
P
o
S
(
C
P
O
D
 
2
0
1
3
)
0
2
1

Dynamic Enhancement of Fluctuation Signals at the
QCD Phase Transition

Christoph Heroldab, Marlene Nahrgang∗bc, Igor Mishustinbd and Marcus Bleicherab,
aInstitut für Theoretische Physik, Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am
Main, Germany

bFrankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Str. 1, 60438 Frankfurt am
Main, Germany

cDepartment of Physics, Duke University, Durham, North Carolina 27708-0305, USA
dKurchatov Institute, National Research Center, 123182 Moscow, Russia

E-mail: herold@fias.uni-frankfurt.de, marlene.nahrgang@phy.duke.edu,
mishustin@fias.uni-frankfurt.de, bleicher@fias.uni-frankfurt.de

We study the impact of nonequilibrium effects on the relevant signals within a chiral fluid dynam-

ics model including explicit propagation of the Polyakov loop. An expanding heat bath of quarks

is coupled to the Langevin dynamics of the order parameter fields. The model is able to describe

relaxational processes, including critical slowing down and the enhancement of soft modes near

the critical point. At the first-order phase transition we observe domain formation and phase co-

existence in the sigma and Polyakov loop field leading to a significant amount of clumping in the

energy density. This effect gets even more pronounced if we go to systems at finite baryon den-

sity. Here the formation of high-density clusters could provide an important observable signal for

upcoming experiments at FAIR and NICA. We conclude that improving our understanding of dy-

namical symmetry breaking is important to give realistic estimates for experimental observables

connected to the QCD phase transition.
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1. Introduction

Lattice calculations of quantum chromodynamics (QCD) at vanishing baryochemical potential
predict a phase transition between hadronic and partonic degrees of freedom, which is an analytic
crossover [1, 2, 3]. The question of the nature of the phase transition at finite baryochemical poten-
tial µ is a yet unsolved issue. Lots of effort is put into the discovery of a first-order phase transition
at large baryochemical potential and a critical point at the end of this phase transition line. Exper-
imentally, this effort is centered on the beam energy scan that is conductedat RHIC where large
event-by-event fluctuations are expected at the critical point [4, 5, 6]. Further facilities are built to
explore the phase diagram at even higher baryonic densities (FAIR, NICA). From the theoretical
side, lattice QCD simulations are constantly improved but the feasibility of calculations at large
µ is intrinsically limited by the fermionic sign problem. Effective models are able to reproduce
several characteristics of QCD, such as chiral symmetry breaking and restoration. Important fea-
tures of the gluon dynamics leading to confinement can, however, not be captured in these models,
although an effective description via the Polyakov-loop results in statisticalconfinement at lower
temperatures [7, 8, 9, 10, 11, 16, 12, 13, 14, 15]. For the investigationof the QCD phase diagram
by heavy-ion collisions dynamical models of the phase transition are needed, because the systems
created in heavy-ion collisions differ from thermal systems in the following aspects: They are fi-
nite in space and time, inhomogeneous, highly dynamically and the evolution is likelyto occur
out-of-equilibrium near the critical point and a first-order phase transition.

At the critical point this is due to the phenomenon of critical slowing down, since not only
the correlation length diverges but so does the relaxation time. Any system that evolves in a finite
time through the critical point will thus necessarily be driven out of equilibrium even if it is equili-
brated at a temperature aboveTc. From a phenomenological approach including dynamical critical
exponents it was found that the correlation grows up toξ ∼ 1.5−2.5 fm [17]. These nonequilib-
rium effects will consequently weaken the expected increase of the event-by-event fluctuations at a
critical point.

Nonequilibrium effects play, however, an important role at the first-order phase transition in
order to observe fluctuation signals in single event studies. When nucleation times are small, one
expects spinodal decomposition [18, 19, 20, 21, 22, 23, 24] to dominate the relaxation process
leading to an instability of slow modes. In these proceedings we focus on the first-order transition
and address the question of how much spinodal instabilities at high baryon densities can facilitate
the formation of inhomogeneities and clustering.

2. Nonequilibrium chiral fluid dynamics

Our goal is to combine a description of phase transitions with a realistic modeling of the
dynamics of the bulk matter in a heavy-ion collision. For this latter purpose fluid dynamic simu-
lations have proven a very successful tool especially after the discovery of the almost perfect fluid
by RHIC. Since the early application of fluid dynamic calculations to high-energy heavy-ion col-
lisions, there has been a lot of improvements. Modern fluid dynamical codesare 3+ 1d, include
viscous corrections, different initial conditions can be included and tested including event-by-event
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initial fluctuations [25] and fluid dynamics are used as part of highly developed hybrid models to
describe hadronic final interactions [26].

The phase transition is implemented via the Polyakov-loop extended quark meson model.
The fermionic part in the presence of the temporal gauge fieldA0 is integrated out and treated
fluid dynamically by assuming that time scales are much shorter than those which determine the
critical fluctuations. The mesonic part, where the sigma field is the order parameter, is propagated
explicitly taking into account the interaction with the fluid dynamic part. This setup was derived
consistently within the two-particle irreducible (2PI) effective action approach in [27]. This results
in a Langevin-type propagation of the sigma field

∂µ∂ µσ +
δU
δσ

+gρs+ησ ∂tσ = ξσ , (2.1)

whereU is the classical mesonic potential including a small term of explicit chiral symmetrybreak-
ing due to the finite current quark masses,g is the coupling between the fermionic and mesonic
fields andρs is the pseudoscalar density. We do not consider fluctuations in the pionic sector. The
pion fields are thus assumed to be at their equilibrium expectation value〈~π〉eq = 0. Due to the
interaction between the sigma field and the (anti)quarks from the fluid the sigma field is damped
by a temperature-dependent damping coefficientησ

ησ = g2dq

π

[

1−2nF

(mσ

2

)] 1
m2

σ

(

m2
σ

4
−m2

q

)3/2

. (2.2)

With respect to the dissipation-fluctuation theorem the noise fieldξσ needs to be included on the
right hand side of the Langevin-equation (2.1). It is approximated as whitenoise. Its expectation
value vanishes

〈ξσ (t)〉ξ = 0, (2.3)

and the noise correlation is given by

〈ξσ (t,~x)ξσ (t ′,~x′)〉ξ =
1
V

δ (t − t ′)δ (~x−~x′)mσ ησ coth
(mσ

2T

)

. (2.4)

In all calculations the equilibrium sigma massmσ is used. Below the phase transition, where the
sigma mass decreases and the (anti)quarks acquire their constituent mass of around 300 MeV, the
leading process that contributes to the damping, the scatteringσ → qq̄ is kinematically not possible
anymore. It is known, however, that there will be an additional damping fromσ → 2π. In this case,
we useησ = 2.2/fm, as was approximated in previous studies [28, 29].

Recently we extended the model to include the nonequilibrium dynamics for the Polyakov-
loop as well [32, 34]. An analogous derivation of the equation of motion ofthe Polyakov loop is
not possible, we therefore propagate it by a phenomenological relaxation equation, treatingℓ as an
effective field [32]

ηℓ∂tℓT
2 +

∂Veff

∂ℓ
= ξℓ . (2.5)

Here, we assume a parametric value ofηℓ = 5/fm. The final, qualitative results are mostly inde-
pendent of this special choice. Again the stochastic noise is approximated as Gaussian with a zero
expectation value and the imposed dissipation-fluctuation theorem to give its variance

〈ξℓ(t,~x)ξℓ(t
′,~x′)〉ξ T2 =

1
V

δ (t − t ′)δ (~x−~x′)2ηℓT . (2.6)
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The effective potentialVeff is described as the sum of the sigma, effective Polyakov loop and
mean-field quark-antiquark contribution [32]

Veff = U(σ)+U (ℓ,T)+Ωqq̄(σ , ℓ,T,µ) . (2.7)

The (anti)quark fluid expands and cools according to energy-momentum and net-baryon num-
ber conservation, i. e. the ideal relativistic fluid dynamic equations. In viewof the Langevin
dynamics of the order parameter the fluid acts as a heat bath. In a heavy-ion collision the system
is finite and we thus need to include explicitly the momentum exchange between the sigma field
and the fluid. This is done by including a source term to the fluid dynamic equations of energy and
momentum conservation

∂µTµν(t,~x) = Sν(t,~x) = −(∂µTµν
σ (t,~x)+∂µTµν

ℓ (t,~x)) , (2.8)

∂µNµ(t,~x) = 0 . (2.9)

This leads to an overall conservation of energy of the coupled system [31, 32]. Since the evolu-
tion of the sigma field is manifestly stochastic the source term is stochastic as well, introducing
fluctuations in the fluid dynamical fields. This is an important feature as it gives the possibility of
studying fluctuations not only in the order parameter fields but also in the thermodynamical quan-
tities like the energy density and the net-baryon density. It is important to note that conventional
fluid dynamics only propagates local thermal averages. Recently, the theory of fluid dynamical
fluctuations has been extended to applications in heavy-ion collisions [33].This yields an interest-
ing further approach to investigate fluctuations at the QCD phase transition within fluid dynamical
descriptions, but is not an ingredient of our model.

Finally, the system evoles under an equation of state, which depends as well on the local
values of the sigma field and the Polyakov loop assuming that the fluid is locally in equilibrium
corresponding to the actual value of the order parameter fields

p(σ , ℓ,T,µ) = −Ωqq̄ , (2.10)

e(σ , ℓ,T,µ) = T
∂ p
∂T

+ µ
∂ p
∂ µ

− p , (2.11)

n(σ , ℓ,T,µ) =
∂ p
∂ µ

. (2.12)

For details about the model and first numerical implementations, see [27, 30,31, 32].

3. Trajectories in the phase diagram

In the following we solve equations (2.1), (2.5), (2.8) and (2.9) numericallyfor different initial
conditions, probing the crossover, critical point and first-order phase transition regime in the (T-
µ)-plane. We extract trajectories by averaging the temperature and chemical potential in each time
step in a small central volume of 1fm3. Results are shown in Fig. 1. We see that the curves follow
the behavior of the equilibrium isentropes to bend towards the direction of largerµ when crossing
the transition line, cf. [35]. This is connected to the rapid growth of the dynamically generated
quark mass at the chiral phase boundary. However, with larger chemical potential, we see that
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Figure 1: Trajectories of the hydrodynamic simulation in the phase diagram for different initial conditions.
Nonequilibrium effects lead to an overshooting of the first-order phase transition. The dashed gray lines
denote the spinodal region.

this effect occurs only after the system has left the spinodal region, indicating the formation of
a supercooled phase. After the decay of that phase, the system is pushed back into the spinodal
region, the extended amount of time here should facilitate the process of spinodal decomposition.
We have seen in [32] already for systems at vanishing chemical potential, that this leads to domain
formation in the order parameter fields and inhomogeneities in the energy density at a first-order
phase transition.

4. Domain formation in net-baryon density

In order to visualize also the domain formation in net-baryon density, we extract the relative
net-baryon densityn/〈n〉 in the transversez= 0 plane. Here〈n〉 is the volume averaged net-baryon
density over all fluid dynamical cells withn > 0. The results are shown in Fig. 2 for an evolution
after t = 9 fm. We find a large inhomogeneities at the first-order phase transition, where clusters
of high density form. In contrast to that, for an evolution through the criticalpoint, the spherical
structure from the initial conditions remains preserved, the system expands homogeneously.

One can translate these images into azimuthal distributions of the net-baryon number density
as shown in Fig. 3. Here, the distributions are taken aftert = 6 fm andt = 12 fm. They differ signif-
icantly for the different phase transition scenarios. For a crossover transition the curve is rather flat.
When we increase the baryochemical potential we find small fluctuations starting around trajecto-
ries close to the critical point. Due to the present nonequilibrium effects we find strong fluctuations
in the azimuthal distribution of net-baryon density for an evolution through thefirst-order phase
transition. The bumps and deeps in the two plots are correlated, indicating thatthe clusters pre-
serve their identity during the expansion. In experiment, these non-statistical fluctuations within
single events should lead to an enhancement of higher flow harmonics. Forthe investigation this
possibility a freeze-out scenario needs to be included, which gives the momentum distributions of
e. g. net protons as a probe of net-baryon number. For further more quantitative results the use of
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Figure 2: Relative net-baryon number density atz= 0 andt = 9 fm for (a) a first-order transition at and
(a) for a transition through the critical point. Droplets ofhigh density are formed at the first-order phase
transition, at the critical point the density evolves homogeneously.

a more realistic model in terms of the low-energy phenomenology at high baryonic densities, like
e. g. in [36], would be needed.
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Figure 3: Azimuthal distribution of the net-baryon number density after t = 6 fm (a) andt = 12 fm (b) for
several transition scenarios. Strong inhomogeneities develop at the first-order phase transition.
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