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Non-Technical Summary

A network approach to banking is particularly important for assessing financial stability and
systemic risk. This approach can be instrumental in capturing the externalities that the risk
associated with a single institution may create for the entire system. Indeed, from a financial
stability perspective, banks should neither be too-big-to-fail nor too-interconnected-to-fail. A
better understanding of network externalities may facilitate the adoption of a macro-
prudential framework for financial supervision. Network externalities arise when risk-taking
behavior of individual institutions affects other institutions and the system as a whole. To
guide policy it becomes necessary, in this context, to measure the systemic importance of
individual banks, i.e. their capacity to generate contagion in the rest of the system. The analysis
of interbank networks can provide this guidance.

Against this background we review the literature on interbank networks, which is part of a
growing literature on financial networks. The broader financial networks literature is analyzing
connections between financial institutions: banks, but also hedge funds, insurance companies,
etc. We restrict the survey's focus on the interbank network literature. This survey presents a
systematic overview of our current understanding of the structure of interbank networks, of
how network characteristics affect contagion in the banking system and of how banks form
connections when faced with the possibility of contagion and systemic risk. In particular, we
highlight how the theoretical literature on interbank networks offers a coherent way of
studying interconnections, contagion processes and systemic risk, while emphasizing at the
same time the many challenges that must be addressed before general results on the link
between the structure of the interbank network and financial stability can be established.

The theoretical literature has generated a number of insights on the effect of the network
structure on contagion. A first result is that the number and magnitude of defaults depend on
the network topology. There is now substantial research characterizing those structures that
tend to propagate default or alternatively that tend to dampen it. An avenue for further
research is to have more realistic network structures on which to analyze contagion. Since
empirical studies now provide an increasing number of stylized facts on the interbank network
topology, research needs to move beyond deriving results on random networks or on overly
simplified structures. Furthermore, the fragility of the system depends on the location in the
network of the institution that was initially affected. Intuitively, the failure of core banks is
more damaging than the failure of a periphery bank. Finally, another main finding is that there
is a trade-off between risk sharing via linkages to other banks and contagion risk due to too
many linkages. While the existence of the trade-off is not disputed, there is no consensus on
whether a complete network dampens or fuels contagion. Some studies argue that
intermediate levels of connectivity are better, for example because the effect of connectivity on
contagion is non-monotonic. Recent research argues that a complete network is more resilient
to small shocks whereas in the presence of large shocks, less connections are better able to
prevent contagion. The lack of consensus hinges on the fact that these studies have been
conducted on widely different network structures and under different assumptions about the



size and type of shocks. Again, conducting analyses on more realistic network structures is
required to make a convincing case.

Another shortcoming is that most interbank network models in the literature are static and
exogenously given. One limitation of these static models is that they do not provide a dynamic
account of link formation. Research is moving in this direction, but most of the dynamic models
still use probabilistic link formation by relying on network growth models or on preferential
attachment rules. A few recent models rely on endogenous network formation, in which banks
purposefully choose the amount of interbank lending and borrowing and thereby create the
structure of the interbank network. More work is needed on how to incorporate bank behavior
into interbank networks. More precisely, we need to include micro-founded models of bank's
dynamic reactions to financial shocks and to changes in regulatory parameters.

The survey concludes with a discussion of the policy relevance of interbank network models
with a special focus on macro-prudential policies and monetary policy. Being able to capture
heterogeneity and interconnectedness, the network literature can be a useful source for policy
insights on financial stability. As data availability improves, it is possible to get increasingly
accurate network representations of the underlying financial system. The interbank networks
literature focuses on four main policy areas. The first is identifying critical institutions, where
measures of centrality and clustering are used to identify the systemically relevant banks in the
network. The second policy area we discuss is stress testing and how supervisory authorities
can gather insights from network models for stress testing exercises. The third focus is on
monetary policy. Central banks are introduced into the interbank network by allowing one bank
either to supply an unlimited amount of liquidity or to provide liquidity against eligible
collateral. The fourth and most studied area focuses on macro-prudential policy. The
theoretical network literature has done policy experiments to simulate the impact of different
regulatory measures on systemic risk. More research is needed to evaluate the impact of
macro-prudential policy instruments on the banking sector as well as the analysis of the
interactions between different macro-prudential policy instruments. Similarly, the evaluation
of the interactions between monetary policy and macro-prudential policy is also an interesting
topic for further research.
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Abstract

The banking system is highly interconnected and these connections can be con-
veniently represented as an interbank network. This survey presents a systematic
overview of the recent advances in the theoretical literature on interbank networks.
We assess our current understanding of the structure of interbank networks, of how
network characteristics affect contagion in the banking system and of how banks
form connections when faced with the possibility of contagion and systemic risk.
In particular, we highlight how the theoretical literature on interbank networks of-
fers a coherent way of studying interconnections, contagion processes and systemic
risk, while emphasizing at the same time the challenges that must be addressed
before general results on the link between the structure of the interbank network
and financial stability can be established. The survey concludes with a discussion
of the policy relevance of interbank network models with a special focus on macro-
prudential policies and monetary policy.
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1 Introduction

Why model the banking sector as a network? Banks are highly interdependent, they are
connected via both the asset and the liability sides of their balance sheets. Connections
can be either direct, indirect or both. Banks are directly connected through mutual
exposures acquired on the interbank market. Similarly, banks are indirectly connected
through holding similar portfolios of assets. These connections in the interbank market
can be conveniently represented as a network. Networks are constituted of nodes and
links between these nodes. In the case of interbank networks, the nodes represent banks
and the links represent the interbank relations.

Representing the interbank market as a network! allows to model interactions be-
tween several heterogeneous financial institutions and thereby improves our understand-
ing of complex economic phenomena such as financial crises. Capturing heterogeneity
and interconnections are a welcome addition to the toolbox of researchers in the macro
finance area. Indeed, more traditional macro finance models often work with representa-
tive banks. This modeling technique has long been criticized for its inability to capture
the complexity of the banking sector.

A network approach to banking is particularly important for assessing financial stabil-
ity and systemic risk (Allen and Babus, 2009; Haldane, 2009). This approach can be in-
strumental in capturing the externalities that the risk associated with a single institution
may create for the entire system. Indeed, from a financial stability perspective, banks
should neither be too-big-to-fail nor too-interconnected-to-fail. A better understanding
of network externalities may facilitate the adoption of a macro-prudential framework for
financial supervision. Network externalities arise when risk-taking behaviour of individ-
ual institutions affects other institutions and the system as a whole. To guide policy
it becomes necessary, in this context, to measure the systemic importance of individual
banks, i.e. their capacity to generate contagion in the rest of the system.? The analysis
of interbank networks can provide this guidance.

In their survey on systemic risk in banking De Bandt et al. (2012) put forward a
‘financial fragility hypothesis’, arguing that systemic risk and potential contagion effects
are of special concern in the financial system. They highlight three interrelated features
that provide a basis for the "financial fragility hypothesis’. This survey argues that these
three features can all be captured by interbank network models, making these models
particularly appealing for financial stability research. One feature that makes the finan-
cial system fragile according to De Bandt et al. (2012) is that there is a ’complex network
of exposures among banks’. Interbank network models are clearly able to capture these
exposures and they do so at increasing levels of complexity, representing different ma-
turities and instruments at the same time (Aldasoro and Alves, 2015; Langfield et al.,
2014; Montagna and Kok, 2013) and including several contagion channels (Gai and Ka-

!For an overview of the application of network analysis to other social and economic contexts, we
refer the interested reader to a book chapter by Lee (2010) or to the textbooks by Jackson (2010) and
Goyal (2012).

2For a discussion on the relationship between network externalities and systemic risk, see Aldasoro
and Angeloni (2015).



padia, 2010; Glasserman and Young, 2014). The second feature that leads to a fragile
financial system is that the maturity transformation activity performed by banks makes
the structure of the bank’s balance sheet matter. This makes miscoordination of depos-
itors and creditors costly. Network studies have analyzed these problems, for example
by studying bank runs (Dasgupta, 2004), short-term lending (Battiston et al., 2012a),
maturity transformation (Georgescu, 2015) and rollover risk (Anand et al., 2012; Allen
et al., 2012). Interbank network models also incorporate the balance sheet structures
of banks at increasing levels of sophistication. Recent models feature banks optimizing
their balance sheet and thereby endogenously creating the interbank network (Bluhm
et al., 2014a; Georg, 2013). The third and last feature highlighted by De Bandt et al.
(2012) is the ’informational and control intensity of financial contracts, which rely on
promises and expectations about future payments’. The role of uncertainty (Caballero
and Simsek, 2013), increasing counterparty risk (Halaj and Kok, 2015) and liquidity
hoarding (Aldasoro et al., 2015; Gai et al., 2011) can all be explored in interbank net-
work models. Hence the interbank network literature can help understand systemic risk
in all its facets and can therefore be relevant not only for academic research but also for
practitioners.

This survey reviews the literature on interbank networks, which is part of a growing
literature on financial networks. The broader financial networks literature is analyz-
ing connections between financial institutions: banks, but also hedge funds, insurance
companies, etc.® We restrict the survey’s focus to the interbank network literature and
take stock of our current understanding of the topology of interbank networks, of how
its structure affects contagion and of how banks form connections when faced with the
possibility of contagion and systemic risk. For each aspect we provide a brief overview
of the results and highlight avenues for further research. A final section reviews and
discusses the policy insights gained from the interbank networks literature.

The first section of this survey reviews empirical work, which provides a direct insight
into the topology of real interbank networks.* The structural features of the banking
system can be particularly well captured by a network representation. The network is
able to represent the fact that banks have heterogeneous balance sheet characteristics.
Networks can also capture that links between banks are directed, since it is economically
meaningful whether a bank borrows from or lends to another bank. Furthermore, net-
works also allow for weighted links between banks, where the weights are the monetary
quantities that banks exchange. Finally, a network representation can also incorporate
the different types of links between banks. As Langfield and Soraméki (2014) highlight,
banks engage in hundreds of different types of transactions with each other, such as inter-
bank lending, repurchase agreements or derivatives. This plethora of possible link types
can be captured by multilayer financial networks, where different layers represent differ-
ent transaction types (Aldasoro and Alves, 2015; Bargigli et al., 2014; Langfield et al.,
2014; Montagna and Kok, 2013). Empirical studies have also provided new insights into
the structure of interbank networks. A major result is that interbank networks exhibit

3See for example Billio et al. (2012).
“See Langfield and Soramiiki (2014) for a survey of this empirical work.



a core-periphery structure with a highly connected core and few connections to and
among periphery banks (Craig and von Peter, 2014; Fricke and Lux, 2015a; Langfield
et al., 2014).

Empirical network studies form a vital basis for simulation studies®. They also
deliver valuable stylized facts and structural features for theoretical modeling, hence
their relevance for this survey. Yet by construction, empirical studies are unable to draw
conclusions on the generic relationship between contagion risk and the characteristics of
the financial system. This is the gap theoretical modeling can fill.

The second section of this survey discusses the theoretical literature on the effect
of network characteristics on the process of contagion.® The literature covered in this
section is characterized by two features. The first is that it analyzes network dynamics
generated by subjecting the network structure to a shock. The second feature is that
these dynamics take place on an exogenously given and static network structure. Links
between banks can be either direct, indirect or both.

Links created via the interbank market are said to be direct. Upper (2011) has
highlighted that we never have observed a bank failure due to losses on the interbank
market. The vast majority of empirical financial network simulation studies find little
potential for failures resulting from direct interbank linkages (Summer, 2013; Upper,
2011). Cifuentes et al. (2005) argue that these simulation results are hardly surprising,
since interbank loans represent a limited fraction of bank balance sheets. There are other
explanations as to why we never have observed a default due to losses on the interbank
market. Maybe government interventions have prevented contagion via this channel.”
Government bail-outs are undesirable for moral-hazard reasons, hence studying how
to limit contagion before it occurs is worthwhile. Another argument for studying direct
exposures is that the fear of direct contagion on the interbank market can trigger indirect
contagion. Models show that the fear of losses in the interbank market may trigger bank
runs (Dasgupta, 2004), mark-to-market losses from perceived credit quality deterioration
(Glasserman and Young, 2014), confidence crises (Arinaminpathy et al., 2012; May and
Arinaminpathy, 2009), gridlocks (Freixas et al., 2000) or it may worsen indirect contagion
(Caccioli et al., 2015). It is therefore important to understand the working of the direct
channel before exploring its potential interactions with other channels of contagion. The
literature has also analyzed indirect linkages between banks. Connections studied include
models with cross-holdings of shares (Elliott et al., 2014), multiple assets (Caccioli et al.,
2014) and linked portfolio returns (Lagunoff and Schreft, 2001).

Research questions in the theoretical literature on the direct and indirect channel are
strongly related. They study how the network structure and the nodes’ characteristics
influence contagion. Relevant characteristics of the network topology are the level of
connectivity, diversification, integration and the size of interbank exposures. Important
bank level characteristics are, among others, leverage and net worth.

®See Upper (2011) and Summer (2013) for surveys.

5For general results about network structure and cascading failures, see for example Blume et al.
(2011).

"See Laeven and Valencia (2013) for policy responses to banking crises from 1970 to 2011.



Real-world banks have however both direct and indirect links at the same time.
Combining direct and indirect links in an interbank network not only shows how shocks
are propagated, but is also able to capture how shocks are amplified (Cifuentes et al.,
2005). The amplification mechanism in these models is mainly driven by fire sales
and resulting endogenous changes in asset prices. Caccioli et al. (2015) show that the
interaction between the direct and indirect contagion channels is very important, creating
risks that may be much larger than any single channel of contagion alone. From a risk
perspective, these models interact counterparty risk resulting from direct exposures with
liquidity risk resulting from the fire sales channel.®

The theoretical literature has generated a number of general results on the effect of
the network structure on contagion. A first result is that the number and magnitude of
defaults depend on the network topology. There is now substantial research characteriz-
ing those structures that tend to propagate default or alternatively that tend to dampen
it (Allen and Gale, 2000; Acemoglu et al., 2015; Freixas et al., 2000; Gai et al., 2011; Nier
et al., 2007). An avenue for further research is to have more realistic network structures
on which to analyze contagion. Since empirical studies now provide an increasing num-
ber of stylized facts on the interbank network topology, research needs to move beyond
deriving results on random networks or on overly simplified structures’. Furthermore,
the fragility of the system depends on the location in the network of the institution that
was initially affected (Gai and Kapadia, 2010). Intuitively, the failure of core banks is
more damaging than the failure of a periphery bank. Finally, another main finding is
that there is a trade-off between risk sharing via linkages to other banks and contagion
risk due to too many linkages. While the existence of the trade-off is not disputed, there
is no consensus on whether a complete network dampens (Allen and Gale, 2000; Freixas
et al., 2000) or fuels contagion (Battiston et al., 2012b; Vivier-Lirimont, 2006). Some
studies argue that intermediate levels of connectivity are better, for example because
the effect of connectivity on contagion is non-monotonic (Gai et al., 2011; Nier et al.,
2007). Recent research by Acemoglu et al. (2015) argues that a complete network is
more resilient to small shocks whereas in the presence of large shocks, less connections
are better able to prevent contagion. The lack of consensus hinges on the fact that these
studies have been conducted on widely different network structures and under different
assumptions about the size and type of shocks.'® Again, conducting analyses on more
realistic network structures is required to make a convincing case. The question that
remains is how banks strategically trade off risk sharing and contagion risk. This topic
has been taken up recently by the literature on network formation.

The third section argues that one limitation of static models of financial networks is
that they do not provide an account of link formation. More precisely, they do not model
the dynamic process by which financial institutions enter into obligations to one another

8This confirms results of more traditional macro finance models by Geanakoplos (2010) and Brun-
nermeier and Pedersen (2009) that market liquidity and funding liquidity are mutually reinforcing and
their interaction can lead to liquidity spirals.

9Prominent structures include the complete network, the star network and the ring network.

10Gee Table 2 in the appendix for an overview of the different types of shocks and network structures
used in this literature.



in the first place.!! So far, three main approaches to link formation have crystallized
in the financial networks literature. One branch of the literature borrows ideas from
network growth models. Typically, these are random network models where new nodes
are born over time and form attachments to existing nodes when they are born.'? One
option is to generate links with a certain probability or according to a stochastic process
(Anand et al., 2012). Another option is to condition link formation on characteristics of
the nodes, such as their profits (Lenzu and Tedeschi, 2012) or their willingness to extend
an interbank loan (Lux, 2014). This process of network formation is called preferential
attachment. Trust is an important element in this process of link formation, a result also
confirmed by the empirical literature on relationship lending (Affinito, 2012; Brauning
and Fecht, 2012; Cocco et al., 2009).

A second area uses strategic network formation, where banks assess the costs and
benefits from forming a link with another bank (Blume et al., 2013). A prominent
theme in strategic network formation are rollover decisions by banks, often modeled
using global games techniques. Creditors strategically decide to rollover a loan after
receiving a signal about the solvency or performance of the borrower (Allen et al., 2012;
Anand et al., 2012; Fique and Page, 2013). Closely related to strategic network formation
are network formation games. A game of network formation specifies a set of players,
the link formation actions available to each player and the payoffs to each player from
the networks that arise out of individual linking decisions. Rollover decisions (Fique
and Page, 2013) or decisions to enter preferential trading relationships in an interbank
market (In’t Veld et al., 2014) have been modeled as network formation games.

The third branch of this literature uses endogenous network formation. Banks choose
the amount of interbank lending and/or borrowing by optimizing their (heterogeneous)
balance sheets (Aldasoro et al., 2015; Bluhm et al., 2014b; Georg, 2013; Halaj and Kok,
2015) and thereby create the structure of the interbank network. The literature on
endogenous network formation combines economic modeling techniques with the insight
that interconnections need to be taken seriously.

Representing the banking system as a network is arguably more realistic than to
model it as a representative bank, as traditional macro finance models do. Being able
to capture heterogeneity and interconnectedness, the network literature can be a use-
ful source for policy insights on financial stability. As data availability improves, it is
possible to get increasingly accurate network representations of the underlying finan-
cial system. It is important that the theoretical literature takes better account of the
achievements in the empirical literature, so that models become more realistic and we
are able to derive general results on contagion of relevance to policy-makers.

The interbank networks literature focuses on four main policy areas. The first is
identifying critical institutions, where measures of centrality and clustering are used to
identify the systemically relevant banks in the network.'® The second policy area we
discuss is stress testing and how supervisory authorities can gather insights from network

'Gee Jackson (2005) for a survey on network formation models in economics.
12See chapter five on growing random networks in Jackson (2010).
13See Langfield and Soramiiki (2014) for a survey of these measures.



models for stress testing exercises (Anand et al., 2014a; Canedo and Jaramillo, 2009;
Chan-Lau et al., 2009; Espinosa-Vega and Solé, 2014; Halaj and Kok, 2015). The third
focus is on monetary policy. Central banks are introduced into the interbank network
by allowing one bank either to supply an unlimited amount of liquidity (Bluhm et al.,
2014b) or to provide liquidity against eligible collateral (Georg, 2013). The final and
most studied area focuses on macro-prudential policy. The theoretical network literature
has done policy experiments to simulate the impact of different regulatory measures on
systemic risk (Aldasoro et al., 2015; Gai et al., 2011; Halaj and Kok, 2015; Haldane and
May, 2011; Nier et al., 2007).

After having briefly discussed the literature reviewed in this survey, let us now turn
to an overview of the already existing surveys of the field. Considering the growing body
of theoretical literature on financial networks, there have been remarkably few surveys
on the subject. An early survey by Allen and Babus (2009) discusses the then emerging
literature on financial networks as well as the methodologies used and makes a case why
the complexity of financial systems can be ’naturally captured’ using a network repre-
sentation. Yet, since 2009, the theoretical literature has tremendously expanded and to
the best of our knowledge, no survey has recently taken stock of these new studies.'®
Four recent surveys are mainly focused on simulations of contagion in financial networks
and their applications. Upper (2011) reviews simulation methods to test for contagion in
empirical interbank networks as well as methods to construct interbank networks from
different data sources. Elsinger et al. (2013) also survey simulated empirical financial
networks and their applications in systemic risk analysis. They describe in detail how
such simulations are designed and thereby nicely complement the slightly less technical
survey of these methods by Upper (2011). Langfield and Soraméki (2014) review the
empirical literature related to interbank markets from a systemic risk perspective. In
addition to discussing network simulations, they also survey the literature on the topol-
ogy of empirical interbank networks, as well as the literature for identifying systemically
important banks. The survey by Summer (2013) also focuses on simulation studies.

The present survey aims to fill this gap by providing a systematic overview of the
theoretical interbank network literature. Table 2 in the appendix classifies the theoretical
interbank network literature by link type, shock type, loss propagation as well as by
network formation process and network structure. The survey also provides a systematic
discussion of the policy insights from theoretical network models. The survey is intended
to be relevant not only for academic economists, but also for financial stability experts
at central banks or supervisory authorities interested in the progress of the field and
its potential policy relevance. Finally, this survey also builds a bridge between results
from the financial network literature and the established macro finance literature.!®
Modeling techniques clearly differ. Network analysis can easily capture heterogeneity

Roughly half of the hundred papers referenced here were published in 2013, 2014 or 2015. Another
indicator of the increasing use of network analysis is the recent creation of the ’Journal of Network Theory
in Finance’ (http://www.risk.net/type/journal/source/journal-of-network-theory-in-finance).

15For an overview of the macro finance literature see for example the survey by Brunnermeier et al.
(2013) or by Shin (2010). For a comprehensive collection of classic articles and recent contributions on
liquidity and crises, see Allen et al. (2011).
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and interconnections, whereas the incorporation of optimizing financial institutions into
networks is still in its infancy. The established macro finance literature can build on a
long tradition of economic modeling of agent’s decisions, with the restriction that agents
are often representative. Still, both share similar research topics, for example the study
of the propagation and amplification of shocks in the financial system, fire sales spirals,
market liquidity or the fragility of financial intermediaries.

This survey is structured as follows. The next section takes stock of our current
understanding of the topology of interbank networks. The third section reviews how
the structure of the interbank network affects contagion. The fourth section analyzes
how banks form connections when faced with the possibility of contagion and systemic
risk. The fifth section reviews the policy insights gained from the interbank networks
literature. The final section concludes by highlighting a few avenues for further research.

2 Interbank network structure and topology

Empirical work provides a direct insight into the topology of real interbank networks.
Table 1 in the appendix classifies the empirical literature on the topology of interbank
networks by the scope of the interbank market and the data type used. It also summa-
rizes topological features of these interbank markets. The studies reviewed below also
deliver valuable stylized facts and structural features for theoretical modeling. Further-
more, the specific characteristics of interbank networks have implications for the design
of policy responses to financial turmoil (Haldane and May, 2011).

2.1 Overview of features particular to interbank networks

The structural features of the banking system can be captured particularly well by a
network representation. First, the network is able to represent the fact that banks have
heterogeneous balance sheet characteristics. Banks will be of different sizes and have
different compositions of assets and liabilities. Heterogeneous balance sheet characteris-
tics imply heterogeneity in banks’ inherent ability to withstand external shocks. Second,
networks can also capture that links between banks are directed. Consider the simplest
case where one bank lends to another bank. The first bank is exposed to the default
of the second bank (counterparty risk), while the second bank might be exposed to the
willingness of the first bank to rollover the loan (rollover risk). In both cases, the di-
rection of the link does matter for economic interpretation. Third, networks also allow
for weighted links between banks. A weighted link in this context means that links are
associated with monetary quantities and transaction volumes. For example a weighted
link between two banks can represent the size of the interbank loans between those
two banks. Finally, a network representation can also incorporate the different types
of links between banks. As Langfield and Soraméki (2014) highlight, banks engage in
hundreds of different types of transactions with each other, including many variations
on deposits; prime lending; repurchase agreements; and derivatives. This plethora of
possible link types is now captured by recent research on multilayer financial networks



(Aldasoro and Alves, 2015; Bargigli et al., 2014; Langfield et al., 2014; Montagna and
Kok, 2013). In addition, banks are connected by virtue of their exposures to common
risk factors. Banks are also connected across borders, but cross-border exposures are
hard to quantify due to scarce data. Recent efforts have been directed for example at
studying global banking from a network perspective (Garratt et al., 2014; Minoiu and
Reyes, 2013) and at analyzing how international linkages in interbank markets affect the
stability of interconnected banking systems (Tonzer, 2015).

The overall structure of interbank networks exhibits high clustering coefficients'®.
Real-world interbank networks are also sparse, which means that only a small fraction
of all possible links do actually exist. The distribution of the number of connections of
each node appears to be fat-tailed, meaning that few nodes have many links and many
nodes have few links. Interbank networks have also been found to be small worlds!” and
to show disassortative mixing with respect to the bank size, so small banks tend to trade
mainly with large banks and vice versa.'®

2.2 Selected empirical findings on the structure of interbank networks
2.2.1 Degree distribution

The first selected feature is the degree distribution of the nodes. The degree is the
number of (incoming and/or outgoing) connections per node, i.e. the number of the
bank’s counterparties. Boss et al. (2004) are the first to provide an empirical analysis
of the structural features of a real-world interbank network using network theory. They
analyze the Austrian interbank market based on central bank data. Their main finding
is that the network structure of the interbank market is scale free!®. This implies that
there are very few banks with many interbank linkages, whereas there are many banks
with only a few links.

Many other existing interbank networks have been reported to resemble scale-free
networks, such as the European interbank market for large banks (Alves et al., 2013), the
Italian interbank market (De Masi et al., 2006), the Colombian payment and settlement
systems (Léon and Berndsen, 2014) as well as the US Fedwire system (Soramaéki et al.,
2007).

Other studies by Bech and Atalay (2010), Iori et al. (2008) and Fricke and Lux
(2015b) have nuanced these results. Studying the US Federal Funds market, Bech and
Atalay (2010) have also found that the number of counterparties per bank follows a
fat-tailed distribution, with most banks having few counterparties and a small number

16 Clustering coefficients measure the tendency of linked nodes to have common neighbours.

17Small world networks have two main features: small average shortest path length and a clustering
coefficient significantly higher than expected by random chance, see Watts and Strogatz (1998).

18 A characteristic which is related to the core periphery structure of interbank networks as highlighted
by Craig and von Peter (2014).

19A scale-free network is a network in which the fraction of nodes with degree k is proportional to
k™%, where « is the so-called scaling parameter. In other words, scale-free networks exhibit a power law
distribution of degrees. The term scale-free indicates that there is no typical scale of the degrees, i.e.
the mean may not be representative.



having many. However, the degree distribution is not necessarily best represented by a
power law distribution. While the power law distribution provides the best fit for the
out-degree, the negative binomial distribution provides the best fit for the in-degree.
Tori et al. (2008) and Fricke and Lux (2015b) find no evidence in favor of scale-free
networks in the e-MID market. Rather, Fricke and Lux (2015b) find that the data are
best described by negative binomial distributions. Iori et al. (2008) find that the degree
distribution, though not scale-free, is still heavier tailed than a purely random network?°.

In view of the mixed evidence regarding the power-law behavior, it is not settled
whether real-world interbank networks fall into the category of scale-free networks.
Knowing the degree distribution of interbank networks is crucial for policy design. As
Albert et al. (2000) point out, scale-free networks are relatively robust to the random
breakdown of nodes. At the same time, the system is very vulnerable to the risk of the
specific removal of hubs, which can even lead to its collapse. This characteristic has
been coined robust-yet-fragile (Haldane, 2009), indicating that random disturbances are
easily absorbed (robust) whereas targeted attacks on the most central nodes may lead
to a breakdown of the entire network (fragile). If interbank networks are scale-free, then
identifying the vulnerable nodes is a key policy objective.

Thus, taking into account the relevance of such topological features, a more rigorous
statistical analysis of the distributional properties of interbank network data should be
worthwhile. It crucially hinges on the improved availability of more granular data. Of
further interest are also the policy implications. For example, what does it mean for net-
work stability to have a degree distribution that follows a negative binomial distribution?
So far, the empirical literature has been silent on these questions.

2.2.2 Core-periphery structures

Numerous empirical studies find that interbank markets have a core-periphery structure:
Germany (Craig and von Peter, 2014), the e-MID?! (Iori et al., 2008; Fricke and Lux,
2015a), the UK (Langfield et al., 2014), the US federal funds market (Bech and Atalay,
2010) and the US Fedwire system (Soraméki et al., 2007). The core-periphery structure
is sometimes also called tiered or hierarchical structure in the network context.

Craig and von Peter (2014) capture this market structure by formulating a core-
periphery model and devise a procedure for fitting the model to real-world networks.
The banks in the system are partitioned into two sets based on their bilateral relations
with each other: core banks lend to each other; periphery banks do not lend to each other;
core banks lend to periphery banks; core banks borrow from periphery banks. Craig and
von Peter (2014) argue that tiering is founded on an economic concept that is central
to banking, namely intermediation. Core banks are special intermediaries that play a

20 A random network is a network whose links are formed according to a random process. Such random
networks are a useful benchmark against which we can contrast observed networks; such comparisons
help to identify which elements of the interbank structure are not the result of mere randomness, but
must be traced to other factors.

21The e-MID is an electronic trading system for unsecured deposits based in Milan and mainly used
by Italian banks for overnight interbank credit.



central role in holding together the interbank market. The interbank market is often
modeled in the theoretical banking literature as a centralized exchange in which banks
smooth liquidity shocks (Ho and Saunders, 1985; Bhattacharya and Gale, 1987; Freixas
and Holthausen, 2005). Craig and von Peter (2014) show that the interbank market
looks very different from traditional banking models. The market is not a centralized
exchange. It is in fact a sparse network, centered around a tight set of core banks
that intermediate between numerous smaller banks in the periphery. Furthermore, this
hierarchical structure is highly persistent over time (Craig and von Peter, 2014; Fricke
and Lux, 2015a).

Theoretical models of the interbank market show the emergence of a core-periphery
structure where banks form credit relationships based on trust in other banks (Lenzu
and Tedeschi, 2012) or based on their willingness to lend (Lux, 2014). In’t Veld et al.
(2014) show that a core periphery network structure can form endogenously in a network
formation game if agents are heterogemeous.22

2.3 Multilayer interbank networks

The vast majority of empirical financial networks papers studies the overnight interbank
market. Yet this is just one type of relation between banks out of a multiplicity of
transactions that banks engage in. Recent empirical studies hence argue that a more
realistic representation of the interbank market is a multiplex, or multilayer network. A
multilayer network is composed by a series of layers. Each node is a bank and each layer
is a network representing one type of relation. Layers can represent maturity, nature
of the contract (secured versus unsecured), instruments, direct and indirect links. This
type of analysis crucially hinges on the availability of granular data. The main takeaway
at this stage is that it is important to differentiate the layers of the network, since both
topology and contagion processes can be different across layers.

Bargigli et al. (2014) exploit a database of supervisory reports on Italian banks that
includes all bilateral exposures broken down by maturity and by the secured and unse-
cured nature of the contract. They find that layers have different topological properties
and persistences over time. The topology of the total interbank market is closely mir-
rored by the one of the overnight market, while both are little informative about other
layers. In general, the presence of a link in a layer is not a good predictor of the presence
of the same link in other layers.

Langfield et al. (2014) construct two networks from UK data: one based on multiple
layers of exposures, by aggregating banks’ counterparty credit risks; and another based
on multiple layers of funding, by aggregating banks’ funding from other banks. They find
that these two networks have different structural characteristics. Structural differences
suggest that credit risk and liquidity risk propagate in the interbank system by different
contagion processes.

22See also Fricke and Lux (2015a) and Langfield et al. (2014) for a further discussion on why such
core-periphery structures may emerge in interbank markets.
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Montagna and Kok (2013) develop an agent-based model with the aim of catch-
ing risks arising from different banks’ businesses based on a data set featuring large
EU banks. The interbank market is represented as a multilayered network that takes
into account long- and short-term bilateral exposures and common exposures to external
financial assets. The authors find that focusing on a single interbank segment can under-
estimate the likelihood of contagion: the interaction among layers may amplify contagion
risk in those cases where certain institutions are systemically relevant across different
segments. Aldasoro and Alves (2015) also use data on exposures between large European
banks. The data set is broken down by both maturity and instrument type to character-
ize the main features of the multiplex structure of the network of large European banks.
This multiplex network presents a high similarity between layers, stemming both from
standard similarity analyses as well as a core-periphery analysis of the different layers.

To conclude this section on empirical network studies, it is important to highlight that
this literature analyzes the interbank network structure for particular countries. They
provide valuable insights into topological features of real-world networks: realistic degree
distributions, core-periphery structures, characteristics across maturities and instrument
types... Hence they form a vital basis for simulation studies and deliver valuable stylized
facts and structural features for theoretical modeling. Yet by construction, empirical
studies are unable to draw conclusions on the generic relationship between contagion
risk and the characteristics of the financial system. This is the gap theoretical modeling
can fill.

3 Effect of network structure on contagion

This section discusses the theoretical literature on the effect of the network structure
on the contagion process.?> The literature covered in this section is characterized by
two features. The first is that it analyzes network dynamics generated by subjecting the
network structure to a shock. The second feature is that these dynamics take place on
an exogenously given and static network structure.

3.1 Direct linkages

In the real world, no bank ever failed because of losses on the interbank market (Upper,
2011). One possibility is therefore that the channel is irrelevant. Several studies®*
have estimated the matrix of bilateral exposures among banks in advanced economies
and simulated the extent of contagion following a single bank failure. These studies
find little potential for failures resulting from direct interbank linkages. However, these
authors assume a fixed structure of interbank claims and use estimation methods?® that

23For general results about network structure and contagion, see for example Blume et al. (2011).

24 Among others, Sheldon and Maurer (1998), Furfine (2003), Upper and Worms (2002), and Wells
(2002) estimate the matrix of bilateral exposure among banks for Switzerland, the U.S., Germany and
the U.K., respectively. See Upper (2011) for a survey on the results of the network simulation literature.

25The most widely used estimation method is maximum entropy, which distributes interbank exposures
as evenly as possible among the nodes. Mistrulli (2011) shows that for the Italian banking system the
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create unrealistically dense networks, and therefore fail to capture all of the dynamics.?®

There are other explanations as to why we never have observed a default due to losses
on the interbank market. Maybe government interventions have prevented contagion via
this channel.?” Government bail-outs are undesirable for moral-hazard reasons, hence
studying how to limit contagion before it occurs is worthwhile. Another argument for
studying direct exposures is that the fear of direct contagion on the interbank market
can trigger indirect contagion. Models show that the fear of losses in the interbank
market may trigger bank runs (Dasgupta, 2004), mark-to-market losses from perceived
credit quality deterioration (Glasserman and Young, 2014), confidence crises (May and
Arinaminpathy, 2009; Arinaminpathy et al., 2012) or gridlocks (Freixas et al., 2000). It
is therefore important to understand the working of the direct channel before exploring
its potential effects on other channels of contagion.

3.1.1 Pioneering works: Are more links always better?

Pioneering theoretical works by Allen and Gale (2000) and Freixas et al. (2000) suggest
that a highly connected interbank network enhances the resilience of the system to the
insolvency of an individual bank. Allen and Gale (2000) set up a basic network structure
involving four banks. Because liquidity preference shocks are imperfectly correlated
across regions, banks hold interregional claims on other banks to provide insurance
against liquidity preference shocks. Allen and Gale (2000) demonstrate that the spread of
contagion depends crucially on the pattern of interconnectedness between banks. When
the network is fully connected (the authors call it ’complete’ network) the amount of
interbank deposits held by any bank is evenly spread over all other banks. In such a
setting, the impact of a shock is dampened since every bank takes a small loss and there
is no contagion. By contrast, when the network structure is a ring (each node has one in-
and one out-going link, Allen and Gale (2000) call it ’incomplete’ network), the system
is more fragile. The initial impact of a shock is concentrated among neighboring banks.
Once these default, the early liquidation of long-term assets and the associated loss of
value propagate contagion to previously unaffected banks. The possibility of contagion
hence depends strongly on the structure of links in the network. The main insight is that
the complete claims structure is more robust than the incomplete structure. While the
study by Allen and Gale (2000) provides valuable insights into the stability of interbank
markets, their model has only four banks and both the network structures employed and
the financial structure of banks are too simplistic to be sure that the intuitions generalize
to real-world financial systems.

use of maximum entropy techniques underestimates contagion risk relative to an approach that uses
information on actual bilateral exposures. See Elsinger et al. (2006) for an exposition of the maximum
entropy technique and a discussion. Alternative estimation methods, such as minimum density (Anand
et al., 2014b), are currently being developed. The best solution would be to have data on bilateral
exposures of banks so as to skip the estimation step altogether.

26The next section will show that adding indirect linkages via common assets of banks will lead to
substantially different simulation results. Notably Cifuentes et al. (2005) show that when the prices of
fire sold assets are allowed to change endogenously, the impact of an initial shock may be considerable.

2TSee Laeven and Valencia (2013) for policy responses to banking crises from 1970 to 2011.
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While in Allen and Gale (2000) there is uncertainty about the timing of deposit
withdrawals & la Diamond and Dybvig (1983), in Freixas et al. (2000) there is uncertainty
about the location of deposit withdrawals. Interbank connections enhance the resilience
of the system to withstand the insolvency of a particular bank, because a proportion of
the losses on one bank’s portfolio is transferred to other banks through the interbank
agreements. Hence a dense network can be desirable.

Several studies build on the stylized model by Allen and Gale (2000). Leitner (2005)
develops a more general framework where the project of an agent can succeed only if he
and all the agents to whom he is linked make a minimum level of investment in their
projects. This setting can be applied to the slightly more complex set-up of Allen and
Gale (2000). Investing in a project then means meeting demand for liquidity by early
consumers, and success of the project is equivalent to not going bankrupt. In Leitner
(2005), endowments are random variables, therefore an agent may not have enough cash
to make the necessary investment. When agents are not linked to one another, agents
who realize high endowments have no incentive ex post to help those who realize low
endowments. Thus, some positive net present value investments do not take place (or in
Allen and Gale (2000)’s setting, some banks that are solvent but illiquid go bankrupt).
On the other hand, when agents are linked to one another, agents with high endowments
are willing to bail out those with low endowments. The reason is that if they do not,
all projects fail by contagion. Linkages may also be optimal ex ante because they allow
banks to obtain some mutual insurance even though formal commitments are impossible.
Leitner (2005) also characterizes the optimal network size: a more dense network is
desirable because it enables a higher level of investment and provides insurance.

Dasgupta (2004) is also interested in the optimal network size. Banks are linked via
cross-holdings of deposits, as in Allen and Gale (2000), except that only two regions with
a bank each are considered. Depositors receive a private signal about the fundamentals of
the bank in their region and choose whether to run or not. Using global games, Dasgupta
(2004) is able to isolate a unique equilibrium depending on the value of fundamentals
and to determine optimal cross-holdings of deposits.

Brusco and Castiglionesi (2007) study the propagation of financial crises among
regions in which banks are protected by limited liability and may invest in an excessively
risky asset. Banks are linked via cross-holdings of deposits, as in Allen and Gale (2000).
Contrary to the pioneering model, Brusco and Castiglionesi (2007) find that the extent
of contagion is greater the larger the number of interbank deposit cross-holdings. A ring
network is less conducive to contagion than a complete market structure, which is the
opposite result compared to Allen and Gale (2000).

What drives these differing results? The crucial transmission channel in Allen and
Gale (2000) is the unexpected early liquidation of the long-term asset due to a liquidity
shock, which may induce bank runs and fire sales, which spread the crisis. Early liquida-
tion is not a relevant mechanism in Brusco and Castiglionesi (2007), since contracts can
be written contingent on liquidity shocks. The only noncontractible source of contagion,
is the return on an excessively risky asset. A bank fails if the highly risky investment
fails. Financial crises spread directly, when a failing bank is unable to pay debts to other

13



banks. Thus, more contacts among banks increase the probability of contagion.

Vivier-Lirimont (2006) also finds that the higher network density, the larger is the
number of banks involved in the contagion process, and the quicker is the contagion
phenomenon. Similarly, Battiston et al. (2012b) argue that due to a positive feedback
loop resulting from a financial acceleration mechanism, more connections lead to greater
fragility in the financial system. This paper shows that a financial network can be most
resilient for intermediate levels of risk diversification.

Nier et al. (2007) study the effect of contagion after an idiosyncratic shock to one
bank in a random network. They find that the effect of connectivity is non-monotonic.
For low levels of connectivity, a small increase in connectivity increases the contagion
effect. This result is confirmed by Blume et al. (2013), who show that very small amounts
of overlinking can have a strong impact on contagion. Furthermoe, Nier et al. (2007)
show that for higher density levels, more links improve the ability of a banking system
to absorb shocks. Cifuentes et al. (2005) show that in an interbank network connected
both directly and indirectly via portfolio holdings, contagion is small either in a complete
network or in one with no connections.

Taken together, the previous studies present mixed evidence for the result by Allen
and Gale (2000) and Freixas et al. (2000) that complete networks are more resilient
than incomplete ones. A recent study by Acemoglu et al. (2015) tries to reconcile these
differing perspectives by looking at phase transitions depending on connectivity and
shock size. Focusing on regular financial networks?®, Acemoglu et al. (2015) show that
when the magnitude and the number of negative shocks are below certain thresholds,
a result similar to that of Allen and Gale (2000) and Freixas et al. (2000) holds: a
more equal distribution of interbank linkages leads to a less fragile financial system.
This small shock regime requires the size of the negative shock to be less than the total
excess liquidity available to the financial network as a whole. In particular, the complete
financial network is the configuration least prone to contagious defaults due to more
distributed risk sharing. As the magnitude or the number of negative shocks exceed the
surplus liquidity in the financial system, more financial interconnections are no longer
a guarantee for stability. Rather, interbank linkages facilitate financial contagion and
create a more fragile system. In the presence of large shocks, weakly connected financial
networks?? are significantly less fragile than more complete networks. The intuition
underlying such a sharp phase transition is that, with large negative shocks, the surplus
liquidity of the banking system may no longer be sufficient for absorbing the losses.
Under such a scenario, less interbank connections guarantee that the losses are shared
with the senior creditors of the distressed banks, and hence, protecting the rest of the
system.

28They define a regular network as one in which the total claims and liabilities of all banks are equal.
29 Acemoglu et al. (2015) suggest a network consisting of a collection of pairwise connected banks with
only a minimal amount of shared assets and liabilities with the rest of the system.
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3.1.2 Network characteristics and contagion

The research prompted by the works of Allen and Gale (2000) and Freixas et al. (2000)
has evolved beyond the trade-off regarding density and resilience. Networks have indeed
more features than just their level of connectivity. Examples of such characteristics of
financial networks are: the size of interbank exposures, leverage, the degree of concen-
tration of the system and balance sheet characteristics.

Gai and Kapadia (2010) make two crucial points.3® The first is that rare shocks can
have extreme consequences for the interbank network when they occur. The second is
that a shock of a given size can have very different impacts depending on which node
in the network is hit. The intuition behind these results is that increased connectivity
and risk sharing may lower the probability of contagious default, but conditional on a
failure, more connections also allow contagion to spread further. This a variant of the
robust-yet-fragile tendency of financial networks.

Gai et al. (2011), building on Gai and Kapadia (2010), construct an interbank net-
work of 250 banks subject to funding liquidity shocks®'. Banks hold both unsecured
interbank liabilities and repo liabilities on their balance sheet. They simulate differ-
ent shock scenarios. The simulation stops when no new banks are forced into liquidity
hoarding or until every bank is hoarding. They design a baseline scenario in which the
links connecting banks are distributed roughly uniformly (Poisson). They study what
happens when a random adverse haircut shock at one bank forces it to start hoarding
liquidity. They study the frequency and contagious spread of systemic liquidity crises,
identifying the tipping point in the process. Contagion occurs for average degrees be-
tween 0 and 20 and its probability is non-monotonic in connectivity, at first increasing
before falling. An average degree of 7.5 is identified as tipping point from which the
probability of contagion starts falling from close to one. 32

Nier et al. (2007) construct an interbank network as a random graph. They model
the number of defaults in an interbank market of 25 banks depending on the probability
of connectedness and the net worth of the bank. For an average degree of 7.5 (which
corresponds to a 30 percent probability of connectedness) Nier et al. (2007) find that
the number of defaults tumbles from five to zero for a net worth of three percent.
Interestingly, although the compared networks widely differ in size, the average degree
seems to matter more as indicator of a tipping point.

To assess the role of concentration, Gai et al. (2011) study how the results change
under a fat-tailed (geometric) network configuration, where some banks in the network
are much more highly connected than the typical bank. This leads to a tiered structure.
Contagion is less severe and less likely for low average degrees than under the Poisson
distribution. This reflects the well-know result by Albert et al. (2000) that fat-tailed
networks tend to be more robust to random shocks. Gai et al. (2011) also explore
the differing consequences of a targeted shock which affects the most interconnected
interbank lender under both network configurations. Contagion occurs more frequently

30See Amini et al. (2013) for a generalization of their results.
31 Lee (2013) proposes a method for calculating systemic liquidity shortages in the network context.
32This tipping point behavior has been generalized by Georg (2013) to a dynamic setting.
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under both distributions, but for the less concentrated network, it makes only a small
difference. For the concentrated network it makes contagion quasi-certain for a very
wide range of average degrees. What drives this result is that the most connected bank
under a Poisson distribution is not much more connected than the average bank, whereas
under the fat-tailed distribution the most connected bank is connected to a large part of
the network. This reflects another result by Albert et al. (2000) that fat-tailed networks
are vulnerable to targeted attacks on key nodes.

Nier et al. (2007) also explore the consequences of a targeted shock in a tiered network
structure. They take the tiered structure to the extreme, with one large bank and 24
small banks forming a star network. The single large bank is the central node in the star
network. Nier et al. (2007) then vary the number of links between the large bank and
the small banks. When the shock hits a small bank, contagion decreases monotonically
as more small banks become connected to the large bank. When the shock hits the
large bank, the relationship between interconnectedness and financial contagion is non-
monotonic. Defaults first increase in connectivity. When the large bank is linked to ten
small banks or more, defaults start decreasing.

Finally, Gai et al. (2011) change the complexity of the network. They increase
activity on the unsecured interbank market, increasing interbank liabilities from 15 to
25 percent on each bank’s balance sheet. Contagion occurs more frequently than in the
baseline, which is intuitive because the overall rise in interbank liabilities increases the
likelihood of larger funding withdrawals which cannot be absorbed by liquid assets. Nier
et al. (2007) also find that the size of interbank liabilities tends to increase the risk of
cascading failures, even if banks hold capital against such exposures.

Glasserman and Young (2014) estimate the extent to which defaults and losses are
magnified by the interbank network over and above the original shocks to asset values.
They compute the probability that default at a given node causes defaults at other nodes
via network spillovers. They then compare the resulting probability with the probability
that all of these nodes default by direct shocks to their outside assets with no network
transmission. They find that losses attributable to the network are modest under a
wide range of shock distributions. In addition, they find that the network is particularly
vulnerable to contagion when the originating node is large and highly leveraged.

3.2 Indirect linkages

This section will survey the literature on indirect linkages in financial networks. Indi-
rect connections include cross-holdings of shares (Elliott et al., 2014), multiple assets
(Caccioli et al., 2014) and linked portfolio returns (Lagunoff and Schreft, 2001). As with
the theoretical literature dealing exclusively with the direct channel, these studies also
focus on the network structure and the nodes’ characteristics and how these influence
contagion. Important characteristics of the network are diversification, integration and
bank leverage.

In Lagunoff and Schreft (2001) agents hold portfolios that are linked in the sense that
the return of an agent’s portfolio depends on the portfolio allocations of other agents.
All portfolio linkages taken together constitute the financial network. Shocks lead agents
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to reallocate their portfolios, thereby breaking some links. Two types of financial crises
are considered. The first type arises when agents do not foresee the possibility of losses.
Then the unraveling of the financial crisis is gradual, as agents successively sever links.
The second type occurs instantaneously when agents can foresee the losses and shift
their portfolios ex ante.

In Elliott et al. (2014), organisations are connected through cross-holdings of shares
which constitute the network. Via these cross-holdings, the organizations’ values depend
on each other. If an organization’s value falls below a certain threshold such that it fails,
these losses will affect its counterparties and these will propagate the losses further via
their counterparties. Relatively small and organisation-specific shocks can be amplified
in this way. Elliott et al. (2014) show how the probability and the magnitude of cascades
depends on two characteristics of the cross-holdings. The first aspect is integration,
which refers to the level of exposure of organizations to each other. Increasing integration
leads to an increase in exposures which tends to increase the probability and magnitude
of contagion. The second characteristic is diversification which refers to how spread out
cross-holdings are. Depending on the level of diversification, a failure of one organization
can have very different effects. In the case of low diversification, some organization can
be very dependent on the stability of others, but the low density of the network limits
propagation. For an intermediary level of diversification, the network is dense enough for
cascades to occur, but at the same time cross-holdings are still large, so that an individual
failure leads to far-reaching cascades. When diversification is high, organizations become
insensitive to another organization’s failure. In summary, an economy is particularly
vulnerable to cascades when both integration and diversification are at intermediate
levels, since connections exist to propagate shocks and organizations hold enough shares
of others for these drops in value to matter.

Caccioli et al. (2014) generalize the model of fire-sale dynamics by Cifuentes et al.
(2005) to the case of many assets. They build a network of banks and assets, where banks
have overlapping portfolios. Like Elliott et al. (2014), Caccioli et al. (2014) are interested
in the effect of diversification on the stability of the network, adding the possibility for
banks to be leveraged. The effect of diversification confirms the three phases found by
Elliott et al. (2014) for high, intermediate and low diversification. Furthermore, Caccioli
et al. (2014) find that higher leverage increases the overall instability of the network.

3.3 Interactions between direct and indirect linkages

The vast majority of empirical financial network simulation studies find little potential
for failures resulting from direct interbank linkages.?® Banks have however many more
types of links than just direct interbank exposures. Indirect links between banks exist
when the portfolios of financial institutions overlap due to investment in common assets.
The literature reviewed in this section combines direct and indirect links in an interbank
network. Combining these features not only shows how shocks are propagated, but is
also able to capture how shocks are amplified. The amplification mechanism in these

33See Upper (2011) and Summer (2013) for a survey on the results of this literature.
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models is mainly driven by fire sales. From a risk perspective, these models interact
counterparty risk resulting from direct exposures with liquidity risk resulting from the
fire sales channel.

Cifuentes et al. (2005) build a theoretical model of an interbank network and combine
direct linkages with indirect linkages via overlapping asset portfolios of banks. Notably
Cifuentes et al. (2005) show that when the prices of fire sold assets are allowed to change
endogenously, the impact of an initial shock may be considerable. The propagation works
as follows. The initial shock is the failure of one bank in the network. The remaining
assets of the bank are sold on the market. When the market’s demand for illiquid assets
is less than perfectly elastic, sales by distressed institutions depress the market prices
of such assets. The amplification of the shock results from a mark-to-market regime.
The update of the asset prices can induce a further round of endogenously generated
sales of assets, depressing prices further and inducing further sales. In this simple setup,
Cifuentes et al. (2005) are able to show that small shocks can amplify contagion.34

Gai and Kapadia (2010) incorporate the setup by Cifuentes et al. (2005) into an
interbank network with direct exposures. They find that adding an indirect channel
does not alter the robust-yet-fragile property of the original network. Nier et al. (2007)
also extend their model of direct exposures with the fire sales model by Cifuentes et al.
(2005). Generally, liquidity risk increases contagious default for any level of connectivity.
Furthermore, they find that more concentrated systems are fragile in particular when
markets are illiquid. The intuition is that in a concentrated system, the default of one
of the large banks requires the liquidation of a large part of the banking system. This
can quickly drive down market valuations for the remaining banks, exacerbating asset
price contagion for concentrated systems relative to less concentrated systems.

Like Cifuentes et al. (2005), Glasserman and Young (2014) also explore the effect of
a mark-to-market regime on financial stability. The main difference in their setup is that
assets do not need to be firesold to generate instability. In addition to the direct spillovers
channel, Glasserman and Young (2014) incorporate confidence crises, where the bank’s
perceived ability to pay declines, causing the market value of its liabilities to fall.® In a
mark-to-market regime this reduction in value can spread to other institutions who also
hold these liabilities among their assets. Such a confidence crisis can then leave these
connected institutions highly vulnerable. Glasserman and Young (2014) show that this
channel of contagion is likely to be considerably more important than direct spillover
effects.

Caccioli et al. (2015) want to explain a paradox between recent empirical (Upper,
2011) and theoretical studies (Glasserman and Young, 2014), which both suggest that
networks of direct exposures are not an important source of systemic risk, and the
stylized fact that in the aftermath of Lehman Brother’s bankruptcy liquidity dried up in

34In the macro-finance literature, endogenous asset price changes due to firesales are also an important
modeling device to generate the amplification of initially small negative shocks. See section two of the
survey by Brunnermeier et al. (2013).

35For the impact of confidence on contagion in interbank networks, see also May and Arinaminpathy
(2009) and Arinaminpathy et al. (2012).
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interbank markets.?0 Caccioli et al. (2015) wonder why market participants avoid being
connected to one another if such connections do not represent a large risk. They argue
that this apparent contradiction can be explained in terms of the interaction between
counterparty risk and liquidity risk. Interbank lending stopped after the collapse of
Lehman Brothers because market participants were aware that overlapping portfolios
could deteriorate their positions and make them over-exposed to their counterparties.3”
In order to show the importance of considering both counterparty and liquidity risk,
Caccioli et al. (2015) simulate shocks in an interbank network using Austrian data on
direct exposures. Then, they add a theoretical model of indirect interbank linkages
based on Cifuentes et al. (2005), where they connect all banks in the network to a
unique common asset.’® Caccioli et al. (2015) find that the system is rather stable
after the failure of a single bank if counterparty risk is the only contagion mechanism.
Then, they add the possibility of indirect contagion following a shock to the common
asset. Combining counterparty risk with overlapping portfolio risk, contagion is strongly
amplified, resulting in much larger cascading failures than would be observed otherwise.

Caballero and Simsek (2013) model a network of cross exposures between financial
institutions that is susceptible to default cascades. Banks have only local knowledge
of cross exposures: they understand their own exposures, but they are increasingly
uncertain about cross exposures of banks that are farther away (in the network) from
themselves. During normal times, banks only need to understand the financial health of
their direct counterparties. In contrast, when a surprise liquidity shock hits parts of the
network, a domino effect of bankruptcies becomes possible, and banks become concerned
that they might be indirectly hit. Banks now need to understand the financial health
of the counterparties of their counterparties (and their counterparties). Since banks
only have local knowledge of the exposures, they cannot rule out an indirect hit. They
now perceive significant counterparty risk that leads them to retrench into a liquidity
conservation mode. This structure exhibits strong interactions with secondary markets
for banks’ assets. Banks in distress can sell their legacy assets to meet the surprise
liquidity shock. If the shock is small, buyers rule out an indirect hit and absorb the
fire sold assets. If the shock is large, banks start hoarding liquidity as a precautionary
measure and buyers turn into sellers, exacerbating the fire sales.

Anand et al. (2013) push the analysis of interactions further by combining three sets
of agents: domestic banks, overseas banks and firms. The model is then calibrated to
advanced country banking sector data. The model highlights how shocks are propagated
through the direct interlinkages of claims and obligations amongst (and between) do-
mestic banks and overseas banks. But it also shows how defaults across the network
are amplified by asset fire sales and lending is curtailed in the macroeconomy as credit

3For an empirical study of interbank market freezes from a network perspective, see Gabrieli and
Georg (2014).

37This confirms results of more traditional macro finance models by Geanakoplos (2010) and Brun-
nermeier and Pedersen (2009) that market liquidity and funding liquidity are mutually reinforcing and
their interaction can lead to liquidity spirals.

38While the focus of this survey is on theoretical models and not on simulation studies, the paper by
Caccioli et al. (2015) has been included because it incorporates a theoretical model into the simulation.
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crunch effects take hold in the event of distress. In addition, they illustrate how greater
heterogeneity of bank balance sheets leads to more realistic outcomes, characterized by
the failure of some but not all banks in extreme scenarios.

4 Network formation

One limitation of static models of financial networks, is that they do not provide an
account of link formation, that is, they do not model the dynamic process by which fi-
nancial institutions enter into obligations to one another in the first place. This challenge
has been taken up recently in the financial networks literature.?”

Three main ways to model network formation have crystallized in the interbank
networks literature. One branch of the literature borrows ideas from network growth
models. Typically, these are random network models where new nodes are born over
time and form attachments to existing nodes when they are born.*® In the financial
networks literature, an empty network*' is given and link formation is then done in
a mechanical way between the nodes in the network. One option is to generate links
according to a stochastic process (Anand et al., 2012). Another option is to condition
link formation on characteristics of the nodes, such as their profits (Lenzu and Tedeschi,
2012) or their willingness to extend an interbank loan (Lux, 2014). This process of
network formation is called preferential attachment. Trust is an important element in
this regard. Banks trust other banks based on their performance or their reliability in
lending. An additional feature of preferential attachment is that it provides a mechanism
to generate scale-free distributions (Barabasi and Albert, 1999), which is also a feature
of the interbank network.

A second area uses strategic network formation, where banks assess the costs and
benefits from forming a link with another bank (Blume et al., 2013). A prominent
theme in strategic network formation are rollover decisions by banks, often modeled
using global games techniques. Creditors strategically decide to rollover a loan after
receiving a signal about the solvency or performance of the borrower (Allen et al., 2012;
Fique and Page, 2013; Anand et al., 2012). Closely related to strategic network formation
are network formation games. A game of network formation specifies a set of players,
the link formation actions available to each player and the payoffs to each player from
the networks that arise out of individual linking decisions. Rollover decisions (Fique
and Page, 2013) or decisions to enter preferential trading relationships in an interbank
market (In’t Veld et al., 2014) have been modeled as network formation games.

The third branch of this literature uses endogenous network formation. Banks choose
the amount of interbank lending and/or borrowing by optimizing their (heterogeneous)
balance sheets (Aldasoro et al., 2015; Bluhm et al., 2014b; Halaj and Kok, 2015; Georg,
2013). The literature on endogenous network formation combines economic modeling
techniques with the insight that interconnections need to be taken seriously.

398ee Jackson (2005) for a survey of network formation models in economics.
40Gee chapter five in the textbook by Jackson (2010) for an overview of network growth models.
41In an empty network there are no links between the nodes.
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4.1 Random link formation

Models reviewed here combine elements from random link formation with strategic el-
ements or with preferential attachment. Since the dominant driver for link formation
is based on probabilities and stochastic processes, these models, although hybrid, have
been categorized under random link formation.

4.1.1 Combining random and strategic network formation

Anand et al. (2012) want to understand how funding maturity and network structure
interact to generate systemic financial crises. Their model combines strategic network
formation with a dynamic model of network growth. The strategic aspect of the network
formation lies in the rollover decision of the bank’s creditors, modeled as a global game.
Creditors receive adverse information about the bank’s future profits and then decide to
withdraw the funds or to roll over to maturity. The model shows how the arrival of bad
news about a financial institution can lead others to lose confidence in it and how this,
in turn, spreads across the entire system. Anand et al. (2012) are also able to compute
endogenous default rates depending on the cost of miscoordination of the creditors and
mean assets and liabilities. The dynamical evolution of the interbank system is based on
a model of network growth. Links are created using a random matching framework. The
formation of a debt contract between any two banks is a random draw from all possible
contracts between banks in the network. The evolution of the interbank network is
governed by three Poisson processes representing link addition, link decay and the arrival
of adverse signals. They show that the system exhibits tipping-points and hysteresis. If
the system tips into a bad state, the breakdown of the interbank market is persistent and
a more favorable environment is required to re-start its normal functioning. The authors
thereby provide a plausible account of the interbank credit freeze that characterized the
global financial crisis of 2007/2008. Fique and Page (2013) generalize the results of
Anand et al. (2012). They show that even without coordination failures, tipping points
can occur depending on the importance of the network as an information propagation
mechanism.

4.1.2 Preferential lending and random link formation

Preferential lending or relationship lending in the interbank market is empirically rel-
evant.*> Models with exogenously given network structures have already shown the
importance of confidence crises in driving contagion (May and Arinaminpathy, 2009;
Arinaminpathy et al., 2012; Glasserman and Young, 2014). It turns out that trust is
also a key driver in the formation of interbank relations.

Lenzu and Tedeschi (2012) model an interbank market with heterogeneous financial
institutions that enter into lending agreements on different network structures. They
implement an endogenous mechanism of link formation, via a preferential attachment

423ee for example the empirical studies on relationship lending in the German (Brauning and Fecht,
2012), Portuguese (Cocco et al., 2009) and Italian (Affinito, 2012) interbank markets.

21



rule?3, such that each financial institution can enter into a lending agreement with others
with a probability proportional to its profit. The key element in the model is the
trust parameter. It captures how much banks trust the information about other agents’
performances. By changing the agent’s trust on its neighbor’s performance, interbank
linkages self-organize themselves into very different network architectures, ranging from
random to scale-free topologies. Increasing the credibility of the information leads to a
network structure that becomes more and more centralized around a small number of
attractive borrowers. Lenzu and Tedeschi (2012) study which network architecture can
make the financial system more resilient to random attacks and how systemic risk spreads
over the network. To perturb the system, they generate a random attack via a liquidity
shock. The hit bank is not automatically eliminated, but its failure is endogenously
driven by its incapacity to raise liquidity in the interbank network. Their analysis shows
that a random financial network can be more resilient than a scale-free one in case
of agents’ heterogeneity. The intuition behind this result is that the random graph
compared with the scale-free one has a tendency to condense, forming regions of the
graph that are essentially complete communities-subsets of nodes within which many
possible lending paths exist.

In the dynamic model of the interbank market by Lux (2014), trust between banks
is key in driving the emergence of a core-periphery structure.* Starting from a given
balance sheet structure of a banking system with a realistic distribution of bank sizes,
the necessity of establishing interbank credit connections emerges from idiosyncratic
liquidity shocks. Link formation is governed by a simple reinforcement-learning scheme.
If there has been a previous successful attempt at obtaining credit from a certain bank,
the borrower will have a higher tendency of contacting this creditor again. If credit is
denied, the trust in this potential borrower will decline. As it turns out, the dynamic
evolution of this system displays a formation of a core-periphery structure with the
largest banks acting as intermediaries between many smaller banks.

Cohen-Cole et al. (2015) build a model that combines strategic decisions with network
formation due to a variant of preferential attachment. They first build a static model of
a bank, where bank profitability is based on competition incentives and the outcome of a
strategic Cournot game. Lending decisions by the bank and its competitor’s are captured
in a network. Cohen-Cole et al. (2015) are then able to identify the equilibrium quantity
of lending attributable to the network structure. This static model is then embedded
into a dynamic model of network formation. The central modeling assumption of the
dynamic network is that links are formed based on the profitability that emerges from
the game in the static model.

“3The network formation used here is based on Barabasi and Albert (1999), who develop a method to
generate power-law networks based on two features: (i) networks expand continuously by the addition
of new nodes, and (ii) new nodes attach preferentially to nodes that are already well connected, called
a preferential attachment rule.

#18ee also Fricke and Lux (2015a) and Langfield et al. (2014) for a discussion on why such core-
periphery structures may emerge in interbank markets.

22



4.2 Strategic network formation

There are two central aspects to modeling networks from a strategic point of view. The
first is that there must be explicit modeling of the costs and benefits that arise from
various networks. This provides not only the possibility to model how networks form
in the face of individual incentives to form or sever links, but also provides well-defined
measures of overall societal welfare. Thus, it is possible to get predictions about which
networks might form, but also get measures of which networks are best from society’s
point of view. The second aspect of modeling strategic network formation is making a
prediction of how individual incentives translate into network outcomes.*®

Blume et al. (2013) consider a very general case of strategic network formation, which
can be readily applied to financial networks. The trade-off is the following: each agent
receives benefits from the direct links it forms to others, but these links expose it to
the risk of being hit by a cascading failure that might spread over multistep paths. In
such a context, Blume et al. (2013) are able to provide asymptotically tight bounds
on the welfare of optimal networks. Optimality of a graph is based on the Rawlsian
notion of minimum welfare, defined as the minimum payoff of any node in the graph.
They find that socially optimal networks are situated just beyond a phase transition in
the behavior of the cascading failures. Their analysis also exposes a fundamental sense
in which very small amounts of overlinking in networks with contagious risk can have
strong consequences for the welfare of the participants.

Allen et al. (2012) develop a model in which asset commonality and short-term debt
of banks interact to generate excessive systemic risk. Banks swap assets to diversify their
individual risk. Each bank can exchange shares of its own investment project with other
banks. Exchanging projects is costly as it entails a due diligence cost for each swapped
project. In equilibrium, banks trade off the advantages of diversification in terms of
lower default probability with the due diligence costs. The equilibrium concept used is
one of a pairwise stable network.*® Two asset structures arise. In a ring network (the
authors call it clustered structure’), groups of banks hold common asset portfolios and
default together. When banks form two clusters of three banks each (the 'unclustered
structure’), defaults are more dispersed. Portfolio quality of individual banks is opaque
but can be inferred by creditors from aggregate signals about bank solvency. This signal
is similar to a news shock familiar from the global games literature. When bank debt
is short-term, creditors do not roll over in response to adverse signals and all banks are
inefficiently liquidated. This information contagion is more likely under clustered asset
structures. In contrast, when bank debt is long-term, welfare is the same under both
asset structures.

“5For further reading on strategic network formation, see chapter six in the textbook by Jackson (2010)
or chapter seven in the textbook by Goyal (2012).

46 According to Jackson and Wolinsky (1996), a network is pairwise stable i) if a link between two
individuals is absent from the network then it cannot be that both individuals would benefit from
forming the link, and ii) if a link between two individuals is present in a network then it cannot be that
either individual would strictly benefit from deleting that link.
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4.3 Network formation games

Closely related to strategic network formation are network formation games.?” A game
of network formation specifies a set of players, the link formation actions available to
each player and the payoffs to each player from the networks that arise out of individual
linking decisions.

Fique and Page (2013) model banks’ rollover decisions within a network formation
game. The equilibrium concept used here is a Nash equilibrium. Lenders are faced
with the decision to rollover the debt that a borrower has outstanding, with the bor-
rower’s ability to repay being stochastic. In addition to a common prior distribution
with respect to the borrower’s solvency, each lender receives a private signal. Using
this updated information and partially observing the network, each lender updates its
beliefs and decides whether or not to rollover the outstanding debt. Since this lender’s
decision may be observed by another lender prior to its own rollover decision, favorable
signals with respect to the borrower’s creditworthiness are propagated slowly through
the network. The speed of information diffusion depends on initial conditions and on
the draws of nature. When uncertainty increases and signals are noisy, a creditor may
become reluctant to refinance an investment opportunity even though the underlying
economic fundamentals are solid.

In’t Veld et al. (2014) build a network formation game with an explicit role for
intermediation. They want to explore whether the core periphery structure can be
explained by an intermediation role of core banks between periphery banks. Links in
the network represent preferential trading relationships and a key assumption is that
trade opportunities can only be realized if agents are linked directly or indirectly through
intermediation by mutual trading relationships. Important drivers of the payoff structure
in this context are the level of competition between intermediaries and the number of
intermediaries. They identify which networks arise in equilibrium if banks optimally form
links with other banks for interbank trading. With homogeneous banks, core periphery
networks are unstable. Best-response dynamics converge to a unique stable outcome
that ranges from an empty network (if linking costs are high) to a complete network
(if linking costs are low). Then, In’t Veld et al. (2014) introduce heterogeneity in their
model by considering small banks and big banks, where big banks have more frequent
trading opportunities. For sufficiently large differences between big and small banks, the
core periphery network becomes a stable structure.

4.4 Endogenous network formation

In most of the literature on endogenous interbank network formation, banks are opti-
mizing agents. Two approaches can be distinguished in the literature. The first is where
banks choose the amount of interbank lending and/or borrowing by optimizing their
(heterogeneous) balance sheets (Bluhm et al., 2014a,b; Aldasoro et al., 2015). This op-
timal amount then gets allocated among the banks. A second option is to fix the overall

4TFor an overview of network formation games, see chapter eleven of the textbook by Jackson (2010).
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amount of borrowing and lending (Georg, 2013; Hataj and Kok, 2015). Banks then have
the choice of their counterparty.

Bluhm et al. (2014b) include the fire sales model of Cifuentes et al. (2005) into a
model with endogenous network formation. Bluhm et al. (2014b) construct a dynamic
network model with risk neutral, heterogeneous and micro-founded banks, whose links
emerge endogenously from the interaction of intermediaries’ optimizing decisions and an
iterative tatonnement process which determines market prices endogenously. The finan-
cial system featured in their model consists of a network with a finite number of financial
institutions which solve an optimal portfolio problem, taking into account liquidity and
capital constraints. Banks hold different amounts of equity capital and differ for the re-
turns on non-liquid assets. Such differences in returns give rise to heterogeneous optimal
portfolio allocations of banks’ assets and residual liabilities, hence to excess demand or
supply of bank borrowing and lending. Links among banks are determined by lending
and borrowing decisions that are cleared and settled in the interbank market. Contagion
occurs through interbank linkages and fire sale externalities. Aldasoro et al. (2015) ex-
tend this model beyond the combination of the direct and the indirect contagion channel
by including liquidity hoarding by risk averse banks. The resulting network configura-
tion is able to match key characteristics of empirical interbank networks and exhibits a
core-periphery structure, dis-assortative behavior and a low clustering coefficient.

Hataj and Kok (2015) also model risk averse banks and include the possibility of
rollover risk, while they abstract from the possible impact of fire sales of assets as in
Bluhm et al. (2014b) and Aldasoro et al. (2015). Halaj and Kok (2015) take a sample
of 80 large EU banks and based on their balance sheet composition assume that they
optimize their interbank assets taking into account risk and regulatory constraints as well
as the demand for interbank funding. This optimization process results in a preferred
interbank portfolio allocation for each bank in the system. For what concerns the funding
side, banks define their most acceptable structure of funding sources with the objective
of limiting rollover risk. Banks then meet in a bargaining game in which the supply and
demand for interbank lending is determined by allowing banks to marginally deviate
from their optimal interbank allocations and the prices they offer on those. In order
to account for the quite complex aspects of the interbank market formation Halaj and
Kok (2015) propose a sequential optimization process, which is repeated in an iterative
manner until a full allocation of interbank assets is achieved. The emerging network
is then used as a tool for analyzing the impact of various regulatory policy measures
relating to banks’ incentives to operate in the interbank market.

Georg (2013) compares different network structures where the nodes are banks choos-
ing an optimal portfolio. Banks face a stochastic supply of household deposits and
stochastic returns from risky investments. This gives rise to liquidity fluctuations and
initiates the dynamic formation of an interbank loan network. Georg (2013) analyzes
the impact of the financial network structure on financial stability. He shows that in
random graphs the relationship between the degree of interconnectivity and financial
(in-)stability is non-monotonic, thereby generalizing the result of Nier et al. (2007) to
a dynamic setting. In times of distress, core-periphery networks are seen to be more
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stable than purely random networks. In tranquil times, however, he shows that different
interbank network structures do not have a substantial effect on financial stability. The
key intuition behind this behavior is a regime switching property of the model financial
system. In tranquil times, liquidity demand driven interbank lending is low and cascad-
ing defaults are thus contained. In times of crisis, individual banks suffer larger liquidity
fluctuations and engage in higher liquidity-driven interbank lending. This drives the fi-
nancial system as a whole into a contagious regime. When exactly the regime switching
behaviour occurs depends on the interbank network structure.

Aymanns and Georg (2015) do not base endogenous network formation in their model
on the optimal portfolio decisions of banks. Rather they borrow from the existing liter-
ature on Bayesian learning in social networks. They allow banks to endogenously form
links based on the utility they get from an improved social belief about peer behavior
in a first stage of the model. In the second stage of the model agents then learn about
the state of the world and take their investment decisions.

5 Policy insights from interbank networks

Representing the banking system as a network is arguably more realistic than to model
it as a representative bank, as traditional macro finance models do. For this reason, the
network literature can be a useful source for policy insights on financial stability. Not
just recently have financial stability experts at central banks, supervisory authorities
and international financial organizations become interested in the policy applications of
network analysis. For example, the Bank of England’s chief economist Andrew Haldane
has been an early promoter of the network approach to financial systems (Haldane, 2009;
Haldane and May, 2011; Gai et al., 2011). The European Central Bank held already in
2009 a workshop on 'Recent advances in modeling systemic risk using network analysis’.4®
The IMF has recently reviewed tools used to identify and measure interconnectedness
in the context of prudential policy (Arregui et al., 2013).4° Here we will briefly touch
on the literature on network measures for identifying critical institutions, discuss stress
testing using network models and then turn to policy insights for monetary and macro-
prudential policy.

5.1 Identifying critical institutions

Identifying critical financial institutions is important for policy-makers.’® There is a
growing awareness that not only the size of an institution matters, but also its intercon-
nectedness. Network concepts can be very useful to assess both interconnectedness and
key banks in the financial system (Arregui et al., 2013). Two measures stand out in this

48The detailed summary of the workshop can be found here http://www.ecb.europa.eu/pub/pdf/
other/modellingsystemicrisk012010en.pdf.

49Gee also the IMF study by Chan-Lau et al. (2009) for a comparison of the network approach with
other methods to assess direct and indirect financial interconnectedness.

50Gee for example the methodology to identify systemically relevant banks by the Basel Committee
on Banking Supervision (2013).
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regard. The first one is centrality (Borgatti, 2005). Centrality measures infer from the
pattern of linkages among financial institutions the extent to which a node is ’central’
in the financial network. The second measure is clustering, which separates the network
into subgroups (’clusters’) of nodes that have closer connections to each other than with
those outside the cluster. It can help identify subgroups of nodes with close connections
and ’gatekeeper’ institutions or systems that bridge across different clusters allowing for
the contagion to spread out.?!

Langfield and Soraméki (2014) provide an in-depth overview of the network literature
on identifying systemically important banks. Measures to identify critical institutions
include 'DebtRank’ (Battiston et al., 2012c¢), SinkRank (Soraméki and Cook, 2013) or
measures based on input-output analysis for singlelayer (Aldasoro and Angeloni, 2015)
and multilayer networks (Aldasoro and Alves, 2015). A general overview of systemic
risk measures is provided by Bisias et al. (2012).

5.2 Stress testing

Central banks, supervisory authorities and policy institutions such as the IMF are cur-
rently developing tools for stress testing the banking sector using network models (Anand
et al., 2014a; Canedo and Jaramillo, 2009; Chan-Lau et al., 2009; Espinosa-Vega and
Solé, 2014; Halaj and Kok, 2015). According to the definition of the Basel Commit-
tee on Banking Supervision, stress testing is a tool used by authorities to quantify the
impacts that large but plausible negative shocks could have on the capital positions of
banks.

Supervisory authorities can apply network analysis to identify systemic and vulner-
able institutions, as well as for tracking potential contagion paths. Espinosa-Vega and
Solé (2014) suggest that network analysis could be combined with regular stress testing
exercises in order to gain a more comprehensive picture of fragility in a given banking
system. This combination of regular stress testing and network analysis could be done
in two ways. The first option is to run traditional stress tests to identify the types of
shocks that could have the largest first-round effects on individual institutions. Once
these shocks are determined, they could be fed into a network model to assess second-
(and higher) round effects. The second option is to begin with network analysis and to
apply a first set of shocks to the financial system in order to identify those institutions
that are more systemic and vulnerable and then proceed with a more thorough stress
test of some selected institutions. Halaj and Kok (2015) combine a stress testing exer-
cise with their model of endogenous network formation. By optimizing the risk-adjusted
profitability banks decide about the allocation of assets to the interbank portfolio. The
optimization involves many economic parameters describing banks’ financial standing
and their economic environment. This allows for passing through stress testing scenarios
to project the evolution of asset structures under adverse conditions and then applying
the framework for endogenous interbank interbank formation to analyse changes in the

518ee for example ECB (2006) for an application of cluster analysis to identify systemically relevant
banks.
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topology of the interbank market.

Espinosa-Vega and Solé (2014) also highlight the challenges ahead. They emphasize
that it is still very difficult to obtain comprehensive information at the bank level. Some
of the areas where better data are needed include information on banks’ exposures and
funding positions, with breakdowns by counterparty, currency, and remaining maturity.
Additional data on off-balance-sheet and shadow banking activities would also make
stress testing more informative. Chan-Lau et al. (2009) also discuss the importance
of filling existing information gaps on cross-market, cross-currency, and cross-country
linkages to refine analyses of systemic linkages.

5.3 Insights for monetary policy

The question as to whether and how monetary policy can foster financial stability
has always played a prominent role in the macro finance literature and it has become
paramount after the recent global financial crisis. In macro models this question has typ-
ically been answered by analyzing whether targeting financial variables in operational
monetary policy rules can smooth the volatility of asset prices and other financial vari-
ables. But this modeling framework neglects important aspects of financial instability,
namely the diffusion of risk through firesale spirals and direct interconnections within the
banking system. These network features are crucial characteristics of the interbank mar-
ket, where monetary policy implementation takes place through the supply of liquidity
and interest rate expectations. As Bluhm et al. (2014b) highlight, central bank inter-
ventions can affect market liquidity as well as systemic risk. On the one side, increased
liquidity allows banks to be resilient to adverse shocks. On the other side, an implicit
monetary policy guarantee can generate moral hazard and lead to higher risk taking.
This carries an externality, increasing the likelihood of adverse shock transmission to the
overall banking system as well as the real economy.

Central banks are introduced into the interbank network by allowing one bank either
to supply an unlimited amount of liquidity (Bluhm et al., 2014b) or to provide liquid-
ity against eligible collateral (Georg, 2013). Bluhm et al. (2014b) analyze the effect
of monetary policy on financial stability using an interbank network with endogenous
link formation. Systemic risk is measured with the overall probability of the system to
default. A financial crisis arises in the form of multiple bank defaults driven by direct
contagion via the interbank market, common shock exposures on asset markets and fire-
sale spirals as modeled in Cifuentes et al. (2005). The central bank injects or withdraws
liquidity on the interbank markets to achieve its desired interest rate target. A tension
arises between the beneficial effects of stabilized interest rates and increased loan volume
and the detrimental effects of higher risk taking incentives. They find that central bank
supply of liquidity quite generally increases systemic risk.

Georg (2013) also constructs an interbank market via endogenous network formation.
Banks are both directly and indirectly connected. He shows that the central bank can
stabilize the financial system in the short run. Central bank liquidity provision helps
banks to withstand liquidity shocks for a longer time. This, however, allows banks that
would otherwise be insolvent to engage in liquidity demand-driven interbank borrowing.
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The result is that the financial system as a whole is more highly interconnected and more
likely to enter the contagious regime. He also shows that the introduction of a common
shock hitting all banks simultaneously can cause substantial financial fragility but has a
less severe impact on the liquidity provision of the interbank market. This finding is of
particular importance for policymakers implementing emergency measures in times of a
crisis: while interbank contagion requires mainly liquidity provision, a common shock
requires banks to be recapitalized.

Freixas et al. (2000) find that the central bank has a role to play as a crisis manager.
When all banks are solvent, the central bank’s role of preventing a speculative gridlock
is simply to act as a coordinating device. By guaranteeing the credit lines of all banks,
the central bank eliminates any incentive for early liquidation. This entails no cost
for the central bank since its guarantees are never used in equilibrium. When instead
one bank is insolvent because of poor returns on its investment, the central bank has a
role in the orderly closure of this bank. When a bank is to be liquidated, the central
bank has to organize the bypass of this defaulting bank in the payment network and
provide liquidity to the banks that depend on this defaulting bank. Furthermore, since
the interbank market may loosen market discipline, there is a role for supervision, with
the regulatory agency having the right to close down a bank even if this bank is not
confronted with any liquidity problem.

5.4 Insights for macro-prudential policy

The cornerstone of the current international regulatory agenda is the setting of higher
requirements for banks’ capital and liquid assets. The traditional rationale for such
requirements is that they reduce idiosyncratic risks to the balance sheets of individual
banks. According to Haldane and May (2011), an alternative and more far-reaching
interpretation is that they are a means of strengthening the financial system as a whole
by limiting the potential for network spillovers. The theoretical network literature has
done policy experiments to simulate the impact of different regulatory measures on
systemic risk. The main regulatory measures analyzed are liquidity requirements, limits
to counterparty credit risk using large exposure limits and credit valuation adjustments
as well as capital requirements.

5.4.1 Liquidity requirements

Liquidity requirements are the minimum ratio of banks’ liquid assets to their short-term
liabilities. Haldane and May (2011) argue that liquidity ratios can be seen as a means
of short-circuiting the potential for systemic liquidity spillovers arising from fire sales
on the asset side of the balance sheet (liquidity shocks) or liquidity hoarding on the
liabilities side (liquidity-hoarding shocks). In particular, holdings of liquid assets reduce
the potential for market liquidity risk to propagate around the system, while limits on
short-term liabilities reduce the spread of funding liquidity risk around the system.

Gai et al. (2011) simulate the effect of an introduction of two types of liquidity re-
quirements in an interbank network. The first liquidity requirement is a uniform increase
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in liquid asset holdings. The authors find that imposing such a uniform liquidity require-
ment improves the resilience of the financial system. The second liquidity requirement
imposes an increase in liquid assets that is positively related to banks’ interbank assets.
This allows an assessment of the impact of targeting higher liquidity requirements on key
players in the interbank network. To make both simulations comparable, the average in-
crease in liquid assets is identical in both policy exercises. The augmented liquidity rule
is more effective in reducing the probability and spread of contagion than an equivalent
across-the-board increase in liquid asset requirements.

Aldasoro et al. (2015) assess the role of prudential regulations in reducing systemic
risk in an endogenous banking network. They find that increasing the liquidity re-
quirement unequivocally reduces systemic risk and the contribution of each bank to it.
As banks must hold more liquidity for precautionary motives, their exposures in the
interbank market declines, which limits somewhat the scope for network externalities.
Furthermore, the reduction in non-liquid assets is quite substantial, which markedly
reduces the scope for pecuniary externalities. The reduction in non-liquid assets is so
strong that there is an associated cost to it in terms of efficiency of the system, high-
lighting the existing trade-off between stability and efficiency.

5.4.2 Limiting counterparty risk

An advantage of network models is that they capture interconnections and therefore
counterparty risk. From such a network perspective, preventing contagion means limiting
counterparty risk. Halaj and Kok (2015) simulate the effect of two measures intended
to limit counterparty risk in a realistic interbank network where banks optimize their
balance sheets based on the balance sheet composition of 80 large EU banks. The
first measure they analyze is large exposure limits and the second is credit valuation
adjustments.

The current EU standard for large exposure limits amounts to 25 percent of total
regulatory capital. Hataj and Kok (2015) test the sensitivity of the network structures
to a variation of the 25 percent threshold. They observe that network structures (e.g. in
terms of number of links of individual nodes) are relatively stable around and especially
above the 25 percent threshold. By contrast, a more stringent approach to large exposure
limits (i.e. moving the threshold towards 0 percent) could trigger substantial changes
to the structure of banks’ network connections. Intuitively, as limits on large exposures
become more binding banks will have to reduce on the size of individual exposures and
as result spread their interbank business across a wider range of counterparties.

The second policy simulation analyzes credit valuation adjustment, which is the
difference between the risk-free portfolio value and the true portfolio value that takes
into account the possibility of a counterparty’s default. In other words, credit valuation
adjustment is the market value of counterparty credit risk. It impacts the interbank asset
structure decision-making process via the capital constraint whereby banks engaged in
lending to riskier counterparties will generally face a comparatively higher capital charge
to reflect the default risk of their interbank borrowers. Varying the credit valuation
adjustment parameter from no additional capital charges for counterparty risk to a
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regime with the market-based credit risk valuation of the interbank exposures, Halaj
and Kok (2015) find that the interbank networks structure does not change substantially
except for some smaller (and weaker) banks that are forced to accept less diversified
funding sources. The reason for that is the shift of banks’ interbank placements to more
sound institutions as far as the market perception is concerned.

5.4.3 Capital requirements

A capital requirement is the amount of capital a financial institution has to hold as
required by its regulator. It is defined in terms of a capital ratio, which is the percentage
of a bank’s capital (also called equity) to its risk-weighted assets. The bank’s capital
ratio has to be maintained above a certain threshold, as specified by the regulator.

Nier et al. (2007) find that the better capitalized banks are, the more resilient is
the banking system against contagious defaults. This effect is non-linear. For very low
levels (0 to 1 percent) of net worth to total assets, the number of defaults decreases
dramatically. Between 1 and 4 percent of net worth, the number of defaults is constant
and between 4 and 5 percent, defaults decrease to zero. But even if banks are well cap-
italised, levels of interbank activity beyond a certain threshold imply elevated systemic
risk.

Bluhm et al. (2014b) analyze the evolution of systemic risk, non-liquid assets and
interbank loans under different values of capital requirements. Systemic risk features a
bell-shaped dynamic. For low levels of the capital requirement the extent of interbank
lending is large and mostly driven by the banks with high returns on non-liquid assets.
Since this drives up the interbank interest rates, only few highly profitable banks borrow
large amounts of interbank funds. In this setting the system is 'robust-yet-fragile’: if one
of the highly leveraged banks is hit by a medium shock, its (many) creditors who each
are transmitted a fraction of the shock can eventually buffer the loss without defaulting.
However, a large shock to one of the creditor banks results in the default of a large
proportion of the financial system, confirming the result by Gai and Kapadia (2010)
that it matters where the shock hits in the network. As Bluhm et al. (2014b) gradually
increase the capital requirement, the scope for leveraging is reduced. Therefore the
demand from highly profitable banks declines, resulting in a lower interbank interest
rate. The lower interest rate in turn increases the number of banks which borrow since
their return on non-liquid assets is higher than the return on the interbank market. As
the number of borrowers is increased while the number of lenders is reduced, each bank
features fewer counterparties on the interbank market. Therefore the robust-yet-fragile
system turns more to a fragile system because the shock to one of the (now increased
number of) debtor banks is buffered by a lower number of creditors. Therefore systemic
risk initially increases with the capital requirement ratio. However, as it is increased
beyond 7 percent, the amount of funds exchanged on the interbank market as well as the
investment in non-liquid assets decline, ultimately resulting in monotonously decreasing
systemic risk.

Cifuentes et al. (2005) investigate the consequences of mark-to-market accounting
of firm’s balance sheets in the presence of capital requirements. A shock that reduces
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the market value of a firm’s assets will elicit the disposal of assets. If the market’s
ability to absorb these sales is less than perfect, such disposals will result in a short-
run change in market prices. When assets are marked to market at the new prices,
the minimum capital requirement may dictate further disposals. In turn, such disposals
will have a further impact on market prices. In this way, the combination of mark-to-
market accounting and capital constraints have the potential to induce an endogenous
response that far outweighs the initial shock. Cifuentes et al. (2005) argue that liquidity
requirements may be more effective than capital buffers in forestalling systemic effects.
When the residual demand curve is extremely inelastic, even a large capital buffer may
be insufficient to prevent contagion, since the price impact of sales into a falling market
would be very high. Liquidity requirements can internalize some of the externalities that
are generated by the price impact of selling into a falling market.

Aldasoro et al. (2015) study the effect of an increase in the equity requirements. Sys-
temic risk decreases, in particular for an initial range of values of the equity requirement.
The scope for network externalities is persistently reduced as the share of interbank as-
sets over total assets steadily declines to reach very low values in the upper range of the
equity requirement parameter. While there is also a slight reduction in the scope for
fire sales externalities, the reduction in non-liquid assets is relatively minor. Further-
more, evaluation based on input-output measures reveals that the system becomes more
homogenous and the potential damage from interbank market collapses is markedly re-
duced. This comes at the expense of having less banks trade in the interbank market,
with an associated reduction in its density.

To conclude this section on policy insights from the financial networks literature, we
will briefly dwell on proposals to set systemic regulatory requirements, as for example
suggested by Haldane and May (2011). They argue that looking at financial risk through
a network lens indicates a fundamentally different rationale for prudential regulation.
In their view, prudential regulation has become increasingly risk-based. But the risk in
question to which regulation was then calibrated has tended to be institution-specific
rather than systemic risk. Approaching capital requirements from a system-wide angle
would require to set firms’ capital requirements to equalize the marginal cost to the
system as a whole of their failure. Gai et al. (2011) also find that requiring key players
to hold more liquid assets than other banks is more effective in reducing the probability
and spread of contagion than an equivalent across-the-board increase in liquid asset re-
quirements. In other words, regulatory requirements would be set higher for those banks
bringing greatest risk to the system; for example, because of their size or connectivity
(Haldane and May, 2011; Arinaminpathy et al., 2012).

6 Conclusion

The literature on theoretical interbank networks has grown tremendously in the past
years. While this literature has provided us with a number of important insights, a
number of important research questions remain. I will use the conclusion to point out a
number of open questions that future research might address.
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. More research is needed on the effect of the network structure on contagion. Theo-
retical interbank network modeling needs to use more realistic network structures
on which to analyze contagion processes. Since empirical studies now provide an
increasing number of stylized facts on the interbank network topology, research
needs to move beyond deriving results on random networks or on overly simpli-
fied structures. Theoretical models should indeed be able to replicate topological
properties of real-world interbank networks.

. The focus has been on direct links in the interbank market as well as indirect links
in the form of common assets. Yet there are many more types of indirect links in
the interbank market. For example credit risk transfers in the form of derivatives
are an important source of potential contagion and should therefore be studied
more carefully.

. Most interbank network models in the literature are static and exogenously given.
One limitation of these static models is that they do not provide a dynamic account
of link formation. Research is moving in this direction, but most of the dynamic
models still use probabilistic link formation by relying on network growth models or
on preferential attachment rules. A few recent models rely on endogenous network
formation, in which banks purposefully choose the amount of interbank lending
and borrowing and thereby create the structure of the interbank network. More
work is needed on how to incorporate bank behavior into interbank networks. More
precisely, we need to include micro-founded models of bank’s dynamic reactions to
financial shocks and to changes in regulatory parameters.

. A bigger effort should be made to compare results and to exploit complementar-
ities between the financial network literature and the established macro finance
literature, since both share similar research topics, such as the study of the propa-
gation and amplification of shocks in the financial system, fire sales spirals, market
liquidity or the fragility of financial intermediaries.

. More research is also needed to evaluate the impact of macro-prudential policy
instruments on the financial sector as well as the analysis of the interactions be-
tween different macro-prudential policy instruments. Similarly, the evaluation of
the interactions between monetary policy and macro-prudential policy is also an
interesting topic for further research.
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