hydrodynamik beschrieben
werden, weil diese Theorie nur die Abhéngigkeit der Rotationsenergie von der mittleren loka-
len Wirbeldichte beriicksichtigt. Die Energieerhéhung, die durch die Reibung des Wirbelgitters
erzeugt wird und die wiederherstellende Kraft fiir diese Moden ist, wird jedoch vernachléssigt.

Ladungsneutrale Suprafluide im Inneren von Neutronensternen rotieren, indem sie eine An-
ordnung von einzeln quantisierten Wirbeln bilden. Die ungedampfte Ausbreitung der zugehori-
gen Tkachenko-Wellen wiirde lokale Verdnderungen der Wirbelliniendichte hervorrufen, die wie-
derum Anderungen des Suprafluid-Drehimpulses bewirken wiirden. Deshalb wird erwartet, dass
dieser Effekt zu Verédnderungen der Rotation und der Abbremsgeschwindigkeit des Sterns fithren
kann.

In dieser Arbeit wurde gezeigt, dass Typ I-Proton-Supraleitung nicht die einzige Losung des
Prézessionsrétsels ist, indem bewiesen wurde, dass die Langzeitverdnderung des Spins von PSR



1828-11 mit Tkachenko-Schwingungen innerhalb von Suprafluid-Schalen erklért werden kann.
Unsere Analyse besagt, dass Tkachenko Moden mit schwach gekoppelten Theorien zwischen dem
Suprafluid und dem normalen Fluid unabhéngig von der Scherviskositét allgemein konsistent
sind. Es wurde bewiesen, dass die Tkachenko-Wellen Schwingungsperioden haben koénnen, die
mit der niedrigsten beobachteten Periodizitdt von 256 Tagen von PSR 1828-11 {ibereinstimmt.

Die Existenz von Tkachenko Moden im stark gekoppelten Grenzfall hdngt von der Scher-
viskositidt normaler Materie ab. Fiir niedrige Viskositédten sind die Tkachenko Moden (bei star-
ker Kopplung) auf Werte, die etwas kleiner sind als ihr korrespondierender nicht-dissipativer
Grenzfall, renormiert. Das impliziert, dass die Tkachenko-Schwingungen bei starker Kopplung
Perioden haben, die grofler sind als die ihrer reibungsfreien Gegenstiicke. In der Tat ist die
Démpfung, die durch gegenseitige Reibung verursacht wird, nicht immer stark genug, um ein
oszillatorisches Verhalten zu verhindern. Daraus schliefen wir, dass die Langzeit-Verénderung
des Spins von PSR 1828-11 im Prinzip mit Tkachenko-Schwingungen in suprafluiden Schalen
erklirt werden kann, wenn man bestimmte Werte fiir die gegenseitige Reibung und die normale
Scherviskoitidt annimmt.

Unser Modell beruht auf bestimmten N&herungen. Wir haben die Zwei-Fliissigkeiten su-
prafluide Hydrodynamik angewendet, die modifiziert werden sollte, um die vielfachen Fluide
im Kern des Neutronensterns zu beriicksichtigen. Auflerdem haben wir die Reibungseffekte, die
auf die nicht verschwindende thermische Leitfahigkeit und Volumenviskositéiten zuriickzufiihren
sind, nicht betrachtet. Des weiteren miissen die zylindrische Symmetrie unseres Aufbaus und
die Annahme gleichférmiger Dichte in realistischeren Betrachtungen von sphérisch suprafluiden
Schalen mit Dichtegradienten iiberdacht werden.
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Chapter 1

Introduction

The main purpose of this thesis is to explore the role played by gauge fields in providing new
observable signatures that can attest to the existence of color superconductivity in the interior
of compact stars. More specifically, we show that the inevitable thermal fluctuations of the
non-Abelian gluon fields present in color superconductors can substantially increase their crit-
ical temperature, which has important consequences that could be observable. Moreover, it is
shown that homogeneous color-superconducting matter becomes metastable in the presence of
ultrastrong magnetic fields. This points towards the existence of magnetic domains or other
types of magnetic inhomogeneities in the hypothesized quark cores of magnetars.

The first six sections of this thesis contain the basic physical ideas and concepts necessary for
understanding the role played by gauge fields in the description of cold and dense quark matter.
After a brief discussion in the first two sections concerning the main properties of quantum chro-
modynamics and its phase diagram, in Sec. 1.3 we explain the physics behind electronic super-
conductivity. The basics of the standard Bardeen-Cooper-Schrieffer theory of superconductivity,
which provides a consistent microscopic explanation for the phenomenon of superconductivity,
is given in this section. In addition, we include a discussion that not only introduces the usual
mean field Ginzburg-Landau description of superconductivity but also explains how the effects
of a thermally fluctuating electromagnetic field can be incorporated into the theory. It is shown
how this can drastically change the character of the superconducting transition. These ideas
will be important in Chapter 2 where we show, using the framework of Ginzburg-Landau theory,
that thermal gluon fluctuations change the order of the color-superconducting transition from
second into a strong first-order phase transition.

Most likely, the only place where color-superconducting quark matter can be observed by
natural means is in the interior of compact stars. Theoretical aspects of color superconductivity
are explained in quite some detail in Sec. 1.5 and a discussion about its possible observable
signatures is given in Sec. 1.6. The results presented in this section are important for Chapter
2 and also for Chapter 3, which contains a thorough analysis on how the strong magnetic fields
present in compact stars influence the properties of color-superconducting matter.

In Sec. 1.4 we discuss the phenomenon of helium superfluidity. A special emphasis is given to-
wards understanding how vortices are created in rotating superfluids. This is directly connected
to the subject of Chapter 4 where we show that the quasiperiodic timing variations observed in

13
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pulsars can be explained by using the oscillatory modes of the lattice formed by vortices inside
neutron superfluids in pulsars.
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1.1 The Phase Diagram of Quantum Chromodynamics

Matter as observed in nature is composed of hadrons and leptons. Leptons are considered fun-
damental particles, while hadronic matter can be decomposed into more fundamental particles
called quarks. In fact, all the phenomena observed so far in nature can be described in terms
of the so-called standard model [1, 2], which contains quarks and leptons as the particles of
matter and weak and strong gauge bosons that mediate their interactions. However, only 5% of
the observed universe corresponds to ordinary matter made up of particles from the standard
model. Dark matter and dark energy are supposed to account for the remaining matter in the
universe and, in fact, dark matter has been recently observed experimentally through measure-
ments of the Bullet Cluster, which was formed by the collision of two nearby clusters of galaxies
approximately 150 million years ago [3]. Nobody yet knows what dark matter and dark energy
are really composed of, although several intriguing proposals have been suggested [4].

The standard model has been able to explain and predict a series of phenomena with un-
matchable accuracy and, in the next few years, new physics is expected to emerge at CERN’s
Large Hadron Collider (LHC) at Geneva, Switzerland [5]. At this new facility protons and an-
tiprotons will collide at energies around 10 TeV, which is approximately ten times larger than
those currently available at the Tevatron [6]. At such high energies matter as we know it may
be revealed to be just a rough description of more fundamental entities such as strings [7] and
even what we understand as spacetime may radically change [8]. At lower energies, however,
the standard model can be trusted and a lot of attention has been put towards understanding
ordinary matter at extreme conditions. In fact, the phase diagram of matter at extreme high
temperatures and/or densities is illustrated in Fig. 1.1 [9].

Whether or not our universe was created after a spacetime singularity (the big bang) is still
under debate but there is strong experimental evidence that suggests that the early universe’s
energy density and temperature were extremely large indeed. Perhaps the most striking evi-
dence for the existence of a state of infinitely high temperature and density in the distant past
is the ongoing Hubble expansion of our universe [10]. Furthermore, the observed microwave
background spectrum (and its fluctuations) as well as the spectrum of density fluctuations pro-
vide fundamental information about the early stages of the universe. It is fair to say that these
observations along with the equations of general relativity constitute the pillars of modern cos-
mology. They are the tools with which one can successfully describe the universe’s evolution
[11].

Looking at the phase diagram in Fig. 1.1, it is almost impossible not to wonder what matter
was really like in the early universe. A fundamental property of the theory of strong interactions
is that it is asymptotically free [12]. This means that the strong coupling constant that quantifies
the interactions among quarks and gluons becomes small at large energies. It is then expected
that in the early universe the temperature was so high that hadrons (colorless bound states of
quarks and gluons) could not have been formed. Instead, weakly interacting deconfined quarks
and gluons permeated the entire universe forming a thermalized state known as the quark-gluon
plasma (QGP). Only after the universe had expanded and then cooled down to temperatures
where its energy density dropped below approximately 1 GeV were the first hadrons formed.

When the universe’s temperature was around 100 keV small atomic nuclei began to form.
The unstable hadrons had already decayed and all the antiparticles had been annihilated leav-
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Figure 1.1: Schematic phase diagram of strongly interacting matter, from Ref. [9]. Note that u is the
quark chemical potential.

ing only protons, neutrons and electrons. The universe was still ionized and, thus, completely
opaque to radiation. It only became transparent about 380000 years after the big bang when its
temperature was around 3000 K and electrons and atomic nuclei combined forming electrically
neutral atoms. The electromagnetic radiation that decoupled at that point was redshifted down
to a temperature of about 2.7 K due to the expansion of the universe. This radiation corre-
sponds to the cosmic microwave background. However, the extremely tiny baryon-antibaryon
asymmetry observed in our universe after hadronization (~ 10~?) still needs to be understood.

In the last two decades the biggest challenge in nuclear physics has been to produce QGP
in the laboratory by colliding heavy nuclei at ultrarelativistic energies [13]. The matter created
in these collisions interpolates between the extremely hot and almost net-baryon free matter
present in the early universe and the much colder and denser matter that might still exist
nowadays in the inner core of compact stars such as neutron stars. Experiments conducted at
Brookhaven’s Relativistic Heavy Ion Collider (RHIC) located at Long Island, USA, with center-
of-mass energies at /s ~ 200 AGeV created matter in the region close to the temperature axis
in Fig. 1.1, around (7', u) ~ (170,10) MeV, and it is now widely believed that an equilibrated,
strongly coupled QGP has been produced in these collisions [14]. Similar experiments will be
performed at the LHC (ALICE project) in the next five years with center-of-mass energies
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several times larger than those at RHIC [15]. In Fig. 1.1 we see that there is a line of first-order
phase transitions that distinguishes QGP from hadronic matter. The line extends until the
critical point where the transition changes to second order. The location of the critical endpoint
depends on the values of the quark masses and current lattice calculations predict that it is
located at (T, p) ~ (160,240) MeV [9].

At low temperatures and quark chemical potentials ordinary matter is in the hadronic phase
where isolated quarks are never found. Nuclear matter as produced in the lab and also in stars
is correctly described by using this phase. The ground state of (infinite) nuclear matter at
zero temperature is at u = 308 MeV with a baryonic density of approximately 0.15 fm 2. The
tiny line in Fig. 1.1 that extends from the ground state to T' ~ 10 MeV denotes the first-order
phase transition line that ends at the critical point where there the transition is then of second
order. This corresponds to the nuclear liquid-gas phase transition [16], where to the left of the
nuclear matter line is the gaseous state and to the right is the liquid state. These states are
indistinguishable above the critical end point.

The Compressed Baryonic Matter (CBM) experiment [17] to be performed in the next few
years at GSI’s (Gesellschaft fiir Schwerionenforschung) new facility FAIR (Facility for Antiproton
and Ion Research) in Darmstadt, Germany will explore the region of high baryon densities in the
phase diagram. Whether or not this experiment will be able to probe the cold and ultradense
region where quark matter is a color superconductor is still unknown, although some important
signatures may be observed [18]. Color superconductivity will be discussed in great detail in the
following sections.

1.2 The Basics of QCD

Quantum chromodynamics is a renormalizable [SU(N,)] gauge theory (gauge symmetry groups
are enclosed by square brackets) where N, is the number of colors. Quarks are spin-1/2 particles
that belong to the fundamental representation of [SU(N,)|, whereas gluons are spin-1 gauge
bosons defined in the adjoint representation of [SU(N,)]. In general, QCD can be consistently
formulated with an arbitrary number of colors N, and quark flavors Ny, although N. = 3 and
Ny = 6 are found in nature.

The QCD Lagrangian density reads [1, 2, 9]

_ 1
Lacp =¥ (V' Dy —m) ¢ — L BV Fyy + Lar + Lrp (1.1)

where ¢ are 4N.Ny-dimensional spinors, the Dirac conjugate spinor is defined as ¥ = iy,
~* are Dirac matrices, and m is the current quark mass matrix, which is diagonal in flavor
space, i.e., m = m;;d;; (4,5 = 1,...,Ny). The known quark flavors are called up (u), down
(d), strange (s), charm (s), bottom (b), and top (t). Their masses are ordered as follows:
My Mg K Mg K Me K My K My

The covariant derivative D, = 9, —igAj, T,, couples the gluons, Yang-Mills bosons described
by vector fields A5 (a = 1,...,N? — 1), to fundamental fermions and the strength of this inter-
action is quantified by the strong coupling constant g. The [SU(N,)] generators are given by
T, = A\o/2 where )\, are the Gell-Mann matrices. Moreover, the gluon field strength tensor is
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defined as
F =0t AY — 0" AL + g fabe AZ A7, (1.2)

where fgp. are the structure constants of [SU(N,.)| defined via ifup.1: = [Ty, Tp]. The presence
of nonlinear terms in A% in Eq. (1.2) implies that gluons also carry color charge and, thus, can
self-interact. Therefore, even if we do not take into account the fermionic contribution in Eq.
(1.1) the theory left over, known as pure Yang-Mills theory, is still an interacting theory. The
terms Lop and Lpp in Eq. (1.1) correspond to gauge fixing terms and to the contributions of
Faddeev-Popov ghosts. These terms are necessary in order to have a well-defined gauge theory
but they do not need to be discussed in detail here.

The physics behind the self-interactions among the Yang-Mills bosons can be readily un-
derstood once we recall what happens in ordinary electromagnetic theory. There the photon
couples to charged fields even though it has no electric charge. The analog of the charge of a
field in a non-Abelian gauge theory such as QCD is the representation that the fields belong
to. Yang-Mills bosons couple to all fields transforming nontrivially under the [SU(N.)] gauge
group. In fact, since the Yang-Mills bosons themselves transform under the group’s adjoint
representation they must interact with each other.

Quantum electrodynamics (QED) without fermions contains only a noninteracting photon
[1, 2]. This theory is free and essentially trivial. Pure Yang-Mills theory, however, contains
self-interaction and is highly nontrivial. The structure constants f.. are completely determined
by group theory, which means that the cubic and quartic self-interactions of the gauge bosons
in Eq. (1.1) are completely determined by the non-Abelian symmetry.

In the limit of massless quarks it is sometimes convenient to decompose the quark spinors
into right- and left-handed spinors

1+ Y5
2 )
where Pg 1, are the chirality projectors. Moreover, it can be shown that when the quarks are

massless the QCD Lagrangian is invariant under global chiral U(N;)r®@U (Ny), transformations
where

Y=9Yr+YL ., YrRL=PrrvY , Prr= (1.3)

N7-1
UR’LEeXp 1 Z a%,LTa GU(Nf)R,L, (1.4)
a=0

af, ;, are the transformation parameters, and T, are the generators of U(N¢)g,r.

"The chiral group U(Nf)r@U(Ny)y is isomorphic to SU(Nf)r@ SU(N¢), @U(1)y @ U(1) 4
where the vector subgroup U(1)y corresponds to quark number conservation. The axial group
U(1)4 is explicitly broken by instantons, which corresponds to the chiral anomaly of QCD [19].
However, this symmetry might be effectively restored in matter because instantons are screened
in hot (dense) media [20].

In the more realistic case where the quark current masses are nonzero the chiral symmetry of
QCD is explicitly broken. In fact, the mass term in Lqcp mixes quarks with different chiralities

O mig ) = Plymig b O mg vl (1.5)

where the projectors Pr and Py, are orthogonal and Pr 1, 70 = Y0 Pr,r- If all the quark masses are
equal the mass term in Eq. (1.5) preserves an SU(N¢)y symmetry, although the axial symmetries
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are explicitly broken. In nature an approximate SU(2)y isospin symmetry is observed, which
is a consequence of the approximate equality of the up and down current quark masses (the
masses of the other quarks differ greatly).

In the QCD vacuum the U(1)4 anomaly is present and the pattern of chiral symmetry
breaking is SU(Nf)r ® SU(Ny¢)r, — SU(Nyf)y. There are NJ% — 1 broken generators and,
consequently, NJ% — 1 Goldstone bosons. For Ny = 2 the Goldstone bosons correspond to the
three pions, which are the lightest hadrons. However, pions are observed to have a small mass,
which is a consequence of the fact that chiral symmetry is explicitly broken by the small, though
nonzero, quark mass term in the QCD Lagrangian. Because of that pions are called pseudo-
Goldstone bosons. For Ny = 3 the pseudo-Goldstone bosons account for the pseudoscalar meson
octet, which includes pions, kaons, and the  meson. For a more detailed discussion see Ref. [9].

The equation of state of strongly interacting quark matter is determined using the grand
canonical partition function [21, 22]

2.0 = [ 0020 pas exn{ | [ (Len+ur)| (16)

where the quark chemical potential y is associated with the net quark number conservation and
the number density operator is N/ = 9. This partition function is defined in a compact
Euclidean spacetime volume 2 x 1/T', where © and T are the system’s volume and temperature,
respectively. The boundary conditions are such that bosonic fields, such as the gluons, are
periodic in the time direction, i.e., A% (0,Z) = A4L(1/T, %), while fermionic fields, such as the
quarks, are antiperiodic, ¥(0,Z) = —(1/T,Z) [21, 22]. Spacetime integrals are denoted as
Iy = J/"dr [, d3z.

Thermodynamical quantities such as pressure p(7T, i), entropy density s(7, u), and quark
number density n(T, ) can be obtained from Eq. (1.6) as follows
Op(T, p) Op(T, p)

Ol Z(T, j1) s(Typ) = Py = P g

p(Typ) =T :
o0 T or |, o |p

In particular, when T' < u the quark number density n (7, u) for massless quarks is proportional
to the third power of y, n ~ p3. The thermodynamical limit Q — oo can be safely taken in
Eq. (1.6) because In Z(T, i) is an extensive quantity (~ Q) and, thus, the dependence of the
pressure on the volume cancels out. In general, the expectation value of any given operator O
in the grand canonical ensemble is obtained by averaging, i.e.,

(O) = %/D@zwmg O exp { [/X (Loon +MN)H . (1.8)

In a quantum field theory the intensity of the coupling depends on the energy scale () within
which the experiments are performed. In fact, this is described by a renormalization group flow
equation

of

0~ B, (1.9)

where f is the coupling constant, and @ is an arbitrary energy scale. If the sign of the theory’s
[-function is positive (negative) the coupling increases (decreases) with ). Since in nature
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Ny = 6 we have that Sgcp < 0 and, thus, QCD is an asymptotically free theory [12]. The
3—loop formula for a, = g?/4n [23] is given by

Arr 2B In [ID(Q2/A%QCD)] . 432
Bo ID(QQ/A(%CD) ﬁ% ID(QQ/A(%CD) 611H2(Q2/A?QCD)

2
X <<ln [In(Q*/Aden)] — %) + ZQT%O — Z)] , (1.10)

where N, = 3 and

as(@Q) =

2 19 5033 325
Po=11-2Ny,  Pr=51——FNp,  [p=2857 - —=Nj+—— 7.

1.11
3 3 9 ( )

The value of the QCD scale Aqcp depends on the experiment used to measure as. When quarks
are massless the classical QCD Lagrangian Locp has no dimensionful parameters. However, the
quantization procedure introduces the dimensionful parameter Aqcp. This process is sometimes
known as dimensional transmutation [1, 2]. In fact, the typical size of a hadron can be estimated
using standard values of Aqcp such as Aqep =~ 200 MeV to be of the order of 1 fm.

The Lagrangian density in Eq. (1.1) contains all the elements necessary to describe the strong
force. In the standard perturbative approach [21, 22] the system’s thermodynamic quantities
which are obtained from the partition function are computed as a perturbative series in powers
of the strong coupling constant. After introducing Feynman rules for the propagators and the
interaction vertices, one would naively expect that this perturbative series is an expansion in
powers of g2. However, it can be shown that this is only true at zero temperature [24]. For
nonzero temperatures the expansion is in powers of ¢ instead of g2 because of the singular
infrared properties of QCD at nonzero temperature imposed by the massless gluons.

Freedman and McLerran computed the series up to terms of the order g* at zero temperature
[24]. In this case the theory has no infrared problems and the terms in the perturbative series
are probably computable to all orders in g2 [25]. As it will be shown in a following section,
quark matter at zero temperature is color superconductive. Color superconductivity as well
as ordinary electronic superconductivity are nonperturbative phenomena that cannot appear in
perturbative calculations of the thermodynamic quantities.

For nonzero temperatures the perturbative expansion of the partition function in Eq. (1.6)
has terms proportional to odd powers of g. These terms arise after resumming an infinite subset
of diagrams describing the screening of long-range chromoelectric fields. In fact, the perturbative
expansion breaks down because there are infinitely many diagrams at O(g%) [21]. This is known
as the Linde problem of QCD [26]. However, all terms up to O(g%Ing) have been computed
[27]. A truly nonperturbative calculation can only be performed numerically using lattice QCD
[28].

In lattice QCD thermodynamic quantities are computed nonperturbatively on a hypercubic
lattice in 4—dimensional Euclidean spacetime. As the lattice spacing a — 0 Lorentz invariance
is recovered (via a Wick rotation). For small values of p lattice QCD results [28, 29] predict
that the QGP-hadron gas transition is a crossover [30, 31]. However, so far these calculations
are limited to the region where T' > u because of the so-called fermion sign problem [28, 29].
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This problem appears because lattice simulations use Monte Carlo importance sampling and
rely on the probabilistic interpretation of the weight in the path integral. However, this weight
is given by the fermion determinant, which is complex at nonzero chemical potentials. Thus,
lattice QCD still cannot be used to calculate the properties of matter as found, for example, in
compact stars because there T" < p. In this region of the phase diagram effective models are
used to describe cold and dense quark matter [32, 33].

1.3 Eletronic Superconductivity in a Nutshell

When certain materials are cooled down below a certain critical temperature T, they suddenly
become superconductors. Historically, physicists had long suspected that the superconducting
phase transition first observed by Onnes in 1911 [34] was somehow related to the superfluid
transition, which involves the phenomenon of Bose-Einstein condensation. However, since elec-
trons are fermions they would first have to pair forming bosons, which would then condense.
This general picture is essentially correct; electrons form Cooper pairs whose condensation is
responsible for superconductivity.

A microscopic model that could explain superconductivity was lacking until the late 50’s
when Bardeen, Cooper, and Schrieffer (BCS) were able to successfully explain and predict the
properties of conventional superconductors [35]. The standard BCS theory was able to describe
both qualitatively and quantitatively all the important properties of electronic superconductors
known at that time. Basically, the theory says that superconductivity appears due to the
formation of a gap in the quasiparticle excitation spectrum. This gap accounts for the fact
that in the superconducting state one needs a finite amount of energy to excite an electron
(more precisely, a quasiparticle [36]) at the Fermi surface. In constrast, in a metal even an
infinitesimally small amount of energy can excite an electron at the Fermi surface.

According to Bardeen, Cooper and Schrieffer the material, which can be either a metal or
an alloy, is described as an interacting system with electrons and phonons. Since electrons obey
the Pauli exclusion principle at zero temperature all quantum states up to a certain energy, the
so-called Fermi energy ep, are occupied. Energy states above €, however, remain empty. In
momentum space the boundary between occupied and empty states corresponds to the surface
of a sphere, the Fermi sphere, with radius given by the Fermi momentum k. This configuration
is stable as long as interactions are not taken into account.

In addition to the repulsive Coulomb interaction there is also an attractive force between
the electrons in the material provided by the exchange of virtual phonons [37]. In practice,
the phonon energy is limited from above by the Debye energy wp and due to Pauli blocking
only electrons close to the Fermi surface can interact via phonon exchange. However, even an
arbitrarily weak interaction between the electrons can lead to the formation of a new ground
state, the superconducting state, where the electrons pair near the Fermi surface. This is the
basic idea behind Cooper’s theorem [38]. This new ground state is more stable because the
total energy of the system is reduced by the amount corresponding to the sum of the binding
energies of the electron pairs. Moreover, the single particle excitation energies are modified
by the presence of a nonzero gap at the Fermi surface, which corresponds to the Cooper pair
condensate.
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In the presence of a nonzero gap ¢ the quasiparticle excitation spectrum Fy is given by

By, = \/er — 1) + 6T, 1), (1.12)

where p is the electron chemical potential, T" is the temperature, and €, = k2 /2m is the energy
of a free quasiparticle. The gap function ¢ is obtained in the standard BCS theory via the gap
equation

@k (T 1) tanh< B ) (1.13)

2
HTom) =g / 21)? 2B, 2%pT

where g is the coupling constant of the phonon-mediated attractive interaction among the elec-
trons. Note that ¢ depends only on T and g and not on the momentum k. This only occurs
because the attractive interaction between the electrons is considered to be point-like.

The integral in Eq. (1.13) diverges but it can be easily regularized by introducing a momen-
tum cutoff, which is usually taken to be proportional to wp. The nontrivial solution of this
equation (¢ = 0 is always a solution) at T' = 0 reads

¢o = 2wp exp ( - Nolg2>’ (1.14)
where Ny = m kr /272 is the electronic density of states at the Fermi surface. Another important
result obtained within the BCS theory is the following relation between ¢ and the critical
temperature T,

bple & (1.15)

®o m

where v ~ 0.577 is the Euler-Mascheroni constant. We will see later on that in color supercon-
ductivity the attractive interaction among the quarks is mediated by the gluons, which leads to
a non-BCS dependence of the diquark gap on the strong coupling constant.

In 1986 Karl Miiller and Johannes Bednorz found a radically new class of superconductors,
which cannot be explained within the standard BCS theory, the so-called high-Tc or cuprate
superconductors [39]. These materials share some common structural features such as the pres-
ence of relatively well separated copper-oxide planes. The superconducting phase transition
temperatures that can be achieved in some compounds in this family are the highest among
all known superconductors and can be as large as 125 K. This experimental discovery was so
revolutionary that Karl Miiller and Johannes Bednorz won the Nobel Prize of Physics already in
1987. Since then cuprate superconductors have been intensively studied but still no satisfactory
theoretical explanation has been found.

1.3.1 Ginzburg-Landau Approach to Superconductivity

Seven years before the BCS theory was developed, Ginzburg and Landau had already realized
that it was possible to describe superconductivity by expressing the free energy of the super-
conducting state as a function of ¢, which in this case constitutes the order parameter of the
transition [2, 40, 41]. Recall that in the ferromagnetic transition the magnetization M in a fer-
romagnet suddenly changes from zero to a nonzero value when the temperature drops below a
certain critical temperature. Analogously, in a superconductor ¢ can be taken to be zero at high
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temperatures and nonzero for temperatures below T,. Their approach can be used to describe
superconductors near to their critical temperature T..
In the Ginzburg-Landau theory ¢ is a complex field that depends on the spatial coordinates
Z and carries two units of electric charge e. In the presence of an external magnetic field B the
Ginzburg-Landau free energy density reads
VALY
o, Ay= VXA
where D(Z) = V —i2eA(Z) is the covariant derivative, A is the vector potential, and B = V x A.
Moreover, a and b are positive constants that can be derived from the microscopic theory and
do not depend on the temperature. Note that the free energy is invariant under the [U(1)] gauge
transformation ¢ — exp(i2eA) ¢ and A — A + VA where A(Z) is an arbitrary function. Also,
one can show that the superconducting transition obtained in this mean-field approach is of
second order.
A trademark of superconductivity is the Meissner effect in which an external magnetic field
B that permeated the material before the superconducting transition is expelled from it as the
temperature drops below 7. (see Fig. 1.2). It basically indicates that a configuration with a
constant magnetic field inside the material is not favored energetically. The Meissner effect
implies that the effective laws of electromagnetism inside the material should somehow change
at T,. Assuming that the system is homogeneous, the free energy F is minimized by ¢ = 0
above T, and by ¢g = |¢| = /—a(T — T.)/b below T,.. Therefore, below T, the free energy is
roughly

+ |Do)? +a(T—Tc)|¢|2+g|¢|4+..., (1.16)

NAVIVLY

@ + (2e¢0)?A% + ... . (1.17)
Now we have everything we need to explain the Meissner effect. The mass term for the gauge
potential A indicates that the [U(1)] gauge symmetry was spontaneously broken by the con-
densation of Cooper pairs below T,.. Note that we have fixed the gauge in Eq. (1.17). The
electromagnetic [U(1)] symmetry group has only one generator and, after fixing the gauge, the
single Goldstone mode that appears as result of symmetry breaking is “eaten” by the photon,
which in turn acquires a Meissner mass proportional to (2e¢g)?.

Physically, it is observed that the magnetic field does not drop discontinuously from some
nonzero value outside the superconductor to zero inside. In fact, the magnetic field leaks into
the superconductor defining a length scale A called the magnetic penetration depth. This length
scale is determined by the competition between the energy in the magnetic field B2 ~ A2 /A2
and the Meissner term (2e¢¢)2A2 in Eq. (1.17). Equating these contributions we obtain that
A~ (1/edo) = (1/e)y/—bla (T, T,

Similarly, the characteristic length scale over which the order parameter varies appreciably
is known as the coherence length £, which is approximately given by £ ~1/y/—a (T. — T'). The
ratio k = A/{ plays a very important role in the theory of superconductivity. In fact, this
parameter is used to classify superconducting materials into type I where x < 1/4/2 and type
II where the reverse is true. These two groups behave differently in the presence of external
magnetic fields.

Type-I superconductors cannot be penetrated by magnetic flux lines (Meissner effect). Or-
dinary superconductors, such as aluminum and niobium, are typical type-I superconductors.

F=
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T>Tc T<T¢

Figure 1.2: Magnetic field lines are excluded from a superconductor below its critical temperature.

On the other hand, a type-II superconductor is characterized by its gradual transition from
the superconducting to the normal state. In a type-II superconductor, the coherence length is
smaller than the London penetration depth, which means that magnetic flux lines can pierce
the material in the form of vortices at strong enough external fields. These vortices can arrange
themselves in a regular structure known as the Abrikosov vortex lattice [42].

Type-II superconductors are usually made of metal alloys or complex oxide ceramics, whereas
type-1 superconductors tend to be made of pure metals. While a type-1 superconductor has its
transition at a single critical temperature, a type-II superconductor has two critical temperatures
that depend on the strength of the applied field. Above the lower temperature T.; magnetic
flux from external fields is no longer completely expelled and the superconductor exists in a
mixed state consisting of normal and superconducting matter. Above the higher temperature
T.o superconductivity is completely destroyed and the system is again in the normal phase [43].

1.3.2 The Effect of Electromagnetic Fluctuations

In 1974 Halperin, Lubensky, and Ma [44] showed that the metal-superconducting phase tran-
sition becomes weakly first order once effects from the intrinsic fluctuating magnetic field are
included. A similar analysis has been employed in the description of other important phenomena
such as phase transitions in liquid crystals [45], transitions in the early universe [46], and the
quantum Hall effect [47].

Halperin, Lubensky, and Ma used the free energy density functional F (¢, ff) in Eq. (1.16) to
describe the interaction between the condensate ¢ of a type-I superconductor and the electro-
magnetic potential /T, which is taken to be in the Coulomb gauge, i.e., V-A=0. Moreover, ¢
is assumed to be constant and the new free energy F(¢), which takes into account the thermal
gauge field fluctuations, is defined by performing the functional integral over A as follows
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o~ F@)/kpT _ / DA(F) eI ©F F@A)/koT (1.18)

Since F is quadratic in A the partition function above can be calculated exactly. It can be

shown that

1 dF(¢) _ B 3 2 9
W o a(T —Te)|¢| + b|@|” + 4e”|B|(A%) 4, (1.19)

where V is the volume of the system, and (A?), is the expectation value of A2(7) evaluated at
a certain ¢, which is

(A%), = 2k T/ L (1.20)
P feen @R R+ R '
where A is the momentum cutoff. The momentum scale ks = 8¢2|¢|? is the inverse of the

magnetic penetration depth. If ¢ is such that ks is much smaller than A we have

(A% = 22 F ey (1.21)

The first term in the equation above leads to a slight renormalization of the mean-field critical
temperature T.. The second term is more interesting because it leads to a term proportional to
|#|> in F(¢) that has a negative sign. This term changes the order of the superconducting phase
transition into first order because F(¢) has a minimum at ¢ # 0 when T is still slightly larger
than T..

We note in passing that the metal-superconducting phase transition has also been studied
using Monte Carlo simulations of the Ginzburg-Landau model (see for instance Ref. [48]).

1.4 A Glimpse into Superfluidity

The element helium has two stable isotopes: ®He and *He. In contrast to classical liquids that
always crystallize at sufficiently low temperatures, these isotopes are known as quantum liquids
because they remain liquified at temperatures very close to the absolute zero (they can solidify
under pressure). This unique behavior appears because of the weak interactions among the
atoms, which have a closed 1.5 electron shell, and the large zero-point oscillations produced by
their small atomic mass [49].

Since “He atoms are bosons they tend to occupy the same single-particle state at very low
temperatures, which leads to the formation of a Bose-Einstein condensate, and, consequently,
superfluidity. *He superfluidity was observed in 1938 by Kapitza [50] and its singular properties
have been studied in detail since then [51].

The “He superfluid transition is marked by a peak in specific heat at T = 2.17 K, known
as the A—point, which behaves like In |T" — T¢| on both sides of the transition. This singularity
is generally thought to represent the onset of Bose-Einstein condensation. In the superfluid
state, *He displays remarkable hydrodynamic properties. For instance, it can flow through fine
channels with no pressure drop, which seems to imply that it has zero viscosity. However, a direct
measurement of the viscosity, using for example a rotating cylinder viscometer, shows that the
viscosity is nonzero and has a value comparable with the viscosity above T'y. This was explained
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by Tisza [52] and Landau [53] using a two-fluid model in which “He consists of a mixture of two
interpenetrating fluids: the superfluid with density ps and velocity U5 and the normal fluid with
density p, and velocity ¥,. The superfluid consists of a perfect background liquid with zero
entropy and viscosity and some type of phonon-like excitations. Also, the superfluid is taken to
be irrotational, i.e.,

V X ¥ = 0, (1.22)

and the total density of the Bose liquid is given by p = ps + p,. The nonzero viscosity observed
in the experiments is easily understood within the two-fluid model. In fact, since the normal
fluid behaves as an ordinary fluid it provides the measured viscosity of “He.

The two-fluid description indicates that the system’s motion can be decomposed into a center
of mass motion (where the two components move in phase) and another type of propagation
where the density at any point is essentially constant but the difference between the superfluid
and normal fluid densities is not. This leads to a new kind of wave propagation known as
second sound, which corresponds to temperature-dependent phonon density waves. These waves
are excited by heat rather than pressure pulses. It should be emphasized, however, that the
separation between normal and superfluid components used in the two-fluid model does not
actually mean that the quantum liquid can be physically divided into two separate parts.

At low temperatures the only quasiparticles present in the system are the long-wavelength
phonons and, thus, the excitation energy is Fj ~ k. The characteristic momenta of these
excitations correspond to wavelengths that are large in comparison to the interatomic distance.
In general, a linearly dispersing mode implies superfluidity. This can be seen from the following
argument [2, 54].

Consider a mass M of fluid flowing down a tube with a certain velocity ©. The creation of
an excitation with momentum k such that M7 = M@’ + k slows down the fluid to a velocity v”.
However, this is only possible if there is enough energy to be spared, i.e.,

Muv? > —Mv'? + w(k). (1.23)

DO | —

1
2

After eliminating M we obtain that v > w(k)/k. For a linear dispersion relation this gives a
critical velocity v. = w/k = u (where u does not depend on k) below which the fluid cannot lose
momentum, which then establishes the onset of superfluidity.

In a gas of noninteracting bosons one can excite any given boson with momentum k at
the energy cost of only k?/2m. There exists an infinite number of ungapped excitations in
the quasiparticle spectrum. However, after superfluidity sets in there are fewer low energy
excitations. Recall that the density of states at a given energy is N(F) x kP~ (E)dk/dE.
For example, when D = 3 we have N(E) x VE for quadratically divergent modes, while
N(E) o« E? for linear modes at low energies. The unusual properties of superfluids result not
from the presence of gapless excitations but rather from the scarcity of gapless excitations. There
are just too few modes with which the superfluid can lose energy and momentum to.

For momenta larger than a certain k, the spectrum is dominated by another kind of quasi-
particles called rotons. The function Fj can be expanded in powers of k — k, in the region
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around k,
(k — k,.)?

Er=A
K + 2m

(1.24)

)

where A and m are constants.

The number of phonons in a Bose liquid goes to zero as T'— 0. At low temperatures their
density is very small and the system behaves as a non-interacting Bose gas. The thermodynamic
quantities of this system at very low temperatures can then be easily calculated. For instance,
the specific heat behaves as 73, which is in accordance with experiments.

The lighter isotope *He has one less neutron than “He, so it is a fermion. Arbitrarily weak
interactions between *He atoms provided by the van der Waals force will trigger the formation
of atomic Cooper pairs leading to superfluidity. Superfluid 3He was experimentally observed for
the first time in 1972 at temperatures around 7. = 2mK [55], which is at least three orders of
magnitude smaller than *He’s Ty. The rich phase structure of superfluid *He was studied by
Leggett in 1975 [56]. Several aspects relevant for the description of 3He’s superfluid properties
can be directly applied to understand spin-one color supercondutivity [57].

The occurrence of superfluidity in fermionic systems may suggest that superfluidity is nothing
but a different type of superconductivity where the Cooper pairs are chargeless. However, in
superfluids the atomic interaction potential becomes repulsive for short mutual distances, which
means that 3He Cooper pairs have a total angular momentum of L = 1 (p-wave state). Thus,
since the total Cooper pair wave function has to be antisymmetric we see in superfluid *He that
the atoms pair in the S = 1 spin state, while ordinary electronic Cooper pairs have spin zero.

1.4.1 Rotating Superfluids

The superfluid is incompressible, i.e., V - ¥, = 0 when v, is much smaller than the speed of
sound. In this case Eq. (1.22) implies that

. Vo
’US = —,
m

Vip=0. (1.25)

This has some very important consequences. Consider a cylinder rotating around its symmetry
axis with an angular velocity & and filled with superfluid helium (see Fig. 1.3). This can be
obtained experimentally by starting with solid helium in a can under pressure larger than 25
atm at T' ~ 0 K and rotating it. After the pressure is released the solid melts and then liquid
helium is rotating with the angular momentum initially given to the solid. What is then the
final state of helium?

Assuming that the superfluid is not spilling out of the cylinder, i.e., dp/dn = 0 (7 is the
normal vector perpendicular to the surface) then ¢ is a constant and U5 vanishes for any . The
assumption that the fluid is irrotational implies that the shape of the free liquid surface should
be given by the equation

2,.2
wT P (1.26)
29 p
where ¢ is the acceleration due to gravity. Note that the factor p,/p leads to a temperature
dependent height z = z(T'). The validity of the equation above was tested by Osborne [58] who
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Figure 1.3: Rotating can filled with superfluid helium.

found instead that the free surface was that of an ordinary classical fluid

w27°2

29’

2g = (1.27)

which is independent of the temperature. In order to explain this discrepancy we have to
reexamine Eq. (1.22). Cylindrically symmetric solutions of this equation are of the form

C 4
Ug = —0, 1.2
¥y == (1.28)

where C' is a constant and 7 = (r,60) is a vector on the z — y plane. If Eq. (1.22) is valid
everywhere, including the origin, C' must be zero. This contradicts the result in Eq. (1.27)
and Feynman [60] showed that this apparent paradox could be solved by assuming that V X
becomes singular at some isolated points in the fluid. This singularity is characterized by the

circulation of the fluid

r= fdf- 7, (1.29)
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with which the corresponding symmetric solution becomes that of a rectilinear vortex parallel

to the z axis
kA
Us = —80. 1.30
2y ( )
In this case the rotating superfluid contains a uniform array of parallel vortices distributed
with a density of 2w/I" per unit area (see Fig. 1.4). Note that the average superfluid velocity field
is indistinguishable from a uniform rotation ¥ = & x 7" because both flow patterns give the same
circulation around any macroscopic contour much larger than the intervortex spacing. Thus,
adding the contribution from the superfluid one can obtain the correct result in Eq. (1.27).

Figure 1.4: Rotating can seen from above with all vortices turning in the direction.

Onsager [59] and Feynman [60] independently showed that the circulation in superfluid he-
lium defined in Eq. (1.29) is quantized in units of

2
I = =" =0.997 x 10 3cm? /s, (1.31)
m

which was experimentally verified in the early 60’s [61]. The energy per unit length of vortex
line is given by

1 psI2 [dr pJI% R
= — d2_) 2 = d _ S 1 — 1.32
“v 2/ e (1.32)
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where R is the radius of the cylinder and £ is the radius of the vortex core. For R ~ 1 cm
experiments indicate that £ ~ 1 A [49].

1.5 Color Superconductivity

The cold, ultradense inner core of neutron stars may be the only place in the universe where
the ground state of strongly interacting baryonic matter is in a state with deconfined quarks
and gluons [62]. Strongly interacting quark matter has been recently observed at RHIC [14]
but the temperatures and densities involved are very different than those expected in compact
stars. There the density can be several times larger than the nuclear saturation density. Studies
using effective models for the strongly coupled limit of quantum chromodynamics [63, 64] as
well as ab initio calculations performed in weak coupling [65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77] predict a phase transition between normal and color-superconducting (CSC) quark
matter at high baryon densities and sufficiently low temperatures (for early papers on color
superconductivity see Ref. [78] and for recent reviews see Ref. [79]). Therefore, it is expected
that the inner region of compact stars may consist of color-superconducting matter. The presence
of color superconductivity in compact stars still needs to be experimentally verified, however,
a number of possible astrophysical signatures have been proposed in the last years [80, 81, 82].
Here we give a short review of some of the most important concepts and ideas behind the
phenomenon of color superconductivity. For a very detailed discussion see Ref. [9].

The existence of color superconductivity in cold and dense quark matter can be rigorously
proven at asymptotically high densities. The main argument stems from the fact that due to
asymptotic freedom [12] when p > Aqgcp the QCD coupling constant computed at the scale
u becomes small, g(u) < 1, and the dominant interactions between quarks is given by single-
gluon exchange, which is attractive in the color-antitriplet channel. This can be seen directly
from the scattering amplitude for single-gluon exchange in an [SU(N.)] gauge theory, which is
proportional to

N, +1 N, —1

(Ta)ri (Ta)1; = — N (0 61 — 0ir 051) + N,

(6K Oat + 0ir 051) (1.33)

where 4,7 are the fundamental colors of the two quarks in the incoming channel, and k,[ are
their respective colors in the outgoing channel. The first term is antisymmetric, while the second
is symmetric under the exchange of the color indices of either the incoming or the outgoing
quarks. For [SU(3).] Eq. (1.33) describes the coupling of two fundamental color triplets to an
antisymmetric color antitriplet and a symmetric color sextet,

[3]¢ x [3]¢ = [3]¢ + [6]S . (1.34)

The antitriplet contribution in Eq. (1.33) contains a minus sign, which means that this channel
is attractive. On the other hand, the sextet channel has a positive sign and corresponds to a
repulsive channel. Therefore, the quarks located at the Fermi surface experience an attractive
interaction that, according to Cooper’s theorem, causes an instability that can only be cured
by the formation of diquark Cooper pairs. Since quarks have color degrees of freedom this
phenomenon is called color superconductivity [78]. The diquark condensate ® is the order
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parameter that describes the transition, i.e., ® = 0 corresponds to the normal phase and ® # 0
to the color-superconducting phase.

Electromagnetism is an Abelian theory with spin-1 bosons. Without the lattice contribu-
tion present in superconducting materials, equally charged fermions would never experience an
attractive interaction. Ordinary superconductivity arises because of the effective attractive in-
teraction between electrons due to the exchange of lattice phonons. This interaction can be
very complicated and, in fact, the exact microscopic mechanism necessary to explain high-T.
electronic superconductivity remains unknown. In contrast, color superconductivity appears as
a direct consequence of asymptotic freedom, which is a well-known property of QCD.

The densities that can actually occur in the core of compact stars correspond to quark
chemical potentials that are probably not much larger than 500 MeV and, therefore, g > 1.
This then implies that single-gluon exchange is not the dominant interaction. Whether or
not the matter in the core of compact stars is dense enough so that quark matter is a color
superconductor is a question that still remains. Nevertheless, calculations in the framework of
the Nambu-Jona-Lasinio (NJL) model [63, 64] show that color superconductivity does seem to
occur also at moderate densities where QCD interactions are strongly coupled. In this case, the
attractive interaction could be mediated by the exchange of instantons.

Since quarks have both color and flavor degrees of freedom the total number of ways in
which two quarks can pair can be very large. The total wave function of a Cooper pair must
be antisymmetric under the exchange of the paired quarks. Consequently, the possible color
and flavor representations involved in the formation of the diquark state have to be chosen in
order to satisfy the Pauli exclusion principle. This requirement helps to classify all possible
diquark condensates [9, 83]. For ultrarelativistic particles only the total spin J = L+ S is a
good quantum number. Thus, possible Cooper pair wave functions are classified according to
their total spin J.

Current masses for the first three light quarks are m, ~ 5 MeV, my ~ 9 MeV, and m, ~ 100
MeV [23]. The masses of the other three quarks are so large that they do not need to be taken
into account to correctly describe the properties of matter in the central regions of compact stars.
The symmetries defining the various color-superconducting phases depend on the masses and
charges of the quarks. If the chemical potential is so large that up, down, and strange quarks
can be considered as truly ultrarelativistic particles (m/pu < 1) the ground state of quark
matter corresponds to the color-flavor locked phase [84]. In this case the quarks pair in the
J = 0 channel and this phase is characterized by the condensation of quark Cooper pairs in the
color-antitriplet, flavor-antitriplet representation, which breaks down the normal phase’s initial
symmetry group [SU(3)]c @ SU(3), @ SUB)r@U (1) @ U(1) 4 into the diagonal SU(3)g+r+c
subgroup. After considering that all the gluons acquire color Meissner masses we see that ten
Goldstone bosons appear due to this symmetry breaking. The excitation spectrum in the CFL
state is very similar to the one in the hadronic phase. In fact, it has been conjectured that since
the symmetries of CFL quark matter are not different than those in SU(3)y flavor-symmetric
hadronic matter, there is no need for a phase transition separating these two phases [85].

When discussing gauge symmetries it is important to remark that they cannot be truly
spontaneously broken [86]. However, after fixing the gauge, spontaneous symmetry breaking
can occur as it does in ordinary superconductivity (see Sec. 1.3.1). In the standard model of
electroweak interactions the Higgs field breaks down the initial symmetry group [SU(2)], ®
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[U(1)]y into [U(1)]em- Analogously, the presence of quark Cooper pairs breaks the [SU(3)]¢
color symmetry.
In the CFL phase the quark Cooper pair condensate has the form

where @Z = 52 ¢. In the equation above, 7,57 = 1,2,3 and f,g = 1,2,3 denote color and flavor
indices, respectively. The non-vanishing order parameter implies that both color ([SU(3)]¢) and
flavor (SU(3)y/) symmetries are broken. A similar situation is found in superfluid 3He [87] where
Cooper pairs are formed with spin S = 1 and angular momentum L = 1. Accordingly, there
the order parameter breaks the global SO(3) symmetries corresponding to spin and angular
momentum.

The CFL condensate has some very interesting properties. For instance, it is a baryon super-
fluid but not an electromagnetic superconductor. In fact, when it comes to the electromagnetic
properties of quarks in the CFL phase the system is more adequately described as an isotropic
electromagnetic insulator (although electron-positron pairs can be thermally excited and con-
tribute to the total conductivity [88]). In conventional superconductivity the gauge symmetry
of electromagnetism is spontaneously broken by the condensation of electron Cooper pairs. This
process gives an effective mass to the photon that screens external magnetic fields (electromag-
netic Meissner effect). On the other hand, in color superconductors the initial [U(1)]¢pm, symme-
try, whose generator coincides with one of the vector-like generators of SU(3) 1, ® SU(3)r, is not
really broken but “rotated” [84]. This new group, denoted here as [U(1)]em, is described by a
massless linear combination of the photon and the eighth gluon and is analogous to the electro-
magnetic [U(1)]en, symmetry that remains unbroken after the electroweak symmetry breaking.
Using the convention adopted in Ref. [89], it can be shown [84, 90] that the “rotated” electric
@—charges of the quarks are

Sp | Sg | Sr | dy | dg | dr | up | ug | up
00| -10]0]|-|4+]4+10

(1.36)

in units of the @—charge e = ecosf where 6 is the mixing angle. In color-flavor space the

associated charge operator @) is given by

@ = Qf ® 1. — 1f ® Q. (1-37)
where Q. = —\g/v/3 = diag(—1/3,—1/3,2/3).

Several other color-superconducting phases have been studied in the last years [9, 79]. For
instance, when only up and down quarks are taken into account the most simple representation
is the antisymmetric flavor singlet [1]{; representation of the SU(2)y flavor group. In this case,
the simplest J = 0 quark Cooper pair condensate is given by

0l = ey 7 @, (1.38)

where i,j = 1,2,3 are the color indices, while f,g = 1,2 are the corresponding flavor indices.
The condensate in Eq. (1.38) describes the so-called 2-flavor color-superconducting (2SC) phase.
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A system containing a single quark flavor cannot have Cooper pairs in the spin-zero channel.
However, quarks can also pair in the J = 1 channel [91]. This channel corresponds to the
symmetric [3]7 representation of the SU(2); spin group. If one still assumes that the pairing
occurs in the color [3]S channel, the Cooper pair wave function is overall antisymmetric. The
condensate is a 3-vector in space which points in the direction of the spin of the Cooper pair.

It has the form [69, 78, 92, 93]

q)gj = Eijk: @Z (139)
where a = x,y, z denotes the spatial component of the spin vector. Condensation breaks the local
color [SU(3)]¢ symmetry and the global SO(3); spin symmetry. This is similar to superfluid
3He where the condensation of Cooper pairs breaks the group SO(3)s ® SO(3),, as discussed
above. Many different phases can be appear in this case. Two of the most important phases are
the color-spin locked (CSL) phase, which has the order parameter

O’ = 0" P (1.40)

and the polar phase where ' '
Pl =436 @ . (1.41)

The order parameter of the CSL phase is very similar to the CFL order parameter in
Eq. (1.35) because all quark colors participate in the pairing and the symmetry breaking pattern
is also similar, [SU(3)]c ® SO3); x U(1)y ® [U(1)em] — SO(3)c4s. All eight gluons become
massive in the CSL phase. Moreover, CSL superconductors are also ordinary superconductors
since the photon gains a mass [94].

The pattern of symmetry breaking that defines the polar phase is given by [SU(3)]c ®
SO3); @ ULy — [SU(Q2)]c ® SO(2); @ U(1). The residual [SU(2)]¢ color symmetry is
the local symmetry that corresponds to the three massless gluons that remain after symmetry
breaking. The other five gluons become massive. Two true Goldstone bosons appear due to
the breaking down of the rotational SO(3); symmetry into SO(2);. Additionaly, we see that
the baryon number is not broken but just “rotated”. Furthermore, it can be shown that if
there is only a single flavor present or if all flavors have the same electric charge a “rotated”
electromagnetic [U(1)]en, symmetry exists, while if there are at least two flavors with different
charges the [U(1)¢p] symmetry is broken [9].

In general, the quark quasiparticle dispersion relations in the color-superconducting state are
modified by the presence of a gap in the excitation spectrum. For massless quarks the dispersion
relations are

- L 11/2
B (07) = | (alk] = p)® + A 94T, i, B) P (1.42)

Different sets of excitation branches are described by A,, a = + (a = —) labels states with
positive (negative) energies and the gap function ¢® depends on the temperature 7', chemical
potential p, and momentum k. A common approximation is to assume that the gap depends
only on the temperature. The presence of an energy gap at the Fermi surface, £ = u, means
that in the superconducting state one has to give an extra amount of energy of the order of 2 ¢
in order to excite quasiparticle—quasiparticle-hole pairs on the Fermi surface. No extra energy is
necessary in order to excite particle-hole pairs at the Fermi surface in a non-interacting system.
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Therefore, we see that in general the superconducting state is energetically favored in comparison
to the normal conducting state [49].

The CFL and CSL phases have two different excitation branches with two different gaps at
the Fermi surface: E;:l((b) = 2¢ and E;Q(gb) = ¢. We can see that in these phases it costs twice
the amount of energy to excite quasiparticle excitations from the first branch than from the
second. In the 25C and polar phases one of the two excitation branches is gapless, i.e., EIQ =0.

Since quarks have different electric charges, the pattern of symmetry breaking can also change
in the presence of strong external magnetic fields. The physical upper limit for the magnetic
field in a gravitationally bound star is B ~ 10'® G, which is obtained by comparing magnetic
and gravitational energies. However, if quark stars are self-bound rather than gravitationally
bound objects, this upper limit could be even higher [95]. In this case, the symmetries of the
normal phase change because only s and d quarks have the same electric charge and for massless
quarks the SU(3)r ® SU(3)rg initial symmetry changes into SU(2);, ® SU(2)g.

The typical energy scale defined by these strong fields is of the same order of magnitude
as the color-superconducting gap present in the quasiparticle energy spectrum. Thus, one then
naturally expects that strong magnetic fields should affect the diquark pairing. The first step
in this direction was presented in Ref. [96] where it was observed that, since color-flavor locked
(CFL) superconductors do not experience the electronic Meissner effect, a “rotated” strong
magnetic field H that penetrates the system can affect the pairing and eventually lead to a
new phase, the so-called magnetic color-flavor locked (mCFL) phase. The pattern of symmetry
breaking that defines the mCFL phase is given by [SU(3)]c ® SU(2)r @ SU2)r @ U(1) ®
Ul)a®U(1),; — SU(2)rtr+c where U(1), corresponds to an anomaly-free current formed
by a linear combination of s, d, and u axial currents [97]. Note that in this case there are only
five Goldstone bosons as the result of symmetry breaking and all of them are chargeless. More
details about mCFL superconductors are given in Chapter 3.

1.5.1 Resummation Schemes at Nonzero Temperature and Density

Temperature (density) corrections cannot generate new ultraviolet divergences that are different
than those already present in the theory in the vacuum [21, 22]. However, as was already
mentioned in Sec. 1.2, at nonzero temperatures naive perturbation theory breaks down due to
the odd infrared behavior displayed by gauge theories. It can be shown [9] that loop calculations
involve dressed gluon propagators that have terms of the form

1
w2 _p2 +H(w7ﬁ) ’

D(w,p) ~ (1.43)
where II(w, p) is the one-loop gluon self-energy (the specific details about the Lorentz and color
structures of the gluon propagators are not particularly important in this discussion). The
leading-order terms in the calculation of II result from the contribution of states with momenta
k ~ T (or pat T =0) in the loop. Once the powers of the coupling constant arising from the
vertices are taking into account we have IT ~ g>T2 (or ~ g?u? at T = 0). Thus, as long as either
w or p are hard, i.e., of order T, the self-energy II in the propagator (1.43) does not need to be
included. However, when w and p are soft, i.e., of order ¢g7', 11 is of the same order of magnitude
as the other terms in the denominator and, therefore, cannot be neglected. In other words,
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soft processes are described using the dressed propagator (1.43), while processes involving hard
energy or momentum can be described by the simple bare propagator

1

D(%ﬁ)” w2—p

5 (1.44)

This is the basic idea behind the hard-thermal-loop (HTL) resummation scheme [22, 100] and
its equivalent at 7" = 0 and p # 0, which represents the hard-dense-loop (HDL) resummation
scheme [101]. For a more detailed discussion about these methods see Refs. [9, 22].

It is now simple to see why the presence of the additional energy scale T' (or u, at T = 0)
in the theory invalidates the naive perturbative scheme. Imagine that we have a process that
involves a diagram with n vertices. Each vertex contributes with a factor of g. A straightforward
application of perturbation theory would obtain that this diagram is of order O(g™). However,
let us consider the case where there is a loop in this diagram where the dominant contribution
comes from the region of soft momenta, i.e., & ~ ¢gI'. The contribution of the propagator in
Eq. (1.43) is then ~ 1/(g?T?) instead of ~ 1/T2. This means that two powers of g are actually
canceled out and, therefore, the diagram is of order O(¢g"~2). Therefore, we see that power
counting becomes problematic in these theories.

Finally, let us remark that in gauge theories also the vertices may need to be HTL (HDL)
resummed in order to obtain the correct Ward identities.

1.5.2 The Color-Superconducting Gap in Weak Coupling

One way in which color superconductivity differs from BCS theory is the condensate’s depen-
dency on the coupling constant. In theories with short-range interactions, such as BCS the-
ory, the gap’s dependence on the coupling constant ¢ is in the form of exponential of 1/¢2.
However, in QCD static color-magnetic interactions are not screened to any finite order in g
[65, 66, 67, 69, 102] and, thus, the scattering of quarks near the Fermi surface is logarithmically
enhanced by the emission of collinear, nearly static magnetic gluons. For a detailed discussion
on the derivation of the gap equation in color superconductivity see Ref. [9]. It suffices here to
consider the general form of the gap equation in weak coupling at T'= 0

- {g In?2 (g) 4+ 6 (g) n a} , (1.45)

which is derived within the mean field approximation, and has the solution

¢ =2bu exp (-2) [1+0(g)] . (1.46)

The exchange of almost static, long-ranged magnetic gluons gives the leading-order contribution
to ¢, which corresponds to the first term on the right-hand side of Eq. (1.45). This contribution
is of leading order because, according to Eq. (1.46), g In?(11/¢) ~ 1. The coefficient ¢ determines
the constant ¢ in the exponent in Eq. (1.46)

(1.47)
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which was first computed by Son [65]. The coefficient 3 determines the prefactor b in Eq.
(1.46). The second term in Eq. (1.45) corresponds to a contribution of subleading order because
g*In(p/¢) ~ g < 1. This term appears due to the quark wave-function renormalization in dense
quark matter [102, 103] and also because of the exchange of electric and non-static magnetic
gluons [66, 67, 68, 69]. The coefficient o determines the O(g) corrections to the prefactor in the
color-superconducting gap parameter in Eq. (1.46) [104]. The energy gap in the CFL phase at
T = 0 reads [9]

A(0) =2 sme 7T, (1.48)

whereas the critical temperature is given by

| T. 32 2048+/273 244
n— = —

e I T
7 V2g o3P | 8

and ¢ is the QCD running coupling constant at the scale given by the chemical potential .

This formula correctly describes ¢ at asymptotically large densities where p > Aqcp and
g < 1. Note that, although perturbation theory was used to obtain Eq. (1.46), ¢ cannot be
expanded in powers of g. This nonperturbative dependence on the coupling constant is encoded
in the gap equation (1.45).

In the core of neutron stars the quark chemical potential is very high but not asymptotically
large, which means that quarks and gluons do not weakly interact. However, an extrapolation
of the weak-coupling results above to reasonable densities produces gaps that are in agreement
with those obtained within NJL-type models, which are between 10 — 100 MeV.

+ O(g) , (1.49)

1.5.3 Color Superconductivity Continued ...

We have discussed so far the idealized case where all the quarks involved in the pairing are
massless. This is certainly a good approximation at asymptotically large densities where the
quark chemical potential p is very large in comparison to the quark masses myg, i.e., my/p < 1.
In this idealized case the CFL state is likely to be the true ground state of quark matter.
However, this approximation definitively breaks down at the moderate, though large, densities
present in the inner regions of neutron stars because there p ~ 500 MeV, which is not much
larger than the strange quark mass mg ~ 100 MeV. Taking into account the effects of nonzero
quark masses on the pairing leads to several important consequences.

First, recall that a system containing only massless up, down, and strange quarks is already
color and charge neutral. This can be immediately understood because such a system has an
equal number of up, down, and strange quarks with the colors red, green, and blue, which ensures
neutrality with respect to color and electric charge. Also, this configuration is automatically in
B—equilibrium. However, once the particles are massive the number densities of up, down, and
strange quarks are no longer equal, which in turn leads to the presence of nonzero electric and
color charges in the system. Consequently, chemical potentials for electric and color charges
have to be introduced to ensure overall electric and color neutrality [105]. Also, the Fermi
surface corresponding to strange quarks becomes different than that of the lighter quarks (we
are assuming that m, ~ my < mg). The mismatch in the Fermi surface of different quark
species can be shown to be proportional to the electric and color chemical potentials as well as
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their mass difference [9]. In Ref. [106] the phase diagram of dense, locally neutral three-flavor
quark matter was studied within the framework of the NJL model.

The fact that in this case different flavors have different Fermi surfaces directly affects the
way the quarks can pair. Usual BCS-like Cooper pairs are formed by fermions located on the
Fermi surface with momenta in opposite directions. The total momentum of the Cooper pair is
zero. However, as the Fermi surface mismatch increases it becomes more and more difficult to
form pairs with zero total momentum. In fact, color superconductivity persists as long as the
gain in free energy due to condensation is larger than the energy necessary to find a matching
fermion in the Fermi sea of the other species. When the mismatch is as large as the value of
the gap on the Fermi surface the color-superconducting state becomes energetically disfavored
in comparison to a state consisting of unpaired quarks [107]. The restoration of the normal
conducting state is not the only possible outcome. In fact, the system can lower its energy by
using some unconventional color-superconducting pairing that can include gapless excitations,
spatial inhomogeneity, and also counter-propagating currents [108].

Examples of unconventional pairing scenarios can be found in Refs. [109, 110]. In condensed
matter systems in the presence of an external magnetic field the electron energy depends on the
spin projection (Zeeman effect) and, consequently, there are two different Fermi momenta for
spin-up and spin-down electrons. A superconducting state may be formed in which the Cooper
pairs carry nonzero total momentum leading to a spatially inhomogeneous order parameter. This
pairing describes the so-called Larkin-Orchinnikov-Fulde-Ferrell (LOFF) phase [111]. Note that
the LOFF state breaks translational invariance. In color superconductivity the LOFF pairing
has also been suggested as an alternative to ordinary Cooper pairing [112].

Gapless phases have quasiparticle spectra where the gap parameter ¢ vanishes for certain
values of the quasiparticle momentum k. The fact that 25C superconductors can have gapless
excitations was first pointed out by Shovkovy and Huang in Ref. [113] and the consequent
stability problems created by the presence of these excitations were discussed in Ref. [114]. In
fact, the 2SC phase is unstable because the Meissner screening masses of some gluons become
imaginary [114]. In this case the instabilities occur when the ratio of the gap ¢ over the chemical
potential mismatch (du) is smaller than V2. Gapless color superconductivity also occurs in three-
flavor quark matter. In fact, gapless CFL quark matter and its stability problems have been
discussed in Refs. [115].

It has been proposed that the chromomagnetic instability in two-flavor quark matter can be
fixed by the formation of a single plane-wave LOFF state [116, 117, 118, 119]. Moreover, a gluonic
phase with vector condensation in the ground state has also been suggested [120, 121, 122, 123]
and, in Ref. [124], it was shown that this phase is favored over the single plane-wave LOFF
phase for a wide range of coupling strengths. Other alternatives include the use of a mixed
phase [125]. Finally, in the case of three-flavor quark matter phases with spontaneously induced
meson supercurrents [126] have also been discussed.

1.6 Detecting Color Superconductivity in Neutron Stars

Neutron stars were discovered almost four decades ago and since then there has been a wealth
of experimental data that has elucidated the behavior of matter at high densities. The typical
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density inside a neutron star is comparable to the nuclear saturation density, pnuciear = 2.5 x 10
g cm ™3, which corresponds to a baryon number density of ng ~ 0.15 fm™3. At the center of
the star the interparticle distances become as small as the intrinsic size of hadrons (roughly 1
fm) and, under these extreme conditions, new states of matter consisting of deconfined quark
matter can arise. For a review of recent theoretical developments and observational constraints
concerning the physics of neutron stars see Ref. [127].
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Figure 1.5: Theoretician’s view of the inside of an ordinary neutron star, from Ref. [127].

Outside the star there are large magnetic (and electric) fields. A very thin hydrogen atmo-
sphere is expected to exist at the star’s surface, although a mix of heavy elements or even a
condensed magnetic surface have also been proposed. The temperature and possibly the radius
of neutron stars can be determined by the spectrum emitted from their surface [127]. Below the
atmosphere there is a layer that is a few tens of meters thick that insulates the hot inner region
from the surface. The star’s crust has a width of approximately 1 km and it contains nuclei
forming a lattice that is most likely immersed in a neutron superfluid (Figure 1.5, insert A).

Neutron stars are rotating self-gravitating objects and their rotation leads to the formation of
vortices in the neutron superfluid, which can pin on the nuclei and then contribute to the creation
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of spin glitches. The nuclear pasta phase (Figure 1.5, insert B) has increasingly elongated nuclei
with the space in between filled by a neutron superfluid. The situation is reversed in the so-
called Swiss cheese phase where bubbles of neutrons are immersed in an almost homogeneous
proton-neutron liquid [127]. In the outer core (Figure 1.5, insert C) the neutron superfluid
coexists with the proton fluid. Electrons are also present to maintain charge neutrality.

Recent developments concerning the interplay between neutron superfluidity and proton
superconductivity can be found in Refs. [128, 129, 130, 131, 132]. The observed spin glitches of
neutron stars are usually explained by the presence of an array of vortex lines formed due to the
star’s rotation. The vortex array expands when the star spins down and, thus, sudden jumps in
the rotation frequency can be explained by the fact that the vortex lines are pinned to the crust of
the star [128]. The situation becomes more complicated if one also includes the superconducting
protons. If the protons form a type-II superconductor the neutron star magnetic field is confined
to magnetic fluxoids through which the magnetic field may penetrate the core of the star. It has
been claimed that this contradicts the observed long periodic oscillations attributed to the free
precession of neutron stars [131]. However, in Refs. [130, 132] it has been suggested that in this
case protons can form a type-I superconductor. While free precession is a plausible source of
long-term variability in pulsar timing, in Chapter 4 we show that propagating Tkachenko modes
(long wavelength shear modes of triangular lattices of singly quantized vortices) could provide
an alternative explanation for the long-term pulsar spin variations [133].

Finally, there is a question mark at the inner core because its matter composition is still
unknown. There the density is so high and the temperature is so low that deconfined color-
superconducting quark matter may exist. However, the specific physical properties displayed by
a color-superconducting core heavily depend on the phase considered.

The temperature of a newly born neutron star can be as large 10! K (10 MeV). The star
then cools down by mostly neutrino emission for approximately one million years and after
this stage its temperature is approximately 10° K (10 eV) [134, 135], which is definitely lower
than the estimated critical temperatures necessary for the onset of color superconductivity. The
effects of color superconductivity on the cooling of neutron stars have been studied in the last
few years [80]. However, with the current experimental data available the question of whether
or not we have already observed the cooling of a star whose inner regions are composed of
color-superconducting matter cannot be answered.

In white dwarfs simple Newtonian gravity can be applied in the computation of their masses
and radii [95]. The mass and radius of neutrons stars, however, have to be computed within
a fully general-relativistic setup. Spherically symmetric stars in hydrostatic equilibrium are
described by the Tolman-Oppenheimer-Volkoff (TOV) equations [136], which have the matter
equation of state as their main input. Their masses are within the range of 1.4 — 2.0 solar
masses [127], while their radii can be as large as 12 km. So far mass and radius measurements
have not been able to confirm (or exclude) the presence of deconfined (color-superconducting)
quark matter in compact stars. In general, the model parameters involved in the computation
of the equation of state of both hadronic and quark matter can be chosen to produce stars with
the required mass-radius relationship. In fact, it seems that pure hadronic stars, hybrid (quark
matter core with hadronic crust) stars, and also bare quark stars can have masses and radii that
are in agreement with the latest experimental constraints [137, 138].

For quickly rotating stars, effects from rotation on the spacetime metric have to be taken
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into account [139]. Also, it is important to remark that neutron stars are called pulsars because
of the electromagnetic radiation they emit due to rotation (see Fig. 1.6).

Figure 1.6: Schematic view of a pulsar. The sphere in the middle represents the neutron star, the curves
indicate the magnetic field lines, and the protruding cones represent the emission beams. Note that the
rotation axis and the magnetic axis are not aligned.

The measured quantities obtained from neutron star observations are basically the period
P and the frequency P of rotation (see Fig. 1.7). Assuming that the radiation is emitted by a
simple rotating dipole the star’s magnetic field can be determined to be B ~ 3.2 x 10'? (P]'D)l/2
G. One can see in Fig. 1.7 that most neutron stars are radio pulsars with periods between
1 — 0.1 seconds and magnetic fields of 102 — 10!3 Gauss. To have an idea of how large these
fields are it suffices to say that they are thirteen orders of magnitude larger than the earth’s
surface magnetic field. One also observes a number of pulsars with P < 0.1 s and also a few
with P > 5 s, which are the known anomalous X-ray pulsars and soft gamma repeaters (see Ref.
[140] for a very detailed review). These stars with surface magnetic fields larger than 10** G
are also called magnetars. What basically distinguishes magnetars from ordinary neutron stars
is that the main energy source for their radiative properties is their huge magnetic field [141].
Some general features shared by all magnetar candidates are:

e Very large surface magnetic fields, i.e., B > 104 G.

e Very young age, i.e., characteristic ages of 7. < 10% yrs.

Very long rotation periods, i.e., P >5s .

Very quick spinning down, i.e., P > 10710,

Emission of soft gamma ray bursts and also giant flares.

According to the standard magnetar model by Duncan and Thompson [141], the energy
bursts of soft gamma ray repeaters are caused by solid fractures induced by strong magnetic
fields in the crust of the star. Many properties of these objects are well described using the
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Figure 1.7: Period P versus period derivative P for radio pulsars (plus signs), Anomalous X-ray Pulsars
(squares), and Soft Gamma Repeaters (diamonds). Contours of constant inferred magnetic field strength
are drawn as diagonal dashed lines. See Ref. [140] for details.

hadronic magnetar model [140] but there are still some remaining issues, such as the quasi-
periodicity of active phases, which require alternative ways of understanding them [142].

Also, recent studies have given support to the idea that old neutron stars could have pre-
viously been magnetars with magnetic fields that decayed over many years [143, 144]. This
then suggests that magnetars could also have color-superconducting cores. Therefore, a detailed
study of the effects of strong magnetic fields on color superconductors may be very important in
understanding the physics of magnetars. We will come back to this important topic in Chapter
3 where we show that an ultramagnetized color-superconducting core can provide some new ob-
servables that may help to distinguish hadronic magnetars from magnetars with quark matter
cores.

A spectacular way to detect quark matter in stars would be if quark stars, compact stars
entirely made of deconfined quark matter and leptons [145], were observed. These stars could
be self-bound stars, i.e., their stability is mostly due to strong interactions instead of gravity.
Also, the density profile in these stars would be very different than in ordinary neutron stars
because they could be uniform throughout their volume [139].

One of the main features of rotating, self-gravitating objects is that these objects develop
instabilities as a result of the emission of gravitational waves. These instabilities can only be
damped by viscosity [146]. The viscosity of nuclear and mixed phases of dense baryonic matter
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has been calculated over the last three decades [147]. It has been shown in Refs. [148] that the
viscosity of quark matter considerably differs from that of hadronic matter. This could then
have some important phenomenological consequences.



Chapter 2

Gluonic Fluctuations in Color
Superconductors

In this chapter we calculate the effects of gauge field fluctuations on the free energy density of a
homogeneous color superconductor in the CFL phase. It will be shown that gluon fluctuations
induce a strong first-order phase transition, in contrast to electronic superconductors where this
transition is weakly first order. The critical temperature for this transition is larger than the
one corresponding to the diquark pairing instability.

We obtain analytical formulas for the temperatures associated with the limits of metastability
of the normal and superconducting phases as well as the latent heat associated with the first-
order phase transition that are valid in weak coupling. We extend our analysis to intermediate
densities and perform a numerical study on the first-order phase transition and the discontinuity
of the diquark condensate at the critical point. We find that there are no local interactions
between the diquark condensate and the gluons in color superconductivity. We published the
results presented here in Ref. [75].

2.1 Introduction

In Sec. 1.3.1 we saw that the GL free energy density in an electronic superconductor has a local
[U(1)] symmetry in the presence of an external magnetic field. As long as thermal fluctuations
are not taken into account the transition between the metallic and the superconducting state
is of second order [41, 54]. Photon fluctuations contribute with a |¢|3 term in the free energy
density that inevitably leads to a first-order phase transition [44].

Similarly, the physics of color superconductivity can be described near the transition temper-
ature in terms of a GL free energy functional [71, 72], which depends on the expectation values
of the order parameter and the gauge potential. Omitting the contribution from fluctuations,
the GL free energy density for a CFL superconductor computed in weak coupling reads [71, 72]
(see Appendix A)

2 2
Foma = 2y 1 8%(1) + 250 (1) (), 1)

where p is the quark chemical potential and ¢t = (T'— T,)/T, is the reduced temperature. This

43
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free energy exhibits a second-order phase transition at the critical temperature T, given by

| T. 372 2048+/273 w2 4+ 4
n— = -

———t+Ihh——+
b Vg 0v3g | 8

where g = g(u) is the strong coupling constant.

+0(9) , (2.2)

The gap parameter of the fermionic quasiparticle excitations is A (8-fold) and 2A (1-fold)
[149]. One can check that the quadratic and quartic coefficients of T' .o,,q for CSC are, respectively,
12 (= 8x12+22) and 24 (= 8 x 1* +2%) times larger than those for an electronic superconductor.
It has been pointed out that fluctuations of the diquark condensate may induce a first-order
transition because this theory has no infrared fixed point in the renormalization group flow of
the coupling constants [73, 83, 150].

It follows from the GL theory of color superconductivity in weak coupling that the GL

parameter is [151]
723 T,
P 2.3
V7@, 29

with ay = ¢g%/(4n). Taking the limit ¢ — 0 we see that x — 0, which means that the CFL
superconductor is most definitely type I.

The strength of a fluctuation-induced first-order transition is sensitive to the relationship
among the three length scales involved in the problem: the coherence length near the transition
&, the magnetic penetration depth near the transition, A, and the coherence length at T = 0
& = 1/(2nT,.). Generally, a superconductor with A > £ is said to be in the London limit. In
this case the coupling between the gauge field and the order parameter is approximately local.

The opposite case, A < &g, corresponds to the Pippard limit where the coupling becomes
highly nonlocal [54]. For a type-I electronic superconductor the Pippard limit is always realized
at T'= 0. However, near the transition temperature the penetration depth increases very rapidly
and so does the ratio A\/&p, which means that a crossover from the Pippard limit to the London
limit is expected to occur near a second-order phase transition.

How does the first-order phase transition induced by gauge field fluctuations change this sce-
nario? Are both limits still realized? In the case of known type-I electronic superconductors the
first-order phase transition is sufficiently weak to warrant a crossover between the Pippard and
the London limits. This crossover has been observed experimentally in strong type-I materials
like aluminum [152].

However, the situation is completely different for a color superconductor. It was shown in Ref.
[74] that A < &y is maintained at the phase transition for asymptotically high baryon densities.
As is shown below, this feature remains valid when the results of Ref. [74] are extrapolated to
moderately high densities.

This chapter is organized as follows. In the next section, we discuss the generalized GL
free energy density derived in Refs. [74, 75]. The relevant thermodynamic quantities of the
first-order color-superconducting transition are derived for weak coupling in Sec. 2.3 and the
extrapolation of the results to moderate densities is presented in Sec. 2.4. The technical details
of the derivation of the generalized GL free energy density are discussed in Appendix A. In this
chapter 4—vectors are denoted as K = K" = (w, E) and the space-time integration is defined
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as fX = Ol/T fQ d3% where T is the temperature and Q the volume of the system. Moreover,

Tr indicates the summation over all indices including momentum k and energy w, while tr
denotes the summation over all indices except momentum and energy. Furthermore, natural
units h = kp = ¢ = 1 are employed.

2.2 The Generalized GL Free Energy Density

It is widely known that when the temperature is sufficiently close to the critical temperature
T. the effects of fluctuations on the phase transition cannot be neglected [44]. This can be
understood in the framework of GL theory where the free energy density of the fluctuations
is roughly given by the thermal energy kpT within a volume I3 where [ is the characteristic
length of the fluctuation. This volume corresponds to ¢3 for the order parameter and A3 for the
gauge potential. Since both lengths diverge as |1 — Tc|_1/ 2 the corresponding fluctuation energy
density behaves as |T' — T,.|>/2. The condensation energy density, however, behaves as [T — T,|?.
Therefore, when 1" becomes closer to T, the fluctuation energy density will eventually dominate
and the nature of the phase transition can be modified.

For a strong type-I superconductor (A < &) the fluctuations of the gauge field largely exceed
the fluctuations of the order parameter. Since CFL superconductors are extremely type I in
weak coupling, it is then permissible to retain the fluctuations of the gauge field while neglecting
those of the order parameter. We will show that a first-order phase transition occurs at 7} > T,
while the temperature T, determined by the diquark pairing instability (2.2) represents the lower
bound for a supercooled normal phase without nucleation.

The effects of gauge field fluctuations can be added to the free energy of dense quark matter
around T, by using the Cornwall-Jackiw-Tomboulis (CJT) formalism [153]. The CJT effective
action is especially useful in the case of spontaneous symmetry breaking, which is taken into
account by introducing a bilocal source term in the QCD action.

Recall that the QCD partition function defined in Eq. (1.6) reads

Z= / DAL DYDY exp S, (2.4)

where 1 and 1 = 9770 are the quark and adjoint quark fields, respectively. Gluon fields are
described by adjoint fields A%. The action S is divided into several parts

S:SA—FSF—FQ/X @(X)TJ)/“#J(X)AZ(X)+SGF+SFP. (2.5)

The purely gluonic action is
1 12
Sa= _Z/X F}YFy,,. (2.6)

As before, the specific details of Sgp and Spp do not need to be outlined in detail. S describes
free, massless quarks in the presence of a chemical potential p

Se = [ X0 7-+ i) v(X). (2.7)
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In this chapter we consider only the interaction between the quarks and the gluons. This
interaction is the one responsible for the formation of Cooper pairs. In the next chapter, however,
effects from the unscreened “rotated” electromagnetic field on the pairing are explicitly taken
into account.

In order to describe the pairing among the quarks it is convenient to introduce Nambu-
Gor’kov spinors

qu:(f) V= (. 0. (2.8)
C

where 1. = C4" is the charge-conjugate spinor and C is the charge conjugation matrix defined
as C = iv?4". In Nambu-Gor’kov space the fermionic action in Eq. (2.7) can be rewritten as

Sp== [ $(X)SgHX, Y)p(Y). (2.9)
2 Jxy

The factor 1/2 accounts for the doubling of degrees of freedom in Nambu-Gor’kov space. The
inverse free fermion propagator S 1(X,Y) in the equation above is

41-1
st = (7 @) 10

where [GE]7(X,Y) = —i(idx - v + py°) 6 (X —Y). In Nambu-Gor’kov space the interaction
term takes the form

o [ O Ty () A4X) = [ 00 TR0 A300), (211)
where we have defined the vertex
LT, 0
wo__ i a
e = < 0 _nT ) . (2.12)
Now a bilocal source term
k)= (7 ¢ (2.13)
9 80+ o 9
is added to the action .S, which then becomes
S[K] = S+/ U(X)K(X,Y)¥(Y). (2.14)
XY

The off-diagonal elements in K, ¢, and ¢ are essential for color superconductivity because
they describe the coupling of two (adjoint) quarks. The existence of Cooper pairs implies that
the expectation value of these elements is different than zero. Moreover, the four entries of K are
not independent. In fact, due to charge conjugation invariance we obtain that o~ = Clo+]fC~1.
Also, since the total action has to be real-valued, one finds that ¢~ = 1°[pT]T1%. Finally, we
arrive at the new QCD partition function

Z[K] :/DAngT/D\I/ exp S[K], (2.15)
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Figure 2.1: The two-loop approximation to I'y. Straight lines denote quark propagators and wavy lines
denote gluon propagators.

which is the starting point for the application of the CJT formalism.
The CJT effective potential that is obtained from Eq. (2.15) [9] is

I'[D,S] = % {TTD '+ Te(D "D~ 1) - TrIn S~ — Tr(S; 'S — 1) — 21L[D,S]} . (2.16)

where D and S are the full gluon and quark propagators, D~! and So L are the corresponding
inverse tree-level propagators, and I's is the sum of all two-particle irreducible vacuum diagrams.
We work in the two-loop approximation, i.e., I's contains only the diagrams shown in Fig. 2.1.
The first diagram, which contains quark propagators, leads to a term of order g?u? in T', while
the other two diagrams (which contain only gluon propagators) lead to terms proportional to
powers of T'. Therefore, at small temperatures T' ~ T,. ~ p exp(—1/g) one can drop the last two
diagrams and consider only the first. In explicit form

rﬂﬂsy:—%Tqﬁnﬁn, (2.17)

where

mMs] = = Te(F ST 8) (2.18)

2

is a functional of the full quark propagator S and the bare quark-gluon vertex I'. Note that
the trace in Eq. (2.17) is over 4-momenta as well as Lorentz and adjoint color indices, while in
Eq. (2.18) it is over 4-momenta as well as Nambu-Gor’kov, Dirac, flavor, and fundamental color
indices. The minus sign in Eq. (2.17) accounts for the fermion loop and the factor 1/2 is due
to the fact that this is a second-order correction to the CJT effective potential. Moreover, the
factor 1/2 in Eq. (2.18) accounts for the extra fermionic degrees of freedom in Nambu-Gor’kov
space.

The free energy density is given by the CJT effective potential at its stationary points, which
are determined by

or or
=0,

el — =0. (2.19)
0D |p_p s=s 08 |pp =5
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The first condition gives a Dyson-Schwinger equation for the gluon propagator
D' =D +10[S]. (2.20)

Inserting this condition into Eq. (2.16), one observes that the second term cancels the last term,
i.e., at the stationary point

T
[D,8] = 55 [TrlnD ' -~ TrlnS™ - Tr(S; 'S - 1)] . (2.21)
This expression corresponds to the free energy density at a given temperature 7. In terms of
the gluon and quark propagators in the normal phase, D, (K) and S,,(K), the propagators in
the superconducting phase are written as

S(K) = S)(K)+40S(K,A), (2.22a)

DYK) = DYK)+I(K,A), (2.22b)

where 011 = II — II,,, i.e., D, ! already contains the HDL resummed gluon self-energy II,, [9].

The gluon self-energy in the superconducting phase, II, depends on the superconducting gap

parameter A and, therefore, so does éII. Similarly, the quark propagator in the normal phase

S, contains quark self-energy corrections and S depends on A. Note that A is the value of the

gap parameter obtained from a solution of the second Dyson-Schwinger equation (2.19). In the

following, however, we shall consider A to be a free parameter. In order to obtain the physical
value of the gap we then have to find the minimum of I'[D, §] as a function of A.

Inserting Eqs. (2.22) into Eq. (2.21), we obtain

I'=Tp + Leond + Tiue + Tye » (2.23)
where

I, = % [TrIn D, — TrInS, ' — Tr(S; 'S, - 1)] (2.24a)
Ceond = % [Tr(D,,6I1) — Tr(Sy '6S) + Trin(l + S, '6S)] (2.24b)
Choe = % > tr{In[1 + Dy (K)I(K, A)] — D, (K)STI(K, A)} (2.24c)

E,w=0
The = % > tr{In [l 4 Dy (K)STI(K, A)] — Dn(K)STI(K, A)} (2.24d)

kw0

The generalized GL free energy density is the difference in the CJT effective potential between
the superconducting phase and the normal phase, I' — I';,,. It includes both the ordinary GL
terms and the fluctuation terms. Note that we have added a term Tr(D,dII) in I'eonq and
simultaneously subtracted it in I‘ﬂuc,l“huc. This term corresponds to the so-called exchange
(free) energy density [21] and must be present in order to obtain the correct expression for I' conq
[71, 72]. Therefore, we have to subtract it in the fluctuation part of the free energy density.
Only with this subtraction I'gyc + I'y,. represents the well-known plasmon ring resummation
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[21]. Tt is quite gratifying to see that the CJT formalism naturally contains all these different
many-body contributions to the free energy density.

In Ref. [73] the exchange energy density was not subtracted from the plasmon ring contribu-
tion. This lead to an overall change of sign in the fluctuation energy density. As shown below
[see Eq. (2.30)], the contribution of the fluctuation energy density is ~ In(1 + u) — w, which
is always negative, while in Ref. [73] it is ~ In(1 4 u), which is positive for u > 0. Therefore,
the authors of Ref. [73] concluded that gauge-field fluctuations raise the free energy density of
the color-superconducting phase, which then decreases the transition temperature to the normal
phase. In our case, however, the fluctuations decrease the free energy density, i.e., they stabilize
the color-superconducting phase and, therefore, lead to a larger transition temperature.

This is physically plausible if one remembers that gauge-field fluctuations are also present in
the normal phase, namely, in the first term in Eq. (2.24a). Since transverse gluons are massless
in the normal phase, II,,(0) = 0, long-wavelength fluctuations are enhanced over those in the
color-superconducting phase where gluons are massive, §II # 0. Thus, the fluctuation energy
density in the normal phase is larger than in the superconducting phase.

The relevant fluctuation term is

reear [ {50 EBY

while I'f, . is of higher order (see Appendix A). The momentum-dependent Meissner mass reads

m*(T, k) = %f(/ffo), (2.26)

with the chromomagnetic penetration depth given by

1 7¢(3) g°u*A?

A2 2u4nt T2 (227)
and , ,
6 ~— 1—x

W)= 7¢) ;)/o T DA P2 (2:28)

Carrying out the integration in Eq. (2.25) and combining the result with Eq. (2.1), we find

2

where the function F' is defined as
[ 9 z z
F(z) = /0 dx {1n [1 + ﬁf(m)] - ﬁf(m)} . (2.30)

Anticipating the result t ~ O(g), cf. Eq. (2.42), in the derivation of Eq. (2.29), we replaced
TT3 = T1+1t) by T in front of the last term. Keeping the full expression only leads to order

O(g) corrections in the results presented in Sec. 2.3. Similarly, the higher-order terms of T'f .
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lead to order O(g) corrections in the second term in Eq. (2.29), cf. Appendix A. Therefore, the
impact on the results in Sec. 2.3 is also only of order O(g).
The London limit corresponds to small arguments in Eqs. (2.28) and (2.30). We have

fly)=1- %%f +0(y"), (2.31)
and
F(z) ~ —%z%. (2.32)

w3 n
1) = gy |1~ 1672+ 067 (2.33)
and
w3 33
F(z) ~ ETRE z {ln (28C(3) z> + const}. (2.34)

Here we have retained the first corrections for both limits of the function f(y) in order to assess
the deviation from each limit at the CSC phase transition.

Before concluding this section, let us clarify once more several differences between our formu-
lation and that of Ref. [73]. First, since in their treatment the term —m?(T,k)/k? in Eq. (2.25),
which arises from the subtraction of the exchange energy density, is missing their formal power
series expansion for the fluctuation energy density in terms of A starts already at quadratic
order. This then leads to a renormalized critical temperature 7. However, since we include
the term in question there is no such renormalization of T,.. Moreover, the authors of Ref. [73]
find that the difference between T, and T is of order O(g?). Since the two-loop approximation
employed in the derivation of Eq. (2.29) is not sufficiently accurate to provide all corrections
of this order, such O(g?) corrections cannot be reliably computed. Furthermore, the authors
of Ref. [73] approximated the momentum-dependent Meissner mass by a constant and simply
cut off the momentum integration in Eq. (2.25). This corresponds to the London limit of Egs.
(2.28) and (2.30) where the fluctuation energy density is of the form of Eq. (2.32). The shift in
the transition temperature compared to that of Eq. (2.2) is then only of order O(g?) [73] and
not of order O(g) as found here and in Refs. [74, 75].

2.3 The First-Order CSC Transition in Weak Coupling

A generic first-order phase transition can be described by three characteristic temperatures: the
transition temperature 7, the maximum temperature of the (metastable) superheated super-
phase Ty, and the minimum temperature of the (metastable) supercooled normal phase Ty [41].
These temperatures are related in the following way

Tee <Tr < Ty, (2.35)
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and they can be obtained from the generalized GL free energy density (2.29). The lower margin
of a supercooled normal phase corresponds to

0T
2 =0 (2.36)
OAZ| A,
and, using Eq. (2.29), we have
T =T, (2.37)

which relates Ty with the onset temperature for diquark pairing. On the other hand, the
transition occurs at

or
oA
for a value of A = A #£ 0. This implies that

0, TI'=o0, (2.38)

) TCB)AZ  TCB) 2 (& _
e+ G Ted ) =0 (2.39%)
L TR AL TCB) GN (&

et Zer =0. 2.
et g e T et ) 70 (2.390)

Eliminating ¢ in the equations above we have

I3 21677 (T.\”
F = — 2.40
(Ai* Bt \p) (240
where F(z) = —F'(2)/z + F(z)/2%. Solving Eq. (2.40) for A2, with the aid of Eq. (2.34), we
obtain

AL = ngTQ . (2.41)
“ 63 Y

The transition temperature is obtained by substituting Eq. (2.41) into either one of Egs. (2.39).
This substitution gives

2
T = (14 )T 2.42
c 12\/59 c ( )
These results were first derived in Ref. [74]. The penetration depth at the transition is
1 gt
= 2.43
N2, 216m2t (243)
which yields the ratio
2 4,2
S 91y, (2.44)

A2, 864TAT?

Thus, the Pippard limit is valid for the entire CSC phase at sufficiently large chemical potentials.

We now determine Ty;,. The free energy density I' as a function of A has a local maximum

between A = 0 and the minimum A« at T'= T in the superconducting phase. As T increases,
the local minimum remains unchanged until it coalesces with the local maximum where

or 0°T



52 Chapter 2. Gluonic Fluctuations in Color Superconductors

for a value of A = Ay, # 0. It then follows that

R AL KE) 4, (8
t 5 —=gF | 5| = 2.4
2t e T oed )T (2.46a)
2 432n7 (T.\2
P <5_0) o Tyt 246D
A 7¢(3)g* ( p ) (2.46b)
Moreover, Eq. (2.46b) together with Eq. (2.34) yield
2
1
AL = —1 T2 = ZAZ 2.47
sh 126((3)9 c 9~¢ ( )

Subtracting Eq. (2.39b) from Eq. (2.46a) and using Eq. (2.34), we find that

gy

tsn — tn = 72(1 —1n2), (2.48)
which results in )
Ty = [1 + %(1 ~In 2)] T (2.49)
Note that T is one order of g closer to Ty, than to Tg. The ratio
g i

A2, 1728772 (2:50)
implies that in weak coupling even the metastable CSC state is in the Pippard limit. Although
the diagrammatics behind the generalized GL free energy density (2.29) determine 7. only up to
the subleading order, the leading-order differences among the three characteristic temperatures
do not change if higher-order corrections to T, are included.

Another observable associated with the first-order phase transition is the latent heat L =
T.AS where AS is the change in entropy density at the transition. We have

2
AS = ‘(g_;>AA; = 2125(3) Wl (251)
which gives ) )
L= 2125(3) (2T = % A2, (2.52)
Now we calculate the strength of the first-order phase transition as was defined in Ref. [44]
tHLM = L , (2.53)
Ac,

where Ac, is the jump in specific heat at the second-order phase transition, which neglects the
fluctuations. If we ignore the third term in Eq. (2.29) we recover the ordinary GL theory from
which we find Ac, = 24 1T, /[7¢(3)]. Thus, we have

tum g

=<, 2.54
T, 36 ( )
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Eq. (2.54) implies that the strength of the first-order phase transition weakens (logarithmically)
with increasing chemical potential, which is in agreement with the fact that the second-order
phase transition is recovered at asymptotically large densities. Note that for electronic super-
conductors typn/T. ~ 107¢ [44], which is much smaller than the right-hand side of Eq. (2.54)
for realistic values of g ~ 1.

2.4 Numerical Results

Strictly speaking, the weak-coupling results in the previous section are only valid at ultrahigh
baryon densities such that ;1 > Aqcp. For quark matter that may exist inside a compact star
1 is expected to be slightly higher than Aqcp, which means that the weak-coupling expansion
becomes problematic. Nevertheless, we assume that the generalized GL free energy density
remains numerically reliable down to realistic quark densities. Even if this is not the case, the
qualitative statement for the absence of the London limit in CSC may still survive according to
the argument given at the end of this section.

25 T T T T T T T T T T T T T T T T T T T T T T T T T T T I T T T T T T T T T
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Figure 2.2: Comparison between the different temperatures involved in the discussion of the fluctuation-
induced first order phase transition.

We solved Egs. (2.40) and (2.46b) numerically in order to find A.+ and Ay, as functions of
the chemical potential. The transition temperature 7 is obtained using A.« in either one of
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Egs. (2.39) and the temperature Ty, is obtained from the first equation in Eq. (2.46a). We used
the 3-loop formula for oy = g%/4m [23] previously shown in Egs. (1.10) and (1.11) with three
colors and three flavors. Moreover, we have taken Agcp = 364 MeV in our calculations in order
to obtain the correct value of s at the scale of the Z-boson mass.

Figure 2.2 shows the three temperatures Tg., T, and T, as functions of the chemical po-
tential along with the weak-coupling formula (2.42). Note that T is still closer to Ty, than to
Ty down to few hundreds of MeV. A comparison between the critical temperature T evaluated

L |||ml |||ml |||ml_—rrm|| ||||Illl ||||Illl ||||rll_

12— —

1.18
S
o
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o
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1000 let+06 1e+09 le+12 1000 le+06 1le+09 let+12
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Figure 2.3: (a) Comparison between the critical temperatures at high densities. (b) Discontinuity of
the gap at the transition.

numerically and 7 is shown in Fig. 2.3 (a) and the discontinuity of the gap at T'¥, relative to
its value at T" = 0 previously shown in Eq. (1.48), is shown in Fig. 2.3 (b). Both plots indicate

that
T* . A

= 1
e T, i AD)

—0, (2.55)

which is expected from asymptotic freedom, i.e., lim, .o g() = 0. However, because of Eq.
(1.10) the convergence is logarithmically slow.

Now we will address the question of whether or not the London limit is realized near T for
color superconductors in the range of chemical potentials explored here. From Fig. 2.4 we see
that the ratio £y/Ac+ > 1, which means that only the Pippard limit of magnetic interactions is
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present in color superconductivity. Even for the minimum value of the ratio £g/Ac+, which is
around g = 700 MeV, the Pippard expansion of m2(k,T) in Eq. (2.33) works better than the
London expansion displayed in Eq. (2.31). This is also the case for the metastable CSC state
up to Ty, as is shown in Fig. 2.5.
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Figure 2.4: (a) {o/ A+ at small chemical potentials. (b) The same ratio at very large chemical potentials.

It is instructive to express the right-hand side of Eq. (2.40) in terms of the GL parameter (2.3)
and compare it with the corresponding equation for a metallic superconductor. The generalized
GL free energy density in an electronic superconductor was given in Ref. [74]. The terms we
want to compare are

58 RY S
]—“( ) - 2.56
)‘2* 160 ( )
for color superconductors and
&\ _ ™k
]—“( ) - 2.57
)\z* 16a.vp ( )

for electronic superconductivity. A large value on the right-hand side of Eq. (2.56) or Eq. (2.57)
points towards the London limit at the first-order phase transition. Since o, < a5 and vp ~ «p,
the right-hand side of Eq. (2.57) is much larger than that in Eq. (2.56) when the same GL
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Figure 2.5: (a) &/Ash at small chemical potentials. (b) The same ratio at very large chemical potentials.

parameter is used. In other words, the London limit is more likely to be realized in metallic
superconductors.

It was shown in Ref. [44] within a one-loop renormalization-group calculation using the €
expansion that no stable infrared fixed point can exist for a theory involving local interactions
between Abelian gauge fields and order parameters unless the number of order parameter com-
ponents N is artificially extended to N > N, = 365. This is far beyond the case of relevance
for electronic superconductivity. This result is then interpreted as signaling the presence of a
first-order transition. Therefore, for electronic superconductors gauge-field fluctuations are al-
ways expected to change the order of the phase transition into first order, irrespective of further
details about the transition.

For color superconductors, however, the effective action, which contains only the order pa-
rameter and the gauge fields as well as the specific form of their interactions, is not known.
Therefore, the general result derived in Ref. [44] may not be applicable. However, the results
we obtained for the CFL phase seem to suggest that fluctuation-induced first-order phase tran-
sitions are indeed present in color superconductivity. Furthermore, due to the absence of the
London limit we expect that, once gauge-field fluctuations and first-order phase transitions are
taken into account, local interactions between the diquark condensate and the gluons are never
realized in color superconductors, regardless of which phase is considered. This would constitute
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a striking new physical effect that would only come about in color superconductivity.

The crossover from nonlocal to local interactions near the critical temperature in supercon-
ducting metals of strong type-I has been recently observed [152]. What we found in the present
study rules out the possibility of observing such a crossover in color superconductors.
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Chapter 3

Color-Flavor Locked Superconductor
in Strong Magnetic Fields

In this chapter we study the effects of strong magnetic fields on the properties of CFL supercon-
ducting quark matter within an NJL model. We find that both the energy gaps that describe
color-superconducting pairing as well as the magnetization are oscillating functions of the mag-
netic field. Also, we observe that the oscillations of the magnetization can be so strong that
homogeneous quark matter becomes unstable for a range of parameters. It is suggested that this
points towards the existence of magnetic domains or other types of magnetic inhomogeneities
in the hypothesized quark cores of magnetars. We presented most of the results discussed here
in Ref. [89].

3.1 Introduction

Strong magnetic fields exist on the surface of compact stars, e.g., B < 10?2 G for ordinary
neutron stars [156] while for magnetars they can be as large as B ~ 101¢ G [157]. Often one can
take the conductivity of the matter inside neutron stars to be essentially infinite because the
dissipation time scales are very long in comparison to the other time scales of interest [95]. In
this case the magnetohydrodynamic equations [95] predict that the magnetic force field lines are
“frozen in” the fluid, which implies that the magnetic flux [, S B-dS through any closed surface S
moving with the fluid is constant. Assuming that the field lines do penetrate the central regions
of the star, the conservation of magnetic flux indicates that the magnetic field strength in the
small, inner core of magnetars can be at least as large as B ~ 10'® G. This large value already
corresponds to the physical upper limit for the magnetic field in a gravitationally bound star
[95].

We have seen in Sec. 1.6 that the superdense, cold core of ordinary neutron stars most likely
consists of some sort of color-superconducting quark matter. There is no reason why the same
idea cannot be applied to magnetars. The energy scale defined by a field of approximately
10' G is roughly of the order of 100 MeV, which is comparable to the color-superconducting
gap present in the quasiparticle energy spectrum and the strange quark mass. Since quarks
are charged particles it is then expected that such a strong magnetic field should affect their

59
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pairing. In Ref. [96] the effects of an extremely strong magnetic field on the pairing of a CFL
superconductor were investigated.

In this chapter we study how a moderately strong magnetic field (namely, eB/u? < 1 where
u is the quark chemical potential) changes the properties of color-flavor locked superconducting
quark matter. This is expected to model the conditions that exist in the inner core of magnetars
where the density of matter can be ten times higher than the nuclear saturation density. For
simplicity’s sake we assume that under these conditions matter is sufficiently dense so that effects
of non-vanishing quark masses (including the strange quark mass) can be neglected. Also, using
the property of enforced neutrality of the color-flavor locked phase [159], we assume that no
electrons are needed in the magnetized version of the phase. Applying the same arguments as
in Ref. [159], we expect that this is justified as soon as all quark quasiparticles remain gapped.
In our analysis, therefore, the chemical potentials of up, down, and strange quarks are equal.
Admittedly, we neglect possible nonzero color chemical potentials that might be needed to
enforce the color Gauss law [160]. However, such chemical potentials are expected to be small
for the range of parameters considered here, i.e., eB/u? < 1.

In order to determine the thermodynamic properties of the mCFL phase we solve the corre-
sponding gap equations for a range of magnetic fields. As expected, the magnetization of mCFL
quark matter displays de Haas-van Alphen oscillations and it can be as large as the applied
magnetic field for a wide range of parameters. This is in contrast to the magnetization of dense
hadronic matter, which is usually considered to be negligible [161]. The large magnetization in
magnetar models with (either normal or color-superconducting) quark matter cores could lead
to physical properties that are distinctively different from models with only hadronic matter.

In the next section we discuss the most important features concerning mCFL color supercon-
ductors and also illustrate the derivation of the free energy and the corresponding gap equations
(details of our calculations are explicitly given in Appendices B and C). In Sec. 3.3 we show
how to regularize the gap equations within the proper time method and in Sec. 3.4 we show
our numerical results. Throughout this chapter 4-vectors are denoted by capital letters, e.g.,
K" = (ko, E) The space-time integration is defined as [, = 01/ T Jo d3% where T is the tem-
perature and €2 the volume of the system. Moreover, we use the standard system of units where
h=c=k B = 1.

3.2 The Free Energy of the mCFL Phase

In cold, dense quark matter color superconductivity is expected to occur due to attractive inter-
actions between quarks located on the Fermi surface. At very low temperatures and extremely
high densities one can safely neglect the effects of nonzero quark masses and, in this case, the CFL
phase is expected to be the true ground state of quark matter [84]. This phase is characterized
by the condensation of quark Cooper pairs in the color-antitriplet, flavor-antitriplet representa-
tion, which breaks the initial symmetry group [SU(3)]c ® SU(3), @ SUB) g @ U(1)p @ U(1)4
down into the diagonal SU(3) r41+¢c subgroup (note that U(1) 4 is an approximate symmetry in
dense matter). After taking into account that all the gluons become massive through the Higgs
mechanism one finds that ten Nambu-Goldstone bosons appear due to the breaking of global
symmetries [162, 163]. Following the same convention as in the QCD vacuum these bosons
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are the 7%, 70, K* KO KO 1, i/ mesons, and ¢, which is a massless field related to baryon
symmetry breaking.

We have seen in Sec. 1.5 that in spin-zero color superconductors the initial [U(1)] ey, symmetry
is not really broken but “rotated” [84]. The new group [U(1)]em corresponds to a massless
linear combination of the vacuum photon and the eighth gluon. For convenience, recall that the

“rotated” electric @—charges of the quarks are (see Sec. 1.5)

Sp | Sg | Sr | dy | dg | dr | up | ug | Up
OO0} -170]0]|-14+4+1]0

and the pattern of symmetry breaking that defines the mCFL phase is [SU(3)]c ® SU(2)r ®
SU2)r@U(1)poU(1)a@U (1), = SU(2)p4L+c where U(1), corresponds to an anomaly-free
current formed by a linear combination of the s, d, and w axial currents [97]. There are only
six Nambu-Goldstone bosons (i.e., 7%, K K% n, o/, and ¢) due to symmetry breaking and
all of them are neutral with respect to the é—charge. As expected, the masses of the charged
Nambu-Goldstone bosons of the CFL phase (i.e. 7 and K*) have terms that are proportional
to VeB [168].

It is convenient at this point to discuss the energy scales that appear in our study in more
detail. The relevant mass scales in the problem are the quark chemical potential u, the temper-
ature T, and the magnetic length | = 1/ VeB. For very high, although still realistic densities,
i~ 500 MeV. If the magnetar’s interior fields are indeed as large as 10'® G the corresponding
magnetic energy scale approaches the QCD scale, i.e., vVeB < 77 MeV. The relevant dimension-
less parameter in the problem is the ratio eB/u?, which is smaller than one even for the largest
realistic fields. Thus, from a phenomenological point of view it would suffice to study only the
regime of small eB/u?. However, our analysis extends also to larger fields which correspond to
eB/u? ~ 1.

Note that at such extremely high fields the magnetic length can be comparable or even
smaller than the average interquark distance. Then, all usual assumptions about the color
superconductor’s in-medium electromagnetic properties should be reanalyzed. In fact, in this
limit the most important effect caused by the field might be the so-called magnetic catalysis of
chiral symmetry breaking, as in the vacuum [97, 98, 99]. The corresponding new ground state
is characterized by different condensates. Its symmetry, though, is similar to the symmetry in
the mCFL phase except for the baryon number symmetry that remains unbroken [97].

We use a massless three-flavor quark model with a local NJL-type interaction to describe
the mCFL phase. The free energy density F of this system composed of quarks in the presence
of an external magnetic field H is a functional that depends on the gap functions, the chemical
potential, the temperature, and the induced magnetic field B. The fields H and B have different
physical meaning and need to be distinguished. For instance, in an idealized model for the
inner core of a color-superconducting magnetar, H would correspond to the field present in
the outer layers of the star. Inside the core one has to take into account the magnetization of
the medium and in this case B has to be used. We assume that both H and B are uniform
fields that point in the Z-direction. This approximation is valid as long as the fields do not
change appreciably within the relevant length scales defined throughout the computation of the
system’s thermodynamic quantities such as the quark number density. This is indeed the case
here because the characteristic length scale associated with the problem is of the order of one
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fermi. Note that we do not specify here whether the magnetic field has toroidal and/or poloidal
components.
The partition function of the system is given by

Z = N() 6_% (f+§_:)

/ DYDY exp {/X [c — g} } (3.1)

where Nj is the normalization constant. The Lagrangian density reads

3

£ =B + QA+ o)+ Y0 S (O Pye) (P, (32

n=1

where A" describes the gauge field of the in-medium electromagnetism [U(1)]en,. The quark
spinor ¢2 carries color a = (b,g,7) = (1,2,3) and flavor @ = (s,d, u) indices and the charge-
conjugate spinors are defined as in Chapter 2, i.e., ¥, = C¥" and 1), = T C where C = ir?4°
is the charge conjugation matrix.

We consider only the pairing in the antisymmetric channels and, thus, (Pn)g% = iv5 eab”ea@?7

(no sum over n) and P, = ’yoP;zrfyo. The index n labels the pairing channels, i.e., n =1, 2, and 3
correspond to ud, us, and sd pairings, respectively.

For each channel we introduce a complex scalar field ¢,, which has expectation value A,,.
The four-fermion interaction is bosonized via a Hubbard-Stratonovich transformation, which
then gives a Yukawa-type interaction

P

n %
2

@By — 10 (33
2 e G’ '

%(&inc)(i)cpn(b) - (&cpnw) +

In the following we neglect diquark fluctuations, which is equivalent to setting ¢, = A,,. More-
over, using the standard Nambu-Gor’kov spinor

U= (;f) (3.4)

and the gap matrix &+ = 2:1 A, P,, the Lagrangian density can be rewritten as
A2 1
LX) == 4 +5¥X)STHX)¥(X) (3.5)
n=1
where
'(x) <[G°+<~>]_l " ) 3.9)
Si X = + _ -1 36
® o)

and the following shorthand notation is used: [th@)]_l = [ip + eQA(X) £ pyo] and &~ =
%0(21) 0.
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The mCFL pairing is characterized by the residual SU(2)r4r+c global symmetry, which
means that the corresponding gap matrix is invariant under simultaneous flavor (1 < 2) and
color (1 « 2) exchanges. Consequently, this implies that A = A; = Ay and ¢ = Az. The CFL
gap structure is recovered when A = ¢.

All diquark pairs are chargeless with respect to the “rotated” electromagnetic symmetry.
The pairs can be composed of either quarks with opposite @—charges or Qv—neutral quarks (in
the following, when discussing quark charges, we always have in mind the @—charges even if this
is not explicitly emphasized). The gap function ¢ has contributions only from pairs of neutral
quarks while A is formed by pairs of quarks with opposite charges and pairs of neutral quarks.
In the presence of a strong magnetic field one would naively expect that pairs made of quarks
with opposite charges have smaller coherence lengths in comparison to the pairs formed only by
neutral quarks, i.e., A should be larger than ¢. In a following section we show that this is the
case in the limit of very strong fields. However, for moderate fields this is not generally true.

The Gibbs free energy density G of the mCFL phase is

B> HB
g—g_?"i_f_fvac (3.7)
where A2 )
2 ¢
= —+ = —INT, u, A, o, B). )
f G +G (7/”’7 7(257) (38)

The last term in the equation above is the one-loop contribution of quarks, i.e.,
1
(T, pu,A,¢,B) = 3 Indet S~ 1. (3.9)

The free energy of the vacuum is given by Fyae = —I'vac = —1(0,0,0,0,0).

In equilibrium G is evaluated at its stationary point with respect to A, ¢, and B and it
describes all the system’s thermodynamic properties. The CFL free energy has to be recovered
when H vanishes. The stationary point is found from the solutions of the equations

G /T
A = Z(B_A>’ (3.10a)
G /0T
b = 5(%), (3.10b)
= H+4nM (3.10¢)

where M is the magnetization of the system, which is given by M = (0'/0B)|stationary- At the
stationary point the gaps depend explicitly on the induced field B. This field incorporates the
magnetic properties of the medium described by the magnetization M.

We consider only the zero-temperature limit 7' = 0 in our discussion because typical temper-
atures in stellar cores are much less than 1 MeV [144]. According to Eq. (B.33) in Appendix B
the one-loop quark contribution to the free energy reads

L0,u,A,¢,B) = 3P(¢)+ P(A1) + P(Ay)
+ 4F(A) (3.11)
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where Ay /y = %(\/ ¢? + 8A2 £ ¢). The neutral quark contributions are given by the three terms
containing P-functions

P(¢) = trp=o [E+(¢) + Ey (¢)] (3.12)
where the trace is defined as trp—o[...] = [ 2 (2w)3 ] and EX[¢] = \/(p F )% + #% with p =
1/ p3 + p2 The one-loop contributions from charged quarks are given in terms of the following

function:
F(A) = trp [EL(A)+ Ez(A)]. (3.13)

The trace is here defined as a sum over the Landau levels with an integral over the longitudinal
momentum, i.e.,

trpl. Zan/ dps]...] (3.14)

—00

with «,, = 2 — d,0. The quasiparticle dispersion relation of charged quarks is

ES[A] = /(e F p)? + A2 (3.15)

where ep = \/pg + 2eBn.

Using the well-known Euler-McLaurin summation formula [54]

o0

an o 1,
S0 ) = [ def@) )+ (3.16)
0
n=0
we see that, formally, limp_,o F(z) = P(z). Therefore, after taking the limit A = ¢ and
B = H = 0 we recover the free energy of the CFL phase in the absence of an external field.

3.2.1 Regularizing the mCFL Free Energy

The traces in the definition of the P and F' functions involve integrations and sums over the
quasiparticle energies throughout the whole phase space, which means that these functions
diverge in the ultraviolet. In order to obtain the physically meaningful free energy density of
the system these functions must be regularized. In effective quark models, such as the NJL
model used here, it is common to restrict the phase space by introducing a sharp finite cutoff
in momentum space. However, because of the special properties of the system in a magnetic
field, such a prescription is not very useful. Utilizing a sharp cutoff when an energy spectrum
with discrete Landau levels is considered would introduce unphysical discontinuities in many
thermodynamical quantities.
In this study, therefore, we regularize the traces in Egs. (3.12) and (3.13) by introducing
a smooth cutoff function hp (where A is a constant with dimensions of energy). The cutoff
function should approach one at small energies (¢ < A) and vanish at large energies (¢ > A).
Providing that hy falls off sufficiently fast in the ultraviolet region, the regularized functions
d3p _
PO = [ g (B0 + B ) (317)
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and

FA(A) = ;—:; > an /OO dps ha [EL(A) + Eg(A)]
n=0 —o©

(3.18)

are free from divergences. Note that we used ¢ = p in Eq. (3.17) and ¢ = ep in Eq. (3.18).
After using several different choices for hy we opted to employ the Gaussian-like form, i.e.,

ha = exp (—52/A2) (3.19)

in our numerical calculations. A sharp cutoff could be implemented with the function h =
0 (A — €) [where 6 (x) is the step function]. While this would produce no apparent abnormalities
in the behavior of Py(¢), it leads to unphysical discontinuities in Fj(A) and, consequently, in
the free energy as a function of the magnetic field.

In the numerical calculations in Sec. 3.4 we use the cutoff function in Eq. (3.19) with A =
1 GeV. It should be mentioned here that we have also checked the cutoff independence of
our results by varying the value of A (while keeping it sufficiently large) and simultaneously
readjusting the diquark coupling constant G so as to keep the CFL gap at B = 0 unchanged.

Using the regularized functions Pa(¢) and Fa(A) the gap equations (3.10a) and (3.10b)
become

A = % [R1P1(A1) + RoPi(Ag) +4AF(A)], (3.20a)
6 = SR + UiP(A) + UaPi(Aa)], (3.200)

where the functions P; and I are defined as follows

1 dP\(¢)
P, = —— 21
1 dFp(A)
F(A) = NN (3.21b)
In the gap equations above we also introduced the notation
Ry = 2A (1 + L) (3.22a)
/¢2 +8A2
2
<¢ + /8 + 8A2)
Uyp = = . (3.22b)

4/ 9% + 8A2

The gap equations derived here are slightly different than those obtained in Refs. [96, 164].
However, as shown in Sec. 3.3, our solutions for the gap functions are in agreement with the
analytical formulas obtained in Refs. [96, 164] at asymptotically high fields.
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3.2.2 Lifshitz-Kosevich Approach

In the core of magnetars the magnetic field could be so large that T? <« eB < p?. Under
these conditions some thermodynamical quantities, such as the magnetization, contain terms
that oscillate with large amplitudes as a function of B [54]. To single out the oscillatory parts
of the thermodynamic quantities it is sometimes convenient to perform the sum over the levels
using the Poisson summation formula

nz;)an p(n) = 2/0 dnp(n)+ 4 Re { ;/0 dn p(n) exp(i2mk n) } . (3.23)

This idea was employed by Lifshitz and Kosevich in Ref. [165] in their analysis of the de Haas-
van Alphen effect. In this section we use their method to show that the mCFL gap functions
should be oscillating functions of the magnetic field.

Only Fj is important in this analysis because Pj does not depend explicitly on the Landau
levels. We can then compute the sum over Landau levels in Eq. (3.18) and obtain

Fu(A) = Po(A) + 3 Re(FE(A)) (3.24)
k=1
where B [ o
FY(A) = fT—Q/O dpg/o dnha [Ef(A) + Eg(A)] exp(i2nkn), (3.25)

whereas n is now a continuous variable. The first term on the right-hand side in Eq. (3.24) pro-
vides the contribution that is independent of the magnetic field. Now we change the integration
variable from n into ¢ using n = (¢2 — p3)/2eB, which gives

1 o o ) )
FF(A) = P/o dps /p3 de eha [EF(A) + Ey (A)] exp(—ink p3/eB) exp(irke®/eB).
V2eB

(3.26)
The important values in the integral over p3 are concentrated at p?,, ~ eB. The oscillatory part of
the integral, however, comes from the region where ¢ ~ p (see the discussion below). Thus, when
eB < 12 the lower limit of the integral over e can be taken as zero [54]. This approximation is
adopted in the following. The integral over p3 can be performed and we obtain

1 /eB\'Y? [~
FY(A) = 73 (%) / de € exp(inke?/eB —in/4) hy [Ef (A) + Ey (A)] . (3.27)
™ 0
Performing the integral above by parts, we obtain
@) = 5 () i {a [E$ (8) + Eg (8)] explirke?/eB)|
1N = exp(—im A B 0 exp(imke”/eB)|

— (Eq (&) + By (4))

- / de exp(inke?/eB) T

0

D)

[dh/\




3.2. The Free Energy of the mCFL Phase 67

Reorganizing the terms, we end up with

)~ _e(in/d (%WQM_L(%?’” exp(—in/4)

273 4473

< e eimketyen) {un [+ 5 k]

dhp _

B () + By ()] (3:29)
The function dhy /de has its largest values around A and, as long as A/u > 1, the last term

in the integral in Eq. (3.29) can be omitted because it is for the most part canceled by the

vacuum subtracting term F,... Therefore, the function Fff contains only two terms

Fia) = SR/ <§>3/2 NEEY X ,—17r<§>3/2 exp(—ir /4)

213 k 4im3 \ k

> . + E— [
X de exp(inke®/eB) h ° + . 3.30
|| de exptimkfen) ma [ + 2k (3.30)

The cutoff function in the integral above is not really necessary. This can be shown by rewriting
the last term in Eq. (3.30) using an extra integral over A’

i __exp(—in/4) (eB 3/2 5 5 1 reB\3/2 »
F(8) = 273 k WA +4m3< k) exp(—im/4)

[e'¢) A

. E+u E—

X de exp(itke®/eB) / dA’ A'[ + — } (3.31)
/0 0 Ef (A7) By (A

Since the integrand converges at least linearly there is no need to include the cutoff function in

Eq. (3.31). This expression can be simplified even further by introducing the variable £ = & — p,

which gives

exp(—in/4) [eB\>? 1 /eB\3/2 , ,
FE(A) = —% <7> w4+ A2 4 T3 <?> exp(ikmu?/eB — im/4)
A 00 2 B
x / A A’/ de ¢ P ”k’g’“‘?{z ), (3.32)
0 —0 (2 4+ A2)Y/

where we used that the relevant part of the integral is defined within the range where £/u < 1,
which allows us to neglect the contribution coming from the quasi-antiparticles. Moreover, we
have extended the lower limit of integration from —u to —oo, which is a valid approximation in
the limit eB < pu? [54]. The integral over ¢ in Eq. (3.32) can be solved analytically in terms of
the modified Bessel function of the second kind K (z) [166]. The final result for F} is

\/5 eB 3/2 00 M4 eB 5/2
FA(A) = Py(A) 4+ ~=C(3/2) i V2 + A2 [ = = (=
A(D) AMA) + 5062 7 Vit + (;ﬂ) +;47T4 (klﬁ)
2rA kp 2rk A p

eB K1< eB N

x cos(kru?/eB —1/4) {1 - (3.33)
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This expression clearly shows that Fj(A) receives an oscillatory contribution due to the
cosine term with a period proportional to u?/eB (although several harmonics may also con-
tribute). Thus, we see that since Fj(A) oscillates so does Fi(A) (see its definition in Eq.
(3.21b)). This also implies that the gap functions will experience similar magnetic oscillations.
However, note that for large values of k and small magnetic fields eB/u? < 1 the asymptotic ex-
pansion of K1 (z) ~ exp(—x) (7/2z)'/? indicates that for large gaps the oscillations are strongly
suppressed.

Even though we have made several approximations in the derivation of Eq. (3.33), we expect
that the magnetic oscillations are indeed present in the system. In fact, it is shown in Sec. 3.4
that our full numerical solutions for the gap equations display magnetic oscillations.

3.3 Proper Time Regularization of the Gap Equations

A fully quantitative study of the mCFL gap equations can only be done numerically, which is
done in Sec. 3.4. In order to obtain a deeper insight into this problem here, we also perform an
analytical analysis of the mCFL gap equations. For this it is convenient to use the proper time
formalism originally introduced by Schwinger [167].

We use the following proper time representation

tr (%) = \% OOO jl/—:__tr <e*A2T> (3.34)

to obtain the following expressions for the functions P;(¢) and Fj(¢) in the gap equations

2 e’}
e ds —s(6/1)?
PO = g | e
_ 1 2—¢2/A 2 2\m _¢_2
= 2 [A + (2u° — ¢*)Ei 22| (3.35)
2 e’} d
F(9) = 15 e B f (y,5), (3.36)

A% Jnz Vs

where we defined the dimensionless proper time parameter s as s = u?7, Ei(z) is the exponential
integral function [166], and the following new function was introduced

fly,s) = %Z{)an/ooodz [e_( 22+yn+1) s
+ e(\/z2+yn1)25:| : (337)

with y = 2eB/u?. Note that in the limit of weak and strong fields this function behaves as

fly,s) =~ W coth ( ) , for y>1, (3.38)
1425 o2
f(y, 8) ~ W + ET& fOI' Yy < 1. (339)
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The term r; is obtained from the weak-field expansion of f(y,s) as follows

re = dZ —s(2+1)2 e—s(z—l)2
Fh

4= < —s(z+1)? _ ,—s(z-1)? )]
= V5[l Vase SEifi(v5)] (3.40)

where Erfi(z) is the imaginary error function [166].

3.3.1 Analytical Solutions of the Gap Equations

The first important limit that has to be considered is the CFL superconducting limit, which is
defined for zero magnetic fields. This changes Eq. (3.11) into

(0, 11, A, 6,0) = 3P(¢) + P(Ay) + P(Ag) + 4P(A) (3.41)

where we used lim p_,g F/(A) = P(A). The gap equations are then
G
A= 1 [R1 P1(A1) + Ra Pi(Ag) +4A P (A)], (3.42)

and
¢ = [3¢ Pi(¢) + Ui Pi(Ar) + Uz Pr(A2)]. (3.43)

These equations have only one nontrivial solution: A = ¢ = ¢¢ where ¢ is the CFL gap
function. In fact, using the ansatz A = ¢ = ¢¢ we find that the two equations coincide with
each other, which gives
2G ¢g
bo = 3 [2P1(¢0) + P1(2¢0)] - (3.44)
This is the gap equation of the CFL phase. The corresponding free energy is also reduced to
the CFL free energy. We now find an analytical solution for the equation above. Excluding the
trivial solution ¢y = 0 and using the analytical representation for the P;-function in Eq. (3.35),
the gap equation takes the form

b= 3G [AQ (2 I +6_¢3/A2> + (205 — 1°)
2
. 4% 2 2o 0
x Ei 2 + (¢ — 2117 )Ed 2 )| (3.45)
Assuming that ¢o/pu < 1 and ¢o/A < 1 this equation becomes
G [ A?
1~ = {7 — W [7 + ln(22/3¢3/A2)} } (3.46)

where 7 is the Euler-Mascheroni constant. The solution for ¢ is

A 2 A2 v
¢0 = m exXp (-W + 4—,u2 — 5) . (347)
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Note that the exponent in Eq. (3.47) contains the typical BCS factor exp(—1/NG) where G is
the diquark coupling constant and NN is the density of states of the quarks that contribute to

the pairing. The density of states of a single quark is Ng = pu?/272, which can be seen from
Eq. (B.29). Therefore, in this case we have that N = 4Nj.

3.3.2 mCFL Phase in Ultrastrong Fields

It is also possible to solve the gap equations in Eqgs. (3.20a) and (3.20b) analytically when only
the lowest Landau level (LLL) is populated. This corresponds to the case where eB/u? > 1.
Assuming that A > ¢ in this limit, we obtain that

¢ ¢ V2A ¢
Al/gﬁ\/iAiE, Rl/ZEQAiﬁa Ul/QﬁiT—i-i (348)
The gap equations then are
A=G [A PI(V2A)+ A Fl(A)} (3.49)
and o
o= 36 Pi(6) + 0 PL(V2 A) + V20 Po(v24)). (3.50)
In the LLL approximation we have
eB .. 2742
Fi(A) = —— Ei(—-A*/A%) (3.51)
42
and 1
_ 2 —2A%Z/A2  A2T:/ o A2 /A2
Py (V2R) = 5 [M e AZEi(—2A%/A )] . (3.52)

Note that the gap equations are now decoupled. In fact, Eq. (3.49) can be solved to find A
and this result can be used in Eq. (3.50) to determine ¢. The equation for A is

1~ 4—(/52 {A% — (eB +2u*) [y + In(A?/A?)] — 24° In 2}, (3.53)

where the same approximations used in the derivation of Eq. (3.47) have also been applied.
Eq. (3.53) has the solution

272 v A2 —24?1n2
A=A —_— — =+ | . 3.54
P G(eB+2u2) 2 T3 (eB +2u?) (3:54)

The exponent in Eq. (3.54) displays the typical BCS factor exp(—1/NG) and

eB
N=—+ — =4Ny+ 4N .
253 o +4Nrrr (3.55)

is the total density of states of the four quasiquarks that contribute to the pairing. However, the
situation now is different than that found in CFL superconductors because the quasiquarks can
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be neutral or charged. Again, the density of states of a single neutral quasiquark is No = pu? /472,
On the other hand, for the lowest Landau level the density of states of charged quasiquarks of
a single spin state is Ny, = eB/87r2.

The gap equation for ¢ can be similarly solved and we find

A \1/3 w2 A2 oy 1
¢_A<—\/§A) exp <_—3Gu2+6_u2_§_ﬁ>' (3.56)

Our analytical results for the gaps are consistent with the assumption A > ¢ when eB/u? >
1, which was made in the beginning of this section. Moreover, they have the same physical
properties as those found in Ref. [96, 164].

3.4 Numerical Results

The free parameters of the model (G and A) are set to yield a CFL gap ¢¢ of either 10 MeV
or 25 MeV at p = 500 MeV when B = 0. (All numerical results shown below correspond
to the choice of the coupling constant and the cutoff parameter: G = 4.32 GeV~2 or G =
5.15 GeV™2 and A = 1 GeV.) In Fig. 3.1 we plotted the ratio between the mCFL and CFL
gaps as functions of eB/u?. As was mentioned in the last section, we have checked the model
dependence of our results by changing the parameters A and G. When eB/u? > 0.3 the gap A,
which receives contributions from pairs of neutral quarks and also pairs with opposite charges,
differs considerably from ¢ where only neutral quarks enter into the pairing. For smaller fields
(eB/p? < 0.1) the mCFL gaps are practically the same as ¢y.

For ultrastrong fields (eB/u? > 2) A is much larger than ¢. This is consistent with the
analytical solutions for the mCFL gap equations found in Sec. 3.3.1 and in Refs. [96, 164].
There the authors considered fields so large that only the lowest Landau level contributed to the
dynamics. As argued in the previous section, since these fields should already probe the dynamics
of the vacuum the effects from magnetic catalysis should be taken into account [97, 98, 99].
Moreover, assuming u = 500 MeV, the corresponding field strengths appear to be of the order
of B ~ 8.5 x 10 G, which may be too large to be found in compact stars [169)].

In Fig. 3.1 we see that the gaps display magnetic oscillations with respect to eB/u?, which is
in agreement with the discussion in Sec. 3.2.2. These oscillations share the same physical origin
as the de Haas-van Alphen oscillations observed in metals. They appear as a consequence of the
oscillatory structure in the density of states, which is imposed by the quantization of the energy
levels associated with the orbital motion of charged particles [54].

At zero temperature most electronic properties of metals depend on the density of states on
the Fermi surface. Therefore, an oscillatory behavior as a function of B should appear in any
quantity that depends on the density of states on the Fermi surface. In the case of an mCFL
color superconductor it is the quark density of states on the Fermi surface that is relevant. Since
the gaps in the excitation spectrum depend on the quark density of states and every physical
quantity that we are interested in depends on the gaps, some type of magnetic oscillations
should appear. The presence of nonzero gaps, however, smears out the Fermi surface so that
the oscillatory structure is considerably reduced. This then explains the smoothness of the
oscillations and their dependence on the magnitude of the gaps, which are seen in Fig. 3.1.
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Figure 3.1: Ratios A/¢g and ¢/¢g versus eB/u? for two sets of parameters that yield ¢o = 10 MeV
and ¢g = 25 MeV.

3.4.1 Magnetic Properties of mCFL Quark Matter

In the presence of strong magnetic fields the magnetization M affects the properties of the
mCFL phase. As mentioned in the introduction, this might be relevant to explain the magnetic
properties of magnetars with color-superconducting quark cores. A phenomenon that is quite
often observed in magnetic systems is the formation of magnetic domains [54]. In metals,
the large magnitude of the de Haas-van Alphen oscillations in the magnetization can create
regions where (0H/0B), < 0 and/or HB < 0. These correspond to unstable or metastable
states. The condition for thermodynamic stability (0H/0B), > 0 implies that 4 [x(u, B)| < 1
where x(u, B) = (0M/0B),, is the differential susceptibility. When the differential susceptibility
exceeds 1/47, depending on the geometry of the system, a transition into a magnetic domain
configuration may occur. The presence of magnetic domains in the crust of a neutron star was
discussed by Blandford and Hernquist in Ref. [170].

In Ref. [161] it was shown that the magnetization of hadronic matter is negligible even for
magnetar conditions, i.e., 47 M/B < 1 for B < 10G. In the case of color-superconducting
matter, however, the situation is very different. In Fig. 3.2 we plotted this ratio versus eB/u?
for an mCFL superconductor. The magnetization is extremely large in this case and it displays
de Haas-van Alphen oscillations that have very large magnitudes. Note that the existence of
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nonzero energy gaps makes the Fermi surface look fuzzy and the magnetization’s oscillations
in mCFL quark matter are much smoother than those of the magnetization of cold, unpaired
quark matter [171].
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Figure 3.2: Ratio 47 M/B versus eB/u? for two sets of parameters that yield ¢g = 10 MeV and
b0 = 25 MeV.

Our results for the H-B curve are shown in Fig. 3.3. Several regions of thermodynamic
instabilities are obtained for eB/u? < 1. The metastable regions in Fig. 3.3, which correspond
to (0H/0B), < 0, can be filtered out by either using a Maxwell construction or a mixed phase
where microscopic domains with nonequal magnetization values coexist. This could lead to
various physical consequences. As the field H increases the system could undergo successive
phase transitions with discontinuous changes of the induced magnetic field B [54]. On the other
hand, when mixed phases are formed the relative size of domains with different magnetization
values would change with H so as to keep the average induced magnetic field B continuous. In
either case, since the magnitude of the fields involved is enormous the system could potentially
release an immense amount of energy. Further studies are needed to see whether this finding
could have any important implications for magnetars.
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Figure 3.3: External field eH/u? versus eB/u? for two sets of parameters that yield ¢g = 10 MeV and
bo = 25 MeV.



Chapter 4

Tkachenko Modes as Sources of
Quasiperiodic Pulsar Spin Variations

In this chapter we study the long-wavelength shear modes (Tkachenko waves) of triangular
lattices formed by vortices in neutron star interiors taking into account the mutual friction
between the superfluid and the normal fluid as well as the shear viscosity of the normal fluid.
The set of Tkachenko modes that propagate in the plane orthogonal to the spin vector are weakly
damped if the coupling between the superfluid and the normal fluid is small. In strong coupling,
however, their oscillation frequencies are lower and undamped for small and moderate values of
the shear viscosity. The periods of these modes are consistent with the observed ~ 100 — 1000
day variations of spin for PSR 1828-11. We presented the results discussed in this chapter in
Ref. [133].

4.1 Introduction

Pulsars are rotating neutron stars that generate lighthouse-like beams of radio emission from
their magnetic poles. The measured pulse allows for the determination of their rotation rates
with great precision. Most pulsars have stable pulsar shapes and are steadily slowing down [174].
However, observations in the past few decades revealed several types of timing irregularities in
a subclass of isolated compact stars.

The observation of pulsar glitches provides a striking example of a timing anomaly. They
correspond to abrupt increases in the pulsar rotational frequency and its derivative. The slow
relaxation of these quantities after the glitch has been considered as a signal for the presence
of superfluidity inside neutron stars [175]. Neutron superfluidity is expected to take place in
dense hadronic matter due to the attractive component of the nuclear force, which leads to the
formation of neutron Cooper pairs. At low densities the pairing can occur in the relative 1S
channel and at high densities the 3P, — 3F, channel is favored [176]. In addition, protons are
expected to pair in the S-wave channel due to their low concentration.

Even though pulsar glitches attest to the existence of superfluidity in stars, they cannot
be used in determining how large the coupling between the superfluid and the normal fluid
component is. During the last decade mounting evidence has emerged for the existence of
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long-period oscillations in a handful of pulsars [177]. An outstanding example of this kind of
phenomenon is observed in PSR 1828-11 [178]. Its timing residuals are modulated with periods
of 256 and 511 days, while a 1009-day periodicity is inferred with less confidence. These timing
residuals coincide with periodic modulations of the pulse shape, which indicates that the pulsar
undergoes some sort of precessional motion with the periods quoted above [179].

However, free precession is incompatible with the existence of a superfluid in the pulsar’s
interior if the superfluid is strongly coupled to the normal fluid [180]. The parameter that
quantifies the coupling depends on the superconducting/superfluid properties of the fluid(s) and
the non-superconducting material which resists the vortex motion. Microscopic calculations
predict a wide range of values for this parameter. However, if free precession is established
beyond a reasonable doubt it will exclude strongly coupled theories. Nevertheless, while free
precession is a plausible source for the long-term variability in pulsar timing, here we follow a
different route [181] by exploring the propagation of Tkachenko modes as the source of long-term
pulsar spin variations.

In the late 60’s Tkachenko showed that the lowest energy state of an infinite array of vortices
in an incompressible superfluid occurs when the vortices form a two-dimensional triangular
lattice [182]. The lattice supports collective elastic modes, called Tkachenko waves, in which the
vortex lines undergo parallel displacements with elliptic polarization in the plane perpendicular
to the rotation axis. These modes cannot be described within standard Bekarevich-Khalatnikov
hydrodynamics [183] because this theory includes only the dependence of the rotational energy
on the mean local vortex density and it neglects the energy increase produced by the shear of
the vortex lattice, which is the restoring force for these modes.

Charge neutral superfluids in neutron star interiors rotate by forming an array of singly
quantized vortices. The undamped propagation of the corresponding Tkachenko waves would
cause local changes in the density of the vortex lines that generate variations in the superfluid’s
angular momentum. Therefore, it is expected that this can lead to changes in the rotation and
spin-down speeds of the star. Using this idea, Ruderman [184] pointed out that Tkachenko
modes provided a possible explanation for the quasiperiodic timing residuals observed in the
Crab pulsar, which have periods of hundreds of days.

In this chapter we study the propagation of Tkachenko modes in neutron star superfluids
and calculate the damping of these modes by mutual friction and the shear viscosity of normal
matter. These factors are clearly important for the continuous propagation of the Tkachenko
modes, which would certainly lead to observable effects. Provided that the observed variations
are indeed caused by the shear modes of the lattice we can ask the question: what do the
quasi-sinusoidal timing variations tell us about the microscopic physics governing superfluids in
neutron stars?

This chapter is organized as follows; in Sec. 4.2 we review the equations of superfluid hydro-
dynamics that include the combined effects of vortex tension, mutual friction, and shear viscosity.
Sec. 4.3 is devoted to the derivation of the characteristic equation for the Tkachenko and inertial
modes and in Sec. 4.4 we present our numerical results for their frequency. Throughout this
chapter the cgs unit system is employed.
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4.2 Superfluid Hydrodynamics with Vortex Tension

There are several length scales in this problem, namely, the vortex core radius ~ 1072 cm,
the intervortex spacing ~ 1072 c¢m, and the characteristic size of the region where neutron
superfluidity can be found ~ 10° cm (we refer to these three different scales as micro, meso,
and macroscopic scales). A meaningful hydrodynamic description requires averaging over the
mesoscopic scales. To describe the deformations of the vortex lattice one needs an additional
dynamical variable, the local deformation of the vortex lattice €(r), which must be incorporated
in the Bekarevich-Khalatnikov superfluid hydrodynamics [183]. A hydrodynamic description of
superfluids that includes lattice deformations has been studied by a number of authors [185,
186, 187]. In this thesis we use the Chandler-Baym version of superfluid hydrodynamics [187]
to study the Tkachenko modes and their damping from mutual friction and shear viscosity. For
the sake of self-consistency, we repeat some of the steps in Chandler-Baym’s derivation of the
fundamental superfluid hydrodynamic equations below.

We start off by noting that at nonzero temperature the system is composed of vortices as
well as normal fluid and superfluid components. These dynamical components are coupled to
each other due to the hydrodynamic equations that contain the usual viscosities [188] and the
mutual friction forces arising from the interactions between the normal fluid excitations and the
vortex lines. The basic role played by these forces is to couple the velocities of the normal fluid
and vortex lines. This coupling damps the transverse modes and the sound modes.

In the laboratory frame, the fluid motions are naturally separated into the center-of-mass
motion (first sound) and second sound which corresponds to temperature-dependent relative
oscillations between the superfluid and the normal component. These motions are conveniently
described in terms of the total mass current j = pNUN+psUs and the relative velocity ¢ = vy —Ug
where pg (pn) and s (Un) are the superfluid (normal fluid) density and velocity, respectively.
In addition, one needs an equation for the time variations of the lattice deformation € (7). Note
that the tiny effects arising due to the inertia of the vortex lines are neglected. The total mass
density p is

p=ps+pn, (4.1)
with which we can write the continuity equation
op = -
—+V-5=0, 4.2
5 TV (4.2)

which is always valid regardless whether the fluid is viscous or not.
It can be shown [187] that the conservation of vorticity leads to the superfluid acceleration

equation
ovg . O - ﬁg
- hih 4.
5 TUX 5 V<2+h , (4.3)

where @ = V x s and h is a dissipative term present also in nonrotating superfluid hydrody-
namics [183], which is given by

h=—(V- (;— P77N) — GV - T, (4.4)

where (3 and (4 correspond to bulk viscosity coefficients.
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The other hydrodynamic equations are the conservation of momentum and the acceleration
equation for the vortex lines. The momentum conservation law (Euler’s equation) is

d7;
% + Ok (mik, — ik + Tik) = 0, (4.5)
where 7,k = 1,2,3 and
Tik = PS VSi USk + PN UNi UNk + o Oig; (4.6)

is the stress tensor in superfluid hydrodynamics, which is a generalization of the usual formula
in ordinary fluid dynamics. In Eq. (4.6) Py corresponds to the pressure in the fluid at rest. The
tensor 7, describes the mechanical transport of the different particles in the fluid and also the
pressure forces acting in the fluid. These are reversible processes that account for the transfer
of momentum inside the fluid [188]. On the other hand, the inclusion of viscous terms in the
dynamics leads to an irreversible transfer of momentum from points where the velocity is large
to those where it is small. The viscous tensor is

2 - - - . -
Tik = =1 <5z‘UNk + OpuN; — gfsik A\ ’UN> —0ixlC1V - <j - pUN> + (V- Un], (4.7)

where 7 is the shear viscosity and ¢; and (2 are bulk viscosity coefficients [183, 188]. The different
terms in 7, arise because of the requirement that the total entropy of the system must always
increase. Note that 7;; depends only on the spatial derivatives of the normal velocity because
internal friction is supposed to occur in a fluid only when different fluid particles have different
velocities. In other words, dissipation due to internal friction appears when there is a relative
motion between distinct parts of the fluid.

An implicit assumption taken for granted when writing Eq. (4.7) is that the velocity gradients
are small and, thus, the momentum transfer due to viscosity depends only on the first derivatives
of the velocity. We have also assumed that when the system is not rotating it is isotropic, which
means that its properties can be described by scalar quantities such as 1 and the bulk viscosity
coeflicients. Moreover, thermal conduction effects are not taken into account.

The vortex elastic stress tensor «y;; is defined as

D¢k
0z’

where pug = psh€)/8my is the shear modulus of the triangular vortex lattice calculated by
Tkachenko [182], my is the mass of the neutron, 2 is the pulsar rotation frequency, and

A—-fwsln<é> (4.9)

-~ 8my a

Yik = WS (6k€i + O;er — 30k V- g) — 20X 6;, (4.8)

is the vortex tension. In the definition of A we have that a is the coherence length and b =
(mh/\/3mnQ) is the vortex radius of the triangular lattice.
The line acceleration equation can be written as

oe o
%ﬁxG@—£>:&—a (4.10)
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where & is the vortex elastic force density defined as

0%

S (4.11)

7 = ug [ﬁi(m &) — vig] — 20\
where V| is the gradient in the x-y plane and D is the mutual friction force.
In the rotating frame the linearized versions of the fundamental superfluid hydrodynamic
equations for the net mass current, the relative velocity, and the superfluid velocity are

o7 L - - -
8—i+<29xj)+C+G+VP+pV¢ ~ 0, (4.12)
aq - 7 .
— 2Vxq) — — — = 4.1
ot * ( X q) pPSs 07 ( 3)
O . 98\ VP -

where P = Py— p(§ x #)2/2. The force density C is defined as the gradient of the viscous tensor
T, with the bulk viscosity coefficients set to zero, i.e.,

2 -
Ci=-n0k <aiUNk + OkUN; — §5z‘k V- ’UN) : (4.15)

Note that we included the contribution from the Newtonian gravitational potential ¢ to the
momentum conservation law because the neutron superfluid feels the presence of the star’s
gravitational field. This potential satisfies the equation

V2p = V(s + ¢n) = 47G(ps + pn), (4.16)

where G is the Newton’s constant and ¢g and ¢ are the gravitational potentials of the superfluid
and the normal fluid, respectively. The final equation that describes the mutual friction force is

f = QOps [ﬁx |:u_5 X (g—j—l_}}v>:|:| + B'ps |:u_5 X <§—UN>] , (4.17)

where 77 = J/w and 8 and 3’ are the phenomenological mutual friction coefficients.

4.3 Tkachenko and Inertial Modes

We consider plane-wave perturbations with respect to the equilibrium which corresponds to
uniform rotation. We use a Cartesian system of coordinates where the z-axis is directed along
the axis of rotation, i.e., Q= (0,0,9). The vectors ; and ¢ can be decomposed into transverse
and longitudinal parts, which are defined as ; = j; + ;l and ¢ = ¢ + ¢;. The transverse parts
which are of interest here satisfy the condition
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Vi ji=V.i-q=0. (4.18)

The perturbation equation for the transverse components of the vectors ; and ¢ derived from
Egs. (4.12), (4.13), and (4.14) are (hereafter the subscript ¢ is omitted)

0j; .
S+ (et Qo + 01 + ki) Pa = 0, (4.19)
dq; o
S+ QetmnQntn = = = f)Pa = 0, (4.20)
ps
v; Oe
a—t’ - QEZanma—t"Pil = 0. (4.21)
In the equations above we used a projector Py = 8 — k;k;/k? where k is the wave vector. Our

coordinate system is such that the wave vector lies on the z — x plane k= (ksin 6, 0, kcos 0)
where 0 is the angle formed by the vectors 2 and k.
Writing the time perturbations as j;(t) ~ j; €*%* (a similar definition is used for the other

vectors) we obtain, after some algebra, the characteristic equation det ||K;;|| = 0 where
p—inad (ysh—1)  —iysad —ysvh
oo | dtosg P VSING s
Y —Bg —B*h p+pd+ng) =B (1—nh)
—Bg ph p*(d+vg)  p+B(L—nh)

(4.22)

We used the following shorthand notations in the definition of the matrix Kyj: vn/s = pny/s/p;
V2 =cos 0, 3 =1—f, i1=nk?/(2Qp), a = (4—d)/3, § = YN 3, and B = vy 3. Moreover,
we have that

k?2

g = 12,5 (s — d(ps — 2QN)], (4.23)
k2

= 1025 [ns — d(ps +2QN)] . (4.24)

Note that the coefficients g and h are independent of the density because ug ~ pgs and A ~ pg.
The density appears only through the normalization of the shear viscosity 7 ~ p~'. The eigen-
modes of the matrix in Eq. (4.22) provide the oscillatory modes in the general case where the
shear viscosity of normal matter and the mutual friction between normal and superfluid compo-
nents are included. In the non-dissipative limit (3 = 8’ = n = 0) the modes separate into two
independent sets that describe the inertial and Tkachenko modes. The (real) eigenfrequencies
of these modes in units of 2{2 are

pr = £id"2 pr==i[d+g) (1 —h)"?, (4.25)

where the indices I and T refer to inertial and Tkachenko modes, respectively.
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4.4 Numerical Results

If the Tkachenko modes are generated within superfluid shells with the width of R, ~ 10 km
their corresponding wave vectors are of the order of ki, = 27/ R, ~ 6.28 x 1079 cm, which sets
the lower limit on the wave vector. Since the hydrodynamic description breaks down at length
scales ~ 10b (b ~ 1073 cm is the intervortex distance) the wave vector is bounded from above by
the value kmax = 73.3 cm™'. We are interested in the small wave-vector limit k& ~ kmin, which
describes vortex density waves across the entire superfluid shell.

The parameters g and h are of the order of s = (h%k2; /2m,)(8hQ2)~!. For instance, when
k = kmin and Q, = 15.51 Hz (the rotation frequency of PSR 1828-11) we obtain that s = 10714
Therefore, for s <« 1 the eigenmodes corresponding to Tkachenko waves in the dissipationless
limit are given by ppr = +i[(d + g)]l/ 2. In the limit d < ¢ where the wave vectors are highly
collinear to the spin vector we obtain that pr = +i,/g and, in the opposite limit d > g, the
Tkachenko modes become identical to the inertial modes, i.e., pr = py.

Fig. 4.1 displays the period of the Tkachenko modes without dissipation as a function of
their wave vector. Only the long-wavelength perturbations have periods of the order of 100
days, which are then relevant for observations. In this limit the periods rapidly decrease for
perturbations with finite d. The period P(kmin,d = 0) = 331 days for Q, = 15.51 Hz suggests
that the shortest period observed in PSR 1828-11, which corresponds to 256 days, should be
identified with the fundamental oscillation mode. Oscillations with larger periods should then be
identified with the higher-order harmonics of this mode. A period of 256 days can be obtained
by adopting R, = 7.7 km, which translates into k = 8.16 x 1076 cm™!.

We now consider the effects of the shear viscosity and the mutual friction on the propagation
of the Tkachenko modes. It is convenient to use the drag-to-lift ratios ¢ and ¢’ instead of 8 and
3’ to describe mutual friction. These ratios are related by the following equations

¢ s =)
[(1—=¢2+¢2) ¢

Microscopic calculations indicate that ¢’ ~ 0. The limit { — 0 corresponds to a weak coupling
between the vortices and normal fluid, while { — oo implies strong coupling.

Figure 4.2 shows the dependence of the eigenmodes derived from Eq. (4.22) on the drag-to-lift
ratio ¢ for several values of the shear viscosity and d = 0. The value of 7 is determined assuming
a constant density of 3 x 10 g ecm™3. In the limit where ¢ and 7 vanish we recover the results
for the non-dissipative case discussed above. For n = 0 the real part of the Tkachenko mode,
which is doubly degenerate, vanishes only in a narrow window of values of {. For larger values of
¢, which corresponds to the strongly coupled region, the real part reaches an asymptotic value
that is about 25% smaller than its value in the undamped limit. Note that in our plots only the
regions where the modes change significantly are shown.

Assuming that the normal fluid is inviscid, the results in Fig. 4.2 imply that there are
oscillations with even longer periods in the strongly coupled limit. The Tkachenko modes are
significantly damped by mutual friction in the region where the real part vanishes. There the
number of imaginary roots of the characteristic equation increases by one. Moreover, one of
the imaginary roots is given by Im w = {62, which continues beyond the figure’s y scale.

8= g =1- (4.26)
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This reflects the damping of the differential rotation between the superfluid and the normal
fluid caused by mutual friction. This damping has no effect on the Tkachenko mode in strong
coupling. For moderate values of viscosity, n = 5 x 1017 dyn s cm™2, the real part of the
Tkachenko mode is reduced in the strongly coupled region. Also note that the oscillations are
weakly damped because of the contribution of the imaginary part. For large values of the shear
viscosity (7 ~ 10 dyn s cm™2) the real part of the Tkachenko mode vanishes in the strongly
coupled limit. There are no inertial modes when d = 0.

The modes when d = 10~ are shown in Fig. 4.3. As discussed above, in the non-dissipative
limit the Tkachenko and inertial modes coincide for sufficiently large d. For n = 0 the modes
can be distinguished in the strongly coupled limit because the Tkachenko mode vanishes for
sufficiently large values of (. When larger shear viscosities are considered (n = 10! dyn s cm~2)
the difference between the real parts of the inertial and the Tkachenko modes can be clearly
resolved. If we increase n even further we see that the real part of the inertial mode decreases
and the imaginary part, which increases with 7, becomes relevant. Finally, the real part of the
inertial mode vanishes at 7 ~ 5 x 10'? dyn s cm™2.

The outer cores of neutron stars are mainly composed of light baryons, which pair in the
isospin triplet states, and leptons. For densities of 2 — 3 x 10 g cm™ and temperatures of
T ~ 10® K the shear viscosity of the electron fluid was determined to be in the interval between
8 — 40 x 10Y7 dyn s cm ™2 [189]. This value of the temperature is a realistic upper bound on
the temperature in the core of neutron stars except for very young objects like the Vela and
Crab pulsars. For colder stars the viscosity could be a few orders of magnitude larger because
n~ T2

Our results imply that type-I proton superconductivity is not the only solution for the pre-
cession puzzle by demonstrating that the long-term variation in the spin of PSR 1828-11 can be
explained in terms of Tkachenko oscillations within superfluid shells. Our analysis indicates that
Tkachenko modes are broadly consistent with weakly coupled theories between the superfluid
and the normal fluid independent of the shear viscosity. Their subclass with d = cos?# = 0 has
periods that are consistent with the lowest observed periodicity in PSR 1828-11 of 256 days.

The existence of Tkachenko modes in the strongly coupled limit depends on the shear vis-
cosity of normal matter. For low viscosities the Tkachenko modes are (in strong coupling)
renormalized to values that are a few times smaller than their corresponding non-dissipative
limits. This implies that in strong coupling the Tkachenko oscillations have periods that are
larger than their non-dissipative counterparts. In fact, the damping caused by mutual friction is
not always strong enough to preclude an oscillatory behavior. Therefore, we claim that the long-
term variation in the spin of PSR 1828-11 can in principle be explained in terms of Tkachenko
oscillations within superfluid shells for certain values of the mutual friction and the normal fluid
shear viscosity.
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Figure 4.1: Dependence of the period P = 27/|pr| of Tkachenko modes on the wave vector for d = 0
(solid black line), d = 10712 (dashed red line), and d = 105 (dashed-dotted line). In the large wavelength
limit the periods are on the order of 100 days. In particular, for Q, = 15.51 Hz we obtain that P(kmyin,d =
0) = 331 days if the core size is R. = 10 km and P(kpin,d = 0) = 256 days when R. = 7.7 km.
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WQ,

Figure 4.2: Dependence of the real (solid black line) and imaginary (dashed red line) parts of the
Tkachenko modes (w = ip) on the drag-to-lift ratio ¢ for n = 0 (upper panel), n = 5 x 10'7 (middle
panel), and n = 10'Y (lower panel) in dyn s cm~2 units. All modes are normalized by the non-dissipative
value of the Tkachenko mode Qp = 27/P. The modes are computed taking d = 0, which means that
there are no inertial modes.
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WQ,

Figure 4.3: The same as in Fig. 4.2 in case of d = 1071 and n = 0 (upper panel), n = 10! (middle
panel), and n = 5 x 10! (lower panel) in dyn s cm~2 units. Note that both the Tkachenko and inertial
modes are displayed here.
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Chapter 5

Summary and Outlook

Color superconductivity has been extensively studied in the last years in spite of the fact that
there are as of yet no experimental observations that can ultimately attest to its existence.
Perhaps one of the main arguments that justifies these investigations is that the existence of
color superconductivity in cold and dense quark matter can be shown to be a direct consequence
of QCD’s asymptotic freedom (see Sec. 1.5). Therefore, since QCD is known to be the correct
theory of strong interactions, it was only a matter of finding the perfect conditions in which this
new state of matter could be observed.

It turns out that inner cores of neutron stars, which are expected to have densities up to
ten times the nuclear saturation density and temperatures T' < 1 MeV, are probably the most
likely places where deconfined quark matter can exist considering the very specific conditions
needed for color superconductivity. In this thesis we explored the role played by gauge fields in
obtaining new observable signatures that can attest to the existence of color superconductivity
in the central regions of compact stars. Let us recapitulate how these new observable effects
were obtained in our study.

The order parameter that defines the CFL phase simultaneously breaks color and flavor sym-
metries. The formation of the color-superconducting state then involves a complicated interplay
between the gluons and the Cooper pairs because both of them carry non-Abelian color charge.
In the CFL phase the gluons have a nonzero color Meissner mass, which plays an important
role when their thermal fluctuations are taken into account. We have systematically calculated
the effects of gauge-field fluctuations on the GL free energy density of a homogeneous CFL
color superconductor in the two-loop approximation. Recall that in electronic superconduc-
tors a fluctuating electromagnetic field induces a weakly first-order phase transition (see Sec.
1.3.2). Similarly, adding thermal gluon fluctuations to the GL free energy density of a CFL
superconductor changes the order of the phase transition.

We evaluated the temperature of the fluctuation-induced first-order phase transition both
analytically and numerically and we also computed the latent heat and the maximum tempera-
ture of the superheated superphase. It was also shown that the London limit for color-magnetic
interactions does not exist in CFL color superconductors. This comes about as a consequence of
the weakness of electromagnetic interactions in comparison to strong interactions, i.e., a. < as.
Thus, once the thermal gluon fluctuations are taken into account, the local-coupling approxima-
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tion between the color-superconductive order parameter and the gluons is not valid in the CFL
phase.

The superconducting critical temperature obtained in the first-order phase transition is sub-
stantially larger than the critical temperature calculated without the gluon fluctuations. Also,
the energy gap in the quasiparticle excitation spectrum changes discontinuously from zero (at
high temperatures) to a nonzero value at the new critical temperature. It remains to be deter-
mined how much this would affect the cooling of a proto-neutron star with a CFL core.

By using an inhomogeneous GL theory, lida and Baym [76] investigated the formation of
vortices and supercurrents induced by external magnetic fields and rotation in pairing states
near the critical temperature. Since they used a mean-field approximation, all gauge fields were
regarded as averaged quantities and fluctuations around their mean values were not considered.
In order to see how the inclusion of fluctuations would change their results one has to derive
an effective action that depends only on the order parameter and the gauge fields. According
to our results for the absence of the London limit in color superconductivity, this action would
display non-local interactions between the gauge fields and the diquark condensate. Such an
effective action could be obtained using the formalism developed in Ref. [104].

Recently, a GL free energy density that takes into account the effects of nonzero quark masses
and charge neutrality has been derived within the mean-field approximation [77]. It would be
interesting to see how the phase diagram obtained in Ref. [77] changes once the effects of gauge-
field fluctuations are taken into account. Finally, note that we only considered the transition
between the normal and the CFL phase. At intermediate densities, however, there is also the
possibility of a transition to the 2SC phase. Moreover, a transition between the 25C and the
CFL phase, as studied in Ref. [155], could also occur.

We have seen in Sec. 1.5 that CFL superconductors are not electromagnetic superconductors
because the initial local symmetry that corresponds to electromagnetism is not really broken in
the medium but rotated. In Chapter 3 we studied the effects of a moderately strong magnetic
field on the Cooper pairing dynamics in cold and dense massless three-flavor quark matter. We
solved the corresponding gap equations numerically and calculated the magnetization for a wide
range of magnetic fields (eB/u? < 1). We found that as the magnetic field increases the system
undergoes a continuous crossover from the usual CFL phase to the mCFL phase. Notably, for
eB/u? < 0.1, which corresponds to B < 4.2 x 10'® G (provided that = 500 MeV), there is no
large difference between the mCFL and CFL gaps. We would like to remark that the effects of
color and charge neutrality on the gap equations have been recently computed by Fukushima
and Warringa in Ref. [191].

Our numerical solutions for the gaps display magnetic oscillations, which is a direct con-
sequence of the Landau quantization of the energy levels in a magnetic field. The fact that
the mCFL gaps oscillate as functions of the magnetic field can also be shown analytically by
performing a Lifshitz-Kosevich analysis of the gap equations. Similar magnetic oscillations were
predicted and later observed in type-II electronic superconductors [192]. The effects of these
oscillations on the transport properties of mCFL superconductors still remain to be understood.

In Fig. 5.1 we see how the diverse length scales that define the mCFL phase behave as
a function of eB/u?. The coherence lengths are inversely proportional to the gaps. When
the magnetic length is as large as the interquark distance, which occurs at B ~ 7 x 1018 G
if 4 = 500 MeV, a more careful analysis of the assumptions made about the electromagnetic
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properties of color superconductors has to be performed. For larger fields the magnetic length
becomes smaller than the interquark distance and in this limit the most important effect caused
by the field may be the magnetic catalysis of chiral symmetry breaking [97, 98, 99].

— _ ¢—1 | e (7;2/3)1/3/'[—1
25 AL (eB)—1/2

Magnetic length

Coherence length A
B=10'"G o

B=7x10'%c

Interquark distance

0.001 0.01 0.1 1
eB/u’

Figure 5.1: Dependence of the system’s length scales on eB/u?.

The mCFL free energy density as well as the corresponding gap equations are in principle
ultraviolet divergent and, consequently, they need to be regularized. In effective quark models,
such as the NJL model used here, it is common to restrict the phase space by introducing
a sharp finite cutoff in momentum space. However, because of the special properties of the
system in a magnetic field, such a prescription is not very useful. Utilizing a sharp cutoff when
the energy spectrum has discrete Landau levels introduces unphysical discontinuities in many
thermodynamical quantities.

We performed an analytical study of the mCFL gap equations by using the proper time
regularization [167]. We showed that within this approach it is possible to obtain analytical
solutions for the gap equations when the magnetic field is very strong or zero (CFL limit).
Moreover, our analytical results have the same physical properties as those found in Ref. [96,
164].

We showed that the magnetization of mCFL quark matter displays de Haas-van Alphen os-
cillations whose amplitude can be as large as the magnetic field for a wide range of parameters.
Since the magnetization of dense hadronic matter is negligible, the nonzero magnetization of
color-superconducting quark matter may provide new observable effects that can help to distin-
guish purely hadronic magnetars from magnetars with color-superconducting cores. Our results
for the oscillations of the magnetization suggest that homogeneous quark matter may become
unstable for the range of parameters that are phenomenologically relevant to magnetars (see
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Fig. 5.2).
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Figure 5.2: Unstable regions in the eH/u? versus eB/u? plot for the two sets of parameters used in
Chapter 3. Homogeneous quark matter is unstable in the region below the H = 0 line and also in the
pink shaded areas.

The type of instabilities obtained here indicates that the free energy density is not convex in
these regions. This is usually fixed by allowing the formation of magnetic domains or other mag-
netic inhomogeneities in the system [41]. Therefore, we expect that magnetic inhomogeneities
can be found in the quark cores of magnetars. We argued in Sec. 3.4.1 that the successive phase
transitions coming from discontinuous changes of the induced magnetic field B during the star’s
evolution can release a vast amount of energy that would heat up the star, which would then
cool down by, for example, the emission of neutrinos. Therefore, bursts of neutrinos coming from
magnetars with color-superconducting cores could be expected even after the deleptonization
period.

There are several questions regarding color-superconducting matter in strong fields and its
consequent use in the study of superconducting magnetars that remain to be investigated. One
could, for example, study the cooling of their ultramagnetized cores. Also, the effects of strong
magnetic fields on the global structure of the star, such as its mass and radius, are also very
important and will be discussed elsewhere [193]. A very important detail that has to be taken
into account when computing the mass and radius of magnetars is that the magnetic field in
these objects is so strong that the spacetime metric is not spherically symmetric anymore [194].
Therefore, the normal TOV equations cannot be used to determine the mass and radius of these
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stars.

The low-energy effective theory for the Nambu-Goldstone bosons in the mCFL phase was
recently derived by Ferrer and de la Incera in Ref. [168]. However, the pion decay constant
and the meson maximum velocities still have to be determined using the microscopic theory.
Using the zero-field values of these parameters calculated in Ref. [163] they obtained that the
charged mesons decouple from the low-energy theory only when eB 2 12 qb% Incidently, this
corresponds to the region where the oscillations of the magnetization and the gaps become
noticeable. This brings up an interesting question: how do the magnetic oscillations affect the
low-energy dynamics of the mCFL phase? This problem is left for future study. The effects
of a nonzero strange quark mass on the low-energy description of mCFL color superconductors
should also be considered in a future work.

At moderate densities neutral two-flavor color superconductivity displays a chromomagnetic
instability [113, 114]. It has been recently pointed out in Ref. [195] that this chromomagnetic
instability can be removed by the formation of an inhomogeneous condensate of charged gluons
and the corresponding induction of a magnetic field. This may then be relevant to the explana-
tion of strong magnetic fields and other unusual properties observed in magnetars. However, the
field strengths used in their approach are comparable to those that cause the large-magnitude
de Haas-van Alphen oscillations. This indicates that the effects from the strong magnetization
of mCFL quark matter should also be included in their discussion. Therefore, we expect that
the combined effects from the de Haas-van Alphen oscillations and the inhomogeneous gluon
condensate may shed some light on the problem with the chromomagnetic instability present in
color superconductors.

Obviously, our results only apply if the strong magnetic fields observed on the surface of
magnetars can be transmitted into their inner cores. This can occur if the superconducting
protons, which are expected to exist in the outer core, form a type-II superconductor so that
the external magnetic field can penetrate in the form of vortices. However, it has been argued
that the long periodic oscillations observed in isolated pulsars can only be explained if the outer
core is a type-I superconductor rather than type-II [131]. This is because free precession, which
is the standard explanation for these timing variations, cannot occur in strong coupling [180]. If
type-1 superconductivity is indeed realized in the outer core of neutron stars, the glitch models
based on the interactions between the neutron vortices and the proton flux tubes, such as the
model in Ref. [128], would no longer apply.

We showed in Chapter 4 that type-I proton superconductivity is not the only solution for
the precession puzzle by demonstrating that the long-term variation in the spin of PSR 1828-
11 can be explained in terms of Tkachenko oscillations within superfluid shells. Our analysis
indicates that Tkachenko modes are broadly consistent with weakly coupled theories between
the superfluid and the normal fluid independent of the shear viscosity. Their subclass with
d = cos?f = 0 has periods that are consistent with the lowest observed periodicity in PSR
1828-11 of 256 days.

The existence of Tkachenko modes in the strongly coupled limit depends on the shear vis-
cosity of normal matter. For low viscosities the Tkachenko modes are (in strong coupling)
renormalized to values that are a few times smaller than their corresponding non-dissipative
limits. This implies that in strong coupling the Tkachenko oscillations have periods that are
larger than their non-dissipative counterparts. In fact, the damping caused by mutual friction
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is not always strong enough to preclude an oscillatory behavior. Therefore, we conclude that
the long-term variation in the spin of PSR 1828-11 can in principle be explained in terms of
Tkachenko oscillations within superfluid shells for certain values of the mutual friction and the
normal fluid shear viscosity.

Our model involves certain approximations. We have adopted the two-fluid superfluid hy-
drodynamics which should be modified in order to account for the multiple fluids in the neutron
star’s core [190]. Also, we did not consider the dissipative effects due to nonzero thermal conduc-
tion and bulk viscosities. Furthermore, the cylindrical symmetry of our setup and the assumption
of uniform density need to be reconsidered in more realistic treatments of spherical superfluid
shells with density gradients.

Tkachenko modes were observed in superfluid helium in 1982 [196]. Recently, Tkachenko
waves have been observed in rapidly rotating Bose-Einstein condensates [197]. The frequencies
of the modes were measured for rotation rates as high as 98% of the centrifugal limit for the
harmonically trapped gas. The agreement between the observed frequency of the waves with
hydrodynamic predictions worsens with increasing rotation rate because as the rotation velocity
increases the volume displaced by the vortex cores becomes larger. Right after the publication
of these results Baym was able to explain them in [198].

Ref. [199] reported a very interesting study involving ultracold gases that may have serious
implications for the physics of color superconductivity. They considered a system composed
of fermionic atoms of three different internal quantum states (colors) that displays attractive
interactions on an optical lattice. Using a variational calculation for equal color densities, it was
shown that a color superfluid state occurs in the system in weak coupling while triplets of atoms
with different colors form singlet fermions (called trions) in the strongly coupled regime. These
phases are very similar to the color-superconducting and hadronic phases of QCD, respectively.
Their study indicates that one does not need to travel to the heavens in order to understand
color superconductivity.



Appendix A

Ginzburg-Landau Free Energy
Density

In this appendix, we sketch some important steps for the derivation of the generalized GL free
energy density in the presence of gauge-field fluctuations, which is shown in Eq. (2.29), in terms
of Feynman diagrams. We have

[STUP) T = (9P — pvaps)09 0y, (A.la)
BSTHP) 15 = id(P)rspa(8567 — 6765) . (A.1b)
, o kik:
D (K)ij ~ ———— 65— =% ) . (A.lc)
" J k2+£m2M J k2
4""D k
DY (K)jy = 0, (A.1d)
w g
Dy (K)aa =~ 2 rm’ (A.le)
D

where P = (v, ), K = (w, k), m% = 3g*u?/(2n?), p; are Pauli matrices with respect to Nambu-
Gorkov indices, ¢; and [,1’ stand for the fundamental and adjoint color indices, respectively,
fi are fundamental flavor indices, and v, u correspond to discrete Matsubara frequencies. The
symbol “~” in the gluon propagator means that we used the approximation for the total HDL
gluon propagator that is relevant for the CSC energy scale.

Diagrammatically, D,, is denoted by a wavy line, §,, is represented by a thick line, and the
CSC correction to the inverse quark propagator (Alb) is associated with a two-point vertex
bearing a cross. The corresponding diagrammatic expansions for S and JII are
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55 = 7 + - > +
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In weak coupling we expand S, as

S, = ———  + M +

Expanding T'conq up to the fourth power in ¢(P) we find

+3/8©(+3/2@(-1/4@ »

where the weak-coupling approximation has been employed in order to retain the diagrams
with at most one HDL gluon line. The diagram bearing two crosses yields the expression
> pp®(P)K(P|P")®(P'), where the kernel K(P|P’) is isomorphic to the kernel in the Dyson-
Schwinger equation for the diquark scattering amplitude in the normal phase. Moreover, taking
®(P) to be proportional to the pairing mode [the eigenmode of K(P|P’) with the minimum
eigenvalue at a given T' [72]], i.e.,

6(P) = Asin [3\}"% In (%)} , (A2)

where A is the energy gap, ¥ = (3/2)%/2 ¢°v/(2567*11), we have that
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OO0

is proportional to T' — T¢, with T, determined up to subleading order in g [see Eq. (2.2)]. For
the diagrams with four crosses the same mechanism yields

OO0

at T' = T,, which reduces the number of quartic terms in I'conq. Moreover, it will be shown at
the end of this appendix that the following two diagrams

< O

are of higher order in weak coupling and can be dropped. For I'.,nq we end up with

g :-1/4@+1/4@<+1/2@-1/8@ ’
cond
/

which produces the terms in Eq. (2.1). Now we consider the fluctuation terms I'gue + I'f,..-
Expanding the logarithms in Eqs. (2.24¢,2.24d), the diagrammatic representation of the first
three terms is

Cpet The = = 1/2 {((;} - 1/3 - 1/4 g::% 5
ijql‘:O (A4)

where 'y includes only the contribution from the static gluons and I‘l/quc contains the remaining
contributions. Due to the Meissner effect, the shaded bubble does not vanish when the spatial
momentum of the gluon line goes to zero at zero Matsubara energy. A resummation of all ring
diagrams in Eq. (A.4) is necessary for I'g,. and the result is the right-hand side of Eq. (2.25).
Regarding I'f;,,., where the Matsubara energy of the gluon line is nonzero, dynamical screening
prevents an infrared divergence for the integral over gluon momentum. In weak coupling I'fj,.
is dominated by the first diagram in Eq. (A.4), which is again of higher order. Therefore, the
contribution of I'y, . can be safely neglected.
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Now we present the argument supporting our assertion that the two diagrams in Eq. (A.3)
and the first diagram in I'y; . can be neglected in weak coupling. Let us denote the contribution
of the first diagram in Eq. (A.3) by c1A*. It consists of five free quark propagators with four-
momentum (v, ) and a self-energy insertion 3(P) ~ g?v1n (u/|v]) ~ gv. The main contribution
to the p-integration comes from a shell of thickness ~ |v| around the Fermi surface and then we
have

1 2
1~ MQTZW L)~y T2 (A.5)
v

which is of O(g) in comparison to the quartic term in Eq. (2.1). The contribution of the second
diagram in Eq. (A.3), denoted by caA*, can be estimated similarly. As is the case with the gap
equation, the dominating contribution comes from the magnetic gluons with nonzero Matsubara
energy. The integration for the quark propagators over the magnitude of their momenta p, g/,
on each side of the gluon line can be approximately decoupled from the integration for the gluon
propagator over the angle between p and p'/, where the latter produces the forward logarithm.

We then find

11 u s
ey~ g° TPt E — In < ,> ~ 975 (A.6)
[+

2,12 _
SV Vb vV—v

which is again of higher order. Now we consider the first diagram in I';

fuc and denote its

contribution as c3A?*. Since the typical momentum for the gluon line is k ~ mi)/?’]w\l/ 3> w and
w ~ T, each bubble can be approximated by the static magnetic self-energy of gluons at the
Pippard limit, i.e.,

Bk 1 2 7\2 4,4 1

4 p? T, g'u

ey [ (R s
o (2m) (k2+%m2D|k_|)2 T2 k 17

The sum over w has a cutoff when w ~ mp and then we end up with zw#o\w]* ~In(u/Te) ~
1/g. Consequently, we have c3 ~ g u?/T?2, which is also negligible.



Appendix B

Evaluation of the Determinant in the
mCFL Phase

In this appendix we present the details of the computation of I'(T, u, A, ¢, B). The usual way
to compute these determinants is to use the identity

A B\ .
det (C D>—det(AD—ACA B) (B.1)

for the determinant of a block matrix. Using this identity we can rewrite Eq. (3.9) as

_ 1 + -l -1
b= 21ndet{[Go(é)] o)
—[Gi g TG 5107 (B.2)
where [Goi@)r1 = [ip + eQA(X) % pyo]. However, the nontrivial color-flavor structure of
=+ —1 . .
[GO (i@)] complicates the calculations.

B.1 Introducing the Charge Projectors

The easiest way to calculate Eq. (B.2) is to go back to the Lagrangian density and introduce
the charge projectors in color-flavor space [96, 164]

Q(O) = diag(171’07171?0707 071)7 (BSa)
Q4 = diag(0,0,0,0,0,0,1,1,0), (B.3b)
Q) = diag(0,0,1,0,0,1,0,0,0), (B.3c)
which satify
Q) Q) = 00y, ab=0,4,—, > Q=1 (B.4)
a=0,%+

97



98 Appendix B. Evaluation of the Determinant in the mCFL Phase

In terms of these projectors the charge operator in color-flavor space is @ = Quy — Q.

However, it is convenient to define the following charge operator in Nambu-Gorkov space Qng =
diag o (Q, —Q), with eigenstates

@NG \I](a) =a \Il(a), (B5)
where
o) >
v a) — ( ) w a = a 1/} (BG)
(a) Ve (—a) (a) (a)

The charge operators can also be generalized to include the Nambu-Gorkov structure present
throughout this derivation. In fact, one has

Q 0
(a)
o= (% .0 ). .

which then satifies

Q(a) QéX)G’ == 5ab Q(b) 5 a,b == 0, +’ ) Z Q(a) — (BS)
a=0,+

where W,y = QgG U. Using these projectors Eq. (3.5) can be expressed as

A2 1ANG
Z —+ Z (o ST V). (B.9)
a,b= Oi

However, it can be shown that
-1NG _ NG ¢c—1NG
where we used that Q,®+Q_, is the only combination that is not identically zero. We define

S 1 =QNGS-1(X), which then implies that

(@) = )
-1 _ NG -1
st= ) Qs

o (B.11)
a=0,+

It is possible to show that [Qé\é )G Sg )]
The term involving the full inverse propagator in the Lagrangian density can be written as

FUSTIY = 5;)1%)5 U,

= - Z Uy St Uy, (B.12)

aO:t

Therefore, the Lagrangian density in Eq. (3.5) can be rewritten as

3
N Ay
2

2

+ Y \I/(a @ ¥ (B.13)
a= O:t
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where
, Gial™t @
S:=< o _@_ (B.14)
(a) CID(a) [GO(a)]

[G(jf(a)]*l = J(q) £ 0, and JI() = i@ + aeA. The new gap matrices in the equation above are

given by @z;) = ®*Q(,) whereas = WO(Q)&))T%-

B.2 Lagrangian Density in Momentum Space

It is very convenient to express the Lagrangian density in Eq. (B.9) in momentum space because
it simplifies the computation of the determinants. Here we follow Ref. [164] and use the method
originally developed for charged fermions by Ritus in Ref. [172]. In Ref. [173], the method
was also extended to include charged vector fields. In this approach the diagonalization of the
Green’s functions of charged fermions in a uniform magnetic field in momentum space is obtained
using the eigenfunction matrices F,(X). These functions are the wave functions corresponding
to asymptotic states of charged fermions in a uniform background magnetic field.

The E,(X) functions were described in detail in Refs. [164, 173] and some of their main
properties are presented in Appendix C. Using these eigenfunctions it is possible to express the
charged fields ¢4 as

bay(X) = D EF (X)) (P), (B.15a)
Ps)

by (X) = D Py (P B (X)), (B.15b)
Px)

where, by definition, Ez(,i)(X) =Y (Ey(,i)(X))Jr Y0, P(i) = (po,0,+v2eBn,p3),andn =0,1,2,...,

denotes the Landau levels. The 4-vector potential is in the Landau gauge, i.e., A* = (0,0, Bz, 0).
Moreover, one can show that

G )T ) ESD (X) = B (X)[P sy % il (B.16)

This implies that
/ d'X U, (X)S(ZS(X)\I/(G) (X) =

. (G (Pay) ?, .
§ U (o) (Pray) (a) N G U (Pra)), (B.17)
R R ( oy [Co) P} O

for a = 0,%. Also, we have defined Py = (po,7’) and [G&O)]_l(P(O)) = [Po) £ #y0]- In the
following section we will compute the determinants using the momentum representation of the
inverse propagators.
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B.3 Calculating the Determinants

The operators S~ and S (_a % are defined in a 72-dimensional vector space ¥ = C. @D pirac QNNG.
However, the charge projectors express ¥ as the direct sum of three different spaces, i.e., ¥ =
Y0y B X(4) D Xy, with vector bases given by

2(0) = {|515 :l:>7 |52’ :l:>7 |dla :l:>7 |d2a :l:>7 |U3, :l:>}7 (B18)
EJr = {|u1,—|—>,|u2,—|—>,|53,—>,|d3,—>}, (Blg)
Y_= {‘U17—>,’u2,—>,’83,+>,’d3,+>}, (B'20)

where {|+),|—)} is the basis of Nambu-Gorkov space. The color, flavor, and Dirac structures
are automatically taken into account by describing a quark spinor ¢ as

¢ - {81,82,Sg,dl,dQ,dg,Ul,UQ,U3}, (B21)

where (1,2,3) = (b, g,7) denotes the color indices. Thus, ¥y, ¥(4), and ¥(_y are vector spaces
with dimensions 40, 16, and 16, respectively.

We can now compute the determinant of the inverse propagator in Eq. (3.9) in terms of
its corresponding charge projections. In fact, one sees that the determinant splits into three
separate pieces

1
(T, i, A, ¢, B) = Z T = Z §1ndet5(;§. (B.22)
a=0,% a=0,%

Note that in the evaluation of the determinants only the projection of & (; ; on the corresponding

—1

lower dimensional subspaces 3 (,), which we call §;1’ is relevant. The inverse propagator S(o)

that appears in the evaluation of the determinant is defined as

S(B)l _ [ 0(0)]~ 5%x5 - _(10) , (B23)
) [GO(O)] ® Lsxs
whereas
0 0 0 ¢ A
B 0 0 — 0 O
@(0) = Z")/5 0 —qb 0 0 0 (B.24)
¢ 0 0O 0 A
A0 0 A 0

This matrix can be easily diagonalized and its eigenvalues are |6|2, |¢|2, |¢|%, A2, A2, where A%’Q =
2(\/19]? + 8| A2 £ |¢])?. Moreover, the other inverse propagators are given by

+ 1-1 o*

1 _ [Com) ®lax P (B.25)

) o Gyt ®1 ’ '
(£) [ O(i)] & loxo

where
(I)(i) = —i’Y5A 12><2. (B26)
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Now, each term in Eq. (B.22) can be simplified using the identity in Eq. (B.1), which then
gives
T = ln det [[GO( I G T+ é(a)é;‘a)] , (B.27)
where we used that [Gi( )] 1@?) = @?)[Gi( )]*1 Since only the absolute square of the gaps
appears in the expressions, from now on we take A, ¢ > 0.

In order to compute the determinants it is convenient to use the chiral and energy projectors
defined in Egs. (C.9) and (C.10). First, it can be shown that

Gl ™ = D08 — (clbw)| £ n)?IAG,), (B.28)
c==%

(G

which then gives

2 = 2 2 2 = 2 2
1 Py — (|p(a)| —p)° = )‘(a) 1 Py — (|p(a)| +p)* — )‘(a)
F(a) = §trc’f7x Z In ( T2 +§trc’f7X Z In T2 s

P0,P(a) P0,Pa

(B.29)
2

where — A\ (a) 1€ the eigenvalues of the matrices ;1;((1)&)2‘&). Also, tr, ¢, is the remaining trace over

the color, flavor, and chiral indices. Moreover, |p(g)| = \/ P2+ P ¢ and D)l = \V/P% + 2eBn,

where n > 0 is an integer that labels the Landau levels, and p; is the momentum perpendicular
to the field. Also, it is clear now that I') = I'_). The sums in the equation above are defined

as follows
Z pr;p(O TZ/ 3f Zwk?@ (BSO)

P0,D(0)
and
> fpo. b)) = Z Zan/ dps f (iwk, 1, p3), (B.31)
P0,P(+)

where f is an arbitrary function, and o = 2 — §,,9 stands for the fact that Landau levels with
n > 0 are doubly degenerate. Since these sums do not converge, some sort of cutoff procedure
has to be used. The Matsubara sum can be evaluated using the identity

w? +z iz
TZI < k ):\zy+2T In(1 4 e~ 1#/T). (B.32)

Therefore, we can now write the one-loop quark contribution to the pressure of the mCFL
phase as

The function Pr(¢) is defined as follows

Pr(¢) = trp=o [Ey(¢)+ Ey (0)]
+2T trp—g {hl(l + e_E(T/T) +In(1+e B /Ty| (B.34)
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35 . _
where trp—o[...] = f(ng’?,[...], EF[¢] = /(pF p)?2 + ¢2, with p = /p2 + p? = [p]. The zero-
temperature terms are divergent and they are regularized in Sec. 3.2.1. The other function in
Eq. (B.33) reads

Fr(d) = trp [EH(A) + F5(A)]

+2T trp [ln(l + e_Eg/T) +1In(1 + e_Ef;/T)} (B.35)
where trg[...] = &5 5% oy [*0 dps].. ], EE[A] = /(ep F p)? + A2, withep = \/p3 + 2¢Bn.

Note that limp_,o Fr(xz) = Pr(z) and, once the limit A = ¢ and B = H = 0 is taken, we recover
the free energy of the CFL phase in the absence of an external field.



Appendix C

Properties of Ritus’ Eigenfunctions

The transformation functions E;F for positively (4) and negatively (-) charged fermions are
obtained as solutions of the field-dependent eigenvalue equation

(z) - NER(X) = E5(X)(Pa) - ), (C.1)
where P(i) = (po,0,+v2eBn, p3) and

Ep(X) =) Ep,(X)Ald], (C.2)

with eigenfunctions
Ezi;g(X) =Ci () o~ i(poz® +p2a?+p3z®) Dys)lp), (C.3)

where D4 [p(i)] are parabolic cylinder functions with argument p(4) defined as

p(x) = V2eB(z1 + pa/eB), (C.4)
and index [ (+) given by
l(i):ni%—%, () =0,1,2,..., (C.5)
whereas n = 0,1,2,..., denotes the Landau levels and o is the spin projection that can take
values +1. Moreover, the normalization constant is
Cix) = (4m eB)VY /I (C.6)
The spin matrices Afo] in Eq. (C.2) are spin projectors. They are defined as
Alo] = diag(ds1,065—1, 051, 0o—1), o= =+l1, (C.7)
and satisfy the following relations
INESUEWNESR Al+] + A[-] =1, (C.8a)
A[E]A[E] = AlE], A[F|A[£] =0, (C.8b)
NAE] = Alt]y), TLAMHE] = AlF]yL. (C.8¢)
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In the equations above we used that v = (7°,43) and v, = (v},7?).
Massless quarks can be fully characterized by the chiral and energy projection operators,

1+

Prp = 275, (C.9)
1+~7 D

A = w, with a =0, +. (C.10)

respectively. Similarly to the free case, in the presence of a uniform magnetic field these two
operators commute.

In Ref. [83] it was shown that only massless quarks with the same chirality pair in the spin-
zero channel. One can show that there are four different gap functions that describe the possible
pairings. However, in an NJL theory with the gap functions independent of the 3-momentum,
the total number of independent gaps is reduced to one. This means that the gap for quasi-
particles and quasi-antiparticles are the same, in spite of the chirality of the particles. Moreover,
the Dirac structure of the gap matrix is simply given by C7s, where C' = i7?4? is the charge
conjugation matrix.
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