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A comparison of Bayesian approaches to resampling efficiency 

 

Ulf Herold / Raimond Maurer 

 

 

ABSTRACT 

Estimation risk is known to have a huge impact on mean/variance (MV) optimized portfolios, 

which is one of the primary reasons to make standard Markowitz optimization unfeasible in 

practice. Several approaches to incorporate estimation risk into portfolio selection are suggested 

in the earlier literature. These papers regularly discuss heuristic approaches (e.g., placing 

restrictions on portfolio weights) and Bayesian estimators. Among the Bayesian class of 

estimators, we will focus in this paper on the Bayes/Stein estimator developed by Jorion (1985, 

1986), which is probably the most popular estimator. We will show that optimal portfolios based 

on the Bayes/Stein estimator correspond to portfolios on the original mean-variance efficient 

frontier with a higher risk aversion. We quantify this increase in risk aversion.  

 

Furthermore, we review a relatively new approach introduced by Michaud (1998), resampling 

efficiency. Michaud argues that the limitations of MV efficiency in practice generally derive 

from a lack of statistical understanding of MV optimization. He advocates a statistical view of 

MV optimization that leads to new procedures that can reduce estimation risk. Resampling 

efficiency has been contrasted to standard Markowitz portfolios until now, but not to other 

approaches which explicitly incorporate estimation risk. This paper attempts to fill this gap. 

Optimal portfolios based on the Bayes/Stein estimator and resampling efficiency are compared 

in an empirical out-of-sample study in terms of their Sharpe ratio and in terms of stochastic 

dominance. 

 

JEL classification: C11, G11 

 



I. Introduction 

 

Estimation risk is known to have a huge impact on Markowitz (1987, 1991) mean/variance (MV) 

optimized portfolios. It leads to unstable and extreme portfolio weights over time and along 

portfolios on the MV efficient frontier. MV optimized portfolios lack of diversification and show 

poor out-of-sample performance. Due to estimation risk, portfolios on the efficient frontier are 

not unique as the MV optimization procedure suggests (or makes one believe). Hence, estimation 

risk is one of the primary reasons to make standard MV optimization unfeasible in practice. 

Michaud (1998, p. xiv) summarizes this fact using the term “Markowitz optimization enigma” 

and, in a paper reviewing the dialogue between theory and practice in financial economics, Banz 

(1997, p. 389) concludes, “I believe that (...) estimation risk is one of the great neglected areas of 

modern finance“. 

 

Several approaches to incorporate estimation risk into portfolio selection are suggested in the 

literature. These papers regularly discuss heuristic approaches (e.g., placing restrictions on 

portfolio weights or using an equally-weighted portfolio) and Bayesian estimators. The idea of 

Bayesian inference is to combine extra-sample, or prior, information with sample returns. 

Returns are shrunk towards the prior, depending on the degree of noise in the sample. Among the 

Bayesian class of estimators, we will focus in this paper on the Bayes/Stein estimator, which is 

probably the most popular estimator. The impact of the Bayes/Stein estimator, developed by 

Jorion (1985, 1986, 1991), is to shrink the optimal portfolio towards the minimum-variance 

portfolio (MVP). The MVP is less vulnerable to estimation risk as it does not make use of any 

information about expected returns. We will show that optimal portfolios based on the 

Bayes/Stein estimator correspond to portfolios on the original MV efficient frontier with a higher 

risk aversion, and we quantify this increase in risk aversion.  

 

Furthermore, we review a relatively new approach introduced by Michaud (1998), resampled 

efficiency. Michaud argues that the limitations of MV efficiency in practice generally derive 

from a lack of statistical understanding of MV optimization. He advocates a statistical view of 

MV optimization that leads to new procedures that can reduce estimation risk. His procedure is 

to draw repeatedly from the return distribution based on the original optimization inputs (sample 

means and sample covariance matrix) and compute efficient frontier portfolios based on these 

resampled returns. Averaging portfolio weights over these simulated portfolios yields 
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“resampled efficient portfolios”, which show desirable attributes: they exhibit a higher degree of 

diversification, and their composition is less prone to changes in expected returns.  

 

Michaud (1998) compares resampled efficient portfolios to standard MV portfolios, but not to 

other approaches which explicitly incorporate estimation risk. This paper attempts to fill this gap. 

In an empirical study, the out-of-sample performance of the Bayes/Stein estimation procedure 

and resampled efficiency are investigated. The strategies are compared in terms of their Sharpe 

ratio and in terms of second-order stochastic dominance. The basic result – at least for the assets 

and time period studied – is that due to the immense noise in the data, resampled efficiency 

techniques cannot improve over MV optimized portfolios. Bayesian approaches rely on extra-

sample information and hence might be more suitable to incorporate estimation risk into 

portfolio choice. However, resampling provides the full distribution of portfolio weights and 

therefore is a useful tool to illustrate the variation in portfolio weights and to perform statistical 

tests regarding the significance of asset weights. 

 

The paper is organized as follows. Section II summarizes the impact of estimation risk on MV 

optimized portfolios and conducts Monte Carlo simulations to visualize the region under the MV 

efficient frontier which contains statistically equivalent portfolios. In section III, the Bayesian 

approaches are developed. We show that with a diffuse prior, estimation risk leaves the means 

unchanged but increases portfolio risk. Hence, an alternative to adjusting the inputs is to increase 

the risk aversion parameter. This was suggested in a recent paper by de Horst et al. (2001) and is 

discussed here. Section IV explains resampled efficiency. Resampled efficiency and Bayesian 

estimators are compared in section V by performing an empirical out-of-sample study. Section 

VI concludes and provides some suggestions for future research. 

 

 

 

II. Impact of estimation risk on MV optimized portfolios 

 

Markowitz (1987, 1991) mean/variance (MV) efficiency is the classic paradigm of modern 

finance for allocating capital among risky assets. Markowitz shows how to construct efficient 

portfolios. The MV objective function is given by 

[1] ωΣω′λ−µω′ ,  
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where ω is the N×1 vector of portfolio weights, µ is the N×1 vector of expected returns, Σ is the 

N×N covariance matrix of returns, and λ denotes risk aversion. In each period, the investor 

trades off expected portfolio return, µω′ , versus portfolio variance, ωΣω′ . He chooses his 

portfolio ω to maximize the value of the objective function given in [1].1 The minimum variance 

frontier comprises all portfolios that have minimum variance for a given level of expected return. 

The MV efficient frontier is the upward sloping portion of the minimum variance frontier. 

 

Inputs are expected mean future returns for each asset, expected volatility of returns around the 

future expected means and the matrix of expected correlations of all returns. The optimization 

algorithm takes these inputs as parameters of known probability distributions. However, in 

reality, they are estimates of parameters of unknown probability distributions. Even if expected 

returns, variances, and correlations were known with certainty, MV optimized portfolios would 

not beat all other portfolios in every future investment period, because return realizations will 

differ from their expected values (intrinsic risk). Markowitz portfolios will be optimal on 

average. Estimating the unknown parameters involves an additional source of risk: estimation 

error, or estimation risk. So an asset’s total risk is composed of two components: intrinsic risk 

and estimation risk. 

 

The impact of estimation risk on optimal portfolios was explored in the previous literature. 

Chopra and Ziemba (1993) find that errors in means are about ten times as important as errors in 

variances, and errors in variances are about twice as important as errors in covariances. Best and 

Grauer (1991) show that optimal portfolios are very sensitive to the level of expected returns. 

They note that “a surprisingly small increase in the mean of just one asset drives half the 

securities from the portfolio. Yet the portfolio’s expected return and standard deviation are 

virtually unchanged” (p. 325). 

 

MV optimized portfolios regularly exhibit a low degree of diversification. Only few assets are 

included in the optimal portfolio.2 They show sudden shifts in allocations along the efficient 

                                                 
1  With normally distributed returns, MV optimization is consistent with maximization of expected utility. With iid 

returns, portfolio choice is myopic and there are no hedging demands. Campbell/Viceira (2002) show the effects 
on strategic asset allocation over long horizons when the iid assumption is relaxed. For a comprehensive 
discussion of the assumptions of the Markowitz framework (normally distributed returns, variance as appropriate 
risk measure, one-period model) see Michaud (1998). 

2  Green and Hollifield (1992) argue that MV optimized portfolios are not diversified even in the absence of 
estimation risk because assets load heavily on one factor. The dominant principal component of the covariance 
matrix is the source of extreme weights in efficient frontier portfolios. They recommend to investors to abandon 
their intuitive, well-diversified portfolios in favor of MV optimized portfolios with extreme positions. The 
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frontier and are also very unstable across time. These unintuitive and extreme solutions are a 

consequence of optimizers being “estimation error maximizers” (Michaud [1989]). MV 

optimizers overweight those assets that have large estimated expected returns, low estimated 

variances and low estimated correlations to other assets. These assets are the ones most likely to 

have large estimation errors. Consequently, Jorion (1985), using rolling-window estimates based 

on actual data, and Jobson and Korkie (1981b), employing a simulation approach, document 

poor out-of-sample performance of MV optimized portfolios compared to non-optimized, 

heuristic approaches (equally-weighted portfolio and market portfolio).  

 

Estimation risk also implies that the efficient frontier is not made up of discrete points but that 

each point is surrounded by a region of other points which are not statistically different. As such, 

the efficient frontier becomes an area of overlapping regions. Using the resampling technique 

employed by Michaud (1998), Figure 3 below shows the “statistical equivalence region”, which 

comprises all portfolios which are statistically not different from portfolios on the efficient 

frontier.3 There are many portfolios which are statistically equivalent to a specific efficient 

frontier portfolio. They have similar risk-return characteristics, but may exhibit very different 

portfolio weights. 

 

There are several approaches how to incorporate estimation risk into portfolio selection. One 

possibility is to exclude sample information about expected returns completely and compute the 

minimum-variance portfolio (MVP), using only the covariance matrix of returns. Similarly, 

ignoring all sample information (about means and covariances) will lead to the equally-weighted 

portfolio (EWP). Another option is to place restrictions on portfolio weights. Grauer and Shen 

(2000) and Eichhorn et al. (1998), among others, show that constraints lead to appreciably more 

diversification (by construction) and less realized risk, but only at the cost of realized return.4  

 

A different procedure is to correct for errors in the inputs. A natural candidate for this is 

Bayesian inference. Using Bayesian inference, the estimators for the means are shrunk from their 

                                                                                                                                                             

problem with Green/Hollifield’s analysis is that, apart from the fact that investors want to hold diversified 
portfolios, which is an argument of behavioral finance (see Fisher and Statman [1997] on this issue), two of the 
central paradigms of financial economics – models of asset pricing (CAPM, APT) and the efficient market 
hypothesis (EMH) – suggest that efficient portfolio are well-diversified and that investors should hold these 
diversified portfolios (normative aspect). 

3  The resampling procedure which was employed to derive Figure 3 is explained in Section IV. below. The 
optimization inputs used in Figure 3 are described in Appendix B. 

4  However, they do not give any reasons how they derive the constraints that they use, and so their approaches 
remain purely heuristic (and, to some extent, even arbitrary). 
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samples estimates to some prior values, depending on the degree of estimation error in the 

sample. In the next chapter, we will look in detail at the Bayes/Stein estimator developed by 

Jorion (1985, 1986) that a priori assumes equal expected returns for all assets and hence shrinks 

the MV optimized portfolio towards the MVP.5 The resampling techniques employed by 

Michaud (1998) also adjusts the inputs. We will illustrate this approach in Section IV. 

 

 

 

III. Bayesian approach to incorporate estimation risk 

 

In this section, we will first give a brief introduction to Bayesian inference and provide solutions 

for the posterior distribution for both diffuse and informative priors under the assumption of 

multivariate normality. We will continue with the notion of the predictive distribution which is 

crucial for expected utility maximization and show that an alternative to imposing a diffuse prior 

is to increase risk aversion. Finally, we will review Jorion’s Bayes/Stein estimator. 

 

 

1. Bayesian setup 

Let )y ..., ,y ,(yy T21 ′=′  be a sample of T identically and independently distributed observations 

from an unknown probability density function (pdf), p(y|θ), where θ is the K×1 vector of 

parameters to be estimated. The classical statistical perspective assumes that there exists some 

true value of θ. This true value is unknown but a fixed number. Using, e.g., Maximum 

Likelihood techniques, an estimator θ̂  is constructed from the sample observations, which 

maximizes the sample likelihood. In contrast, Bayesian statistics treats θ as a random variable. 

All information that is known about θ before drawing the sample is summarized into the prior 

pdf p(θ). The posterior pdf combines the prior pdf and the sample and is given by: 

[2] )y(p)(p)y(p θθ∝θ , 

where p(y|θ) is the likelihood function. The posterior pdf can be evaluated by computing 

[3] 
∫ θθθ

θθ
=θ

d)y(p)(p
)y(p)(p

)y(p . 

                                                 
5  Frost and Savarino (1988) provide an extension by expanding the prior on the covariance matrix. Their prior is 

that assets have equal expected returns, equal variances and equal covariances. Hence they shrink towards the 
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The (posterior) Bayes estimator is obtained by taking the expectation: 

[4] 
∫ θθθ
∫ θθθθ

=θ
d)y(p)(p
d)y(p)(p

)y(E .6 

 

As the assumption of normality is central to this paper, consider an asset return R that is 

(univariate) normally distributed, R~N(µ,σ2), with known variance σ2. With a conjugate 

informative prior for the mean, µ~N(µ0, 2
0τ ), the posterior pdf is also normal, µ|R,σ2~N(µT, 2

Tτ ), 

where (given T observations) the posterior mean and (inverse of the) variance are given by 

[5] 

22
0

202
0

T T1

R
T1

σ
+

τ

σ
+µ

τ
=µ  and 22

0
2
T

T11
σ

+
τ

=
τ

.7 

Hence, the posterior precision (i.e., the inverse of the variance) is the sum of the prior precision 

and the data precision. The posterior mean is a weighted average of the prior mean, µ0, and the 

sample mean, R , with weights proportional to the precisions. Note that R  is a sufficient statistic 

for R in this model. With a diffuse prior, 2
0τ →∞, the posterior distribution is µ|R,σ2~N( R ,σ2/T). 

 

These results can be expanded to the multivariate case with N assets. Asset returns, R, are 

multivariate normally distributed with N×1 mean vector, µ, and N×N covariance matrix, Σ, i.e. 

R~N(µ,Σ). We assume that the true covariance matrix, Σ, is known, or, in other words, that 

estimation risk in the (co)variances can be neglected.8 The natural conjugate prior is given by 

µ~N(µ0,Λ0), where µ0 now is a N×1 vector and Λ0 denotes the N×N prior covariance matrix. 

Then the posterior pdf is also multivariate normal, µ|R,Σ~N(µT,ΛT), with µT and ΛT given by 

[6] ( ) ( )RTT 1
0

1
0

111
0T

−−−−− Σ+µΛΣ+Λ=µ  and 11
0

1
T T −−− Σ+Λ=Λ . 

 

                                                                                                                                                             

EWP. 
6  The posterior Bayes estimator (PBE) is dependent on θ. This dependency is removed by integrating the risk 

function of the estimator over all possible values of θ (i.e., summarizing the risk function into a single risk 
number, the Bayes risk), which leads to the Bayes estimator (BE). As the risk function itself is obtained by 
integrating the loss function over the sample y, the BE involves performing two successive integrations. Given a 
loss function, the BE has the lowest Bayes risk. Under a quadratic loss function, the BE is equal to the PBE. As 
we assume a quadratic loss function, we do not differentiate between the PBE and the BE. 

7  For the concept of conjugacy, see Gelman et al. (1995). 
8  This assumption is a useful starting point because in general, second moments are more stable over time. It is 

also easier to estimate second moments from the data because increasing the frequency (e.g., from quarterly to 
monthly observations) lowers the estimation error (this does not hold for estimating means). Horst et al. (2001) 
present simulations confirming that estimation risk in variances can be neglected. Uncertainty in the covariances, 
however, will become more important when the number of assets is large.  
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The posterior mean vector is again a weighted average of the prior mean vector and the sample 

mean vector; in contrast to the univariate case, it is now matrix-weighted. The weights are again 

given by the prior and the data precision matrices. With a diffuse prior, p(µ)∝constant, and under 

the assumption that T≥K, the posterior distribution is  

[7] µ|R,Σ~N( R ,Σ/T).9 

 

 

2. Portfolio selection based on the predictive return distribution 

For the portfolio choice problem discussed in this paper, it is necessary to proceed from the 

posterior distribution to the predictive return distribution. The investor chooses portfolio weights 

ω in order to maximize the expected utility of the portfolio return, R
~

R
~

P ω′= , where R
~

 is the 

vector of future returns: 

[8] [ ] ∫ θω′=ω′
θ

R~
R~ R~d)R~(p)R~(U)R~(UE . 

( )⋅U  denotes the utility function. In the classical approach, where estimation risk is ignored and 

the sample mean is treated as the true value, the investor maximizes 

[9] [ ] ∫ θ=θω′=ω′
θ=θ

R~
ˆR~

R~d)ˆR~(p)R~(U)R~(UE . 

In the Bayesian solution, optimal portfolio choice is defined in terms of the predictive pdf. The 

predictive distribution of future returns is obtained by taking the expectation over θ with respect 

to the posterior distribution of θ, p(θ|R), and the investor maximizes 

[10] ∫ 




∫ θθθω′
θR

~
R
~

dd)R(p)R
~

(p)R
~

(U , 

where the term in brackets is the predictive pdf. In the case of the diffuse prior, p(µ)∝constant, 

the predictive pdf is given by 

[11] R
~

|R,Σ~N( R ,Σ+Σ/T), 

using the result from [7]. Hence, estimation risk under a diffuse prior leaves the expected returns 

unchanged and still uses the sample means. However, the covariance matrix is multiplied by a 

constant factor, 1+1/T. This results in a higher portfolio variance, which is intuitively clear. This 

also implies that the compositions of the efficient frontier portfolios do not change. However, the 

                                                 
9  These equations can be extended to the multivariate case, where both µ and Σ are unknown. In this case, the 

natural conjugate prior is given by a normal-inverse Wishart distribution, and the diffuse prior is given by a 
multivariate Jeffrey’s prior. The posterior distribution will follow a multivariate Student t distribution. 
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investor will choose a different portfolio, one with less risk, i.e. he will move to the left on the  

frontier (with the same risk aversion, λ); see Barry (1974) and Bawa et al. (1979). 

 

Figure 1a illustrates that for a small (and realistically much too low) sample size of T=5, the 

aggressive investor A with risk aversion λ=2 will move from A to A′  on the MV efficient 

frontier.10 A′  is the MV efficient portfolio corresponding to a risk aversion of 2⋅(1+1/5)=2.4 and 

its composition is equal to Adiff, which is the efficient portfolio with λ=2 on the frontier based on 

the diffuse prior. The more conservative investor C (λ=10) will also move closer to the MVP, 

from C to C′ , although the movement is much shorter. While for small sample sizes, the 

efficient frontier based on the diffuse prior will be flatter than the MV frontier, both frontiers will 

coincide for moderate and large sample sizes. This is confirmed by Figure 1b, where sample 

size, T, is set to 50. Therefore, portfolios before and after considering estimation risk (A and A′ , 

C and C′ ) will be almost undistinguishable, too. The fact that the adjustment factor, 1+1/T, lies 

close to 1 for usual levels of T, is the reason that the Bayesian approach with diffuse priors is not 

applied very often. As we will show below, imposing an informative prior as Jorion does alters 

the mean and the covariance matrix of the predictive distribution and hence has a greater impact 

on optimal portfolio choice. 

 

<< FIGURE 1 ABOUT HERE >> 

 

The effect of moving closer to the MVP can be examined more deeply, when recalling that each 

portfolio on the MV efficient frontier is a weighted average of the MVP and the tangency 

portfolio TP, where TP is the portfolio with the maximum Sharpe ratio (µP-rf)/σP, with rf being 

the risk-free rate:  

[12] ( ) ( ) TPMVP
f

1
f

1

1

1

x1x
)r1(1
)r1(

x1
11
1x ω−+ω=

−µΣ′
−µΣ

−+
Σ′

Σ=ω −

−

−

−

. 

With a diffuse prior, the investor will increase the portion x allocated to the MVP. E.g., using the 

example from above, a risk-averse investor with λ=15, will raise this fraction from 18.68% to 

20.28% (see Table 1 for more details). Incorporating estimation risk reduces the portion 

allocated to the TP, because there is more uncertainty attached to the TP: expected returns are 

needed for the calculation of the TP, but not for the MVP.  
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Before continuing with informative priors in the next section, we note that an upward-adjustment 

of the covariance matrix is mathematically not distinguishable from an increase in risk aversion 

(see equation [1]). Instead of multiplying Σ with 1/(1+T), one can adjust λ by the same factor 

(which we actually did in Figures 1 and 2 to find portfolios A′  and C′ ). In a recent paper, Horst 

et al. (2001) build on this idea. They consider the loss in expected utility when implementing a 

suboptimal portfolio. They show that investors can easily incorporate uncertainty in the mean 

returns by basing their MV efficient portfolio on a higher risk aversion which they call “pseudo 

risk aversion” rather than their actual risk aversion. The pseudo risk aversion, α, minimizes the 

loss in expected utility and is always higher than the actual risk aversion, λ: 

[13] 





 −

−
+λ=α

T
1N

BAC
A

1 2  

Hence, the difference between α and λ depends on the sample size, the number of assets in the 

portfolio, and the efficient set constants 11A 1−Σ′= , µΣ′= −11B , and µΣµ′= −1C .  

 

Horst et al. (2001) develop their approach in a “diffuse prior environment”. They argue against 

imposing an informative prior because of the difficulty to justify a specific informative prior. 

Hence, their approach can be compared to the diffuse prior Bayesian adjustment. Their 

adjustment factor, given in [13], is different from the Bayesian adjustment above, in that it also 

takes into account the curvature of the MV frontier: The term A/(AC-B2) is proportional to the 

second derivative of the efficient portfolio’s variance with respect to the expected portfolio 

return. In the next section, we will compare their adjustment factor to the diffuse prior and the 

informative prior adjustment. 

 

 

3. Bayes/Stein estimator 

Jorion (1985, 1986) builds on Stein’s (1955) results, who has shown that (for N>1) the sample 

mean is not an admissible estimator.11 The sample mean of one asset’s return only utilizes 

information contained in the return series of this asset and ignores information in other series. 

This can be compared to computing the variance of an asset’s return instead of computing the 

contribution to portfolio risk to assess the risk of an asset in the portfolio context. Stein 

                                                                                                                                                             
10  Figures 1-2 are based on a simple asset allocation example with two stock and two bond markets. See 

Appendix A for the optimization inputs. 
11  An estimator is admissible, when it has lower or equal risk for all θ and lower risk for at least one θ than all other 

estimators. See Mood et al. (1974). 
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developed an estimator that shrinks the sample mean towards a grand mean. This estimator is no 

longer unbiased but it has a smaller risk when using a quadratic loss function, or in other words, 

has a smaller mean-squared error (MSE). 

 

Both Stein and Jorion shrink the sample means towards a common value. They thereby smooth 

expected returns and prevent them to take on extreme values. While Stein employs the average 

mean (i.e., the average of all sample means, usually referred to as “grand mean”), Jorion’s 

specification of the prior distribution leads to the MVP return as shrinkage target.12 In addition to 

Stein, Jorion also considers the impact of estimation risk on portfolio variance. Furthermore, he 

uses an empirical Bayes approach to obtain the parameters of the prior distribution. 

 

Jorion’s starting point is the maximization of the investor’s expected utility as defined in 

equation [10]. His goal is to find an estimator that minimizes estimation risk. Estimation risk is 

defined as the utility loss due to basing the portfolio choice on sample estimates and not the true 

values. Jorion uses the prior µ~N(1µ0,Σ/φ), where 1 is a vector of ones, µ0 is a scalar, and φ 

determines the prior precision. Using [6], the posterior pdf is multivariate normal, with µT and 

ΛT given by 

[14] R
T

T
1

T 0T +φ
+µ

+φ
φ

=µ  and Σ
+φ

=Λ
T

1
T . 

In [14], prior means and sample means are not matrix-weighted because of the link between Λ0 

and Σ that Jorion imposes in the prior.13 The predictive pdf, which enters [10], has the same 

mean as the posterior pdf and variance Σ+ΛT. 

 

Jorion further demonstrates that the prior mean, µ0, is the average return of the MVP: 

[15] R
11

1
1

1

0 −

−

Σ′
Σ′=µ  

and that φ can be estimated from the data: 

[16] 
)1R()1R(

2Nˆ
0

1
0 µ−Σ′µ−

+
=φ − , 

                                                 
12  This, however, is a rather minor difference. As Jorion (1985) mentions, the number which is chosen for the 

common value does not make any difference for investors with negative exponential utility functions. The 
efficient frontier just shifts parallel upwards or downwards; the optimal portfolio compositions do not change. 

13  This link implies that estimation risk is proportional to intrinsic risk. This restrictive assumption is the reason for 
Kempf et al. (2001) to model estimation risk as an independent source of risk. This, of course, increases the 
numbers of parameters to be estimated. Therefore, Kempf et al. (2001) have to make another set of assumptions. 



 11

where the denominator measures the observed dispersion of the sample means around the 

common mean. 

 

Hence, Jorion specifies that the prior mean is identical across all N assets. As equation [14] 

shows, he shrinks the sample means towards the MVP mean return. The longer the sample 

history, T, the weaker is the shrinkage. In the extreme, T→∞, the investor will use the sample 

means, µT= R , i.e. the Bayes/Stein estimator includes the sample mean as a special case. At the 

other extreme, with no uncertainty in the prior, φ→∞, the Bayes/Stein approach results in the 

MVP. In the (more interesting) cases in between these extremes, the Bayes/Stein approach 

shrinks the portfolio towards the MVP. In addition, the Bayes/Stein approach makes the efficient 

curve flatter, not only for small sample sizes as in the diffuse prior case analyzed in Section 

III.2., but also for moderate and large sample sizes. Figure 2 illustrates these effects. With a 

small sample size, T=5, the efficient frontier based on the Bayes/Stein estimator, gets very flat, 

and the investor will choose a portfolio very close to the MVP (see the portfolio choices of the 

aggressive and conservative investor, AB/S and CB/S, in Figure 2a). In the limit, T→0 or φ→∞, 

the efficient frontier gets completely flat, and all investors will end up with the MVP. With a 

moderate sample size, T=50, the efficient frontier is still significantly flatter (see Figure 2b).14 

 

<< FIGURE 2 ABOUT HERE >> 

 

Again, it is illustrative to split the efficient frontier portfolios into the MVP and the TP portions. 

As Table 1 shows, the risk-averse investor (λ=15) will further increase the portion invested into 

the MVP from 18.68% (classical MV case) and 20.28% (diffuse prior case) to 40.16%. So 

compared to imposing a diffuse prior, Jorion’s informative prior has a much greater impact of 

increasing the MVP allocation and, hence, moving optimal portfolio choice towards the MVP. 

Similar to the diffuse prior case and the approach of Horst et al. (2001), the Bayes/Stein 

approach has also the effect of increasing risk aversion and moving to the left along the MV 

efficient frontier. All three approaches have in common that the composition of the MV efficient 

                                                                                                                                                             

They assume that estimation risk is constant across all assets and that estimation risks are uncorrelated between 
assets. 

14  In contrast to Figure 2a, Figure 2b omits the efficient frontier based on the diffuse prior for clarity reasons. The 
reason that in both charts the efficient frontier not only gets flatter but also becomes shorter is that we use the 
optimization approach to maximize utility (as given in equation [1]) varying risk aversion λ from 2 to ∞. Instead, 
one could minimize risk subject to a return target, which would expand the efficient frontier to the right. 
However, the portfolios lying to the right of our aggressive portfolio (λ=2) would exhibit very extreme weights. 
E.g., the portfolio with expected return of 7.5% loads –444.51% on the MVP and +544.51% on the TP (for T=5). 
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portfolios is not changed and that the investor moves towards the MVP by using an implicitly 

higher risk aversion. This finding has not been explored in the previous literature.  

 

<< TABLE 1 ABOUT HERE >> 

 

We can compute the level of risk aversion, where the efficient portfolio based on the Bayes/Stein 

estimator is equal to the MV efficient portfolio. When T=50 and λ=15, the Bayes/Stein approach 

leads to an increase in risk aversion by 35.8% to 20.37. Table 2 provides an overview of the 

extent to which risk aversion is increased under the three approaches considered here. The 

Bayes/Stein approach raises risk aversion the highest, followed by the approach of Horst et al. 

(2001) and the diffuse prior case. Accordingly, a higher fraction is allocated to the MVP in this 

order (see Table 1). In Figure 2, the portfolios A ′′  and C ′′  are the MV portfolios with those 

higher risk aversions. Their composition is equal to those of AB/S and CB/S. Table 3 displays the 

portfolio compositions for T=50 and λ∈{10;15}. Increasing risk aversion (from left to right in 

Table 3) shifts portfolio allocation to the less risky assets (from stocks to bonds). This is a direct 

consequence of the link between Λ0 and Σ, which is explained above. Also, it is clear from Table 

3 that the shift in portfolio composition from the classical MV to the Bayes/Stein approach is 

substantial from a practical point of view. 

 

<< TABLE 2 ABOUT HERE >> 

 

<< TABLE 3 ABOUT HERE >> 

 

 

 

IV. Resampling efficiency 

 

Michaud (1998) motivates for a statistical understanding of MV optimization. Observed 

historical asset returns are just one realization of an underlying stochastic data-generating 

process. Resampling returns yields optimization inputs that are statistically equivalent to the 

observed sample means and (co)variances. They lead to alternative portfolio structures. 
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Evaluating these simulated portfolios helps to show the variability implicit in efficient frontier 

estimation.15 

 

The procedure proposed by Michaud is to first compute sample means and sample covariance 

matrix, R  and Σ̂ , from T observations, and calculate K MV optimal portfolios by varying the 

expected return from the MVP return to the return of the asset with the highest expected return 

and by incorporating constraints.16 Then draw T-times for each asset from this distribution 

(returns are, again, assumed to be multivariate normally distributed), obtain a new set of 

optimization inputs (µ, Σ) from this statistically equivalent sample, and again calculate K 

efficient frontier portfolios. Repeat this step many times (Michaud uses 500 simulations). We 

can then evaluate these K times 500 portfolios with the original optimization inputs (R , Σ̂ ), 

which leads to the “statistical equivalent region” shown in Figure 3. In each of the 500 

simulation trails, K=51 MV efficient portfolios are computed. Note that all simulated portfolios 

plot below the original efficient frontier, by construction.17 

 

<< FIGURE 3 ABOUT HERE >> 

 

As mentioned earlier, the efficient frontier can be thought of as a region of overlapping circles 

surrounding each MV efficient portfolio. Figure 4 shows the “circle” surrounding a MV efficient 

portfolio on the middle part of the MV efficient frontier; all these simulated portfolios are 

statistically equivalent to the middle portfolio. The overlapping circles are larger than one might 

assume.  

 

<< FIGURE 4 ABOUT HERE >> 

 

It is now possible to test whether a given portfolio is MV efficient, because resampling gives the 

full distribution of portfolio weights. The essence of resampling is to bootstrap the test statistic, 

because there is no analytical expression due to short-selling and other constraints. So it is 

possible to test for MV efficiency under restrictions; see Jorion (1992). This is an improvement 

                                                 
15  Actually, the resampling procedure was introduced two decades ago by Jobson/Korkie (1981b). The 

distinguishing feature of Michaud’s approach is to average over the simulated portfolios to obtain the resampled 
efficient portfolios, as described below. 

16  Alternatively, one could vary risk aversion, λ, to obtain the K portfolios. 
17  See Herold/Maurer (2002b) for a more detailed description of the simulation procedure. 
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over traditional MV efficiency tests (e.g., the GRS test by Gibbons et al. [1989]), which only 

apply in the unconstrained case. 

 

To be able to test whether a given portfolio is MV efficient, it is necessary to proceed from the 

“statistical equivalence region” to the “sample acceptance region”. Testing the null hypothesis 

involves the Type I error (rejecting H0 although it is true) and a significance level α attached to 

it. Therefore, Michaud truncates α% of all simulated portfolios by approximating the area under 

the efficient frontier with rectangles, and within each rectangle he leaves away α% of the 

portfolio with the lowest mean. The sample acceptance region is shown in Figure 4 (with 

α=10%). A given portfolio is MV efficient, when it plots within this region, otherwise the null 

hypothesis of MV efficiency is rejected with (1-α%) confidence. 

 

It is also possible to test whether a given portfolio is statistically different from a specific 

portfolio P on the MV frontier. For this end, Michaud suggests to calculate a distance measure, 

given by 

[17] [ ] 5.0

PiPi )(ˆ)( ω−ωΣ′ω−ω  

for each of the 500 simulated portfolios with respect to P. Note that the measure given in [17] is 

widely used in investment practice and called tracking error, TE. Next, sort all 500 simulated 

portfolios in descending order with respect to TE, and define TEα as the tracking error of the 

simulated portfolio with the α% highest tracking error. A given portfolio is statistically not 

different from P, when its tracking error is lower than TEα. 

 

Finally, Michaud calculates the “resampled efficient portfolios” by averaging over the weights of 

all simulated portfolios. In each simulation, a number or rank is assigned to each efficient 

portfolio when varying the return target. The resampled efficient portfolios are obtained by 

averaging over the rank-associated portfolios corresponding to a return target k (k=1...K). This 

averaging procedure ensures that the weights still sum up to unity. Figure 4 displays the 

resampled efficient frontier, and Table 4 shows the portfolio composition for three resampled 

efficient portfolios: the minimum variance, a middle return and the maximum return portfolio on 

the resampled efficient frontier. (The middle return resampled efficient portfolio corresponds to 

the middle MV efficient portfolio in Figure 4.) 
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One advantage of resampling is that it provides the full distribution of portfolio weights. In Table 

4, the standard deviations, medians, 5th and 95th percentiles of portfolio weights are shown. This 

information is useful for performing tests whether the weight of a certain asset is statistically 

different from zero or any other value. It is crucial to note that the distribution of portfolio 

weights is not normal due to the short-selling constraints. Hence, the t-statistic is misleading. 

E.g. for the middle return portfolio, the t-statistic indicates to reject the hypothesis that the 

weight of Euro bonds is equal to zero. However, more than 5% of the simulated portfolios do not 

contain Euro bonds, as shown by the 5th percentile. Hence, the hypothesis cannot be rejected.18 

Table 4 also gives the confidence bands for the portfolio weights. As can be seen, they are pretty 

wide and (as assumed) they are increasing when moving to the right on the efficient frontier. 

 

Resampling enforces diversification. This can be illustrated with the maximum return portfolio 

(see Table 4c): In classical MV optimization, the maximum return portfolio consists solely of 

one asset class (under short-selling constraints). With resampling, it is not always this asset class 

that exhibits the highest return in a simulation trail. In each simulation, the maximum return 

portfolio consists of one asset class, but as this asset class varies in the simulations, averaging 

over weights of the simulations will bring up a maximum return portfolio which is exposed to 

several asset classes. This is the reason why the resampled frontier plots below the original 

frontier in Figure 4 and why it cuts off earlier.  

 

Besides greater diversification, resampled efficient portfolios have other desirable attributes: 

Small changes in the inputs will usually lead to only small changes in optimal portfolios. 

Resampled efficient portfolios will therefore be more stable over time. There are less sudden 

shifts in portfolio weights along the (resampled) efficient frontier, which is confirmed by Figure 

5. Finally, with the tests explained above, it is possible to test whether new information which 

leads to new optimization inputs makes it really necessary to change portfolio composition. So 

there will be less need for trades, which will lower transaction costs and enhance performance. 

 

                                                 
18  In the unconstrained case, the distribution of portfolio weights is normal, so the t-statistic is valid. In this case, it 

is not necessary to bootstrap the test statistic. Britten-Jones (1999) provides analytical expressions for the test 
statistic in the unconstrained case and including a risk-free asset. He uses a regression approach, regressing a 
vector of ones on the matrix of asset (excess) returns (without an intercept term). The regression coefficients 
represent the weights of the tangency portfolio (after normalizing them). He then constructs statistical tests, 
based on the standard errors of portfolio weights. Compared to this regression approach, the resampling 
technique is more computer-intensive, but can handle all kind of constraints. 
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Whether resampling efficiency is a superior tool for portfolio optimization can only be 

investigated in an empirical out-of-sample study. Michaud finds that resampling leads to better 

out-of-sample results than traditionally MV optimized portfolios.19 However, this is not 

surprising, because resampling enforces diversification, and the lack of diversification of MV 

optimized portfolios is known to lead to poor out-of-sample performance. Instead, resampling 

efficiency must be compared to other approaches which incorporate estimation risk. In the next 

section, we will compare it to the Bayes/Stein estimation procedure discussed above. 

 

 

 

V. Empirical study 

 

The empirical study is based on MSCI total return equity indices of Germany, Japan, UK, and 

the USA, and the view of an US investor is taken, i.e. returns are unhedged in USD. Monthly 

excess returns are calculated using the 3month T-Bill rate as the risk-free rate of return. We use 

four different estimation period lengths: T=30, 60, 90, and 120 months. In each case, the out-of-

sample period is from 1/1992 to 12/2001. A rolling window of length T is used to estimate the 

optimization input parameters. E.g., for T=30, portfolio weights are first based on the estimation 

period from 7/89 to 12/91. Using the returns of 1/92, the first out-of-sample portfolio return can 

be calculated. Then the estimation period is rolled one month forward, and the next portfolio 

composition is based on 8/89 to 1/92. This procedure results in a total of 120 out-of-sample 

returns, regardless of sample size T. At each point of time, a total of nine portfolios was 

optimized, three classical MV optimized portfolios, three portfolios based on the Bayes/Stein 

estimator, and three resampled efficient portfolios for risk aversions, λ, of 2, 10, and 15, 

respectively. As well, the EWP is computed to provide an informationless benchmark. 

 

Panel a) of Table 5 presents the mean returns, standard deviations, and Sharpe ratios of the out-

of-sample strategies. For small sample sizes, Bayes/Stein leads to superior results compared to 

MV optimized portfolios for all risk aversions. E.g. for λ=15, the Sharpe ratio of the Bayes/Stein 

strategy is 0.117 and considerably higher than the Sharpe ratio of the MV strategy, which is only 

0.085. This compares to a Sharpe ratio of 0.065 of the EWP. The mean return of the EWP in this 

period is 0.250%, the standard deviation is 3.863%. For λ=2, the Sharpe ratio of the MV strategy 

                                                 
19  Albeit the results in his book (see Table 6.4 on page 58) are not so convincing. 
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deteriorates to zero, while the Bayes/Stein Sharpe ratio is still substantial (0.086). For larger 

sample sizes, the Sharpe ratios of the MV and Bayes/Stein approaches are of the same 

magnitude, except for λ=2, where Bayes/Stein often is somewhat better.20 The Sharpe ratios of 

the strategies first increase with larger sample size but finally decrease again. This indicates that 

returns are not stationary over time. A sample size of T=120 does not capture the time-variation.  

 

To compare MV to resampled efficiency next, in neither case except one (T=30, λ=2) resampled 

efficiency is superior to MV efficiency in terms of the Sharpe ratio.21 Resampled efficiency is 

about the same magnitude as MV efficiency, but stays below. This is surprising because 

intuitively resampling is expected to increase the Sharpe ratio due to its higher diversification. 22 

This leads to the important conclusion that resampling efficiency does not seem to be able to 

deal with estimation error in an out-sample context. For small sample sizes or low risk aversions, 

Bayes/Stein estimation provides the best results. 

 

To test whether the Sharpe ratios are statistically different, we used the Jobson/Korkie (1981a) 

test procedure; see Panel b) of Table 5. For T=30, the Sharpe ratio of Bayes/Stein is greater than 

those of MV and resampling efficiency on a 5% significance level (in one case on a 10% 

significance level). This is remarkable as the Jobson/Korkie test is known to have low power. 

For larger sample sizes, the test still finds some statistical significance. E.g., for T=60 and λ=2, 

the Sharpe ratios of the classical MV strategy and the Bayes/Stein strategiy are significantly 

higher than that of the resampled efficient portfolio. 

 

We also test for stochastic dominance. Stochastic dominance does not make any assumptions 

about the return distribution and is consistent to a very wide class of utility functions, which 

makes it an attractive concept. We test for stochastic dominance of second order. This is 

appropriate for investors with risk-averse utility functions (u’>0, u’’<0). Panel c) of Table 5 

shows the efficient strategies according to stochastic dominance of second order without and 

with a risk-free asset, denoted by SSD and SSDR, respectively. We employ the algorithms of 

                                                 
20  The reason that MV optimization produces reasonably good Sharpe ratios in this study is due to the short-selling 

constraint. Without this constraints, the MV Sharpe ratios fall down sharply, the portfolio compositions get 
extreme, and the turnover explodes. 

21  Regardless of the length of the estimation period, we draw 100 returns for each series in each simulation trail. It 
would be more consistent to draw a number of returns equal to the length of the rolling window (e.g., drawing 30 
returns when T=30). However, for short rolling window lengths, results will deteriorate then. We also use a 
number of 100 simulations at each point in time. Increasing this number to 500 only affects computer time but 
not the results. 
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Levy (1992). For T=30 and all values of risk aversion, the Bayes/Stein strategy is the only 

efficient strategy according to SSDR, i.e. it is not dominated by any other strategy. For T=60, the 

classical MV strategy turns out to be efficient, while for T=90, the Bayes/Stein strategy again is 

efficient. For T=120, the results are somewhat mixed. The SSD tests (without a risk-free rate) do 

not give clear favor for any one strategy (except for T=30, λ=10). They have less power than the 

SSDR test. Overall, the stochastic dominance results confirm the superiority of the Bayes/Stein 

strategy for small sample sizes. They also confirm the fact that at least for this time period and 

the assets under investigation, the resampling technique does not lead to an increase in risk-

adjusted performance. 

 

In practice, it is also important to implement strategies which produce low turnover. For all 

sample sizes, Bayes/Stein leads to the lowest turnover. For T=30 and λ=15, monthly (one-way) 

turnover is 5.85% under Bayes/Stein, 8.14% under resampling, and 8.04% under the classical 

MV rule; see Panel d) of Table 5. For T=120, turnover decreases to only 1.72% under 

Bayes/Stein, which is only slightly more than turnover of the EWP (1.27%) with a much higher 

Sharpe ratio (0.142 versus 0.065). Surprisingly again, resampling even increases turnover 

compared tot he classical MV rule. 

 

To summarize, resampling efficiency leads to Sharpe ratios of about the same (and often even 

lower) magnitude as MV efficiency. It cannot improve on MV efficiency. The Bayes/Stein 

estimation procedure, in contrast, leads to statistically significant higher Sharpe ratios than MV 

efficiency for small sample sizes.23 

 

 

 

VI. Conclusion 

 

Large estimation errors in real-life financial data make MV optimization hard to apply in 

practice. Resampling efficiency is a convenient tool to illustrate estimation risk and its huge 

impact on optimized portfolios. Resampling provides the full distribution of portfolio weights 

and therefore is a useful tool to illustrate the variation (standard errors) in portfolio weights and 

                                                                                                                                                             
22  However, this might be partially due to the sample period we used. E.g., with the sample period 1/82-12/91, 

resampling can slightly increase the Sharpe ratio compared to the classical MV rule. 
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to perform statistical tests regarding the significance of asset weights. In contrast to classical 

approaches, resampling efficiency can incorporate all kinds of constraints (especially short-

selling constraints). 

 

However, resampling efficiency does not provide a superior tool for constructing portfolios for 

future periods. The basic result of the out-of-sample study is that due to the immense noise in the 

data, resampling efficiency techniques cannot improve substantially over MV optimized 

portfolios. At least for the assets and time period studied, it leads to portfolios which are fairly 

similar to MV optimized portfolios in terms of Sharpe ratio and turnover. The reason for this is 

that resampling averages over portfolios which are all derived from the same single estimate of 

mean returns and covariance matrix. Thus the resampled efficient portfolios also inherit the 

deviation of this estimate from the true unknown return distribution parameters. The only way to 

overcome this problem is to incorporate extra-sample information. This is exactly what the 

Bayes/Stein estimator is doing. Hence it provides a more effective way to incorporate estimation 

risk portfolio choice.  

 

The Bayes/Stein estimator employed here assumes a priori that all assets have the same expected 

return. This might be a reasonable assumption for assets belonging to the same asset class but not 

for portfolios consisting of asset classes with different risk levels (e.g., stocks and bonds). Here it 

might be better to base the prior on the asset’s level of systematic risk. In a series of recent 

papers, Pastor (2000) and Pastor and Stambaugh (1999, 2000) assume that the CAPM holds a 

priori, and update this prior belief using the sample information. Hence, they shrink the MV 

optimized portfolio towards the market portfolio.24 

 

                                                                                                                                                             
23  These results also hold for the extended sample period from 1/82 to 12/01 and when using quarterly instead of 

monthly data. 
24  To be precise, Pastor and Stambaugh (1999, 2000) do not focus on the CAPM alone, but develop their 

framework in a general way to include all kinds of asset pricing model. Herold and Maurer (2002a) provide a 
comprehensive illustration of this methodology and apply it to the subject of international diversification. 
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Figure 1: Portfolio selection based on a diffuse prior 

a) T=5 

 

b) T=50 

 

 

The charts show the effect of estimation risk on the MV efficient portfolios under a diffuse prior for 
the mean vector. The covariance matrix is assumed to be known. The calculations are based on four 
hypothetical asset classes (see Appendix A). Sample size, T, equals 5 in the upper chart and 50 in the 
lower chart. 
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Figure 2: Portfolio selection based on Bayes/Stein estimation 

a) T=5 

 

 

b) T=50 

 

 

The charts show the effect of estimation risk on the MV efficient portfolios under the informative 
prior for the mean vector used by the Bayes/Stein approach. The covariance matrix is assumed to be 
known. The calculations are based on four hypothetical asset classes (see Appendix A). Sample size, 
T, equals 5 in the upper chart and 50 in the lower chart. 
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Figure 3: Statistical equivalence region 

 

Using the data for eight asset classes (see Appendix B), the chart displays portfolios which are 
statistically equivalent to the portfolios on the MV efficient frontier. For this purpose, the resampling 
procedure in Section IV. is employed. The chart contains a total of 25,500 statistically equivalent 
portfolios. 
 

 

Figure 4:  Sample acceptance region, simulated portfolios with rank 21, and resampled 
efficient fronter 

 

Using the data for eight asset classes (see Appendix B), the chart displays the 500 portfolios which are 
statistically equivalent to the “middle” portfolio on the MV efficient frontier. The middle portfolio has 
on associated rank of 21. The chart also shows the sample acceptance region for a confidence level of 
10% and the resampled efficient frontier. 
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Figure 5: Compositions of MV efficient and resampled efficient portfolios 

 

 

The figure shows the portfolio compositions of the 51 portfolios along the classical MV efficient 
frontier (upper chart) and the resampled efficient frontier (lower chart). 
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Table 1: Loadings on MVP and TP 

a) T=50, λ=10 

 classical 
MV 

diffuse 
prior 

Horst et al. Bayes/Stein 

MVP -21.98% -19.59% -4.30% 10.24% 
TP 121.98% 119.59% 104.30% 89.76% 

 

b) T=50, λ=15 

 classical 
MV 

diffuse 
prior 

Horst et al. Bayes/Stein 

MVP 18.68% 20.28% 30.47% 40.16% 
TP 81.32% 79.72% 69.53% 59.84% 

 

The table presents the fraction of wealth allocated to the minimum-variance portfolio (MVP) and the 
tangency portfolio (TP) under four approaches to portfolio selection: classical MV, diffuse prior, 
Horst et al. (2001), and the Bayes/Stein rule. Sample size is equal to 50. Risk aversion, λ, equals 10 in 
the upper part and 15 in the lower part. 
 

 

Table 2: Increase in risk aversion 

a) T=5 

 classical 
MV 

diffuse 
prior 

Horst et al. Bayes/Stein 

risk aversion 2 2.4 5.390 9.179 
risk aversion 10 12 26.949 45.898 
risk aversion 15 18 40.424 68.848 

percentage increase 
in risk aversion 

- 20% 169.49% 358.98% 

 

b) T=50 

 classical 
MV 

diffuse 
prior 

Horst et al. Bayes/Stein 

risk aversion 2 2.04 2.339 2.718 
risk aversion 10 10.2 11.695 13.590 
risk aversion 15 15.3 17.542 20.372 

percentage increase 
in risk aversion 

- 2% 16.95% 35.81% 

 

The table shows the increase in risk aversion of the three approaches which incorporate estimation 
risk (diffuse prior, Horst et al. [2001], and Bayes/Stein rule) compared to the classical MV rule. 
Sample size is equal to 5 in the upper part and 50 in the lower part. 
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Table 3: Portfolio weights under different approaches 

a) T=50, λ=10 

 classical 
MV 

diffuse 
prior 

Horst et al. Bayes/Stein 

Stocks 1 9.49% 9.27% 7.90% 6.60% 
Stocks 2 11.97% 11.70% 9.97% 8.33% 
Bonds 1 80.22% 78.82% 69.87% 61.36% 
Bonds 2 -1.67% 0.21% 12.25% 23.71% 

 

 

b) T=50, λ=15 

 classical 
MV 

diffuse 
prior 

Horst et al. Bayes/Stein 

Stocks 1 5.85% 5.71% 4.79% 3.93% 
Stocks 2 7.38% 7.20% 6.05% 4.95% 
Bonds 1 56.42% 55.49% 49.53% 43.85% 
Bonds 2 30.35% 31.61% 39.63% 47.27% 

 

 

The table presents the compositions of the optimal portfolios for a sample size of T=50 under the four 
approaches to portfolio selection: classical MV, diffuse prior, Horst et al. (2001), and the Bayes/Stein 
rule. Risk aversion is set to 10 in the upper and 15 in the lower table. The four asset classes are 
hypothetical; see Appendix A. 
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Table 4: Compositions of three resampled efficient portfolios 

a) Minimum return portfolio 

 resampled 
weights 

standard 
error 

t-statistics 5% 
percentile 

median 95% 
percentile 

classical 
MV weight 

Canada 0.15 0.49 0.31 0 0 1.25 0 
France 0.07 0.29 0.25 0 0 0.62 0 

Germany 0.18 0.56 0.33 0 0 1.76 0 
Japan 1.31 1.23 1.06 0 1.05 3.65 1.40 

UK 0.15 0.53 0.28 0 0 1.22 0 
US 0.11 0.49 0.22 0 0 0.78 0 

US Bonds 0 0 0.05 0 0 0 0 
Euro Bonds 98.02 1.51 64.72 95.32 98.19 100 98.60 
 
 
b) Middle return portfolio 

 resampled 
weights 

standard 
error 

t-statistics 5% 
percentile 

median 95% 
percentile 

classical 
MV weight 

Canada 0.63 3.15 0.20 0 0 2.24 0 
France 6.97 10.27 0.68 0 0 29.94 4.90 

Germany 2.51 5.73 0.44 0 0 15.57 0 
Japan 11.38 10.84 1.05 0 9.40 34.27 13.69 

UK 6.65 9.93 0.67 0 0 28.78 2.04 
US 19.54 13.93 1.40 0 21.86 39.19 28.67 

US Bonds 7.11 17.82 0.40 0 0 55.98 0 
Euro Bonds 45.22 16.35 2.77 0 49.48 60.00 50.70 
 
 
c) Maximum return portfolio 

 resampled 
weights 

standard 
error 

t-statistics 5% 
percentile 

median 95% 
percentile 

classical 
MV weight 

Canada 0.60 7.73 0.08 0 0 0 0 
France 30.80 46.21 0.67 0 0 100 100 

Germany 4.60 20.97 0.22 0 0 0 0 
Japan 33.40 47.21 0.71 0 0 100 0 

UK 19.40 39.58 0.49 0 0 100 0 
US 10.60 30.81 0.34 0 0 100 0 

US Bonds 0.40 6.32 0.06 0 0 0 0 
Euro Bonds 0.20 4.47 0.04 0 0 0 0 
 
 
The table shows the weights (in percentages) of the three resampled efficient portfolios: the minimum 
variance, a middle return and the maximum return portfolio on the resampled efficient fronter. 
Additional statistics about the distribution of portfolio weights are included: the standard error, t-
statistics, 5%, 50%, and 95% percentiles. The column to the very right contains the weights of the 
corresponding classical MV efficient portfolio. 
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Table 5: Results of the out-of-sample strategies 

a) Mean returns, volatilities and Sharpe ratios 
 

T=30 Classical MV  Resampled efficiency Bayes/Stein  
λ (risk 

aversion) 
Risk Return Sharpe 

Ratio 
Risk Return Sharpe 

Ratio 
Risk Return Sharpe 

Ratio 
15 3.6421 0.3086 0.0847 3.6231 0.3060 0.0845 3.5380 0.4152 0.1174 
10 3.7687 0.2723 0.0723 3.7087 0.2605 0.0702 3.5930 0.3940 0.1097 
2 4.2976 -0.0171 -0.0040 3.9810 0.0575 0.0144 3.9061 0.3375 0.0864 

          
T=60 Classical MV  Resampled efficiency Bayes/Stein  

λ (risk 
aversion) 

Risk Return Sharpe 
Ratio 

Risk Return Sharpe 
Ratio 

Risk Return Sharpe 
Ratio 

15 3.7116 0.5501 0.1482 3.6647 0.5213 0.1423 3.6010 0.4871 0.1353 
10 3.8213 0.5872 0.1537 3.7204 0.5353 0.1439 3.6519 0.5035 0.1379 
2 4.1241 0.6899 0.1673 3.9082 0.4809 0.1230 4.0122 0.6176 0.1539 

          
T=90 Classical MV  Resampled efficiency Bayes/Stein  

λ (risk 
aversion) 

Risk Return Sharpe 
Ratio 

Risk Return Sharpe 
Ratio 

Risk Return Sharpe 
Ratio 

15 3.8239 0.5787 0.1513 3.7973 0.5602 0.1475 3.7611 0.5926 0.1594 
10 3.9115 0.5652 0.1445 3.8318 0.5387 0.1406 3.7845 0.5976 0.1583 
2 4.3537 0.5570 0.1279 3.9642 0.4086 0.1031 4.0001 0.6341 0.1583 

          
T=120 Classical MV  Resampled efficiency Bayes/Stein  
λ (risk 

aversion) 
Risk Return Sharpe 

Ratio 
Risk Return Sharpe 

Ratio 
Risk Return Sharpe 

Ratio 
15 3.9232 0.5731 0.1461 3.8682 0.5482 0.1417 3.8295 0.5436 0.1420 
10 3.9918 0.5948 0.1490 3.8976 0.5420 0.1391 3.8553 0.5523 0.1433 
2 4.3412 0.5498 0.1266 4.0753 0.4421 0.1085 4.0119 0.6426 0.1602 

 
 
b) Jobson/Korkie test statistics 
 

T=30       
λ MV vs. BS Res vs. MV Res vs. BS 

15 -1.7990 ** -0.0492  -1.8301 ** 
10 -1.5820 * -0.2441  -1.7642 ** 
2 -2.6935 ** 0.8419  -2.5102 ** 

       
T=60       

λ MV vs. BS Res vs. MV Res vs. BS 
15 1.1546  -0.9666  0.6739  
10 1.0673  -1.0477  0.4919  
2 1.2008  -1.8708 ** -1.3430 * 
       

T=90       
λ MV vs. BS Res vs. MV Res vs. BS 

15 -0.8485  -0.7225  -1.2790  
10 -1.2359  -0.5116  -1.7271 ** 
2 -1.2620  -1.0182  -2.0517 ** 
       

T=120       
λ MV vs. BS Res vs. MV Res vs. BS 

15 0.5617  -0.7591  -0.0330  
10 0.5844  -1.1677  -0.4048  
2 -1.2872 * -0.8770  -1.7047 ** 
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c) Stochastic dominance analysis: Efficient strategies 
 

T=30      
 λ MV Res BS EWP 

SSD 15 X  X  
 10   X  
 2   X X 

SSDR 15   X  
 10   X  
 2   X  

      
T=60      

 λ MV Res BS EWP 
SSD 15 X X X X 

 10 X X X X 
 2 X X X X 

SSDR 15 X    
 10 X    
 2 X    

      
T=90      

 λ MV Res BS EWP 
SSD 15 X X X X 

 10 X X X X 
 2  X X X 

SSDR 15   X  
 10   X  
 2   X  

      
T=120      

 λ MV Res BS EWP 

SSD 15 X X X X 
 10 X X X X 
 2  X X X 

SSDR 15 X    
 10 X    
 2   X  

 
 
d) Turnover for risk aversion of 15 
 

 MV Res BS EWP 
T=30 8.0352 8.1365 5.8549 1.2741 
T=60 3.9776 4.3405 2.9005 1.2741 
T=90 2.9399 3.8129 2.4008 1.2741 

T=120 2.0986 3.1895 1.7157 1.2741 
 
 
The table displays the results of the out-of-sample strategies. Panel a) shows the (monthly) mean returns, standard 
deviations, and Sharpe ratios for the three strategies (classical MV, resampled efficiency, and Bayes/Stein rule) and 
for three risk aversion (15, 10, 2). The rolling window is varied from 30 to 60, 90, and 120 months. Panel b) presents 
the results of the Jobson/Korkie (1981a) test statistics. A single star denotes significance on the 10% level, a double 
star denotes significance on the 5% level. Panel c) shows the results of the second order stochastic dominance tests. 
SSD and SSDR denote second-order stochastic dominance without and with a risk-free rate, respectively. Panel d) 
shows the turnover for the strategies with risk aversion of 15. MV denotes the classical MV rule, Res denotes 
Resampled efficiency, and BS denotes Bayes/Stein. 
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Appendix A: Optimization inputs for simple asset allocation example 

 
 Expected 

return 
Standard 
devation 

Stocks 1 14% 20% 
Stocks 2 15% 21% 
Bonds 1 8% 6% 
Bonds 2 6% 4% 

 
Correlations Stocks 1 Stocks 2 Bonds 1 Bonds 2 

Stocks 1 1 0.6 0.3 0.3 
Stocks 2  1 0.3 0.3 
Bonds 1   1 0.6 
Bonds 2    1 

 
 
 
Appendix B: Optimization inputs for global asset allocation example 
 
Monthly expected excess returns and volatilities: 
 

 Expected 
returns 

Standard 
deviations 

Canada 0.39% 5.50% 
France 0.89% 7.03% 
Germany 0.53% 6.22% 
Japan 0.88% 7.04% 
UK 0.79% 6.01% 
USA 0.71% 4.30% 
US Bonds 0.25% 2.01% 
Euro Bonds 0.27% 1.56% 
 
 
Correlation matrix: 
 

 Canada France Germany Japan UK USA US Bonds Euro 
Bonds 

Canada 1        
France 0.41 1       

Germany 0.30 0.62 1      
Japan 0.25 0.42 0.35 1     

UK 0.58 0.54 0.48 0.40 1    
USA 0.71 0.44 0.34 0.22 0.56 1   

US Bonds 0.26 0.22 0.27 0.14 0.25 0.36 1  
Euro Bonds 0.33 0.26 0.28 0.16 0.29 0.42 0.92 1 
 
Expected excess returns, volatilities, and correlations are taken from Michaud (1998, p. 17 and p. 19). The eight 
asset classes are: Canadian equities, French equities, German equities, Japanese equities, UK equities, US equities, 
US bonds, and Euro bonds. The sample period is from 1/78 to 12/95. Equity markets are proxied by MSCI total 
return indices (unless the US, where the S&P500 is used), US bonds are represented by the Lehman 
government/corporate bond index, Euro bonds by the Lehman Eurobond Global Issues Index, and the 30day T-bill 
returns are taken from Salomon. 
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