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1 Zusammenfassung 

 
Viele Umweltchemikalien stehen im Verdacht, das endokrine System von Menschen und 

Tieren zu schädigen. Diese endokrinen Disruptoren können auf verschiedene Weise wirken 

und möglicherweise zu einer Beeinträchtigung der Gesundheit führen. Die genauen 

Mechanismen sind noch unklar. Die Forschungsgruppe der Abteilung Endokrinologie, 

Uniklinkum Bonn, untersucht verdächtige Substanzen vorwiegend hinsichtlich deren 

direkter Wirkung auf den Androgen- und Östrogenstoffwechsel.  

 

Die Experimente wurden innerhalb des von der Europäischen Union geförderten 

Projekts „COMPRENDO – Comparative Research on Endocrine Disrupters – Phylogenetic 

Approach and Common Principles focussing on Androgenic/Antiandrogenic Compounds“ 

durchgeführt. Die folgenden Substanzen, die unter anderem in der Landwirtschaft und 

Plastikindustrie verwendet werden, sind in der Vergangenheit als potentiell androgen 

und/oder antiandrogen aufgefallen und wurden daher vom Konsortium zu Beginn des 

Projekts ausgewählt: Dibutylzinn-Dichlorid (DBT-Cl), Diuron, Fenarimol, Linuron, 

Monobutylzinn-Trichlorid (MBT-Cl), p,p´DDE, Prochloraz, Tributylzinn-Chlorid 

(TBT-Cl), Triphenylzinn-Chlorid (TPT-Cl) und Vinclozolin. Als Positiv-

Kontrollsubstanzen wurden in den verschiedenen Experimenten Enzyminhibitoren sowie 

Rezeptoragonisten und –antagonisten eingesetzt, die für den medizinischen Bereich 

entwickelt wurden: Finasterid als 5α-Reduktase Typ 2 Inhibitor (Proscar®, MSD Sharp & 

Dohme), Letrozol als Aromatase-Inhibitor (Femara®, Novartis Pharma), Flutamid als 

Androgenrezeptor-Antagonist (ohne Patentschutz) und Methyltestosteron (MT, ohne 

Patentschutz) als Androgenrezeptor-Agonist. 

 

Der Schwerpunkt der vorliegenden Arbeit lag auf der Untersuchung der Wirkung der 

Testsubstanzen auf die Aktivität der Cytochrom P450 Aromatase (Aromatase, P450arom) 

und der 5α-Reduktase Typ 2. Beide Enzyme sind von essentieller Bedeutung im humanen 

Sexualsteroidhormon-Stoffwechsel. 

Die Aromatase ist unerlässlich für die Synthese von Östron und Östradiol aus den 

Substraten Androstendion und Testosteron. Dieses Enzym findet man in fast allen Tierarten 

und beim Menschen, in den meisten Fällen ist die Aromatase in Gonaden und Gehirn 

exprimiert. Eine Inhibition der Aromatase könnte zu einer Verschiebung des Verhältnisses 
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zwischen Androgenen und Östrogenen zugunsten der Androgene und somit möglicherweise 

zu einer Vermännlichung des beeinträchtigten Organismus führen. In unseren 

Experimenten zur Untersuchung der Aromatase dienten Plazentagewebe und Zellen der 

Chorionkarzinom-Zellinie JEG-3 als Enzymquelle. 

Die 5α-Reduktase (5α-Re) katalysiert im Sexualsteroidhormon-Metabolismus die 

Umwandlung von Testosteron in das zehnfach stärker an den Androgenrezeptor bindende 

Androgen Dihydrotestosteron. Es sind zwei Isoenzyme bekannt, von denen in der Prostata 

überwiegend 5α-Re Typ 2 vorkommt, während in Zellen der Prostatakarzinom-Zelllinie 

LNCaP 5α-Re Typ 1 und 2 vorhanden sind. Eine Hemmung der 5α-Reduktase-Aktivität 

könnte zu einer Veränderung des normalen Hormongleichgewichts führen zugunsten des 

schwächeren Androgens Testosteron. Diese Verschiebung könnte eine Verweiblichung des 

beeinträchtigten Organismus bewirken.  

 

In den Enzymtests hemmte die Organozinnverbindung Tributylzinn die Aktivität der 

Aromatase sowohl in Plazentahomogenat als auch in JEG-3-Zellen im Mittel bei 

Konzentrationen von 12,2 µM bzw. 6,4 µM auf halbmaximale Geschwindigkeit 

(=IC50-Wert). Auch die Aktivität der 5α-Re in Prostatahomogenat und LNCaP-Zellen 

wurde von TBT gehemmt, die IC50-Werte waren im Durchschnitt 4,0 bzw. 2,7 µM.  

Die zweite Organozinnverbindung Triphenylzinn wurde ebenfalls als Inhibitor der 

Aromatase und 5α-Re nachgewiesen. Die durchschnittlichen Konzentrationen, die zu einer 

halbmaximalen Enzymaktivität führten, waren bei der Untersuchung der Aromatase in 

Plazenta 6,2 µM und in JEG-3-Zellen 3,8 µM hoch, bei der Untersuchung der 5α-Re lagen 

die mittleren Werte bei 3,9 µM in Prostata und 4,2 µM in LNCaP-Zellen. 

Das Imidazol Prochloraz hemmte im Mittel die P450arom-Aktivität auf 

halbmaximale Geschwindigkeit bereits bei niedrigen Konzentrationen von 0,06 µM in den 

Chorionkarzinomzellen und 0,024 µM im Plazentahomogenat. Die Aktivität der 

5α-Reduktase wurde dagegen erst bei höheren Konzentrationen beeinflusst, die mittleren 

IC50-Werte betrugen 12,4 µM in den Prostatahomogenat-Untersuchungen und 53,2 µM in 

den Tests mit LNCaP-Zellen.  

Das Fungizid Fenarimol hemmte die Aromataseaktivität auf 50% bei 

durchschnittlichen Konzentrationen von 2,5 µM und 2,0 µM in Plazentahomogenat bzw. in 

JEG-3-Zellen. Die 5α-Re-Aktivität in Prostatahomogenat wurde erst bei einer mittleren 
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Konzentration von 24,1 µM halbmaximal gehemmt, die 5α-Re-Aktivität in LNCaP-Zellen 

wurde von keiner der hier verwendeten Fenarimol-Konzentrationen bis zu 50% gehemmt.  

 

Im ersten Teil einer weiteren Studie wurde die inhibitorische Wirkung von TPT auf 

die Enzyme P450arom, 5α-Re Typ 2, 3β-HSD Typ 2, 17β-HSD Typ 1 und 17β-HSD Typ 3 

untersucht. Im zweiten Teil wurde in den Enzym-Experimenten 100 µM TPT für eine 

komplette Inhibition eingesetzt und die Enzymaktivität in Abhängigkeit der Verwendung 

verschiedener Konzentrationen des starken Antioxidanz Dithioerythritol (DTE) untersucht. 

Als Enzymquelle diente in diesen Versuchen die Gewebe Plazenta (P450arom und 17β-

HSD Typ 1), Prostata (5α-Re Typ 2), Nebenniere (3β-HSD Typ 2) und Testis (17β-HSD 

Typ 3). Um eine reelle Gefahr für den Menschen durch Organozinnverbindungen 

abzuschätzen, wurden außerdem Blutproben von acht gesunden Probanden auf Rückstände 

untersucht.  

Es wurden signifikante Rückstände von Triphenylzinn (0,49-1,92 nmol/L) in den 

Blutproben festgestellt, während die Konzentrationen der anderen nachgeforschten 

Organozinnverbindungen nahe oder unter dem Detektionslimit lagen. Der Nachweis der 

hochgiftigen Substanz im Menschen ist bedenklich und untermauert die Dringlichkeit der 

Entwicklung und Etablierung von Methoden für die Risikoeinschätzung für Mensch und 

Tier.  

Unsere Experimente dokumentieren eine konzentrationsabhängige, vollständige 

Inhibition der Aktivität aller getesteten Enzyme durch Triphenylzinn. Die IC50-Werte waren 

im Durchschnitt bei 3β-HSD 4,0 µM, 17β-HSD Typ 3 4,2 µM, bei 17β-HSD Typ 1 10,5 

µM, bei P450arom bei 1,5 µM und 5α-Re Typ 2 1,0 µM. Die Untersuchungen zeigten 

außerdem, dass das Antioxidanz DTE den schädigenden Effekt von TPT teilweise 

kompensieren und eine Enzymaktivität aufrechterhalten kann. Dieser schützende Effekt 

war unterschiedlich stark bei den getesteten Enzymen, bei 5α-Re konnten die eingesetzen 

Konzentrationen an DTE die supprimierten Aktivität durch TPT nicht wieder bis auf 50% 

anheben. Die maximale effektive Konzentration (=EC50-Wert) des DTEs war bei den 

anderen Enzymen im Durchschnitt 0,9 mM bei 3β-HSD, 12,9 mM bei 17β-HSD Typ 3, 

0,21 mM bei 17β-HSD Typ und 0,91 mM bei P450arom.  

Die Fähigkeit von DTE antagonistisch auf die Inhibition der Enzymaktivität durch 

TPT zu wirken führt zu der Vermutung, dass der kritischen Angriffspunkt für TPT die 



Chapter 1 

4  

oxidierbaren Cysteinreste des Enzyms sind, die durch die Ausbildung von Disulfidbrücken 

entscheidend für die Tertiär- und Quartärstruktur sind. 

 

Endokrine Disruptoren konnten sehr gut mit den Gewebetests nachgewiesen werden, 

in denen Plazenta-, Prostata-, Nebennieren- und Hodengewebe als Enzymquelle diente. Die 

Enzymaktivität in den Experimenten reagierte im Vergleich zu den Enzymaktivitäten in den 

Zelltests empfindlich auf die Testsubstanzen. Die Gewebetests waren außerdem einfacher 

und schneller zu handhaben. Dagegen spiegeln die Krebszell-Enzymtests auf Basis von 

JEG-3 Chorionkarzinomzellen und LNCaP Prostatakarzinomzellen zu einem gewissen Teil 

die Situation in vivo wider, da hier mit intakten Zellen gearbeitet wird.  

 

Innerhalb des EU-Projekts COMPRENDO wurde ein Human-Biomonitoring 

zusammen mit unseren Partnern in Danzig durchgeführt. Dafür wurden Blut- und 

Urinproben von 60 Probanden in Polen und 15 Probanden in Deutschland gesammelt. Die 

Proben wurden auf Rückstände von p,p´DDE (S. Galassi, Universität Mailand), TBT, TPT 

(R. Jeannot, Bureau de Recherches Geologiques et Minieres, Orleans), Diuron, Fenarimol, 

Linuron und Vinclozolin (T. A. Albanis, Universität Ioannina) untersucht. In unserer 

Arbeitsgruppe wurden die Konzentrationen von Sexualhormonen überprüft. Es wurden 

außerdem Plazentaproben von 15 frisch entbundenen Müttern aus Polen und Deutschland 

gesammelt. Die Proben wurden auf Rückstände der oben genannten Chemikalien 

untersucht. Außerdem wurde die spezifische P450arom-Aktivität im Gewebe und der 

CYP19 mRNA-Gehalt gemessen.  

Durch die Analyse auf Chemikalienrückstände wurden p´p-DDE Konzentrationen in 

Urin-, Blut- und Plazentaproben nachgewiesen. In einigen Urinproben der polnischen 

Probanden waren Konzentrationen an Monobultylzinn und Dibutylzinn vorhanden. Die 

gemessenen Sexualhormon-Konzentrationen im Blut korrelierten nicht mit den jeweiligen 

Chemikalienrückständen. im Blut oder Urin. Es konnte kein Zusammenhang zwischen den 

p´p-DDE Rückständen in den Plazenta-Proben und der jeweiligen Aromataseaktivität. Für 

die gemessenen Unterschiede zwischen den beiden Gruppen in Polen und Deutschland 

bezüglich der Sexualhormon-Konzentrationen, der spezifischen P450arom-Aktivität und 

des relativen CYP19-Gehalts sind daher andere Faktoren verantwortlich als die, die hier 

berücksichtigt wurden. 
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In einer weiterer Studie des Projekts COMPRENDO wurde die Wirkung von 

endokrinen Disruptoren auf die aquatischen Organismen Xenopus laevis (Krallenfrosch – 

W. Kloas, Institut für Gewässerökologie und Binnenfischerei, IGB-Berlin), Rutilus rutilus 

(Rotauge – W. Kloas, s.o.) und Pimephales promelas (Dickkopfelritze – S. Jobling, 

Universität Brunel) untersucht. Im Vorfeld wurde die Präsenz der oben genannten Enzyme 

des Steroidhormon-Metabolismus in den Organen Gehirn und Gonaden in männlichen und 

weiblichen Kontrolltieren überprüft. Im Gehirn von Xenopus laevis wurde zum ersten mal 

5β-Reduktase-Aktivität nachgewiesen.  

In den Expositionsversuchen am IGB-Berlin wurden das Wasser in den Aquarien mit 

0,1 µM Letrozol, 0,1 µM Methyltestosteron, 0,1 µM Vinclozolin oder 0,01 µM TPT 

versetzt. Die Krallenfrösche und Rotaugen wurden 2 Wochen in einem der Becken 

gehalten. In den Experimenten der Universität Brunel waren die Dickkopfelritzen drei 

Wochen lang Wasser mit verschiedenen Konzentrationen Methyltestosteron, p,p´DDE und 

TPT ausgesetzt. 

Die Gehirne und Gonaden der Versuchstiere wurden nach der Chemikalienexposition 

entnommen. Die Organe wurden entsprechend der Vorversuche zur qualitativen Analyse 

spezifisch auf veränderte Aktivitäten von Aromatase, 5α-Re, 17β-HSD oder 5β-Reduktase 

untersucht.  

Bei Rutilus rutilus und Xenopus laevis führte die Exposition mit den Substanzen 

Methyltestosteron und Letrozol zu Veränderungen der Enzymaktivitäten, verglichen mit 

den Enzymaktivitäten der Kontrolltiere, deren Hälterungswasser mit Ethanol versetzt war. 

Im Unterschied zur starken inhibitorischen Wirkung von TPT in unseren Enzymtests 

fanden wir keine veränderten P450arom- oder 5α-Re-Aktivitäten in den untersuchten 

Organen, außer in den Ovarien von Pimephales promelas, die einer Konzentration von 320 

ng TPT/L ausgesetzt waren. In dieser Gruppe war die mittlere P450arom-Aktivität erhöht, 

wahrscheinlich durch eine zu starke Hochregulierung des Enzyms, um die vorausgegangene 

Inhibition  durch TPT zu kompensieren.  

 

Mehrere der getesteten Chemikalien inhibieren die Aktivität eines oder mehrerer der 

getesteten Enzyme des Sexualsteroidhormon-Stoffwechsels bei Mensch und Tier und 

können daher von klinischer Relevanz sein. Die Ergebnisse der verschiedenen Experimente 

sind allerdings nicht immer übereinstimmend, daher lassen sich Schlussfolgerungen 

möglicher Gefahren für den Menschen und Tiere nur schwer ziehen. Für eine bessere 
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Risikoabschätzung werden Studien mit verschiedenen Kurz- und Langzeit-Testsystemen in 

vitro und in vivo benötigt.  
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2 Summary 

 
Many environmental chemicals are suspected of disturbing the human and animal 

endocrine system. These so-called endocrine disruptors can operate in many ways. The 

interaction of endocrine disruptive effects that eventually endanger human health is still 

unclear. However, one of the basic mechanisms of endocrine disruption is the inhibition of 

key enzymes in the hormone metabolism.  

In this study, we focused on the inhibitory potency of suspected endocrine disrupting 

compounds on aromatase (P450arom) and 5α-reductase (5α-Re) activities in human tissue 

and human cancer cells. Both enzymes are essential for the human sexl steroid hormone 

metabolism. We were able to demonstrate that the organotin compounds tributyltin (TBT) 

and triphenyltin (TPT) are potent unspecific inhibitors of P450arom and 5α-Re activity. 

Prochloraz and fenarimol inhibited P450arom activity at low concentrations (IC50<2 µM), 

while 5α-Re activity was only impaired at higher concentrations (IC50>10 µM). While the 

human tissue assay proved to be more practical and sensitive as a screening tool for 

putative endocrine disruptors, the cell assay reflected partly the situation in vivo.  

In another experimental series, we investigated the inhibitory effect of TPT on 

P450arom, 5α-Re, 3β-HSD type 2, 17β-HSD type 1 and type 3 alone and in combination 

with the strong antioxidant dithioerythrithol (DTE). TPT inhibited unspecifically all 

enzymes that were tested. The experiments also showed that DTE is able to compensate the 

adverse effects of TPT, and that the effectiveness of the compensatory activity of DTE 

differs among the enzymes investigated. The suppressed 5α-Re activity could not be 

reactivated with DTE. Conceivably, cysteine residues that are responsible for the tertiary 

and quarternary structure of the enzyme are critical targets for TPT.  

A human sampling study was undertaken with the COMPRENDO partner in Gdansk. 

60 Polish and 15 German blood samples were investigated for chemical residues and sex 

hormone concentrations. In addition, 15 placenta samples from Poland and Germany, 

respectively, were tested for chemical residues, P450arom activities and CYP19 mRNA 

contents. The chemical analysis was performed by the COMPRENDO partners in Milan 

(p,p´DDE), Orleans (TBT and TPT) and Ioannina (diuron, fenarimol, linuron und 

vinclozolin). The results showed that individual sex hormone concentrations in blood were 

not correlated with chemical body burden. The detected differences in sex hormone 

concentrations, specific aromatase activity and relative CYP19 mRNA content of Polish 
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and German donors were presumably the result of other factors than the ones determined in 

this study. 

Another task of the EU-project was the investigation of the effects of chemical 

exposure of the aquatic model organisms Pimephales promelas, Rutilus rutilus and 

Xenopus laevis. We investigated the specific P450arom and 5α-Re activities in brain and 

gonads of the animals. During the qualitative investigation of the androgen metabolism in 

Xenopus laevis brain, 5β-reductase activity was discovered for the first time. In contrast to 

the inhibitory potency of TPT discovered in our enzyme assays, TPT exposure of aquatic 

model organisms had no observed effect on enzyme activity in the organs investigated, 

except for P450arom activities in female gonads of Pimephales promelas at 320 ng TPT/L. 

In this group, mean P450arom activities were elevated, possibly as a result of an 

overshooting upregulation due to the inhibition of P450arom by TPT. The exposure of 

Rutilus rutilus and Xenopus laevis to the effector substances methyltestosterone and 

letrozole resulted in slightly different mean enzyme activities compared to the control 

group.  

In conclusion, many of the tested pesticides are able to inhibit P450arom and 5α-Re, 

and thus might be of clinical relevance. However, results are not always coherent, and 

possible risks for human and wildlife health are therefore difficult to predict. Risk 

assessment will require large studies with an additional number of short and long term in 

vitro and in vivo assays. Any extrapolation to humans should be very meticulously 

performed. 
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3 General introduction 

 
In the mid-nineties, scientific attention was drawn to the topic “Chemical compounds with 

endocrine effects”. Since then, the causality between contamination with environmental 

chemicals and the occurrence of reproductive disorders in human and wildlife is being 

investigated. This topic is of such importance because we are facing a multitude of 

chemicals in our daily life. An endocrine disruptor (ED) is any “external substance that 

causes adverse health effects in an intact organism or its offspring as a result of a change in 

hormonal function” (EU-workshop in Weybridge, 1996). Endocrine disruption can occur in 

several elements of the endocrine system and through different mechanisms. Due to the 

complexity of the hormonal regulatory system, extrapolations of experiments to human 

health effects are difficult. However, the results of a number of in vitro and in vivo models 

have already contributed to understand the current risk of ED on humans and animals.  

 

3.1 Environmental chemicals and endocrine disruption 

A large number of pesticides and additives used in agriculture and industry has been 

reported to possess endocrine modulating activity (Bretveld et al. 2006; Gillesby and 

Zacharewski 1998; Kavlock and Ankley 1996). For most endocrine active compounds, their 

hormonal action is unintended. The substances acting as ED are chemically heterogeneous, 

and the observed phenomena are caused by different influences on sex hormone signaling 

pathways (Gillesby and Zacharewski 1998; Sonnenschein and Soto 1998). The effects can 

be direct or indirect, with agonistic or antagonistic action (Fig. 3–1, Bretveld et al. 2006; 

Degen et al. 1999). Direct impacts include the interaction with hormone receptors, the 

change of the density of hormone receptors in the cells of target tissues and the modulation 

of post-receptor signaling (Kelce et al. 1994; Duax et al. 1985). Indirect mechanisms affect 

steroid hormone transport proteins, steroid hormone synthesis, metabolism and secretion 

(Sonnenschein and Soto 1998). As hormones act at extremely low levels – i.e., parts per 

trillion – exposures to minimal amounts of ED may be of concern, particularly during 

sensitive periods of fetal development.  
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Fig. 3–1 Possible impact of endocrine disrupters on the endocrine system. 

 
3.1.1 Effects of endocrine disruptors on wildlife animals 

It is difficult to determine to what extent endocrine disrupters (ED) affect reproduction or 

population size of wildlife species. This is because many factors such as habitat restriction, 

human interference and changes to natural food supplies can play an important role on 

population size. However, in a number of cases there is data supporting the causal 

connection between biological disorganisation and the exposure to a specific chemical 

agent. Endocrine disruption has been postulated as the cause of harmful effects in various 

wildlife species, e.g., (a) impaired reproductive functions of seals exposed to PCBs, (b) 

abnormal male reproductive organs with altered sex hormone levels due to exposure to 

metabolites of DDT, (c) hermaphroditism, vitellogenin in males and altered testes 

development in roach due to sewage effluents, (d) eggshell thinning with embryo mortality 

of water birds exposed to DDE and PCBs, and (e) imposex in marine neogastropods caused 

by water contamination with tributyltin, bisphenol A and octylphenol (Jobling and Tyler 

2006; Oehlmann et al. 2000; Safe 2000; Schulte-Oehlmann et al. 2000; Vos et al. 2000; 

Tyler et al. 1998; Guillette and Guillette 1996).  
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3.1.2 Effects of endocrine disruptors on human health 

In most countries, human population size and the average age, as an indicator for life 

standard, has increased during the recent decade, mainly due to advances in health care and 

hygiene. However, at least in some parts of the world, people have to face problems that are 

related to the chronic exposure to toxic or endocrine active chemicals, e.g., reproduction 

disorders and increased incidence of certain cancers that are suggested to be triggered by 

chemical exposure (Solomon and Schettler 2000). Symptoms with suspected relation to 

endocrine disruption include: 

 

a) temporal reduction in sperm counts and quality (Swan 2006b; Younglai et al. 

1998),  

b) altered fertility (Bretveld et al. 2006; Jarow 2003), 

c) increased incidence of testicular, prostate and breast cancer (Liu et al. 1999; 

McKiernan et al. 1999; Levy et al. 1998; Haas and Sakr 1997; Bergstrom et al. 

1996; Wang and Cao 1996; Wolff et al. 1996), 

d) developmental abnormalities, like hypospadia and cryptorchidism, in reproductive 

organs (Damgaard et al. 2006; Swan 2006a; Skakkebaek 2004; Steinhardt 2004; 

Skakkebaek 2003; McLachlan et al. 2001; Paulozzi 1999; Guillette and Guillette 

1996), 

e) altered sex ratios (Allan et al. 1997),  

f) effects on neurological and intellectual function in children due to prenatal 

chemical exposure (Jacobson and Jacobson 1997; Schaefer 1994). 

 

In addition to accidental and unwanted chemical exposure, hormonally active compounds 

are in widespread use for beneficial medical health care with sometimes alarming side-

effects. One of the most severe clinical cases was discovered in 1971, when clinicians 

traced back the occurrence of rare cervical and vaginal carcinoma in young women to 

maternal use of the synthetic estrogen diethylstilbestrol (DES) during pregnancy. Sons of 

DES-treated mothers were at risk of genital anomalies and abnormal spermatogenesis. This 

was the first example of transplacental carcinogenesis in humans, indicating that the fetus 

may suffer the greatest risk of adverse effects of endocrine disruption (Giusti et al. 1995; 

Herbst et al. 1971).  
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It is possible that any ED in the body, depending on a “critical window” of exposure, 

induces or promotes a developmental impairment of reproductive organs and brain. Data 

exploring children´s or fetuses´ exposure and sensitivity towards chemicals is still very 

limited. Children do have a higher metabolic rate compared to adults: they eat more food 

and breathe more air per pound of body weight. In addition, they come in much closer 

contact to their environment through crawling, touching and tasting. Thus, in comparison to 

adults children are disproportionately higher exposed to toxic chemicals in our environment 

(Landrigan 2001; Goldman and Koduru 2000; Chance and Harmsen 1998). 

 

3.1.3 Models for the detection of endocrine disruption 

In the last years, scientists have been increasingly trying to throw light on the mode of 

endocrine disrupting actions and hierarchy of observed effects. For example, ED exposure 

of pre-pubertal rats can influence endocrine processes following the sensitivity hierarchy: 

changes in anogenital distance > induction of hypospadias > induction of ectopic testes 

(Ashby 2000). As the underlying mechanisms of the observed effects until now remain 

hidden, results from in vitro experiments may fill these gaps.  

The challenge is to find the connection between results from the test-tube and the 

laboratory animal in accordance to „in vitro simplicitas, in vivo veritas“. The Endocrine 

Disruptor Screening Program (EDSP), organized by the Environmental Protection Agency 

(EPA), has selected several assays and grouped them in two classes. Tier 1 screening assays 

identify the agents that may have hormone-related activity: in vitro (a) AR or ER binding 

and transcriptal activation (human or rat cells), (b) steroidogenesis assay (human testis); in 

vivo (c) three-day uterotrophic assay with subcutaneous administration (rat), (d) 5–7 day 

Hershberger assay (rat), (e) metamorphosis test (Xenopus laevis), (f) gonadal recrudescence 

(i.e., Pimephales promelas), and (g) 20-day pubertal female assay with thyroid end points 

(rat). Tier 2 assays are selected assays with the capability to characterize adverse effects 

and dose response relationships for agents positive-tested in tier 1: mammalian 

reproductive, two-generation toxicity, reproduction and life-cycle test in (a) rat, (b) bird, (c) 

fish, and (d) mysid shrimp (webpage EPA).  
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3.2 The Endocrine system  

The endocrine system is found in all mammals, birds and fish. It regulates many functions 

of the body, including metabolism, growth and function of the reproductive system, and the 

development of the brain and nervous system. The endocrine system implies ductless 

glands located throughout the body that secrete chemical messengers (hormones) which are 

released into the bloodstream and circulate within the body, and receptors in various organs 

and tissues recognize and respond to them.  

 

3.2.1 Sex hormones 

In general, sex hormones are classified into male and female hormones. Androgen 

representatives are testosterone, androsterone and dihydrotestosterone (DHT), while the 

estrogen estradiol and the gestagen progesterone are the major female hormones. Sex 

hormones affect sexual differentiation and maturation, including the growth and function of 

the reproductive organs, the development of secondary sex characteristics, and the 

behavioral patterns. 

 

3.2.2 Sexual differentiation 

One of the central hormones in sexual differentiation is testosterone. The development of 

the male phenotype is induced by perinatal testosterone and anti-Müllerian hormone 

(AMH). Masculinization includes the development of the brain, the persistence of the 

Wolffian duct system, and the differentiation of male external genitalia (Simpson and Rebar 

1995). In the target tissue or organ, testosterone is locally converted into the more potent 

androgen DHT. In females, it is largely the absence of testosterone and AMH that results in 

phenotypic and endocrinotypic female development, like the formation of Müllerian ducts 

and degeneration of the Wolffian ducts. The same tissue that forms the penis and scrotum 

in males forms the clitoris, labia, and vagina in females. At puberty, estrogens stimulate the 

development of female secondary sex characteristics, including enlargement of the breasts 

and onset of menstruation (Simpson and Rebar 1995).  
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3.2.3 Androgen and estrogen action  

Androgens are primary responsible for the maturation of male sex organs, the stimulation 

of spermatogenesis and the formation of male accessory glands, the development of 

secondary sexual characteristics, and the growth of muscle mass.  

Estrogens promote the proliferation of follicular thecal cells, endometrial stromal and 

epithelial cells. They are also responsible for the development of female secondary sex 

characteristics. The main production of estrogens occurs in the ovaries before menopause. 

During pregnancy, the formation of estrogens shifts into the placenta. Minor quantities are 

also produced in testis and adrenal glands (Andersen et al. 2002; Simpson et al. 1997). 

They are also synthesized extraglandulary in adipose tissue (Deslypere et al. 1985). After 

the menopause, the lack of estrogens results in several more or less severe symptoms, 

which often can be restored by the intake of synthetic hormones. Yet, hormone replacement 

therapy has become disreputable because of the World Health Institute (WHI) study in 

2000 (Prelevic et al. 2005; Henderson and Feigelson 2000). 

One of the major actions of androgens and estrogens is to initiate the production of 

proteins. Since androgens and estrogens can pass through the phospholipid membranes of 

the cell, androgen and estrogen receptors (AR and ER) can be located directly in the 

nucleus. Androgen and estrogens trespass into the nucleus and bind to the AR and ER, 

respectively, which causes the separation of an associated heat shock protein (HSP). This 

allows the formation of hormone receptor dimers, which can bind to the hormone response 

element (HRE) to promote transcription of the associated genes.  

Until now, there is only one active form of the androgen receptor known, while two 

different estrogen receptor subtypes (α and β) have been detected (Mosselman et al. 1996). 

They form mixed dimers in the presence of ligands: ERα (αα), ERβ (ββ) and ERαβ (αβ) (Li 

et al. 2004). The ERα is found in the endometrium, breast cancer cells, ovarian stroma cells 

and the hypothalamus (Yaghmaie et al. 2005), while the ERβ has been documented in 

kidneys, brain, bones, heart, lungs, intestinal mucosa, prostate, and endothelial cells 

(Babiker et al. 2002). More recently, receptors have been shown to have actions that are 

independent of their interaction with DNA. Some AR and ER associate with the cell surface 

membrane or are found in the cytoplasm. Hormone binding can cause rapid changes in cell 

functions independent of changes in gene transcription, such as changes in the ion transport 

(Kampa and Castanas 2006; Wehling et al. 2006; Zivadinovic and Watson 2005; Heinlein 

and Chang 2002).  
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3.2.4 Steroidogenesis 

All steroid hormones derive from cholesterol and contain the same cyclopentano-

phenanthrene ring. The various enzymes involved in the synthesis of steroid hormones are 

members of the cytochrome P450 class. The nomenclature of the enzymes indicates the site 

of hydroxylation.  

 

 
 
Fig. 3–2 Main steroid hormone pathway in gonads (Sanderson and van den Berg 2003). Enzymes 
involved are CYP11A (P450scc-desmolase), CYP17 (17β-hydroxylase and 17,20 desmolase), 3β-HSD 
(3β-dehydrogenase Δ4,6-isomerase), 17β-HSD and CYP19 (P450 arom). 
 

The cascade of conversions of C27 cholesterol to the 18-, 19-, and 21-carbon sex steroid 

hormones (Fig. 3–2) is introduced by the cleavage of a 6-carbon residue from cholesterol to 

produce pregnenolone, catalyzed by the side chain cleaving enzyme P450scc-desmolase 

(CYP11A). Pregnenolone (C21) is converted into 17α-OH-pregnenolone by the addition of 

a hydroxygroup by CYP17. The same CYP17 catalyzes the cleavage of the C17 side chain 
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of 17α-OH-pregnenolone. The resulting steroid DHEA is one of the direct precursors for 

androgens. In a similar pathway, the production of androstenedione is carried out via 

progesterone after 3β-hydroxylation of pregnenolone by 3β-HSD. Androstenedione, like 

DHEA, is a direct precursor for androgen and estrogen metabolism. 

 

3.2.5 Key enzymes of the human androgen and estrogen pathway 

3β-hydroxysteroid dehydrogenase  

Two different isoforms of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD 

type 1 and 2, EC 1.1.1.145) catalyze the transformation of Δ5–3β-hydroxysteroids into their 

corresponding ketosteroids (Simard et al. 1996). 3β-HSD is membrane-bound and the 

reaction uses NAD as proton acceptor (Labrie et al. 1994).  

There are several important 3β-hydrogenization steps in steroid metabolism. The one 

that we focus on is the conversion from DHEA into androstenedione as a precursor for 

androgen and estrogen metabolism. 3β-HSD type 1 is predominantly expressed in placenta, 

breast and skin, while adrenal cortex, testis and ovaries are the primary sites for 3β-HSD 

type 2 activity (Labrie et al. 1994). Ancillary sites of action include the skin, liver, adipose 

tissue, breast, lung, endometrium, prostate, brain and epididymis (Labrie et al. 1994; 

Milewich et al. 1991). The widespread distribution of 3β-HSD suggests the importance of 

intracrine formation of sex steroids in peripheral target tissues (Luu The et al. 1989). 

 

17β-hydroxysteroid dehydrogenase 

The key step in the formation and re-inactivation of all estrogens and androgens is 

catalyzed by members of the 17β-hydroxysteroid dehydrogenases (17β-HSDs) family. The 

reaction is a reversible oxidoreduction at position C17. To date, ten different human 17β-

HSDs have been cloned, sequenced and characterized (Yang et al. 2005). 17β-HSDs are 

omnipresent in the body, i.e., they were found in all 25 tissues of a rhesus monkey (Martel 

et al. 1994). The 17β-HSDs provide the cells with the intracellular concentration of each 

sex steroid according to local needs (Labrie et al. 2000). In the present study, we have 

focused on 17β-HSD type 1 and 3. Both types are important in the androgen and estrogen 

metabolism.  

17β-HSD Type 1 (17β-HSD1, EC 1.1.1.62) is a cytosolic protein that catalyzes 

predominantly the conversion of the low active estrogen E1 into highly active E2, using 
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NAD(P)H as cofactor (Green et al. 1999). 17β-HSD1 ensures a high level of estradiol 

formation, especially in ovary, placenta and breast (Labrie et al. 2000). Its molecular 

structure and corresponding gene was the first to be elucidated of the 17β-HSD family 

(Peltoketo et al. 1999).  

17β-HSD Type 3 (17β-HSD3, EC 1.1.1.63) is a microsomal isozyme which uses 

NADP(H) as a cofactor and is predominantly expressed in the testes. The preferred 

substrate is androstenedione, which is being transformed into testosterone. 17β-HSD Type 

3 deficiency causes male pseudohermaphroditism (Geissler et al. 1994).  

 

Cytochrome P450 aromatase  

Cytochrome P450 aromatase (EC 1.14.14.1, P450arom) is essential for the estrogen 

biosynthesis from C19 precursor androgens (Simpson et al. 1997). The membrane-bound 

P450arom enzyme system was first discovered in placental tissue and consists of the 

cytochrome P450arom and NADPH-cytochrom P450 reductase. Cytochrome P450arom is 

responsible for the introduction of the conjugated π-electron system into ring A of the 

steroid, as a result of the cleavage of the C19-methyl group (Fig. 3–3). NADPH-Cytochrom 

P450 reductase allocates the required reducing equivalents. The enzyme reaction of 1 mol 

substrate requires 3 mol NADPH and 3 mol O2, while 1 mol H2O and 1 mol formic acid 

(HCOOH) are released.  

The P450arom gene CYP19 is localized on chromosome 15q21.1. In total, 10 exons 

(70 kb) encode the protein that consists of 503 amino acids (Corbin et al. 1988). Different 

tissue specific promoters were identified, thereof the most important ones in extraglandular 

tissue (P1.3 and P1.4), in placental tissue (P1.1), in ovary and breast cancer (PII). 

The enzyme P450arom is not only found in humans, but has been identified in several 

other species. P450arom is an old enzyme from the evolutional perspective, and can 

therefore be found widespread in various species from mollusks to mammals. In most 

species, P450arom is expressed in gonads and brain (Steckelbroeck et al. 1999b; Simpson 

et al. 1997). In teleost fish, P450arom activity in the brain is comparable higher than in 

mammalian brains (Gonzalez and Piferrer 2002). The reason for this is still unclear. 

P450arom in the placenta can only be found in females of primates, horses, cattle, and pigs.  
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Fig. 3–3 P450arom catalyzed transformation of androstenedione into estradiol. 

 

According to its key function, changes in P450arom content or catalytic activity have direct 

impact on the estrogen level. The importance is underlined by the fact that world-wide only 

eight female and two male patients are known with primary P450arom deficiency. Typical 

symptoms are pseudohermaphroditism, primary amenorrhoea, missing breast development, 

hypogonadism, and polycystic ovaries (Ito et al. 1993). Due to the missing closure of 

epiphyses, affected men are comparably tall, infertile and suffer from osteoporosis (Carani 

et al. 1997).  

 

5α-reductase 

The microsomal enzyme 3-oxo-5α-steroid 4-dehydrogenase, synonym of 5α-reductase (5α-

Re, E.C. 1.3.99.5), is responsible for the irreversible conversion of testosterone (T) into the 

approximately 10 times more potent androgen dihydrotestosterone (DHT) (Ntais et al. 

2003; Rizner et al. 2003; Wilson et al. 1993). DHT is indispensable for the normal 

virilization and function of the male external genitals and prostate (Wilson 1996; Harris et 

al. 1992). Two isoforms of the catalyzing enzyme have been identified in humans and 

animals so far (Wilson et al. 1993). Both isozymes are transiently expressed in newborn 

skin and scalp. Isozyme 1 is permanently expressed in skin from the time of puberty. Type 

2 isozyme is predominant in fetal genital skin, male accessory sex organs and in prostate, 

including benign prostatic hyperplasia and prostate adenocarcinoma tissues (Ntais et al. 
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2003; Thigpen et al. 1993). High levels of endogenous androgens have long been 

considered as risk factors for prostate cancer, therefore it has been postulated that certain 

5α-Re polymorphisms or the damage of androgen inactivation pathways support the 

pathogenesis of prostate cancer (Ntais et al. 2003). The expression pattern of 5α-Re 

isozymes in prostate cancer tissues and most prostatic tumor cells are still under 

investigation (Ntais et al. 2003; Zhu et al. 1998). In LNCaP cells, both isozymes of 5α-Re 

are present and functionally important (Zhu et al. 1998). 

 

3.3 Outline of this study 

A number of pesticides act as androgenic and/or anti-androgenic compounds (AAC). As a 

part of the EU-project COMPREDO, the suspected AACs dibutyltin-dichloride (DBT-Cl), 

diuron, fenarimol, linuron, monobutyltin-dichloride (MBT-Cl), p,p´DDE, prochloraz, 

tributyltin-dichloride (TBT-Cl), triphenyltin-dichloride (TPT-Cl), vinclozolin, as well as the 

pharmaceuticals finasteride, flutamide, letrozole (Letro), and methyltestosterone (MT) were 

selected for detailed investigation (Schulte-Oehlmann et al. 2006). The consortium 

expected to find endocrine disrupters causing multiple positive responses in the test-

systems among these substances.  

 

This study intended to clarify the following questions: 

1. Do the selected AAC affect the activity of human P450arom and 5α-reductase? 

2. Which human cancer cell lines can be used for the screening of the disruptive 

potential of a test substance on P450 arom and 5α-reductase activity? 

3. How does the endocrine disruptor triphenyltin (TPT) inhibit enzyme activity? Does 

the use of the strong antioxidant dithioerythritol (DTE) influence the inhibitory 

potency of TPT?  

4. Which enzyme activities are detectable in brain and gonadal tissue of the aquatic 

model animals Pimephales promelas, Rutilus rutilus and Xenopus laevis? Does the 

exposure of these aquatic animals to suspected and known AAC result in altered 

enzyme activities in their brains and/or gonads? 

5. Is there any relationship between chemical body burden (organotin, p,p´DDE, 

linuron, diuron, vinclozolin, and fenarimol) and sex hormone concentration in 

donor blood, placental aromatase activity or amount of placental CYP19 mRNA? 
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The thesis is structured as follows: 

 

Chapter 4 gives information on general materials and methods used in most of the 

experiments of the studies. 

Chapter 5 describes the examination of inhibitory effects on human P450arom 

activity in placenta tissue and chorion carcinoma cells (JEG-3) caused by the test 

compounds. In a human sample study, 60 Polish and 15 German donors were interviewed 

and sampled for blood and urine. The samples were examined for pesticidal body burden, 

measured by COMPRENDO partners in Ioannina, Milan and Orleans, while the levels of 

luteinizing hormone (LH), follicle-stimulating hormone (FSH), androstenedione (Enon), 

testosterone (T), DHT, and estradiol (E2) in blood serum were determined in Bonn. In 

addition, 16 German and 14 Polish mothers provided placenta samples for the investigation 

of residual chemicals, as well as for the analysis of specific P450arom activity and CYP19 

mRNA expression.  

Chapter 6 focuses on the examination of the test substances regarding their effect on 

human 5α-reductase activity in prostate tissue and prostate carcinoma cells (LNCaP). 

Possible risks for human reproductive and sexual development caused by altered 5α-Re 

activity are discussed, and the suitability of the tissue und the cancer cell model is 

reviewed. 

TPT has been long known to cause masculinization of female animals (imposex) in 

some meso- and neogastropods via endocrine disruption (Schulte-Oehlmann et al. 2000). 

Therefore, a closer investigation of the effects of TPT on several enzymes of human sex 

steroid metabolism was carried out as laid out in chapter 7. The target enzymes were (a) 

3β-HSD in adrenal gland, (b) 17β-HSD in testis, (c) 5α-reductase in prostate, and (d) 

P450arom and (e) 17β-HSD in placenta. In another experimental series, the use of the 

strong antioxidant dithioerythritol (DTE) during the enzyme assay was used to clarify 

whether TPT is an endocrine disruptor as defined above. 

In chapter 8, animal exposure experiments were used to learn more about the 

influence of suspected endocrine disrupters on the hormone system of selected model 

animals. The experiments with Xenopus laevis, Rutilus rutilus (IGB-Berlin) and 

Pimephales promelas (UBrun) were initiated with sexually mature adults that were exposed 

to the chemicals of interest for 21 days. A number of endpoints related specifically to 
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endocrine function were assessed by the respective COMPRENDO partner, including 

alterations in secondary sexual characteristics, gonadal condition and sperm mobility. In 

this study, the exposed animals were investigated for changes in enzyme activities through 

various tissue samples. 
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4 General materials  
 
4.1 Laboratory equipment 
Listing 4–1 Laboratory equipment 
 
Device Manufacturer  
ABI Prism® 7700 Applied Biosystems, Foster City, USA 
Autoclave type 23  Melag, Berlin, Germany 
Centrifuges:  
 Minifuge Sigma 113 B. Braun, Melsungen, Germany 
 Centrifuge Z 382 K Hermle, Wehingen, Germany 

 Centrifuge PKR Beckman Coulter, Krefeld, Germany 

Cooling facilities:  
 Refrigerator (no name) GFL, Burgwedel, Germany 
 Deep freezer GFL 6343-6345  GFL, Burgwedel, Germany 

DNA Thermo Cycler Cetus PerkinElmer, Rodgau-Jügesheim, Germany 
Fluorometer Polarstar Galaxy BMG Labtech, Offenburg, Germany 
Homogenizer Teflon-Glas Potter S B. Braun, Melsungen, Germany 

Ice machine Ziegra, Isernhagen, Germany 

Incubator Heraeus, Hanau, Germany 

IMMULITE® 2000 Analyzer  DPC-Biermann, Bad Nauheim, Germany 

Liquid scintillation counter 1409 Wallac, Turku, Finland 
Luminometer Centro LB 960 Berthold Technologies, Bad Wildbad, 
 Germany 

Magnetic stirrer Mag-O Gerhardt, Königswinter, Germany 

Microscope Axiovert S100 Zeiss, Jena, Germany 

pH-meter Portatest 655 Knick, Berlin, Germany 

Photometer: 
 Ultrospec 2000 Pharmacia Biotech, Uppsala, Sweden 
 UV-Vis 550 S PerkinElmer, Rodgau-Jügesheim, Germany 

Pipettes:  
 10 µL, 100 µL, 1000 µL  Eppendorf, Hamburg, Germany 
 Multipette Eppendorf, Hamburg, Germany 

TLC analyzer Tracemaster 20  Berthold Technologies, Bad Wildbad, 
   Germany 

TLC chamber  Desaga, Wiesloch, Germany 

Safety work bench LaminAir® TL 2448 Kendro, Langenselbold, Germany 
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Sonic device Labsonic 2000 B. Braun, Melsungen, Germany 

Vibrofix VF 1 Electronic IKA-Labortechnik, Staufen, Germany 

Water quench GFL 1083 GFL, Burgwedel, Germany 

Weighing machine: 
  Scale 1264 MP Sartorius, Göttingen, Germany 
  Acute scale Sartorius Sartorius, Göttingen, Germany 

 

4.2 Consumables 
Listing 4–2 Consumables 
 
Material  Manufacturer  
Blue Max™ Falcon® (15 mL, 50 mL) Becton, Dickinson and Company, Plymouth,  
  United Kingdom 

Cell culture plates (6-, 12-, 96-well) Greiner Bio-one, Frickenhausen, Germany 

Centrifuge tubes Greiner Bio-one, Frickenhausen, Germany 

Combitips   Eppendorf, Hamburg, Germany 

Cryo tubes  Greiner Bio-one, Frickenhausen, Germany 

Cuvettes, expendable (10x4x45 mm) Sarstedt, Nümbrecht, Germany 

Gloves, Safeskin® powder free, expendable Kimberly-Clark, Forchheim, Germany 

Leukosilk®  BSN Medical, Hamburg, Germany 

Membrane filters (0.2 mm) Schleicher & Schüll, Dassel, Germany 

Micropipettes, expendable (10 µL) Brand, Wertheim, Germany 

Petri dishes, Falcon®   Becton, Dickinson and Company, Plymouth,  
   United Kingdom 

Pipettes, expendable, sterile  Greiner Bio-one, Frickenhausen, Germany 

Pipette tips   Greiner Bio-one, Frickenhausen, Germany 

QIAshredder  Qiagen, Hilden, Germany 

Scalpels, expendable  B. Braun, Melsungen, Germany 

Silica TLC foils, Polygram® (0.2 mm)  Macherey-Nagel, Düren, Germany 

Silica thin layer plates   Merck, Darmstadt, Germany 

Silica thin layer plates, channeled Whatman, Maidstone, United Kingdom 

Scintillation vials (20 mL)  Greiner Bio-one, Frickenhausen, Germany 

Vakutainer® reaction tubes  Becton, Dickinson and Company, Plymouth,  
  United Kingdom 

Weighing dishes, Rotilabo®, expendable Carl Roth GmbH, Karlsruhe, Germany 



Chapter 4 

25 

4.3 Chemicals 

 
4.3.1 Radioactive steroids 
Listing 4–3 Radioactive steroids 
 
Steroids Specific radioactivity 

[1β-3H(N)]-androst-4-ene-3,17-dione 25.9 Ci/mmol 

[4-14C]-[10]-estratriene-3β-ol-17-one 51.3 mCi/mmol 

[4-14C]-androst-5-ene-3β-ol-17-one 53.8 mCi/mmol 

 

All radioactive steroids were bought from NEN Perkin-ElmerTM (Rodgau, Germany). 

Purification of radioactive substrates was performed according to Steckelbroeck (1999a; 

1999b). In brief, 2 µL of the purchased radioactive labeled steroids were analyzed for their 

purity grade via thin layer chromatography (TLC). If substrate radioactivity was below 

95%, the whole substrate was applied onto a TLC glass plate that was cleaned beforehand 

during an overnight flow in CH2Cl2/MeOH (180 mL + 20 mL) as mobile phase. The radio 

labeled substrate was separated by TLC in CH2Cl2/acetone (92.5 mL + 7.5 mL) under 

optimal conditions, and the plate was scanned for radioactivity in a plate scanner 

Tracemaster 20. When the radioactivity of the substrate was identified, the according silica 

gel area was scraped from the plate and eluated with 2 mL EtOH, MeOH, and CHCl3, 

respectively. The eluate was dried under N2 and redissolved in approximately 10 mL 

oxygen-free EtOH. Disintegrations per minute (dpm) were measured in an aliquote of the 

stock solution to determine the final concentration. 

 

4.3.2 Reference steroids 

Unlabeled 5α-androstane-3,17-dione (5α-androstanedione), androst-4-ene-3,17-dione 

(androstenedione), 5α-androstane-17β-ol-3-one (5α-DHT), 5α-androstane-3β-ol-17-one 

(androsterone), androst-4-ene-17β-ol-3-one (testosterone), 5α-androstane-3β,17β-diol (3β-

diol), [10]-estratriene-3β-ol-17-one (E1), [10]-estratriene-3β,17β-diol (E2), androst-5-ene-

3β-ol-17-one (DHEA), and androst-5-ene-3β,17β-diol were purchased from Sigma-

Aldrich® (Seelze, Germany). The 5β-reduced steroids 5β-androstane-3,17-dione (5β-

androstanedione), and 5β-androstane-17β-ol-3-one (5β-DHT) were kindly provided by 

Prof. Siekmann (Dept. of Clinical Biochemistry, University Bonn, Germany). Steroid 
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solutions of approximately 10 mg/mL solvent were prepared in EtOH and CHCl3 at varying 

ratios according to each reference steroids´ solubility.  

 

4.3.3 Test compounds 

The test compounds were purchased by the coordinator in Frankfurt and distributed to the 

different COMPRENDO partners in order to ensure equal quality in the divers experiments. 

The substances are listed in Table 4–1.  

 
Table 4–1 Part A Basic data of the test compounds. 
 
  DBT-Cl Diuron Fenarimol 
Manufacturer Sigma-Aldrich, Seelze, 

Germany 
Sigma-Aldrich, Seelze, 
Germany 

Sigma-Aldrich, Seelze, 
Germany 

Cas number 683-18-1 330-54-1 60168-88-9 

Chemical 
name 
(IUPAC) 

Dibutyl-dichloro-stannane 3-(3,4-dichlorophenyl)-
1,1-dimethyl-urea 

(2-chlorophenyl)-          
(4-chlorophenyl)-
pyrimidin-5-yl-methanol 

Group Organotin Phenyl urea Pyrimidine 

Molecular 
structure 

  

Application Urethane and 
esterification catalyst in 
the plastic industry, heat 
stabilizer 

All-out herbicide for 
maintenance of road and 
path network 

Fungicide used on many 
crops, lawn care 

Mode of 
action 

Inhibition of alpha-keto 
oxidase activity 

Inhibition of 
photosynthesis (PS II) 

Inhibitor of C14-
demethylase in sterol 
biosynthesis 

Suspected 
damage 

Toxic to aquatic 
organisms, irritant to skin, 
immunosuppressive 

Toxic to aquatic 
organisms, teratogenic 

Estrogenic, adverse 
effective on the fertility of 
male mice and rats, toxic 
to gastro-intestine and 
liver  

References Boyer 1989; IPCS IPCS Vinggaard et al. 2005; 
IPCS 
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Table 4–1 Part B Basic data of the test compounds. 
 
  Finasteride Flutamide Letrozole 
Manufacturer MSD Sharp & Dohme, 

Haar, Germany 
Sigma-Aldrich, Seelze, 
Germany 

Sigma-Aldrich, Seelze, 
Germany 

Cas number 98319-26-7 13311-84-7 112809-51-5 

Chemical name 
(IUPAC) 

N-(1,1-Dimethylethyl)- 3-
oxo-(5α,17β)-4-
azaandrost-1-en-17-
carboxamid 

2-methyl-N-[4-nitro-3-
(trifluoromethyl)phenyl]-
propanamide 

4-[(4-cyanophenyl)-
(1,2,4-triazol-1-
yl)methyl]benzonitrile 

Group Nonsteroidal 
antiandrogen - 

Nonsteroidal P450arom 
inhibitor 

Molecular 
structure 

  
 

Application 
 

BPH, alopecia, prostate 
cancer 

Medical antiandrogen 
used in prostate 
cancer and PCOS therapy 

Breast cancer and prostate 
cancer therapy 

Mode of action Inhibition of 5α-Re, 
predominately isozyme 2 

Androgen antagonist Binding to Hem  

Suspected 
damage - Toxic to development, 

neurotoxic - 

References IPCS Diamanti-Kandarakis et 
al. 1998; IPCS 

IPCS 
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Table 4–1 Part C Basic data of the test compounds. 
 
  Linuron MBT-Cl Methyltestosteron 
Manufacturer Sigma-Aldrich, Seelze, 

Germany 
Sigma-Aldrich, Seelze, 
Germany 

Sigma-Aldrich, Seelze, 
Germany 

Cas number 1746-81-2 1118-46-3 58-18-4 

Chemical name 
(IUPAC) 

3-(3,4-dichlorophenyl)-1-
methoxy-1-methylurea 

Butyl-trichloro-stannane 17ß-hydroxy-17α-
methylandrost-4-en-3-one

Group Phenyl urea Organotin Synthetic androgen 

Molecular 
structure 

 
Application 
 

All-out herbicide for road 
and path network 

Intermediate for PVC 
stabilizers, heat stabilizer, 
glass coatings  

Anabolic, Klinefelter 
syndrome therapeutic 
agent 

Mode of action Inhibition of 
photosynthesis, suspected 
AR antagonist 

- 
AR agonist 

Suspected 
damage 

Androgenic, very toxic to 
aquatic organisms - 

Chronic use can cause 
menstrual irregularities 
and virilization in women 

References Lambright et al. 2000; 
Gray et al. 1999b 

Boyer 1989; IPCS IPCS 
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Table 4–1 Part D Basic data of the test compounds. 
 
  p,p´DDE Prochloraz TBT-Cl 
Manufacturer Sigma-Aldrich, Seelze, 

Germany  
Sigma-Aldrich, Seelze, 
Germany 

Merck, Darmstadt, 
Germany 

Cas number 72-55-9 67747-09-5 1461-22-9 

Chemical name 
(IUPAC) 

1-chloro-4-[2,2-dichloro-
1-(4-chlorophenyl)-
ethenyl]benzene 

N-propyl-N-[2-(2,4,6-
trichlorophenoxy)ethyl] 
imidazole-1-carboxamide 

Tributyl-chloro-stannane 

Group Organochlorine Imidazole Organotin 

Molecular 
structure 

  
Application 
 

 Pesticide Agricultural fungicide, 
cytostatica and P450arom 
inhibitor in medicine 

Antifouling, broadband 
biocide 

Mode of action 
- Blocks active center of 

P450 enzymes 
Endocrine disruption 

Suspected 
damage 

Androgenic, carcino-
genic, endocrine disrupt-
tive, gastro-intestinal 
toxic, neurotoxic  

- 

Endocrine disruptive, 
immunotoxic, irritant 
 

References Kelce et al. 1995; IPCS; 
PAN 

Vinggaard et al. 2002; 
IPCS; PAN 

Grote et al. 2004; Boyer 
1989; IPCS 
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Table 4–1 Part E Basic data of the test compounds. 
 

 

  TPT-Cl Vinclozolin 
Manufacturer  Merck, Darmstadt, Germany Sigma-Aldrich, Seelze, Germany 

Cas number 639-58-7 50471-44-8 

Chemical name 
(IUPAC) 

Chloro-triphenyl-stannane 3-(3,5-dichlorophenyl)-5-ethenyl-5-
methyl-1,3-oxazolidine-2,4-dione 

Group Organotin Dicarboximide 

Molecular 
structure 

 
 

Application 
 

Antifouling, broadband biocide, 
agricultural fungicide (potato, sugar 
beet) 

Fungicide for uses on fruits and 
vegetables 

Mode of action Endocrine disruption NADH cytochrome C reductase in lipid 
peroxidation, metabolites are suspected 
to act as AR antagonists 

Suspected 
damage 

Developmental and reproductive toxic, 
immunotoxic, irritant 

Endocrine disruptive, teratogenic 

References Grote et al. 2004; Boyer 1989; IPCS; 
PAN 

Gray et al. 1999a; Kelce et al. 1994; 
IPCS; PAN 
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4.4 Solvents and basic ingredients 
Listing 4–4 Solvents, reagents and kits 
 
Solvent, reagent or kit Manufacturer  
Acetic acid Merck-Schuchardt, Hohenbrunn,  
  Germany 

Albumine standard (2 mg/mL) Sigma-Aldrich, Seelze, Germany 

Acetone Merck, Darmstadt, Germany 

Benzol, p.A. Merck, Darmstadt, Germany 

Acetic acid, 100 % p.A. Merck, Darmstadt, Germany 

Chloroform (CHCl3), lichrosolv® Merck, Darmstadt, Germany 

Cyclohexan, lichrosolv® Merck, Darmstadt, Germany 

Citric acid monohydrate Sigma-Aldrich, Seelze, Germany 

Dextran T 70 Sigma-Aldrich, Seelze, Germany 

Diethyl pyrocarbonate Sigma-Aldrich, Seelze, Germany 

Dichlormethan (CH2Cl2), lichrosolv® Merck, Darmstadt, Germany 

Diethylether, p.A. Merck, Darmstadt, Germany 

DMEM, liquid media, phenolred-free  Biochrom, Berlin, Germany  

DTE Sigma-Aldrich, Seelze, Germany 

EDTA Sigma-Aldrich, Seelze, Germany 

Ethyl alcohol, p.A. Merck, Darmstadt, Germany 

Ethyl acetate, lichrosolv® Merck, Darmstadt, Germany 

Fetal bovine serum (FBS) Biochrom, Berlin, Germany 

Fetal bovine serum (FBS), charcoal stripped Biochrom, Berlin, Germany 

Folin & Ciocalteus phenol reagent Sigma-Aldrich, Seelze, Germany 

Gentamycine sulfate Biochrom, Berlin, Germany 

Liquid scintillation cocktail Ultima GoldTM Perkin-Elmer, Rodgau, Germany 

4-methoxybenzaldehyd, p.A Sigma-Aldrich, Seelze, Germany 

Methyl alcohol, lichrosolv® Merck, Darmstadt, Germany 

MgCl2 Merck, Darmstadt, Germany 

NAD Hoffman-La Roche, Grenzach- 
 Wyhlen, Germany 

NADPH Hoffman-La Roche, Grenzach- 
 Wyhlen, Germany 

Norit, charcoal Sigma-Aldrich, Seelze, Germany 
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RPMI, dry media, phenolred-free Biochrom, Berlin, Germany 

Sodium bismutate  Sigma-Aldrich, Seelze, Germany 

Sodium hydrogen carbonate (NaHCO3) Merck, Darmstadt, Germany 

Sodium hydroxide solution (1N) KMF, Lohmar, Germany 

Sodium pyruvate (Na-pyruvate) Merck, Darmstadt, Germany 

Sulphuric acid, p.A. Merck, Darmstadt, Germany 

Toluene, p.A. Merck, Darmstadt, Germany 

TRIZMA® Base Sigma-Aldrich, Seelze, Germany 

TRIZMA® HCl Sigma-Aldrich, Seelze, Germany 

Ultima Gold®, scintillation cocktail Perkin-Elmer, Rodgau, Germany 

 

4.5 Recipes of buffers, reagents and media 

Assay buffer (AB) 

For the preparation of the acidic part of the solution, 3.362 g (0.16 M) of citric acid 

monohydrate and 0.203 g (0.01 M) MgCl2 were dissolved in 100 mL A. demin. The basic 

solution consisted of 1.938 g (0.16 M) TRIZMA® HCl, and 0.203 g MgCl2 dissolved in 

100 mL A. demin. The basic solution was adjusted to pH 5.5 and 7.4 with the acidic 

solution, respectively. 

 

DMEM 

Phenolred-free DMEM, containing 4.5 g/L glucose and Na-pyruvate, was supplemented 

with 0.04 g/L gentamycine sulfate, 10 % heat-inactivated FBS and 2 mM glutamine. 

 

Heat inactivated FBS 

FBS was inactivated during a 30 min incubation at 56°C in a water bath. 

 

Homogenization buffer   

Homogenization buffer (HB) consisted of 10 mM TRIZMA® HCL and 1 mM EDTA, 

dissolved in A. demin and adjusted to pH 7.4. 
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Norit/Dextran solution 

5% (w/w) activated charcoal and 0.5% (w/w) dextran were shaken in A. demin for at least 2 

hours. 

 

RPMI-1640  

10.42 g phenolred-free RPMI-1640 dry media, 0.11 g Na-pyruvate (=1 mM), 0.04 g 

gentamycine sulfate and 2 g NaHCO3 were dissolved in 200 mL A. demin. The pH-value 

was adjusted to 7.4 and 100 mL heat-inactivated FBS was added. The media was filled with 

A. demin up to 1 liter. The media was sterile filtered through a 0.2 µM pore membrane 

filter, filled into 100 mL autoclaved bottles and stored at 2–8°C. 

 

Spraying reagent 

100 mL pure acetic acid were mixed with 2 mL sulphuric acid and 1 mL 4-methoxybenz-

aldehyd. 



 

34  
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5 Effects of various pesticides on human aromatase, and the investigation of 
residual chemicals in relation to aromatase activity, CYP19 mRNA expression in 
placenta and sex hormone concentrations in blood samples of donors 

 
Parts of this chapter are published in: 

Alléra A, Lo S, King I, Steglich F, Klingmüller D.  

Impact of androgenic/antiandrogenic compounds (AAC) on human sex steroid 

metabolizing key enzymes. Toxicology. 2004, December 1;205(1-2):75-85. 

 

5.1 Abstract 

Human populations are exposed to different kinds and amounts of pesticides, industrial 

pollutants and/or other synthetic compounds. Work-related exposure is mainly suspected in 

the agricultural sector and the dockyards, lifestyle-related exposure may happen through the 

regular consumption of sea-food. Apart from the toxic side-symptoms at high 

concentrations, several pesticides are known or suspected to interfere with the endocrine 

system at lower concentrations, and thus are labeled as Endocrine Disruptors (ED). The 

interference with the endocrine system might impair the development and maintenance of 

the male and female reproductive system. The present study was carried out to determine 

whether 10 suspected androgenic or antiandrogenic ED (DBT, diuron, fenarimol, linuron, 

MBT, p,p´DDE, prochloraz, TBT, TPT and vinclozolin) affect P450arom activity in 

placenta and JEG-3 chorion carcinoma cells.  

To investigate endocrine effects in relation to pesticide body burden, we determined 

the levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), 

androstenedione (Enon), testosterone (T), DHT and estradiol (E2) in the serum of 59 male 

and 16 female donors from two different European regions. In parallel, urine and serum 

samples of the donors were analyzed for chemical residues by the COMPRENDO partners 

in Milan (p,p´DDE), Ioannina (diuron, fenarimol, linuron and vinclozolin), and France 

(TBT and TPT).  

16 German and 14 Polish mothers provided placenta samples for the investigation of 

residual chemicals, as well as for the analysis of specific P450arom activity and CYP19 

mRNA expression. The present study and subsequent investigations was intended to clarify 

impairment of human health due to chemical exposure.  
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5.2 Introduction 

Endocrine modulating activity has been reported for many chemicals, including naturally 

occurring substances (e.g., coumestrol and genistein), pharmaceuticals (e.g., tamoxifen, 

diethylstilbestrol and ethynylestradiol), pesticides (e.g., dieldrin, toxaphene, endosulfan, 

DDT and vinclozolin), industrial chemicals (e.g., bisphenol A, PCBs and phthalate 

plasticizers), and heavy metals (IOPC 2002; McLachlan et al. 2001; Solomon and Schettler 

2000).  

The structural diversity of these so-called endocrine disruptors (ED) suggests that 

effects are caused through a number of different pathways (Gillesby and Zacharewski 

1998). These interactions include indirect mechanisms like the alteration of the synthesis, 

the release, the transport, the metabolism or the clearance of hormones, and direct 

mechanisms like the interaction with hormone receptors (Sonnenschein and Soto 1998). 

Endocrine effects will potentially occur at lower exposure levels than most other toxic 

effects, due to the fact that the endocrine systems usually work with extremely low 

hormone concentrations (Kelce et al. 1994; Duax et al. 1985). Since fetal development and 

sexual differentiation is under direct control and regulation of gonadal steroid hormones, it 

is during this period that the effects of EDs may be particularly severe (Chance and 

Harmsen 1998).  

Aromatase is an enzyme which catalyzes the transformation of androgens into 

estrogens (Simpson et al. 1997). It therefore plays a major role in the maintenance of 

certain processes within the body and in normal fetal development. Cases of genetic 

aromatase deficiency are rare, probably due to the indispensability of this enzyme, and thus 

high lethality of fetuses with such deficiencies. A rare disorder in this context is the 

placental aromatase deficiency, with disturbed production and transfer of estrogen from the 

placenta to the baby in the expectant mother (Holt et al. 2005; Shozu et al. 1991). The 

symptom is a temporary masculine appearance of mother and daughter (karyotype XX). 

Furthermore, estrogen has a protective effect on bone via multiple mechanisms (Shapiro 

2005). In estrogen deficiency states due to natural menopause, chemotherapy-induced 

ovarian failure, treatment with gonadotropin-releasing hormone (GnRH) agonists or 

treatment with aromatase inhibitors, bone resorption predominates and bone loss follows.  

Aromatase disturbance caused by chemical body burden could be the reason for 

increased incidences of human reproductive disorders like polycystic ovary syndrome 

(PCOS) and carcinomas of hormone sensitive tissues (e.g., breast and testis). This trend can 
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only partly be attributed to improved detection methods and/or recently identified genetic 

factors (Kortenkamp 2006; Ntais et al. 2003; Skakkebaek et al. 2001; Hsing et al. 2000; 

Kelce et al. 1998; Colborn et al. 1993; Sharpe and Skakkebaek 1993).  

Some epidemiologic studies have stated associations between exposure to specific 

pesticides or industrial chemicals and steroid hormone levels in serum (Akingbemi and 

Hardy 2001; Steenland et al. 1997). For the investigation of endocrine effects in relation to 

human chemical contaminants, blood and urine samples were collected in Germany and 

Poland (Prof. Dr. J. Falandysz, University of Gdansk), from 16 female and 59 male donors 

classified into five subgroups: (a) German control group, (b) Polish control group, (c) 

Polish fish consumers (diet-related ED exposure), (d) Polish farmers (work-related ED 

exposure) and (e) Polish dockers (work-related ED exposure). We measured the 

concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), 

dehydroepiandrosterone sulfate (DHEA-SO4), androstenedione (Enon), testosterone (T), 

dihydrotestosterone (DHT), and estradiol (E2) in all serum samples.  

LH and FSH are glycoproteins secreted from the b-cells of the adenopituitary, 

controlled by hypothalamic GnRH. LH stimulates androgen production in the Leydig cells 

in men, while FSH promotes the development of the gonadal tissue and spermatogenesis. 

LH and FSH levels help to differentiate hypogonadism (hyper- or hypogonadotropic) (Sina 

et al. 1975). 

DHEA circulating in the blood originates almost entirely from the adrenals. It is only 

weak androgenic, but is the precursor for Enon and T (Vermeulen 1983). Thus, it can 

indirectly cause hirsutism or virilization (Vermeulen 1983). DHEA-SO4 has a half-life of 

nearly a full day, is stable in within-day release and unlike T, DHEA-SO4 does not circulate 

bound to a carrier protein. It is therefore an appropriate indicator for hyperandrogenism in 

hirsutism and polycystic ovary syndrome (Buvat et al. 1983).  

Androstenedione is the direct precursor of T and can be used, in combination with 

other androgens, as an indicator for an impaired androgen balance (Ilondo et al. 1982). 

Enon levels underlie a circadian release, with slightly higher concentrations in the morning 

compared to the late afternoon. Women suffering from hirsutism or polycystic ovaries show 

abnormally high Enon levels in serum, resulting from increased androgen production in the 

ovaries. In postmenopausal women with osteoporosis, levels are significantly reduced, 

while increased values indicate congenital adrenal hyperplasia and Cushing syndrome. 

Enon concentrations in females depend on the estrous cycle.  
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Testosterone in men is responsible for the development of male secondary characteristics, 

the accessory sexual organs, the prostate and the seminal vesicles. Most of body hair 

follicles respond to T and DHT. Hypogonadismus, cryptorchism, Klinefelter syndrome, 

adrenogenital syndrome (AGS), sub function of the pituitary and cirrhosis of the liver can 

be related to low T levels in men, while increased levels can result from T producing 

tumors, high sportive activity or androgen resistance (Dejager et al. 2002; Doldi et al. 1996; 

Odell and Swerdloff 1976). T in women mostly results from peripheral conversion of Enon, 

produced in the adrenal and the ovaries. Women with polycystic ovaries, adrenal tumors or 

hyperplasia show increased T levels.  

Dihydrotestosterone (DHT) is the strongest human androgen. In males, approx. 70% 

of DHT derives from peripheral conversion of T. Lower DHT levels are found in men with 

Klinefelter´s syndrome, damage of the seminiferous tubules, patients with anorchia, and in 

elderly men.  

E2 is produced in minor concentrations in the testis, and is being directly synthesized 

from Enon or T in the periphery, like adipose tissues, brain, skin and mamma tissue (Oettel 

2003). In women, E2 is mainly produced in the ovaries. E2 concentrations vary within the 

estrous cycle.  

In parallel to steroid hormone measurements, urine and serum samples of the donors 

were analyzed for residues of TBT and TPT (Dr. R. Jeannot, Dr. T. Dagnac, Bureau de 

Recherches Geologiques et Minieres, Orleans, France), diuron, fenarimol, linuron and 

vinclozolin (Prof. Dr. T. A. Albanis, Dr. V. Sakkas, University of Ioannina, Greece) and 

p,p´DDE (Prof. Dr. S. Galassi, University of Milan, Italy). In addition to body fluid 

sampling, 16 German and 14 Polish mothers provided placenta samples to measure specific 

P450arom activity and CYP19 expression in relation to residual chemicals.  

There is an increasing number of studies showing the outstanding role of P450arom, 

identifying this enzyme as the key switch controlling androgen vs. estrogen production, due 

to its position at the end of the gonadal steroidogenic pathway (Jeyasuria and Place 1998). 

P450arom catalyzes the transformation of androstenedione (Enon) and testosterone (T) to 

estrone (E1) and estradiol (E2), respectively. Thus, we investigated the direct impact of the 

selected suspicious and control substances (Table 5–1) on aromatase (P450arom) activity in 

human placenta tissue and chorion carcinoma cells from the celline JEG-3.  
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5.3 Material and Methods 

 
5.3.1 Chemicals 

Enzyme assay 

EDTA, TRIZMA™ base, TRIZMA™ HCl and citric acid were used for the preparation of 

the required buffers. [1β-3H]-androstenedione (25.9 Ci/mmol) served as substrate in the 

P450arom assay, NADPH was used as cofactor. The test compounds are listed in Listing 5–

1. Further information concerning the material is given in the general section, chapter 4. 

 
Listing 5–1 Test substances that were investigated concerning their effect on P450arom activity in 
placenta tissue and JEG-3 chorion carcinoma cells.  
 
Substance Cas no.  Application / source   

DBT  683-18-1 Esterification catalyst 

Diuron  330-54-1 Herbicide 

Fenarimol  060168-88-9 Fungicide 

Flutamide  13311-84-7 Pharmaceutical, non-steroidal antiandrogen 

Letrozole  112809-51-5 Non-steroidal P450arom inhibitor 

Linuron  330-55-2 Herbicide 

MBT  1118-46-3 PVC stabilizer  

MT  58-18-4  Pharmaceutical, synthetic androgen 

p,p´DDE  72-55-9  Most prevalent metabolite of DDT 

Prochloraz 67747-09-5 Fungicide 

TBT  56-35-9  Broad-spectrum biocide 

TPT  668-34-8 Fungicide, molluscicide 

Vinclozolin 50471-44-8 Fungicide 
 
 
Testosterone, androstenedione, estradiol, DHEA-SO4, and DHT levels  

All materials necessary for the in vitro diagnostic of T, Enon, E2 and DHEA-SO4 in serum 

were purchased from DPC-Biermann (Bad Nauheim, Germany). Components supplied with 

the diagnostic kits were the Bead Pack, containing the pre-coated beads with the different 

antibodies, the reagent and the adjustors. Multi-diluent, chemiluminescent substrate, probe 

wash, probe cleaning kit, disposable reaction tubes and tube caps were purchased separately 



Chapter 5 

40  

from DPC-Biermann (Bad Nauheim, Germany). All materials necessary for the quantitative 

determination of DHT were purchased from IBL (Hamburg, Germany). 

 

Quantification of CYP19 mRNA in placenta samples 

Diethyl pyrocarbonate (DEPC) and β-mercaptoethyl alcohol were purchased from 

Boehringer (Ingelheim, Germany). The RNeasy® Mini Kit (mini spin columns, RLT lysis 

buffer, RW1 washing buffer, RPE washing buffer and RNase-free tubes), the 

QIAshredderTM spin columns, proteinkinase K, RNase free DNase set, dNTP Mix and the 

QuantiTect SYBR® Green PCR kit were obtained from Qiagen (Hilden, Germany). The 

SuperScriptTM II reverse transcriptase, random primers, dNTP mix and the RiboGreen® 

RNA Quantitation kit – including RiboGreen® RNA quantitation reagent, 20xTE buffer 

(200 mM TrisHCl, 20 mM, EDTA, pH 7.5) and ribosomal RNA standard (16S and 23S 

rRNA of E. coli) – were purchased from Invitrogen (Karlsruhe, Germany). RNasin was 

obtained from Promega (Mannheim, Germany). 

 

5.3.2 Source and preparation of human placenta 

Placental tissue was removed after caesarian section and stored on ice. It was fragmented, 

cut into smaller pieces, washed with KCL and frozen in liquid nitrogen. The tissue samples 

were stored at −80° C until further processing. The study was approved by the local ethics 

committee and informed consent from all tissue donors or their family members was 

obtained. 

Tissue homogenization was carried out as described previously (Steckelbroeck et al. 

1999a). In brief, 20 mg placental tissue (wet weight) was homogenized in HB and 

sonificated. Homogenates were spinned down and supernatants were stored as cell-free 

fractions at −80°C. Samples of the tissue preparation were collected for the protein 

determination according to Lowry (1951). Measurements were conducted in the linear 

range of protein content versus enzyme activity. 

 

5.3.3 Measurement of aromatase activity in placenta tissue  

Measurement of P450arom activity based on the proportional release of 3H2O and estrone 

from [1β-3H]-Enon (Steckelbroeck et al. 1999a). For the investigation of chemical effects 

on P450arom activities, incubations were performed in duplicate, at pH 7.4. The results are 
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the means of three determinations. Placenta homogenates were 1/6 v/v diluted with HB. 

Test compound dilutions were prepared in EtOH and added to the tissue preparations to 

obtain final concentrations of 0.001 µM to 100 µM. [1β-3H]-Enon diluted in assay buffer 

and NADPH dissolved in HB at a final concentration of 0.05 µM and 3 mM, were added to 

the tissue preparations, respectively. The aqueous phases of the incubations were 

transferred into reaction tubes and stripped from the remaining steroids twice with CHCl3 

and once with dextran-coated charcoal solution. Radioactivity in a sample of the aqueous 

phase was counted as automatically quench-corrected disintegrations per minute (dpm) 

with a Wallac 1409 liquid scintillation counter. 

 

5.3.4 Chorion carcinoma cell line JEG-3 

The chorion carcinoma celline JEG-3 was obtained from DSMZ (Braunschweig, Germany). 

Cells were cultured in phenolred-free DMEM, which was supplemented with 0.04 g/L 

gentamycine sulfate, 10% heat-inactivated FBS and 2 mM glutamine before use. Cells were 

seeded in 75 cm2 cell culture flasks and incubated at 95% humidity, 5% CO2 and 37°C. 

When confluency was 75%, cells were subcultured or used in the enzyme assays. Medium 

was changed every 2–3 days.  

 

5.3.5 Measurement of aromatase activity in JEG-3 

Approximately 100,000 JEG-3 cells were seeded into each well of 12-well plates and 

incubated until 75% confluency. Two wells with cell-monolayers were carefully washed 

with phosphate buffered solution (PBS) and lysed in 0.05 N NaOH for protein 

determination according to Lowry (1951). Culture media in the other wells was exchanged 

with incubation media, which contained 10% charcoal-stripped FBS and [1β-3H]-Enon at a 

final concentration of 0.5 µM. A volume of 2.5 µL ethanolic test compound solution per 

mL medium was added to the wells, with final concentrations of 0.01-100 µM. Cell 

incubations with 2.5 µL EtOH/mL medium served as reference aromatase activities, while 

incubations with medium and EtOH, but without cells resulted in blank values. Cells were 

incubated in a humidified atmosphere, 5% CO2 and 37°C. Reactions were stopped after 1 h 

by chilling on ice. Medium of the wells was transferred into test tubes and stripped from 

remaining steroids as described previously (Steckelbroeck et al. 1999a). Values reported are 

the means of three determinations.  
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5.3.6 Urine, blood and placenta of Polish and German donors 

All Polish donors were inhabitants of the Gdansk region. 15 dockers (male n=15, age 48±4 

years), 15 farmers (male n=13, female n=2; age 42±11 years), 15 people with a fish 

preference in their diet (male n=11, female n=4; age 47±15 years) and 15 people (male 

n=10, female n=5; age 38±14 years) that did not belong to any of these groups. Blood and 

urine samples of 15 Germans (male n=10, female n=5) were taken, the average age of the 

donors was 40±15 years. Placenta tissue and urine samples of 14 Polish mothers (28±5 

years) and 16 German mothers (31±6 years) were taken.  

 

5.3.7 CYP19 mRNA quantification in placenta samples 

1 mL diethyl pyrocarbonate (DEPC) stock solution was added to 1 L A. demin, mixed until 

bubble-free and used for the decontamination of all equipment used for RNA-extraction. 60 

mg frozen tissue of each placenta sample was homogenized with a rotor-stator homogenizer 

in 1200 µL RLT®-lysis buffer, supplemented with β-mercaptoethyl alcohol in an 

autoclaved glass mortar with a tightly fitting glass pestle.  

Total RNA was extracted according to the “RNeasy Mini Protocol for the Isolation of 

Total RNA from Animal Tissues”. In brief, EtOH was added to the tissue lysate, protein 

and DNA content were removed within two different digestion-centrifugation steps. 

Purified total RNA was eluted in 30 µL RNase-free water. RNA concentrations were 

measured with a RiboGreen® quantification kit, using a polar star galaxy fluorometer as 

detection system. Samples were verified for purity by photometric A260/A280 ratio 

analysis.  

RNA samples were reverse transcribed into cDNA, using SuperScript™ II reverse 

transcriptase, 50 ng random primers, dNTP mix (10 mM) and RNasin ribonuclease 

inhibitor (40 U). 20 ng cDNA each of the different placenta samples and the calibrator 

(CYP19 mRNA from JEG-3 cells) were used as template for the detection of CYP19 target 

gene and 18S mRNA reference (“housekeeping”) gene.  

Real-time quantification was performed according to the SYBR® Green protocol on 

an ABI PRISM® 7700 sequence detection system. 300 nM each of the following primers 

were used: 
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CYP19 sequences: 

Primer forward  5´- TTG GAA GGA TGC ACA GAC TCG - 3´ 

Primer reverse  5´- GGC GAT GTA CTT TCC TGC ACA - 3´ 

 

18S sequences: 

Primer forward  5´- ACG GCT ACC ACA TCC AAG GA - 3´ 

Primer reverse  5´- AAG GAT TTA AAG TGG ACT CAT TCC A - 3´ 

 

The thermo profile for the real-time PCR is given in Table 5–1. Relative quantification of 

CYP19 mRNA amount was accomplished by comparative –2ΔΔCt method (Livak and 

Schmittgen 2001) and given as arbitrary units relative to the calibrator. 

 
Table 5–1 Thermo profile of the real-time PCR performed for the quantification of CYP19 mRNA. 
 

PCR: Time Temperature 
Initial activation step 15 min 50°C 
Three-step-cycling: 
Denaturation 15 s 94°C 
Annealing 30 s 58°C 
Extension 30 s 72°C 
Number of cycles: 40 
 

 

5.3.8 Sex hormone analysis of donor blood 

LH, FSH, DHEA-SO4, T, Enon, and E2 levels were measured in vitro with an 

IMMULITE® 2000 Analyzer according to the principle of sandwich (LH and FSH) and 

competitive (DHEA-SO4, T, Enon and E2) chemiluminescence immunoassay, following 

the manufacturers guideline (DPC-Biermann, Bad Nauheim, Germany). In brief, serum 

samples were controlled for complete clot formation and spinned down. One of the beads 

coated with the respective rabbit anti-bodies was dispensed into each cuvette. In the 

competitive immunoassay, the samples and the alkaline phosphatase conjugated to T, Enon, 

E2 and DHEA-SO4 in a human protein-based matrix were added to the beads, respectively. 

In the sandwich immunoassay, the samples and the alkaline phosphatase conjugated 

to anti-LH and anti-FSH were added to the beads. The mixtures were incubated for 30 min 

(LH, FSH and DHEA-SO4) and 60 min (T, E2 and Enon) at 37°C. All unbound compounds 
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were removed by several washing steps. The appropriate luminogenic substrate was added. 

After 5 min, the luminescent signal was detected with the IMMULITE®, generated by the 

decay of the instable product built from the reaction of the substrate and alkaline 

phosphatase bound to the bead. The luminescence signal is direct proportional to the 

amount of bound alkaline phosphatase, and anti-proportional to the amount of DHEA-SO4, 

T, Enon and E2 and direct proportional to the amount of LH and FSH in the serum samples.  

DHT levels were measured by enzyme immunoassay, following the manufacturer´s 

manual (IBL, Hamburg, Germany). The principle of the competitive binding scenario is 

that the unlabeled antigen present in standards, control and patient samples compete with 

the enzyme-labeled antigen (DHT-conjugate) for a limited number of antibody binding sites 

on the microwell plate. In brief, 50 µL of each calibrator, control and specimen sample was 

pipetted into the wells of the microwell strips that were supplied with the kit. 100 µL of the 

conjugate working solution was added into each well and the mixture was incubated for 1 

hour at room temperature. The wells were washed with diluted wash buffer and dried. 

Enzyme substrate was pipetted into each well and the mixture was incubated for 10–15 

minutes at room temperature. 50 µL of stopping solution was added into each well. After 

20 min, the absorbance at 450 nm was measured on a microtiter plate reader.  

 

5.3.9 Data analysis 

Enzyme assays  

Product formation given in dpm was calculated into pmol/h/mg protein enzyme activity 

when protein content was determined. Results were analyzed with the non-linear curve-

fitting software FigSys (Biosoft, Cambridge, UK). The software was also used to estimate 

the concentration of the test compound that led to 20% and 50% inhibition of enzyme 

activity. 

 

Quantification of mRNA and sex hormone analysis  

The software GraphPad Prism (GraphPad Software, San Diego, USA) was used to visualize 

the data, presented as mean values with ±SEM. Column analysis was used to determine if 

data sets were normally distributed (Kolmogorov-Smirnov test). Variances were tested for 

homogeneity. Comparison between two groups was performed with the two-tailed t-test for 

unpaired samples (normal distribution, variances homogeneous), the Mann-Whitney test 

(Gaussian distribution not assumed, variances homogeneous) or the t-test with Welch´s 
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correction (normal distribution, equal variances not assumed). In case of more than two 

groups to compare, differences were verified by either one-way analyses of variance 

(ANOVA), followed by a post-hoc Tukey´s multiple comparison test (normal distribution, 

variances homogeneous) or the Kruskal-Wallis test connected with a post-hoc Dunn´s 

multiple comparison test (Gaussian distribution and/or equal variances not assumed).  

 

 

5.4 Results 

 
5.4.1 Impact of test compounds on human P450arom activity in placenta tissue and 

JEG-3 cells 

Each test compound was applied in the P450arom enzyme assays at 4–8 different 

concentrations between 0.001 and 100 µM. Values from the samples incubated with 3 µL 

EtOH represented 100% enzyme activity and served as reference. Specific P450arom 

activity in JEG-3 cells was 20 pmol product/h/mg protein. Data from JEG-3 and placenta 

enzyme experiments was plotted and curve-fitted, e.g., prochloraz (Fig. 5–1A) and 

fenarimol (Fig. 5–1B). Resulting IC20 and IC50 values are given in Table 5–2 in descending 

order of P450arom inhibiting magnitude. 

 
 

Fig. 5–1 Effect of prochloraz (A) and fenarimol (B) on aromatase (P450arom) activity in JEG-3 cells 
and human placenta tissue, given as % activity compared to EtOH controls (100 %).  
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Table 5–2 Inhibitory effects expressed as IC20 and IC50 values of test compounds (DBT, diuron, 
fenarimol, linuron, MBT, p,p´DDE, TPT, TBT and vinclozolin) and control substances (letrozole, 
prochloraz, MT, flutamide and finasteride) on P450arom activity in placenta tissue homogenate and 
JEG-3 cells. 
 

 
 
 
 
5.4.2 Aromatase activity and CYP19 mRNA quantification in placenta samples 

Chemical analysis performed by the COMPRENDO partners in Milan (Prof. Dr. S. Galassi) 

revealed p,p´DDE contamination in all placenta samples (Fig. 5–2C), but individual values 

did not correlate with aromatase activity or with CYP19 mRNA expression. Comparison 

between the German and Polish group showed a significantly lower mean aromatase 

activity (Fig. 5–2A) and CYP19 mRNA expression (Fig. 5–2B) in German mothers than in 

Polish mothers, while there was a tendency (not significant) for higher p,p´DDE residues in 

German placenta samples (Fig. 5–2C).  

JEG-3 Placenta P450arom activity 
IC20 [µM] IC50 [µM] IC20 [µM] IC50 [µM]

Letrozole 0.0001 0.0005 0.0001 0.0005 
Prochloraz 0.02 0.06 0.005 0.024 
Fenarimol 0.11 1.99 0.67 2.50 
MT 0.31 2.76 0.80 5.50 
TPT 0.47 3.81 1.50 6.20 
TBT 0.58 12.2 3.10 6.40 
Flutamide - - 5.20 27.2 
DBT - - 25.2 73.0 
Finasteride - - 29.7 77.3 
Diuron - - - - 
Linuron - - - - 
MBT - - - - 
p,p´DDE - - - - 
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Fig. 5–2 Mean values and SEM of (A) aromatase activity, (B) CYP19 mRNA and (C) p,p´DDE 
concentrations in placenta samples of German and Polish donors. Mean values of aromatase activity 
and CYP19 mRNA expression were significantly lower in German donors, while p,p´DDE analysis 
revealed slightly higher contamination than in Polish donors.  
Statistical analysis was performed as follows: (A) t-test with Welch´s correction, (B) t-test with 
Welch´s correction and (C) Mann-Whitney test. *** = p<0.01, ** = p<0.05, * = p<0.1 
 

 

5.4.3 Chemical and sex hormone analysis of male donor blood and urine  

Chemical analysis performed by the COMPRENDO partners in Milan and Orleans revealed 

p,p´DDE contamination in serum of all male donors (Fig. 5–3A), MBT residues in seven 

urine samples of Polish dockers (n=7, mean of 107 ng/L, data not shown) and two urine 

samples of fish consumers (n=2, mean of 39.5 ng/L, data not shown), and DBT residues in 

urine of three dockers (n=3, mean of 59 ng/L, data not shown).  

Chemical residues in urine or serum did not correlate with any of the sex hormone 

level determined in serum. Group analysis of serum sex hormone concentration resulted in 

significantly lower mean E2 levels (Fig. 5–3B) and slightly higher FSH levels (not 

significant) in German men compared to Polish men of all groups.  

 

5.4.4 Chemical and sex hormone analysis of female donor blood and urine 

Chemical analysis performed by the COMPRENDO partners in Milan revealed p,p´DDE 

contamination in serum of all female donors. There was no correlation to individual sex 

hormone concentrations, and no significant differences between grouped Polish and 

German donors could be found (Fig. 5–4C). DBT was detected in one of the urine samples 
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of a Polish women with fish diet by the COMPRENDO partners in Orleans (n=1, DBT 

concentration 87 ng/L, data not shown). Mean concentrations of Enon (Fig. 5–4A) and T 

(Fig. 5–4B) in serum of Polish women were significantly higher (p<0.05) than those of 

German women.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 5–3 Mean concentrations and SEM of (A) p,p´DDE, (B) estradiol, (C) FSH and (D) 
androstendione in serum of male donors. Mean of p,p´DDE, E2 and androstendione values in serum 
of Polish men were significantly higher than in serum of German men. Variation of FSH values in 
German donor serum was very high (C), but the mean value was higher than in the Polish subgroups 
(not significant).  
Statistical analysis was performed as follows: (A) Kruskal-Wallis with post-hoc Dunn´s multiple 
comparison test, (B) ANOVA with post-hoc Tukey´s multiple comparison test, (C) Kruskal-Wallis with 
post-hoc Dunn´s multiple comparison test and (D) t-test for unpaired samples.  

*** = p<0.01, ** = p<0.05, * = p<0.1 
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Fig. 5–4 Mean concentrations and SEM of (A) androstenedione, (B) testosterone, and (C) p,p´DDE 
concentrations in serum samples of German and Polish female donors. Mean Enon and T values of 
Polish donors were significantly higher compared to mean values resulting from German serum 
samples.  
Statistical analysis was performed as follows:(A) t-test for unpaired samples, (B) t-test with Welch´s 
correction and (C) t-test for unpaired samples. *** = p<0.01, ** = p<0.05, * = p<0.1 

 
5.5 Discussion 

In the present study, our main concern was to investigate the changes in human P450arom 

activity, the enzyme that catalyzes the formation of estrogens, caused by ED exposure or 

body contamination. Prochloraz, MT, fenarimol and the triorganotin compounds TBT and 

TPT significantly inhibited P450arom both in placental microsomes and in JEG-3 cells. In 

body, the reduced activity of this enzyme could result in a change of the natural balance 

between androgens and estrogens in favor of the androgens.  

The importance of estrogens in women, as well as in men, has become more and more 

evident in recent years. The effects of estrogens are mediated via the estrogen receptors 

ER-α and ER-β. Estrogen receptors are expressed not only in reproductive tissues, but they 

are also found in myocardial, endothelial and vascular smooth muscle cells, liver, breast, 

brain and bone (Chlebowski 2005). The classical signaling pathway for estrogen action is 

the ligand-dependent receptor activation pathway, in which activated estrogen receptors are 

transcription factors that alter gene expression and increase protein synthesis (Voet and 

Voet 2004). In addition, the non-nuclear estrogen-signaling pathway through cell-

membrane estrogen receptors supports the rather slow classical pathway with the feasibility 
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of rapid responses to estrogen (Toran-Allerand 2004; Pietras and Szego 1999). Thus, 

decreased levels of estrogens could result in multiple slow and fast reaction body disorders. 

However, MT, TPT, TBT and prochloraz likewise impair 5α-Re 2 activity, 

responsible for the transformation of T into the much stronger androgen DHT, in the 

prostate and in LNCaP prostate carcinoma cells (chapter 4). The first consequence of the 

inhibition of both aromatase and 5α-Re 2 could be a drastic increase of circulating T 

concentrations, due to the missing “flush” via aromatization and 5α-reduction. The 

synthesis of T is probably warranted by the multiple 17β-HSDs isozymes present in the 

body (Yang et al. 2005). The excessive exposure to androgens and/or reduced estrogens 

may cause clinical problems, such as ovarian dysfunction, osteoporosis and hirsutism 

(Saitoh et al. 2001).  

 

In  

In the long run, reduced levels of estrogens might also induce an upregulation of P450arom 

to compensate the missing steroid hormones, causing occasional overshoots (Fig. 5–4) 

(Nakanishi et al. 2002). Thus, the prediction of the outcome of an ED with P450arom 

inhibitory power is extremely difficult.  

The medication of several strong P450arom inhibitors, like letrozole and MT, against 

estrogen-dependent mammacarcinoma is promising (Andersen et al. 2002; Sanderson et al. 

2002; Kelloff et al. 1998), however, the presence of accumulated endocrine acting body 

Fig. 5–5 Diagram of the 
feedback principle to maintain 
homeostasis in an endocrine 
system, with A representing a 
cell type that secretes hormone A 
and regulates the production of 
hormone B by cell type B. 
Hormone B exerts a negative 
feedback on the secretion of 
hormone A (IOPC 2002).  
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contaminants, e.g. prochloraz or fenarimol, need to be considered due to possible 

synergistic effects. Suppression of local estrogen production sites with tissue-selective 

drugs is highly recommended. Several publications report that third-generation aromatase 

inhibitors like anastrozole and letrozole are showing greater efficacy in the treatment of 

ER-positive tumors than tamoxifen (Jakesz et al. 2005; Goss 2003). Thus, all ED with 

indirect interaction with the hormone system, like the ones we found in the present study, 

might be more effective and dangerous than those with direct impact on the hormone 

receptor.  

In 2000, a study of the German Federal Institute for Consumer Protection (BgVV 

1995) drew attention to the potential risk of organotin residues in food and consumables. 

According to the investigation, fish products are the key source for TPT, with 

concentrations of 10–30 µg/kg wet weight. Fish products like tuna and swordfish are also 

contaminated with p,p´DDE, showing mean liver concentrations of 81–135 ng/g wet weight 

(Kannan et al. 2002).  

The chemical analysis by the COMPRENDO partners in France and Italy proved 

p,p´DDE contamination in urine, blood and placenta samples of several subjects. Fish 

consumers were not exceptionally high burdened, but significantly higher blood 

concentrations of p,p´DDE were found in Polish men, taking all subgroups together, 

compared to German men. This tendency of higher concentrations in Polish donors was not 

found in samples of female placenta and serum samples. The higher exposure of Polish men 

compared to the control group in Germany was also reflected by MBT and DBT residues 

found in Polish urine samples. However, individual sex hormone concentrations in blood 

were not correlated with p,p´DDE, MBT or DBT body burden. Previous investigations of 

sex hormone concentrations in relation to p,p´DDE contamination revealed no correlations 

(Cocco et al. 2004; Hagmar et al. 2001; Persky et al. 2001), except for a study carried out in 

North Carolina among African-American farmers, in which elevated serum levels of 

p,p´DDE were positively correlated with decreased total testosterone concentrations 

(Martin et al. 2002).  

To the author´s knowledge, another study about the relation between organotin 

contamination and serum sex hormone concentrations in blood has not been performed so 

far. The significant differences in aromatase activities and CYP19 mRNA expression 

(placenta samples), E2 and Enon levels (male serum), Enon and T levels (female serum) 

probably are the result of other factors than determined in this study, e.g., genetic factors, 
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body fat, alcohol consumption and/or chemicals other than the ones determined (Onland-

Moret et al. 2005; Allen et al. 2003).  

At present, clear evidence for the impairment of human health by ED in the 

environment is still missing. However, there is alarming data about significant levels of ED 

detected in human body fluids and tissues, and some of these contaminants are associated 

with developmental and reproductive anomalies in laboratory species (Akingbemi and 

Hardy 2001). Low-dose chronic or multiple chemical exposure with impact on P450arom 

might effect our progeny or cause ailments with as yet unknown etiologies, like 

Alzheimer´s disease, autism or cerebral palsy (Goldman and Koduru 2000).  
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6 Effects of Various Pesticides on Human 5α-Reductase Activity in Prostate and 
LNCaP Cells  

 
This chapter is published as: 

Lo S, King I, Allera A, Klingmüller D.  

Effects of various pesticides on human 5alpha-reductase activity in prostate and LNCaP 

cells. Toxicology In Vitro. 2007, April; 21(3):502-508. 

 

6.1 Abstract 

Certain pesticides are able to disturb the sex hormone system and to act as antiandrogens. 

While the different underlying mechanisms remain unclear, inhibition of 5α-reductase, the 

enzyme which is indispensable for the synthesis of DHT and thus normal masculinization, 

appears to be one of the sensitive targets for endocrine disruption. We therefore tested 

several endocrine disrupters with antiandrogenic in vivo effects in vitro for their influence 

on 5α-reductase activity in two different test systems: (a) an enzyme assay with human 

Lymph Node Carcinoma of Prostate (LNCaP) cells and (b) an enzyme assay with human 

prostate tissue homogenate. The selected pesticides and industrial compounds were 

monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), triphenyltin (TPT), diuron, 

fenarimol, linuron, p,p´DDE, prochloraz and vinclozolin. The synthetic androgen 

methyltestosterone (MT) and the synthetic antiandrogen flutamide, as well as the 5α-

reductase type 2 inhibitor finasteride served as control compounds.  

The effect of the organotin compounds DBT, TBT and TPT on enzyme activity was 

approximately the same in both test systems, with IC50 values ranging between 2.7 and 

11.2 µM. While in prostate tissue, methyltestosterone and prochloraz proved to be stronger 

inhibitors (IC50 values of 1.9 and 12.4 µM) than in LNCaP cells (IC50 values of 13.2 and 

53.2 µM). The inhibitory impact of finasteride was approximately 130 times stronger in 

prostate tissue than in LNCaP cells. Fenarimol, flutamide, linuron and p,p´DDE inhibited 

5α-reductase activity only at very high concentrations (IC50≥24 µM) in prostate 

homogenates, and not at all in LNCaP cells. On average, the IC20 values were 3.5 times 

lower than the IC50 values. Diuron, MBT and vinclozolin exerted no effect in either of the 

test systems. The finding of pesticides acting as 5α-reductase inhibitors might be of clinical 

relevance. As a screening tool for putative ED, the tissue assay is the more practical and 

sensitive method. However, the human cancer cell assay can, to some extent, reflect 
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particular cell processes since the living cell is able to compensate moderate toxicological 

effects of the ED on cell viability, and possibly also their impact on 5α-reductase activity.  

 

6.2 Introduction 

Androgens are responsible for the normal masculinization of the body, including the brain, 

the formation of male genitalia and male behavior. 5α-reductase (5α-Re) is one of the key 

enzymes in human androgen metabolism. It is responsible for the irreversible conversion of 

testosterone into 5α-dihydrotestosterone (5α-DHT), the most potent human AR agonist 

(Rizner et al. 2003). During sex differentiation, 5α-DHT is indispensable for the 

development of male external genitals, the prostate, and the maturation of facial and body 

hair (Wilson 1996; Harris et al. 1992).  

In general, 5α-DHT is locally converted from circulating testosterone in the tissue or 

organ, mainly the prostate, which requires 5α-DHT for its development, growth, 

differentiation, and function. The two isoforms of 5α-Re in humans and animals (Wilson et 

al. 1993) are encoded by different genes, and differ in their biochemical properties and 

cellular localization (Negri-Cesi and Motta 1994). Both isozymes are transiently expressed 

in skin and scalp of newborns. 5α-Re type 1 remains to be expressed in skin, liver and brain 

from the time of puberty onwards (Steckelbroeck et al. 2001; Stoffel-Wagner et al. 1998; 

Luu-The et al. 1994), and regulates the proper balance between androgens and estrogens 

(Mahendroo et al. 1999; 1997). 5α-Re type 2 is predominantly present in fetal genital skin, 

male accessory sex organs and the prostate (Ntais et al. 2003; 2001; Thigpen et al. 1993).  

Mechanisms that result in impaired 5α-DHT concentrations include 1) mutated 

expression of 5α-reductase, 2) modified 5α-reductase activity, 3) changed concentrations 

of precursor hormones, and 4) disordered inactivation of 5α-DHT due to, e.g., 

misregulation of 3-ketosteroid reductases. Substantially elevated DHT levels in relation to 

testosterone are considered to be risk factors for benign prostatic hyperplasia (BPH) and 

prostate cancer (Ntais et al. 2003), while decreased DHT/testosterone ratios during sex 

differentiation are supposed to result in the so-called testicular dysgenesis syndrome (TDS) 

(Skakkebaek et al. 2006; Fisher 2004; Silver and Russell 1999; Nordenskjold et al. 1998; 

Paulozzi et al. 1997). TDS is a disease pattern with the symptoms of poor semen quality, 

testis cancer, undescended testis, and hypospadias. Experimental and epidemiological 

studies suggest that TDS is a result of disruption of embryonal programming and gonadal 
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development during fetal life (Fisher 2004; Safe 2000; Vos et al. 2000; Sonnenschein and 

Soto 1998; Davidson and Yager 1997; Paulozzi et al. 1997; Toppari et al. 1996). Mutations 

of the 5α-Re type 2 gene lead to pseudohermaphroditism of varying degrees (Bahceci et al. 

2005; Hackel et al. 2005; Migeon and Wisniewski 2003), while, to the best of the author´s 

knowledge, a disease pattern resulting from 5α-Re type 1 deficiency has not been reported 

yet.  

A large number of chemicals used in agriculture and industry, including the selected 

test compounds monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), triphenyltin 

(TPT), diuron, fenarimol, linuron, p,p´DDE, prochloraz, and vinclozolin, have been 

reported to possess antiandrogenic potency. We investigated in this study, if these 

antiandrogenic effects are the result of 5α-Re inhibition. 

Triorganotin compounds like TBT and TPT are assumed to interfere with androgen 

metabolism due to their potential to induce virilization of females (imposex) in marine 

snails, possibly caused by an impaired balance of sex hormones in favor of androgens 

(Oehlmann et al. 2000; Morcillo and Porte 1999; Oehlmann et al. 1996). In addition, 

reports on rat exposure showed smaller litter size (Ema et al. 1997; Harazono et al. 1996) 

and dose-dependent reduction of thymus weight (Snoeij et al. 1985). Administration of 

DBT resulted in increased incidence of rat fetuses with malformation, e.g., exencephaly and 

cleft jaw (Ema et al. 1995). The organochlorine p,p´DDE, a persistent metabolite of the 

pesticide DDT, induced abnormalities in sex development of male rats, probably by binding 

to the androgen receptor (Gray et al. 1999b; Kelce et al. 1995). Vinclozolin and linuron 

administration to pregnant rats resulted in incomplete development of the reproductive tract 

in male offspring, e.g., female-like anogenital distance, cleft phallus with hypospadia, small 

or even absent sex accessory glands, indicating antiandrogenic potency of these ED 

(Lambright et al. 2000; Gray et al. 1999a; Gray et al. 1999b; Monosson et al. 1999). As 

shown by the Hershberger assay, oral administration of the azolfungicides fenarimol and 

prochloraz considerably reduced the weight of ventral prostate, seminal vesicles and 

bulbourethral glands of castrated and testosterone-treated male rats (Vinggaard et al. 2005; 

Vinggaard et al. 2002). Both chemicals inhibit P450arom activity as demonstrated in 

human placenta tissue and human JEG-3 cells (Andersen et al. 2002). 

The exact mechanisms of endocrine modulation of these chemicals are still unclear, 

but the key enzyme 5α-Re is certainly one of the sensitive targets. We therefore tested the 
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selected endocrine disrupters for their effect on 5α-Re activity in two different test systems, 

which were (a) an enzyme assay with human Lymph Node Carcinoma of Prostate (LNCaP) 

cells and (b) an enzyme assay with human prostate tissue homogenate.  

 

6.3 Materials and methods 

 
6.3.1 Chemicals 

Enzyme assay 

EDTA, TRIZMA™ base, TRIZMA™ HCl and citric acid were used for the preparation of 

the required buffers. [1β-3H]-androstenedione (25.9 Ci/mmol) served as substrate in the 5α-

Re assay, NADPH was used as cofactor. The test compounds are listed in Listing 6–1. 

Further information concerning the materials is given in the general section, chapter 4. 

 

6.3.2 Source and preparation of prostate tissue 

Macroscopically normal prostate tissue samples were obtained from patients undergoing 

prostate ectomy. Prostate samples were immediately frozen in liquid N2 and stored at 

−80°C. The study was approved by the local ethics committee and informed consent was 

obtained from all tissue donors or their family.  

Prostate samples were treated as previously described (Steckelbroeck et al. 2001). 

Tissues were weighed, transferred into a glass mortar filled with HB and homogenized with 

a tightly fitting glass pestle. Samples were transferred into plastic tubes and pulse 

ultrasonificated at 50 Watt. The homogenates were spinned down for 15 min at 4°C and 

600 g. The supernatant, containing the microsomal fraction, was divided into aliquots and 

stored in liquid N2. Protein concentrations were determined according to Lowry (1951). 
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Listing 6–1 Test substances that were investigated concerning their effect on 5α-reductase activity in 
prostate tissue and LNCaP prostate carcinoma cells.  
 
Substance Cas no.  Application / source   
DBT  683-18-1 Esterification catalyst 

Diuron  330-54-1 Herbicide 

Fenarimol  060168-88-9 Fungicide 

Finasteride 98319-26-7 Pharmaceutical, 5α-Re inhibitor  

Flutamide  13311-84-7 Pharmaceutical, non-steroidal antiandrogen 

Linuron  330-55-2 Herbicide 

MBT  1118-46-3 PVC stabilizer  

MT  58-18-4  Pharmaceutical, synthetic androgen 

p,p´DDE  72-55-9  Most prevalent metabolite of DDT 

Prochloraz 67747-09-5 Fungicide 

TBT  56-35-9  Fungicide, molluscicide 

TPT  668-34-8 Fungicide, molluscicide 

Vinclozolin 50471-44-8 Fungicide 

 

6.3.3 Enzyme assays in prostate tissue 

Enzyme assays in prostate homogenate were performed as described (Steckelbroeck et al. 

2001). In brief, prostate homogenates were diluted in homogenization buffer (HB) so that in 

a 50 µL aliquot, approximately 10% of substrate was converted during a 30 min incubation 

period. Control incubations without tissue were performed with 50 µL HB. 3 µL each of the 

test compound dilution was added to the tissue-containing aliquot. The mixture was 

constantly shaken at 37°C. Preincubation was stopped by chilling, and 100 µL of the [3H]-

androstenedione-solution (0.1 µM in assay buffer) was added to the mixture. The enzyme 

reaction was started by adding 50 µL HB containing 3 mM NADPH. The tubes were 

capped, vortexed, shaken as described above for 30 min and reactions were stopped by 

chilling on ice.  
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6.3.4 LNCaP cells in culture 

Cell culture media components, unless otherwise specified, were purchased from Biochrom 

(Berlin, Germany). RPMI 1640 dry medium, supplemented with 2 mM L-glutamine and 

11.11 mM D-glucose, was dissolved according to the manufacturer´s instruction. 40 µg/mL 

gentamycine sulfate and 2 g/L sodium bicarbonate were added. The medium was 

supplemented with 10% (v/v) FBS (full medium) or 10% (v/v) charcoal-stripped FBS 

(experimental medium). LNCaP (ATCC, Manassas, VA) cells were routinely grown in full 

RPMI 1640 in an atmosphere of 5% CO2 under saturating humidity at 37°C.  

 

6.3.5 Enzyme assays in LNCaP cells 

LNCaP enzyme assays were performed in 12-well plates at 75% cell confluence with minor 

modifications as described (Negri-Cesi and Motta 1994). Cell medium was replaced by 300 

µL medium with or without (control) the compound of interest. The maximum 

concentration used was below the toxic level of the respective test compound (Allera et al. 

2004). In order to get blank values, control incubations (without cells) were performed in 

the same manner as cell samples. The enzyme assay was started by adding 300 µL medium 

containing 0.5 µM [3H]-androstenedione as substrate and stopped after 60 min by chilling 

on ice. Samples of the incubation medium were transferred to glass tubes. Aliquots of cells 

were washed with PBS and lysed in 0.05 N NaOH for protein determination.  

 

6.3.6 Isolation and quantification of the enzyme products 

The enzyme products resulting from catalytic activity of different enzymes in prostate 

homogenate or in LNCaP cells are shown in Fig. 6–1. The products were extracted from the 

tissue homogenate or cell incubation medium with 1 mL CHCl3/MeOH (2/1, v/v) and 1 mL 

ethylacetate, respectively. Samples of the organic phases were evaporated to dryness under 

N2, redissolved in a mixture of 35 µL CHCl3 and 15 µL EtOH containing 25 µg each of the 

unlabelled reference steroid, and applied to silica thin layers (Merck, Darmstadt, Germany). 

Steroids were separated by TLC in dichloromethane-acetone (92.5/7.5, v/v) as mobile 

phase and stained with a mixture of acetic acid, H2SO4 and 4-methoxybenzaldehyde 

(100/2/1, v/v/v), followed by heating at 130°C. Spots were cut out and transferred into 

counting vials containing 15 mL of liquid scintillation cocktail. Radioactivity was counted 

as automatically quench-corrected dpm in a Wallac 1409 liquid scintillation analyzer. 
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The ratio of the product to total radioactivity recovered from a single TLC lane was 

calculated and respective blank values were subtracted. Specific 5α-Re activity was 

expressed as pmol / mg protein / h. Product formation in the absence of the compound of 

interest was defined as 100% enzyme activity.  

 

 

 
Fig. 6–1 Major androgen metabolism in human prostate and LNCaP cells. The enzymes 3α-
hydroxysteroid dehydrogenase (3α-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD) and 5α-
reductase (5α-Re) catalyze the oxidoreduction at position 3 and 17, and the reduction at position 5 of 
the steroid, respectively. 
 
 
6.3.7 Data analysis 

Analysis of enzyme kinetics was carried out using a computer assisted non-linear curve-

fitting method (FigSys, Biosoft, UK). The Quick Fit option of the software automatically 

calculated the IC20 and IC50 values, representing the concentrations of the respective 

compound causing 20% and 50% inhibition of enzyme activity. 
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6.4 Results 

 
6.4.1 Effect of cell culture medium supplemented with normal and charcoal-

stripped FBS on 5α-reductase in LNCaP cells 

To exclusively investigate the effect of the compound of interest, the culture medium had to 

be free of the endogenous steroids usually present in FBS. Thus, the use of a medium 

supplemented with charcoal-stripped FBS was considered. However, preliminary 

investigation first has to clarify if the lack of essential nutrients in charcoal-stripped FBS 

influences 5α-Re activity. The continuous product formation of 17β-HSD is important, 

because this enzyme just like 5α-Re catalyzes the substrate androstenedione. For that 

reason, we investigated the time-course of enzyme activity in LNCaP cells.  

5α-Re activity rose in the same, time dependent manner in both media (Fig. 6–2), as 

well as 17β-HSD. The use of stripped FBS thus meets the requirements stated above.  
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Fig. 6–2 (A) 5α-reductase activity and (B) 17β-HSD activity in LNCaP cells incubated in medium 
supplemented with 10% normal FBS or 10% charcoal-stripped FBS versus incubation time.  
 
 
6.4.2 Impact of the pesticides on human 5α-reductase activity in prostate tissue 

homogenate and LNCaP cells 

Specific 5α-Re activity was approximately 50 and 65 pmol/mg protein/h in the tissue and 

the cell assay. The concentrations of the compounds causing a 20% and 50% enzyme 

inhibition (IC20 and IC50 values) are given in Table 6–1. None of the compounds revealed 

the inhibitory power of the specific 5α-Re inhibitor finasteride, with IC50 values of 1 nM 

(IC20 value=0.23 nM) in tissue homogenate and 130 nM (IC20 value=30 nM) in LNCaP.  
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Table 6–1 Inhibitory effects (expressed as IC20 and IC50 values) of test compounds (DBT, diuron, 
fenarimol, linuron, MBT, p,p´DDE, TPT, TBT, vinclozolin) and control substances (finasteride, 
flutamide, MT) on 5α-reductase activity in prostate tissue homogenate and LNCaP cells. 
 

IC20 [µM] IC50 [µM]5α-reductase 
activity Prostate LNCaP Prostate LNCaP
Finasteride 0.00023 0.03 0.001 0.13 

MT 0.4 4.4 1.9 13.2 

TPT 1.1 1.9 3.9 4.2 

TBT 1.3 0.5 4.0 2.7 

DBT 3.0 2.4 6.8 11.2 

Prochloraz 4.6 14.4 12.4 53.2 

Fenarimol 11.8 - 24.1 - 

Flutamide 13.8 - 48.4 - 

p,p´DDE 19.1 - 62.9  

Linuron 28.1 - 86.0 - 

Diuron - - - - 

MBT - - - - 

Vinclozolin - - - - 
 
 
 
 
 

-5.5
0

20

40

60

80

100

120

10-4 10-2 100 102

LNCaP
Prostate

TBT [µM]

E
nz

ym
e 

ac
tiv

ity
 [µ

M
]

-5.5-5.0-4.5-4.0
0

20

40

60

80

100

120

10-4 10-2 100 102

LNCaP
Prostate

TPT [µM]

En
zy

m
e 

ac
tiv

ity
 [µ

M
]

5α-reductase: TPT5α-reductase: TBT

A B

-5.5
0

20

40

60

80

100

120

10-4 10-2 100 102

LNCaP
Prostate

TBT [µM]

E
nz

ym
e 

ac
tiv

ity
 [µ

M
]

-5.5-5.0-4.5-4.0
0

20

40

60

80

100

120

10-4 10-2 100 102

LNCaP
Prostate

TPT [µM]

En
zy

m
e 

ac
tiv

ity
 [µ

M
]

5α-reductase: TPT5α-reductase: TBT

A B

 
Fig. 6–3 Effect of (A) TBT and (B) TPT on 5α-reductase (5α-Re) activity, given as % activity 
compared to EtOH controls (100%), in human prostate homogenate and LNCaP cells. 
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TBT and TPT were the next strongest 5α-Re inhibitors (Fig. 6–3), followed by DBT and 

prochloraz. Fenarimol, flutamide, p,p´DDE, and linuron inhibited 5α-Re in prostate tissue 

only at very high concentrations, and no effect was observed in LNCaP cells. MBT, 

vinclozolin and diuron did not affect 5α-Re enzyme activity, neither in LNCaP cells nor in 

prostate tissue. 

 

6.5 Discussion 

Our study focused on the impact of the selected chemicals on 5α-Re activity, the enzyme 

which is indispensable for the formation of 5α-DHT. The two test systems that were used 

based on prostate tissue homogenate (“tissue assay”), exhibiting high 5α-Re 2 activity, and 

on LNCaP cells (“cell assay”), a human prostate carcinoma cell line known for high 

expression of both 5α-Re isoenzymes (Zhu et al. 2003). 

It could be demonstrated that particularly the organotin compounds TBT, TPT, and 

DBT must be considered as hazardous environmental substances (Appel 2004). They 

inhibited human 5α-Re at low micromolar concentrations in both test systems. In addition, 

TBT and TPT have also been reported to act as inhibitors of other key enzymes of human 

sex steroid metabolism in various tissues, e.g., P450arom in placenta, 3β-HSD in adrenal, 

5α-Re 1 in brain, 17β-HSD type 1 in placenta tissues, and 17β-HSD type 3 in testis (Allera 

et al. 2004; Lo et al. 2003; McVey and Cooke 2003; Cooke 2002; Doering et al. 2002; 

Heidrich et al. 2001). The effective enzyme inhibiting concentrations of TBT and TPT were 

higher than those found in human blood or tissue so far (Lo et al. 2003; Wong et al. 1995), 

however, one cannot exclude a local bioaccumulation up to the harmful limit in, e.g., sex 

hormone responsive tissues. Also, the “effective” in vivo enzyme inhibiting concentration 

remains unclear and therefore usually is set as 50% inhibition of normal enzyme activity 

(IC50 value). On average, chemical concentrations leading to a 20% lower DHT conversion 

were 3.5 times lower than the corresponding IC50 values, and might already have great 

impact on the endocrine system. 

With the exception of TBT, the tissue assay proved to be more sensitive to 5α-Re 

affecting chemicals than the cell assay. The finding that the inhibitory effect of MT, 

prochloraz and, especially, finasteride on 5α-Re activity was considerably lower in LNCaP 

cells than in prostate tissue is possibly due to cellular detoxification and/or transport of the 

chemicals out of the cell by members of the MDR (multidrug resistant) or ABC (ATP-
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binding cassette) exporter protein superfamilies often found in, e.g., multidrug resistant 

cancers (Luckie 2003; van Brussel and Mickisch 2003; Larriba et al. 2001). In the tissue 

assay, p,p´DDE, fenarimol, flutamide, and linuron displayed very weak 5α-Re inhibition, 

while diuron, MBT, and vinclozolin did not affect enzyme activity. Therefore, it seems to 

be unlikely that the antiandrogenic effects observed in vivo (Lambright et al. 2000; Gray et 

al. 1999a; Gray et al. 1999b) are caused by impaired 5α-Re activity. It has been suggested 

that metabolites of the administered compound, e.g., vinclozolin, might be the reason of 

antiandrogenic effects in rats (Zacharewski 1998; Kelce et al. 1994).  

The advantages of the tissue assay are that it is easy to use and that it provides a 

ready-to-use enzyme source, while the cell assay can supply information on the cellular 

response to the chemical, and on the putative impact on the gene expression of sex hormone 

metabolizing key enzyme(s) (Nakanishi et al. 2002). However, when using the cell assay, it 

should be take into account that, e.g., organotin compounds are highly cytotoxic, especially 

at incubation periods above 24 h (Allera et al. 2004). Furthermore, it must be emphasized 

that in addition to 5α-Re, other steroid-metabolizing enzymes, such as 17β-HSD, are 

present in prostate tissue and LNCaP cells, which could be affected by the discussed ED. 

Human risk assessment of ED will require a further number of short and long term in vitro 

and in vivo assays. Any extrapolation from our observations to humans should be very 

meticulously performed.  

In conclusion, many of the tested pesticides are able to inhibit the 5α-Re activity, 

which may be of clinical relevance. The prostate tissue assay as a screening tool for 

putative ED is the more practical and sensitive method, while the cell assay partly reflects 

the situation in vivo. 
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7 Dithioerythritol (DTE) prevents inhibitory effects of triphenyltin (TPT) on the 
key enzymes of the human sex steroid hormone metabolism  

 
This chapter is published as: 

Lo S, Allera A, Albers P, Heimbrecht J, Jantzen E, Klingmüller D, Steckelbroeck S. 

Dithioerythritol (DTE) prevents inhibitory effects of triphenyltin (TPT) on the key 

enzymes of the human sex steroid hormone metabolism. Journal of Steroid 

Biochemistry and Molecular Biology. 2003, April; 84(5):569-576. 

 

7.1 Abstract 

Organotins are known to induce imposex (=pseudohermaphroditism) in marine 

neogastropods and are suggested to act as specific endocrine disruptors, inhibiting the 

enzyme-mediated conversion of steroid hormones. Therefore, we investigated the in vitro 

effects of triphenyltin (TPT) on human 5α-reductase type 2 (5α-Re 2), cytochrome P450 

aromatase (P450arom), 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD 3), 3β-HSD 

type 2, and 17β-HSD type 1 activity. First, the present study demonstrates that significant 

amounts of TPT occurred in the blood of eight human volunteers (0.17–0.67 µg organotin 

cation/L i.e. 0.49–1.92 nmol cation/L). Second, TPT showed variable inhibitory effects on 

all the enzymes investigated. The mean IC50 values were 0.95 µM for 5α-Re 2 (mean of 

n=4 experiments), 1.5 µM for P450arom (n=5), 4.0 µM for 3β-HSD 2 (n=1), 4.2 µM for 

17β-HSD 3 (n=3) and 10.5 µM for 17β-HSD 1 (n=3). To exclude the possibility that the 

impacts of TPT were mediated by oxidizing essential thiol residues of the enzymes, the 

putative compensatory effects of the reducing agent dithioerythritol (DTE) were 

investigated. Co-incubation with DTE (n=3) resulted in dose-response prevention of the 

inhibitory effects of 100 µM deleterious TPT concentrations on 17β-HSD 3 (EC50 value of 

12.9 mM; mean of n=3 experiments), 3β-HSD 2 (0.90 mM; n=3), P450arom (0.91 mM; 

n=3), and 17β-HSD 1 (0.21 mM; n=3) activity. With these enzymes, the use of 10 mM 

DTE resulted in an at least 80% antagonistic effect, whereas the effect of TPT on 5α-Re 2 

was not compensated.  

In conclusion, the present study shows that TPT acts as an unspecific, but significant 

inhibitor of human sex steroid hormone metabolism and suggests that the inhibitory effects 

are mediated by the interaction of TPT with critical cysteine residues of the enzymes. 
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7.2 Introduction 

Organotin compounds are widely used as unselective biocides for pest control, with an 

estimated annual production of approximately 50,000 tons. Derivatives of dialkyltin 

compounds such as dibutyltin (DBT), diphenyltin (DPT), and dioctyltin (DOT) are used in 

industry as stabilizers in polyvinylchloride (PVC) and as catalysts in various products, 

whereas trialkyltins, including tributyltin (TBT) and triphenyltin (TPT), are used in 

agriculture as fungicides and pesticides (Takahashi et al. 1999; Fent 1996; Boyer 1989; 

Molin and Wahlberg 1975). TBT and TPT additives in coatings for marine vessels prevent 

sessile animals, which need to adhere to a substrate during their life cycle, to settle down. 

Organotins are ubiquitous environmental pollutants especially relevant for water 

ecosystems (Duncan 1980). Photochemical and biochemical influences lead to successive 

degradation of organotins, and TPT disintegrates into diphenyltin, monophenyltin and 

inorganic tin (Duncan 1980). However, organotins stored in sediments are stable up to 

several years. This is a potential threat to aquatic life as a consequence of natural 

resuspension and particulate consumption by benthic organisms which live in seabeds and 

riverbeds (Sarradin et al. 1995; Fent et al. 1991). TPT compounds are rather selective in 

their action against fungal species, demonstrating a low risk for fungal resistance, a low 

volatility and a relatively rapid disintegration to "non-toxic" compounds by sunlight. 

Consequently, they were utilized for pest and fungal plant pathogen control (Duncan 1980). 

Since August 2002, the use of TPT acetate and TPT hydroxide has been banned within the 

European Union.  

The extensive use of organotins as biocides leads to an ongoing contamination of 

aquatic and terrestic environment. In the aquatic environment, a strong food chain 

accumulation of organotins has been noticed (Stab et al. 1996). Examination of marine 

vertebrates showed considerable concentrations in liver and kidney, as well as in hair, nails 

and feathers (Bhosle et al. 2004; Coelho et al. 2002; Kannan and Falandysz 1997). The 

main sources of organotin intake for humans are seafood contaminated by the exposure to 

antifouling agents (Takahashi et al. 1999) and drinking water contaminated by the leaching 

from PVC water pipes (Sadiki and Williams 1999). Organotins also effectively penetrate 

through the skin (Cooke et al. 2004; Adeeko et al. 2003; Hasan et al. 1984). Reasonable 

concentrations have been detected in higher species, including mammals, in liver, kidney, 

brain and blood samples (Kannan et al. 1999; Kannan et al. 1996; Fait et al. 1994; Fent et 

al. 1991).  
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Both TBT and TPT are reported to affect the immune system, the nervous system and the 

hormone system as well as embryogenesis (Ema et al. 1997; Cima et al. 1996; Snoeij et al. 

1985). TBT is known to act as an endocrine disruptor causing imposex in various female 

prosobranch snails. Investigations have shown that incorporated TBT induces an increased 

testosterone/estradiol ratio in snails suggesting that TBT inhibits cytochrome P450 

aromatase (P450arom) (Bettin et al. 1996). Previously, TBT and TPT were shown to act as 

inhibitors of human P450arom activity (Heidrich et al. 2001; Saitoh et al. 2001). As a 

consequence, most developed nations have imposed a ban on TBT-based antifouling paints 

for vessels under 25 m in length since the late 1980s (Batley et al. 1992). Other triorganic 

tin compounds, such as TPT, have recently been found to likewise cause imposex 

(Horiguchi et al. 1998). Hence, TPT should similarly be considered as an endocrine 

disruptor. The release of environmental chemicals, such as pesticides, detergents, and 

plasticizers, is suggested to play a role in the observed increased incidence of male 

reproductive disorders.  

The enzymes examined in the present study maintain the proper balance of androgens 

and estrogens in the human body. 3β-HSD converts Δ5-3β-hydroxysteroids into the 

corresponding Δ4-3-ketosteroids (Labrie et al. 1994). 17β-HSD 3 catalyzes the testicular 

conversion of the weak androgen Δ4-androstenedione into the strong androgen testosterone. 

Testosterone is the most abundant androgen in the male sex steroid hormone system. 

Dihydrotestosterone is synthesized from testosterone via 5α-Re 2 activity. It represents the 

most potent androgen naturally occurring and is indispensable for the normal virilization of 

the male external genitalia and prostate (1996; Wilson et al. 1993). P450arom is responsible 

for the conversion of C19 androgens into the corresponding C18 estrogens in a variety of 

tissues, including the ovary, testis, placenta, brain, and adipose tissue (Steckelbroeck et al. 

1999a; Morishima et al. 1995). 17β-HSD 1 predominantly catalyzes the conversion of the 

weak estrogen estrone into the strong estrogen estradiol (Peltoketo et al. 1999).  

Organotins possess both lipophilic and ionic properties. The former encourages their 

accumulation in lipids and their membrane toxicity, while the latter enables their binding to 

macromolecules (Kannan and Falandysz 1997; Gray et al. 1987). The biochemical effects 

of organotins on human sex steroid hormone metabolism remain to be elucidated. 

Therefore, we have studied the inhibitory effects of TPT on the in vitro activity of the key 

enzymes of human sex steroid hormone metabolism using human tissue samples. In several 
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experiments, it was demonstrated that sulfhydryl compounds antagonize the harmful effects 

of organotins (Costa 1985; Van der Bend et al. 1985; Byington et al. 1974; Byington 1971). 

It is suggested that organotins interact with any thiol residues accessible, thus, the 

sulfhydryl antagonist prevents modification of the tertiary structure of the proteins. 

Therefore, we also investigated the in vitro effects of the reducing agent dithioerythritol 

(DTE) on TPT inhibited enzyme activities. To elucidate the potential risk of TPT-evoked 

endocrine disruption in humans, the content of a variety of organotin compounds was 

determined in blood samples of eight healthy adult human volunteers. 

 

 

7.3 Materials and Methods 

 
7.3.1 Chemicals 

Steroids and other chemicals 

25.9 Ci/mmol [1β-3H]-androst-4-ene-3,17-dione (androstenedione or Enon), 51.3 

mCi/mmol [4-14C]-[10]-estratriene-3α-ol-17-one (estrone), and 53.8 mCi/mmol [4-14C]-

androst-5-ene-3β-ol-17-one (dehydroepiandrosterone or DHEA) were obtained from New 

England Nuclear Co. (Dreieich, Germany) and purified by thin layer chromatography 

(TLC) prior to use. Non-radioactive reference steroids (5α-androstane-3,17-dione 

(androstanedione), androstenedione, 5α-androstane-17β-ol-3-one (dihydrotestosterone or 

DHT), 5α-androstane-3α-ol-17-one (androsterone), androst-4-ene-17β-ol-3-one (testo-

sterone) and 5α-androstane-3α,17β-diol (3α-androstanediol or 3α-Diol), estrone, [10]-

estratriene-3α,17β-diol (estradiol), DHEA, androst-5-ene-3β,17β-diol (androstenediol)), 

EDTA, Folin & Ciocalteu´s phenol reagent, TRIZMATM (a,a,a-tris-(hydroxymethyl)-

methylamin), TRIZMATM-HCl, citric acid, sodium potassium tartrat, activated charcoal 

(Niorit A), and dithioerythritol were purchased from SigmaTM Chemical Company 

(Deisenhofen, Germany). Atamestane was provided by Schering (Berlin, Germany). 

Finasteride was purchased from MSD Sharp & Dohme (Haar, Germany). Dextran T-710 

was obtained from Pharmacia Biotech (Uppsala, Sweden). The liquid scintillation cocktail, 

Ultima GoldTM, was obtained from Packard-Instrument, B.V., Chemical Operations 

(Groningen, Netherlands). NADPH was purchased from Roche (Mannheim, Germany). 



Chapter 7 

69 

Triphenyltin chloride and all other chemicals were purchased from Merck A.G. (Darmstadt, 

Germany). All chemicals were purchased at the highest grade commercially available. 

 

Buffers 

Homogenization buffer (HB) contained 10 mmol/L TRIZMATM-HCl and 1 mM EDTA at 

pH 7.4. Assay buffer consisted of 160 mmol/L TRIZMATM-citrate and 10 mM MgCl2 and 

was adjusted to the indicated pH values. 

 

7.3.2 Source and preparation of tissues 

Human term placenta (cytosolic 17β-HSD 1 activity; microsomal P450arom activity) was 

obtained following caesarean section. Macroscopically normal testicular tissue (microsomal 

17β-HSD 3 activity) was obtained from patients with testicular germ cell tumor undergoing 

orchiectomy. Macroscopically normal prostate tissue (microsomal 5α-Re 2 activity) was 

obtained from patients with bladder cancer undergoing cystectomy and prostatectomy. 

Macroscopically normal adrenal tissue (microsomal 3β-HSD 2 activity) was obtained from 

patients with kidney cancer undergoing nephrectomy. All utilized human tissue samples 

were immediately frozen in liquid nitrogen after removal and stored at –80°C until further 

processing. The study was approved by the local ethics committee and informed consent 

from all tissue donors or their family members had been obtained. 

All steps of tissue preparation were carried out at 4°C. According to the enzyme 

content, 25 to 200 mg tissue wet weight were homogenized and centrifuged as described 

previously (Steckelbroeck et al. 2001; 1999a; 1999b). The cell-free supernatants were used 

as microsomal preparations for the investigation of P450arom, 3β-HSD 2, 17β-HSD 3, and 

5α-Re 2 activity. Aliquots were stored in liquid nitrogen until utilization in the 

experiments. 

To prepare a cytosolic fraction for the 17β-HSD 1 assay the cell-free placental 

homogenate was further centrifuged at 100,000 g for 60 min. The obtained soluble 

supernatant was stored in liquid nitrogen until utilization in the experiments. Aliquots of all 

tissue preparations were removed for protein determination (Lowry et al. 1951). 
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7.3.3 Incubation procedures 

The in vitro activities of P450arom, 3β-HSD 2, 5α-Re 2, 17β-HSD 1, and 17β-HSD 3 were 

determined with some modifications according to methods described previously 

(Steckelbroeck et al. 2001; 1999a; 1999b). Briefly, solutions of the substrates were 

prepared in assay buffer. The measurement of enzyme activity was conducted with 1 µM 

final concentration of [4-14C]-DHEA (3β-HSD 2), with 0.5 µM final concentration of [4-
14C]-estrone (17β-HSD 1) and 0.1 µM final concentration of [1β-3H]-androstenedione 

(17β-HSD 3, 5α-Re 2, and P450arom). Stock solutions of the test compounds were 

prepared in EtOH. The assay buffer was adjusted to pH 7.5 for the measurement of the 

activity of P450arom, 3β-HSD 2, 17β-HSD 1, and 17β-HSD 3 and to pH 5.5 for the 

measurement of 5α-Re 2 activity. 

The reaction mixture contained 50 µL assay buffer with 0 to 10 mM DTE, 50 µL of 

the tissue preparation and 3 µL EtOH containing the test compound at the indicated 

concentrations. “Blank” reactions were incubated tissue-less. Reference enzyme activities 

were determined with incubations of tissue homogenate and 3 µL EtOH. To achieve 

equilibrium of the substances in the tissue preparation, the preliminary reaction mixture was 

preincubated for 5 min with constant shaking at 37°C. Preincubation was stopped by 

chilling. Then, 50 µL assay buffer containing the substrate was added to the reaction 

mixture. The reactions were started by the addition of another 50 µL HB containing 3 mM 

final concentration of the required cofactor (NAD for measurement of 3β-HSD 2 activity 

and NADPH for measurement of P450arom, 17β-HSD 1, 17β-HSD 3, and 5α-Re 2 

activity). All incubations were performed in duplicate. Reaction tubes were capped, 

vortexed and incubated for 30 min with constant shaking at 37°C. Reactions were stopped 

by chilling. 

 

7.3.4 Product isolation assay 

Measurement of 3β-HSD 2, 5α-Re 2, 17β-HSD 1, and 17β-HSD 3 in vitro activity based 

on product isolation post incubation according to methods described previously 

(Steckelbroeck et al. 2001; 1999a; 1999b). Briefly, steroids were extracted with a mixture 

of MeOH/CHCl3 (1/2, v/v) from the incubation mixtures, 100 µL of the tritium containing 

organic phase for the determination of 3β-HSD 2, 5α-Re 2, and 17β-HSD 3 activity, and 

300 µL of the 14C containing organic phase for the determination of 17β-HSD 1 were 
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evaporated to dryness and redissolved in a mixture of 35 µL CHCl3 and 15 µL EtOH 

containing 25 µg each of non-radioactive reference steroids. 

Metabolites were separated by TLC. The silica sheets were dried and stained by 

spraying with a mixture of acetic acid/ H2SO4/4-methoxybenzaldehyde (100/2/1, v/v/v) and 

charred at 135°C. Within each lane, the zones corresponding to the stained reference 

steroids were cut out and transferred into counting vials containing 15 mL liquid 

scintillation cocktail. Radioactivity was counted as automatically quench-corrected dpm 

with a Wallac 1409 liquid scintillation counter. 

The relative amount of each corresponding radioactive steroid was calculated, in 

percentage, with the total radioactivity recovered from a single TLC lane set as 100%. 

Blank values were subtracted from tissue metabolism rates. Enzyme activity was assessed 

by quantifying the formation of radioactive labeled products. 

 

7.3.5 Tritiated water-release assay 

Measurement of P450arom in vitro activity was based on the proportional release of 1β-3H 

from [1β-3H]-androstenedione into 3H2O during the P450arom catalyzed reaction 

(Steckelbroeck et al. 1999a). In brief, organic compounds were extracted from incubation 

mixtures by adding ice-cold CHCl3. 350 µL of the aqueous phase was stripped from 

remaining steroids with 5% dextran-coated charcoal and 1.5 mL CHCl3. 250 µL of the 

highly purified aqueous phase containing 3H2O was quantified as quench-corrected dpm by 

counting for 15 min using a Wallac 1409 liquid scintillation counter. The amount of 3H2O 

was corrected for dilution and the blank values were subtracted. 

 

7.3.6 Determination of different organotin compounds in human blood 

Determination of the concentration of monobutyltin, dibutyltin, tributyltin, tetrabutyltin, 

monooctyltin, dioctyltin, and triphenyltin in the blood of eight human volunteers (Table 7–

1) was conducted by GALAB (Geesthacht, Germany) according to a "one unique 

extraction-derivatization step" method described previously (Kuballa and Wilken 1995). 

Blood was sampled in organotin-free glassware. The organotin compounds were extracted 

with tetra-methyl-ammonium-hydroxide and MeOH, alkylated with sodium tetraethylborate 

and transferred by extraction with hexane into the organic phase. An aliquot of the hexane 

layer containing the tetrasubstituted organotincompounds was separated using capillary 

gas-chromatography (Perkin-Elmer GC 8400, Überlingen, Germany), and detecting and 
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quantifying the organotins via atomic emission spectrometry (GC-AED from Hewlett 

Packard, Agilent). According to GALAB, the recovery of the procedure was 75–100%. The 

chromatographic data were processed with a Perkin-Elmer Nelson 2600 software package. 

A column from ICT (Frankfurt, Germany) was used (DB 1701, length 30 m, id 0.32 mm, 

0.24 µm film thickness). The temperature program of the GC was 80–280°C at 30°C/min. 

The flow rate of the helium carrier gas was 1.8 mL/min at 80°C. For atomization, a heated 

quartz furnace was used, with furnace gases hydrogen (120 mL/min) and air (35 mL/min). 

The temperature of the transfer line was constant at 250°C; the pre-furnace temperature was 

280°C and the atomization temperature 700°C. The 286.3 nm tin line was generated by an 

electrode-less discharge lamp operated at 7 W. 

 

7.3.7 Data analysis 

Dose-response analyses were performed with a computer-assisted non-linear curve-fitting 

method using the linear dose versus effect model (FigP 2.7, Biosoft, Cambridge, UK). To 

calculate inhibitor concentration resulting in 50% inhibition (IC50 value) or the 

concentration of enhancer provoking a response halfway between baseline and maximum 

(EC50 value) the QuickFit option of the software was used. 

 

 

7.4 Results  

 
7.4.1 Determination of different organotin species in human blood 

The blood of eight healthy human volunteers was analyzed for the presence of different 

organotin compounds. As shown in Table 7–1, TPT is the major organotin compound 

found in human blood (0.17–0.67 µg organotin cation/L i.e. 0.49–1.92 nmol cation/L). 

Furthermore, we were able to demonstrate the presence of minor concentrations of TBT in 

human blood, whereas the concentrations of monobutyltin, dibutyltin, tetrabutyltin, 

monooctyltin as well as dioctyltin were below the detection limit of 0.02 µg organotin 

cation/L. 
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Table 7–1 The serum of eight human volunteers was analyzed. The gender, age, profession, and body 
mass index (BMI) of the subjects are listed. Organotin cations were determined by GC-MIP-AED. 
The content is expressed as µg organotin cation/L. Mean of TPT blood concentration was 0.38 µg/L 
(n=4 females) and 0.19 µg/L (n=4 males), mean of TBT was 0.0275 µg/L TBT (females) and 0.005 
µg/L TBT (males). 
 

Gender Female Female Male Male Male Female Female Male 

Age in years 18 50 54 53 54 31 27 41 

Profession student teacher civil 
engineer 

physician reporter physician student camera-
man 

BMI 25 24 27 22 25 21 20 24 

Monobutyltin <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Dibutyltin <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Tributyltin 0.04 0.02 <0.02 0.02 <0.02 0.05 <0.02 <0.02

Tetrabutyltin <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Monooctyltin <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Dioctyltin <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

Triphenyltin 0.32 0.67 0.17 0.32 0.23 0.35 0.18 0.23

 

 

 

7.4.2 Dose-response analyses of the inhibitory effects of TPT on the key enzymes of 

human sex steroid hormone metabolism 

The putative inhibitory effects of TPT on the activity of key enzymes of human sex steroid 

hormone metabolism were investigated. For this purpose, incubations with TPT at various 

concentrations were carried out. Product formation in the absence of the inhibitor 

represented 100% enzyme activity. TPT demonstrated dose-response inhibitory effects on 

all the enzymes investigated. In Fig. 7–2A, the inhibition of 17β-HSD 1 activity is shown 

as an example. The average IC50 values for the different enzymes, calculated according to 

data analysis, are given in Table 7–2.  

The investigation of the inhibition of 17β-HSD 1 activity by TPT revealed an IC50 

value of 10.5 µM (n=3 experiments; Fig. 7–1A). As shown in Table 7–2, TPT showed 

similar dose-responsive inhibitory effects on all the enzymes investigated with the lowest 

IC50 value of 0.95 µM for 5α-Re 2 (Fig. 7–2A).  
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Table 7–2 Activity of the enzymes investigated corresponding to 100% non-inhibited enzyme activity 
in the absence or the presence of DTE. Moreover, the detected mean IC50 values of TPT and mean 
EC50 values of DTE are listed.  *ND=not detectable 
 

 

 

7.4.3 Compensatory effects of DTE on the TPT inhibited enzyme activity 

Further experiments were conducted to examine the putative compensatory effects of DTE 

on the inhibitory effects of TPT. For this purpose, the reaction mixtures contained 100 µM 

TPT final concentration and varying DTE concentrations from 0–10 mM. Product 

formation in the absence of TPT and the presence of 10 mM DTE final concentration 

represented 100% enzyme activity. DTE concentrations above 10 mM resulted in 

decreasing enzyme activities (data not shown). All experiments were conducted thrice.  

With the exception of 5α-Re 2, DTE demonstrated a strong dose-responsive 

compensatory effect on the TPT-inhibited activity of the enzymes under debate (Fig. 7–1 to 

7–5, Table 7–2). 17β-HSD 1 showed the lowest EC50 value (0.21 mM) observed (Fig. 7–

4B). The EC50 values of the other enzymes investigated are listed in Table 2. DTE resulted 

in an approximately 80% antagonistic effect with 17β-HSD 1, P450arom, 3β-HSD 2, and 

17β-HSD 3. In contrast to the other enzymes, DTE resulted in only very weak 

compensatory effects on TPT inhibited 5α Re 2 activity (Fig. 7–2B). An EC50 value for this 

enzyme was not detectable. 

 3β-HSD 2 17β-HSD 3 17β-HSD 1 P450arom 5α-Re 2

Activity / 
nmol/h/mg protein

2.9–29.0 0.013–0.020 3.4–11.5 0.20–0.32 0.03–0.13 

Activity with 
10mM DTE / 
nmol/h/mg protein

3.5–34.4 0.045–0.28 2.327–21.435 0.29–0.42 0.013–0.034

IC50 (TPT) / µM 4.0 (n=1) 4.2 (n=3) 10.5 (n=3) 1.5 (n=5) 0.95 (n=4) 

EC50 (DTE) / mM 0.90 (n=3) 12.9 (n=3) 0.21 (n=3) 0.91 (n=3) ND* (n=3) 
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Fig. 7-1 to 7-5 The inhibitory 

effect of increasing TPT 

concentrations on human 

P450arom (Fig. 7-1), 5α-Re 

type 2 (Fig. 7-2), 3β-HSD type 

2 (Fig. 7-3), 17β-HSD type 1 

(Fig. 7-4) and 17β-HSD type 

3 (Fig. 7-5). Activities were 

investigated using microsomal 

placenta (Fig. 7-1), prostate 

(Fig. 7-2), adrenal (Fig. 7-3), 

testis (Fig. 7-5) and cytosolic 

placenta (Fig. 7-4) prepara-

tions with 0.05 µM (Fig. 7-1) 

and 0.1 µM androstenedione 

(Fig. 7-2, 7-5), 1 µM DHEA 

(Fig. 7-3) and 1 µM estrone 

(Fig. 7-4), respecively. As 

cofactor, 3 mM NADPH was 

used in enzyme assay 

described in Fig. 7-1, 7-2, 7-4, 

and 7-5, and 3 mM NAD was 

used in Fig. 7-3, at pH value 

of 7.5 (Fig. 7-1, 7-3, 7-4, 7-5) 

and 5.5 (Fig. 7-2). The results 

represent mean values of n=3 

assays performed in duplicate. 

The compensatory effect of 

increasing DTE concentration 

were determined at 100 µM 

deleterious TPT concentra-

tions. 

 



Chapter 7 

76  
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7.5 Discussion 

In the present study, investigations of organotin body burden demonstrated the presence of 

significant amounts of TPT in human blood, while the other organotin compounds were 

close to the detection limit (Table 7–1). Women showed a slightly higher average blood 

concentration of TPT and TBT, which possibly reflects the higher percentages of body fat 

in women (Blaak 2001) and the accumulation of tinorganic compounds in lipids (Kannan 

and Falandysz 1997). 

Men get in touch with organotins probably via consumption of contaminated food. 

Marine fishery products contain up to 455 ng TBT/g wet weight fish muscle (Kannan and 

Falandysz 1997), whereas agriculture products are more likely to be contaminated with 

TPT due to its use as pesticide (Duncan 1980). Different diets would be expected to result 
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in different organotin loads in human tissues and blood. Two studies verify hepatic TBT 

deposition (Takahashi et al. 1999; Kannan and Falandysz 1997). Japanese people, who 

consume a considerably higher dietary intake of fish, showed significantly higher liver TBT 

loads than Polish people. The chemical analysis performed by the COMPRENDO partner 

in France (BRGM) revealed MBT residues in urine samples of seven Polish dockers and 

two fish consumers, and DBT contamination in urine of two dockers and one fish consumer 

(chapter 5), confirming the body burden with organotin compounds.  

Moreover, our experiments clearly document a dose-dependent complete inhibition of 

all the steroidogenic enzymes investigated. These results indicate that TPT is an unspecific 

inhibitor of human sex steroid hormone metabolism. Several mechanisms could account for 

the loss of the enzymes activity caused by TPT: (a) binding of TPT to cell membrane 

components, indirectly leading to inhibition of the catalytic activity of the enzymes (Gray et 

al. 1987), (b) inhibition of components of the electron transport chain affecting the 

availability of the coenzymes necessary for full enzyme activity, and (c) binding of the 

organotin to the proteins itself, resulting in direct destruction of the catalytic activity of the 

enzymes. It is very unlikely that binding of TPT to cell membrane components is the cause 

of the inhibitory potency of TPT, since TPT affects not only microsomal enzymes, but also 

the activity of the cytosolic 17β-HSD 1. The specific inhibition of components of the 

electron transport chain can also be excluded, since TPT inhibits both NADPH- and NAD-

dependent enzyme activities. Previously, it was suggested that TPT binds to specific amino 

acids, such as cysteine and histidine, leading to an impeded enzyme activity (Fent et al. 

1991). Thiol compounds abolish TBT mediated haemolysis (Gray et al. 1987) and the 

protective effect of the thiol compounds were attributed to a chemical interaction of the 

tinorganic Lewis acid, with the thiol Lewis base indicating a putative reaction of organotins 

with cysteine residues of proteins (Gray et al. 1987; Byington et al. 1974; Byington 1971). 

Treatment with DTE partly resulted in a substantial compensation of the adverse 

effects of TPT. The EC50 values of DTE varied in a wide range, indicating that the 

effectiveness of the compensatory activity of DTE differs among the enzymes investigated. 

DTE resulted in an approximately 80% antagonistic effect with 17β-HSD 1, P450arom, 3β-

HSD 2, and 17β-HSD 3. Interestingly, DTE demonstrated hardly any compensatory effect 

on TPT inhibited 5α-Re (Fig. 7–2B). Equally, this enzyme showed the highest sensibility 

(lowest IC50 value) towards TPT inhibition (Fig. 7–2A). Accordingly, 17β-HSD 1 shows 
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the highest IC50 value for TPT at the lowest EC50 value for DTE. The inhibitory power of 

most of the other ED screened in this study decreased in the presence of DTE, regardless of 

the mechanism of inhibition. Thus, methodological details might be the cause for different 

ED outcomes for the same chemical in different laboratories. 

In order to identify a relation between the aminoacic sequence of the enzyme and its 

interaction with the inhibitor or the antagonist, the ratio between the number of amino acids 

and the number of cysteine residues of the enzyme was calculated. Noteworthy is that 5α-

Re 2 features the highest frequency of cysteine residues (3.41 cysteine residues per 100 

amino acids), whereas the other enzymes demonstrate reasonably lower cysteine contents 

(2.26 cysteine residues per 100 amino acids in 17β-HSD 3, 1.83 in 17β-HSD 1, 1.39 in 

P450arom and 1.35 in 3β-HSD 2). The present data gives reason to believe that critical (in 

terms of accessibility) cysteine residues are responsible for the inhibitory effects of TPT. 

Consequently, one might suggest that 5α-Re 2 is characterized by the occurrence of a 

relatively high number of critical cysteine residues compared to the other enzymes. In 

proteins, the proper pairing of cysteine residues and maintenance of disulfide bonds is 

essential for normal structure and activity. In eukaryotic cells, the naturally occurring thiol 

compound glutathione prevents the formation of disulfide bonds in the cytosol and 

catalyzes their formation in the endoplasmic reticulum. The inhibitory in vitro effects of 

TPT could possibly be attenuated by glutathione in vivo. On the other hand, an adverse 

effect of TPT loads on glutathione functions might also be suggested, since a distinct proper 

ratio of the reduced and oxidized form of the thiol compound is required in the cytosol and 

the endoplasmic reticulum, respectively (Lodish et al. 1995). 

Endocrine disrupting or interfering effects of organotins observed in non-mammalian 

species can only cautiously be extrapolated to humans, but effects targeting the endocrine 

system will potentially occur at lower exposure levels than most other toxic effects. The in 

vitro effects of TPT on the key enzymes of human sex steroid hormone metabolism might 

therefore indicate possible risks for the endocrine system in vivo. Hormonal imbalance, 

caused by endocrine modulators, has been associated with negative outcomes such as 

cancer in hormone sensitive tissues, declining reproductive health including semen quality, 

congenital anomalies, and even brain diseases (Jacobsen et al. 2006; Jorgensen et al. 2006; 

Kortenkamp 2006; Skakkebaek et al. 2006; Jouannet et al. 2001; Henderson and Feigelson 

2000; Juberg 2000; Birge 1997; McEwen 1997). The IC50 values of TPT detected are 



Chapter 7 

79 

relatively high (0.95–10.5 µM), compared to the average TPT content found in human 

blood samples (0.49–1.92 nM organotin cation). Yet, it was shown that the lipophilic 

substances TPT and TBT are accumulated at high concentrations in specific organs and 

tissues, such as liver, fat and brain tissue (Harino et al. 2000). Interestingly, fat tissue 

expresses reasonable P450arom activity and is the main source for estrogens in 

postmenopausal women (Deslypere et al. 1985). Moreover, steroid hormone imbalance is 

observed in patients with liver diseases, indicating the importance of steroid hormone 

metabolism in this organ (Yoshitsugu and Ihori 1997; Kley and Kruskemper 1978). A study 

on the neurotoxicity of organotins proved that TPT crosses the blood-brain barrier and 

causes deficits in the learning ability in rats (Lehotzky et al. 1982). Noteworthy, steroid 

hormones play a crucial role for the functions of the central nervous system (McEwen et al. 

1991), and a complex system of enzymes catalyzing the metabolism of steroid hormones 

exists in the brain (Mellon and Griffin 2002b, 2002a). Altogether, even relatively low TPT 

loads might affect the endocrine system due to putative enrichment of the compound in fat 

and membrane-rich brain tissue. 

In conclusion, the present study demonstrates a sigificant TPT blood load in humans 

and indicates that TPT acts as an unspecific inhibitor of the key enzymes of human sex 

steroid hormone metabolism. Moreover, the experiments show that DTE is able to 

compensate the adverse effects of TPT and that the effectiveness of the compensatory 

activity of DTE differs among the enzymes investigated. Conceivably, critical cysteine 

residues are responsible for the inhibitory effects of TPT. Explicit studies concerning 

human load of organotin compounds are still lacking. Consequently, we emphasize the 

importance of further studies to evaluate patho-physiological effects of organotin 

compounds on the human sex steroid hormone metabolism. 
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8 Aquatic model organisms for the investigation of endocrine disruption 
 
8.1 Abstract 

There is still uncertainty of how to assess new chemicals with putative endocrine disrupting 

potency. One of the most difficult tasks is the extrapolation across species from laboratory 

animals to endangered wildlife species, or even to humans. In the present study, the aquatic 

vertebrates Xenopus laevis, Rutilus rutilus, and Pimephales promelas were chosen as 

animal models. First, Xenopus laevis of different life stages and sexes were extensively 

investigated for androgen metabolizing enzyme distribution in various tissue samples. To 

the author´s best knowledge, 5β-reductase (5β-Re) was for the first time discovered in brain 

tissue of both sexes. Aromatase (P450arom) and 5α-reductase (5α-Re) activity in gonadal 

and brain tissue samples of all the selected aquatic animals were analyzed for their 

suitability as endpoints in an endocrine disruption in vivo model. For this purpose, animals 

were exposed to methyltestosterone (MT), TPT, letrozole (Letro), and vinclozolin (Vin), 

and subsequently investigated for changes in target enzyme activities.  

In female Xenopus laevis, exposure to 0.1 µM MT significantly (p<0.001) elevated 

specific 5α-Re activity in brain, and slightly lowered P450arom activity in gonads. Vin 

exposure significantly (p<0.05) elevated 5α-Re activity in female brain.  

In Rutilus rutilus, exposure to 0.1 µM MT significantly (p<0.001) elevated 17β-HSD 

activity in female brain and elevated (p<0.01) P450arom activity in male brain. Exposure to 

0.1 µM Vin elevated (p<0.01) 17β-HSD activity in female brain.  

In TPT-exposed Pimephales promelas (320 ng/L), a significant increase of P450arom 

activity in female gonads was detected. Exposure to 30 ng/L MT significantly (p<0.01) 

elevated P450arom activity in female gonads, while 10 ng/L MT lowered (p<0.01) 

P450arom activity in female brain. P450arom activity in male brain (300 ng/L MT) was 

slightly elevated.  

In conclusion, androgen metabolism of Xenopus laevis proved to be sex and age 

dependent, and androgen inactivation seems to be catalyzed by 5β-Re. For the assessment 

of putative endocrine disrupting chemicals, the selected enzymes P450arom, 5α-Re, 17β-

Re and 5β-Re proved less suitable as distinctive endpoints, because of high variability 

between individuals, low responsiveness to chemical exposure and inconsistent reaction, 

even to the control substances MT and Letro.  
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8.2 Introduction 

Environmental chemicals can cause ecosystemic damage, inter alia by perturbing the 

endocrine system of wildlife species. One of the best documented examples deals with the 

application of TBT: the successful use of TBT-antifouling paints against disturbing 

organisms on ship hulls in the 1970s, the collapse of the shellfish industry in Arcachon due 

to reproductive failure and severe shell malformation in the 1980s, the symptoms of 

imposex in approximately 150 different marine mollusk species, the investigation of TBTs 

toxicology and, at last, the partial prohibition of the application of TBT paints on vessels 

under 25 m in length (Santillo et al. 2001; Schulte-Oehlmann et al. 2000; Yamabe et al. 

2000). This ban improved the situation within marinas and sheltered harbors, and some 

regional recovery of affected mollusk populations has been recorded since (Santillo et al. 

2001; Matthiessen et al. 1995). One of the reasons for the comparatively fast prohibition of 

TBT as an antifoulant was the most commonly associated adverse effect: the virilization of 

female marine gastropods, called imposex (Smith 1981). As it was possible to reproduce 

this highly sensitive, chemical-specific phenomenon under laboratory conditions, and thus 

prove the direct causal relationship, the need for TBT regulation and control was readily 

accepted. The effects on wildlife and human population of most other environmental 

chemicals are much more circumstantial, and resulting problems seem to be less pressing. 

Thus, the supply of suitable and sensitive bioassays for chemical assessment is of 

environmental, political and economical importance. 

A lot of time and effort has been put into the search and validation of model animals 

for in vivo studies – suitable in terms of application, evaluation, and extrapolation on 

reproductive processes in wild life and human health. Particularly nonmammalian 

vertebrate species have been taken into consideration, as HPG axes are surprisingly similar 

to mammals in their operation, the pattern of feedback mechanisms, and the hormones 

involved (Fig. 8–1). In amphibian and teleost species, hypothalamic GnRH(s), analog to 

those found in mammals, trigger the release of GTH-I (≈ FSH) and GTH-II (≈ LH) from the 

pituitary (Sower et al. 2004; Sherwood et al. 1994). GTH-I mainly regulates gonadal 

growth and gamete formation, while GTH-II is responsible for gamete release (Nagahama 

1994). As in mammals, the major androgens are testosterone and DHT. Most of the teleost 

species use 11-ketotestosterone as signaling hormone for masculinization, additionally or as 

an equivalent to DHT (Borg 1994). 
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Fig. 8–1 HPG axis in male and female teleost fish (Kime 1998)  
E2=estradiol, T=testosterone, 17,20βP=17,20β-progesterone, KT=11-ketotestosterone 
 

 

In this context, two different types of androgen receptors have been discovered in teleosts 

(Sperry and Thomas 1999a, 1999b). In female teleost, oocyte maturation and ovulation are 

regulated by E2, vitellogenin and the progesterone-like molecule 17α,20β-P (Nagahama 

1994). It is noteworthy that female amphibians and teleosts exhibit high levels of androgens 

as well as estrogens during the reproductive phase. Another remarkable point is that teleost 

fish express high levels of P450arom in brain, 100–1000 times higher than in mammals 

(Callard et al. 1990). The reason for this is yet unclear, but adult fish brains retain a 

remarkable potential for neurogenesis, continue to grow throughout life and can even 

regenerate after damage (Kishida and Callard 2001).  
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In the present study, one anuran and two teleost species have been selected for the 

investigation of putative endocrine disruptors. The chemical exposures of Xenopus laevis 

and Rutilus rutilus were conducted by partner IGB-Berlin (Dr. I. Lutz and C. van 

Ballegooy, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin), while the 

chemical exposures of Pimephales promelas were conducted by partner UBrun (D. Hala, 

University of Brunel, UK).  

 

Xenopus laevis is a member of the family Pipidae, all of whose members are wholly aquatic 

(Fig. 8–2). The mating season lasts for 10 months in wildlife and extends to perennial 

mating under laboratory conditions. Xenopus laevis was longtime used as a bioassay to 

determine human pregnancy, as female animals respond with spontaneous egg deposition 

when exposed to human chorionic gonadotropin (HCG) present in urine of pregnant 

women.  

Xenopus laevis has also been extensively employed in experiments on sex reversal. 

Larvae raised in water containing estradiol can display reversion of genetic males to fully 

functional females, if the exposure occurs at a critical period of development. In contrast, 

exposure of females to exogenous androgens does not appear to interfere with normal 

gonadal development (Guillette et al., 1995). The high sensitivity to environmental 

chemicals and its aquatic way of living predestine Xenopus laevis as a suitable candidate 

for aquatic studies. Xenopus laevis has already successfully been used to screen estrogen 

receptor binding capacity of endocrine disruptors (Huang et al. 2005; Kloas et al. 1999; 

Lutz and Kloas 1999).  

 

 

 

Fig. 8–2 Photography of Xenopus laevis. 
Wikipedia, GNU Free Documentation licence 
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Rutilus rutilus (Cyprinid) is common to lowland rivers throughout Europe (Fig. 8–3). In 

wildlife, these fish form shoals and spawn in early spring. Although they are considered as 

comparably resistant against poor water quality, incidences of intersex have been reported, 

with specimen that develop both male and female reproductive ducts and impaired hormone 

levels (Arukwe 2001; Ebrahimi et al. 1995; Jobling et al. 1995).  

 

 

 
Fig. 8–3 Photography of Rutilus rutilus (Cyprinid)  
Wikipedia, GNU Free Documentation licence 
 
 
 
Pimephales promelas (Cyprinid) is a fast growing, easy to handle species (Fig. 8–4). Sex 

can be determined via body coloring, shape of the head and size of adipose tissue near the 

back fin. Being a standard test fish of the US Environmental Protection Agency (EPA), the 

development and growth of Pimephales promelas under chemical exposure is well 

described and can serve as reference. Pimephales promelas spawns continuously. Animals 

are rather small (<7.5 cm), therefore the size of liver, gonads and brain samples is limited.  
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Fig. 8–4 Photography of Pimephales promelas (Cyprinid) 
Wikipedia, GNU Free Documentation licence 

 

 

 

A number of endpoints related specifically to endocrine function of the test animals was 

evaluated in Berlin and Brunel, including alterations in secondary sexual characteristics, 

gonadal condition, and concentrations of sex steroids. In the present study, we investigated 

the effects of chemical short-time exposure on P450arom and 5α-Re activity in gonadal and 

brain tissue of adult aquatic vertebrates. In addition to the enzymes in focus, 5β-Re and 

17β-HSD activities were measured if applicable.  
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8.3 Methods 

 
8.3.1 Source of tissues 

The exposure experiments with Xenopus laevis and Rutilus rutilus were designed and 

conducted by Prof. Dr. W. Kloas, Dr. I. Lutz and Christoph van Ballegooy (IGB-Berlin). In 

brief, Xenopus laevis male and female animals were kept in basins, and husbandry water of 

each basin was supplemented with 0.1 µM letrozole (Letro), 0.1 µM methyltestosterone 

(MT), 0.01 µM TPT, and 0.1 µM vinclozolin (Vin), respectively. Each exposure was 

performed in duplicate. After a 14 day exposure, animals were sacrificed, and gonads and 

brains were removed. The organs were snap-frozen in N2 and stored at –20°C until delivery 

to Bonn.  

For the investigation of androgen metabolism in different life stages of Xenopus 

laevis, brain and gonad samples of adult, juvenile and larval animals were collected from 

IGB-Berlin. 

The exposure study with Pimephales promelas was designed and performed by Dr. S. 

Jobling and David Hala (UBrun). The pair-breeding assay was a 42-day study with the 

reproductive performance of paired fish being monitored and recorded over a three week 

pre-exposure period followed by a three week exposure period to various concentrations of 

MT, p,p´DDE and TPT. After exposure, animals were sacrificed, and gonads and brains 

were removed. The organs were snap-frozen in N2 and stored at –20°C until delivered to 

the university hospital in Bonn. 

 

8.3.2 Tissue preparation 

Animal tissue homogenates were prepared according to modified methods described 

previously (Steckelbroeck et al. 1999a). In brief, each tissue sample deriving from the 

exposure experiment was homogenized in homogenization buffer (HB) and sonificated. For 

the investigation of androgen metabolism in different life stages of Xenopus laevis, tissue 

samples were pooled. Homogenates were spinned down and supernatants were stored as 

cell-free fractions at –80°C. Samples of the tissue preparation were collected for the protein 

determination according to Lowry (1951). Measurements were conducted in the linear 

range of protein content versus enzyme activity. 
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Table 8–1 Tissue samples of the laboratory animals Xenopus laevis, Rutilus rutilus, and Pimephales 
promelas with scheduled enzyme activity tests. Pimephales promelas male brain samples deriving 
from TPT exposure experiment were too small for androgen metabolism analysis. Testicular samples 
from p,p´DDE experiment were also very small, but it was possible to pool them for the analysis.  

0=not tested, X=tested 

 

Species Sex Organ P450arom 17β-HSD 5α-Re 5β-Re 

ovary X 0 0 0 
female 

brain X X X X 

testis 0 X X X 

Xenopus 

laevis 

  
male 

brain 0 X X X 

ovary X 0 0 0 
female 

brain X 0 0 0 

testis 0 X X X 

Rutilus 

rutilus 
male 

brain X X X X 

ovary X 0 0 0 
female 

brain X 0 0 0 

testis 0 X X X 

Pimephales 
promelas 

male 
brain X X X X 

 

 

8.3.3 Enzyme activity in different tissues of the model animals  

The tritium-labeled water release assay was used to measure P450arom activity in the tissue 

samples mentioned above (Table 8–1), according to methods described previously (chapter 

3). 17β-HSD and 5α-Re activity were measured in the tissue samples (Table 8–1) 

according to the product isolation assay established by Steckelbroeck (2001; 1999b). The 

effects of tissue concentration, incubation temperature and pH on the different enzyme 

activities were analyzed, and quantification of enzyme activities of exposed animals was 

performed under these optimized conditions (data not shown).  
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8.3.4 Validation of 5β-reductase activity assay in brain of Xenopus laevis  

5β-Re activity was discovered in female and male brain tissue of Xenopus laevis. We 

conducted a number of methodological experiments to establish the optimal incubation 

conditions of the new assay, using preparations of female brain tissue (50 mg fresh tissue 

per mL HB, age of approximately 5 years) in a procedure similar to that described for 5α-

Re activity. This included the analysis of the effects of substrate concentration (0.05–5 µM, 

24°C, pH 7.4), incubation temperature (22–37°C, 0.1 µM, pH 7.4), and pH (5.5–7.5, 0.1 µM, 

34°C) versus enzyme activity. Products were analyzed by one-dimensional digital 

autoradiography, using an automated TLC-linear analyzer.  

 

8.3.5 Data analysis 

Analysis of enzyme kinetics was carried out using a computer assisted non-linear curve-

fitting method (FigSys, Biosoft, United Kingdom). GraphPad Prism (GraphPad Software, 

San Diego, USA) was used to visualize and evaluate the enzyme activity results of exposed 

aquatic animals. GraphPad Prism was also used for the statistical analysis. Kolmogorov-

Smirnov´s one-sample test was used to determine if data sets were normally distributed. 

Variances were tested for homogeneity. Differences between groups were verified by either 

one-way analyses of variance (ANOVA), followed by a post-hoc Tukey´s multiple 

comparison test in case of normal distribution and homogeneous variances, or the Kruskal-

Wallis test connected with a post-hoc Dunn´s multiple comparison test in case of lack of 

normal distribution and/or inhomogeneous variances. 
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8.4 Results  

 
8.4.1 Enzyme activities in brain and gonad samples of Xenopus laevis  

Tissue samples and specific enzyme activities determined from control animals (n=6) are 

listed in Table 8–2.  

 

Table 8–2 Mean specific P450arom, 5α-Re, 5β-Re, and 17β-HSD activities in brain, testis, and ovary 
samples of Xenopus laevis control animals (n=6). u.d.l.=under detection limit 
 

 
 
The analysis of the exposure experiment resulted in no significantly different mean 

P450arom activities, except for a significantly higher mean value (p<0.001) in ovaries of 

animals exposed to Letro compared to the mean value deriving from MT exposed animals 

(Fig. 8–5). We found significantly higher 5α-Re activities compared to control animals in 

female brains of MT exposed (p<0.001) and Vin exposed (p<0.05) animals (Fig. 8–6). 5α-

Re activity was very low in male brain samples and variability of the control animals was 

very high. However, there was a tendency to lower 5α-Re activities in Letro and MT 

exposed animals. Analysis of male gonads resulted in approximately the same 5α-Re 

activities of individuals from all exposure groups. The mean 17β-HSD activities in brain 

and testis tissue of exposed animals were not significantly different from the control value, 

but results from Letro exposed animals were significantly lower compared to MT exposed 

animals (p<0.05, Fig. 8–7). In addition, a tendency for elevated 17β-HSD activities in male 

brain of TPT and Vin exposed animals, and slightly decreased activities in testis of Letro 

and MT exposed animals were detected. 5β-reductase (5β-Re) activity was 4 times higher 

in female brain (specific activity: 23.49±2.96 pmol/h/mg protein, n=6, Fig. 8–8) than in 

male brain (specific activity: 6.32±0.7 pmol/h/mg protein, n=6). We found no significant 

differences of 5β-Re activity between the exposure groups (Fig 8–8). 

Xenopus laevis Male Female 
Enzyme activity in 
pmol/h/mg protein Brain Testis Brain Ovary

P450arom u.d.l. u.d.l. 0.5 ± 0.09 0.46 ± 0.16 
5α-Re 0.89 ± 0.4 57.3 ± 5.08 2.38 ± 0.42 not tested
5β-Re 6.32 ± 0.7 u.d.l. 23.5 ± 2.96 not tested
17β-HSD 9.34 ± 2.1 813 ± 57.3 16.5 ± 2.68 not tested
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Fig. 8–5 Mean specific P450arom activity with SEM in (A) ovarial and (B) brain tissues samples 
(n=6–7) of female Xenopus laevis exposed for 2 weeks to 0.1 µM Letro, MT, Vin, and 0.01 µM TPT. 
P450arom activities detected in tissues of exposed animals were not significantly different from the 
control animals, except for ovarial P450arom activity of the Letro group compared to the MT group. 
Statistical analysis was performed as follows: (A) Kruskal-Wallis with post-hoc Dunn´s multiple 
comparison test and (B) ANOVA with post-hoc Tukey´s multiple comparison test. 
 *** = p<0.01, ** = p<0.05, * = p<0.1 
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Fig. 8–6 Mean specific 5α-Re activity with SEM in (A) female brain, (B) male brain, and (C) 
testicular samples (n=5–7) of Xenopus laevis exposed for 2 weeks to 0.1 µM Letro, MT, Vin, and 0.01 
µM TPT. 5α-Re activity detected in female brain samples of MT and Vin exposed animals was 
significantly higher in the control group, while there were no significant differences in the enzyme 
activities detected in male tissue samples.  
Statistical analysis was performed as follows: (A) ANOVA with post-hoc Tukey´s multiple comparison 
test, (B) Kruskal-Wallis with post-hoc Dunn´s multiple comparison test and (C) ANOVA with post-hoc 
Tukey´s multiple comparison test. *** = p<0.01, ** = p<0.05, * = p<0.1 
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Fig. 8–7 Mean specific 17β-HSD activity with SEM in (A) female brain, (B) male brain, and (C) male 
gonad samples (n=5–7) of Xenopus laevis exposed for 2 weeks to 0.1 µM Letro, MT, Vin, and 0.01 
µM TPT. 17β-HSD activity detected in exposure groups was not significantly different from the 
control group, except for 17β-HSD activity in female brain of the Letro group compared to the MT 
group.  
Statistical analysis was performed as follows: (A) Kruskal-Wallis with post-hoc Dunn´s multiple 
comparison test and (B,C) ANOVA with post-hoc Tukey´s multiple comparison test  
 *** = p<0.01, ** = p<0.05, * = p<0.1 
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Fig. 8–8 Mean specific 5β-Re activity with SEM in (A) female brain and (B) male brain tissues 
samples (n=5–7) of Xenopus laevis exposed for 2 weeks to 0.1 µM Letro, MT, Vin, and 0.01 µM TPT. 
5β-Re activity detected in exposure groups was not significantly different from the control group. 
Statistical analysis was performed with the ANOVA following the post-hoc Tukey´s multiple 
comparison test. *** = p<0.01, ** = p<0.05, * = p<0.1 
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8.4.2 Assay validation of 5β-reductase activity in Xenopus laevis  

Androgen metabolizing enzymes in the brain were identified after incubation of a tissue 

preparation of one of the female control animals. The one-dimensional TLC β-Scan shows 

the different peaks of the radioactive products, and the stained TLC glass plate (Fig. 8–9) 

shows the corresponding reference steroids as stained dots.  
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Fig. 8–9 β-Scan of the TLC-separated androstenedione metabolites in female brain of Xenopus laevis 
after enzyme in vitro assay. The TLC was stained for the identification of the different unlabelled 
steroids that were added to the incubation extracts. After staining, the coloured areas of the reference 
steroids together with the corresponding RF-values were used to identify the β-signals of the 
products, which were testosterone (peak 1, stain B), androsterone (peak 2, stain C), 5β-
androstandione (peak 4, stain F) and 5α-androstandione (peak 5, stain G). 3α-Diol (stain A) and 
DHT (stain D) could not be found after the incubation.  
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The different radioactive signals in the autoradiogram were 1=testosterone, 2=androsterone, 

3=androstenedione, 4=5β-androstanedione, and 5=5α-androstanedione, proving the 

presence of 17β-HSD, 5α-Re and 5β-Re in Xenopus laevis brain. The calculated intra-assay  

coefficient of variation was approximately 5.3% (n=32). Variations in any of the three 

variables substrate concentration (Fig. 8–10A), incubation temperature (Fig. 8–10B), and 

pH (Fig. 8–10C) resulted in minor changes in 5β-Re activity. 

According to the results shown in Fig. 8–10, 5β-Re activity measurements should be 

carried out at pH 6.5, a substrate concentration of 0.5 µM androstenedione, and 34°C 

incubation temperature.  
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Fig. 8–10 Effects of (A) substrate concentration, (B) incubation temperature, and (C) pH-value on 
5β-Re activity in brain tissue of Xenopus laevis. Approximately 50 mg fresh tissue per mL HB was 
used for the enzyme assays.  
 
 
8.4.3 Enzyme activities in brain and gonad samples of Rutilus rutilus  

Tissue samples and specific enzyme activities determined from control animals are listed in 

Table 8–3. In a preliminary test, P450arom activity in fish brain rose with higher incubation 

temperature. Ovarial P450arom activity was very low and did not change within the 

temperature range tested (22°C, 27°C, 32°C, and 37°C, Fig. 8–11). Testicular homogenates 

showed no P450arom activity (data not shown).  

 

Table 8–3 Mean specific P450arom, 5α-Re, and 17β-HSD activities in brain, testis, and ovary 
samples of Rutilus rutilus control animals (female n=9, male n=21). 

n.t.=not tested, u.d.l.=under detection limit 

 

Rutilus rutilus Male Female
pmol/h/mg protein Brain Testis Brain Ovary
P450arom 4.28 ± 0.3 n.t. 3.55 ± 0.4 u.d.l.  
5α-Re 88.7 ± 3.8 73.4 ± 5.6 n.t. n.t. 
17β-HSD 57.1 ± 5.3 24.8 ± 2.3 n.t. n.t. 
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Fig. 8–11 Effect of temperature on P450arom activity in human placenta, female Rutilus rutilus brain 
and ovary. Enzyme assays were performed with a substrate concentration of 0.05 µM 
androstenedione, 3 mM NADPH as cofactor and an incubation time of 30 min.  
 
 
Ovarial P450arom activity of Rutilus rutilus exposed to different test chemicals was under 

the detection limit of our methods (data not shown).  

 

Mean P450arom activities in brain tissue samples of exposed female animals did not show 

any significant differences (Fig. 8–12A). Letro and MT exposed male animals showed 

significantly decreased (p<0.001) and increased (p<0.01) mean activities, respectively (Fig. 

8–12B). The only significant difference in 5α-Re activity between groups was the higher 

mean value in testis of TPT exposed animals compared to Letro exposed animals (Fig. 8–

13). 17β-HSD activities detected in testicular samples were not significantly different from 

one another, but enzyme activity in male brain samples of MT (p<0.001) and Vin (p<0.01) 

exposed animals were both significantly higher compared to control animals (Fig 8–14). 
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Fig. 8–12 Mean specific P450arom activity with SEM in (A) female and (B) male brain tissue samples 
(n=2–15) of Rutilus rutilus exposed for 2 weeks to 0.1 µM Letro, MT, Vin, and 0.01 µM TPT. 
P450arom activity detected in exposure groups was not significantly different in female tissues. Letro 
and MT exposed male animals had significantly lower (p<0.001) and higher (p<0.01) mean 
P450arom activities compared to control animals, respectively.  
Statistical analysis was performed as follows: (A) Kruskal-Wallis with post-hoc Dunn´s multiple 
comparison test and (B) ANOVA with post-hoc Tukey´s multiple comparison test. 
 *** = p<0.01, ** = p<0.05, * = p<0.1 
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Fig. 8–13 Mean specific 5α-Re activity with SEM in male (A) gonad and (B) brain tissue samples 
(n=11–21) of Rutilus rutilus exposed for 2 weeks to 0.1 µM Letro, MT, Vin, and 0.01 µM TPT. 5α-Re 
activity detected in exposure groups was not significantly different from the control group, but values 
were significantly higher in TPT exposed animals than in Letro exposed animals. 
Statistical analysis was performed with the Kruskal-Wallis test, following the Dunn´s multiple 
comparison test. *** = p<0.01, ** = p<0.05, * = p<0.1 
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Fig. 8–14 Mean 17β-HSD activities with SEM in male (A) gonad and (B) brain tissue samples 
(n=11–21) of Rutilus rutilus exposed for 2 weeks to 0.1 µM Letro, MT, Vin, and 0.01 µM TPT. Mean 
17β-HSD activities detected in testicular samples were not significantly different. 17β-HSD activity 
detected in male brain samples of MT (p<0.001) and Vin (p<0.01) exposed animals was significantly 
higher compared to control animals.  
Statistical analysis was performed with the Kruskal-Wallis test, following the Dunn´s multiple 
comparison test. *** = p<0.01, ** = p<0.05, * = p<0.1 
 
 

 

8.4.4 Enzyme activities in brain and gonad samples of Pimephales promelas  

Due to methodological problems during the exposure phase at the University of Brunel, 

e.g., high mortality, white spot disease, and small tissue sizes, the results of the exposure 

experiments with Pimephales promelas are of limited relevance. Female animals were 

analyzed for P450arom activity in brain (n=8) and ovary (n=9), with mean activities of 

9.19±0.8 and 0.16±0.02 pmol/h/mg protein, respectively. We found significantly elevated 

mean P450arom activities in ovaries from 320 ng TPT/L and 30 ng MT/L exposed animals 

(Fig. 8–15). The other analysis revealed no differences between the groups (data not 

shown). Mean specific activities in male brain tissue samples of control animals (n=10) 

were 7.29±2.31 pmol/h/mg protein (P450arom), 412±30 pmol/h/mg protein (17β-HSD), 

and 80.2±9.76 pmol/h/mg protein (5α-Re). Testicular mean specific enzyme activities was 

42.4 pmol/h/mg protein (17β-HSD) and 15.0 pmol/h/mg protein (5α-Re), determined from 

pooled tissue samples. 
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Fig. 8–15 Mean specific P450arom activity with SEM in ovary tissue samples (n=4–10) of 
Pimephales promelas exposed for three weeks to various concentrations of (A) TPT and (B) MT. The 
animals exposed to 320 ng/L TPT and 30 ng/L MT showed significantly higher P450arom activities 
than control animals.  
Statistical analysis was performed with the Kruskal-Wallis test, following the Dunn´s multiple 
comparison test.  *** = p<0.01, ** = p<0.05, * = p<0.1 
 
 
8.4.5 Identification of androgen metabolism at different life stages of Xenopus 

laevis 

The enzyme activities detected in the different tissue homogenates are visualized in Fig. 8–

16. In all female gonad samples, androgen metabolizing enzyme activity was higher 

compared to brain samples. In ovaries, 5β-Re continuously decreased with age, while it 

remained more or less stable at different life stages in brain tissue. In brain tissue samples, 

5α-Re activity decreased, and 17β-HSD activity even completely disappeared with age. 

In male testis, androgen metabolizing enzyme activity was much higher compared to 

brain tissue (Fig. 8–16). In testis, 17β-HSD and 5α-Re activities highly increased with age, 

while 5β-Re activity disappeared.  
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Fig. 8–16 Mean specific enzyme activities in gonadal (A) and brain (B) tissue samples of Xenopus 
laevis at different life stages (adult=5–6 years, juvenile=3 years+10 months, larval=1 year+4 
months).  
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8.5 Discussion 

Some of the problems found in fish, including decreased fecundity, genital abnormalities, 

altered behavior patterns, and response to stress and disease, are now observed in human 

populations (Colborn 2004). Thus, it is possible that aquatic vertebrates give an early 

warning of endocrine effects that later become apparent in other wildlife species, and 

ultimately in humans. In comparison to terrestrial vertebrates, they are more exposed to ED 

because of the high interchange with the aquatic environment through body surface and/or 

the gills. Several fish species respond to hormone active chemicals with elevated plasma 

vitellogenin levels or even the generation of intersex gonads (Kirby et al. 2004; Kleinkauf 

et al. 2004; Cho et al. 2003; De Metrio et al. 2003). Amphibians likewise react very 

sensitive to endocrine disruption, and this may contribute to their global decline (Carey and 

Bryant 1995). Severe ED treatment during the critical time of sex differentiation can result 

in sex reversal (Kloas 2002; Kloas et al. 1999). The selected model organisms Xenopus 

laevis, Rutilus rutilus, and Pimephales promelas have already proved as very suitable 

model organisms. 

It has been proposed that P450arom is a critical enzyme for ovarian differentiation in 

fish and amphibians (Baroiller and D'Cotta 2001; Melo and Ramsdell 2001). As expected, 

higher P450arom activities were detected in female gonad samples compared to male ones. 

For unknown reasons, no P450arom activity could be detected in ovarian tissue samples 

deriving from exposure experiments of Rutilus rutilus. High P450arom activity was present 

in teleost brain of both sexes, its function remaining speculative (Forlano et al. 2001). 

P450arom activity rose linear with temperature (24–37°C) in all tissues investigated, 

regardless of the much lower husbandry temperatures of the animals (Gonzalez and Piferrer 

2002). As fish and amphibian are poikilothermic, the elevated P450arom activities due to 

higher ambient temperatures might contribute to sex determination during the critical, 

thermosensitive periods of embryonic development. In Xenopus laevis, it has been reported 

that low temperatures (16°C) yield more males, and high temperatures (26°C) more females 

in laboratory animals (Kobel 1996). The specific P450arom activities in ovarian and brain 

tissue samples from exposure experiments presented here were obtained with incubation 

temperatures at 37°C, because tissue size was very small and we needed highest attainable 

values.  

In mammalians, 5β-Re is involved in cholesterol and bile acid metabolism, in 

addition to the clearance of cortisol in the liver (Westerbacka et al. 2003; Charbonneau and 
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The 2001). 5α- and 5β-Re work in concert with 3α-HSDs to convert 5α/5β-dihydrosteroids 

into 5α/5β-tetrahydrosteroids (Penning et al. 2000; 1986). Brain 5β-Re, which converts 

testosterone into 5β-DHT, is unique to birds (Hutchison and Steimer 1981). With highest 

levels in nonbreeding individuals and seasons, 5β-Re seems to function as an inactivation 

shunt for androgens (Balthazart 1989; Massa et al. 1979). To the best of the author´s 

knowledge, 5β-Re activity in amphibian brain has not been reported to date. In the present 

study, 5β-Re was present in brain of both sexes of Xenopus laevis at all three life stages 

investigated. In addition, it was found in all female gonads, but solely in juvenile testis, 

supporting the assumption that 5β-Re is responsible for androgen inactivation.  

It could be demonstrated in chapter 3-5 that in particular the organotin compounds 

TBT and TPT inhibit phase I enzyme (P450arom and 5α-Re) in vitro activities. In contrast 

to these findings, we did not detect any significant differences of enzyme activities in 

tissues samples of TPT exposed Xenopus laevis or Rutilus rutilus, with the exception of 

elevated P450arom activities in female gonads of Pimephales promelas (320 ng/L TPT). It 

is possible that the organotin compounds are metabolized into less hazardous metabolites 

like MBT, an organotin compound which proved to be ineffective in the in vitro enzyme 

tests.  

The anti-androgenic potency of p,p´DDE and vinclozolin has been demonstrated with 

androgen receptor reporter gene assays, rat in vitro experiments and in the adult male guppy 

(Xu et al. 2006; Makita et al. 2003; Baatrup and Junge 2001; Sunami et al. 2000; Kelce et 

al. 1995). In the exposure experiments, p,p´DDE did not alter the selected enzyme activities 

in Pimephales promelas. Vin exposure resulted in some changes of 5α-Re and 17β-HSD in 

Xenopus laevis and Rutilus rutilus (Table 8–4). Obviously, there is no uniform pattern 

concerning the effects on enzyme activities. 

However, Rutilus rutilus and Xenopus laevis exposed to the control substances MT 

and Letro resulted in, though not significant, but at least slightly different mean enzyme 

activities compared to the control group. According to the findings that some of the test 

compounds with inhibitory potency caused an increased enzyme gene expression in human 

cell lines (Nakanishi et al. 2002), probably as a compensatory process in the negative 

feedback mechanism of the endocrine control loop, the strong P450arom inhibitor Letro 

should have caused an upregulation of P450arom enzyme activity in the ovary and the 

brain. This is only the case in ovarial tissue samples of Xenopus laevis. On the contrary, 
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Letro exposure caused elevated P450arom activities in brain tissue of male Rutilus rutilus. 

Another finding is that brain and gonadal enzyme activity changes are equally frequent. 

P450arom activity as an endpoint seems to be a little more sensitive to chemical exposure 

than 17β-HSD, 5α-Re, and 5β-Re. 

 
 
 
Table 8–4 Changes in enzyme activities in different tissue samples of exposed model animals. 
(+/–)=tendency of elevated/decreased mean enzyme activity, +/++/+++=significantly 
(p<0.05/p<0.01/p<0.001) elevated mean enzyme activity, –/– –/– – – =significantly (p<0.05/ p<0.01/ 
p<0.001) decreased mean enzyme activity, 0=no significant change in mean enzyme activity 
 

Xenopus laevis Letro MT TPT Vin 

Ovary (+) (–) 0 0 
P450arom 

Female brain 0 0 0 0 
Testis 0 0 0 0 
Female brain 0 +++ 0 + 5α-Re 
Male brain (–) (–) 0 0 
Testis 0 0 0 0 
Female brain 0 (+) 0 0 17β-HSD 
Male brain 0 0 0 0 
Female brain 0 0 0 0 

5α-Re 
Male brain 0 0 0 0 

Rutilus rutilus Letro MT TPT Vin 

Female brain 0 (+) (+) 0 
P450arom 

Male brain – – – ++ 0 0 
Testis 0 0 (+) 0 

5α-Re 
Male brain 0 0 0 0 
Testis 0 0 0 (+) 

17β-HSD 
Male brain 0 +++ 0 ++ 

Pimephales promelas  MT TPT p,p´DDE 

Ovary  ++ 
(30 ng/L) 

+ 
(320 ng/L) 

0 

Testis   0 0 0 
P450arom 

Female brain  0 0 0 
Male brain  0 0 0 

5α-Re 
Testis  0 0 0 
Male brain  0 0 0 

17β-HSD 
Testis  0 0 0 
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In conclusion, the present study demonstrated sex and age dependent differences in 

androgen metabolism in Xenopus laevis. For the assessment of putative endocrine 

disrupting chemicals, the selected enzyme activities (P450arom, 5α-Re, 17β-Re, and 5β-

Re) proved less suitable as distinctive endpoints because of high variability between 

individuals, inconsistent effects of the control substances MT and Letro, and low 

sensitivity. The in vivo outcome is probable influenced by various factors like absorption, 

metabolism, excretion rates, bioaccumulation potential, and pharmacokinetics. In addition 

to these endpoint-specific reasons, the general setup was inapplicable due to high mortality 

(Pimephales promelas) and difficulty in sex determination (Rutilus rutilus), resulting in 

disproportionate numbers of female and male exposed animals. In addition, tissue size was 

sometimes insufficient for the realization of the enzyme assay. 

Although the use and scope of the models to detect endocrine effects in this study are 

limited, it is clear that such models are the only source to provide relevant data for risk 

assessment. These promising models need further development before they can be 

considered as the sole basis for regulatory action. As it is very unlikely that a putative 

endocrine disruptor exclusively targets a specific metabolic function or hormone-dependent 

signaling step, several endpoints like organ weight and serum concentration of sex steroid 

hormones together with enzyme activity may provide a clearer picture of endocrine potency 

of the test compound. Nevertheless, enzyme determination after chemical exposure appears 

of potential value and should be subject to further development and validation.  
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