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Abstract
Derivation and Characterization of a New Filter

for Nonlinear High-Dimensional Data Assimilation

Data assimilation (DA) combines model forecasts with real-world observations to achieve an optimal

estimate of the state of a dynamical system. The quality of predictions in nonlinear and chaotic systems

such as atmospheric or oceanic circulation is strongly sensitive to the initial conditions. Therefore,

beyond the consistent reconstruction of past states, a primary relevance of advanced DA methods con-

cerns the proper model initialization. The ensemble Kalman filter (EnKF) and its deterministic variants,

mostly square root filters such as the ensemble transform Kalman filter (ETKF), represent a popular al-

ternative to variational DA schemes. They are applied in a wide range of research and operations. Their

forecast step employs an ensemble integration that fully respects the nonlinear nature of the analyzed

system. In the analysis step, they implicitly assume the prior state and observation errors to be Gaus-

sian. Consequently, in nonlinear systems, the mean and covariance of the analysis ensemble are biased

and these filters remain suboptimal. In contrast, the fully nonlinear, non-Gaussian particle filter (PF)

relies on Bayes’ theorem without further assumptions, which guarantees an exact asymptotic behavior.

However, it is exposed to weight collapse, particularly in higher-dimensional settings, known as the

curse of dimensionality.

This work presents a new method to obtain an analysis ensemble with mean and covariance that exactly

match the corresponding Bayesian estimates. This is achieved by a deterministic matrix square root

transformation of the forecast ensemble, and subsequently a suitable random rotation that significantly

contributes to filter stability while preserving the required second-order statistics. The forecast step

remains as in the ETKF. The algorithm, which is fairly easy to implement and computationally efficient,

is referred to as the nonlinear ensemble transform filter (NETF). The limitation with respect to fully-

nonlinear filtering is that the NETF only considers the mean and covariance of the Bayesian analysis

density, neglecting higher-order moments.

The properties and performance of the proposed algorithm are investigated via a set of experiments. The

results indicate that such a filter formulation can increase the analysis quality, even for relatively small

ensemble sizes, compared to other ensemble filters in nonlinear, non-Gaussian scenarios. They also

confirm that localization enhances the applicability of this PF-inspired scheme in larger-dimensional

systems. Finally, the novel filter is coupled to a large-scale ocean general circulation model with a real-

istic observation scenario. The NETF remains stable with a small ensemble size and shows a consistent

behavior. Additionally, its analyses exhibit low estimation errors, as revealed by a comparison with a

free ensemble integration and the ETKF. The results confirm that, in principle, the filter can be applied

successfully and as simple as the ETKF in high-dimensional problems. No further modifications are

needed, even though the algorithm is only based on the particle weights. Thus, it is able to overcome

the curse of dimensionality, even in deterministic systems. This proves that the NETF constitutes a

promising and user-friendly method for nonlinear high-dimensional DA.



Kurzfassung
Herleitung und Charakterisierung eines neuen Filters

für die nichtlineare, hochdimensionale Datenassimilation

Die Datenassimilation (DA) kombiniert Modellvorhersagen mit empirischen Beobachtungen, um den

Zustand eines dynamischen Systems optimal zu schätzen. Die Qualität von Prognosen in nichtlinearen

und chaotischen Systemen, wie etwa Atmosphäre oder Ozean, hängt stark von den Anfangsbedingungen

ab. Neben ihrer Anwendung zur konsistenten Rekonstruktion vergangener Zustände sind fortschrittliche

DA-Methoden daher von großer Relevanz für die korrekte Initialisierung von Modellen. Der Ensemble

Kalman Filter (EnKF) und dessen deterministische Varianten, vor allem sogenannte Quadratwurzelfilter

wie der Ensemble Transform Kalman Filter (ETKF), stellen eine gängige Alternative zu variationellen

DA-Methoden dar. Sie sind sowohl in der Forschung als auch in operativen Anwendungen weit verbrei-

tet. Ihr Vorhersageschritt nutzt eine Ensembleintegration, wodurch die Nichtlinearität des betrachteten

Systems uneingeschränkt berücksichtigt wird. Im Analyseschritt wird jedoch implizit angenommen,

dass Zustands- und Beobachtungsfehler einer Normalverteilung folgen. Daher unterliegen Mittel und

Kovarianz des Analyseensembles in nichtlinearen Systemen einem systematischen Fehler. Im Gegen-

satz dazu greift der vollständig nichtlineare Partikelfilter (PF) lediglich auf Bayes’ Theorem zurück, was

ein exaktes asymptotisches Verhalten garantiert. Allerdings sind PF insbesondere in hochdimensionalen

Systemen nicht anwendbar, da die Partikelgewichte kollabieren.

Die vorliegende Arbeit präsentiert eine neue Methode, um ein Analyseensemble zu generieren, dessen

Mittelwert und Kovarianz exakt den entsprechenden Bayes’schen Schätzern entsprechen. Hierzu wird

das Vorhersageensemble mittels einer Wurzelmatrix transformiert. Anschließend wird eine geeignete

Zufallsrotation im Ensemble-Unterraum durchgeführt, welche die Stabilität des Filters deutlich ver-

bessert, ohne die ersten beiden Momente zu verändern. Der Vorhersageschritt bleibt gegenüber dem

ETKF unverändert. Der Algorithmus ist einfach zu implementieren und rechentechnisch effizient. Er

wird als Nonlinear Ensemble Transform Filter (NETF) bezeichnet. Seine grundsätzliche Einschränkung

besteht darin, dass nur Mittelwert und Kovarianz der Bayes’schen Analyseverteilung berücksichtigt

werden, während höhere Momente vernachlässigt werden.

Eigenschaften und Leistungsverhalten des NETF werden in verschiedenen Simulationen untersucht.

Die Resultate zeigen, dass die neue Methode die Qualität der Analyse in nichtlinearen, nicht-Gauß’schen

Szenarien im Vergleich zu anderen Ensemblefiltern deutlich verbessern kann, sogar für relativ kleine

Ensemblegrößen. Hierbei wird die Anwendbarkeit in Systemen höherer Dimension durch eine Loka-

lisierung der Analyse ermöglicht. Zum Schluss wird der neue Filter mit einem großskaligen Modell

der Ozeanzirkulation mit realistischem Beobachtungsszenario gekoppelt. Der NETF bleibt stabil und

weist bereits bei einer kleinen Ensemblegröße Analysen mit niedrigen Schätzfehlern auf. Damit wird

bestätigt, dass der Filter erfolgreich und ähnlich einfach wie der ETKF für hochdimensionale Prob-

leme angewendet werden kann. Weitere Modifikationen sind nicht erforderlich, obwohl der Algorith-

mus ausschließlich auf den Partikelgewichten basiert. Somit erweist sich der NETF als eine vielver-

sprechende und anwenderfreundliche Methode für die nichtlineare, hochdimensionale DA.
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Chapter 1

Introduction

If you can look into the seeds of time, and say which grain will grow
and which will not, speak then unto me.1

The prediction of future events has always been an issue of great relevance. Modern science attempts to
understand the intrinsic natural laws and processes, and to formulate them in an explicit, mathematical
way. The solution of the resulting equations, usually numerically, allows to generate model predictions,
based on current and past information (Feynman 1982). Thus, a look into the future is actually possible.
Nowadays, forecasts are an important tool in a broad range of applications to enable decision making.
The field that probably affects most people is weather forecasting. Each day, countless decisions are
based on weather forecasts, and they also influence economical and political actions. For example, this
concerns extreme weather events, which may even threat lives or cause substantial damages, but also
climate change, as statistical statements about the future climate can be extracted.

It is evident that the improvement of forecast quality represents an important task for research. Weather
predictions are, despite a good general understanding of the underlying physics, subject to many sources
of uncertainty, mostly model shortcomings and imperfect input data. The atmosphere, as a nonlinear and
chaotic system, is strongly sensitive to the initial condition, i.e., the state of the atmosphere that is used
to initialize the model forecast. Even a perfect model would not be able to deliver reasonable predictions
without good initial conditions. Their specification represents a major challenge and requires huge
effort, often more than the forecast itself. In a more general interpretation, this issue can be reduced to
the problem of state estimation in a dynamical system. The state-of-the-art method to obtain an optimal
state estimate, also called the analysis, is data assimilation (DA). Its principal concept consists in the
combination of the model with real-world observations. Numerous DA algorithms are available, but
only a few are applicable to large-scale systems. They rely, at least partly, on a Gaussian assumption for
the appearing probability distributions. Non-Gaussian and nonlinear methods are more appealing by
offering a full Bayesian solution, but they usually fail in high dimensions. This work proposes a simple
novel nonlinear technique that is also applicable in such scenarios, but is still as generic and easy to
apply as standard methods.

1The bard in William Shakespeare’s MacBeth (around 1606), asking for a useful prediction.

1
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1.1 Background

Most of the concepts and algorithms discussed in this thesis are of generic nature and apply to any
forecasting problem. However, the ideas are usually illustrated by the example of numerical weather
prediction (NWP) as the primary field of application for DA. In principle, the system of equations that
determine the atmospheric dynamics is known well. It is governed by the Navier-Stokes equations and
the conservation of mass, energy and water content. The equations can only be solved numerically,
which corresponds to an integration in time and is made possible by supercomputers. The finite spatial
and temporal resolution requires to parameterize many important processes that occur on the sub-grid
scale, such as radiation, cloud formation or turbulence. Additionally, many model parameters and
necessary input data, such as the land surface characteristics, are only known poorly. These uncertainties
contribute to limited predictive skill.

As the partial differential equations contain time derivatives, an initial condition is mandatory, i.e., the
full atmospheric state at initial time of the forecast. However, the atmosphere is a chaotic system. As
a consequence, any error, i.e., a deviation from the unknown true initial state, usually grows exponen-
tially. This property, popularly known as the ”butterfly effect”, is the main reason that predictability of
weather events is rather limited. Lorenz (1963) estimated the average deterministic predictability to two
weeks. Of course, the actual error growth rate depends on the current flow. Probabilistic predictions,
using an ensemble of single forecasts, can better explore the predictability limit, but do not solve the
general problem. Therefore, weather would be hard to predict even if a perfect model was available.

As already mentioned, DA refers to the optimization of the initial state by combining the model fore-
casts with observations collected in the real world. Accounting for the inherent uncertainties, a valid
description is given by probability density functions (pdfs). Then, in principle, this combination is deter-
mined by a fundamental and elegant equation, Bayes’ theorem. The prior knowledge, which is typically
a model forecast, is updated with a new piece of information, the observation, resulting in the analysis
distribution. However, the practical application is not as straightforward, as the pdfs are formulated in
a very high dimensional space (up to 109 in NWP), where the actual form of the pdfs is not known,
and they also evolve in time. The underlying Fokker-Planck equation cannot be solved in praxis either.
Additionally, models, but also observations, often exhibit limitations such as biases towards the truth
or undetected cross-correlations. Therefore, assumptions have to be imposed for computational and
practical reasons. At this point, different DA algorithms can be developed, based on different assump-
tions and implementations. Even with high-performance computers, the limited computational power
puts a major restriction on the applicable methods. This development is still in progress and nowadays
occupies many scientists day by day. In every operational weather center, DA represents a major work
area in both research and operations. DA systems have significantly advanced in the past decades. The
good predictive skill of the European Center for Medium-Range Weather Forecasts (ECMWF) is often
attributed to their sophisticated analysis scheme and the efficient use of different observational data
(Richardson et al. 2013).
Figure 1.1 visualizes the basic concept. Observations within the past hours are assimilated into a re-
peated model run. The final state constitutes the analysis, which is used to initialize the prediction into
the future.
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FIGURE 1.1: A schematic DA cycle. At 12 UTC, a forecast into the future is to be initialized. The
states within an assimilation window in the past (here 00-12 UTC) are recomputed, assimilating the
available observations into the model. The final analysis state at 12 UTC represents the optimal initial

condition for the adjacent prediction.

It should also be mentioned that DA is not only used for forecast initialization. Its potential to estimate
the state over a whole time range represents a useful tool in almost any application that deals with dy-
namical systems. For example, it has led to successful reconstructions of the atmospheric or oceanic
states over extended periods. The resulting estimates, also called reanalyses, are an extremely valuable
data source for climate studies and diagnostics (e.g., Bengtsson et al. 2007; Dee et al. 2011). They
allow to verify or drive climate simulations, which in turn helps to identify model deficiencies. Addi-
tionally, the DA output can be used to diagnose systematic model or observation errors (e.g., Chiodo
and Haimberger 2010; Haimberger 2007).

1.2 Short history of DA in NWP

At the beginning of the 20th century, Cleveland Abbe identified the equations that govern the atmo-
spheric motion, and Vilhelm Bjerknes manifested the aim of solving them to obtain weather forecasts.
The first attempt was made by Lewis Fry Richardson in 1917, based on a discretized version of the
equations, but his forecasts yielded unrealistically large pressure tendencies. This failure can be related
to imbalances in his initial conditions, for which he used pressure observations. With an appropriate
initialization, his forecast would have performed much better (Lynch 1992), which already emphasizes
the need for proper DA. Beginning in 1949, computers could be used to actually solve the underlying
equations. Together with John von Neumann, Jules Charney solved a quasi-geostrophic vorticity equa-
tion to obtain large-scale circulation patterns in the earth’s atmosphere. From then on, more and more
advanced models were developed, in concurrence with the increasing computational power.
In the 1950’s, the sparse observation network was a major challenge. Cressman (1959) suggested a
successive interpolation scheme to correct existing model fields by weighting observations with their
distance. Even though the weights are chosen subjectively, this approach already resembles the basic
idea in modern DA. In the 1970’s, nudging was a state-of-the art method (Hoke and Anthes 1976). It
consists in adding a term to the prognostic equations to pull the model states closer to the observations
at each time step. However, the determination of the nudging weights is subjective and a matter of
tuning. Additionally, only prognostic model variables can be assimilated, but related quantities that are
not explicitly part of the model state, such as satellite radiances, cannot be processed.
In the 1980’s, the first modern, objective DA methods were developed and successfully applied, mainly
optimal interpolation, variational methods and the Kalman filter. They are introduced in Chapter 2.
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Since the 1990’s, these methods have been further enhanced by ensemble techniques, which is the topic
of Chapter 3. Nowadays, model complexity is still increasing, concerning both resolution and physics.
Furthermore, the observation networks offer a variety of dense observations, particularly from remote
sensing. Thus, the progress in DA will remain a key issue of NWP also in the future, particularly
concerning the challenges set by high-dimensional, nonlinear models.

1.3 Motivation

In the previous section, it was outlined that DA represents an important component of a NWP system.
Here, actual techniques to assimilate observations into a forecast model are briefly characterized. This
motivates why the development of a new nonlinear algorithm represents a valid contribution to current
research. As mentioned, the practical restrictions imply that many assumptions and approximations
have to be made. The most common one consists in assuming the appearing pdfs to be Gaussian. Even
though this is not appealing from a purely theoretical point of view, as nonlinear models necessarily
generate non-Gaussian pdfs, the resulting algorithms often lead to satisfactory results, and nonlinearities
can be considered at least partly.

Many developments concern the advancement of variational methods such as 4DVAR (Talagrand and
Courtier 1987), which require the minimization of a high-dimensional cost function, and hence, a reli-
able tangent linear and adjoint model of the forward model have to be derived and maintained. 4DVAR
can be classified as a smoother, as it aims at producing an analysis trajectory for a complete time win-
dow such that it represents an optimal fit to both the background state and all the observations. In
contrast, filters only consider past observations and are usually applied in a sequential way by iterating
a forecast step, which executes the forward model until observation time, and an analysis step, which
turns the prior forecast state into a posterior estimate that contains observational information. The out-
put of the analysis step is then reused as the initial condition for the next forecast step. Initialized
by the introduction of the ensemble Kalman filter (EnKF, Evensen 1994), sequential, ensemble-based
techniques now constitute a popular alternative to variational methods. Their particular advantage, at
least for most state estimation applications, is the independence of the actual analysis algorithm of the
specific forward model. Furthermore, the combination of both approaches into so-called hybrid systems
is an active field of research, particularly for operational applications (e.g., Buehner et al. 2013; Lorenc
et al. 2014).

The EnKF is based on the Kalman filter (KF, Kalman 1960), originally derived as an optimal solution
(in a least squares sense) for linear models and linear observation operators. As this leads to Gaussian
densities, the KF analysis step relies on the prior mean and covariance to compute the posteriori mean
and covariance. The KF analysis can be interpreted as a linear regression of the model state on the
observation vector (Anderson 2010). In order to apply it to nonlinear systems, several approximations
have been suggested. They all attempt to obtain realistic estimates of the prior mean and covariance
within the forecast step. The extended KF employs a linearized propagation of the error covariance
matrix, which can lead to unrealistic results in nonlinear problems (Miller et al. 1994). The EnKF
offers a distinct perspective by estimating the prior moments from a preceding ensemble forecast. This
can be interpreted as a Monte Carlo approximation for solving the underlying Fokker-Planck equation
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FIGURE 1.2: DA in the strongly nonlinear Lorenz-63 model in an identical twin experiment (see also
Chapter 5). Shown is the temporal evolution of the x component for the truth (black), the ETKF (blue)

and the new nonlinear filter (NETF, red), together with the observations (dots).

(Evensen 2009). However, the update step remains Gaussian, since it utilizes the usual KF equations to
determine the mean and covariance of the analysis ensemble.

The classical EnKF requires a perturbation of the observations in the analysis step in order to maintain
the correct covariance (Burgers et al. 1998), which results in suboptimal behavior because of sam-
pling errors, particularly for small ensemble sizes. As alternative, so-called deterministic EnKFs were
suggested. They generate an analysis ensemble with the desired properties without perturbing the obser-
vations (Anderson 2001; Bishop et al. 2001; Evensen 2004; Ott et al. 2004; Whitaker and Hamill 2002).
Most of them belong to the class of square root filters (Nerger et al. 2012b; Tippett et al. 2003) as they
require the computation of a matrix square root in order to determine an appropriate transformation
matrix to be applied to the prior ensemble.

In a nonlinear, non-Gaussian scenario the linear update equations of the EnKFs necessarily produce an
analysis where the mean and covariance are biased, resulting from the assumption of a Gaussian prior
pdf, which, in general, is not satisfied. An illustrative example is given by Figure 1.2, showing the
results of an identical twin experiment in the Lorenz-63 system. It emphasizes that the ETKF performs
sub-optimally in this strongly nonlinear environment, while the new nonlinear filter that is derived in
this work apparently is able to track the truth well. The corresponding experiment will be discussed in
detail in Chapter 5.

A distinct approach to the EnKFs is represented by the particle filter (PF), first published by Gordon
et al. (1993). Here, the properties of the analysis, mostly moments, are estimated directly via Bayes’
theorem. The PF only requires some mild assumptions (Doucet et al. 2001, ch. 2) about the form of the
prior pdf and does not restrict it to a particular type. Therefore, it can be regarded as a fully nonlinear,
non-Gaussian filter. Even though this seems appealing, its application to high-dimensional systems is
not straightforward due to the so-called curse of dimensionality (Snyder et al. 2008). In a Bayesian
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update step in a high-dimensional space with many independent observations, many particles are likely
to fall outside the region of significant probability mass and receive negligible weights, and therefore,
their information is effectively lost, which results in a filter collapse. The review by van Leeuwen (2009)
summarized different PF variants and approximations, whereas a more recent development, which is
the equivalent weights PF (EWPF, van Leeuwen 2010), seems to be a promising approach. It relies on
a stochastic nature of the forward model in order to pull the particles towards the observations, and to
ensure almost-equal weights by employing suited proposal densities. Other recent attempts to improve
the PF also apply a form of residual nudging (Luo and Hoteit 2014a) or variational methods (implicit
PF, e.g., Atkins et al. 2013).

During the past years, there has been research activity concerning the development of algorithms that
attempt to address the drawbacks of both the EnKF and the PF. A popular approach, initiated by Ander-
son and Anderson (1999) and Pham (2001), is the representation of the forecast ensemble as a Gaussian
mixture, allowing a better consideration of nonlinear features contained in the ensemble (e.g., Frei and
Künsch 2013a,b; Hoteit et al. 2012, 2008; Stordal et al. 2011). Other authors use the EnKF as a pro-
posal for a PF (Papadakis et al. 2010) or apply linear programming methods (Reich 2013). However,
to the author’s knowledge2, the EWPF is the PF-based algorithm that has proven to be applicable in
large-scale scenarios, as it worked in a stochastically forced primitive equation model (Ades and van
Leeuwen 2014).

Lei and Bickel (2011) suggested the nonlinear ensemble adjustment filter (NLEAF) which uses a
stochastic update mechanism designed such that the analysis mean and covariance are unbiased. How-
ever, sampling error as an additional source of uncertainty is introduced. This becomes more apparent
for relatively small ensemble sizes, as inevitable even in moderate dimensions, and the algorithm ex-
hibits high computational costs in these cases.

In summary, much progress towards nonlinear high-dimensional DA has been made. The EWPF has
much potential, but its forecast step requires a valid model error formulation, as the proposal densi-
ties are not utilizable in deterministic systems, and sufficient tuning is needed (Ades and van Leeuwen
2013). In contrast, the NLEAF represents a more generic alternative by neglecting higher-order mo-
ments of the analysis pdf, but its shortcomings hamper its large-scale applicability.

1.4 Aims

The previous section has given an overview to the scientific progress in nonlinear DA and revealed
current challenges. Therefore, the principal aim of this work is to offer a novel contribution to this
field by deriving an objective, generic filter algorithm that relaxes some of these issues and becomes
applicable in high dimensions as well.

For a better organization of the research conducted within this thesis, three consecutive working stages
with different focusses are defined. In the following, the aims for each stage are specified.
First, a thorough review of DA concepts and algorithms reveals state-of-the-art techniques and their
properties, with the following aims:

2Also stated on http://www.nceo.ac.uk/PFtools/, hosted by a collaboration of various UK institutions.

http://www.nceo.ac.uk/PFtools/
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• Definition of a self-consistent DA framework that allows to describe all relevant aspects and
objective algorithms in probabilistic terms.

• Embedding of classical solutions (KF and variational methods) within the general framework to
enable a better integration of more recent developments.

• Presentation of ensemble-based techniques (EnKF, PF) that partly account for the probabilistic
nature of DA in order to highlight their advantages and practical issues, as they serve as basis and
reference for the new ensemble filter.

• Discussion of recent developments in nonlinear DA in order to identify the current stage of re-
search and open issues, which in turn gives directions for potential progress.

The second stage concerns the theoretical formulation of the new algorithm, aiming at:

• Identification of the paradigms for the new filter and its discrimination against other methods.

• Objective derivation of the equations to update the ensemble mean and perturbations in resem-
blance to the derivation of the ensemble transform Kalman filter (ETKF) as a current standard
method.

• Investigation of mathematical properties, in particular, confirmation that the presented algorithm
is able to generate a valid analysis ensemble.

• Deduction of the expected behavior and implementation issues, based on the experiences from
established ensemble filters.

• Assessment of the computational complexity of the algorithm, particularly with regard to appli-
cations in high-dimensional systems.

Third, the applicability and potential usefulness of the suggested method has to be demonstrated empir-
ically, with the following aims:

• Investigation of the filter performance in typical DA test beds of different dimensions and dynam-
ics, focussing on stability properties and the performance in comparison with other ensemble-
based filters in order to explore its benefits and limitations.

• Assessment of the behavior in larger-dimensional toy models with limited ensemble sizes in order
to establish the potential large-scale applicability.

• Confirmation of the filter’s large-scale applicability with a challenging assimilation problem in a
high-dimensional general circulation model.

• Extraction of further conclusions from the filter properties and empirically derived findings to
form a complete picture of its potential usefulness.

In combination, the aims declared for the three stages allow to achieve the general objective named in
the beginning of this section.
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1.5 Outline

Based on the scientific objectives presented above, the remainder of this thesis is organized as follows:

• Chapter 2 formulates the fundamentals of DA from a stochastic point of view and establishes a
self-consistent probabilistic framework. Then, classical approaches based on Gaussian assump-
tions are reviewed. The discussion focusses on variational methods and the KF.

• Chapter 3 continues this review by turning towards more recent advances made in ensemble-
based filtering. Important supplements to the EnKF are presented, which are required for suc-
cessful applications in real-world problems, such as localization and inflation. Then, the PF as a
non-parametric alternative is introduced. This allows to discuss rather new research findings con-
cerning nonlinear ensemble DA, with a focus on the NLEAF and EWPF. These considerations
allow a plain passage to the new algorithm.

• Chapter 4 as the heart of this thesis presents the nonlinear ensemble transform filter (NETF). The
Bayesian expectations are reformulated and utilized to derive the new algorithm. Afterwards,
the method is highlighted from a theoretical point of view by discussing several properties and
aspects that are potentially relevant for applications.

• Chapter 5 contains several applications of the NETF to scenarios of different dimensionality and
nonlinearity. These structured experiments allow a multi-faced characterization of its perfor-
mance properties, particularly in comparison with other ensemble filters.

• Chapter 6 extends the empirical characterization of the NETF by a more complex application
to a large-scale ocean circulation system with a realistic observation scenario. After describing
the system and the setup, the applicability of the NETF in such a high-dimensional model is
demonstrated by evaluating its resulting analyses.

• Chapter 7 finishes this thesis by drawing overall conclusions about the novel nonlinear filter algo-
rithm and its implications concerning applications. This also involves a brief summary discussion
on its possible advantages and limitations as well as an outlook for directions of potential contin-
uative research paths.

• Appendix A presents some background about the mathematical methods applied throughout the
thesis. Appendix B shows derivations and identities concerning the KF which are not covered in
the main part. Appendix C presents the explicit algorithms to generate random rotation matrices
and initial ensembles. The supplement contains a summary of the thesis in German.

The publication by Tödter and Ahrens (2015) is based on contents of this thesis, in particular, Chapters
4 and 5. A publication of the experiments and results shown in Chapter 6 is under preparation and will
be submitted presumably in spring 2015.
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Overview

The following flowchart, figure 1.3, presents a concise overview to the structure of this thesis (without
the appendices).
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FIGURE 1.3: Flowchart for a quick overview of the contents of the thesis. The numbers in the yellow
circles indicate the corresponding chapters.





Chapter 2

Data assimilation: Fundamentals and
classical methods

This chapter sets the fundamentals for the presented work by introducing the basic DA concepts and
solutions in a concise way. After introducing the basic terms and tasks, a probabilistic framework is
established which allows to formulate DA in very general way. Its further exploration then leads to
the variational approach and Kalman filtering, which are referred to as the classical methods. They
play a major role particularly for prevailing operational applications and are also subject to further
development. The objective of the structured presentation given in this chapter is two-fold. First, it
provides a sound overview of DA and second, it serves as an initial background and motivation for the
new filter algorithm that is at the heart of this thesis. For that reason, this chapter also focusses on a
multi-faced interpretation and discussion of the presented techniques.

2.1 Illustration of the principal challenge

DA can be interpreted as a part of estimation theory with the principal task to combine model fore-
casts with real-world observations in order to achieve an optimal estimation of the state of a dynamical
system. Additionally, it may be augmented to estimate static parameters that influence the model dy-
namics. DA represents a relatively advanced area of research, offering various different approaches.
Even though here the ideas are illustrated in the field of numerical weather prediction (NWP) or ocean
modeling, one should keep in mind that the methods are of general nature and apply to many other
fields as well. Naturally, the relevance of particular issues depends on the area of application. For
example, in NWP, the greatest challenge is imposed by dealing with the chaotic dynamics in a very
high-dimensional state space. Hence, the restricted computational capacities directly prohibit many
other approaches that might work well for small-scale problems.

In NWP, predictability is inherently strongly limited by the chaotic nature of its underlying complex
dynamics which leads to an exponential error growth (Lorenz 1963). As a consequence, even a perfect
model would not be able to generate useful forecasts as long as it is not initialized realistically, which
clearly represents a nontrivial task considering the high dimensionality of the state space. It may for

11
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example cover all atmospheric variables in the global atmosphere. The high sensitivity to the initial
conditions is the reason that a well-tailored DA system is a key component in NWP. Its primary task is
to supply the initial conditions, based on the model dynamics and past observations.

The development of the global observing system together with advanced DA methods have a large share
in the improvement of weather forecasts throughout the previous decades (e.g., Richardson et al. 2013).
However, the problem will remain challenging in the future, as models complexity still increases. First,
finer resolution increases the state dimension even further, and second, state-of-the art models consider
the whole earth system with the interactions between different components such as atmosphere, ocean,
sea ice and land. Third, new types of observations have be assimilated both correctly and efficiently.
Additionally, applications for medium-range climate predictions, such as seasonal or even decadal fore-
casts, as well as ensemble forecasts in general, also ask for a proper initialization, opening new fields
of application. In conclusion, DA represents a very dynamic and interesting field of research. A lot of
progress has already been made in the past. Yet, numerous open question still wait to be answered.

2.2 Basic quantities

At first, the quantities of interest in the field of DA are introduced. In this context, the basic notation, to
be used throughout this thesis, is defined.

2.2.1 Notation

The mathematics of DA can quickly become rather complex as it involves many different variables
and types (scalars, vectors, matrices, probability distributions,...) and consists of a lot of different ap-
proaches and methods. Therefore, a consistent and well-defined notation is essential when introducing
and comparing DA techniques. A widely accepted attempt to unify the DA notation was established
by Ide et al. (1997), but it has to be extended to include ensembles (see Chapter 3) as a relatively new
degree of freedom in the DA world. The following notation is used throughout the complete thesis,
unless otherwise noted. Further extensions will be inserted only when necessary. This concerns both
symbols and the usage of indices. The general rules are as following:

• Vectors are marked by bold, lowercase letters, e.g., x or y.

• Matrices are marked by bold, uppercase letters, e.g., X or T.

• Operators are marked by uppercase Greek letters, e.g.,H orM.

• Vector spaces are represented by double, uppercase letters, e.g.,X or Y.

• Ensemble members are indicated by an upper index, usually n or m, e.g., xn.

• As time is usually discretized, the time level is indicated by the lower indices i and j. For further
convenience, different time levels are summarized with a colon notation, e.g., xi:j (with j ≥ i) is
to be understood as the set {xi,xi+1, . . . ,xj}.



Chapter 2. Data assimilation: Fundamentals and classical methods 13

• In a few cases, the vector formulation will not be sufficient and the vector components are needed
explicitly. Then, a second lower index k is used, or the nature of the lower index becomes clear
from the context.

For example, xni,k represents the k-th component of the state vector of ensemble member n at time level
i, while xni is the full state vector at time ti. The corresponding continuous field would be xn(r, t),
where r represents the spatial coordinates.

2.2.2 State space

2.2.2.1 State and model

The state of a system is given by a collection of variables which describe the relevant properties of the
system at a single time. Usually, the state is dynamical, i.e., it varies with time. For example, in NWP,
a state refers to a certain atmospheric condition and can be expressed by temperature, pressure, wind
and humidity at each global position. The state vector collects all these variables into one single vector
x. The state spaceX is the space of all possible model states, and can be of very large dimensionality.
This thesis restricts to the case where the state space is of finite dimensionality K, as follows from a
spatial discretization. Then, this dimension equals the number of components in the state vector.

A state x only represents a snapshot of the system at a given time, while for most applications the tem-
poral development of the state is of interest. This task is completed by the model, the basic component
of any forecasting scheme. In general, it allows to evolve a state in time. For example, in NWP, regional
or global atmospheric models are applied to integrate a given atmospheric condition. In physics and
meteorology, or in geosciences in general, the underlying dynamics is typically governed by partial
differential equations (PDEs) that express the underlying physical laws. The model represents a certain
approximative representation of these equations, as the PDEs are usually discretized in space and time,
and need to be extended by parametrizations for unresolved processes.

2.2.2.2 Model integration

In geosciences, the prognostic physical equations are typically of first order in time. Thus, the temporal
evolution of a model state requires an initial condition, as the dynamical tendencies only depend on the
previous state. More abstractly, the model can be regarded as a nonlinear operator that acts on a state
vector xi, thereby propagating it one time step ahead:

Mi→i+1 : X→ X , xi+1 =Mi→i+1 (xi) (2.1)

Here, the model operator is allowed to be time-dependent. Whereas usually the physical equations used
to advance a model state are actually time-invariant, a time dependency may be introduced by boundary
conditions and external parameters, such as the forcing by solar radiation or at the lateral boundaries.
However, the time index of the model operator can usually be dropped for reasons of convenience, since
this temporal dependency is not relevant for most DA aspects.
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This model integration over a finite number of I time steps can be factorized as follows, representing
the repeated application of the single-time-step model operator:

xI =M0→I(x0) =MI−1→I(. . .M1→2(M0→1(x0))) (2.2)

In assimilation algorithms, sometimes a linearized version of the model operator is needed. The first-
order Taylor approximation around a certain state x̃ is:

M(x) ≈M(x̃) + M(x− x̃) (2.3)

where matrix M is the Jacobian, also called the tangent linear model, evaluated at x̃ (see Appendix A).

2.2.2.3 Model error

Equation (2.1) actually refers to a deterministic system, as the model state at any time ti > t0 is entirely
determined by the initial state x0, which allows to produce a unique trajectory as in equation (2.2).
In fact, most large-scale circulation models are based on the laws of classical physics, such as the
Navier-Stokes equations and conservation of mass and energy. These laws are inherently deterministic.
However, any model is only an approximation to the real-world behavior, due to numerous sources of
uncertainty. They are introduced by errors arising for example from finite resolution in space and time,
approximate parameterization schemes, imperfect boundary data and parameters or neglected physical
processes. An important example for model error is the feedback of unresolved scales to the grid-scale
variables. While these processes, such as turbulence, are approximated by parameterization schemes,
they will never be quantified exactly. Another example are radiative processes or cloud microphysics
that take place on a molecular scale. Consequently, even if an initial state was known exactly, there
would still remain an inherent uncertainty in the model output of the next time step. This uncertainty is
a result of the so-called model error, and it includes all contributions that render the model imperfect.
Therefore, the model integration should actually be written as

xi+1 =Mi→i+1 (xi) + ηi (2.4)

where ηi is a random vector and represents a sample of the model error distribution. Typically, the
model error is assumed to be normally distributed with zero or nonzero mean (allowing a model bias)
and a covariance matrix Qi. The formulation (2.4), which is the discrete form of an Itô stochastic
differential equation (Miller et al. 1999), actually assumes that the model error is flow-independent and
not correlated in time, which is a probably not true for atmospheric models (Daley 1992). However,
hardly anything is known about the model error statistics and its properties, and even the implementation
of such a crude formulation is a difficult issue (Ades 2013; Houtekamer and Mitchell 2009; Tremolet
2007). In the context of this thesis, the basic formulation with ηi ∼ N (0,Qi) is sufficient. A detailed
treatment of model error is not required here, as this work mainly restricts to deterministic systems as
mostly used in operations and research.
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2.2.3 Observation space

2.2.3.1 Observations

The state space fully describes the system of interest. However, as discussed, any model forecast
necessarily exhibits deviations from the true state due to multiple sources of uncertainty. Observations
are real-world measurements of the system being modeled. They represent an independent source of
information. In DA, this information is employed to constrain model forecasts in order to obtain an
optimized state estimate. Observations are also valuable data for model evaluation, i.e., the assessment
of its performance properties, which in turn supports further developments of the model, or for post-
processing, i.e., the correction of model output. Let the L-dimensional observation space Y represent
the set of possible observations and y the observation vector that contains all single observations at
a given time. Often, the observation space is time dependent, in contrast to the state space which is
mostly fixed. For example, a satellite measures different parts of the globe at different times or may
not be able to observe a region due to clouds. However, in the context of presenting DA techniques this
time dependency can usually be treated implicitly as it does not affect the algorithms used.

2.2.3.2 Observation operator

In most real-world applications, the observation space does not match the state space for two reasons.
First, not all state variables are observable, and second, the observations may be connected to the state
variables in an indirect way. For example, satellite radiances clearly contain information about the
atmospheric state, as the measured radiance depends on atmospheric conditions. However, they are not
part of the state space nor used anywhere in the model. Hence, it is essential to link the observations
to the actual state variables, which is the task of the so-called observation operator. It maps from state
into observation space:

Hj : Yj → X , yj = Hj(x) (2.5)

The observation operator outputs the observation vector that matches the input state, i.e., it answers
the question ”Given the system’s state is x, what would the corresponding observation y be?” This
operator plays an essential role in DA, as most algorithms work by comparing the model-equivalent of
the observation with the actual, real-world observation in order to decide how to adjust the model state.
In general, H(·) is nonlinear. For example, it may contain interpolations of the state or even complex
calculations, like a full radiative transfer scheme. Similarly to the model operator in equation (2.3), the
observation operator can be linearized using its tangent linear version H, i.e.,H(x) ≈ H(x̃)+H(x−x̃).

2.2.3.3 Observation errors

Even though observations represent an extremely valuable supplement to models, it has to be empha-
sized that they are not a perfect representation of the real world either. Both observations and the
observation operator are subject to errors of different sources:



Chapter 2. Data assimilation: Fundamentals and classical methods 16

• Measurement error: A measurement usually contains a random and a systematic error which
depend on the technique used. While the latter can be removed by post processing methods such
as bias correction, the former is of statistical nature and therefore irreducible.

• Representation error: The mapping from state to observation space represents another source
of error, for example, due to the interpolation of model variables or the fact that observation
operators such as for radiative transfer are often imperfect models as well.

As a consequence, the observation equation (2.5) should be written more consistently as

yj = Hj(x) + ej (2.6)

where ej is a sample of the observation error distribution. The specification of its characteristics is a
nontrivial, yet highly relevant task under active research (Bocquet et al. 2010), because the observation
error statistics determines the weight the observation achieves in a DA procedure. An under- or overes-
timation of the error magnitude necessarily leads to an over- or underconfident adjustment of the model
forecasts, hence preventing the optimal usage of the observations (Fowler and van Leeuwen 2013).

Usually, one assumes that the observation errors follow a Gaussian distribution with the observation
error covariance matrix Rj , ej ∼ N (0,Rj), and at least the methods presented in this chapter require
this assumption. The diagonal elements of R represent the variances of each component, while the
off-diagonal elements specify their correlations. In case different observation systems are merged into
the observation vector, it is obvious that the matrix R is block-diagonal. However, the specification of
error cross-correlations is not straightforward. For example, it can be expected that observation errors
of a satellite measurement exhibit an articulate spatial dependency. Modeling of these error statistics is
an open topic of research within the DA world (e.g., Miyoshi et al. 2013). An advantage of nonlinear
DA methods (see Chapter 3) is that they offer much more flexibility in this context by allowing almost
any error distribution. This can become an important issue when dealing with inherently non-Gaussian
observation errors that can appear in real-world applications. For example, for bounded quantities such
as precipitation or cloud fraction, Gaussianity is evidently not appropriate (Anderson 2010).

2.3 The data assimilation problem

2.3.1 Definition

In the previous sections, the DA problem and its relevant components were discussed in qualitative
way. Aiming a more quantitative formulation of DA techniques, it is necessary to formally define the
problem to be solved. In the remainder of this thesis, this definition will be referred to repeatedly. The
specifications are as following, and figure 2.1 visualizes this situation on a conceptual time line.

• The assimilation window is fixed in time, [t0; tI ]. At time t0, an initial estimate about the model
state, called the background, usually is available.
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FIGURE 2.1: The assimilation time window (inspired by Evensen 2009, Fig. 7.1). At each time level
ti (i = 0 . . . I) a model state xi is defined. Observations can be distributed irregularly in time, and
i(j) specifies the time level at which observation yj (j = 1 . . . J) is valid. In general, the assimilation

window exceeds the observation time range, i.e., i(1) > 0 and J < I .

• The model state is discretized in time with a time interval ∆t, which typically corresponds to the
discretization time step of the model. Thus, there are I + 1 time levels ti, i = 0 . . . I , which are
connected through the model operator as defined in equation (2.4). The model state at time ti is
denoted as x(ti) ≡ xi.

• A number of J observations yj are available at respective time levels i(j), j = 1 . . . J , where
0 < i(1) < i(2) < . . . i(J) < I . The mapping i(j) specifies at which time level the j-th
observation is valid. At each observation time, an observation operatorHj , see equation (2.6), is
available. The need for further specifications, e.g., an error covariance Rj , depends on the actual
algorithm. For convenience, i(0) ≡ 0 is defined even though no observation is available at t0.

The principal aim of DA consists in finding an optimal estimate for the description of the states at all
time levels that contains the observational information. The type of description depends on the method.
In the simplest case, it is given by one point estimate at each time, x̂i, but it may also refer to a full pdf.
One distinguishes two types of solution, visualized in figure 2.2:

• A smoother finds the continuous model trajectory that fits best to a given background state and
all the observations. The estimate at any time is influenced by past and future observations.

• In contrast, a filter produces estimates that, at a given time, only depend on past observations.
Therefore, the filter trajectory is discontinuous at observation times, at which the state is updated
by the new information.

In praxis, the problem is further simplified by introducing more restrictions, such as Gaussian assump-
tions for the error statistics, or the linearity of involved operators. However, a better insight into the
specific algorithms is gained by interpreting them in an entirely general context at first.

2.3.2 Principal approaches

The aim is to formulate a principle solution to the just defined problem of state estimation. In this thesis,
the view is held that the most general approach consists in a probabilistic interpretation, and the frame-
work is based on the pioneer work of van Leeuwen and Evensen (1996). The key issue of DA is to find
ways of optimally dealing with uncertain quantities, and it was already motivated that all components of
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FIGURE 2.2: Conceptual form of the different DA solutions, shown is the state trajectory versus time t.
The gray points represent observations, and the black circle the best estimate at initial time t0. (a) The
smoother yields a continuous trajectory throughout the assimilation window. (b) The filter begins at the

initial estimate and adjusts the state each time observations are available, i.e., at the analysis steps.

a DA system are inherently subject to various sources of uncertainty. The theory of probability offers a
very general, suitable framework to deal with uncertainty by the means of pdfs. The probabilistic point
of view is not only useful in the context of DA, but also in many other fields related to forecasting. For
example, forecast evaluation can be approached similarly, leading to a coherent verification framework
that is capable of incorporating many relevant aspects of forecast quality and value (e.g., Gneiting et al.
2007; Jolliffe and Stephenson 2011; Tödter 2011). Another example concerns the initialization of en-
semble forecasts, which can be interpreted as sampling from an underlying pdf. Hence, a probabilistic
DA framework will be established that comprises all objective algorithms appearing in this thesis. It
will always be pointed out which assumptions are added to the most general solution.

Not surprisingly, there are multiple ways to interpret the assimilation problem and to obtain a corre-
sponding framework. While they offer distinct interpretations and have different implications, they
often lead to similar explicit algorithms, given matching basic assumptions, e.g., for the underlying
distributions (e.g., Bollmeyer and Hense 2014). Before proceeding to formulate the probabilistic DA
framework, another well-known framework, inverse problem theory (Aster et al. 2005; Bennett 2002;
Tarantola 2005; Yaman et al. 2013), is mentioned which has applications throughout a large variety of
fields, e.g., in geophysics, neural field theory, remote sensing, etc. It considers the observation operator
itself as a ”forward model” which outputs the measurement, given a certain state. The actual observation
controls the state, and the corresponding inverse problem is considered as finding a state that exhibits
the ”best” match with the given observation. In principle, a direct solution would be the inversion of
the observation equation (2.5), x = H−1(y). However, this is impossible, as H−1 is typically unstable
and unbounded for the following reasons (Aster et al. 2005):

• The dimension of y is usually much smaller than of x and hence,H is not injective.

• The observations are subject to errors as well and thus, H is not surjective. For any true state,
usually an infinite number of possible observations exists.

• Errors coming from model, observations, observation operator and previous errors can accumu-
late in a dynamical system.

As a consequence, the problem is severely ill-posed, i.e., it does not have a unique solution and there
may be a high sensitivity of the solutions towards small changes in the input parameters. To over-
come this issue, some kind of regularization is required. The latter is often represented by providing a
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background estimate of the model state. Furthermore, the optimal solution is defined with respect to a
specific measure. For example, the well-known Tikhonov regularization (Aster et al. 2005; Tikhonov
and Arsenin 1977) replacesH−1 by a stable version, which directly leads to the least-squares approach
also appearing in variational DA (see section 2.5).

2.4 Probabilistic framework

As motivated, the general approach to DA consists in interpreting all uncertain quantities, in particular
the system’s state and the observation, as random variables. They are described by probability density
function (pdfs), which are denoted by p(·) and contain all knowledge about the variables. In Appendix
A, an overview of basic properties of pdfs is given.

2.4.1 Bayes’ theorem

In DA, two sources of uncertain information exist. The model provides an estimate of the full system
state, at any time level. This knowledge is contained in the prior pdf p(x), i.e., an unconstrained
estimate of the system’s state. The observations are linked to the system and represent an additional
constraint. This information can be interpreted as a conditional likelihood pdf p(y|x). It describes the
distribution of the observations, given the system is in an arbitrary state x. Finally, in probabilistic
terms, the aim of DA is to obtain an updated estimate of the state that depends on the observations, as
expressed by the conditional distribution p(x|y). It is related to the input pdfs by Bayes’ theorem:

p(x0:I |y1:J) =
p(x0:I)p(y1:J |x0:I)

p(y1:J)
∝ p(x0:I)p(y1:J |x0:I) (2.7)

The denominator can be neglected safely, as it only normalizes the right-hand side and is independent
on x, thereby justifying the proportional sign. Equation (2.7) quantifies how the prior pdf is updated
by the observational information. Hence, from a purely probabilistic point of view, the whole DA
problem can be expressed as the simple multiplication of prior and likelihood pdf. In this form, DA is
not an inverse problem, but ”just” a multiplication problem (van Leeuwen 2010). However, this does
not imply all efforts can be stopped at this point. The pdfs are formulated in a high-dimensional space
and are usually not given in a closed form, in fact, very little knowledge about their form is available.
For instance, the prior pdf, p(x0:I), contains the dynamical evolution of uncertainty as imparted by the
nonlinear, often chaotic, model. Also, all temporal and spatial connections of state and observations
are contained in equation (2.7). Fortunately, some typical additional properties of the two pdfs involved
can be utilized to simplify the most general formulation before turning to explicit algorithms that are
based on such a formulation.

2.4.2 General smoother solution

Equation (2.7) simultaneously represents the state and observation vectors of all time levels, i.e., it
deals with joint pdfs. As motivated in section 2.2.2, the underlying physical equations are usually of
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first order in time. As a consequence, the model state at a specific time only depends on the model
state at the previous time step, or, more generally speaking, the model can be interpreted as a first
order Markov process where the random variable, here the state x, is stochastically independent on
all previous realizations expect the last one. This holds as long as the model is deterministic or the
model errors are not correlated in time. First, the joint prior pdf is reformulated in terms of conditional
densities (see Appendix A) and then, this important property is employed:

p(x0:I) = p(x0)p(x1|x0)p(x2|x0:1) · · · p(xI |x0:(I−1)) (2.8)

= p(x0)

I∏
i=1

p(xi|x0:(i−1)) = p(x0)

I∏
i=1

p(xi|xi−1) (2.9)

The conditional distribution p(xi|xi−1) is referred to as the transition pdf. It is concerned with the
probabilistic evolution of the dynamic state pdf.

Next, the joint likelihood pdf, the second term in equation (2.7), is reformulated. As defined in section
2.3, the joint observation vector y1:J can be partitioned into the individual measurements yj at distinct
times ti(j). It is reasonable to assume that the observation at a certain time ti(j) only depends on the state
at that time, xi(j). Additionally, a typical assumption is that the observation errors are not correlated in
time. These considerations allow a factorization of the joint likelihood pdf as following:

p(y1:J |x0:I) =

J∏
j=1

p(yj |xi(j)) (2.10)

Finally, insertion of the factorizations (2.9) and (2.10) into the general formula (2.7) yields a revised
formulation of Bayes’ theorem that is more convenient:

p(x0:I |y1:J) ∝ p(x0)

I∏
i=1

p(xi|xi−1)
J∏
j=1

p(yj |xi(j)) (2.11)

This result represents the fundamental equation of DA from a probabilistic point of view. However, it
still remains the question how to use this equation in praxis. In principle, one could apply it directly
and attempt to find a solution for the whole time window at once, yielding a smoother solution. This
simultaneous processing of all observations leads to the variational approach discussed in section 2.5.
However, before showing explicit algorithms to solve equation (2.11), a further manipulation of Bayes’
theorem is explored by splitting the generic solution into a subset of smaller tasks that can be solved in
an iterative way, which leads to the sequential approach. The latter can be applied to both filtering and
smoothing problems, and will be used repeatedly in the subsequent chapters of this thesis.

2.4.3 General sequential solutions

The sequential approach relies on the property of the model being a first order Markov process. The
basic idea is to proceed through the time window and process each observation consecutively, which
results in updating the previous solution with the new observation. This approach is also more suitable
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for forecasting applications since new measurements can be incorporated directly after arrival, without
the need to repeat the full assimilation window.

Additional to Bayes’ theorem, the sequential reformulation of the assimilation problem requires the
marginalization rule (see Appendix A). It states that a marginal pdf is achieved by integrating the joint
pdf over all variables which are not of interest. For illustration, the following integral extracts the
marginal prior pdf at time ti from the joint prior pdf:

p(xi) =

∫
p(x0:I) dx0:(i−1)dx(i+1):I (2.12)

Here, and in the following, the integral is understood as a multiple integral that covers the full range of
all components of the integration variables. The marginalization rule will be used below to derive the
general filter solution. First, the general smoother solution needs to be reformulated in an iterative way.

2.4.3.1 Sequential smoother

In order to realize the sequential paradigm, first, the product in equation (2.11) is rewritten such that the
time steps in between two successive observations are summarized.

p(xi(j)|xi(j−1)) =

i(j)∏
i=i(j−1)+1

p(xi|xi−1) (2.13)

⇒ p(x0:I |y1:J) ∝ p(x0)

 J∏
j=1

p(xi(j)|xi(j−1))p(yj |xi(j))

 p(xI |xi(J)) (2.14)

The last term describes the transition from time ti(J) to the final time tI . In this interval no observations
are available anymore. Thus, Bayes’ theorem now appears as a product of pdfs, and it can be evaluated
iteratively with the following algorithm:

1. Compute the posterior pdf at the first observation time level,

p(x0:i(1)|y1) ∝ p(x0)p(xi(1)|x0)p(y1|xi(1)) (2.15)

2. Iterate the following equation for j = 2 . . . J to find the posterior pdf at the j-th observation time.
The previous posterior pdf can be interpreted as a new prior pdf, which is advanced and updated
by the next measurement,

p(x0:i(j)|y1:j) ∝ p(x0:i(j−1)|y1:(j−1))︸ ︷︷ ︸
prev. posterior

p(xi(j)|xi(j−1))p(yj |xi(j))︸ ︷︷ ︸
assimilate new obs.

(2.16)

3. Proceed the final posterior pdf until the end of time window,

p(x0:I |y1:J) ∝ p(x0:i(J)|y1:J)p(xI |xi(J)) (2.17)

It is obvious that the final joint pdf in equation (2.17) equals equation (2.11). The iterative solution
is valid as long as the system is a first order Markov process and model and observations errors are
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uncorrelated in time. Thus, this algorithm represents a general smoother as the information from any
observation yj influences the state estimates at all time levels. As this thesis focusses on filtering
algorithms, this result will be processed to derive the sequential filter. However, it is also possible
to develop explicit smoothers based on this iteration (Evensen and van Leeuwen 2000). The general
smoother can be simplified to a computational more efficient version, the lagged smoother, in which
observations only influence the state estimates in a specified time range rather than possibly affecting
all of them. This is motivated by the fact that the impact of a measurement is negligible outside a time
range that corresponds to the model’s predictability limit (Evensen 2009, p. 136).

2.4.3.2 Sequential filter

Bayes’ theorem and the marginalization rule, as stated in equations (2.11) and (2.12), are both of com-
pletely general nature. They can also be used to derive equations for a general filter. The characteristic
property of a filter is that the observational information is not transferred backwards in time. Thus, in
contrast to the smoother, past states are not updated again by a newly assimilated observation.
In the following, the general time ti(j), at which the j-th observation, yj , is assimilated, is considered.
In probabilistic terms, the target is the marginal pdf at that time, as previous time levels are not updated
again. This can be achieved by integrating the smoother posterior pdf, as given in equation (2.16), over
all past states. Again, any normalization factors are omitted.

p(xi(j)|y1:j) =

∫
x0:(i(j)−1)

p(x0:i(j)|y1:j) dx0:(i(j)−1)

∝
∫
p(x0:(i(j−1))|y1:(j−1))p(xi(j)|xi(j−1))p(yj |xi(j)) dx0:(i(j)−1)

= p(yj |xi(j))
∫
p(x0:i(j)|y1:(j−1)) dx0:(i(j)−1) (2.18)

⇒ p(xi(j)|y1:j) ∝ p(xi(j)|y1:(j−1))p(yj |xi(j)) (2.19)

Thus, at any observation time, the marginal posterior pdf is simply obtained by a marginal form of
Bayes’ theorem. Equation (2.19) states that the prior marginal pdf at time ti(j), p(xi(j)|y1:(j−1)),which
incorporates all past observations, has to be multiplied by the likelihood pdf at that time, p(yj |xi(j)).

However, it remains to specify the prior marginal pdf, as given by the integral in equation (2.18), which
expresses the marginalization rule. The first manipulation consists in factorizing the integrand into the
joint pdf at the previous observation time and the transition density. Then, after re-ordering the integrals
accordingly, the first integral is recognized as the marginal pdf at the previous observation time.

p(xi(j)|y1:(j−1)) =

∫
x0:(i(j)−1)

p(x0:i(j)|y1:(j−1)) dx0:(i(j)−1)

=

∫
p(x0:i(j−1)|y1:(j−1))dx0:(i(j−1)−1)

∫
p(xi(j)|xi(j)−1) dx(i(j−1)):(i(j)−1)

=

∫
p(xi(j−1)|y1:(j−1))p(xi(j))|xi(j−1)) dx(i(j−1)):(i(j)−1) (2.20)



Chapter 2. Data assimilation: Fundamentals and classical methods 23

This derivation used the fact that the transition density does not depend on the observation. Thus, the
result is simple to interpret again. The prior density at time ti(j) is obtained by integrating the posterior
density at time ti(j−1) together with the transition density. Since the joint transition density can be
factorized, see equation (2.13), the integration can be performed iteratively in correspondence to the
model time steps, which will be shown below.

In conclusion, the posterior filter pdf is given by updating the prior filter pdf, which depends on all past
observations and arises from an integration in time, with the likelihood pdf of the new observation. The
general sequential filter solution for the assimilation problem can be summarized as follows:

1. Find the posterior pdf at the first observation time:

(a) Integrate the initial pdf until ti(1) via p(xi(1)) =
∫
p(x0)p(xi(1)|x0) dx0:(i(1)−1). Using the

factorization (2.13), this is achieved by an iterative procedure for i = 1 . . . i(1)

p(xi) =

∫
p(xi−1)p(xi|xi−1)dxi−1

(b) Assimilate the first observation, p(xi(1)|y1) ∝ p(xi(1))p(y1|xi(1)).

2. Iterate the following substeps for j = 2 . . . J :

(a) Forecast step: Integrate the previous posterior pdf, p(xi(j−1)|y1:(j−1)) according to equa-
tion (2.20) until observation time with the following iteration for i = (i(j−1) + 1) . . . i(j):

p(xi|y1:(j−1)) =

∫
p(xi−1|y1:(j−1))p(xi|xi−1)dxi−1 (2.21)

Here, the filter directs the posterior pdf at the previous observation time, p(xi(j−1)|y1:(j−1)),
through all model time steps until the next observation, where the resulting pdf is interpreted
as new prior density p(xi(j)|y1:(j−1)). This step is strongly connected with the forward
model. In the next subsection, this issue will be explored in more detail.

(b) Analysis step: Update the prior pdf with the likelihood pdf according to Bayes’ theorem, as
derived in equation (2.19):

p(xi(j)|y1:j) ∝ p(xi(j)|y1:(j−1))p(yj |xi(j)) (2.22)

This step concerns an objective adjustment of the prior pdf which, in principle, is indepen-
dent on the model.

3. Proceed the posterior pdf at the final observation time, p(xi(J)|y1:J), to the end of the time
window. Again, perform the iterative integration for i = (i(J) + 1) . . . I:

p(xi|y1:J) =

∫
p(xi−1|y1:J)p(xi|xi−1) dxi−1

Thus, the sequential filter terminates with the final posterior pdf p(xI |y1:J), which equals the
marginal of the general smoother solution (2.17) at final time tI .
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The filter is conceptually simpler than the smoother since it only concerns the marginal pdfs. At the
end of the assimilation window, the solutions of the general filter and smoother are identical as the final
filter pdf p(xI |y1:J) depends on all observations. In contrast, at intermediate times, the filter solution is
only based on past observations, while the smoother considers the future ones as well, which is useful
for re-analysis applications. However, for the initialization of a prediction after the DA cycle only the
solution at the end of the time window is of relevance. In this context, a particular advantage of the
sequential filter is that new observations after time tI can be incorporated almost in real-time by simply
advancing and updating the previous filter solution p(xI |y1:J).
The algorithm presented in this section is completely generic and does not impose any further restric-
tions apart from the general assumptions that (1) the model represents a first order Markov process and
(2) model and observation errors do not exhibit temporal correlations.1 It represents a different formu-
lation of the general solution in terms of a probabilistic description. This algorithm is the basis for all
filters appearing in this thesis, including the new method shown in Chapter 4.

2.4.4 Transition density and model integration

2.4.4.1 Integral equation

In DA, it is essential to understand the connection between the transition density and the model equation
(2.4). The transition density p(xi|xi−1) serves as an example. This conditional pdf is the distribution
of the random variable xi given that the state at time ti−1 actually is xi−1. Here, two typical cases
are considered. First, if the model is entirely deterministic (ηi−1 ≡ 0), the state at time ti is fully
determined by xi−1 through the model equations. In this case, the transition density can be interpreted
as a delta distribution (see Appendix A),

p(xi|xi−1) = δ
(
xi −M(i−1)→i(xi−1)

)
(2.23)

Neglecting the model errors is referred to as the perfect model assumption. In the more general case, an
additive Gaussian model error as in equation (2.4) is assumed. Then, the transition density is Gaussian,
and its mean is given by an error-free model integration,

p(xi|xi−1) = N (xi;M(i−1)→i(xi−1),Qi−1) (2.24)

For both situations, it becomes apparent that the transition density is strongly connected to the model
operator. The latter defines the deterministic part of an integration in time, and the corresponding
pdf describes the uncertainty gained during the integration due to unresolved model errors. Hence,
applying the model integration as in equation (2.4) can be interpreted as sampling from the transition
density (van Leeuwen 2009). The sequential approach requires to integrate the transition density along
with the previous marginal pdf in order to obtain the marginal pdf at the next time level,

p(xi) =

∫
p(xi−1)p(xi|xi−1) dxi−1 (2.25)

1Actually, a similar solution can even be formulated in the presence of autocorrelated model errors. In this case, the model
can still be formulated as a first order Markov process by augmenting the model errors to the state vector (Evensen 2003;
Reichle et al. 2002).
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Analytical solutions for this integral can only be obtained for a few special cases, e.g., if the model is
linear. Such a situation applies to the Kalman filter forecast step, see section 2.6.2.

2.4.4.2 Fokker-Planck equation

Equation (2.25) constitutes the principal solution for the time evolution of the state pdf, and the sys-
tem dynamics is hidden in the transition density. For a nonlinear model, the solution cannot be given
anymore, even if the transition density is a delta function as in (2.23). Instead, at least for the case of
additive Gaussian model errors, it is possible to transform the integral into an underlying differential
equation, the Kolmogorov equation, often also referred to as Fokker-Planck equation (e.g., Jazwinski
1970; Miller et al. 1999). It describes the temporal evolution of a pdf, given the system’s dynamical
equations:

∂p(x)

∂t
+
∑
k

∂Mk(x)p(x)

∂xk
=
∑
k1k2

Qk1k2
2

∂2p(x)

∂xk1∂xk2
(2.26)

This equation can be interpreted as a continuity equation for pdfs since it constitutes the conservation
of probability mass (Evensen 1994). The drift term, expressed by the divergence of the ”probability
flux”, is determined by the model dynamics and speficies the local advection of probability mass. The
diffusion term on the right hand side considers the influence of random forcing and tends to broaden
the pdf, as uncertainty increases in time.

In principle, one could solve Kolmogorov’s equation for any given initial pdf, p(x0), using Sommerfeld
boundary conditions. However, this is only feasible in a few cases due to several reasons. First, the
derivatives required in this equation are not directly accessible unless the model has a very simple form.
They become difficult if the model is a large operator, represented by a collection of computer code.
Second, the computational cost of a numerical solution is very high and would exceed the cost of a
single model integration by orders of magnitude, which is prohibitive even in moderate dimensions
(Feynman 1982). Hence, applications are only possible in very simple cases for comparing such an
”exact” pdf integration with approximative methods (Miller et al. 1999). Additionally, the equation
is not valid anymore if the model error has a different form or if the model itself exhibits random
components or explicit time dependencies, e.g., from lateral boundary conditions. In summary, it is
fairly safe to conclude that even though Kolmogorov’s equation implicitly is at the heart of any DA
system, it does not represent a practical solution to the assimilation problem (Evensen 2009).

Consequently, other approaches are required to solve the problem of advancing the state pdf. In the
remainder of this chapter, it will be shown that a Gaussian assumption allows practical solutions. In
contrast, ensemble-based algorithms apply Monte Carlo methods to approximate the pdf integration in
a stochastic fashion. This will be discussed in more detail in Chapter 3.

2.5 Variational data assimilation

This work mainly deals with sequential schemes. However, in order to discriminate them against other
methods and to understand their properties and potential advantages, it is useful to gain an additional
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insight by first looking at the principles of variational DA. It plays an important role in weather forecast-
ing and climate reanalysis, and it represents the competitor to ensemble-based, sequential schemes. For
example, the ECWMF relies on 4DVAR to produce analyses for different types of forecast, while the
operational section of the German Weather Service (DWD) recently switched to an ensemble Kalman
filter (Reich et al. 2011).

2.5.1 Characterization

The variational approach is mainly characterized by the assumption that all involved pdfs are Gaussian,
with specified means and covariance matrices. These moments represent the major inputs to any vari-
ational DA system. Of particular relevance is the background error covariance matrix, which specifies
the error correlation structure of the first guess. The variational scheme is a smoother. Its solution is
represented by an estimate of the state at each time level within the assimilation window, and hence,
they form a full trajectory x0:I . The algorithm can be reduced to a basic quantity, the scalar cost func-
tion J(·), which is quadratic in its variables. Its minimum defines the analysis states. However, no
information about its reliability and uncertainty can be diagnosed directly.
The variational methods are presented in coherence with their historical developments. First, a static
situation is considered where all observations are assimilated at one time, leading to 3DVAR. Second,
the methodology is extended to consider the timing of different observations by including the model
dynamics, which results in 4DVAR.

2.5.2 3DVAR and optimal interpolation

3DVAR (Lorenc 1981) is a classical, deterministic DA method. At a given point in time, it intends
to create an analysis field which is statistically consistent with (1) a prior field (called first guess or
background) with a specified covariance structure and (2) all observations valid at that time. 3DVAR
can be interpreted as an enhanced interpolation scheme that considers both pieces of information, and
is closely linked to optimal interpolation (OI).

3DVAR can be derived within the probabilistic framework described in section 2.4. An arbitrary anal-
ysis time ti(j) (j ∈ {1 . . . J}) is considered and therefore, the time index can be dropped for now. It
is assumed that both prior and observation errors are Gaussian random variables. Hence, the prior pdf
p(x) is characterized by the background state, xb, and the background error covariance matrix, B. The
uncertainty of the observation y is described by an error covariance matrix R. These four quantities
represent the main input to a 3DVAR assimilation system. To be specific,

p(x) = N (x; xb,B) ∝ exp

{
−1

2
(x− xb)

TB−1(x− xb)

}
(2.27)

p(y|x) = N (y;H(x),R) ∝ exp

{
−1

2
(y −H(x))TR−1 (y −H(x))

}
(2.28)
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Following Bayes’ theorem and according to equation (2.22), the posteriori density of the state given the
observation, i.e., the analysis pdf, is given by

p(x|y) ∝ p(x)p(y|x) = exp {−J(x)} (2.29)

where J(x) =
1

2
(x− xb)

TB−1(x− xb) +
1

2
(y −H(x))TR−1(y −H(x)) (2.30)

3DVAR seeks for the state that maximizes the posteriori density, or, equivalently, minimizes is negative
logarithm, the cost function J(x). Mathematically, the cost function is a scalar, quadratic form in
a K-dimensional space. Therefore, a unique global minimum exists. The cost function can also be
interpreted as a penalty function that contains the weighted, squared deviations of any state x to both
observations and background state. The weights are given by the respective inverse error covariances
matrices. Therefore, the 3DVAR solution also corresponds to a least-squares estimate. The minimum
is determined by the necessary condition that the gradient of J(x) vanishes,

∇J = B−1(x− xb) + HTR−1 (H(x)− y) = 0 (2.31)

where H is the tangent linear observation operator. In a KF framework, see section 2.6, an analytical
solution of this equation is specified. In contrast, in 3DVAR, the analysis is found by a numerical
minimization of the cost function. A number of standard algorithms exist to perform this task, however,
given the potentially high dimension of the state vector, only a few of them are applicable to typical DA
problems with moderate computational cost (e.g., Fisher 1998). An example are quasi-Newton methods
which approximate the Hessian matrix. As the iso-surface of the cost function may be considerably
ellipsoidal, for large-scale applications a change of variables, the so-called preconditioning, is necessary
prior to minimization.

3DVAR was introduced as the operational DA method at ECMWF in 1996, and many details concern-
ing the cost function minimization were developed (Courtier et al. 1998). Before 1996, ECMWF had
relied on OI (Lorenc 1986) for 17 years. In principle, OI solves the same problem as 3DVAR but splits
the global analysis into a number of local analyses for which equation (2.31) can be solved analytically.
Interestingly, the analyses produced by the dynamical successive correction method (nudging, men-
tioned in section 1.2) converge to the OI results if the nudging weights are chosen properly (Bratseth
1986). However, these techniques only allow for simple observation operators, which is particularly
problematic for the assimilation of satellite radiances as they are not directly linked to the prognostic
model variables. In contrast, 3DVAR naturally deals with an arbitrarily complex observation operator.

The major drawback of 3DVAR is the challenging specification of the prior information (Bouttier 1994;
Derber and Bouttier 1999). It may be easy to obtain a realistic prior state estimate xb from a previous
model integration, using 3DVAR in a cycled way. However, the quality of the analysis is sensitive to
the error covariance matrix B as it weights the increments and spreads the observational information
in space. Various statistical methods have been developed to estimate B (Fisher 2003), but a realis-
tic, flow-dependent correlation structure is difficult to achieve in a large-scale, chaotic system (Rabier
et al. 1998). Additionally, while 3DVAR produces a consistent analysis in space, it only combines the
model and observations at a fixed time. This disregards the fact that observations are collected nearly
continuously in time.
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2.5.3 Strong- and weak-constraint 4DVAR

As shown, 3DVAR is principally designed for a stationary situation, even though it can be applied
to time-dependent problems as well. In contrast, 4DVAR is an actual smoother that fully considers
the dynamical situation, thereby tackling the main drawback of 3DVAR. It aims at assimilating all
observations during a given time window by finding an optimal model trajectory which offers the best fit
to the background state at the beginning of the window and to the observations (LeDimet and Talagrand
1986; Talagrand and Courtier 1987).

2.5.3.1 Strong-constraint 4DVAR

In order to derive 4DVAR, the general smoother solution given by equation (2.11) is sufficient. Strong-
constraint 4DVAR implies that the model is assumed to be perfect. As discussed in section 2.4.4, this
leads to a delta function representation of the transitions densities,

p(xi|xi−1) = δ
(
xi −M(i−1)→i(xi−1)

)
(2.32)

In other words, given any initial state x0, all successive states xi (i ≥ 1) are uniquely determined
through a model integration. Consequently, it is sufficient to optimize the state at the beginning of the
time window. Then, the full smoother solution is given by the corresponding model trajectory x0:I . In
order to formalize these considerations, the full smoother pdf is marginalized with respect to all time
levels by integrating equation (2.11). The integrals can be solved successively with the help of the delta
functions. Furthermore, property (2.2) is used to shortly denote a full model integration.

p(x0|y1:J) ∝
∫
p(x0:I |y1:J) dx1:I =

∫
p(x0)

I∏
i=1

δ
(
xi −M(i−1)→i(xi−1)

) J∏
j=1

p(yj |xi(j)) dx1:I

= p(x0)
J∏
j=1

p(yj |M0→i(j)(x0)) (2.33)

In 4DVAR, it is assumed that the initial prior pdf as well as the likelihood pdfs are given by Gaussian
distributions with the corresponding means and covariances. Then, using equation (2.33), it can easily
be seen that the posterior density, as for 3DVAR, takes the form exp {−J(x0)}. Again, its negative
logarithm defines the cost function:

p(x0|y1:J) ∝ N (x0; xb,B) ·
J∏
j=1

N (yj ;Hj
(
M0→i(j)(x0)

)
,Rj) ∝ exp {−J(x)} (2.34)

J(x0) =
1

2
(x0 − xb)

TB−1(x0 − xb)

+
1

2

J∑
j=1

(
yj −Hj(M0→i(j)(x0))

)T
R−1j

(
yj −Hj(M0→i(j)(x0))

)
(2.35)

The minimum of this strong-constraint 4DVAR cost function yields the initial state x0 that produces the
optimal trajectory x0:I . Here, as in 3DVAR, the term optimality refers two to distinct definitions:
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• The solution is the most probable estimator in the sense that it maximizes the posteriori pdf, given
the Gaussian assumption for prior and likelihood pdf and a perfect model.

• It is also the least-squares estimator that minimizes that weighted, squared deviations to back-
ground and observations. These weights are defined by the entries of the inverse covariance
matrices.

2.5.3.2 Minimization of the 4DVAR cost function

When evaluating the cost function, repeated model integrations can be avoided by an iterative procedure.
Usually, the state is integrated until the next observation time, where the corresponding observational
cost term is added. Then, the next time level is processed. As for 3DVAR, the minimization algorithms
require to evaluate the gradient, which is

∇J = B−1(x0 − xb) +
J∑
j=1

MT
0→i(j)H

T
j R−1j

(
yj −Hj(M0→i(j)(x0))

)
(2.36)

Here, the adjoints of model and observation operator appear. The evaluation of the second term of the
gradient is characterized by a backward integration of the adjoint model, as MT

0→i(j) can be factorized
to MT

0→1M
T
1→2 · · ·MT

(i(j)−1)→i(j) (see Appendix A).
Hence, the cost function and its gradient can be evaluated by one integration of forward and adjoint
model, respectively, and the latter typically requires considerably more computational time. Therefore,
even with efficient minimization algorithms which require only 10-100 iterations, for a rather long time
window of 12 hours as in NWP up to 200 days of model time may be needed, which is prohibitive.
Instead, the minimization is solved by an incremental method, in which the tangent linear model is
applied to minimize an approximately quadratic version of J(x0). This technique is for example used
at ECWMF (Tremolet 2004), where 4DVAR runs operationally since 1997 (Rabier et al. 2000). As of
today, it still represents the backbone of their DA system, even though it has been enhanced in 2011 with
an improved estimation of the background error covariance by using an ensemble of 4DVAR analyses
(Bonavita et al. 2012). Finally, it should be mentioned that even though the cost function has a unique
global minimum, in case of nonlinear observation or model operators additional local minima appear
and may pose a great challenge to the minimization algorithm (Courtier et al. 1994).

2.5.3.3 Weak-constraint 4DVAR

Due to the perfect model assumption in strong-constrained 4DVAR, the length of the assimilation win-
dow is rather limited (Tremolet 2006). In order to account for model errors that are already relevant
within this time range and to possibly allow longer time windows, the perfect model assumption is re-
laxed (Ahrens 1999) using a model error formulation as introduced in equation (2.4). The model error
for each time step is expressed as the difference between the new state and its deterministic counterpart.
It is assumed to be drawn from a Gaussian distribution with zero mean and covariance Q (Zupanski
1997). Hence, equation (2.11), which is based on the model evolution as a first order Markov chain,
is still valid. The transition densities in presence of model error have already been shown in section
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2.4.4. It remains to evaluate equation (2.11) with the typical assumption that all appearing densities are
Gaussian:

p(x0:I |y1:J) ∝ N (x0; xb,B) ·
I∏
i=1

N (xi;Mi−1→i(xi−1),Qi−1) ·
J∏
j=1

N (yj ;Hj
(
xi(j)

)
,Rj)

This leads to a cost function which looks similar as in the strong-constraint case in equation (2.35), but
with an additional term due to the model errors:

J(x0:I) = − ln (p(x0|y1:J)) =
1

2
(x0 − xb)

TB−1(x0 − xb)

+
1

2

J∑
j=1

(
yj −Hj(xi(j)

)T
R−1j

(
yj −Hj(xi(j))

)
+

1

2

I∑
i=1

(xi −Mi−1→i(xi−1))
T Q−1i−1 (xi −Mi−1→i(xi−1)) (2.37)

A substantial difference is that now the cost function depends on all model states x0:I . Thus, the degrees
of freedom in this high-dimensional minimization problem strongly increase, which represents the first,
rather technical, challenge of weak-constraint 4DVAR (Tremolet 2007). Furthermore, an issue currently
under intensive research concerns the suitable representation of model error. In reality, it is likely that
model errors are correlated in time (Daley 1992). However, even the apparently simple approach using
a Gaussian distribution requires knowledge about the statistical properties of model error and their
representation in form of a covariance matrix Q. At ECMWF, an approach is to estimate it with an
ensemble integration (Bonavita et al. 2012).

2.6 Kalman filter and its extension

The Kalman Filter (KF, Kalman 1960; Stratonovich 1960) represents the sequential counterpart to
4DVAR. Originally, it intended to solve the estimation problem with the constraint that both model
and observation operator are linear. A straightforward extension to nonlinear filtering problems was
proposed shortly after (Kalman and Bucy 1961). Often, it is referred to as the extended KF (EKF). In
this thesis, the term KF is used for the generalized formulation as well. Already in the 1960’s, the KF
gained a famous reputation for its successful application in aerospace systems, particularly in the first
manned spacecraft missions (Schmidt 1981; Smith et al. 1962).

2.6.1 Characterization

The KF is a sequential scheme that iterates forecast and analysis steps over the assimilation window
and is, as 4DVAR, based on Gaussian distributions (Sorenson 1970). Here, the KF is derived within the
probabilistic framework, using the general filter formulation developed in section 2.4.3. For a general
description of such a sequential scheme, it is sufficient to concentrate on one single assimilation cycle,
which consists of forecast and analysis step. A ”hat” notation indicates the KF estimates. For example,
x̂i represents the KF solution at time ti.
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In Appendix B, an alternative to the probabilistic approach is presented by deriving the KF from a
purely statistical point of view. The results are completely identical to the equations presented here, but
the statistical derivation offers further insight into the properties and assumptions behind the KF that
may not be revealed directly by the probabilistic derivation.

2.6.2 Forecast step

The derivation of the forecast step refers to step 2.a of the general algorithm in section 2.4.3. The
purpose of the forecast step is to advance the state pdf in time such that it can be used as prior pdf when
being confronted with the next observation. For the time integration step, the marginal pdf at the next
time step has to be computed from the marginal pdf at the previous time step. As the transition density
is independent of the observation, equation (2.21) can be simplified by omitting the dependency on all
past observations:

p(xi) =

∫
p(xi−1)p(xi|xi−1) dxi−1 (2.38)

Now, it is assumed that at time ti−1, the pdf is Gaussian with mean and covariance given by the cor-
responding KF estimates, i.e., p(xi−1) = N (xi−1; x̂i−1, P̂i−1). If ti−1 is an observation time, this
pdf is the posteriori pdf, which is conditioned on all previous observations. The transition pdf is given
by p(xi|xi−1) = N (xi;Mi−1→i(xi−1),Qi−1). As discussed in section 2.4.4, the integral in equation
(2.38) is, in general, not solvable. However, in the Gaussian case, a solution can be found by linearizing
the model integration around the previous estimate as follows, using the tangent linear model:

xi =Mi−1→i(xi−1) + ηi−1 ≈Mi−1→i(x̂i−1) + Mi−1→i(xi−1 − x̂i−1)︸ ︷︷ ︸
LT

+ηi−1 (2.39)

In this case, the model integration (2.38) can be interpreted as a linear transformation applied to the
Gaussian random variable xi−1 (marked ”LT” in the equation), followed by the addition of another
independent Gaussian random variable, ηi−1 ∼ N (0; Qi−1). Then, basic properties of Gaussian den-
sities (see Appendix A) imply that

• The mean of the transformed variable is the same as applying the transformation to the previous
mean, x̂i−1, which simply leads to x̂i = Mi−1→i(x̂i−1). Addition of the centered random
variable ηi−1 does not change the mean.

• The covariance of the transformed variable is given by Mi−1→iP̂i−1M
T
i−1→i. Addition of model

error further adds Qi−1 to the covariance term.

In short, the integrated pdf is described as

p(xi) = N (xi; x̂i, P̂i) (2.40)

with x̂i = Mi−1→i(x̂i−1) and P̂i = Mi−1→iP̂i−1M
T
i−1→i + Qi−1
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Consequently, the KF forecast step consists in advancing the estimates of both state and covariance since
the state pdf remains Gaussian throughout the forecast step, given the approximate linearity assump-
tion. While the state estimate is simply obtained by performing a (deterministic) model integration,
the covariances are updated with the linearized model. It can be seen that both tangent linear and ad-
joint models are required. Additionally, the model error covariance matrix has to be added in order to
account for the increasing uncertainty due to model shortcomings. However, it should be mentioned
that the propagation of the error covariance, as essential as it is, suffers from two drawbacks. First,
it relies on the linearized model, which is questionable in nonlinear systems. Second, its integration
corresponds toK2 model integrations, which gets prohibitive in larger-dimensional cases for reasons of
computational expenses and storage capabilities. Higher-order closures of equation (2.39) in principle
exist, but are only feasible for small-scale systems (Miller et al. 1994).

2.6.3 Analysis step

An arbitrary observation time is considered, ti(j), j ∈ {1, . . . , J}. For the description of the analysis
step, the time index is usually dropped, as all quantities are valid at the same time. The prior pdf at that
time is assumed to be available. Usually, it arises from a preceding forecast step as described in the
previous subsection, which allows to state p(xi(j)|y1:(j−1)) = N (xi(j); ˜̂xi(j),

˜̂
Pi(j)). The tilde notation

indicates that these moments are only the prior, but not the final estimates at time ti(j). In order to

make the notation as clearly arranged as possible, the abbreviations xf ≡ ˜̂xi(j) and Pf ≡ ˜̂
Pi(j) for the

forecast moments as well as xa ≡ x̂i(j) and Pa ≡ P̂i(j) for the analysis moments are introduced.

The analysis step is performed according to the general filter algorithm given in section 2.4.3, specifi-
cally by equation (2.22), which represents the Bayesian update of the forecast pdf with the observational
likelihood pdf. Plugging in the functional forms of both pdfs yields

p(xi(j)|y1:j) ∝ p(xi(j)|y1:(j−1)) p(yj |xi(j)) = N (x; xf ,Pf ) · N (y;H(x),R) (2.41)

A similar posteriori pdf appears in 3DVAR, equation (2.30). However, 3DVAR only focusses on the
state that maximizes the posterior density. In contrast, the KF solves for the full pdf and hence, the
multiplication in equation (2.41) has to be performed explicitly. The computation is rather technical
and not presented here, but is demonstrated in Appendix B. The result is the following analysis pdf,

p(xi(j)|y1:j) ∝ exp
{
−(x− xa)

TP−1a (x− xa)
}
∝ N (x; xa,Pa) (2.42)

and its moments are given by

xa = xf + Kj (yj −Hj(xf )) (2.43)

Pa = (I−KjHj) Pf =
(
P−1f + HTR−1H

)−1
(2.44)

where Kj = PfH
T
j

(
HjPfH

T
j + Rj

)−1
(2.45)

It is important to notice that the analysis pdf remains Gaussian, with mean and covariance given by
equations (2.43) and (2.44). These results are identical to the outcome of a statistical approach shown
in Appendix B, where the equality of both analysis covariance representations in equation (2.44) is
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FIGURE 2.3: Conceptual visualization of the KF with a scalar, linear ”model” (with error) that shifts
x to the right by 4 each time step. At t0, there is an initial Gaussian density (black). During the two
forecast steps from t0 → t1 (gray) and t1 → t2 (red), the uncertainty increases, broadening the densities
in addition to the advection. At t2, an observation with Gaussian likelihood density (blue) is available.
It updates the prior density (red) to the analysis density (green). The uncertainty is decreased again.
The arrows indicate the increments added to the state each time level. The dots show the mean values

of the densities.

also proved. It is emphasized that the key element in the KF is the Gaussian assumption for the initial
pdf and the model error. Together with the linearized model integration and the Gaussian observation
errors, it follows that the state pdf remains Gaussian for the whole assimilation window. Figure 2.3
visualizes the principle for a scalar case, showing the increasing uncertainty during the forecast step
and the assimilation of the observation via Bayes’ theorem. Even though the Gaussian assumptions
allow a convenient analytical solution of the assimilation problem, they also imply a strong restriction,
which may deteriorate the results in nonlinear scenarios.

2.6.4 Interpretation of the update equation

The linear update equations are the central part of the KF. While equation (2.43) quantifies the ad-
justment of the forecast state to assimilate the observational information, equation (2.44) describes the
change in the error correlation structure associated with this update. These basic equations are directly
adapted in the ensemble-based KFs, as shown in Chapter 3. Therefore, a detailed investigation is bene-
ficial to gain a deeper understanding of the functionality of these algorithms.

• The analysis itself consists in adding a linear transformation of the so-called innovation, ij =

yj − Hj(xf ) to the prior state estimate. The innovation is a vector in observation space and
describes the difference between the actual observation and its model equivalent. Its statistics can
also be used to diagnose and correct systematic model or observation deficiencies (Haimberger
et al. 2012). The Kalman gain can be interpreted as a proper weight matrix,

K = PfH
T︸ ︷︷ ︸

distribution

(
HjPfH

T
j + Rj

)−1︸ ︷︷ ︸
weighting

(2.46)
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It computes the weights by mapping the forecast error covariance into observation space, relating
it to the observation error covariance matrix. Then, the Kalman gain distributes the innovation to
an increment in state space. The increment K (y −H(xf )) = xa − xf is a vector that quantifies
the difference between posterior and prior estimate in state space.

• The covariance equation (2.44) states that the diagonal elements of the analysis error covariance
matrix are always smaller than the corresponding elements in Pf . Hence, the uncertainty, as
expressed by these variances, is always reduced thanks to the observation, and the reduction is
again determined by the Kalman gain. The second variant of the covariance shown in equation
(2.44) shows that the sharpness of the analysis, as expressed by the inverse covariance matrix,
is given by the sum of the prior sharpness and the observation’s sharpness, where the latter is
mapped into state space.

It is also illustrative to investigate the scalar case with direct observation of the state, H(x) = x. Then,
the KF equations reduce to

xa = xf +K (y − xf )

σ2a = (1−K)σ2f =
1

σ2f
+

1

σ2o

where K =
σ2f

σ2f + σ2o
=

(
1 +

σ2o
σ2f

)−1

In this case, the Kalman gain is a real number in [0; 1] and can be interpreted as relative weight assigned
to the observation, since the analysis is given by a weighted adjustment of the prior state towards the
observation. This weight is simply determined by the magnitude of the forecast error variance relative
to the total error variance. Thus, the observation receives more weight the smaller the observation error
is compared to the forecast error, and vice versa. Furthermore, the extreme cases are reasonable. A
useless observation ( σoσf →∞) is simply ignored and the analysis remains equal to the prior. A perfect
observation ( σoσf → 0) renders the prior information irrelevant, and the observation entirely dominates
the analysis.

The Kalman gain is computed with the tangent linear and adjoint observation operator and therefore
incorporates approximations in case of a nonlinear observation operator. The Kalman gain strongly
depends on the error covariance structure specified by Pf as it contains the variances and correlations
that in turn determine the weights and therefore the increments. However, even the specification of R is
an issue not to be underestimated. For example, the ignorance of existing observation error correlations
necessarily renders the analysis suboptimal.

2.6.5 Comparison of KF and 4DVAR

Even though the KF and 4DVAR represent considerable different assimilation techniques, both can
be derived within the same probabilistic framework by introducing the Gaussian assumption into the
general formulations. 4DVAR solves the smoothing problem while the corresponding sequential filter
formulation leads to the KF. Therefore, it is interesting to discuss the differences which arise despite
their common basis.
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First, a single analysis is considered, with a Gaussian assumption for the prior state. The KF states
that the analysis pdf remains Gaussian and specifies its parameters. However, if the prior moments are
associated as the background, this situation becomes formally equal to the problem 3DVAR solves. In
Appendix B, it is explicitly shown that the analytical minimum of the cost function corresponds to the
KF analysis mean. Hence, the variational approach is equal to the KF update mechanism, the difference
lies in the way the problem is solved. While the KF uses the analytical update equation, in 3DVAR, the
cost function is minimized numerically. This proves that the maximum likelihood estimator applied for
the variational approach is not only equal to the least squares solution. It is also identical to the mean
of a Bayesian solution, which further corresponds to the minimum variance estimator.

Next, a dynamic situation with a linear model is assumed, again with Gaussian densities. In this case,
the linear approximation used in the derivation of KF update step is exact, and the KF represents the
exact solution for the general filter, in the same way as 4DVAR represents the exact solution of the
general smoother. Therefore, KF and 4DVAR are equal (given the same random errors in the model
integration) in the sense that the KF estimate at the final time, x̂I , equals the final state of the 4DVAR
analysis trajectory x0:I , since it depends on all observations (Lorenc 1986). Of course, intermediate
values differ as the smoother solution also depends on future observations. It is possible to derive a
Kalman smoother by introducing another backward iterative procedure that updates all past states with
future observations. In the linear case, this yields exactly the same results as 4DVAR, even in the weak-
constraint case (Fisher et al. 2005). However, an advantage of the KF is that it not only determines the
analysis state but also gives an expression for the analysis error covariance, which contains additional
uncertainty information about the analysis and can be used in further assimilation steps. In contrast,
variational schemes only specify the analysis state itself. Their main advantage is the strong relative
efficiency compared to the KF in larger-dimensional problems.

In the presence of nonlinear dynamics, it is evident that KF and 4DVAR produce different results, and
their performances depend on the actual situation, as given by model, observations, errors, validity of
tangent linear approximations, length of the assimilation window, etc. Therefore, no method is superior
by construction (e.g., Li and Navon 2001; Lorenc 1986). Even though 4DVAR does not explicitly re-
quire a linearized model integration, the incremental approach required in praxis also introduces linear
approximations. Furthermore, Courtier et al. (1994) showed that, in chaotic systems, with increasing
assimilation window length the number of minima in the cost function strongly increases. This can eas-
ily trap the minimization algorithm in a local minimum. For that reason, the length of the assimilation
window has to be limited, particularly for strong-constraint 4DVAR. The big advantage of 4DVAR, and
the main reason why it is often preferred in the operational context, is more of technical nature. 4DVAR
can be applied to high-dimensional systems, if combined with the incremental approach. In contrast,
the propagation of the KF error covariance in the forecast step is not only an undesirable approximation,
but also computationally very expensive and not feasible in such systems.
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2.7 Summary and conclusions

This chapter reviewed the basic issues of DA and the most important classical solutions. It was moti-
vated that the probabilistic framework yields a suitable description that allows to derive general solu-
tions for the smoothing and filtering problem. The smoother solution, together with an assumption of
Gaussian distributions, leads to 4DVAR, which serves as the core of DA systems at many operational
centers. The sequential filter is characterized by an iteration of forecast and analysis steps, and the
analog solution to 4DVAR is the KF which relies on a propagation of the covariance matrix in time.

The central conclusions gained in this chapter are:

• The general probabilistic framework is suitable to describe a large variety of objective DA meth-
ods.

• The assumption of Gaussian densities leads to feasible schemes. Though, it should be considered
that in a nonlinear system, the results are necessarily suboptimal.

• 4DVAR has proven to be a successful scheme, but its practical implementation is extensive as
it requires not only sophisticated minimization algorithms but also the development and mainte-
nance of reliable tangent linear and adjoint models.

• The KF represents an appealing alternative from a technical point of view as it separates the
model integration from the actual analysis step. However, its main drawback is the linearized in-
tegration of the error covariance matrix within the forecast step. This is not only computationally
expensive, but can also lead to filter failure in nonlinear scenarios (Evensen 1992; Miller et al.
1994).

This thesis intends to achieve progress in sequential filtering in order to enhance its applicability as
contrasted to 4DVAR, as the independency of the analysis step of the particular model is appealing.
Based on these insights, the presentation proceeds with more recent filter developments that attempt to
deal with the issues raised here.



Chapter 3

Ensemble-based data assimilation

In the previous chapter, a coherent probabilistic framework for DA was established. It comprises various
explicit algorithms, and allows to derive variational schemes and the KF, which are characterized by a
Gaussian assumption. Their properties were discussed, with a focus on their drawbacks in nonlinear,
high-dimensional systems such as the earth’s atmosphere. A large amount of research activity has taken
place to advance these classical methods. The most important innovation consists in the adaptation of
ensemble techniques, originally developed for forecasting purposes.
This chapter concentrates on ensemble-based filtering methods and reviews the properties and advances
made with the ensemble KF (EnKF) and the particle filter (PF). Thus, it does not only contain important
background information, but also several discussions that serve as direct preparation and motivation for
the new filter algorithm in Chapter 4.

3.1 Ensembles and their application in data assimilation

The common basis of the EnKF and PF is an ensemble-based realization of the forecast step. Before
investigating their mechanisms, the ensemble technique is introduced in general.

3.1.1 Ensemble forecasting

An ensemble of model states, shortly denoted as ”ensemble”, represents a set of N possible realizations
of a system’s state at a given time ti, {xni }n=1...N . Each individual state xni is called an ensemble
member. While a single, deterministic state hides the inherent uncertainty about the state, it is reflected
by an ensemble that accounts for the fact that many other states may be true as well. Therefore, the
ensemble can be interpreted as an N -sized sample of the underlying probability distribution p(xi).
Usually, each ensemble member is chosen to be equally likely, yielding an independent and identically
distributed (i.i.d.) sample, conveniently written as xni ∼ p(xi).

Ensembles are extremely useful in forecasting applications. A chaotic system, such as in NWP, is
highly sensitive to the initial conditions, meaning that errors grow exponentially in time. Due to the
nonlinearity of the system, a deterministic integration of the best estimate at initial time does in general

37
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FIGURE 3.1: Ensemble prediction in the Lorenz-63 system (see Ch. 5). An integration from (-8,8,27)
for 15 non-dimensional time units yields the true trajectory, visible by the Lorenz attractors in the x-z-
plane. An ensemble (1000 members) is initialized by perturbing the true initial state with a variance of
0.25 for each variable (x,y,z). At times 0.0,0.1,...,1.2, the ensemble states are plotted (blue) to visualize
their distribution, in comparison with the true state at these times (red) and the ensemble mean (green).

not result in the best estimate at future times. In contrast, in a probabilistic forecast the uncertainties
in phase space are covered and propagated throughout time. Thus, stochastic predictability usually
exceeds deterministic predictability (Kalnay 2003). The principal solution to gain a full probability
forecast is the integration of the initial pdf, p(x0), in time, using equation (2.25), which may be ex-
pressed by the Kolmogorov equation (2.26). As already discussed in section 2.4.4, this is not feasible
except for simple small-scale systems. Instead, an ensemble {xn0} is drawn to represent the pdf p(x0),
and each member is integrated by the model, shortly denoted as ensemble integration (Epstein 1969).
The resulting ensemble represents a sample of the pdf p(xi) (i > 0), which will be formally shown
in the next subsection. Another option is to gather forecasts of different models in order to properly
account for model error uncertainty as well.

This method corresponds to a Monte Carlo (Metropolis and Ulam 1949) solution of the Kolmogorov
equation, and therefore only introduces sampling errors. An advantage is that the convergence rate of
the Monte Carlo approach only depends on ensemble size and not on the systems’ dimensionality. This
makes is suitable for high-dimensional forecasting problems, and its implementation is fairly simple.
The first operational ensemble prediction system (EPS) in NWP was introduced at ECMWF in 1992
(Molteni et al. 1996). The integrated ensemble implicitly carries all moments of the underlying pdf
(see Appendix A). For example, while the ensemble mean often is the best estimate, the ensemble
spread should quantify the flow-dependent uncertainty (Palmer et al. 2005). Furthermore, ensemble
predictions allows to draw probability forecasts (e.g., Anderson 1996; Tödter 2011; Wilks 2011). Figure
3.1 schematically illustrates an ensemble prediction in the chaotic Lorenz-63 system, which will be used
in Chapter 5. The ensemble distribution, initially Gaussian, broadens with time, reflecting the rising
uncertainty. After the regime change, some members end up in the wrong attractor, and the ensemble
distribution even becomes bimodal. Then, the ensemble mean ceases to represent a reliable prediction.
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It is important to note that the quality of an ensemble forecast is influenced by the technique to generate
the initial ensemble. Interestingly, the output of an ensemble-based DA system can be utilized for that
purpose (Buizza et al. 2008; Hamill and Whitaker 2011; Wang and Bishop 2003), without resorting
to more classical methods such as singular vectors or breeding (e.g., Toth and Kalnay 1997). In con-
clusion, ensemble integration is a valid and feasible approach to probabilistic forecasting. Next, it is
demonstrated that it can be incorporated into sequential DA in a straightforward fashion.

3.1.2 Ensemble formulation of the general forecast step

In section 2.4, the general sequential filter was derived in a probabilistic formulation. It is only based
on rather unproblematic assumptions, for instance, the model has to be a first order Markov process
and temporal correlations are neglected. The sequential filter is characterized by an iteration of forecast
and analysis steps through the time window. As discussed, the forecast step, formally described by the
marginalization rule, requires to solve an integral over the joint-in-time pdf (e.g., eq. 2.21). Analytical
solutions are limited, which is why classical methods resort to the Gaussian assumption.

3.1.2.1 Derivation

The introduction of an ensemble of states allows an elegant and efficient solution of this problem. As
already illustrated, an ensemble forecast solves the underlying Fokker-Planck equation by a Monte
Carlo approximation, which in particular does not require any linearization of the model. Now, the
forecast step is carried out explicitly for an ensemble-based filter. This formulation is valid for all
ensemble algorithms considered in this thesis. Hence, the following formulation can be viewed as an
extension of the probabilistic framework formulated in section 2.4.

The starting point is equation (2.21), which is repeated here for reasons of clarity.

p(xi|y1:i(j−1)) =

∫
p(xi−1|y1:i(j−1))p(xi|xi−1)dxi−1 (3.1)

It describes how to obtain the marginal prior pdf at the next time ti (i > i(j − 1)), given the state pdf
at time ti−1 as well as the transition density. The dependence on past observations y1:i(j−1) is stated
for completeness, but is not relevant for the propagation of the pdf in time. Now, it is assumed that an
ensemble is available whose members are identical and independently distributed (i.i.d.) according to
the marginal pdf at time ti−1, i.e., {xni−1} ∼ p(xi−1|y1:i(j−1)). Therefore, the ensemble representation
of this pdf can be written as (van Leeuwen 2009)

p(xi−1|y1:i(j−1)) ≈
1

N

N∑
n=1

δ
(
xi−1 − xni−1

)
(3.2)

After plugging this representation into equation (3.1), the linearity of the integral allows to exchange
the order of integration and summation. Then, the resulting integrals are easily carried out using the
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properties of the delta function (see also Appendix A).

p(xi|y1:i(j−1)) ≈
1

N

N∑
n=1

∫
p(xi|xi−1) δ

(
xi−1 − xni−1

)
dxi−1 =

1

N

N∑
n=1

p(xi|xni−1) (3.3)

Usually, the ensemble size is required to be conserved. Hence, this mixture pdf can simply be approx-
imated by drawing one sample from each transition density p(xi|xni−1) (n = 1 . . . N ). As explained
in section 2.4.4, sampling from p(xi|xni−1) equals a model integration as in equation (2.4) and yields a
value of xni . Hence, an ensemble representation of the new prior pdf at time ti can be written as

p(xi|y1:i(j−1)) ≈
1

N

N∑
n=1

δ (xi − xni ) where xni =M(i−1)→i
(
xni−1

)
+ ηni−1 (3.4)

In conclusion, a new, equally-weighted ensemble {xni } is simply gained by integrating each member
with the full model operator, possibly including random model errors.

3.1.2.2 Discussion

A simple ensemble integration, using the full model, equals an approximate Monte Carlo solution of
the underlying integral equation. For N →∞, this solution becomes exact. This approach offers three
major advantages over the forecast step formulations used in the algorithms shown in Chapter 2:

1. The full, nonlinear model is used, which avoids the linearizations needed in the classical methods.
This also releases the user from developing a tangent linear and adjoint version of the model code,
which allows a simpler maintenance of the DA system. Forecast and analysis step are technically
decoupled, and the former one can always use the latest version of the forward model.

2. The convergency rate of such a Monte Carlo solution does not depend on the dimension of
the state space, but only on ensemble size (∝ 1/

√
N ), offering an applicability also for high-

dimensional assimilation problems. Indeed, the EnKF has already been applied successfully to
large-scale atmospheric or oceanic systems, even operationally, with ensemble sizes of order
O(102) (e.g., Bonavita et al. 2008; Houtekamer and Mitchell 2005). For comparison, the state
dimensionality of such models may easily reach O(109), with O(107) observations.

3. Properties of the forecast ensemble can directly be computed from the ensemble, for example, the
forecast error covariance. It is implicitly contained in the ensemble as a low-rank approximation
of the true error covariance matrix, and therefore, it is implicitly integrated in time with the full,
nonlinear model (Evensen 1994). This releases from the expensive, linearized approximation
required by the KF.

In the following, it will be demonstrated that the new approach to the forecast step can be combined
with different analysis step formulations, resulting in different flavors of ensemble-based sequential
filtering algorithms. In principle, most of the developments are either based on the KF or the PF, or
employ a combination of both methods. The presentation will focus on the ensemble Kalman filter
(EnKF) and its deterministic variants, in particular the ETKF, and also discusses some enhancements to
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the basic formulations. Then, the basic PF will be introduced. Some recent advances in this area will
be highlighted, in particular the equivalent weight PF (EWPF) and nonlinear ensemble adjustment filter
(NLEAF). This treatment will almost directly lead to the nonlinear ensemble transform filter (NETF) in
the following chapter, which is based on the PF, but borrows its methodology from the ETKF.

3.2 Ensemble Kalman filter

As of today, the EnKF is a very popular filter. In principle, it combines the ensemble solution of the
general forecast step with the analysis step of the KF. This section discusses the implications of this
approach and its explicit mathematical formulation. The review begins with the original KF formu-
lation as given by Evensen (1994) and its first revisions. The next sections then turn to more recent
developments by presenting alternative analysis step mechanisms. Finally, practical adjustments of the
basic filter are emphasized that are decisive for successful applications in larger-dimensional systems
with relatively small ensemble sizes.

3.2.1 Motivation

Knowing the advantages of Monte Carlo forecasting, it seems almost natural to apply it to the general
forecast step of sequential DA, as shown in the previous section. Using a quasi-geostrophic ocean
model, Evensen (1992) emphasized that the simplified closure given by the error covariance equation
of the KF inherently causes an unbounded error growth in chaotic systems due to nonlinearly evolving
dynamical errors. Based on this insight, Evensen (1994) applied the Monte Carlo method to this model
and found the latter to be superior to an approximate stochastic dynamic prediction (Epstein 1969) that
consists in employing a Taylor expansion of the model operator in order to propagate moments of the
pdf (Cohn 1993). The reason is that dynamical errors are avoided, only statistical noise is introduced.
This also holds for sophisticated higher-order closures of approximate stochastic dynamic predictions,
which are anyway impractical in larger-dimensional systems (Miller et al. 1994). In summary, Evensen
(1994) holds the view that the major drawback of the KF is not its update mechanism, but the poor
quality of the input data to the analysis step, in particular, the error covariance matrix.

3.2.2 Forecast step

These insights led Evensen (1994) to the seminal idea of replacing the KF forecast step by an ensemble
forecast, as introduced in section 3.1.1. It integrates the analysis ensemble of the previous observation
time until the next observation time, using the fully-nonlinear model. Hence, for a complete description
of the EnKF, it is sufficient to discuss the analysis step formulation as a specific solution of the general
probabilistic framework.

For the following presentations, it is convenient to extend the notation. Similar to the presentation
of the KF in section 2.6, the forecast or prior ensemble at the current observation time ti(j), {x̃ni(j)},
is denoted as {xnf}n=1...N . However, working with the individual ensemble members is impractical
considering a numerical implementation. Instead, the ensemble states are collected into the columns of
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a K ×N ensemble matrix, i.e., Xf =
(
x1
f , . . . ,x

N
f

)
. Furthermore, the ensemble perturbation matrix

is defined, which collects the ensemble anomalies by subtracting the ensemble mean from each column,
X′f =

(
x1
f − xf , . . . ,x

N
f − xf

)
. A shortened notation is X′f = Xf −Xf where each column of the

matrix Xf consists of the mean xf . Then, the ensemble’s empirical first- and second-order statistics is
easily computed by (see Appendix A)

xf =
1

N

∑
n

xnf =
1

N
Xf1 and Pf =

1

N − 1
X′fX

′T
f (3.5)

where 1 = (1, . . . , 1)T .

3.2.3 Original analysis step formulation

As motivated, the EnKF relies on the usual KF analysis step, with the ”only” advantage that the input
variables, in particular the forecast mean and covariance, are expected to be a better approximation of
the truth since the forecast steps fully respects the nonlinearity of the system. The direct adaption of the
KF analysis step (Evensen 1994) consists in applying the KF update equation (2.43) to each individual
ensemble member, yielding

xna = xnf + Kj

(
yj −H(xnf )

)
(3.6)

Taking the ensemble average of equation (3.6), it is easily verified that the analysis mean,

xa = xf + Kj(y − yf ) where yf = H(Xf ) =
1

N

∑
n

H(xnf ) (3.7)

corresponds to the KF mean (see equation 2.43), at least for linear observation operators. The Kalman
gain is computed as usual. After the analysis ensemble {xna} is obtained, it is considered as the new
ensemble {xni(j)} valid at time ti(j), replacing the prior ensemble. Then, the next forecast phase can be
initialized.

3.2.4 Observation space treatment

The evaluation of the Kalman gain, Kj = PfH
T
j

(
HjPfH

T
j + Rj

)−1
, requires the tangent linear and

adjoint of the observation operator, H and HT , as well as the full error covariance matrix Pf . However,
this can be avoided by realizing that, in equation (3.6), the model equivalents to the observation are
needed. Hence, all ensemble states are mapped into observation space via ynf = H(xnf ). These vectors

are stored in the L×N ensemble matrix Yf =
(
H(x1

f ), . . . ,H(xNf )
)

. Then, the update equation (3.6)
can be written compactly as

Xa = Xf + Kj (Y −Yf ) (3.8)

Here, Y is a matrix containing the observation yj in each of its columns. For Pf in the Kalman gain
formula, the ensemble representation, equation (3.5), is used, leading to terms HX′f and (HX′f )T .
Here, Hxnf

′ represents a linearized mapping of the prior perturbations into observation space. This is
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actually not needed, as the mapped ensemble Yf is already available. This enables to compute the
corresponding anomalies directly, if HX′f is associated with Y′f = Yf −Yf . This technique does not
only free from applying a tangent linear and adjoint version of the observation operator, but also avoids
linearizations1. To summarize, the Kalman gain is computed efficiently in ensemble subspace by

Kj =
X′fY

′T
f

N − 1

(
Y′fY

′T
f

N − 1
+ Rj

)−1
= X′fY

′T
f

(
Y′fY

′T
f + (N − 1)Rj

)−1
(3.9)

3.2.5 Perturbation of the observations

Evensen (1994) and Evensen and van Leeuwen (1996) applied the just presented EnKF formulation
to multilayer, nonlinear and quasi-geostrophic ocean models, using both artificial and real observation
data. The results were quite promising, compared to the KF, which induced further research about the
method. Burgers et al. (1998) revealed that the naive adaption of the KF update equation (2.43) for
all ensemble members is incorrect. The analysis mean matches the KF prediction, but the analysis
covariance is underestimated as compared to its theoretical value. Therefore, it produces a too tight
ensemble, which in the successive analysis steps might lead to an overconfident prior ensemble that
cannot properly account for the observation anymore. This might even lead to filter divergency, a
situation, where the ensemble collapses and the filter simply ignores the observations. This problem did
not occur in the mentioned applications because the observation frequency was relatively low, which
allowed the ensembles to gain sufficient spread during the long forecast steps.

For a more formal treatment of this issue, the analysis mean, equation (3.7), is subtracted from equation
(3.6), yielding the analysis perturbations:

X′a = X′f + Kj

(
Yf −Yf

)
= X′f −KjY

′
f (3.10)

This allows to evaluate the ensemble covariance matrix Pa, where again Y′f is interpreted as the en-
semble equivalent to HX′f .

Pa =
1

N − 1
X′aX

′T
a =

1

N − 1

[
X′fX

′T
f −X′fY

′T
f KT −KY′fX

′T
f + KY′fY

′T
f KT

]
= Pf −PfH

TKT −KHPT
f + KHPfH

TKT = (I−KH)Pf (I−KH)T

Compared with the theoretical KF result in equation (2.44), there is an additional factor (I − KH)T

which further reduces the analysis covariance and confirms the discussed problem. The reason is that
the uncertainty in observation space coming from the observation is not considered, only the mapped
perturbations of the prior ensemble are present in equation (3.10).

Based on this insight, Burgers et al. (1998) suggested a simple workaround. Instead of updating each
member with the fixed observation, an ensemble of perturbed observations, {yn}, is drawn from the
likelihood density, N (y,R). It is collected in the ensemble matrix Y, which can now be written as
Y = Y − Y′, where the perturbations are samples of N (0,R). This procedure does not affect the

1However, it should be mentioned that the form of the Kalman gain itself is derived with a linear ansatz as motivated in
Chapter 2.
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ensemble mean in equation (3.7), as Y′ = 0 and Y contains the actual observation, at least in the
statistical limit. Furthermore, the idea is reasonable because in an ensemble approach it should be
accounted for that the actual observation is only one realization, and any other sample from N (y,R)

is equally likely to be true. In other words, the observation is treated as a random variable as well.

The impact of the modification can directly be checked, as the perturbations now read X′a = X′f +

Kj(Y
′−Y′f ), in contrast to equation (3.10). As the observation and ensemble perturbations are uncor-

related, cross-terms such as X′fY
′T or Y′X′Tf vanish, and furthermore Y′Y′T /(N − 1) ≈ R holds in

a statistical sense. The analysis covariance therefore exhibits an additional term,

Pa ≈ Pf −PfH
TKT −KHPT

f + KHPfH
TKT + KRKT

This expression also appears in the derivation of the KF, see equation (B.28) in Appendix B, where it
is shown to be equal to (I −KH)Pf . This proves the validity of the perturbed-observations EnKF. In
section 3.3, its implications will be further discussed.

3.2.6 Final EnKF algorithm

The EnKF represents a Monte Carlo solution of the general sequential filter within the probabilistic
framework of Chapter 2. As it is a fundamental algorithm and highly relevant for this work, the complete
algorithm is now summarized in compact form.

1. At time t0, draw an initial ensemble {xn0}n=1...N . For example, this can be done by drawing N
samples from a multivariate Gaussian density with desired mean and covariance.

2. Proceed from one observation to the next by iterating the following steps for j = 1 . . . J :

(a) Forecast step: Integrate the ensemble until the next observation time ti(j) using the full
model, possibly with random forcing. This is realized by repeated application of the model
operator for i = (i(j − 1) + 1) . . . i(j) for each member:

xni =Mi−1→i(x
n
i−1) + ηni−1 (3.11)

The result is the prior ensemble at time ti(j). Assign xni(j) → xnf , put the states in the
ensemble matrix Xf and evaluate xf and X′f .

(b) Analysis step:

i. Map the forecast ensemble into observation space by applying the fully nonlinear ob-
servation operator, ynf = Hj(xnf ), and put it into the ensemble matrix Yf . Evaluate yf

and Y′f .

ii. Generate the perturbed observations {ynj } by drawingN samples fromN (yj ,Rj) and
put them into the ensemble matrix Y.

iii. Compute the Kalman gain matrix using the ensemble matrices in state and observation

space, Kj = X′fY
′T
f

(
Y′fY

′T
f + (N − 1)Rj

)−1
.
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iv. Update the forecast to the analysis ensemble:

Xa = Xf + Kj (Y −Yf ) (3.12)

Analysis properties, such as the mean xa, can now be derived. Before proceeding,
replace the forecast ensemble with the analysis ensemble by assigning xna → xni(j).

3. Integrate the analysis ensemble of the final observation time, ti(J), to the final time tI by repeating
single-step integrations as in equation (3.11), except that the index range now is i = (i(J) +

1) . . . I . This results in an analysis ensemble {xnI } as a sample of p(xI |y1:J).

This analysis step formulation only involves basic matrix computations. Therefore, the algorithm can
be implemented efficiently in most programming languages. Furthermore, the error covariance matrices
Pf and Pa are never computed or stored explicitly.

3.3 Deterministic EnKFs

This section analyzes different EnKF formulations. They represent alternatives to the algorithm pre-
sented in the previous section, referred to as the classical EnKF.

3.3.1 Motivation and techniques

Perturbing the observation ensures that the theoretical value of the analysis covariance, as given by the
KF, is achieved in a statistical sense (Burgers et al. 1998). However, such a stochastic component within
the analysis step does not only require an appropriate technical implementation, but also introduces
sampling errors. The latter can be of notable magnitude for small and medium-sized ensembles that
are typical for high-dimensional applications (Whitaker and Hamill 2002). In conclusion, the classical
EnKF is suboptimal by construction. For that reason, alternative algorithms have been derived to avoid
the perturbation of the observation. They are classified as deterministic EnKFs, and borrow the idea
from a square root formulation of the classical KF (Andrews 1968).

The analytical result for the analysis covariance, PKF
a , is given by equation (2.44). In the stochas-

tic EnKF, this equation is never used as the analysis covariance is implicitly contained in the updated
ensemble. It can be estimated by X′a(X

′
a)
T /(N − 1), which only converges to PKF

a for N → ∞.
The paradigm of a deterministic EnKF consists in creating an analysis ensemble such that its empirical
covariance is exactly equal to PKF

a , even for finite N . The common mathematical basis of these vari-
ants is a matrix transformation of the forecast ensemble anomalies, instead of adjusting each member
individually.

X′a = X′fT where
1

N − 1
X′fTTTX′f = PKF

a (3.13)

Note that the transformation is carried out in ensemble subspace, and T is a N × N matrix. Further-
more, Sakov and Oke (2008b) emphasized that, in order to preserve the analysis mean, X′a1 = 0, the
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transform matrix should also exhibit T1 = α1 (α ∈ R). Usually, T arises as a matrix square root. Af-
terwards, the analysis mean can be updated by the usual equation (3.7), and the full analysis ensemble
is regained by Xa = X′a + Xa.

Tippett et al. (2003) reviewed three alternative algorithms within the framework of Kalman square root
filters (Maybeck 1982). The ensemble transform Kalman filter (ETKF, Bishop et al. 2001) can be
formulated as in equation (3.13), while the ensemble square root filter (EnSRF, Whitaker and Hamill
2002) and the ensemble adjustment Kalman filter (EAKF, Anderson 2001) both employ a left-sided
multiplication in state space,

X′a = TX′f (3.14)

Another deterministic EnKF has been suggested by Sakov and Oke (2008a). It is applies a transforma-
tion as in equation (3.14), but does not require to compute a matrix square root.

3.3.2 Ensemble transform Kalman filter

The analysis technique used in the ETKF (Bishop et al. 2001) offers a good insight into the principle of
deterministic EnKFs. Additionally, is also highly relevant for this thesis as the new filter will be derived
in a similar way in Chapter 4. The basis is the theoretical KF covariance equation (2.44). Then, the
Kalman gain is plugged in and the ensemble representation of the prior covariance matrix is used:

PKF
a = Pf −KHPf =

1

N − 1

[
X′fX

′T
f −X′fY

′T
f

(
Y′fY

′T
f + (N − 1)R

)−1
HX′fX

′T
f

]
PKF
a =

1

N − 1
X′f

[
IN −Y′Tf

(
Y′fY

′T
f + (N − 1)R

)−1
Y′f

]
X′Tf (3.15)

⇒ PKF
a = X′f

[
(N − 1)IN + Y′Tf R−1Y′f

]−1︸ ︷︷ ︸
AKF

X′Tf (3.16)

In the last step, a variant of the Sherman-Morrison-Woodbury identity (Horn and Johnson 1985, p. 19,
see also Appendix B) was used. Note that using equation (3.15) instead of (3.16) for defining AKF in
the following leads to another square root filter (Evensen 2004), which therefore differs from the ETKF
only by its technical implementation. Next, it has to be ensured that the empirical analysis covariance
exactly matches PKF

a , i.e.,

1

N − 1
X′aX

T
a = X′fA

KFX′Tf (3.17)

A solution for this equation is found by the help of the matrix square root of AKF, which leads to a
matrix transform as already introduced in equation (3.13).

X′a =
√
N − 1 X′fT

KF where TKF(TKF)T = AKF (3.18)

Since AKF is positive definite, the unique positive definite square root (Horn and Johnson 1985, p. 406)
is usually used (Sakov and Oke 2008b). It can be obtained via a singular value decomposition (SVD,
see Appendix A).
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Finally, the analysis mean could be computed as in equation (3.7), but a more efficient formulation
can be obtained. Using the new expression (3.16) in a different formulation of the Kalman gain, K =

PaH
TR−1 (see Appendix B, equation B.5), directly yields K = X′fA

KFY′fR
−1, if again X′Tf HT is

associated with Y′Tf . Thus, the analysis mean is

xa = xf + X′fw
KF where wKF = AKFY′fR

−1(y − yf ) (3.19)

The advantage is that both AKF and the matrix Y′fR
−1 have already been evaluated to obtain TKF.

The ETKF computes the analysis increment as a weighted linear combination of the prior perturbations.
In conclusion, the ETKF represents an appealing deterministic EnKF formulation because the analysis
is computed in ensemble subspace, allowing an efficient numerical implementation. Compared to the
EnKF algorithm presented in section 3.2.6, only steps iii and iv of the analysis step are modified, and
step ii is omitted.

3.3.3 Random rotations

A general deterministic EnKF is given by equation (3.13). Even though the symmetric matrix square
root of AKF is unique, this does not hold for the transform matrix itself. For instance, choosing
T̃ = TU, where U is an orthogonal matrix, does not change the empirical analysis covariance due
to UUT = I. As a consequence, the freedom in the determination of the transform matrix led to the
suggestion to use some random matrix Λ at this stage (Evensen 2004). As long as it is orthogonal,
ΛTΛ = I and has the vector 1 = (1, . . . , 1)T as eigenvector, Λ1 = 1, such an augmented rotation
does not affect the first- and second-order statistics of the analysis ensemble.

Furthermore, several studies (Anderson 2010; Lawson and Hansen 2004; Lei et al. 2010) pointed out
that a purely deterministic EnKF update may possibly generate a skewed ensemble. Then, a few outliers
guarantee the required moments, but the remaining states exhibit a too tight ensemble. In chapters 4
and 5, the potential usefulness of random rotations will be further discussed. Appendix C is devoted to
the efficient construction of such random matrices.

3.4 Supplements for EnKFs

Even though the EnKF and its variants represent an appealing alternative to variational schemes, prac-
tical issues arise in applications which are mainly caused by the restriction of a rather limited ensemble
size (Anderson 2007b; Lorenc 2003). If unrecognized, they can severely deteriorate the filter perfor-
mance (Houtekamer et al. 2005). However, also 4DVAR implementations have evolved since more than
20 years, hence, this is not an a priori disadvantage of EnKFs. Here, some principle supplements are
shown which are of relevance for an actual EnKF implementation. Inflation aims at a better represen-
tation of the ensemble uncertainty, and localization suppresses spurious correlations (e.g., Janjić et al.
2011; Ott et al. 2004). It has been shown that in combination with such well-implemented techniques,
the filter performance in high-dimensional systems can be enhanced significantly and made comparative
to established variational schemes (Buehner et al. 2010; Kalnay et al. 2007; Yang et al. 2012a).
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3.4.1 Covariance inflation

Inflation tackles the problem that EnKFs tend to underestimate the prior variances and to produce a
too tight ensemble, particularly for two reasons: (1) the finite-sized ensemble forces to use a low-rank
approximation of the covariance matrix and (2) unregarded model shortcomings (e.g., missing or crude
model error handling) lead to an underestimation of the actual uncertainty (Whitaker and Hamill 2012).

The most straightforward solution (Anderson and Anderson 1999) is the multiplication of the ensemble
perturbations by a factor

√
γ which is slightly larger than 1,

X′ → √γX′ (3.20)

This empirical procedure, which can be applied to either the forecast or the analysis ensemble, inflates
the covariance matrix by the factor γ. In most applications, it turns out that the performance of EnKFs
can be significantly increased with the help of inflation, particularly for small ensemble sizes, and that
the EnKF results are sensitive to inflation (Houtekamer et al. 2005). However, it should be emphasized
that inflation is a pragmatic ad-hoc enhancement to overcome the effects associated with limited ensem-
ble size, but it renders the filter suboptimal. Thus, the proper tuning of the inflation factor represents an
important, yet time-consuming issue. It should counteract the underestimation of P but simultaneously
avoid overshooting. For large N , the inflation factor should approach 1, at least in a perfect model
environment.

The basic approach applies equation (3.20) with a constant inflation factor, which implies that the struc-
ture the of variance underestimation is stationary in time and space. The development and investigation
of more advanced adaptive inflation schemes is an active field of research. For example, a general hi-
erarchical Bayesian approach to account for spatial and temporal variation the inflation factor has been
established (Anderson 2007a, 2009), which can be simplified using Gaussian inflation pdfs (Li et al.
2009; Miyoshi 2011). Other approaches assume additive inflation (Houtekamer and Mitchell 2009;
Whitaker et al. 2008) by adding random perturbations to the ensemble or perform a relaxation of the
analysis perturbations to the prior ones (Zhang et al. 2004).

3.4.2 Localization

Another severe problem of the EnKFs in large-scale applications arises from the low-rank approxima-
tion of the covariance matrix due to limited ensemble size. It leads to random errors in the estimated
covariance matrix. In particular, spurious correlations may be predicted between distant points, which
in reality exhibit no connection. In the analysis step, this can lead to unrealistic increments due to dis-
tant observations. The basic concept to counteract this issue is to compute the analysis increments only
with observations that lie within a certain radius of influence2. This can be realized by directly filtering
the state covariance matrix appearing in the Kalman gain or by partitioning the state vector to compute
a set of local analyses.

2This also suppresses potential long-range correlations that can appear for example in atmospheric systems. Their consid-
eration in localization schemes is currently under research (Wu et al. 2014).
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3.4.2.1 Correlation functions and matrices

Correlation functions ρ(·) model the correlation structure of a multivariate random variable (see also
Appendix A). Together with the variances, they allow to form a covariance matrix. In its general form,
ρ(r, r̃) is a continuous function that describes the correlation of a random variable at two locations
r and r̃. A comprehensive framework about correlation functions in multivariate settings has been
established by Gaspari and Cohn (1999), who focussed on homogenous and isotropic functions. They
are characterized by a monotonous decay with distance in physical space, which is usually defined
by the Euclidean norm in R3, r = ||r − r̃||, such that ρ(r, r̃) = ρ0(r). In most applications, the
space is discretized. Then, the correlation function can be used to create a corresponding correlation
matrix ρ with elements ρij = ρ(ri, rj). The Schur product theorem (Horn and Johnson 1985, p. 458)
guarantees that the Schur (element-wise) product of two covariance matrices, denoted by ◦, remains a
proper covariance matrix. Hence, the correlation function can be used to taper an existing covariance
matrix C via C ◦ ρ, which conserves the variances.

Numerous choices for ρ0(r) with the desired properties exist, for example, an exponential or Gaussian
function. However, in DA, the most common choice (Houtekamer and Mitchell 2001; Kirchgessner
et al. 2014) is a piecewise 5th-order polynomial (Gaspari and Cohn 1999, Eq. 4.10) because it decays
in a Gaussian fashion but has compact support. It can be derived by self-convolution of a triangular
function over R3, resulting in (with r̃ = r/c),

ρ0(r) =


−1

4 r̃
5 + 1

2 r̃
4 + 5

8 r̃
3 − 5

3 r̃
2 + 1 for r ≤ c

1
12 r̃

5 − 1
2 r̃

4 + 5
8 r̃

3 + 5
3 r̃

2 − 5r̃ + 4− 2
3 r̃
−1 for c < r ≤ 2c

0 for r > 2c

(3.21)

The parameter c defines the correlation length scale. The cut-off radius, also called localization ra-
dius, is at 2c. Figure 3.2a visualizes equation (3.21) in comparison to an exponential and a Gaussian
correlation function.

3.4.2.2 Covariance localization (CL)

The EnKF relies on the prior error covariance matrix Pf . As it is estimated from the ensemble, effec-
tively a low-rank approximation of the true error covariance matrix is used. This may result in spurious
correlations particularly for large distances. A possible solution, first proposed by Houtekamer and
Mitchell (2001), is to manually suppress them by adjusting the forecast covariance matrix using a suit-
able correlation function, P̃f = Pf ◦ ρ. Such a preconditioning of Pf effectively filters out the
unwanted noisy correlations with distant locations and guarantees a smooth decay of an observation’s
impact on the analysis increments with distance.

3.4.2.3 Domain and observation localization (DL/OL)

A distinct approach, first suggested by Houtekamer and Mitchell (1998), is to divide the whole region,
represented by the state vector x, into local domains. Typically, all state variables belonging to each grid
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FIGURE 3.2: (a) Example of correlations functions: 5th order polynomial (black), Gaussian (blue),
exponential (red), hard cut-off (orange). The scale parameter is set to 80 km.

(b) Principle of DL/OL on a 2D grid: The current local domain is the grid point marked by the blue
cross. Only the green observations, lying within a localization radius of 4 grid points (gray circle), are
considered for its update, while the red ones are ignored. The green’s thickness roughly illustrates the

weight of the observation as used in OL.

point are collected into a local domain, but it may also represent a larger region, for example, a vertical
atmospheric column. Then, the analysis is computed independently for each local domain, and only
local observations are considered. For instance, one may choose to include only observations within
a specified localization radius. The global analysis consists of the composition of all local analyses.
Figure 3.2b visualizes the principle of DL on an exemplary 2D grid. In effect, the global analysis is not
a linear combination of the prior ensemble anymore. Thus, the analysis subspace dimension and the
rank of the empirical error covariance matrix are artificially increased, which is seen as a benefit.

However, DL can lead to a global analysis that negatively affects balances and is not continuous (Hunt
et al. 2007). The reason is that observations considered for one grid point may not be included in the
analysis of the neighboring grid point. Hence, the weight of an observation abruptly decreases to zero,
see Figure 3.2a. In order to produce a more smooth analysis, DL can be combined with CL applied in
observation space, where observations are weighted according to their distance from the local domain.
This is achieved by constructing a Schur product of the inverse of the observation error covariance
matrix, R−1 and a matrix obtained from a suitable correlation function (Miyoshi and Yamane 2007).
Here, a typical choice is again the 5th order polynomial function for the same reasons as discussed
previously. Thus, first the subset of relevant observation for the current local domain is extracted by
searching within the localization radius and then, each remaining observation is weighted by the corre-
lation function. This type of localization is referred to as observation localization (OL), and has been
shown to outperform pure DL (e.g., Janjić et al. 2011). The latter can be viewed as a special case of OL
where the weight function is equal to 1 inside the localization radius, and vanishes outside.
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3.4.2.4 Discussion and comparison

Localization has emerged as an essential supplement for EnKF-based filters. It allows the usage of mod-
erate ensemble sizes even in high-dimensional systems, such as in NWP. Therefore, its practical benefits
usually outweigh the theoretical drawback that the filter is rendered suboptimal as it does not solve the
original assimilation problem anymore (Nerger et al. 2014). However, many other assumptions of the
EnKF are also satisfied only partly in reality, particularly concerning the specification of observation
and model error properties or the Gaussian assumption. Hence, any EnKF system inherently contains
compromises and approximations in order to allow practical applicability (Anderson 2007b).

OL represents a more natural and general approach to localization as it only modifies the observation
variables y and R that are the input to any analysis step. In contrast, CL is more specific to KF-
based algorithms that compute the increments based on the forecast error covariance matrix. It is
not directly applicable to variants such as the ETKF where Pf is never used explicitly. The relation
between CL and OL has been examined in several studies (e.g., Greybush et al. 2011; Nerger et al.
2012a; Sakov and Bertino 2011), which found that in general the performances are similar, even though
the optimal localization radius depends on the method. A more important premise for favorable results
is an extensive tuning of the localization parameters. For this thesis, exclusively OL is used, as its
generality allows a straightforward extension to the new nonlinear filter in Chapter 4. Additionally, OL
naturally allows for parallelization of the analysis step.

Finally, it is noted that adaptive localization schemes can be applied to reduce manual tuning, which
is an issue of current research. For example, Anderson (2007b) proposed an augmented hierarchical
filter, Anderson (2012) employed a statistical model of forecast errors, Bishop and Hodyss (2009)
applied ensemble correlations to obtain flow-dependent estimates of the localization functions, Nerger
et al. (2012b) derived a regulated OL scheme and Kirchgessner et al. (2014) related ensemble size and
localization radius.

3.4.3 Local ensemble transform Kalman filter

A first local formulation of the ETKF, based on a sliding-window technique similar to DL, was given
by Ott et al. (2004). It was revisited by the seminal work of Hunt et al. (2007) who supplied a coherent
framework for simple filter implementation, with additional focus on computational efficiency (Szun-
yogh et al. 2008). The local ETKF (LETKF) applies OL, and as of today, it serves as standard reference
even for operational DA systems (e.g., Bonavita et al. 2010; Reich et al. 2011). Besides its impor-
tance in the EnKF world, a good understanding of its mechanism is beneficial here, as its localization
methodology will be adapted for the new filter proposed in Chapter 4.

In order to summarize the LETKF analysis step algorithm, all global quantities carry the additional
subscript [g]. The input is a global forecast ensemble, Xf [g], and a global observation vector, yf [g].

1. Map the ensemble states into observation space using the full observation operator ynf [g] =

H(xnf [g]), and form Yf [g].
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2. For each local domain, perform the following procedure. Due to the independency of the local
analyses, this can be done in parallel.

(a) Obtain the local forecast ensemble Xf by selecting the rows of Xf [g] which correspond to
the local domain. Compute the perturbations, X′f .

(b) Extract the local observation y from the global observation vector.

(c) Similarly, extract the same rows from Yf [g] to form the local ensemble equivalents of the
observation, Yf and their perturbations, Y′f .

(d) The same rows and columns are also selected from the global error covariance matrix Rf [g]

to form its local counterpart, R.

(e) Its inverse can now be multiplied by a proper correlation function in order to decrease the
weight of distant observations.3

(f) Compute the analysis perturbations and mean as given by equations (3.18) and (3.19) and
compose them to the local analysis ensemble, Xa = X′a + Xa.

3. Combine all local analysis ensembles to obtain the global analysis ensemble Xa[g].

3.5 Advances in linear ensemble filtering

Before continuing with the presentation of nonlinear ensemble-based approaches, some advances for the
EnKF are shortly discussed, in order to allow a better subsumption of the EnKF. This section focusses
on a particular aspect, namely, the introduction of the ensemble technique into variational methods,
which were presented in Chapter 2 as an alternative approach. This highlights the relevance of the
Monte Carlo approach in DA. A full review of other efforts made for the EnKF is beyond the scope of
this work. The most important developments from a practical point of view have already been shown
in the previous two sections.

3.5.1 Comparison to 4DVAR

Since the EnKF was made applicable to large-scale NWP problems by Houtekamer and Mitchell (1998),
the assessment of its relative performance with respect to 4DVAR is an active area of research. Lorenc
(2003) presented a coherent discussion from a theoretical viewpoint, comparing their advantages and
downsides. He concluded that the EnKF is attractive due to its relative ease of implementation as com-
pared to 4DVAR, the explicit quantification of uncertainties by the ensembles and the opportunity to
initialize ensemble predictions. However, he preferred 4DVAR in large-scale applications as the EnKF
with a small ensemble is subject to sampling errors and requires covariance localization. Kalnay et al.
(2007) refined the investigation and showed that recent developments can eliminate some disadvantages
of the EnKFs, for example the consideration of asynchronous observations, which is more natural in
4DVAR. This was confirmed by a set of experiments in systems of different complexity, showing that
both methods deliver comparable results, given sufficient tuning and experience. In the EnKF, this

3This step is given for clarity. It can be included more efficiently into the computation of AKF (Hunt et al. 2007).
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mainly concerns localization and inflation while 4DVAR is sensitive to the length of the assimilation
window and the specification of the background error covariance matrix. Both methods share the issue
of a proper consideration of model error. Kalnay et al. (2007) concluded that even in the operational con-
text the EnKF can be made competitive to established 4DVAR systems. These findings are confirmed
by many studies focussing on empirical comparisons of both methods in different situations (e.g., Caya
et al. 2005; Fairbairn et al. 2013; Miyoshi et al. 2010; Whitaker et al. 2009; Zhang et al. 2011), with the
overall finding that the relative performance depends on system properties and implementation issues,
and no method is superior to the other in general.

3.5.2 Hybrid approaches

Since both EnKF and 4DVAR have advantages and drawbacks and different performances are mainly
due to implementation issues, it seems natural that a general improvement could be gained by combining
them (Wang 2010). The basic idea is that ensembles potentially allow a better specification of the flow-
dependent error structures needed in 3/4DVAR (Buehner 2005; Hamill and Snyder 2000; Lorenc 2003).

A typical hybrid approach to realize this idea is to feed a usual 4DVAR system with a background error
covariance matrix B that contains both static and dynamical information, where the latter is extracted
from ensemble covariances, as for instance estimated from an EnKF. Numerous variants of this concept
have been suggested and are also used operationally (Buehner et al. 2013; Clayton et al. 2013; Wang
et al. 2013). Another variant combines the gain matrices (Penny 2014). A quite common conclusion is
that the resulting analyses are superior to that ones obtained from a stand-alone DA system.

A distinct method, used at ECMWF since 2011, concerns the perturbation of the observations, boundary
data and physical parameterizations used for a deterministic 4DVAR system. This yields an ensemble
of DA (EDA) that accounts for analysis error, which in turn is used for estimating flow-dependent
background error variances, i.e., the diagonal of the matrix B. An extension to the error correlations is
planned, but represents a stronger challenge due to sampling errors, similarly as outlined for the EnKFs
in section 3.4. For more details concerning this approach, see Bonavita et al. (2012). They also showed
that EDA results in a significant increase of deterministic forecast skill and that it might be suitable to
initialize ensemble predictions.

3.5.3 Discussion

The superiority of hybrid DA systems seems to be well confirmed during the past years. It is evident that
they require a higher degree of maintenance and tuning, increasing the complexity of the DA system
even further. For that reason, its focus are operational applications, where practical considerations have
absolute priority. However, hybrid systems are not objective anymore, and from a theoretical point of
view, it is unclear what problem they actually solve (Ades 2013). Therefore, primary research should
focus on developing objective methods at first. In turn, this can contribute to a much broader range
of possible practical applications. This conclusion also holds for the research performed in this work,
concentrating on the analysis step, which might help to facilitate the usage of PF-based techniques in
hybrid systems as well.
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3.6 Particle filtering

Now, an alternative way of computing the analysis is presented, as compared to the EnKF. The PF
(Gordon et al. 1993; Kitagawa 1996), constitutes an elegant Monte Carlo solution to the analysis step
within a probabilistic framework (Wikle and Berliner 2007). A particle resembles an ensemble member
and is also a sample from the underlying pdf. The distinction is mainly historical, as the EnKF was
derived in the field of geophysical applications where ensemble prediction already was an established
method, while the PF originated in sequential Monte Carlo methods (SMC), used in statistics and signal
theory. The only new property is that particles may have varying weights within an ensemble.
First, the limitations of the EnKF are summarized in order to motivate the PF approach. Then, the PF
is formulated as a variant of the general sequential filter within the probabilistic framework of Chapter
2 by deriving its forecast and analysis step.

3.6.1 Motivation: Limitations of the EnKF

Even though the EnKF and its variants are an appealing and successful improvement of the KF, they
necessarily do not behave optimally in nonlinear environments due to multiple sources of error (An-
derson 2007b). General errors common to all assimilation methods, as discussed in Chapter 2, are
neglected in the following discussion.

• The EnKF partially respects the nonlinear nature of the system and its consequence on the anal-
ysis by feeding the KF update equation with more realistic prior moments, as they result from a
fully nonlinear ensemble prediction. However, the update is still linear and implicitly based on
a Gaussian assumption, which can be violated strongly in case of nonlinear models, as nonlinear
dynamics produces non-Gaussian densities (Bocquet et al. 2010). From a different point of view,
the EnKF analysis step can be formulated as a linear regression of the state on the observations
(Anderson 2010).

• Further limitations are caused by a combination of the previous point with the necessity of using
a rather limited ensemble size, particularly in high-dimensional systems, leading to sampling
errors in the error covariances. In turn, this yields suboptimal analysis increments (Anderson
2012). This issue is usually counteracted by covariance inflation and localization techniques, see
section 3.4.

• The observation error covariance structure is assumed to be Gaussian. The necessary approxima-
tion of non-Gaussian observation characteristics (Anderson 2010) can lead to significant devia-
tions when estimating the observation impact (Fowler and van Leeuwen 2013).

The PF attempts to encounter all these limitations by fully relaxing the assumption of a Gaussian prior,
the linear update and the restriction to Gaussian likelihoods. This leads to a fully nonlinear, non-
Gaussian solution of the DA problem. The following presentation highlights why this is theoretically
preferable, but also exhibits some severe practical problems.
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3.6.2 Basic forecast step

The forecast step of the basic PF resembles its analog in the EnKF (van Leeuwen 2009). Here, the
transition from ti(j−1) to ti(j) is considered and it is assumed that at time ti(j−1), the ensemble {xni(j−1)}
represents a potentially weighted sample of the corresponding analysis pdf p(xi(j−1)|y1:(j−1)) with
weights wni(j−1), where the weights sum to 1.

All particles are integrated with the fully nonlinear model until observation time ti(j) by iterating xni =

Mi−1→i(x
n
i−1) + ηni−1 for i = (i(j − 1) + 1) . . . i(j) for each particle. The resulting prior pdf can be

written in an ensemble representation as a linear combination of delta functions,

p(xi(j)|y1:(j−1)) =
∑
n

wni(j−1)δ(x− xni(j)) (3.22)

In the special case of an equally-weighted ensemble, this resembles equation (3.4) of the usual forecast
ensemble pdf. During such a basic forecast step the weights are not modified, and these prior weights
at time ti(j) are denoted as wnf . As before, the prior ensemble is denoted {xni(j)} → {xnf}. The
EnKF concentrates on the prior mean and covariance, which are to be modified, implicitly assuming a
Gaussian distribution. In contrast, the PF views the ensemble as a Monte Carlo representation of the
unknown underlying pdf, and makes no parametric assumptions about its form.

3.6.3 Analysis step

The PF directly applies the general analysis step as in section 2.4.3 to assimilate the observation. As
usual, the dependence on past observations y1:i(j−1) is omitted in the notation, and furthermore, xi(j)

is denoted as x and yj as y. Using Bayes’ theorem as in equation (2.19), the posteriori expectation of
any function of xi(j) ≡ x can be written as

〈f(x)〉p(x|y) =

∫
f(x)p(x|y)dx =

∫
f(x)p(y|x)p(x)dx∫
p(y|x)p(x)dx

(3.23)

Plugging in the ensemble representation of the prior ensemble, as given by equation (3.22), a Monte
Carlo approximation of this expected value can be calculated:

〈f(x)〉p(x|y) ≈ f(x) =

N∑
n=1

wnf
p(y|xnf )∑N

m=1w
m
f p(y|xmf )

f(xnf ) (3.24)

This equation can be regarded as a weighted mean, where each prior ensemble state is assigned a
specific weight that incorporates the observational information,

f(x) =
N∑
n=1

wnf(xnf ) with wn = wnf
p(y|xnf )∑N

m=1w
m
f p(y|xmf )

(3.25)

The analysis weight wn is given by the product of the prior weight and the likelihood of the particle.
The latter quantifies how likely the actual observation is, given the system is in the corresponding en-
semble member’s state xnf . In other words, particles that are reasonably close to the observation receive
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a large weight, and vice versa. As the analysis pdf has to be normalized, the discrete weights are subject
to a normalization constraint,

∑
nw

n = 1. In praxis, the weights are computed from the observational
pdf without the denominator in equation (3.25), yielding the relative likelihoods of each particle. Af-
terwards, they are normalized by dividing each weight by the total sum of the unnormalized weights.
For example, in case of Gaussian observation errors, the weights are easily obtained by evaluating the
multivariate normal density, neglecting its normalization factor (which is also expensive to evaluate),

wn ∝ wnf · exp

{
−1

2

(
y −H(xnf )

)T
R−1

(
y −H(xnf )

)}
(3.26)

This also shows that the weights are determined by the innovations of the ensemble states in observation
space, as in the EnKF, but now, the relationship is nonlinear. However, any other type of observation
error distribution may be used within a PF, while all KF-based schemes require Gaussian likelihood
pdfs. It is emphasized that the PF makes absolutely no assumption about the form of the prior pdf, as it
takes the ensemble in its pure form and assumes that it carries all accessible information about the prior
pdf. This marks the central difference to the EnKF, where the update implicitly relies on a Gaussian
assumption when dealing with the prior ensemble.

The PF is appealing because it performs a full Bayesian analysis without any additional assumptions;
thus, it entirely considers the nonlinear nature of the system and the resulting non-Gaussian densities.
For example, the analysis mean as best estimate of the state is easily computed by using f(x) = x

in equation (3.25), yielding xa =
∑N

n=1w
nxnf . In a similar manner, it is possible to derive any other

statistic of interest using the Monte Carlo estimator (see Appendix A). The basic PF analysis step is
completed by assigning the posteriori weight wn → wni(j). Notably, the ensemble members are not
changed at all, xni(j) = xnf . Only their relative weights are modified, and hence, they contain all the
information extracted from the observation.

3.6.4 Curse of dimensionality

In the basic PF, the ensemble states are not changed in the analysis step, only their weights are ad-
justed. In sequential DA, the PF is iterated over multiple cycles. At each analysis step, the new weights
are obtained by multiplying the previous weights by the new likelihoods. This has the advantage of
maintaining any dynamical balances in the states, but it also leads to so-called filter divergence, or filter
degeneracy, the primary challenge in the application of PFs (van Leeuwen 2009). The particle closest to
the observation receives a larger relative weight, while all others loose relative weight. Consequently,
after some analysis steps, one particle exhibits a weight close to 1, while all other weights become
negligible, if the ensemble size is not large enough. Then, the ensemble does not contain any useful
information anymore and the filter has collapsed. This issue, numerically diagnosed by an increasing
variance of the weights, becomes particularly problematic in larger-dimensional spaces with many in-
dependent observations (Bengtsson et al. 2008; Snyder et al. 2008). However, even in low-dimensional
systems a large number of particles may be required to suppress the probability of filter divergence.

An early idea to solve this issue is to augment the analysis step by a resampling step to get rid of
particles with low weights, as they are too far away from the observation and are likely to diverge even
more in the next analysis step. Thus, high-weight particles are duplicated as they are more valuable.
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Specifically, one resamples N particles from the set {xni(j)} with the associated discrete probability
distribution {wni(j)}. Thus, after resampling, the ensemble is equally-weighted again. In this form, the
PF is also known as sequential importance resampling (SIR) filter. Numerous algorithms to carry out
the resampling procedure have been suggested in the literature, leading to different SIR flavors (van
Leeuwen 2009). It is also possible to apply resampling conditionally. For example, Hoteit et al. (2012)
monitor whether the entropy, a measure of the variance of the weights, exceeds a predefined threshold.

Even though resampling appears as reasonable solution, it does not prevent filter collapse in general.
The likelihood pdf only covers a small region of the observation space. For illustration, M independent
Gaussian observations with standard deviations σ are considered, i.e., in equation (3.26) R is diagonal.
Then, the volume of the hypersphere within three standard deviations of the means is approximately
proportional to (σ/M)M/2 (Ades 2013, p. 34). Thus, the region of significant probability mass in
observation space tends to zero with increasing dimensionality, regardless of the broadness of each
individual observation. Additionally, the highly-peaked likelihood pdf is multiplied by the prior pdf,
which is usually flatter. This leads to an even stronger peaked posteriori pdf. Furthermore, resampling
does not help in deterministic systems where the duplicated particles remain identical throughout the
whole forecast phase. In this case, resampling directly decreases the effective ensemble size, while
model errors at least allow duplicated particles to diffuse during the forecast phase.

As this thesis aims at deriving a new PF-based algorithm, it is important to analyze the reasons of
weight collapse in a structured way. The ensemble representation of the posterior pdf is determined by
the position and the weights of each particle, and the two claims of an ideal particle representation that
is stable with respect to filter degeneracy are (Ades 2013):

1. The positions of the particles should all be samples from the high-probability region, as defined
by the likelihood pdf, i.e., they should be close to the observation.

2. The relative weights should be similar such that all particles contribute significant information
about the pdf.

Resampling only attempts to ensure the second requirement, by reducing the variance of the weights.
However, filter collapse cannot be avoided particularly in higher-dimensional spaces, as it is still likely
that the majority of particles does not cover the significant area in observation space at the next analysis
step. Snyder et al. (2008) found that the number of particles required to avoid filter divergency strongly
exceeds a critical number which grows exponentially with the square of an effective dimension of the
system. This is known as the ”curse of dimensionality” in the context of PFs. For example, they im-
pressively estimated that in a 100- or 200-dimensional space the required ensemble size would be about
106 or 1011, respectively. In the following, recent attempts to overcome the curse of dimensionality by
improving the likelihoods of the particles are discussed.

3.6.5 Revision of the forecast step

As revealed, the principal problem is that many particles achieve very low relative weight in the anal-
ysis step as they are too distant from the observation. A promising approach consists in changing the
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forecast step such that more particles end up close to the observations. Formally, this is realized by the
introduction of so-called proposal densities, a standard tool in the mathematical literature (Doucet et al.
2001). This extension will be important to understand the EWPF in the next section.

First, a single transition ti−1 → ti is considered. Here, the dependence of the state on past observations
y1:i(j−1) is omitted because it is irrelevant for the next forecast and analysis steps. The key idea is to
introduce a proposal density q(·) into equation (3.1):

p(xi) =

∫
p(xi−1)

p(xi|xi−1)
q(xi|xi−1,yj)

q(xi|xi−1,yj)dxi−1 (3.27)

Even though this appears to be a trivial reformulation, it offers many new opportunities if the integral is
interpreted in an importance sampling fashion, a standard Monte Carlo technique (Robert and Casella
2004). Applying the Monte Carlo representation of the prior ensemble as given in (3.22) yields

p(xi) ≈
∑
n

wni−1
p(xi|xni−1)

q(xi|xni−1,yj)
q(xi|xni−1,yj) (3.28)

Instead of approximating this pdf by drawing one sample from each transition density p(xi|xni−1) as
done in section 3.1.2, a sample xni is drawn from q(xi|xni−1,yj) such that the new ensemble is dis-
tributed as xni ∼ q(xi|xi−1,yj). This results in the following representation of the new prior pdf (van
Leeuwen 2010)

p(xi) ≈
∑
n

wni δ(xi − xni ) where wni = wni−1
p(xni |xni−1)

q(xni |xni−1,yj)
(3.29)

Note that the factor p(·)/q(·) in the weight equation automatically corrects for the fact that the particles
are not directly drawn from the transition density. Thus, the ensemble still represents a valid sample
of the state pdf. The nominator can be computed through knowledge of the model error density. An
appealing property is the huge freedom in choosing q(·), as the new ensemble could be sampled from
an arbitrary distribution. However, this would result in very poor likelihood weights in the analysis
step, and it should be ensured that q(·) has the same support as the transition density in oder to avoid
division by zero (Doucet et al. 2001). Hence, it is reasonable to choose it similar to the transition
pdf. Additionally, q(·) should be conditioned on the next observation yj , as already indicated in the
equations shown above. This allows to ensure that more members of the new ensemble lie in the high
probability region of the posterior, thus avoiding weight collapse by a better positioning of the particles.
However, it should be noted that the variance of the weights still increases at each time step. Therefore,
the next section deals with further advances in this direction.

3.7 Advances in nonlinear filtering

Since its first introduction by Gordon et al. (1993), the PF has received a large amount of attention for
applications dealing with state and parameter estimation. This section deals with important advances
made in this field, concentrating on nonlinear geophysical applications. The PF offers an appealing
alternative to KF-based schemes by relaxing the assumption of Gaussian densities, as these systems
usually imply non-Gaussian distributions. However, as discussed, the basic PF requires an ensemble
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size that is prohibitive for typical large-scale models. The mathematical literature contains much more
approaches (Aster et al. 2005; Doucet et al. 2001), but most of them are restricted to small-dimensional
problems. A thorough review concerning the current status about PFs in geophysical systems at that
time was provided by van Leeuwen (2009).

It is beyond the scope of this work to discuss all developments. Therefore, the review here concentrates
on aspects relevant for the aims of this thesis. First, the EWPF as a promising formulation of the PF is
presented, which has mainly been developed during time research for this thesis was performed. Sec-
ond, the NLEAF, a reduced-order PF, is discussed. Third, other interesting efforts are mentioned briefly.
The conclusions drawn here not only motivate the NETF to be derived in Chapter 4, but also allow a
better classification of its mechanism, particularly concerning its properties and potential advantages.

3.7.1 Equivalent weight particle filter

The development of the EWPF has been induced by the comprehensive review by van Leeuwen (2009).
The main idea consists in employing suitable proposal densities during the forecast step to guide the
particles such that they remain close to the observation. Shortly after, van Leeuwen (2010) extended the
concept by using a distinct proposal density before assimilating the observation. It adjusts almost all
particles such that they have equivalent weights in the analysis step. The filter behaved efficiently in a
1000-dimensional Lorenz system. A thorough exploration of the filter properties was given by Ades and
van Leeuwen (2013), and van Leeuwen and Ades (2013) reported a successful application in a strongly
nonlinear system of larger dimensionality. Here, a concise description of the EWPF is given, focussing
on the principal mechanism. The algorithm exhibits numerous technical questions and implementation
details, which are covered in detail by Ades (2013). There are two reasons for discussing the EWPF in
the context of this thesis. First, it allows a better classification of the new NETF in Chapter 4 concerning
algorithm complexity. Second, the NETF can be combined with the forecast step of the EWPF, which
may allow a comparison of both analysis mechanisms in future.

3.7.1.1 Forecast step: nudging

In section 3.6.5, the formulation of the forecast step including a proposal density was introduced. Typ-
ically, there are numerous of single-step forecasts in between two successive observations. Therefore,
the repeated application of the procedure outlined by equation (3.29) leads to a prior pdf at time ti(j) at
which each member exhibits the prior weight

w̃ni(j) ∝ w
n
i(j−1)

i(j)∏
i=i(j−1)+1

p(xni |xni−1)
q(xni |xni−1,yj)

(3.30)

Then, according to equation (3.25), the analysis weights are simply computed by multiplying the prior
weights with the likelihood weights, wni(j) ∝ w̃

n
i(j)p(yj |x

n
i ). As motivated in section 3.6.5, the proposal

pdf should be chosen similar to the transition pdf. In order to improve their future likelihoods, the
particles can be pulled closer to the observation by generating the new ensemble as following (van
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Leeuwen 2010),

xni =Mi−1→i(x
n
i−1) + η̃ni−1 + Ni−1(yj −H(xni−1)) (3.31)

Compared with the usual model integration, equation (2.4), a different error distribution to generate
η̃i−1 can be used, for instance N (0, Q̃). The last term nudges the particle towards the observation,
using a weight matrix N. The nudging term, which can be chosen freely, is supposed to be relatively
small because it is applied at each time step. Furthermore, other options for choosing the proposal
density might also lead to more sophisticated approaches. Using the three-dimensional Lorenz system,
van Leeuwen (2010) demonstrated that such a Gaussian relaxation density enables stable PF runs with
very few particles.

Nevertheless, nudging alone is not sufficient to avoid filter divergency, particularly in larger-dimensional
systems. The reason is that usually p(xni |xni−1) is smaller than q(xni |xni−1,yj) because the particle is
not generated by the actual system dynamics anymore. Thus, the accumulated weight, given by the
product in equation (3.30), becomes very small, and the variance of the weights increases.

3.7.1.2 Analysis step: equivalent weights

The relaxation density ensures that the particles are positioned in the high probability region in obser-
vation space. However, as explained, the relative weights may still vary strongly. This is resolved by
modifying the proposal density in the last step before the observation, i.e., ti(j)−1 → ti(j). Separating
this density from equation (3.30) and including the likelihood weights yields the final analysis weights
at ti(j) as

wni(j) ∝ p(yj |x
n
i )

p(xni(j)|x
n
i(j)−1)

q(xni(j)|x
n
i(j)−1,yj)

i(j)−1∏
i=i(j−1)+1

p(xni |xni−1)
q(xni |xni−1,yj)︸ ︷︷ ︸

∝ wn
i(j)−1

(3.32)

Now, the final proposal density q(xi(j)|xni(j)−1,yj) is chosen such that the nominator is constant. As-
suming Gaussian densities for the transition and observation density, this corresponds to solving the
following equation for xni (van Leeuwen 2010, Eq. 19)

− ln(wni(j)−1) +
1

2

[
(xni(j) −M(xni(j)−1))

TQ−1(xni(j) −M(xni(j)−1))
]

+

1

2

[
(yj −H(xni(j)))

TR−1j (yj −H(xni(j)))
]

= − lnwtarget

whereM shortly representsM(i(j)−1)→i(j). The fixed target weight should be as large as possible, and
it is set such this equation is solvable for a majority (80%) of the particles by examining their maximum
achievable weights (van Leeuwen 2010). The other 20% are typically too far from the observations to
be relevant anymore. In order to regain a full ensemble, the 0.2N missing particles re-enter through
resampling the surviving ensemble. For the 80% particles, an infinite number of solutions for this
equation exists, and the following ansatz is used (van Leeuwen 2010), similar to the nudging step
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(3.31):

xni(j) =M(xni(j)−1) + αnjNj

(
yj −H(M(xni(j)−1))

)
+ η̃ni(j)−1 (3.33)

where Nj = QHT
j (HjQHT

j + Rj)
−1. This adjustment resembles an EnKF analysis step, but αnj

controls the position of the posterior particles such that they receive equal weight, and an explicit
solution can be found (Ades and van Leeuwen 2013, Eqs. 28-32). The term η̃ni(j)−1 represents a random
deviation from the deterministic solution, but it is essential as otherwise q(xi(j)|xni(j)−1,yj) would refer
to a delta function and lead to division by zero in equation (3.32). Hence, a small stochastic term must
be kept. A uniform density around the deterministic move would guarantee q(xni(j)|x

n
i(j)−1,yj) to be

constant in equation (3.32), keeping the weights equal, but it still has finite support. The currently best
solution is to enhance it by Gaussian tails, using a strongly asymmetric mixture density (Ades and van
Leeuwen 2013, Eq. 36). Then, the final analysis weights (3.32) are almost equal.

3.7.1.3 Discussion

The EWPF employs an appealing PF variant and in principle allows to explore the full posteriori pdf
with a relatively small amount of particles by guiding them through the proposal densities. This was
confirmed in Lorenz systems and with a barotropic vorticity equation with state dimensionality of about
65000 (van Leeuwen and Ades 2013). These promising results should encourage further research about
the EWPF. The EWPF is more successful than other PF variants because both reasons for filter collapse
(see section 3.6.4) are considered. Nudging during the forecast phase ensures that the particles end up
in the high-probability region in observation space, and the analysis step ensures that the variance of
weights tends to zero. However, the explicit implementation has to be adapted carefully to the model
at hand (Ades 2013), particularly concerning the relaxation density, as the results are sensitive to the
choice of the weight matrix N (Ades and van Leeuwen 2013). As the support of q(·) has to be at least
equal to the support of the transition density, this implies that a deterministic model cannot be used and
that the choice of q(·) is strongly connected to the model error term. For instance, a small model error
only allows a small nudging of the particles. A large model error increases the freedom in q(·), but also
increases the noise in the forecast states. Hence, a good balance between both distributions has to be
found, which is a complex task, particularly for real-world models where even the model error itself is
a highly uncertain quantity. As a consequence, a direct application of the EWPF requires non-trivial
tuning to be successful and it may be an option to develop alternatives to the relaxation density (3.31)
(P. Kirchgessner, AWI Bremerhaven, personal communication). In conclusion, the EWPF currently is
at an appealing stage but requires an extensive manipulation of the forecast step in a sequential DA
system. The filter developed in this work follows a different paradigm. It only adjusts the analysis step,
but still attempts to ensure good positions and equal weights for all particles.

3.7.2 Nonlinear ensemble adjustment filter

Another interesting development in the field of PF research is the update algorithm suggested by Lei and
Bickel (2011). Their basic idea motivates the novel filter algorithm derived in this work. They analyzed
the EnKF from a statistical point of view and argued that in a nonlinear, non-Gaussian setting the EnKF
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analysis is necessarily biased because of the linear ensemble update. This bias particularly concerns the
first moment, which leads to an additional error in location, and the second moment, leading to a mis-
estimation of the ensemble’s shape, which is expressed by the variances and covariances. As a result
from their statistical investigation, Lei and Bickel (2011) proposed the NLEAF which aims at updating
the ensemble such that biases occurring in an EnKF update are eliminated. Thus, the paradigm of their
filter is the requirement that the analysis ensemble should have, on average, a mean and potentially a
covariance which matches the prediction of the non-parametric Bayes’ theorem. It applies a stochastic
update of the ensemble, similar to the classical EnKF. The NLEAF is a sequential filter that fits in the
general framework of Chapter 2 and hence, both its forecast and analysis step are discussed here.

3.7.2.1 Forecast step

The forecast step employs the usual ensemble integration as described in section 3.1.2. As will be
shown next, the output of the analysis step, which is the input to the forecast step, is an equally-weighted
ensemble. Thus, the forecast steps of NLEAF and EnKF are identical.

3.7.2.2 Ambiguity of ”perturbed observations”

For the classic EnKF, the usage of perturbed observations was motivated in section 3.2. Usually, N
samples {yn} are drawn from the Gaussian density N (y; R). Equivalently, one may generate N sam-
ples {en} from the observation error distribution, N (0; R), and compute the perturbed observations
as yn = y + en. Another valid option is to leave the actual observation y unchanged and to add the
sampled error to the forecast state in observation space instead, ỹn = H(xnf ) + en. These alternatives
lead to differently structured EnKF update equations,

Variant (1): xna = xnf + K(y + en −H(xnf )) = xnf + K
(
yn −H(xnf )

)
(3.34)

Variant (2): xna = xnf + K(y −H(xnf ) + en) = xnf + K(y − ỹn) (3.35)

Even though both equations are identical, their formal difference can be an important issue for practical
implementations. When using equation (3.34), the actual observation is replaced by the perturbed
observation yn, while in equation (3.35), the background state is replaced by the perturbed observation
ỹn. This presentation reveals that the term perturbed observation is ambiguous, as of course yn 6= ỹn.
For instance, using the first variant with ỹn leads to an entirely wrong analysis4, and vice versa. Hence,
attention has to be paid to the correct choice of the ”perturbed observation” according to the actual
implementation.
This potential danger becomes evident in the NLEAF, as here perturbed observations are defined as
ỹn = H(xnf ) + en (Lei and Bickel 2011), but in the innovation vector i they actually have to replace
y, leading to a mix-up of the variants shown above, where i = ỹn − H(xmf ) (m ∈ {1, . . . , N}, see
below). Even though the ambiguity of ”perturbed observations” revealed here is a rather trivial issue,
if unrecognized, it can quickly lead to unsuccessful implementations. It might also explain why Frei

4Note that in this case the innovation is simply given by en, hence, it is not related to either observation or forecast state
at all.
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and Künsch (2013a) state that they were not able to achieve any stable runs with the NLEAF despite
elaborate efforts, in contrast to the simulations shown in this work in Chapter 5.

3.7.2.3 Analysis step formulations

The NLEAF offers two options for adjusting the forecast ensemble. The first-order variant (NLEAF1)
aims at an unbiased analysis ensemble whose mean approximates the Bayesian expectation. The
second-order variant (NLEAF2) additionally considers the Bayesian covariance. Both variants can
be described by a synthesized algorithm:

1. Create N perturbed observations as discussed in the previous section via ỹn = H(xnf ) + en,
where each en is a sample from the observation error distribution, e.g., N (0,R).

2. Given the forecast ensemble {xnf}, evaluate the PF mean and covariance using equation (3.25),
...

(a) ... with y being the actual observation, i.e., with weights wn ∝ p(y|xnf ). This yields the
actual analysis mean µa and covariance Pa.

(b) ... replacing y with a perturbed observation, ỹn, for n = 1 . . . N . For each fixed n, the
ensemble weights are wm,n ∝ p(ỹn|xmf ) (m = 1 . . . N ). This yields, for each member, the
conditional moments µna and Pn

a .

3. Adjust the forecast ensemble members to obtain the analysis members:

for NLEAF1: xna = xnf + µa − µna (3.36)

for NLEAF2: xna = µa + P1/2
a (Pn

a)−1/2
(
xnf − µna

)
(3.37)

It is evident that the ensemble generated by equation (3.36) has a mean of µa apart from sampling
fluctuations. The addition of µna guarantees that the members are distributed in an equally-likely region
around the mean. The second-order update in equation (3.37) relies on transforming the ensemble
covariance such that it converges to Pa. In both cases, it is apparent that low-weight particles, which
would be lost in a PF step, are pulled towards the analysis mean in order to retain an equally-weighted
ensemble. For actual proofs concerning the asymptotic behavior of the filter, the reader is referred to
the technical description given by Lei and Bickel (2009).

3.7.2.4 Discussion

The NLEAF represents an interesting alternative within the large variety of PF-based filters due to
its relatively simple design. It only affects the analysis step of a sequential, ensemble-based DA sys-
tem. This can be a major advantage concerning practical applications, in contrast to other suggestions
which often require substantial, complex modifications of the forecast step, such as the EWPF. The
adjustments applied to the prior ensemble offer the advantage of generating a new, equally-weighted
ensemble. Thus, no resampling or similar techniques are required, which in principal helps to maintain
filter stability as compared to the PF.
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However, this comes at the price that the NLEAF does not, in contrast to full PFs, employ the full
posteriori pdf but only its first- or second-order statistics. Nevertheless, the results from experiments
with Lorenz models presented by Lei and Bickel (2011) are quite promising. They show that such
rather simple modification of the analysis step is able to generate significantly better analyses than both
EnKFs and other PF-based techniques. However, they mainly use relatively large ensemble sizes with
observations available every time step, which is not an image of typical real-world situations. As al-
ready mentioned by Lei and Bickel (2011), the stochastic update mechanism also introduces sampling
errors that can degrade the performance, particularly for smaller ensemble sizes. This will be explic-
itly demonstrated in Chapter 5. Furthermore, the NLEAF exhibits high computational cost as O(N2)

weights have to be computed, and the NLEAF2 even requires to evaluate and multiply O(N) matrix
square roots in state space. It can be concluded that the NLEAF represents a reasonable compromise
between KF-based and full particle filtering. However, its performance has to be further investigated
and there are some drawbacks which can be tackled by employing a distinct update methodology. This
will be within the scope of the new algorithm, presented in Chapter 4.

3.7.3 Other efforts

Finally, other efforts in nonlinear filtering are briefly mentioned to emphasize the broad research spec-
trum built around the PF. However, a complete review is beyond the scope of this work.

3.7.3.1 Markov chains

An example for a more recent development in this context concerns the combination of the PF with
Markov chain Monte Carlo (MCMC) methods by the seminal work of Andrieu et al. (2010). MCMC
originates in statistical physics (Metropolis et al. 1953) and is a popular method to explore the high
probability region of a pdf by constructing a suitable Markov chain that converges to the pdf (Hastings
1970; Tierney 1994). However, is it unclear how to apply it to the dynamical DA problem in a feasible
fashion (Ades 2013). Posselt and Bishop (2012) compared MCMC and the ensemble transform Kalman
smoother (ETKS) in an idealized column model of deep convection, aiming at the estimation of ten fixed
parameters. They showed that MCMC outperforms the ETKS as it aims at the true posterior density
and is not limited to linear updates. However, it required O(105) MCMC iterations to achieve robust
sampling from the true pdf in the ten-dimensional phase space, given a reasonable initial range for each
variable.

3.7.3.2 Implicit PF

As the EWPF, the implicit PF (IPF, Chorin et al. 2010) aims at an importance sampling method such
that the particles end up in the high probability region of the next posterior pdf. This is equivalent
to using the posterior density as proposal density (Bocquet et al. 2010). While the EWPF relies on
nudging, the IPF basically applies a minimization procedure as in 4DVAR to each particle to find the
optimal state value (Atkins et al. 2013). Therefore, it is a smoother by construction. Even though
it has shown strong benefits over the SIR filter in Lorenz models and low-dimensional geophysical
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applications (Morzfeld and Chorin 2012), it is still subject to filter degeneracy in large-dimensional
system with many observations as the relative weights may exhibit a high variance (Ades 2013).

3.7.3.3 Gaussian mixture filters

Another popular approach, initiated by Anderson and Anderson (1999) and Pham (2001), is the rep-
resentation of the forecast ensemble as a Gaussian mixture, allowing a better consideration of non-
Gaussian features contained in the prior ensemble (e.g., Frei and Künsch 2013b; Hoteit et al. 2012,
2008; Stordal et al. 2011). Typically, the particles are updated by a KF analysis step, together with
an additional assignment of weights resulting from the analytical solution of Bayes’ theorem. Thus,
resampling is required as well. These filters can be interpreted as a bridge between the EnKF and PF
(Frei and Künsch 2013a). They have been shown to offer potential benefits in nonlinear scenarios,
where the relative performance depends on the careful balancing of the EnKF and PF contributions.
The implementation of Hoteit et al. (2008) was applied successfully in an ocean general circulation
model. However, as hybrid filters they do not constitute objective techniques.

3.7.3.4 Forecast step adjustments

Apart from the EWPF, other PFs also explore the freedom given by the proposal density. For exam-
ple, Papadakis et al. (2010) used the EnKF as proposal, while other variants rely on repetitions of the
forecast step or the introduction of pseudo-observations in the forecast step in order to improve the
prior likelihoods (e.g., Pitt and Shephard 1999). However, none of them could prove its applicability in
high-dimensional systems.

3.7.3.5 Approximations

Other methods abandon the aim of a full Bayesian solution and approximate the PF in different ways,
as also the NLEAF. It is argued by van Leeuwen (2009) that localization might be helpful for PFs as it
reduces the effective dimensionality of the system, thereby counteracting filter collapse. However, he
stated that is unclear how to deal with the space-dependent weights that arise from a localized analysis.
In Chapter 4, a natural answer to this question can by given.

It is interesting to look at two proposals in more detail. In the merging PF (MPF, Nakano et al. 2007),
each analysis state is replaced by a tailored linear combination of some states drawn from a large
set of resampled analysis members such that their mean and covariance are asymptotically preserved.
Thus, it basically represents a less objective, rather manual version of the NLEAF. A similar, more
objective approach is given by PF with Gaussian resampling (PFGR, Xiong et al. 2006) which samples
the analysis states from a Gaussian distribution whose mean and covariance are determined by the
Bayesian expectations. However, both filters have only been applied to systems with rather strong
model error and quite large ensemble sizes (e.g., N > 100 in the Lorenz 63 model). Lei and Bickel
(2011) found that they diverge in experiments with a deterministic Lorenz 96 model of intermediate
dimensionality, while the NLEAF performed better. For this reason, the new filter derived in Chapter
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4 will be compared with the NLEAF as it appears to be the only filter from this family that offers a
potential applicability in higher-dimensional, deterministic settings.

3.8 Summary and conclusions

In this chapter, the ensemble forecasting technique, a Monte Carlo approach to the dynamical evolution
of the state’s pdf, was discussed in context of the forecast step of a sequential DA system. The combi-
nation with the KF directly leads to the EnKF as an revolutionary milestone. Different variants of the
EnKF were presented, focussing on a deterministic implementation of the analysis step, and practical
issues and findings that have been arisen from applying the EnKF since its introduction were discussed.
The EnKFs rely on Gaussian distributions and perform a linear update. In contrast, the PF relaxes these
restrictions by directly solving the general analysis step, as given by Bayes’ theorem. Thus, it fully
respects the nonlinear, non-Gaussian nature of the system. However, it cannot be applied in a straight-
forward fashion due to the curse of dimensionality, leading to filter divergency unless the ensemble size
is extremely high. Recent developments that attempt to tackle this problem were summarized. Many
PF variants or approximations have been suggested within the last years, yet the applicability in high
dimensions represents a challenge difficult to overcome. At the current stage, it appears that only the
EWPF is capable of actually solving the curse of dimensionality, at least in stochastic systems. The
NLEAF follows an interesting paradigm that is also applicable to deterministic systems.

The main conclusions gained in this chapter are:

• The EnKF separates the forward model and analysis step without resorting to tangent linear or
adjoint models. The fully nonlinear nature of the forecast step using an ensemble integration
improves the prior estimates and provides a reasonable low-rank approximation of the covariance
matrix. The deterministic variants are appealing as they avoid the perturbation of observations.
In order be competitive to variational schemes in higher-dimensional systems, the EnKF needs to
be enhanced by inflation and localization.

• The PF represents an appealing alternative by fully relaxing the Gaussian assumption, but is
exposed to filter degeneracy due to the curse of dimensionality. Thus, a nonlinear DA technique
has to guarantee that the particles (1) end up close to the observations at analysis time and (2)
additionally exhibit relatively equal weights.

• The exploration of proposal densities within the forecast step leads to sophisticated algorithms, in
particular the EWPF. However, the algorithmic complexity is increased in comparison to EnKFs.
Its forecast step needs to be adapted to the model, and the latter has to be stochastic.

• The NLEAF does not rely on stochastic models, however, its stochastic update mechanism ex-
hibits high computational costs and negatively affects the performance for small ensemble sizes.
Both issues are highly relevant concerning possible practical applications.

The insights gained here will be used in the next chapter to derive the new filter algorithm. It attempts
to tackle some of these issues to render it applicable in high dimensions as well.



Chapter 4

Nonlinear ensemble transform filter:
Theory

The previous chapter showed how ensemble-based techniques, as offered by the EnKFs and PFs, at-
tempt to consider non-Gaussian features in the forecast pdf. An overview of the current state of re-
search with respect to nonlinear DA techniques was given and recent developments were discussed.
These considerations constitute the motivation for further advancing these DA techniques. This chapter
summarizes the motivation and then derives a new nonlinear filter. The focus is on a thorough demon-
stration of the mathematical details and a discussion of the filter properties from a theoretical point of
view.

4.1 Prerequistes

4.1.1 Motivation

For the purpose of deriving a new filter algorithm, we take the perspective that the PF, as introduced in
section 3.6, principally offers the most natural approach to solve the DA problem, as it applies Bayes’
theorem in a direct way, and does not require any assumptions about the prior pdf. Furthermore, the
likelihood pdf is not restricted to be Gaussian. However, a solution needs to be found to overcome the
curse of dimensionality, which leads to weight collapse if the ensemble size is not extremely large. The
EWPF applies proposal densities during the forecast step to position the particle in a desirable way.
Here, we follow a more generic paradigm. In order to simplify future implementations, the new filter is
supposed to be independent on the forecast step, which should remain a standard ensemble integration.
As approximation to fully-nonlinear filtering, we pursue the idea of the NLEAF and do not focus on
the full analysis pdf but only on its first two moments. Additionally, an attempt is made to overcome its
shortcomings in order to enable large-scale applicability.

4.1.2 Requirements

The following list summarizes the desired properties of the new filter.

67
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1. The filter should offer an objective solution to the assimilation problem.

2. The filter should fully consider the nonlinear nature of the forward model.

3. No assumption about the prior pdf should be posed.

4. The filter should be able to deal with an arbitrary likelihood pdf.

5. The filter should avoid particle divergency by ensuring an analysis ensemble whose members
not only lie in the high-probability region of the observation space but additionally exhibit equal
relative weights.

6. In contrast to the EWPF, the filter should only act on the analysis step and should be independent
of the model and the forecast step.

7. No sampling error should be introduced that might degrade the performance.

8. The filter should be computationally efficient even in larger-dimensional settings.

4.1.3 Strategy and questions

The new filter aims at a second-order exact analysis in the sense that the first two moments of the
analysis ensemble exactly match the corresponding Bayesian estimates. In section 3.3.2, we motivated
that the ETKF utilizes the fact that the KF covariance can be written in the form X′fA(X′f )T which
allowed to identify a suitable matrix operation that transforms the prior perturbations X′f into analysis
perturbations X′a. Here, we follow the same derivation strategy, but instead of using the KF covariance,
we utilize the Bayesian estimate, as in the PF. Consequently, we need to write its covariance in a similar
way. In conjunction, this requires the evaluation of the Bayesian mean. Thus, the first step towards the
new filter is a reformulation of the second-order statistics of the PF analysis, given any prior ensemble.
Afterwards, we proceed with this result to derive the proper transform matrix, as for the ETKF. The
remaining sections in this chapter investigate the properties of the analysis algorithm and show further
extensions and supplements. These considerations will answer the following questions:

• What are the properties of the transform matrix, in comparison to its counterpart in the ETKF?

• How can the non-uniqueness of a second-order exact transformation be utilized to increase filter
stability?

• How can we deal with the curse of dimensionality in higher-dimensional spaces? In particular,
can the filter be localized?

• How can the filter stability be judged and can covariance inflation be useful, as for the EnKFs?

4.1.4 Filter input and output

The suggested filter only operates on the analysis step. Therefore, any time dependencies are omitted
to describe an arbitrary analysis step at time ti(j). The notation remains as defined in chapters 2 and
3. Thus, the input is an equally-weighted prior ensemble Xf and an observation y, together with its
observation operatorH(·). The aim is to output an equally-weighted analysis ensemble Xa.
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4.2 Reformulation of the Bayesian moments

As shown in Chapter 3, any posterior Bayesian expectation can be approximated by a corresponding
Monte Carlo estimate, using the forecast ensemble as a sample of the prior pdf (see eq. 3.25):

〈f(x)〉p(x|y) ≈ f(x) =
N∑
n=1

wnf(xnf ) (4.1)

In the following, the focus is put on the functions f(x) that generate the analysis mean and covari-
ance. For convenience, the weight vector w =

(
w1, . . . , wN

)
of length N is defined. Each element

corresponds to the normalized particle’s weight, which for an equally-weighted prior ensemble is

wn =
p(y|xnf )∑N

m=1 p(y|xmf )
(4.2)

as discussed in section 3.6.3 in detail.

4.2.1 Bayesian mean

To obtain the analysis mean, equation (4.1) is evaluated with f(x) = x, leading to

xPF
a =

N∑
n=1

wnxnf (4.3)

The weight vector w allows to write this sum as a matrix-vector product. Then, the prior ensemble is
decomposed into the prior mean, xf , and perturbations, X′f .

xPF
a = Xfw = Xfw + X′fw

Here, Xf represents a K×N matrix with all columns equal to the prior ensemble mean. Together with
the constraint

∑
nw

n = 1, this leads to

xPF
a = xf + X′fw (4.4)

Surprisingly, the PF analysis mean turns out to have the same form as the ETKF analysis mean in
equation (3.19). A linear combination of the ensemble perturbations, determined by a weight vector, is
added to the prior mean. The only difference is that the weight vector now contains the ”true” weights,
as derived from the fully nonlinear, non-Gaussian Bayes’ theorem.
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4.2.2 Bayesian covariance

The covariance predicted by Bayes’ theorem uses equation (4.1) with f(x) = (x − xPF
a )(x − xPF

a )T ,
resulting in

PPF
a =

N∑
n=1

wn
(
xnf − xPF

a

) (
xnf − xPF

a

)T
(4.5)

The aim is to write the analysis covariance matrix in the same form as in equation (3.13) in order to
identify the appropriate transform matrix for the new perturbations. In the first step, we substitute the
analysis mean with the help of equation (4.4) to introduce the matrix of prior perturbations, and then,
we expand the product within the sum:

PPF
a =

N∑
n=1

wn
(
(xnf − xf )−X′fw

) (
(xnf − xf )−X′fw)

)T
=

∑
n

wn(xnf − xf )(xnf − xf )T −
∑
n

wn(xnf − xf )wT (X′f )T

−
∑
n

wnX′fw(xnf − xf )T +
∑
n

wnX′fwwT (X′f )T

As the first term contains the columns of X′f , it can be written as matrix product X′fW(X′f )T where
the matrix W ≡ diag(w) is defined as a N × N diagonal matrix created from the weights. The last
term is X′fwwT (X′f )T owing to the sum of weights being 1, and the second and third term can also be
written as the same matrix-vector product (but with a negative sign). Therefore, the final result is

PPF
a = X′f

(
W −wwT

)
(X′f )T (4.6)

A slight modification of this direct result is recommended for reasons of consistency. Usually, the co-
variance of an equally-weighted ensemble is computed by X′f (X′f )T /(N−1), where the factor ofN−1

ensures an unbiased estimate. In contrast, a direct evaluation of the Monte Carlo formula (4.1) yields
X′f (X′f )T /N for an i.i.d. ensemble (wn = 1/N ∀ n), which is a biased estimate, and inconsistent with
the definition of empirical covariance used throughout this work. As a consequence, it was suggested
(L. Nerger, AWI Bremerhaven, personal communication) to introduce a manual correction factor into
the Monte Carlo estimate,

PPF
a =

N

N − 1
X′f
(
W −wwT

)
(X′f )T (4.7)

Apart from consistency, the modified formula results in a slightly larger covariance estimate, particu-
larly ifN is small. It is well-known that small ensembles tend to be under-variant, see the more detailed
discussion in section 3.4. Therefore, the correction factor is conform to the expected filter behavior. It
may also be interpreted as a marginal built-in inflation factor that acts particularly on small ensembles.

Interestingly, it is also possible to derive a different representation of the Bayesian covariance by using
xPF
a = Xfw in equation (4.5) instead of xPF

a = xf +X′fw. The calculation is similar to the one shown
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above and is omitted here for that reason. After these manipulations, one arrives at

PPF
a = Xf

(
W −wwT

)
(Xf )T (4.8)

which is exactly the same form as equation (4.6), only that now the ensemble matrix Xf is used directly.
This implies that the central matrix W − wwT implicitly subtracts the ensemble mean from a given
ensemble matrix. The form (4.8) may be more convenient for some users as it renders a primary
evaluation of the perturbation matrix unnecessary and therefore contributes to computational efficiency.
For example, in a numerical implementation of the NLEAF, which requires to evaluate N + 1 of such
covariances at each analysis step (see eq. 3.37), the alternative form is even more advantageous than
equation (4.7) concerning computational effort. However, since our intention lies in deriving new analy-
sis perturbations, the form of the covariance given in equation (4.7) is more suitable and will be used
exclusively in the following considerations.

In summary, equations (4.4) and (4.7) constitute an efficient reformulation of the most important statis-
tics that is usually derived from an PF analysis ensemble. The representation as matrix-vector products
emphasizes the interpretation of the Bayesian mean as weighted linear combination and reduces com-
putational costs as these computations can be implemented efficiently in most programming languages,
without resorting to time-consuming loops. However, their usefulness even surpasses these points.
The formulas offer the final clue to derive the NETF. In the following, these intermediate results are
processed to generate an analysis ensemble which meets the aims defined in section 4.1.

4.3 Square root analysis scheme

The final intention is to obtain a new analysis ensemble Xa, where the members are independently
and identically distributed and the corresponding ensemble has mean and covariance that are equal to
a Bayesian analysis. It is fairly easy to guarantee that the new ensemble exhibits the desired mean by
shifting each ensemble member. Hence, the following three steps are applied to obtain an ensemble that
simultaneously exhibits the desired mean and covariance:

1. Compute the prior perturbations from the prior ensemble via X′f = Xf −Xf . By definition, the
prior perturbations have zero mean, i.e., X

′
f = X′f1 = 0.

2. Transform the prior perturbations into analysis perturbations such that they have the correct co-
variance and remain centered around zero, i.e., X′a1 = 0. The algorithm presented here employs
a matrix square root technique for that purpose.

3. Re-center these perturbations such that the final ensemble has the correct mean.

4.3.1 Analysis perturbations

In order to create an ensemble which exhibits a pre-specified covariance, the methodology for deriving
the ETKF, outlined in section 3.3.2, is utilized. The requirement for the analysis perturbations can be
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expressed as follows,

1

N − 1
X′aX

′T
a = PPF

a (4.9)

The key is to write down the covariance matrix based on the prior perturbations, which are accessible.
For this purpose, we make use of the reformulated version of the Bayesian covariance in equation (4.7)
and conveniently define the matrix

A = W −wwT (4.10)

such that

1

N − 1
X′aX

′T
a =

N

N − 1
X′fA(X′f )T (4.11)

Comparing this with equation (3.17), we note that the analysis covariance has the same structure as in
the ETKF, with AKF replaced by A. This insight suggests that an analysis ensemble can be constructed
by comparing left and right side of this equation,

X′a =
√
N X′fT , where T = A1/2 such that T(T)T = A (4.12)

It is a trivial task to verify that this choice of X′a fulfills equation (4.9). This shows that, as in the ETKF,
the analysis ensemble perturbations evolve from the prior perturbations through a matrix transformation.
The corresponding transform matrix T is computed as the matrix square root of the matrix A defined
in equation (4.10). It is completely determined by the Bayesian weights, i.e., by the prior ensemble and
the observation. For these reasons, the NETF can be classified as deterministic square root filter.

As A is a real, symmetric, positive semi-definite N × N matrix (see next subsection), it possesses
a unique symmetric square root that can be computed through a SVD, A = USUT , such that T =

US1/2UT . The use of a symmetric square root is motivated by the experiences from ETKF variants
(Lawson and Hansen 2004; Sun et al. 2009) and also guarantees that the ensemble perturbations remain
centered at zero (Sakov and Oke 2008b).

4.3.1.1 Properties of A

As the matrix A = W − wwT , the square of the transform matrix, is the central quantity within the
NETF, it is necessary to investigate some of its properties, in particular concerning the existence of its
square root. For this investigation, we assume all weights to be nonzero, which always holds if p(y|x) is
Gaussian. Currently, it is unclear how a likelihood pdf with finite support that may assign zero weights
would affect the NETF.

We first show that A is positive semidefinite. For this purpose, we make use of the fact that a sym-
metric, real and (weakly) diagonally dominant matrix with nonnegative diagonal entries is positive
(semi)definite (Brouwer and Haemers 2012, p.30, Lemma 2.10.1). By definition, A is real and sym-
metric. The diagonal elements of A are Ann = wn(1 − wn), which are always nonnegative. With
Anm = −wnwm for n 6= m, the sum of the absolute values of all off-diagonal elements in any matrix
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row n is

N∑
m=1,m 6=n

|Anm| = wn
N∑

m=1,m 6=n
wm = wn

(
N∑
m=1

wm − wn
)

= wn(1− wn)

Hence, in any row the sum of the absolute values of the off-diagonal elements equals the corresponding
diagonal element. This proves that A also exhibits weak diagonal dominance, which finally allows us
to establish its positive semidefiniteness. As a result, it possesses a unique symmetric square root T

such that T(T)T = A. Note that if one neglects an ensemble member to compute A in a (N − 1)

dimensional subspace, e.g., the one with the smallest weight, it gets strictly diagonal dominant and
therefore positive definite.

As W is a full-rank matrix and wwT has rank 1, the rank of A is N − 1. This implies that one singular
value vanishes and the matrix is singular. However, as T is not inverted, this does not represent a
problem. The null space of A can be found by solving Az = 0⇔Wz = wwT z for z. Evaluating both
sides of this equation, we find that the constraint on any component of z is zn =

∑
mw

mzm = const.
Hence, the null spaces of A and the transform matrix T consist only of the direction given by the
vector 1. This property ensures that the analysis perturbations remain centered around zero, as T1 = 0.
Additionally, it explains that A implicitly subtracts the ensemble mean as noted before.

4.3.2 Analysis ensemble

Having derived a method to obtain analysis perturbations which exhibit the desired covariance, the re-
maining task is compute the final ensemble. From equation (4.4), we already know the sighted analysis
mean. As mentioned at the beginning of section 4.3, the final step consists in re-centering the anal-
ysis perturbations by the mean vector. This can be conveniently written as Xa = X′a + Xa. Here,
Xa = (xa, . . . ,xa) represents a K × N matrix with the analysis mean in each column. The covari-
ance of the ensemble is invariant with respect to such a change in the location parameter because the
perturbations remain unchanged.

The method suggested so far consists of first computing the perturbations and thereafter re-centering
them around the correct mean. As mentioned by Nerger et al. (2012b) in context of the ETKF, both
operations can be combined into one single update step in order to enhance computational efficiency,

Xa = Xf + X′f

(
W +

√
N T

)
(4.13)

where W = (w, . . . ,w) is a matrix containing w in each column. The matrix W +
√
N T can be

be interpreted as an enhanced transform matrix that updates the prior perturbations such that mean and
covariance are simultaneously modified as desired.

The analysis algorithm summarized by equation (4.13) generates an ensemble with exactly the same
mean and covariance as derived from Bayes’ theorem, and therefore, it is referred to as the nonlinear
ensemble transform filter (NETF). It applies the same paradigm as followed by the NLEAF (Lei and
Bickel 2011) in a deterministic way, that is, without resorting to additional perturbations that introduce
stochastic noise and might render the filter suboptimal for finite ensemble sizes. Whereas equation
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(4.13) already represents the key component of the NETF, several implications and properties should be
discussed before using it in an actual application. This will be the issue of the remainder of this chapter.

4.4 Random rotations

As already mentioned in section 3.3.2 for the ETKF, even though the symmetric square root of A is
unique, the final transform matrix T of the NETF is not unique. An additional rotation of the ensemble
in the space spanned by the ensemble members,

T̃ = TΛ (4.14)

does not change the mean and covariance of the ensemble as long as Λ is orthogonal and satisfies
Λ1 = 1 (Livings et al. 2008). Hence, one can choose Λ as a random matrix with these properties. To
generate such a random matrix, the ”second order exact sampling” method of Pham (2001) is applicable.
It was developed to obtain a random N × (N − 1) rotation matrix, whereas we need a random N ×N
matrix, requiring a slight modification of their algorithm. Appendix C deals with technical aspects of
the rotation matrix and also specifies explicit algorithms to generate such matrices efficiently.

For ETKFs, such an additional rotation has already been shown to potentially improve filter stability.
The reason is that a purely deterministic update may enhance a situation where the ensemble is nearly
collapsed, in the sense that most of the ensemble members are considerably close and the correct mo-
ments are enforced by a few strong outliers, as found by Lawson and Hansen (2004) and emphasized by
Leeuwenburgh et al. (2005). The NETF derived here is particularly sensitive to this issue as its trans-
form matrix is formed exclusively by the Bayesian weights, which are known to possibly have a large
variance, especially in high-dimensional spaces. Such an ensemble is more likely to suffer from weight
collapse in the successive analysis step. The random rotation suggested here counteracts this prob-
lem by generating a new ensemble which conserves the exact second-order statistics. This procedure
comes at the price that higher-order moments are discarded and the analysis ensemble properties be-
come Gaussian (Evensen 2009, p. 203). However, at the current stage it is unclear how the deterministic
transformation T already affects higher order moments which are not considered in our scheme. As we
will illustrate in Chapter 5, the experimental results confirm that augmenting the transform matrix with
a random rotation strongly improves filter stability.

It should be mentioned that instead of using a random rotation matrix one may also apply a deterministic
rotation that meets the requirements mentioned before. Possible choices are, for example, suggested
by Nerger et al. (2012b) and Wang et al. (2004). In Chapter 5, we will show the impact of such
deterministic rotations on the filter behavior as well.

4.5 Alternative ensemble transformation

The structure of the update mechanism derived in section 4.3.2 is very similar to the ETKF as it utilizes
a right-sided transformation of the prior ensemble perturbation matrix X′f to obtain new perturbations
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X′a with the desired covariance. The same request may also be met by an alternative transformation. In
mathematical terms, we could attempt to use a left-sided multiplication,

X′a = TLX′f (4.15)

which resembles the transformation appearing in the ensemble adjustment Kalman filter (EAKF, An-
derson 2001). We suggest the following choice of a left-sided transform matrix

TL =
(
PPF
a

)1/2
(Pf )−1/2 (4.16)

It is easily verified that the analysis perturbations exhibit the desired second-order statistics:

• Their mean is X′a1 = TLX′f1 = 0, as the prior perturbations are centered at 0 by construction.

• Using the fact that covariance matrices and their square roots are symmetric, the empirical anal-
ysis covariance is

Pa =
1

N − 1
X′a(X

′
a)
T =

1

N − 1
TLX′f (X′f )TTT

L

=
(
PPF
a

)1/2
(Pf )−1/2 Pf (Pf )−1/2

(
PPF
a

)1/2
= PPF

a

Again, the update can be augmented by a suitable random rotation in ensemble space, as discussed in
section 4.4,

Xa = Xa + TLX′fΛ (4.17)

In this form, the filter variant is referred to as the NETF in state space (NETFiSS). When used with
random rotations, the filter properties are expected to be identical to the NETF since a new ensemble
with Gaussian characteristics is created. This question will be picked up in the experimental Chapter 5.
However, the type of the ensemble transformation heavily affects the computational resources needed,
as will be discussed next.

4.6 Computational complexity and implementation issues

Considering an application of the NETF in higher-dimensional systems, its computational efficiency is
an important practical issue. However, also in problems of medium or intermediate size an application
is often facilitated if the filter not only requires little programming efforts but also runs relatively fast.
Furthermore, aiming at the principle applicability in larger-dimensional settings, it is of interest to judge
its computational complexity in comparison with other ensemble filters.

4.6.1 Examination of individual steps

First, the main NETF computations are summarized with a focus on their numerical expenses, and
suggestions for an efficient implementation are given. An explicit algorithm containing all equations
and computational steps is provided in section 4.8.1.
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• The ensemble perturbations have to be prepared, and all ensemble states have to be mapped into
observations space.

• The Bayesian weights have to be evaluated, as in the PF. This step depends on the likelihood
density. In case of Gaussian observations, the computation of the exponent in equation (3.26)
using the innovation vectors is the most expensive part as the inverse of the observation error
covariance matrix R is required. However, often it is constant over time, and hence, its inverse
can be prepared in advance of the analysis cycles. Furthermore, given the relative high uncertainty
about error correlations, often only the error variances are used, and R becomes diagonal, Rkl =

σ2l δkl. Then, the weights can be computed by

wn ∝ exp

{
−1

2

L∑
l=1

(yl − ynf,l)2

σ2l

}

which can be implemented very efficiently. In other applications, R may be block diagonal with
each block representing a group of correlated observations (Hunt et al. 2007). Again, if the
block size is small compared to the dimension of the matrix, the inversion can still be performed
quickly.

• While matrix A is formed easily, given the weight vector w, the next important step consists
in finding its square root by a SVD. Most programming languages, such as FORTRAN, C or R,
can be augmented by linear algebra packages. For example, LAPACK is designed for optimal
performance on shared-memory vector and parallel processors (Anderson et al. 1999). It offers
convenient subroutines to perform SVDs.

• The generation of random rotation matrices consumes some additional resources. Here, it should
be possible to resort to a collection of pre-calculated random matrices since they only depend on
ensemble size N .

• Once T and Λ are obtained, the final step consists in updating the ensemble states via a matrix
multiplication in ensemble subspace.

This list reveals that, given a moderate ensemble size, the NETF does not exhibit any highly expensive
operations or recursions. While these considerations refer to the standard NETF, the left-sided vari-
ant (NETFiSS) shows a distinct computational expense. It performs the update in state space as its
transform matrix is of dimension K ×K, and it requires to compute the product of two matrix square
roots of this size (of which one is an inverse matrix). Hence, not only two SVDs in state space have
to performed, but also the inverse of the potentially ill-posed, low-rank matrix P

1/2
f has to be found.

This filter variant is only computationally efficient if the state dimensionality is rather small compared
to ensemble size, which is usually not the case.



Chapter 4. Nonlinear ensemble transform filter: Theory 77

4.6.2 Comparison to other filters

Its moderate computational cost also distinguishes the NETF from other PF-based methods (Andrieu
et al. 2010; Doucet et al. 2001; van Leeuwen 2009) that employ clever algorithms but become very ex-
pensive even for low-dimensional problems. Furthermore, the NETF exhibits a simple, clearly-arranged
design.

The operations performed by the NETF have the same structural form as in the ETKF, in particular
concerning the computation of the transform matrix as a matrix square root and the update of the
perturbations. The analysis is also performed in the N -dimensional subspace spanned by the ensemble
members. In contrast to all EnKFs, our filter does not require to compute an inverse matrix. This
avoids computational instabilities caused by considerably small singular values, which are sometimes
neglected in ETKF implementations for that reason (Sakov et al. 2012). If a localized version of the
NETF is applied (see below), the local analyses are independent and can be computed in parallel as
for the ETKF. In summary, we can conclude that the computational expense is very similar for a given
ensemble size. This was also confirmed by comparing the runtime of the filters in the experiments in
Chapter 5.

As the NETF represents a deterministic realization of the paradigms employed by the NLEAF, it is
important to compare their performance properties also from an economic point of view. The NLEAF,
presented in section 3.7.2, exhibits a relatively high computational cost. For each of the N sets of
perturbed observations, the weights of the full N -sized ensemble have to be re-computed, requiring N2

weight computations, apart from the perturbation itself. Then, for the second-order version, it requires
the evaluation of N + 1 matrix square roots of state covariance matrices at each analysis step, together
with N matrix multiplications in state space (Lei and Bickel 2011, Sec. 3.c.). The first-order version is
less expensive as it only adjusts each member after the weight computations. These update algorithms
are feasible for small-sized problems but become very costly for systems of intermediate and high
dimensionality, or for larger ensemble sizes. We conclude that, concerning computational complexity,
among these nonlinear filters the NETF is the more efficient choice in larger-dimensional cases.

4.6.3 Subspace form

As for the PF, it may occur that in a certain analysis step some ensemble members have considerably
low weights. Here, we suggest a method to neglect them and receive a full analysis ensemble with
required first and second moments, originated from the final step in the singular evolutive interpolated
KF (SEIK, Nerger et al. 2012b; Pham 2001).

Neglecting the members with low weights (e.g., wn < 10−3) nearly has no effect on the analysis mean
and covariance in equations (4.4) and (4.7). After re-normalizing the weight vector of size N ′ < N , the
matrix A as given in equation (4.10) and its square root T have an reduced dimension of N ′ ×N ′. To
regenerate a full ensemble of sizeN , we use a random rotation as shown in equation (4.14), T̃ = TΛ̃

T
,

only that we replace the random N × N matrix Λ with a N × N ′ matrix Λ̃
T

by omitting N − N ′ of
the columns in the square matrix Λ. If ΛΛT = IN and Λ1 = 1 hold, the column vectors of Λ̃

T
are

orthogonal to each other and to (1, . . . , 1)T , and therefore, mean and covariance are preserved.
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Disregarding low-weight members in the analysis step could enhance an efficient computation of the
matrix square root. However, in initial tests we found no clear differences concerning stability and
performance. The subspace form may be important in case of non-Gaussian observation errors where
ensemble members can actually achieve zero weights.

4.7 Supplements

So far, a basic version of the NETF was presented, which realizes the aims stated at the beginning of
this chapter. It was also motivated that the random rotation should be an integral part of the algorithm
in order to obtain useful analysis ensembles. As will be shown in Chapter 5, the filter presented in this
form is capable of producing convincing results in the Lorenz 63 model as a first test case. However,
one primary objective is the applicability in large-dimensional systems as typical in meteorology or
geophysics. In section 3.4, extensions to render ensemble-based filters like the ETKF applicable for
such problems were already discussed. Even though numerous ad-hoch techniques exist, they can be
categorized as following:

• Localization techniques suppress spurious correlations and reduce the effective dimensionality of
the assimilation problem.

• Inflation procedures try to counteract the tendency of the ensemble to underestimate the forecast
uncertainty.

It is expected that these techniques can also improve the performance of the NETF. First, van Leeuwen
(2009) suggested that localization might be a helpful tool to fight the curse of dimensionality inherent to
PFs, as it strongly reduces the effective state dimensionality. However, it is argued that its application is
a challenge for PFs since the weights become spatially dependent (Lei and Bickel 2011; van Leeuwen
2009). The NETF overcomes this problem because at each analysis step a new, equally-weighted en-
semble is generated and local weights only exist intermediately. Second, the NETF analysis ensemble
does not represent the true Bayesian analysis pdf but ”only” its first two moments. This ensemble is
integrated in order to represent the prior pdf at the next observation time level, and it is potentially
under-variant as some initial uncertainty may have been neglected by the second-order approximation
in the previous analysis step.

In the following, we illustrate the consistent application of localization and inflation for the NETF.
Along the way, it offers a solution to the problem of PF localization, an active topic in the literature
within the last years (e.g., Cheng and Reich 2015; van Leeuwen 2009).

4.7.1 Localization

Localization has been introduced in detail in section 3.4.2. Covariance localization (CL) cannot be
applied for the NETF, as it does not involve the prior covariance matrix. The main advantage of do-
main localization (DL), its generality, allows to perform local analyses with the NETF similar to the
principles summarized by Hunt et al. (2007), computing a separate analysis for each model grid point
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where only observations in a defined radius are considered. Additional to such a domain localization
(Houtekamer and Mitchell 1998), the observational influence can be reduced with distance by multi-
plying the corresponding entries in R−1, which in our filter appears in p(y|x) in the case of Gaussian
observations, with an appropriate weight function (observation localization, e.g., Kirchgessner et al.
2014; Miyoshi and Yamane 2007). The LETKF algorithm, given in section 3.4.3, can be adopted by
only exchanging the LETKF analysis ensemble in step 2.f with the NETF analysis ensemble.

If localization is used, the random rotation has to be applied to the global ensemble in order to avoid
inconsistent local random transformations, i.e., after the fully-deterministic local updates the global
analysis is replaced by X̃a = X

PF
a + X′aΛ. Equivalently, one can use the same rotation matrix Λ in all

local updates. The latter strategy may be more convenient to implement, see also section 4.8.1.

4.7.2 Inflation

As discussed in section 3.4.1, covariance inflation is usually beneficial to EnKFs to counteract the
underestimation of the variance. Even though the NETF, in contrast to all EnKFs, does not directly work
with the prior covariance matrix, an ensemble which underestimates the prior covariance is typically too
tight, which in turn increases the probability of weight collapse as the particles are more likely to fall
outside the region of significant probability. The NETF forecast ensemble is potentially under-variant
because (1) it constitutes a finite-sized approximation of the prior pdf, and is therefore subject to the
Monte Carlo error, (2) unconsidered model error terms during the forecast step hide uncertainty and (3)
it arises from the integration of an analysis ensemble which does not fully represent the true analysis
pdf because it only considers its first two moments. In conclusion, we can expect that inflation can
also be beneficial to the NETF by increasing the forecast spread, as also observed for other PF-based
algorithms (Frei and Künsch 2013a; Lei and Bickel 2011). It can be applied in the usual way before or
after the analysis step by replacing the corresponding ensemble according to X → √γX′ + X. This
procedure procedure increases all entries of the state covariance matrix by a factor γ, typically slightly
larger than 1 (Anderson and Anderson 1999).

It should be noted that even though inflation may be helpful, it also renders the filter suboptimal because
it subjectively adjusts the forecast ensemble which is used to represent the prior pdf as used in Bayes’
theorem. Therefore, it should be applied carefully, and it is expected that it is only required to make
the NETF applicable for relatively small ensemble sizes. For more sophisticated applications, it may be
useful to augment the algorithm by an adaptive inflation scheme as referred to in section 3.4.1.

4.8 Summary and final algorithm

The NETF is only concerned with the analysis step, converting any prior ensemble into an analysis
ensemble by assimilating the current observation. It generates an equally-weighted ensemble whose
empirical mean and covariance are identical to the Bayesian estimates, resulting from a nonparametric
treatment of the forecast pdf. In the following, the NETF analysis step is summarized in an algorithmic
form, including localization as discussed in section 3.4.2. This simplifies the implementation of the
NETF into an existing ensemble DA system that works with domain localization.
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4.8.1 Update algorithm

The algorithm given below considers a localized update. If localization is not required, one simply has
to skip step 3 and ignore all distinctions between local and global quantities. We assume that the global
state vector of dimension K is partitioned into a number of local domains, where each domain may for
instance contain all model variables at one single grid point. For simplicity of the description, following
Hunt et al. (2007), we mark all global quantities with an additional subscript [g], i.e., we begin with the
prior ensemble {xnf [g]} of size N , stored in the K ×N ensemble matrix Xf [g], and the L-dimensional
observation y[g] with error covariance R[g]. All quantities referring to the current local domain have no
additional subscript.

1. Compute the predicted observations by applying the observation operator to the prior ensemble,
ynf [g] = H(xnf [g]), and put the resulting vectors into a L×N ensemble matrix Yf [g].

2. Prepare an appropriate orthogonal, mean-preserving random N × N rotation matrix Λ[g] (see
appendix C for an explicit algorithm).

3. For a local analysis, this step selects the data for the current local domain: Extract all rows of
Xf [g] which belong to the current local domain to obtain the local ensemble states, Xf . Select
the entries of y[g] which are to be considered for the local analysis (e.g., all observations within a
specified localization radius) and the corresponding rows and columns of R[g], which forms the
local observation vector y and covariance matrix R. If desired, multiply the entries of R−1 with
an appropriate weight function to reduce the influence of more distant observations. Accordingly,
choose the same rows from Yf [g], forming Yf , which contains the ensemble’s counterparts ynf
of the localized observation y.

In case a global analysis is desired, simply set Xf = Xf [g], y = y[g], Yf = Yf [g] and R = R[g]

in the following steps.

4. Calculate the Bayesian weights of the ensemble states using the observational likelihood density,
normalize them and put them in the weight vector w,

Wn ∝ p(y|xnf ) , wn =
Wn∑
mW

m
(4.18)

For example, in case of Gaussian observation errors evaluate

Wn = exp

{
−1

2

(
y − ynf

)T
R−1

(
y − ynf

)}
(4.19)

5. Compute the (local) analysis mean by

xa = xf + X′fw (4.20)

6. Form the matrix A, with W = diag(w), and compute the transform matrix:

T = A1/2 =
(
W −wwT

)1/2
(4.21)

Use the symmetric square root by applying a singular value decomposition to A.
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7. Transform the prior ensemble perturbations into analysis perturbations by applying the transform
matrix and random rotation,

X′a =
√
N X′fTΛ[g] (4.22)

8. Re-center the ensemble perturbations to obtain the (local) analysis ensemble:

Xa = Xa + X′a (4.23)

9. Having performed steps 3 to 8 for all local domains, aggregate the outputs of step 8 to form the
final global analysis ensemble Xa[g].

4.8.2 Implementation advices

From this presentation, it becomes clear that the difference between a global and local update is only of
organizational nature. The core steps 3 to 8 produce the analysis ensemble, given the observation and the
prior ensemble as well as its corresponding representation in observation space. For the computations
within these steps, it is irrelevant whether they represent global or local quantities. As a consequence, it
is possible to outsource these steps into independent subroutines. This strategy also allows for a simple
parallelization of the localized analysis step since the local updates can be performed independently.

In case an ensemble DA system using the ETKF is available, the NETF can directly be implemented
by only exchanging the core routine that turns the (local) forecast ensemble into the (local) analysis
ensemble. The forecast step is untouched, and all other analysis step routines that concern the selection
of the local states and observations, the mapping into observation space and the aggregation of the local
analyses, should remain identical as for the ETKF.

4.9 Nudged NETF

In section 3.7.1, is was shown that the PF can be adjusted by proposal densities that enable to nudge the
particles towards the observation during the forecast phase, if a model error term is available. For the
standard NETF, we exclusively concentrated on the analysis step to facilitate its application and to keep
it general, as the nudging formulation depends on the forward model.
However, it is a nice feature of the NETF that it can be combined with a nudged forecast step with no
additional effort. While the EWPF modifies the final proposal density before the next observation time
level, one may also abandon the relatively complicated equivalent-weight step and proceed the nudged
ensemble forecast until observation time. Then, in contrast to the standard NETF, the forecast ensemble
Xf is not an equally-weighted ensemble anymore, but exhibits prior weights {w̃nf }n=1...N , as specified
by equation (3.30). Nevertheless, the NETF analysis can be performed as outlined in section 4.8.1, if
the prior weights are considered in the computation of the intermediate weights in step 4 as follows:

Wn ∝ w̃nf p(y|xnf ) (4.24)
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The mathematical justification for this simple treatment has already been given when presenting the
basic PF in section 3.6.2. In conclusion, the consideration of prior weights in the NETF is trivial and
allows an easy combination with a nudged forecast step in case it is available anyway. This may also be
beneficial to assess its relative performance as compared to the EWPF since the NETF offers a distinct,
simplified formulation of the analysis step.

4.10 Conclusions

This chapter presented a new filter to create a second-order exact analysis ensemble. Various impli-
cations and properties of the suggested method were highlighted. The most important conclusions
concerning the theoretical derivation and treatment of the NETF are as follows:

• Its analysis mean and covariance exactly match the Bayesian expectations, without any sampling
noise.

• A new, equally-weighted analysis ensemble is created by adding increments to each member and
applying a moment-preserving random rotation. Together with localization, the filter is expected
to overcome the curse of dimensionality and should be applicable in larger dimensions.

• The update is computed in ensemble subspace, which is feasible also in high-dimensional sys-
tems.

• The algorithm is simple to apply as it is formally identical to the ETKF mechanism.

At the beginning of this chapter, a list of desired properties for the new filter was formulated (see
section 4.1.2). It is now evident that the NETF meets all these requirements, at least from a theoretical
point of view. The basic update equation (4.13) describes the transformation of the prior ensemble X′f .
Despite its formal analogy to the ETKF, it is nonlinear as the weight vector w, which determines the
transformation, depends on the forecast ensemble in a nonlinear way through the likelihood density.
These weights arise from the fully nonlinear, non-Gaussian Bayes’ theorem.

In summary, the NETF represents an analysis algorithm with appealing properties for nonlinear, non-
Gaussian DA. Consequently, as ”the proof of the pudding is in the eating”, the next step in its charac-
terization consists in an application to actual DA problems.



Chapter 5

Empirical investigation of filter
performance

The previous chapter presented the derivation of a novel analysis algorithm, the NETF, in the field of
sequential, ensemble-based filtering. It represents a contribution to solve the nonlinear assimilation
problem. The thorough analysis of its properties resulted in the conclusion that the filter offers a po-
tential applicability to nonlinear and large-scale DA problems, which is particularly facilitated by its
simple implementation that strongly resembles the ETKF.
The next step in the characterization of the new filter algorithm consists in its actual application to DA
scenarios, beginning with typical test beds. This allows to confirm the theoretical considerations made
in the previous chapter. Furthermore, we focus on comparing the performance of the NETF to other
ensemble-based filters introduced in Chapter 3.

5.1 Preparations

In this chapter, we apply the NETF to a variety of DA problems that are characterized by different
properties. We makes use of challenging, but simple systems in order to focus on the filter properties
without influences of model shortcomings or other approximations.

5.1.1 Methodology

In all experiments, we perform so-called observation system simulation experiments (OSSEs, Masutani
et al. 2010). Their advantages with respect to real-world applications are:

• The perfect-model environment and the availability of a reference, the truth, allow an unambigu-
ous evaluation of the analysis results.

• The filter performance can be investigated without all the suboptimalities that affect real-world
DA problems, as all assumptions that concern the external input to an ensemble-based filter,
such as the observation error characteristics or the model specification, can be met exactly by

83
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NETF ETKF ETKFrot EnKF NLEAF1 NLEAF2
inspired by PF KF KF KF PF PF

update mechanism det. det. det. stoch. stoch. stoch.
random rotations yes no yes no no no

considered moments 2 2 2 2 1 2
dim(analysis space) N N N L K K

TABLE 5.1: Basic properties of the six ensemble filters used in the experiments.

construction. In real-world DA applications, the major implementation issue consists in tuning
these poorly known variables in a desirable way.

• Assimilation settings, such as observation density or error, can be modified easily in order to
investigate the filter’s sensitivity.

5.1.2 Aims

There are two principle aims in this chapter. First, it is important to assess the performance properties
of the NETF in situations that are characterized by different degrees of nonlinearity and dimensionality.
This will not only allow to draw conclusions about the potential applicability to real-world problems
but will also give some hints on implementation issues and limitations. Therefore, a particular focus
is put on the behavior with small ensemble sizes. Second, we compare the NETF’s performance with
other ensemble-based filters, which will allow to judge its potential benefits that are expected from the
theoretical investigation. Table 5.1 summarizes the properties of the filters used in this chapter.

5.1.3 Overview of the experiments

The experiments in this chapter comprise a variety of different models and scenarios. In order to keep
track of their objectives, we first summarize the test cases to be investigated, along with their scientific
relevance.

1. The Lorenz 63 system (L63) is a low-dimensional, yet strongly nonlinear and chaotic model. It
allows to assess the benefits of the nonlinear formulation.

2. In addition, the Lorenz 96 and 2005 models (L96, L2005) exhibit a larger dimensionality. They
are used to investigate whether the filter is able to deal simultaneously with nonlinearity and a
larger state dimensionality.

3. The linear advection model (LA) sets up a typical environment where the ensemble size is much
smaller than the dimensions of state and observation space.
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FIGURE 5.1: Empirical analysis distributions in the scalar example for the NETF without random
rotation (gray), NETF with random rotation (shaded, ///) and ETKF (shaded, \\\) with N = 1000
each. The latter two differ only by sampling variations. The black line shows the analytical solution.

5.2 Importance of the random rotations

In Chapter 4, the additional random ensemble transform was suggested, as the purely deterministic
transform is potentially affected by a high variance of the Bayesian weights. Here, we perform a small
test in order to investigate the role of the random rotation before turning to the dynamical models.

We demonstrate the single update of a scalar state variable x with Gaussian prior and likelihood densi-
ties, N (x; 1, 2) and N (x; 0, 1), respectively. The analytical solution, as given by the KF, is the Gaus-
sian analysis pdf N (x; 1

3 ,
2
3). An ensemble of N = 1000 forecast states is generated and updated by

the ETKF and the NETF with and without random rotation. Figure 5.1 visualizes the resulting den-
sities in form of histograms. As expected, the ETKF transform matrix (3.18), which is derived from
the theoretical KF analysis covariance (2.44), produces a normally distributed ensemble. In contrast,
the ensemble generated by the NETF without rotation clearly does not follow the desired analysis pdf,
even though it exhibits the correct second-order statistics by construction. After the random rotation,
the ensemble is Gaussian again. At the current stage, the impact of the purely-deterministic transform
with (4.12) on higher-order moments is an open issue. However, already this simple example points out
the importance of the random rotation for the NETF, since it creates a new, more consistent ensemble.
This empirical insight will also be verified in a dynamical situation below.

5.3 Models and their setups

In all cases, we perform twin experiments, meaning that a reference trajectory, referred to as truth xtr(t),
is generated, from which synthetic observations are drawn by means of perturbation. The observation
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errors are restricted to be non-correlated with constant variance, i.e., R = σ2obsIL, where L is the
number of observed state components.

We compare the NETF with the ETKF variants (with and without random rotations) and with the first-
and second-order versions of the NLEAF that rely on perturbed observations. In this context, we also
include the classical EnKF, as defined in section 3.2.6, as the stochastic counterpart of the ETKF. Ta-
ble 5.1 summarizes basic properties for all these filters. For each experimental run, all filters under
investigation receive exactly the same observations, initial ensemble and, if needed, rotation matrices.

An ensemble filter’s performance in nonlinear scenarios is quite sensitive to the chosen inflation, which
is the most important tuning parameter (Sakov and Oke 2008b). In order to compare the filter results
fairly, it is desirable to remove the dependency on inflation. We tuned the prior inflation factor γ for
optimal performance (in terms of RMSE, see below) by varying

√
γ ∈ {1.00, 1.01, . . . , 1.15} for each

experimental case and filter. While this simple but expensive procedure is sufficient for toy model tests,
for real applications, more sophisticated methods such as adaptive inflation (e.g., Anderson 2007a; Luo
and Hoteit 2013; Miyoshi 2011) may be more suitable.

The following setup issues are common to all Lorenz experiments: The truth is generated through the
integration of an initial state for 100 nondimensional time units of the corresponding model, and the
DA experiments are performed within this time range. The true initial state xtr(0) itself is the outcome
of a spin-up run over 30 time units. The initial ensembles are sampled around xtr(0) (as, e.g., in Yang
et al. 2012a), in order to minimize the effects of filter spin-up. They are generated by second-order
exact sampling with a covariance of one tenth of the climatological one (extracted from the truth), see
Appendix C for details.

5.3.1 Lorenz 1963 (L63)

The well-known L63 model (Lorenz 1963) is a three-dimensional system, x = (x, y, z)T , described by
the ordinary differential equations

ẋ = σ(y − x)

ẏ = −xz + ρx− y

ż = xy − βz

Because of its simple formulation but challenging dynamics, this model has often been applied as
benchmark for DA experiments (e.g., Ahrens 1999; Miller et al. 1994; Sakov et al. 2012; Yang et al.
2012a). The system is solved with a fourth-order Runge-Kutta discretization scheme with time step
∆t = 0.01 (therefore, 100 time units are equal to 10000 time steps), using the standard parameters
σ= 10, ρ = 28 and β= 8/3. With this choice, the system exhibits strong nonlinearity that depends on
the current flow. The spin-up run is initialized with (−8, 8, 27)T . We use a partial observation system
for x and y while the z component remains hidden. In addition to the variation of the ensemble size,
the experiments differ in the time interval between two successive Gaussian observations, ∆tobs/∆t ∈
{10, 15, 20, 25}, and their error variance, σ2obs ∈ {2, 4}.
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5.3.2 Lorenz models of intermediate dimensionality

The L96 system (Lorenz 1996) roughly emulates a meteorological variable on a latitude

ẋk = (xk+1 − xk−2)xk−1 − xk + F , k = 1 . . .K

It is widely applied as another typical nonlinear DA test bed (e.g., see Frei and Künsch 2013a; Kirchgess-
ner et al. 2014; Lei and Bickel 2011; Nerger et al. 2012b). The system is applied on a periodic domain
with K = 80 grid points (twice the usual dimensionality) so that x = (x1, . . . , x80)

T , and a forc-
ing of F = 8 is used. It is solved with a fourth-order Runge-Kutta scheme with the typical time step
∆t = 0.05 (therefore, 100 time units are equal to 2000 time steps). The spin-up run is initialized with
xK/2=1.001F and xk=F for k 6= K/2.

Because of the intermediate dimensionality of the system, we apply the filters in a localized form us-
ing local analyses together with observation localization, as outlined in section 4.7.1. Hence, for each
grid point, only observations within the localization radius rloc = 5 are considered, and we apply a
fifth-order polynomial correlation function (Gaspari and Cohn 1999, eq. 4.10) to R−1 such that the ob-
servational weights smoothly decrease with distance. The observation error variance is set to σ2obs = 1

and the system is observed at all grid points with an odd index (L = 40) every other time step. This
sparse-observation situation is a difficult setup for a DA system (Lei and Bickel 2011); particularly
if one considers that the time between two observations corresponds to about 12 hours in the real at-
mosphere (Lorenz 1996). Furthermore, we create a slightly non-Gaussian observation scenario whose
treatment is an advantage of the nonlinear filters. To that purpose, we sample the independent observa-
tion errors from a univariate Laplace (double exponential) density with zero mean and a scale parameter
of
√
σ2obs/2 that ensures a density variance of σ2obs (see Appendix A). The KF-based filters implicitly

assume the likelihood pdf to be a Gaussian density with the same variance, which in principle looks
similar, but has slightly less weight near zero and in the tails.

In the L96 system, two neighboring grid points do not exhibit a significant correlation (Lorenz 2005).
Here, localization is mainly applied as a dimension reduction technique, as discussed by Lei and
Bickel (2011), since a filter solely based on the Bayesian weights is not able to work directly in high-
dimensional spaces due to the curse of dimensionality. However, it may be more desirable to apply
localization based on actual spatial dependence. For that purpose, we also investigate the filter behavior
in model II of Lorenz (2005), which extends the L96 model by a spatial smoothing parameter κ,

ẋk = −[xk−2κ][xk−κ] +
[
[xk−κ]xk+κ

]
− xk + F , k = 1 . . .K

where [·] denotes an average of the nearby grid points. Rainwater and Hunt (2013) applied this L2005
system to DA experiments, and we adopt their model design with κ = 2 (then, [xk] = (xk−1 +

2xk + xk+1)/4) and F =12, resulting in a detectable correlation for up to five neighboring grid points.
However, again we use a state dimensionality of K = 80. Except for an increased localization radius
of rloc=10, the setup remains the same as that described for the L96 model.
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5.3.3 Linear advection (LA)

In a final experiment, we test the filter in a simple model that is not characterized by its challenging
dynamics but instead by a state dimensionality one order of magnitude larger than the just-presented
Lorenz systems. This demand is met by the linear advection (LA) model on a one-dimensional grid
with K = 1000, first used by Evensen (2004), that propagates the previous field to the right at each
time step without changing its shape:

xk(t+ 1) = xk−1(t) , k = 1 . . .K (with x0 ≡ xK)

The experimental setup slightly differs from the Lorenz experiments: Following Sakov and Oke (2008b)
and Evensen (2009), a climatological field is obtained by sampling a random Gaussian field whose
correlation function is Gaussian with a spatial de-correlation length of 20 grid points and a variance
of one. The true field as well as the initial ensemble fields are generated by adding additional random
fields with this characteristics to the climatology. The integration time is T =250, and a set of L=100

Gaussian observations is created with σ2obs = 1 every five time steps at each tenth grid point. The
localization radius equals twice the spatial length scale, rloc=40. No inflation is used within this linear
scenario, where the analysis field should converge to the truth.

5.4 Evaluation

The main evaluation criterion is the root mean square error (RMSE). At all times t, the difference
between the analysis mean and truth is quantified using RMSE(t) =

√∣∣∣∣xa(t)− xtr(t)
∣∣∣∣
2
/K and

then, the average over the entire period of interest is computed.

In some cases, we also assess the quality of the ensembles by computing the empirical ensemble spread
via σens =

√
trace (Pa) /K as a measure of its uncertainty, which should on average be of similar

magnitude as the RMSE (e.g., Hopson 2014; Palmer et al. 2005). The statistical reliability of the
ensemble can be quantified by finding the 0.025 and 0.975 quantiles of the ensemble. For a well-
calibrated ensemble, the truth should lie inside this interval in 95% of all cases. Finally, the continuous
ranked probability score (CRPS, Gneiting et al. 2007) and ignorance score (CRIGN, Tödter and Ahrens
2012) are useful probabilistic measures that consider the entire ensemble distribution with respect to the
truth. They are computed component-wise, and their purpose is to summarize the distance between the
ensemble pdf and pdf of the verifying truth in probability space. While the CRPS applies a quadratic
norm, the CRIGN quantifies the difference in information content and is more sensitive to cases where
the truth lies close to or outside of the ensemble range boundaries.

The innovations, d = y − Yf , allow the extraction of further diagnostics independent of the truth.
Specifically, the expected innovation variance (Desroziers et al. 2005) can be expressed as the sum of
the observation error variance and average prior ensemble variance in observation space, (σexpinno)

2 =

trace
(
Y′f (Y′f )T /(N − 1)

)
/L+σ2obs. Following Anderson (2007a) and Compo et al. (2011), it should

correspond to the actual innovation variance, (σinno)
2 = dTd/L, in a well-calibrated DA system.
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(b) NETF vs. NETFiss

FIGURE 5.2: (a) Temporal evolution of average RMSEs for the NETF with rotations (full, black line),
the NETF with deterministic rotations (dotted) as well the NETF without rotations (dashed) and the
PF (gray). (b) Same, but for the NETF with rotations (full, black line), the NETFiSS without rotations
(dashed) and the NETFiSS with random rotations (gray line). The latter uses the same rotation matrices
as the NETF, resulting in an almost identical behavior. Note that the y-axis is scaled differently here.

5.5 Results and discussions

5.5.1 Lorenz 63 (L63)

The first experiment concentrates on some basic properties of the NETF, usingN=100 ensemble mem-
bers in a setup with σ2obs= 4 and ∆tobs= 15∆t. In order to demonstrate the importance of the random
rotation, we ran the filter (1) without augmented rotations, (2) with a deterministic, mean-preserving
rotation matrix (Nerger et al. 2012b, eq. 24), and (3) with random rotation matrices as introduced in
section 4.4. Figure 5.2a shows the temporal evolution of the average RMSEs for the first 2500 time
steps. Initially, the basic PF (with universal resampling) shows the best results, but the strong increase
in RMSE at t>4 indicates filter collapse, which is expected in a fully deterministic system, as motivated
in section 3.6. The NETF without rotations is not much better than the PF, as it diverges only a few as-
similation cycles later. With a deterministic rotation, stability can be maintained for a longer period, but
eventually the filter collapses as well. In contrast, the NETF with random rotations remains stable until
the end of the assimilation window. We generated very similar results independently of the setup, and
did not succeed in obtaining stable runs without rotations or with deterministic ones. Next, in Figure
5.2b we compare the standard NETF with the variant NETFiSS that employs a left-sided transforma-
tion, see section 4.5. Again, we notice that without random rotations, the filter quickly diverges, and
in similar experiments, we did not obtain stable results over the long term, even with inflation tuning.
However, if the NETFiSS uses the same random rotation matrices as the NETF, the performances are
almost identical, as we expected from the theoretical considerations. As a consequence, in all further
experiments we only refer to the standard NETF with random rotations, as summarized in section 4.8.1.
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FIGURE 5.3: Average RMSEs in the L63 experiment with σ2
obs = 4 and ∆tobs = 15∆t for varying

ensemble sizes. Shown are NETF (black line), ETKF (black, dotted), ETKFrot (black, dashed), EnKF
(gray line), NLEAF1 (gray, dotted) and NLEAF2 (gray, dashed).

For practical reasons, it is important to investigate the filter performance with respect to ensemble size,
so all experiments are run with N ∈ {5, 10, 15, 20, 30, . . . , 100}. Figure 5.3 focusses on the required
ensemble sizes to obtain reasonable RMSE results in the scenario with ∆tobs = 15∆t and σ2obs = 4.
While the ETKF with random rotations is only slightly better than the EnKF for N ≥ 20, the ETKF
without rotations degrades with ensemble size, probably because the probability of generating outliers
increases (Anderson 2010; Lawson and Hansen 2004). The NETF’s performance is in between the
NLEAF1 and NLEAF2 for larger ensemble sizes. However, the NETF diverges only for N ≤ 15

and delivers superior results even with just 20 members, whereas the NLEAF2 requires more than 40
ensemble members to outperform it, presumably because of the additional sampling noise.

For this scenario, Table 5.2 presents the additional evaluation measures introduced in section 5.4. Be-
cause of covariance inflation, the ensembles are not under-dispersive as their spread typically exceeds
the RMSE slightly. This does not hold for the NLEAF1/2 at N = 10 and N = 30, respectively, as they
require more members to work properly, in accordance with Figure 5.3. Apart from such exceptional
cases, the innovation variance is usually of similar magnitude as the prior ensemble variance plus the
observation error variance, indicating that inflation tuning leads to a reliable assimilation system. This is
also confirmed by the fact that the truth is in between the 95% confidence interval of the ensemble close
to 95% of all times, except for small ensemble sizes, and for the ETKF without rotations in general. The
probabilistic scores CRPS and CRIGN emphasize that the NETF not only produces a better analysis
mean than the KF-based filters at each time step, but also an ensemble distribution that accumulates
more probability mass near the truth.

Finally, Figure 5.4 shows the optimal average RMSE for different temporal observation densities when
the observation error variance is σ2obs = 2. Here, for each filter the smallest RMSE over all ensemble
sizes has been chosen, based on the insight that large ensemble sizes can be detrimental, particularly
to the ETKF. In general, the analysis quality decreases almost linearly with ∆tobs. The NETF clearly
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ens. size filter RMSE spread σinno σexp
inno CRPS CRIGN p95

N=10 NETF - - - - - - -
ETKF 1.03 1.22 2.59 2.69 0.71 2.26 0.82

ETKFrot 1.04 1.21 2.59 2.69 0.68 2.21 0.83
EnKF 1.08 1.35 2.65 2.91 0.72 2.33 0.85

NLEAF1 1.35 1.14 3.25 2.74 0.95 3.42 0.73
NLEAF2 - - - - - - -

N=30 NETF 0.83 1.05 2.46 2.56 0.54 1.76 0.91
ETKF 1.09 1.27 2.64 2.72 0.73 2.39 0.83

ETKFrot 1.03 1.26 2.59 2.73 0.66 2.11 0.92
EnKF 1.05 1.29 2.59 2.74 0.67 2.14 0.91

NLEAF1 0.93 1.06 2.53 2.53 0.60 1.96 0.88
NLEAF2 1.35 1.09 3.22 2.74 0.99 3.75 0.83

N=50 NETF 0.80 1.05 2.42 2.55 0.51 1.63 0.94
ETKF 1.17 1.27 2.73 2.70 0.79 2.64 0.78

ETKFrot 1.02 1.24 2.57 2.68 0.65 2.07 0.93
EnKF 1.04 1.30 2.59 2.74 0.66 2.11 0.93

NLEAF1 0.94 1.08 2.50 2.54 0.60 1.93 0.91
NLEAF2 0.76 0.92 2.42 2.46 0.49 1.60 0.91

N=100 NETF 0.78 1.01 2.40 2.50 0.49 1.57 0.95
ETKF 1.21 1.34 2.77 2.82 0.82 2.73 0.80

ETKFrot 1.03 1.26 2.58 2.71 0.65 2.08 0.95
EnKF 1.04 1.29 2.59 2.72 0.65 2.09 0.95

NLEAF1 0.92 1.10 2.48 2.54 0.58 1.87 0.93
NLEAF2 0.70 0.86 2.35 2.39 0.44 1.43 0.93

TABLE 5.2: Detailed evaluation of the L63 experiment with σ2
obs = 4 and ∆tobs = 15∆t. RMSE and

spread are computed in state space. The innovation standard deviation is compared to the square root of
the average prior ensemble variance plus the observation error variance. CRPS and CRIGN represent
the average over all state variables, and the same holds for p95, the relative frequency of the truth being
within the 95% confidence interval of the ensemble. All values represent the respective time averages
over five experimental runs. Empty entries indicate that no stable runs are achieved in this setup. For

more details concerning the measures, see section 5.4.
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FIGURE 5.4: Minimal average RMSEs in the L63 experiment with σ2
obs = 2 for varying temporal

observation densities. The smallest RMSE over all ensemble sizes has been chosen to determine the best
achievable performance for each case and filter. Shown are NETF (black line), ETKF (black, dotted),

ETKFrot (black, dashed), EnKF (gray line), NLEAF1 (gray, dotted) and NLEAF2 (gray, dashed).
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FIGURE 5.5: Result of the L96 experiment with double exponential observation errors with σ2
obs = 1.

Shown is the average RMSE for the six ensemble filters against ensemble size, i.e., NETF (black
line), ETKF (black, dotted), ETKFrot (black, dashed), EnKF (gray line), NLEAF1 (gray, dotted) and

NLEAF2 (gray, dashed).

outperforms the KF-based filters that here all give quite similar results, with the ETKFs being slightly
better than their stochastic counterpart. In the most nonlinear scenario (∆tobs = 25∆t) the ETKF
without rotations shows the better performance due to its optimal behavior at very small ensemble
sizes. The NETF performs similar to the second-order version NLEAF2, but is not able to improve
upon it. Their relative improvement over the ETKF increases with larger observation distance, a sign
of a better treatment of the rising nonlinear developments.

From the low-dimensional L63 experiments, we conclude that the NETF outperforms the KF-based
algorithms because of its nonlinear ensemble update, as well as the NLEAF1 because it aims at second-
order exactness. Nevertheless, it cannot completely achieve the quality of the NLEAF2 in the L63
environment. This can probably be explained by the fact that the random rotations tend to suppress
higher-order moments that may implicitly be (at least partly) preserved by the stochastic NLEAF2 up-
dates. A similar behavior has been pointed out in a comparison of the ETKF and EnKF by Lawson and
Hansen (2004) who found the stochastic update to be more capable of dealing with strongly nonlinear
situations. However, the NETF is still more efficient because the NLEAF2 requires larger ensemble
sizes to achieve superior RMSE values.

5.5.2 Lorenz models of intermediate dimensionality

The L63 experiments confirmed that the NETF is able to create a stable and good analysis in the pres-
ence of strong nonlinearity. Regarding a potential application to real-world problems, its behavior in
systems of larger dimensionality is an important issue.

The first experiment concerns the 80-dimensional L96 system with the setup described in section 5.3.2.
Figure 5.5 summarizes the filter performances in terms of RMSE for various ensemble sizes. The



Chapter 5. Empirical investigation of filter performance 93

●

●

●
●

● ●
● ●

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

Ensemble size (m)

A
ve

ra
ge

 R
M

S
E

10 15 20 25 30 40 50 75 100

● ● ● ● ● ● ● ● ●

●

●

NETF
ETKF
ETKFrot
EnKF
NLEAF1
NLEAF2

L2005, r_loc=10, R=1

FIGURE 5.6: As Figure 5.5, but for the L2005 experiment with double exponential observation errors
with σ2

obs =1.

KF-based filters achieve similar results, and it is noticeable that the ETKF without rotations performs
best for N = 20 and then degrades again. With random rotations, the ETKF’s performance is almost
independent of ensemble size in this scenario, as also reported by Lei and Bickel (2011) for their ex-
periments. The stochastic EnKF is only worse for small ensemble sizes. For N ≥ 30, the NLEAFs
outperform the KF-based methods, while the NETF consistently exhibits the best performance already
with an ensemble size of 20 or more. This confirms that in such a nonlinear, non-Gaussian scenario of
intermediate dimensionality, the suggested method performs well with localization, and the determin-
istic update mechanism seems to be more beneficial than its stochastic counterpart.

The next experiment concerns the L2005 model, which exhibits a distinct spatial structure compared
to the L96 model. Figure 5.6 shows the analysis error with respect to ensemble size. Concerning the
relative performances of the KF-based filters, the general structure is very similar to the L96 experiment.
The most remarkable, seemingly counterintuitive difference is that here the NLEAF1 performs better
than the NLEAF2, except when N = 100. Lei and Bickel (2011) do not show the NLEAF2 for their
larger-dimensional experiments, hence, we cannot directly compare these findings to their results. A
possible explanation could be revealed by the update formalism of the NLEAF2 (Lei and Bickel 2011,
Eq. 3), which requires the estimation of an individual analysis covariance matrix for each ensemble
member, based on each of the N perturbed observations. These low-rank approximations of the K×K
covariance matrix with N members are subject to sampling error, and it seems that the stochastic errors
of the perturbed observations amplify the errors in the estimation of the covariances, which may lead
to these unexpected results in certain larger-dimensional cases. This hypothesis is supported by the fact
that in the low-dimensional L63 experiments the NLEAF2 consistently outperformed the NLEAF1.
Additionally, in the L2005 system, spatial correlations are more important than in the L96 system,
hence a reliable estimation of the covariances is of greater relevance here. The NETF, which also
focusses on the second-order statistics, does not suffer from this issue. Again, it exhibits the smallest
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ens. size filter RMSE spread σinno σexp
inno CRPS CRIGN p95

N=10 NETF - - - - - - -
ETKF 0.39 0.38 1.09 1.09 0.22 0.71 0.80

ETKFrot 0.38 0.40 1.09 1.10 0.21 0.69 0.84
EnKF 0.45 0.44 1.11 1.10 0.25 0.84 0.81

NLEAF1 0.60 0.50 1.18 1.12 0.34 1.16 0.75
NLEAF2 - - - - - - -

N=25 NETF 0.29 0.27 1.06 1.04 0.16 0.53 0.89
ETKF 0.37 0.39 1.08 1.09 0.20 0.66 0.90

ETKFrot 0.37 0.36 1.08 1.08 0.21 0.66 0.87
EnKF 0.38 0.44 1.08 1.09 0.21 0.68 0.93

NLEAF1 0.36 0.37 1.08 1.07 0.20 0.64 0.91
NLEAF2 0.38 0.39 1.09 1.08 0.21 0.69 0.89

N=50 NETF 0.27 0.29 1.05 1.05 0.15 0.47 0.93
ETKF 0.38 0.38 1.09 1.09 0.21 0.70 0.89

ETKFrot 0.37 0.39 1.08 1.09 0.20 0.65 0.91
EnKF 0.37 0.42 1.08 1.08 0.20 0.66 0.94

NLEAF1 0.32 0.34 1.06 1.06 0.17 0.55 0.94
NLEAF2 0.33 0.32 1.07 1.05 0.18 0.58 0.91

N=100 NETF 0.26 0.28 1.05 1.05 0.14 0.44 0.95
ETKF 0.39 0.42 1.09 1.10 0.22 0.75 0.88

ETKFrot 0.37 0.37 1.08 1.08 0.20 0.64 0.91
EnKF 0.37 0.43 1.08 1.09 0.20 0.65 0.96

NLEAF1 0.30 0.35 1.06 1.06 0.16 0.53 0.96
NLEAF2 0.30 0.33 1.06 1.05 0.16 0.52 0.95

TABLE 5.3: Detailed evaluation results as in Table 5.2 for the L2005 experiment with double exponen-
tial observation errors with σ2

obs =1. For more details concerning the measures, see section 5.4.

analysis error for N ≥ 20. We conclude that, particularly in larger-dimensional scenarios, the benefits
of the deterministic update mechanism of the NETF become more apparent.

In order to strengthen these findings, Table 5.3 gives an overview of more diagnostic measures for
N ∈ {10, 25, 50, 100}. As in the L63 case, the comparison of RMSE and spread as well as of innovation
variance and expected innovation variance indicate that, thanks to the inflation procedure, the filters
behave reasonably well in both state and observation space. Except forN=10, all scores reveal that the
NETF performs best. The CRIGN shows that in information-theoretical terms, the NETF ensembles
also exhibit the closest match with the truth. The CRPS confirms this insight, but its differences are
smaller. The reason is that the CRIGN is more sensitive to outliers, which is why it is also the best
score for detecting the degradation of the ETKF without rotations for largerN , in contrast to the RMSE
that only increases slightly. Furthermore, all scores are consistent with the finding that the NLEAF2
can only achieve the performance of the NLEAF1 for N=100.

In the L96/L2005 experiments presented so far, the NETF and NLEAFs were able to compute their
analysis based on the actual, non-Gaussian likelihood pdf while the ETKFs and EnKF could only use the
specified covariance R in a Gaussian manner. A concluding L2005 experiment examines the impact of
such a misspecification of the likelihood on the NETF. The setup remains identical as before, except that
now all filters wrongly assume the likelihood to be Gaussian. Figure 5.7 shows the resulting RMSEs.
While the performances of the ETKFs and EnKF are unchanged, the nonlinear filters now show less
dominant behavior. It is not surprising that the approximation of non-Gaussian error distributions as
Gaussian can lead to significant analysis errors (Fowler and van Leeuwen 2013). In particular, the
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FIGURE 5.7: As Figure 5.6, except that in this L2005 experiment all filters wrongly assume the obser-
vation errors to be Gaussian, which affects the performance of the NETF and the NLEAFs.

NLEAFs are not able to outperform the EnKF and the ETKF anymore. Note that here the NLEAF1
always outperforms the NLEAF2. However, the NETF still exhibits a better analysis at least for N ≥
50, even though the improvement is not as pronounced as before. These results indicate that even if
the NETF does not use the true likelihood pdf to find the analysis weights, it still has the potential to
achieve superior results.

In summary, the experiments with intermediate Lorenz systems form a consistent picture. The NETF
performs well already for an intermediate ensemble size and is able to outperform not only the ETKF
and EnKF but also its stochastic counterpart, the NLEAF. We note that without random rotations the
NETF diverges, as in the L63 cases. Based on the experiments performed in this work, we conclude
that the additional random rotation is required to maintain filter stability by generating a new ensemble
with Gaussian properties. However, it is possible that other experimental settings or implementations
might lead to different experiences.

5.5.3 Linear advection (LA)

In this final experiment, the dimensions of ensemble (N = 5 . . . 50), observations (L= 100), and state
(K=1000) differ by about one order of magnitude, representing a difficult setup for filters that rely only
on the Bayesian weights. However, it approaches real-word situations that are usually characterized by
N � L� K.

Figure 5.8 shows the RMSE of each filter resulting from simulations with various ensemble sizes. By
definition, the chosen scenario represents a linear, Gaussian assimilation problem. Recalling the Gaus-
sian assumption built into all KFs, it is not surprising that the ETKF, which utilizes this information
in a very efficient manner, performs best. Thus, its RMSE can be seen as the lower limit for a given
ensemble size. Nevertheless, the NETF, which cannot benefit from the Gaussianity of the situation as
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FIGURE 5.8: Results of the LA experiment: Average RMSE for NETF (black line), ETKF (black,
dotted), NLEAF1 (gray, dotted) and EnKF (gray line) for varying ensemble sizes. Not shown are the
NLEAF2, which performs slightly worse than the NLEAF1 in this scenario, and the ETKFrot, which

behaves as the ETKF.

much as the ETKF because it only relies on the Bayesian weights, is stable and approaches the per-
formance of the ETKF for an ensemble size of N > 15. In contrast, the stochastic filters (NLEAFs
and EnKF) perform similarly in that they exhibit a considerably higher RMSE and do not converge to
the minimum value. In this scenario, the perturbed observations introduce additional random noise of
considerable magnitude and render these filters considerably suboptimal. In the L63 experiments, they
helped to improve the analysis. However, the successive experiments have indicated that in situations
where the main challenge is given by an increased dimensionality, the second-order exact filters (NETF
and ETKF) show a more favorable behavior. Furthermore, by means of localization, it could be con-
firmed that the NETF promises a potential applicability in systems where the ensemble size is rather
small compared to the dimensions of observation and state.

5.6 Additional aspects

This section briefly highlights two further aspects of nonlinear DA.

5.6.1 Parameter estimation

All experiments presented so far dealt with state estimation, i.e., finding the optimal value for dynamic
quantities. Another possible application of DA methods with practical relevance is the estimation of pa-
rameters, which are usually constant model quantities (e.g., Aksoy et al. 2006). An illustrative example
is the autoregressive model of first order, xi+1 = φxi + εi, where ε represents random noise and the pa-
rameter φ has to be estimated, given observations of the time series. This example already emphasizes
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filter RMSE (state) MRD (σ) [%] MRD (r) [%] MRD (b) [%]
NETF 0.86 4.97 0.86 2.15
ETKF 1.71 12.68 1.86 4.33

ETKFrot 1.41 5.63 1.21 3.17
EnKF 1.44 5.74 1.35 3.15

NLEAF1 1.02 5.91 1.06 2.51
NLEAF2 0.83 5.81 1.02 2.54

TABLE 5.4: Results for the L63 experiments with parameter estimation. MRD represents the mean
relative deviation of the filter estimate with respect to the true value, averaged over all time steps. It is

given in percent for all three L63 parameters. All values represent the average over ten repetitions.

that parameter estimation usually represents a nonlinear problem, even if the model dynamics itself is
linear.

The general approach to include parameter estimation in DA is state augmentation (e.g., Evensen 2003),
i.e., the parameters p are interpreted as time-dependent quantities which follow the ”trivial” forward
equation pi+1 = pi+εi. The error term ε allows to add random noise. Then, the analysis algorithms do
not change if one identifies z = (x,p)T as generalized state vector x. However, parameter estimation
imposes some additional challenges to a DA system, apart from nonlinearity. For example, parameters
are often restricted to a finite valid range, whereas the implicit assumption of Gaussian distributions
allows parameter updates to non-permitted, potentially physically impossible values. It has been shown
that, as expected, nonlinear filters can be advantageous to classical algorithms in the context of pa-
rameter estimation (e.g., Kivman 2003; Losa et al. 2003). However, it is argued that even though PFs
may yield better estimates, the problem of filter divergence is often more pronounced, because particles
with wrong parameter values may receive insignificant weights. This usually increases the required
ensemble size.

Therefore, it is of interest to look at the performance of the NETF with respect to parameter estimation,
as it aims at rendering unstable, fully-nonlinear filtering more stable by concentrating on the analysis
mean and covariance only. The focus of this section is not on a full investigation of this issue, but rather
on gaining a first insight. We apply the L63 testbed as described in section 5.3.1, with ∆tobs=15∆t and
observations of x and z with σ2obs=4. The assimilation window is shortened to 2000 time steps, as the
parameter estimates should converge. The estimation targets are all three L63 parameters (σ, r, b), thus,
the state dimension is doubled. The initial parameter ensembles are constructed by drawing N = 100

samples from uniform distributions within [4; 13], [21; 42] and [1.9; 2.4] for σ, r and b, respectively. As
the true values are 10, 28 and 8

3 , the initial knowledge is biased. Kivman (2003) performed a similar
L63 experiment, comparing the PF and EnKF. However, he created an extremely nonlinear situation
with very few observations, in which the EnKF fails. The PF required 1000 particles, but for σ, the
most challenging parameter, the converged estimate still differed from the true value. In comparison,
the situation here is already strongly nonlinear, as proven by the superiority of the nonlinear filters in
section 5.5, but is still feasible even for the linear filters. Thus, it allows a more balanced judgement,
as even in challenging real-world systems, such as the atmosphere, EnKFs are still able to deliver
reasonable estimates.

The results are illustrated by the temporal evolution of the filter estimates for σ in Figure 5.9a. While
the ETKF exhibits a rather slow convergence and high volatility, the NETF consistently and smoothly
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FIGURE 5.9: Additional aspects in the L63 experiment with N = 100, σ2
obs = 4 and ∆tobs = 15∆t.

(a) Evolution of the filter estimates in time, for the parameter σ = 10. Shown are NETF (black),
ETKFrot (red) and NLEAF2 (blue). (b) RMSE results with the nonlinear observation operator for
different values of the nonlinearity parameter α. Missing points indicate filter divergency, and the

ETKF without rotations (not shown) does not work in any case.

approaches the true value. The NLEAF2 is also able to achieve this towards the end, but exhibits more
variability, probably due to the perturbed observations. Table 5.4 gives further statistical information
about the analysis errors. For the parameters, they are quantified by the relative absolute error, i.e., the
absolute deviation to the truth divided by the true value. Due to the additional parameter uncertainty,
the state RMSEs are increased compared to the corresponding reference case, see Table 5.2. While the
nonlinear filters only perform slightly worse, the degradation is more pronounced for the EnKFs. The
results in Table 5.4 confirm that now, in contrast to the case of pure state estimation in the L63 system,
the NLEAF2 is not superior anymore. The NETF shows a similar RMSE for the state variables and
is better for the parameters. While the perturbed observations were potentially helpful in estimating
chaotic state variables in the low-dimensional system, they degrade the estimation of fixed parameters.
In summary, it can be stated that the deterministic NETF is suitable for parameter estimation as well,
compared to both the NLEAF and KF-based filters.

5.6.2 Nonlinear observation operator

In a concluding experiment, we intend to demonstrate the NETF’s performance in another challeng-
ing situation. In all previous situations, the state vector was observed directly, at least partly. How-
ever, as discussed in section 2.2.3, in real-world applications the relation between model variables and
observations can be more complicated and even nonlinear, as expressed by the operator H(x). The
EnKFs map the ensemble members into observation space by the fully-nonlinear operator, see section
3.2.4. However, their analyses are still suboptimal as the update mechanisms originate from the KF
update equation, which assumes a linear observation operator. This issue is valid for both determinis-
tic or perturbed-observation versions. Additionally, the 3/4DVAR cost function (e.g., eq. 2.35) is not
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quadratic anymore. Thus, local minima may appear, which poses a great challenge to minimization
algorithms.

The treatment of nonlinear observations1 is an active field of research. In 4DVAR, typically an iterative
sequence of minimizations is employed, linearizing the predicted observations around the refined state
estimates for a couple of times. A similar principle can be applied for EnKFs (Luo and Hoteit 2014b).
In contrast, filters that are directly based on Bayes’ theorem, such as the NETF of PFs, deal with
nonlinear observations in a natural way. Only the likelihood pdf is needed, which is typically a function
of the innovations, i.e., p(y|x) = p(y −H(x)). This does not hold for the EWPF at the current stage,
where the proposal densities rely on linear observations. Even though the Bayesian filters are able
to fully consider the nonlinearity of H(·), their application in such situations is more challenging as
the required ensemble size to avoid filter divergency is usually larger. The reason is that due to the
nonlinear mapping into observation space, where the likelihoods are evaluated, the relative weights of
the particles can vary more strongly. Even small differences in the state variables may be amplified by
the nonlinear mapping, and the relative weights are sensitive to small variations.

As for parameter estimation, this section serves as short investigation to test the principal ability of the
NETF to deal with nonlinear observations. Again, the L63 experiment withN=100, ∆tobs=15∆t and
σ2obs=4 is utilized. Observed variables are x and z, but the observation operator isH(x) = 10 sin (x/α)

and the same for H(z). The period of the harmonic function is 2πα, thus, smaller values of α indicate
a higher level of nonlinearity. The results of experiments with varying α are summarized in terms of
average RMSE in Figure 5.9b. In general, for small values of α, H(·) exhibits stronger nonlinearity,
but is also more sensitive to changes in x or z. Then, the observations are better able to discriminate
distinct states. In turn, they constrain the state more strongly, and this leads to lower RMSEs for small
α, as visible in Figure 5.9b for all filters. The KF-based filters do not work for the most nonlinear
cases (α = {1, 2}). For α ≥ 3, their analysis errors are about twice as large as for the nonlinear filters,
confirming the superiority of the latter. In contrast to the L63 experiment with linear observations, where
the NLEAF2 outperformed the NETF (see Figure 5.3), they now perform similarly. In conclusion, the
NETF is apparently able to deal with nonlinear observations in a desirable way.

5.7 Conclusions

We summarize the main insights gained from the series of experiments that applied the NETF to differ-
ent models and setups:

• Despite being solely based on the Bayesian weights, the algorithm is capable of remaining stable
even in difficult situations and higher-dimensional spaces. In the experiments conducted here, the
random rotation after the ensemble transformation is required to maintain filter stability. This is
probably reasoned in the effect of the deterministic transform with T on higher-order moments,
which is an open issue at the current stage. For the ETKF, the influence of random rotations on the
analysis quality depends on the experimental setup, such as ensemble size and model properties.

1For simplicity, we use the term ”(non)linear observations” for observations that are related to the state by a (non)linear
operator.
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Thus, further research, from both theoretical and empirical point of view, about the deterministic
transform and the impact of the random rotation step in the NETF is desirable.

• In nonlinear and non-Gaussian scenarios, the NETF is able to outperform the KF-based algo-
rithms (ETKF and EnKF), as it does not rely on Gaussian assumptions. In all experiments, the
ensemble sizes required to achieve superior results is fairly small, indicating that the update mech-
anism acts quite efficiently. However, it does not work properly with very small ensemble sizes
such as five or ten, for which the ETKF may already achieve a sufficient performance.

• Domain localization, as suggested by Hunt et al. (2007) for the ETKF, works successfully also for
the nonlinear filter formulation used by the NETF. It reduces the effective state dimensionality,
which in turn contributes to avoid weight collapse in larger-dimensional systems. This allows to
use the NETF with rather small ensemble sizes in these scenarios as well.

• In some cases, as in low-dimensional but strongly nonlinear scenarios, the perturbed observations
used in the NLEAF can be beneficial, at least if the ensemble size is large enough to suppress
the sampling errors. However, particularly in larger-dimensional problems, the NETF is able to
outperform its stochastic counterpart because of its deterministic update mechanism. This also
includes cases with parameter estimation and nonlinear observation operators.

We conclude from these initial experiments that the NETF, despite its rather simple design, appears
to be a promising contribution to the field of nonlinear DA and may be suitable for applications in
large-scale systems. This will be studied next.



Chapter 6

Application to a high-dimensional general
circulation system

In the previous chapter, the NETF’s performance was thoroughly investigated in a variety of systems
with different dimensionalities and characteristics. Here, the results from an assimilation experiment
in a general circulation model with considerably larger dimensionality are shown, which is a great
challenge for a filter that only employs the Bayesian weights. The main focus is to demonstrate the
applicability in such a large-scale system in order to assess the practical suitability of the new method.
Before discussing the results, a comprehensive description of the experimental setup is given in order
to fully understand the characteristics of the assimilation problem.

6.1 Prerequisites

6.1.1 Motivation

The performance of the NETF in the experiments of Chapter 5 consistently showed a favorable behavior,
even in systems of larger dimensionality. Therefore, the next step consists in an application to a more
realistic model that exhibits a dimensionality typical for geophysical systems. In the following, we
motivate why such an experiment is an important contribution to current research, and why a large-
scale ocean general circulation model (OGCM) represents a suitable system of interest.

6.1.1.1 High-dimensional nonlinear filtering

State estimation in high-dimensional environments, such as circulation systems, represents a huge chal-
lenge to assimilation algorithms. The main constraint is limited computational power, as already one
single forward integration requires a large amount of resources and is usually parallelized on super-
computers. Variational algorithms require the repeated evaluations of model, tangent linear model and
adjoint model in the minimization procedure. In ensemble-based algorithms, a multiple number of
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forward integrations have to be performed. As of today, EnKF-based algorithms are the only practi-
cal techniques in the latter case. They work well with relatively small ensemble sizes (in the order
of about hundred), given sufficient tuning of the filter details (Houtekamer et al. 2014). The linearity
assumptions contained in the EnKFs is objectionable from a theoretical point of view, but it renders the
filter quite robust for small ensemble sizes. Nonlinear methods, in particular most PF-based schemes,
are theoretically appealing, however, they are not applicable to large-dimensional systems with such
ensemble sizes (van Leeuwen 2009). Therefore, the applicability of nonlinear DA techniques in GCMs
is a topic of great interest. As already mentioned in Chapter 4, the EWPF currently appears to be a
promising approach and has been successfully applied to a stochastically-forced single-layer primitive
equation model (Ades and van Leeuwen 2014). In contrast, the NETF is a much simpler technique
from an implementation point of view, and it does not require stochastic models. Thus, the investi-
gation of its applicability represents an important contribution to the challenge of enabling nonlinear
high-dimensional filtering, considering the curse of dimensionality.

6.1.1.2 Ocean data assimilation

As motivated in the beginning, one major field of application for DA methods concerns the generation
of analyses, which in turn are used to initialize forecasts. This is particularly relevant for weather
prediction, where the predictability is limited to a few days. However, also for medium range forecasts,
which aim at climatological predictions, the initial conditions can be of relevance, particularly for the
slowly-varying components of the earth system. They possess a long-term memory which can influence
the model simulation over a long time scale. It has been shown that for medium-range predictions the
ocean plays a key role, particularly the deep layers (e.g., Brandt et al. 2011; Schleussner et al. 2014).
While its dynamics is often neglected in weather predictions (using externally specified ocean surface
conditions), a dynamic ocean is important on the medium-range scale, and the ocean initialization
significantly influences seasonal and decadal predictions (e.g., Alves et al. 2004; Müller et al. 2012).
Of course, another important application concerns the production of reanalyses (e.g., Balmaseda et al.
2013; Köhl 2014). They allow a homogenous reconstruction of the ocean state over many years, which
is important for climatological investigations. Nowadays, climate predictions or hindcasts are often
performed with coupled atmosphere-ocean models due to the relevance of the ocean on longer time
scales, and its proper initialization is an issue of active research (Polkova et al. 2014). Therefore, ocean
DA is an issue of interest for a broad field of research and users (e.g., Bennett 2002; Lermusiaux 2006),
also in the atmospheric community.

6.1.2 Aims

The principal aim of this chapter is to investigate the applicability of the NETF in a high-dimensional
and chaotic circulation model. These models are widely used in atmospheric and oceanographic fore-
casting, where DA represents a key aspect.

More specific, a filter’s applicability is given if it successfully responds to the observational information
such that it reduces the deviation from the truth consistently. In particular, it must not diverge during a
sufficiently long assimilation window. Filter divergence, the major challenge for PF-based techniques,
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means that the ensemble is not capable of reproducing the truth. Typically, its spread becomes too
small and ceases to be a reliable measure of uncertainty. Consequently, the filter is not capable of
responding to the observations and generating a reliable state estimate anymore. In this case, the filter
can only reproduce the model climatology. In an OSSE, filter divergency can usually be diagnosed via
the deviation from the truth which is of the same order as for the model climatology.

According to the definition, the analysis quality will be assessed by ensemble diagnostics and by an
evaluation with respect to the truth. Some related questions will also be considered to gain more insight
into the NETF’s behavior:

• Can the NETF be used in the same generic form as presented in Chapter 4, or are further en-
hancements required?

• How successful is the application in quantitative terms? The answer requires to interpret the
evolution of the analysis error.

• How strong are the requirements on applicability with respect to filter settings, in particular,
ensemble size and localization?

• How do the performance properties compare with the ETKF as robust, established method?

• Are there particular sensitivities or aspects that influence the NETF’s applicability?

In the following, the experimental setup to meet the aims and answer these questions is described.

6.2 The ocean model and its setup

For a successful application of DA algorithms, it is important to gain sufficient knowledge about the
model at hand and its characteristics. First, the OGCM used for the assimilation experiment is briefly
characterized. Next, we describe the specific model setup and its properties. This allows to appreciate
the complexity of the assimilation problem that is constructed in this chapter.

The experiment applies a software framework for ocean modeling, the Nucleus for European Modelling
of the Ocean (NEMO, Madec 2008) in version 3.3. In particular, the framework contains a primitive
equation OGCM, which is based on the ”océan parallélisé” model (OPA, Madec et al. 1998). The
framework allows further extensions, for example, the inclusion of sea ice, biochemistry and other
tracers besides temperature and salinity, or the usage of tangent linear and adjoint models. However,
in this application, exclusively the primitive equation model is employed. NEMO is a state-of-the-
art model and is used by several hundred researchers and institutions, focussing on various aspects of
oceanographic research. It can also be applied in regional mode. A further strength is an interface that
enables to couple NEMO to models of other components of the earth system, such as the atmosphere,
aiming at a better simulation of the exchanged energy, momentum and mass fluxes (e.g., Akthar et al.
2014; Pham et al. 2014).
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6.2.1 Characterization of NEMO

The following description gives a concise overview of the principal model characteristics. This naturally
represents a rather simplified and limited point of view. For details, the reader is referred to the extensive
NEMO reference book (Madec 2008), which also serves as basis for the presentation given here.

6.2.1.1 Primitive equations

The NEMO ocean engine solves the primitive equations that specify the ocean dynamics and thermo-
dynamics in a numerical way. In principle, the primitive equations for the ocean are the Navier-Stokes
equations, which represent Newton’s law in fluid dynamics and describe the momentum tendencies, in-
cluding the Coriolis force due to the earth’s rotation. They are enhanced by conservation laws, so-called
continuity equations, for fluid mass, salt content (salinity) and heat. This system of equations closely
resembles the primitive equations used to model the earth’s atmosphere, where one usually finds water
vapor content, the atmospheric analog to salinity, and pressure or fluid density as prognostic variables
besides the three-dimensional velocity field and temperature (e.g., Kalnay 2003).

In ocean modeling, some typical assumptions are imposed to simplify the equations (e.g., Griffies 2004).
The hydrostatic hypothesis converts the vertical momentum equation into a diagnostic equation, relating
pressure gradient and density. The Boussinesq hypothesis allows to neglect density fluctuations expect
in the buoyancy force term. Additionally, water can safely be regarded as incompressible, and as a
consequence, the velocity divergence always vanishes, which easily allows to diagnose the vertical
velocity. The fluid density can be diagnosed from pressure, temperature and salinity via an equation
of state. Therefore, the basic prognostic variables in NEMO are the horizontal velocity fields (U ,
V ), temperature (T ) and salinity (S). All fields depend on the three space coordinates and on time.
Furthermore, in modern OGCMs, a free surface formulation is used, allowing a variable sea elevation.
It can be described by a two-dimensional variable, the sea surface height (SSH), which is the time-
dependent deviation from a fixed reference height. Its prognostic equation arises from a kinematic
boundary condition for momentum. Then, high-frequent external gravity waves are also solution of the
set of equations, which has to be taken into account by the time stepping scheme. In NEMO, they can be
considered by a time-splitting formulation or filtered by an additional damping term in the momentum
equation that conserves the slow barotropic Rossby waves (Roullet and Madec 2000).

6.2.1.2 Physical parameterizations

As in the atmosphere, small-scale features occurring on a sub-grid scale, such as turbulent fluxes or
convection, have to be parameterized based on the large-scale fields in order to close the system of
equations. An example is the diffusion of temperature and salinity which occurs on a molecular scale.
They affect the large-scale circulation, but cannot be resolved by typical grid sizes. Due to the asym-
metry induced by gravity, NEMO distinguishes between lateral and vertical physical parameterizations.
In the vertical, the diffusive fluxes are derived by a second-order closure using the gradients of the
large-scale fields together with associated eddy coefficients. The latter can either be set to a constant or
computed in dependency on the current flow, e.g., using the Richardson number or even a full turbulent
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closure model. As the hydrostatic hypotheses removes convective processes from the model solutions,
they have to be parameterized as well in case the stratification is unstable. Finally, the velocity in the
deepest layer is dragged by bottom friction, and the friction coefficient is either fixed or flow-dependent.
In the horizontal, the eddies arising from baroclinic instabilities, inducing mesoscale turbulences, can
be resolved explicitly if the grid resolution is sufficient. In the eddy-resolving case, NEMO offers var-
ious operators of different accuracy (in particular, second-order, also Laplacian, or fourth-order, also
biharmonic or bi-Laplacian, schemes) to parameterize the lateral diffusion processes.

6.2.1.3 Boundary conditions

As the primitive equations are partial differential equations, appropriate conditions have to be specified
at all domain boundaries at every time step. This concerns the momentum, mass and energy fluxes
at the ocean interfaces to the bottom and the atmosphere as well as to the lateral boundaries. At the
bottom, usually all fluxes are assumed to vanish. The upper boundary condition is expressed by short
and long wave radiative fluxes, sensible and latent heat as well as the freshwater budget. The latter
determines ocean salinity and volume and is given by precipitation and evaporation. Additionally, the
horizontal components of the surface ocean stress are required in order to determine the exchange of
momentum at the surface. These boundary conditions can directly be fed into the model, however,
most of them are typically derived from atmospheric fields (such as air temperature, surface pressure,
humidity, precipitation and wind speed) using adequate bulk formulations. As third option, the surface
boundary conditions can also be specified by analytical formulas, allowing simplified investigations.
At lateral solid boundaries, such as coast lines, all mass and energy fluxes are set to zero, as well as the
normal component of the velocity field. Its tangential component depends on the choice of a so-called
slip boundary condition. River runoff can also be considered as a further source of freshwater influx.
In order to facilitate regional NEMO applications, the user may also apply open boundary conditions
within the ocean itself, using external boundary fields.

6.2.1.4 Space and time discretization

The discretization of the primitive equations in space is performed via second-order central finite dif-
ferences on a curvilinear three-dimensional Arakawa C-type grid. Scalar fields, such as T and SSH ,
are evaluated at the grid center, while the discrete representations of the velocity fields (U , V , W ) are
defined on the grid interfaces. The vertical discretization has to consider the bathymetry, i.e., the bottom
topography. Here, either a homogenous height coordinate (z) or a terrain-following height coordinate
can be chosen, or a combination of both. At the top, the sea surface height quantifies the time-dependent
elevation of the ocean.

NEMO applies a leap-frog time stepping scheme for all non-diffusive terms. As a three-level scheme,
it contains one computational mode besides the physical one. The numerical noise can be suppressed
by a time diffusion as offered by the Robert-Asselin time filter (Asselin 1972). However, as it degrades
the second-order accuracy of the time integration (Williams 2009), a conservative variant of the filter is
implemented (Leclair and Madec 2009). For the lateral diffusive and damping parts of the equations, a
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forward time scheme is used. It is conditionally stable, depending on the choice of the mixing coeffi-
cients. In the vertical direction either a time-splitting technique or the implicit, unconditionally stable
backward scheme is applied, owing to the comparably small grid distances (∆z � ∆x).

6.2.1.5 Conclusion

In summary, NEMO represents a circulation model of high complexity that contains a state-of-the-art
representation of ocean dynamics and physics. Atmospheric models for weather and climate prediction
in principle solve the same system of equations and have to deal with similar challenges, for instance,
regarding the sub-grid scale physical parameterizations (e.g., Achatz et al. 2013; Baldauf et al. 2011).
Therefore, NEMO represents a suitable model to investigate whether the new filter possesses an appli-
cability in nonlinear, high-dimensional settings as typical for weather and ocean predictions.

6.2.2 Model setup

It remains to define an explicit model setup that serves the aims of the chapter.

6.2.2.1 Double-gyre square basin configuration

The NEMO package (version 3.3) already contains some pre-defined configurations to guide new users
through the orientation phase. Considering the aim of this chapter, we need a model setup that employs
the nonlinear primitive equations which induce a chaotic flow. However, it should still be kept as
simple as possible regarding the boundary conditions in order to focus on the challenge of large-scale
DA rather than dealing with issues related to the model setup. Such questions are interesting as well
from the DA point of view, but would interfere with the aim to investigate the principal filter properties.
Therefore, we chose to work with a configuration family named ”GYRE”. It applies the NEMO model
in a closed square basin using a simplified, analytical forcing formulation. It is designed to idealize the
ocean circulation that is representative for the mid-latitudes, e.g., the Gulf stream in the North Atlantic.
The forcing leads to a large-scale double gyre circulation which is enhanced by mesoscale eddies. The
original GYRE configuration is based on the work of Lévy et al. (2010), who focus on the influence
of parameterization schemes by employing a sub-mesoscale resolution. They apply seasonally varying
forcing of heat and freshwater flux, solar radiation and wind stress. As described by Cosme et al.
(2010), their setup can be further simplified by using constant wind forcing only, which still leads to
the chaotic double-gyre circulation, but renders the circulation characteristics invariant in time, given
sufficient spin-up. This type of configuration has been an established reference in oceanography for over
50 years, and has been proven to exhibit realistic circulation patterns (e.g., Carrier and Robinson 1962;
Holland 1978; Provost and Verron 1987). We conclude that the wind-driven double gyre configuration
constitutes a quasi-realistic full primitive equation system together with its complex physics. It can
therefore be regarded as suitable environment to assess the NETF’s performance in a nonlinear, high-
dimensional setting. After describing the specific model settings, we will briefly discuss the principal
characteristics of the flow.
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6.2.2.2 Domain

The NEMO model is applied in a closed, rectangular basin in the North Atlantic, ranging from −60◦W
to −30◦W and 24◦N to 44◦N. The horizontal grid employs a distance of 0.25◦. This resolution corre-
sponds to an eddy-permitting setup. This discretization results in nx = 121 grid points in zonal and
ny = 81 grid points in meridional direction, respectively. In the vertical, nz = 11 layers with exponen-
tially increasing thickness are defined by a generic z coordinate, see also Figure 6.2b. The first layer
has a thickness of about 300 meters. No bathymetry needs to be specified, as the bottom is assumed to
be flat and located in a depth of 5054 meters.

6.2.2.3 Settings for physics and dynamics

The model settings refer to the description in section 6.2.1, with much more details available in Madec
(2008). For the time integration, the leap-frog scheme is used with a time step of 15min. The aug-
mented Robert-Asselin time filter applies a smoothing parameter of 0.1. External gravity waves are
damped explicitly in the horizontal momentum equations according to Roullet and Madec (2000). As
typical for the simplified GYRE configuration, the space variation of the lateral eddy coefficients is con-
strained to the horizontal, while the vertical ones are fixed. Here, the default values, 1.2 · 10−4m2s−1

and 1.2 · 10−5m2s−1 for momentum and temperature, respectively, are set. The parameterization of
lateral mixing is realized by a biharmonic diffusion operator with an eddy coefficient of−8·1010m4s−1

for both momentum and temperature. At the bottom, linear friction with a drag coefficient of 4 ·
10−4ms−1 is prescribed, while the lateral boundaries are assumed to be frictionless.

6.2.2.4 Boundary conditions

As the NEMO configuration is applied in a closed domain, the bottom and the lateral boundaries act as
fixed, solid walls by setting the corresponding field entries of all prognostic variables to zero (Madec
2008). No freshwater influx is considered. At the upper boundary, SSH is computed by a free surface
formulation in its linearized form (Roullet and Madec 2000), as the typical elevation values are of order
1m, which is much smaller than the first layer’s thickness. At the surface, the heat and freshwater
fluxes are also set to zero. Therefore, salinity, usually a prognostic variable in an ocean model, always
remains constant and is disregarded in all following considerations. The observed ocean circulation,
described below, is entirely forced by zonal wind. It is given by an analytical prescription of the zonal
wind stress τx (in Ns−2) that varies with latitude φ, but is constant in time t and for each longitude λ:

τx(φ, λ, t) = − 1

10
cos

(
2π

∆φ
(φ− φ1)

)
[Ns−2] (6.1)

Here, φ1 = 24◦ is the latitude at the southern boundary and ∆φ = 20◦ is the latitude range of the
domain. The stress is symmetric with respect to φ = 34◦ in the domain center, where the zonal wind
directs to the East (29◦ ≤ φ ≤ 39◦). In the northern and southern part, the wind blows to the west.
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6.2.3 Initial conditions and truth run

Having specified the model configuration and its setup, it remains to actually create a continuous state
trajectory, which can be used for the assimilation experiments.

The model is initialized with an ocean at rest, i.e., the velocity fields are equal to zero at the beginning.
Salinity is prescribed to a value of 35.5 g kg−1 and remains constant. Each vertical ocean column is
initialized by the same analytical temperature profile (in ◦C), following Chassignet and Gent (1991).

T (x, y, z, t = 0) = 25 + 24.05708
(
e−z/800m − 1

)
[◦C] (z in m) (6.2)

which corresponds to an exponential decrease of temperature with depth, a stratification typically ob-
served in ocean climatologies.

After initialization, the model is integrated forward for 75 years. Here, one year is idealized to 360 days.
The first 50 years are considered as spin-up phase towards reaching the model climatology. Afterwards,
it is safe to state that a dynamic equilibrium of the model with respect to the applied forcing is reached
(Cosme et al. 2010), which may for instance be diagnosed by the stable position of the central jet, as
discussed below. The initial 50 years are disregarded. The actual DA experiment is performed in year
75, while the years 51-74 are utilized to estimate the model climatology, see also section 6.4.3.

6.2.4 Circulation characteristics

Before turning to the actual assimilation problem, it is useful to gain an overview of the dynamical
structure of the wind-driven ocean. For this purpose, we refer to the true initial state in year 75. Figure
6.1 shows the surface fields. The large-scale double-gyre circulation, which intensifies at the western
boundary, is directly visible in the SSH and T fields, Figures 6.1a and 6.1b, respectively. It is induced
by the inhomogeneous zonal wind forcing described by equation (6.1). In the West, it leads to boundary
currents, see Figure 6.1d. They support an eastward jet in the center, located around φ = 34◦ in Figure
6.1c. However, the jet is subject to dynamic instabilities arising from the intrinsic properties of the
strongly-nonlinear primitive equations. In consequence, a chaotic behavior can be observed that leads to
a mesoscale flow dynamics besides the large-scale gyre circulation. It is characterized by eddies, which
exhibit notable local differences in velocity (around 1m/s), SSH (up to 1m) and T (up to 0.5K), and
influence the large-scale flow (Holland 1978). Their horizontal range extends an order of about 100 km.
These general circulation characteristics are similar to the ocean flow at the mid-latitudes, for example,
in the Gulf stream in the North Atlantic (e.g., Kamenkovich et al. 2009; Thompson and Schmitz 1989;
Willebrand et al. 2001).

This presentation only provides a rough sketch of the flow characteristics, as a more detailed investiga-
tion is beyond the scope of the work. For example, the influence of the eddies on the gyre circulation
is an extensive field of research. The interested reader will find a large number of references in the
oceanographic literature (e.g., Hecht and Smith 2008; Lévy et al. 2010; Schlax and Chelton 2008; Shen
et al. 1999). Furthermore, the exact details of the model dynamics are not of primary relevance for
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(a) Sea surface height, SSH [m]
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FIGURE 6.1: Snapshots of the prognostic fields at the beginning of year 75 at the surface (SSH) or
in the first layer (T , U , V ), respectively. They visualize the double-gyre circulation with a central jet,

meridional currents at the Western boundary and mesoscale eddies.

the investigation of the filter applicability. Concerning this aim, it is important to realize that the cho-
sen configuration leads to a large-scale circulation pattern with chaotic mesoscale features that can be
observed in the real ocean or atmosphere as well.

6.3 Description of the assimilation problem

So far, we have shown the model setup and the type of dynamics it generates. In order to finalize an
experimental setup to which the NETF can be exposed, it remains to create an observation scenario
that serves our purposes. Even though the DA experiment presented here utilizes artificial observations
drawn from the truth run, the intention is to create a situation that resembles a typical ocean assimilation
problem. Therefore, we refer to previous assimilation experiments that have already been performed
within the NEMO-GYRE configuration described above. Cosme et al. (2010) investigated the perfor-
mance of a square root smoother based on the KF, while Yan et al. (2014) compared different EnKF
assimilation techniques. Both studies employed a sufficiently realistic observation scenario.
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6.3.1 Observation scenario

Two distinct observation types of different spatial structure and density are considered. The observations
are assimilated each second day, i.e., 192 model time steps define one analysis cycle. As the truth run
covers one idealized year, 180 analysis steps are performed in total. The observations were provided
by Y. Yan (University of Liège) and were also used in Yan et al. (2014). In the following, we give
an overview to their background. This knowledge is not only useful to understand the assimilation
characteristics, but it is also required for the implementation of the observation operators. The latter
could be employed to reproduce new observations. However, taking a fixed observation data set better
mimics a real assimilation situation, where only the filter settings, see section 6.4, can be modified.

6.3.1.1 Sea surface height

The first observation type takes into account that satellites are able to measure surface characteristics.
Polar-orbiting satellites regularly re-visit the area of interest and generate measurements along the so-
called tracks. Thus, these observations are rather sparse in space and time. In this context, Envisat,
maintained by the European Space Agency (ESA), was a well-known satellite, active from 2002 to
2012. It flew at a height of 800 km and exhibited a repeat cycle of 35 days in which 1002 passes were
performed. Its primary objective was to supply remote sensing data concerning the Earth’s environment,
including atmosphere, land and ocean. For that purpose, the satellite carried ten different instruments.
A radar altimeter allowed, among other functionalities, to estimate the sea surface height (ESA 2007).
Validations with buoy measurements indicated the reliability of the retrievals (e.g., Durrant et al. 2009).

Here, the Envisat SSH observations are mimiced. First, for each assimilation window of two days, all
satellite track locations falling into the model domain are extracted from the flight parameters of the
year 2009. On average, about 150 observations can be considered per analysis time. Then, the true
SSH field is interpolated to these locations via bilinear interpolation. In conjunction, this interpolation
serves as the observation operator, as it relates the model variables to observation space. The actual
observations were created by adding uncorrelated Gaussian noise with standard deviation of 0.03 cm to
the ”true” observation, corresponding to the typical Envisat measurement error. However, in order to
account for the additional representativity error introduced by the interpolation, the observation error
matrix is chosen to be diagonal with a variance of (0.06 cm)2. In summary, this procedure ensures to
obtain synthetic SSH observations with realistic spatial distribution and typical error statistics. The
main simplification is given by the fact that we assume all observations to be valid at the analysis
time, while in reality they are distributed in time as well. However, this approach has no influence on
the principal filter performance, which is the main objective here, and is therefore justified from an
algorithmic point of view.

6.3.1.2 Ocean temperature

SSH observations only concern the surface. Hence, other state variables, especially in the deeper
layers, could only be updated through cross-correlations with SSH , but would not be constrained
directly. Additionally, keeping the aim of this chapter in mind, it is useful to consider more observations.
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This does not only create a situation which is more similar to weather prediction, but also renders the
assimilation problem considerably more challenging for a filter such as the NETF, which is only based
on the Bayesian weights. They are evaluated in observation space, and the observation dimension is
mainly responsible for PF divergency (van Leeuwen 2009). Fortunately, even though observations for
the atmosphere are more dense in space, also in the ocean an observation type exists which is able to
increase the observed region significantly.

Vertical information can be gained with the help of profiling floats that are equipped with sensors to
measure variables such as temperature, salinity or pressure up to a depth of about 2000m. The best
known large-scale realization is the Argo network, a global ocean observation system designed for re-
search and climate monitoring (Carval et al. 2013), with currently about 3600 floats. The measurements,
which are freely available (http://www.argo.ucsd.edu), have already been used in more than
1500 scientific publications and are also utilized operationally by weather centers as a valuable data
source. For example, in ECWMF ocean analyses for seasonal forecasting and in ocean re-analyses the
Argo data have a notable impact (Balmaseda et al. 2007, 2013).

The procedure to generate the synthetic temperature observations is very similar as described for SSH .
The observations are taken to be valid at the analysis time, i.e., every other day. A further simplification
compared to the real Argo network is that we neglect lateral movements of the profilers, but again, this
has no principal influence on the filter performance and keeps the implementation effort manageable. It
is partly considered by using a regular 3◦ × 3◦ grid horizontally, and this grid is shifted by 1◦ at each
analysis time to reflect the non-stationarity. The true model temperature is mapped to the Argo observa-
tion grid via trilinear interpolation, which serves as the observation operator. Then, the observations are
simulated by adding uncorrelated Gaussian noise with a standard deviation of 0.3K to the interpolated
field at each observation location. For temperature, no representativity error is assumed since the in-
terpolation introduces only minor errors due to the relatively small spatial gradients in the temperature
fields (Yan et al. 2014). Vertically, 46 observation levels are considered, which correspond to the Argo
profiles and reach to a depth of about 2000m. The Argo levels above the first layer’s center (150m

depth) are discarded because their observation operator would require an extrapolation of the model
field. Furthermore, using more of these highly dense observations near the surface would increase the
risk of overfitting in the relatively thick first layer (300m) of this idealized NEMO configuration. In real
applications, the vertical grid resolution near the surface is typically much finer, allowing to consider
the dense near-surface observations as well.

Figure 6.2 visualizes the observation characteristics on day 8, i.e., at the fourth analysis step. Figure
6.2a is a horizontal snapshot, showing both the Envisat locations and the Argo network used at this
time. The SSH observations along the satellite tracks are indicated by their color. Figure 6.2b gives an
example of the temperature profiles (46 values each) along the λ = −50◦ line and their location in the
vertical NEMO grid.

6.3.2 Discussion

The global state vector consists of all prognostic variables of NEMO except salinity, i.e., T , U , V
(three-dimensional fields) and SSH (two-dimensional). Therefore, the global state dimensionality is

http://www.argo.ucsd.edu
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FIGURE 6.2: Observation characteristics on day 8: (a) The horizontal domain is shown, together with
the Argo profiler locations (crosses) and the synthetic SSH observations (colored) on the Envisat tracks
(thin lines). (b) The vertical grid of 11 layers is visualized, and embedded are the artificial Argo tem-
perature profiles along the λ = −50◦ longitude line. Note that at φ = 44◦, the true temperature field is

zero due to the lateral boundary conditions.

3·(121·81·11) + 121·81=333234, which is several orders of magnitude larger than in the experiments
conducted in Chapter 5. Furthermore, NEMO is not an idealized ”toy model”. It solves the same set of
complex physical equations that drive atmospheric and oceanic systems. Therefore, it is suited to assess
the NETF’s performance in a nonlinear, high-dimensional and more realistic environment.

One may compare this experiment to the setup used by Ades and van Leeuwen (2014) (AvL14 in the
following), who applied the EWPF to a primitive equation model. They also used a simplified, wind-
driven ocean system, but with reduced gravity as they focussed on the possible generation of gravity
waves. The principal differences to our setup are as follows:

• The NEMO model used here is entirely deterministic, i.e., no stochastic model errors are added.
The EWPF does not work in a deterministic system.

• The ocean in AvL14 has a single layer and thus, the state dimensionality is about one order of
magnitude smaller than in our three-dimensional experiment. Furthermore, AvL14 confine to the
momentum equations, while here the full set of the primitive equations is active, including the
thermodynamical ones, which allows to use temperature observations as well. Additionally, the
observation scenario is more realistic.

• As will be elaborated in section 6.4.3, the experiment shown here is initialized by a climatological
ensemble, while AvL14 perturb the true initial state.

6.4 Assimilation setup

This section describes the application of the filter to the introduced assimilation scenario.



Chapter 6. Application to a high-dimensional general circulation system 113

6.4.1 Technical implementation

The experiments shown in Chapter 5 were conducted in a newly-created assimilation framework, writ-
ten in R.1 This environment is convenient and clearly-arranged for DA problems of small and interme-
diate dimensions. However, with complex, large-scale models, the assimilation procedure should be
performed in a more efficient programming language. The NEMO code is written in FORTRAN.

A major advantage of ensemble-based filter techniques is the fact that they can be separated into fore-
cast and analysis steps. The latter are entirely generic and independent of the model at hand, and the
model itself does not have to be modified at all. Therefore, it is recommendable to refer to a predefined
environment that contains optimized implementations of the analysis algorithms. Then, the remaining
task for the user is to implement the interface to the model, along with model-specific settings. The
best known framework is the DA research test bed (DART, Anderson et al. 2009). An alternative is
the Parallel Data Assimilation Framework (PDAF, Nerger and Hiller 2013), developed at AWI Bremer-
haven (Nerger et al. 2005). This tool was chosen for three reasons: (1) It offers a more natural access
to the filter core routines, which is useful for implementing a new filter, (2) the author of this thesis has
already gained experiences with PDAF in the development of a land surface DA system, and (3) the
spatial adjacency facilitates the support and has already led to successful collaborations.

The standard PDAF package2 contains implementations of analysis routines for the EnKF, ETKF, SEIK
and SEEK, with focus on computational efficiency. Additionally, the ensemble subspace transform
Kalman filter (ESTKF, Nerger et al. 2012b), an efficient unification of ETKF and SEIK, is included.
All deterministic filter variants can be used in conjunction with domain localization. PDAF relies on
parallelization via Message Passing Interface (MPI, MPI Forum 2012). There are two options to create
an assimilation environment with PDAF. First, it can be used in an offline mode. Then, the model writes
the forecast ensemble to an output file, which is read by an individual PDAF program. It transforms the
former into an analysis ensemble, which is then put back into the model to initialize the next forecast
step. Alternatively, the calls to the PDAF interfaces can be implemented directly into the model time
stepping routine. Even though this variant requires a slight modification of the model code, it avoids the
input/output writings, as they can strongly degrade the computational efficiency for large-scale models.

6.4.1.1 Filter implementation

The NETF was implemented into PDAF in collaboration with P. Kirchgessner (AWI Bremerhaven).
For reasons of efficiency, mainly LAPACK routines were used to carry out the matrix operations. It is
planned to include the NETF and its localized variant in an upcoming official PDAF release. In princi-
pal, a fairly small amount of work was necessary by copying the LETKF routines first. In PDAF, the
LETKF is organized by an ”update” routine. It first maps the global ensemble states into observation
space. Then, a loop over all local domains is performed. For each local domain, the local forecast
ensemble is extracted, together with the localized observation. Next, the filter core routine, ”analysis”,
is called that transforms the ensemble into a local analysis ensemble, using the corresponding localized

1It is envisaged to publish the filter core routines as R package in future.
2PDAF version 1.10, released in October 2013, freely available from http://pdaf.awi.de/.

http://pdaf.awi.de/
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observation. Therefore, the implementation of the NETF only required to write a new ”analysis” rou-
tine, following the algorithm presented in section 4.8.1. All operations to select the local ensembles
and observations do not change and hence, the ”update” routine remains as for the LETKF. Addition-
ally, the random rotation is performed by default. In order to use a nudged NETF, see section 4.9, it is
sufficient to read the prior weights from the nudging step into the ”analysis” routine.

The implementation was thoroughly verified. First, we externalized the ”analysis” routine and com-
pared the output with the R function, given identical input data. Then, it was tested in Lorenz 96
experiments, where the performance was in good agreement with the results presented in Chapter 5.
These experiences confirm that the NETF can be directly implemented into an existing DA system that
employs domain localization.

6.4.1.2 Analysis step: user routines

Even though the ensemble transformation itself is entirely generic, some user routines had to be written
in order to adapt the generic variables (such as the ensemble matrices X and Y or observation vector
y) to the specific assimilation problem. The following list summarizes these routines, which also gives
an overview of the technical organization of the analysis step. The ensemble transform itself, as just
described, is located at step 4.

1. Observations: The current observations (SSH and T ) have to be read from files and put into an
observation vector y.

2. Observation operator: The connection of the observation and state vector has to be specified.
Here, either a bilinear (SSH) or trilinear interpolation (T ) of the corresponding model field is
performed.

3. Localization: The local state has to be extracted from the global state vector. Additionally, the
observations considered for a local domain are extracted from y, using the predefined localization
radius (see also below).

4. Observation error: During the analysis step, the (localized) matrix R is required. It is implicitly
formulated by the result when being multiplied by another matrix or vector, which occurs in both
NETF and ETKF. Here, also the weighting of observations by their distance is performed.

5. Globalization: The global state is re-constructed from the local analysis vectors.

6. Diagnostics: In order to monitor the performance, the computation of ensemble spread and RMSE
with respect to the truth (see below) are directly implemented into PDAF.

7. Output: The ensemble, its mean state and the diagnostics are written to a NetCDF file.

These user routines have mainly been prepared by P. Kirchgessner (AWI Bremerhaven) during previous
work with NEMO. Some routines were revised or enhanced in mutual work.

The analysis step is carried out serially for the ease of this experimental implementation. If more
efficiency is required, it can be parallelized as well. The local domains could be partitioned such that
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each processor computes the local updates for one region, also known as domain decomposition. A
different option is to use OpenMP to parallelize the loop over the local domains directly, which is
included in PDAF version 1.11 (Dec. 2014).

6.4.1.3 Forecast step: coupling to NEMO

The forecast step simply requires to run NEMO for each of the N ensemble members, initialized by
the analysis fields produced by the PDAF routines. It is easily parallelized by MPI, as the ensemble
integration consists of independent processes by definition. Thus, each process performs an individual
NEMO integration. Communication is only required at the beginning and at the end of the forecast step.
The model itself is not parallelized, but for larger domains, an additional domain decomposition could
be applied during the forecast step as well.

In our experiment, NEMO is coupled to PDAF in online mode. The PDAF library, which contains the
filter core routines, is linked to the program at compilation time. The following modifications in the
NEMO source code were required:

1. Initialization of MPI and its communicators.

2. Initialization of PDAF, defining the assimilation setup and its variables. Most of them are read
via namelist parameters. Additionally, for each process, the model fields are overwritten by the
initial ensemble member to be used for the assimilation experiment.

3. Assimilation: At the end of each model time step, the routine ”assimilate” is called. If an
observation is available at the current time step, the following actions are performed:

(a) Ensemble collection: The forecast states are vectors which have to be constructed from the
multidimensional model fields (SSH , T , U , V ). This has to be done for each member, and
then, all ensemble states are gathered on one processor core.

(b) Analysis: While the analysis is computed, the other processors remain idle.

(c) Ensemble distribution: For each member, the model fields are reconstructed from the analy-
sis state vector. Then, each processor core receives one model state such that it can proceed
with the forward integration.

6.4.2 Localization and inflation

As discussed in section 3.4, ensemble-based filters show suboptimal behavior related to the necessity
of using rather small ensemble sizes in large-scale systems. For the EnKFs, this is usually counteracted
by localization and inflation techniques. As demonstrated in chapters 4 and 5, these considerations are
valid similarly for the NETF.

Domain localization is applied as outlined in Chapter 4. Here, a local domain is defined by all state
variables in a single, vertical ocean column. Hence, the local state dimensionality is always 3nz +

1 = 34 for each of the nx · ny = 9801 local domains. Localization is therefore only performed in
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Statistics only SSH only T combined
global observation dimension 145 3128 3273

maximum local observation dimension 16 184 199
average local observation dimension 7 90 94

number of local domains with observations 6262 9654 9742
number of local domains without observations 3539 147 59

TABLE 6.1: Information about the observations and localization. All statistical values are temporal
averages over the 180 analysis steps. The total number of local domains is 9801, and this table is valid

for a localization radius of 2.5◦.

the horizontal directions. During one analysis step, each ocean column is updated separately using
only observations within the localization radius. As in chapter 5, we apply the fifth-order polynomial
correlation function (Gaspari and Cohn 1999) to reduce the influence of distant observations. It should
be noted that the NETF weights become spatially dependent, but as they are only used intermediately,
localization represents no challenge for the NETF, in contrast to PFs in general. A localization radius of
2.5◦ is set, roughly corresponding to 250 km. Thus, all observations within circle of 5◦ diameter around
the current local domain are considered for the local analysis. This value arises from experiences in prior
LETKF experiments in this setting (P. Kirchgessner, personal communication) and is in agreement with
the setup of Cosme et al. (2010). Furthermore, it is stated that the spatial correlation values of SSH
becomes close to zero already at a distance of less than 200 km (Yan 2013, Fig. 3.4). Therefore, the
chosen localization radius is also consistent with the statistical properties of the system that arise from
the physical model equations.

Table 6.1 provides some statistics of the observation dimensions from a global and local point of view.
On average, at each analysis time 3273 observations, by the majority temperature data, are assimilated.
The average local observation dimension is nearly 100, but it may reach 200, and almost all local
domains have access to observations. In other words, the likelihood weights are evaluated in a 100-
dimensional subspace, on average. Even though this is significantly smaller than the global observation
dimension, it is still huge considering that the curse of dimensionality demands ensemble sizes of
106 − 1011 in such dimensions (Snyder et al. 2008). The region of significant probability mass is
extremely small, and hence, filter divergency can only be avoided if all particles are sufficiently close
to the truth. Additionally, the weight evaluation is performed 9801 times at each analysis step. The fact
that the filter does not diverge, in spite of about only hundred members, confirms that the generation of
a new ensemble at each analysis step works very well for the NETF.

Concerning inflation, we restrict to a factor γ which is fixed in time and space, as for the experiments
in Chapter 5. At each analysis step, it is applied to the prior ensemble. As discussed in section 4.7.2, it
could be used for the analysis ensemble as well. For the main experiment3, γ is set to 1/0.975 ≈ 1.025.
It should be kept in mind that inflation constitutes the main tuning factor in an ensemble-based DA
system (Houtekamer et al. 2005; Sakov and Oke 2008b).

Using a fixed localization radius and inflation factor corresponds to the most simple techniques. Of
course, more sophisticated approaches are conceivable, as discussed in section 3.4. Even though most
of them have been developed for EnKFs, they could be applied to the NETF as well due to its similar

3PDAF uses the forgetting factor, the inverse of the inflation factor γ (Nerger et al. 2012b).



Chapter 6. Application to a high-dimensional general circulation system 117

−60 −55 −50 −45 −40 −35 −30

24
28

32
36

40
44

Longitude [°]

La
tit

ud
e 

[°
]

−0.6

−0.4

−0.2

0.0

0.2

0.4

(a) SSH [m]

−60 −55 −50 −45 −40 −35 −30

24
28

32
36

40
44

Longitude [°]

La
tit

ud
e 

[°
]

−0.5

0.0

0.5

1.0

(b) U [m/s]

FIGURE 6.3: Ensemble mean state at initial time, for (a) SSH and (b) U (first layer). The mesoscale
circulations average out over the initial ensemble. For comparison, the true initial fields are shown in

Figure 6.1 (with identical color legend).

update formalism. Adaptive methods are capable of considering flow-dependent and inhomogeneous
localization radii and inflation factors. For example, in this NEMO application, it would already be
more realistic to apply different inflation factors for the different variables. One might also choose
different localization radii for the two observation types, or localization functions that are not isotropic.
However, the aim of this study is not to perform an extensive tuning to gain the best result possible,
but rather to demonstrate the principal applicability of the basic algorithm. Regarding this aim, the
restriction to the basic techniques is not only sufficient, but also more constructive, as the results reflect
the pure filter behavior instead of the tuning efforts. In a potential future real-world application of the
NETF, it is recommendable to further enhance the performance by using more advanced approaches.

6.4.3 Initial ensemble

Any ensemble-based filter requires an initialization at the beginning of the assimilation window. While
this is a rather trivial task in small test models, it becomes an important issue in large-scale problems,
similarly to the specification of the background error covariance matrix in variational techniques. In
principle, the initial ensemble should represent the best knowledge about the system at the initial time
t0 and its error covariance structure. Furthermore, in large-scale circulation models it should be taken
care that the ensemble states are balanced in order to avoid an initial shock at the beginning, or even the
generation of gravity waves (Ades and van Leeuwen 2014). Therefore, the initial ensemble is generated
in a realistic way. Within the years 51-74, i.e., after spin-up and prior to the experiment year, a state
is sampled every other month. This results in a collection of 143 states, considered as a climatological
sample of the system. Its covariance matrix contains the dominant variances and error directions.

The initial ensemble is generated with second-order exact sampling to gain an optimal low-rank repre-
sentation of the climatological error covariance; see Appendix C for more details on the procedure. The
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initial members contain mesoscale features. However, their mean state only represents the large-scale
double-gyre circulation and the central jet, as visualized in Figure 6.3. Thus, this choice of an initial
ensemble represents a challenge for the DA system, as only very limited flow-dependent information
is available at the beginning. In real applications, usually more prior information than climatology is
available, for example from the output of previous analysis cycles, which might already be fairly close
to the truth. However, we restrict to the more difficult case, since a useful filter should not only be
able to keep track of the truth, but also to find it at first. Nevertheless, the true state should be within
the range of a consistent initial ensemble. Therefore, we implemented the option to inflate the initial
spread and used a factor of 1.25. The influence of the initial ensemble on the filter performance will be
investigated in more detail in section 6.6.1.

The ensemble size is set to N = 120 due to the availability of six dual socket nodes with ten cores
each. Thus, the ensemble size is of the same order as in the experiments of Chapter 5, while the state
dimension is strongly increased. This allows to verify whether the ensemble size required by the NETF
increases with dimension, as for the PF, or if it really scales better, as the results in Chapter 5 indicate.
The good scaling is a major advantage of the EnKFs which deliver reliable results with roughly hundred
members for a wide range of dimensions, i.e., for Lorenz to NWP models.

6.4.4 Summary of the experimental setup

Table 6.2 summarizes the filter settings and observation properties for a quick overview.

Setup variable Value Explanation / comment
filter NETF localized, with random rotation

model NEMO same as for truth run (deterministic)
state dimension K 333234 U , V , T , SSH on the 121× 81× 11 grid

observations SSH , T Envisat and Argo, simulated from truth
observation operatorH lin. interpol. bi/tri-linear interpolation to observation grids

observations error variance (0.06m)2, (0.3K)2 for SSH and T ; R is diagonal
observation dimension L ≈ 3273 slightly varies in time (see Sec. 6.5)

assimilation window 360 days year 75 of the transient NEMO run
no. of analysis steps 180 every 2 days

ensemble size N 120 120 cores used in the forecast step
inflation factor γ 1.025 applied to the prior ensemble

no. of local domains 9801 each vertical ocean column
localization radius rloc 2.5◦ in horizontal direction (isotropic)

localization type DL with OL weighting by fifth-order polynomial
initial ensemble climatological second-order exact sampling from

143 model samples of years 51-74
initial inflation 1.25 for the initial covariance only

TABLE 6.2: Standard setup for the assimilation experiment. Not included are the NEMO model set-
tings, which are described in section 6.2.2.
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6.5 Results and discussion

Even though ensemble-based filter algorithms are in principle model-independent, their usage and the
interpretation of their performance requires a thorough knowledge about the background of the assim-
ilation problem, its design and the properties of the model at hand. This information was provided in
the previous sections, and it now allows to focus on the actual results of the assimilation run.

6.5.1 Evaluation measures

The main evaluation criterium for the NETF’s performance is, as in Chapter 5, the root mean square
error (RMSE) of the ensemble mean at each analysis time level j ∈ 0, 1, 2, . . . , J=180. It is computed
separately for each model variable according to

RMSEj(X) =

√√√√∑gp

(
Xj −Xj,true

)2
dim(X)

Here, X stands for each of the four different model fields (T , U , V , SSH) and Xj = 1
N

∑N
n=1X

n
j

represents the ensemble mean field. dim(X) is the dimension of the field, i.e., 107811 for T , U , V
and 9801 for SSH , and

∑
gp indicates summation over all model grid points. Thus, the term within

the square root equals the field-averaged squared error per grid point. The RMSE can be computed for
both the forecast or analysis ensemble. Their difference is related to the analysis increments and allows
to assess the impact of the current observations. The RMSE allows a general judgment of the analysis
quality. As an overall measure, it may not capture all performance details, but a low RMSE represents
a necessary condition for a successful analysis. Ensemble-based filters offer an estimated RMSE by the
field-averaged ensemble spread,

SPREADj(X) =

√√√√∑gp

[
1

N−1
∑N

n=1(X
n
j −Xj)2

]
dim(X)

This measure can be evaluated independently from the truth. In a well-calibrated DA system, it should
be of similar magnitude as the RMSE, since then the ensemble distribution allows a reliable diagnostics
of the filter uncertainty (e.g., Hopson 2014).

For comparative reasons, it is useful to include the so-called free run. Here, the same initial ensemble
as used in the DA experiments is integrated throughout the assimilation window, except that it does not
consider the observations. With this design, the free run constitutes a reference that allows to reveal the
impact of assimilating the observational data into the model.

6.5.2 Qualitative evaluation

As discussed in section 6.4.3, the initial ensemble contains no specific information about the true flow
at the initial time. Thus, without additional constraints, the free ensemble can only deliver climatolog-
ical information of the system during the forecast phase, i.e., the large-scale double-gyre circulation
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FIGURE 6.4: Results for SSH at day 260. Shown are the fields from (a) truth, (b) free run (ensemble
mean), and (c) NETF analysis ensemble mean. The field in (d) is the difference between analysis and
truth. Note that in (d) the color scale is enlarged by a factor of 10, as otherwise analysis and truth can

be barely distinguished.

created by the wind forcing. However, it is not able to resolve the mesoscale patterns, which are of
chaotic nature and average out over the free ensemble. These expectations are confirmed by Figure
6.4, showing the SSH fields at day 260. In principal, the free ensemble mean, Figure 6.4b, has not
changed compared to the initial time, revealed by a comparison with Figure 6.3a. In contrast, the NETF
analysis at that time, Figure 6.4c, yields an estimate that closely resembles the true circulation including
the mesoscale features, as shown in Figure 6.4a. The differences, plotted in Figure 6.4d, are only of
minor magnitude and mainly of statistical nature. The filter is close to perfect tracking, only in the most
active region around λ = −45◦ and φ = 34◦ small mismatches in the magnitude of the mesoscale
perturbations are visible. These qualitative findings are similarly valid for all other variables as well,
including the unobserved velocity fields. They already confirm that the NETF works successfully in
this high-dimensional scenario because it is able to reproduce the truth.
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(a) Sea surface height, SSH [m]
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(c) Zonal velocity, U [m/s]
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(d) Meridional velocity, V [m/s]

FIGURE 6.5: Temporal evolution of the evaluation measures for the NETF (solid lines) and free run
(dotted lines) for all control variables, i.e., (a) SSH , (b) T , (c) U and (d) V . While the RMSE is drawn

in black, the spread is in gray. The legend in (b) is valid for all panels.

6.5.3 Quantitative evaluation

Having proven the applicability of the NETF in a qualitative way, it remains to strengthen the results
from a quantitative point of view. Figure 6.5 shows the temporal evolution of the analysis RMSE,
together with the average ensemble spread, for each control variable. The corresponding results for
the free run are also added as reference. As already revealed, the free ensemble can only output a
climatological estimate and does not improve upon the initial time. The fact that its error and spread
remain of similar magnitude confirms that the initial ensemble is a good representation of the model
climatology. Its error and spread measures for the dynamical variables (U , V , SSH) exhibit a higher
variability due to the sub-scale variability of the true flow. The RMSEs of the NETF clearly indicate that
it works successfully, as its analyses only exhibit small errors. This reflects the insight that the NETF
is able to resolve the mesoscale patterns of the true flow. For all variables, the initial error is reduced
nearly monotonously until convergency is reached. This spin-up phase is explained by the fact that the
initial ensemble does not contain information about the mesoscale circulation (Yang et al. 2012b) and
will be discussed shortly after. Beyond spin-up, the error remains approximately constant, which shows
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FIGURE 6.6: Relative error plot. The solid lines represents the relative error (RMSE normalized by its
initial value) of NETF analysis for T (black), U (red), V (orange) and SSH (blue). The dotted lines

refer to the free run.

that the filter ensemble is in a quasi-stationary balance constrained by the observations. This is further
confirmed by the ensemble spread. After the spin-up phase, it is also nearly constant, and is typically
slightly larger than the RMSE. Therefore, the ensemble distributions are also consistent with the truth
in a statistical sense. This confirms that the inflation factor is well chosen. If it was too large, the RMSE
would increase again after the spin-up phase. In contrast, too little inflation would increase the spin-up
time, or even cause the filter to collapse.

For a better comparison of the performances concerning the error reduction, the RMSEs are also nor-
malized by their values at the initial time (day 0), at which they are equivalent for the NETF and free
run. Figure 6.6 depicts the temporal evolution of these relative errors. For temperature, the strongest
error reduction is observed. This is easily explained by the fact that at least the upper temperature is con-
strained by the majority of the observations. Nevertheless, a minimal relative error of only about 7.5%

can be achieved, indicating that the deeper layers are affected positively as well. This will be a topic for
further exploration in section 6.6. SSH , also an observed variable, achieves the second-best minimal
relative error, with about 10.6% beyond spin-up. Even though the velocity fields are not observed, they
can also be estimated well, with minimal relative errors of 14.8% and 16.3%, respectively. U exhibits
slightly smaller errors, presumably because it is, at least close to the surface, constrained by the fixed
wind forcing. The good results for U and V confirm that the filter is able to generate correct analysis
increments for all variables. It is emphasized that, in the NETF, the increments are directly based on
the Bayesian weights which in turn are evaluated from the high-dimensional probability distributions.

6.5.4 Comparison to the ETKF

Even though the NETF produces consistent and appealing filter results, the spin-up phase appears to take
about 200 days, as visible in Figure 6.6. This is also revealed by a comparison with the ETKF, which
we applied with the same initial ensemble and setup. The ETKF results for the relative errors are shown
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(a) ETKF
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FIGURE 6.7: Results for the ETKF. (a) Relative analysis errors as in Fig. 6.6, but for the ETKF. (b) The
relative error, averaged over all prognostic variables, is shown for the NETF (black) and ETKF (gray).

in Figure 6.7a. The filter results towards the end of the assimilation window (days 200-360) are very
similar for ETKF and NETF. Figure 6.7b compares the relative RMSEs, averaged over all four variables.
It confirms that the ETKF requires only slightly more than hundred days to reach convergency. Its
advantage in the spin-up phase is particularly apparent for the less constrained dynamical variables U ,
V and SSH . However, towards the end of the year, the NETF performs slightly better. The difference
is not really significant, but at least consistent, which might be a hint that the nonlinear approach could
offer some minor benefits. However, in this setup probably not much improvement over the ETKF is
possible, as least not without more elaborate tuning, as discussed in section 6.4.2, because the general
flow is strongly constrained by the fixed wind forcing.

The extended spin-up time is explained by revisiting Figure 6.5. During the spin-up phase, the spread
decreases faster than the RMSE for all variables. The ensembles exhibit too little spread, and therefore,
the NETF analyses do not consider the observations sufficiently. In principle, this could be resolved by
increasing the inflation factor. However, once convergency is reached, this would be detrimental to the
filter and the RMSE would rise again. Hence, an adaptive inflation might be helpful to provide more
inflation in the beginning, but less in the convergency phase. For the ETKF, more elaborate methods
to accelerate the spin-up have been proposed (Kalnay and Yang 2010). From a more general point of
view, these findings also indicate that the initial ensemble is potentially of great relevance for the NETF.
Therefore, its influence will be further investigated in section 6.6.1.

In summary, the quantitative analysis of the overall performance of the NETF reveals that the new
method is actually applicable for nonlinear, high-dimensional DA, despite the fact that the assimilation
is entirely based on the non-parametric Bayes’ theorem. The NETF is not only able to perform a
stable analysis in a high-dimensional problem, but its performance is also in good accordance with
the principal filter behavior one would expect for the given experimental setup. Its analyses offer a
strong error reduction which shows that the observations are used efficiently, and it is potentially able to
improve the estimates of the ETKF, an established method. These results have been obtained with the
generic NETF as derived in Chapter 4, no further adaptions are required in this large-scale application.



Chapter 6. Application to a high-dimensional general circulation system 124

Statistics Climatology T [◦C] SSH [m] U [m/s] V [m/s]

RMSE years 65-74 0.3336 0.0775 0.0641 0.0546
years 51-74 0.2931 0.0810 0.0627 0.0544

spread years 65-74 0.1151 0.0662 0.0527 0.0524
years 51-74 0.2056 0.0772 0.0583 0.0571

bias years 65-74 0.0613 -0.0008 0.0001 0.0000
years 51-74 -0.0141 0.0001 0.0001 0.0000

TABLE 6.3: Basic properties of the climatological samples which are used to generate the initial en-
semble, evaluated for each individual variable. RMSE and bias are computed for the climatological

mean state with respect to the true initial state in year 75.

6.6 Investigation of selected aspects

In the previous section, it was demonstrated that the NETF is applicable to a large-scale DA problem.
Thus, the principal aim of this chapter could be accomplished. This section highlights some additional
aspects, aiming at a deepened view on the filter behavior.

6.6.1 Filter initialization

The main experiment in section 6.5 has revealed that the NETF yields good results, but requires a
relatively long spin-up time. An explanation is that the NETF is presumably more sensitive to the spec-
ification of the initial ensemble than the ETKF. This can be understood well by the fact that the NETF
update is entirely based on the Bayesian weights. Given the climatological initialization here, at the first
analysis step many members are located far away from the observation. Therefore, many weights are
insignificant and the new second-order statistics can only be estimated from a few members with signif-
icant weights, which degrades the quality of these estimates. Consequently, the analysis ensemble will
be generated with these poor estimates, which decelerates the convergency rate as the increments are
only small. To verify this hypothesis, the average effective ensemble size,

(∑
n(wn)2

)−1, is computed.
It equalsN if all members have equal weight and functions as descriptive measure of the variance of the
weights (Stordal et al. 2011). In the first analysis step, the effective ensemble size is only about twenty,
while it increases to about hundred later on. These numbers support the theory that in the beginning
most members do not contribute much information. Thus, it takes a rather long time to equilibrate the
ensemble. These theoretical considerations reveal that the NETF is relatively sensitive to the initial
ensemble. The findings are further supported by the following observations:

1. In a first test case, the climatology of only the prior ten years has been used to generate the initial
ensemble. In this case, the NETF does not work and shows signs of filter divergency. It exhibits
small spreads, but the RMSEs are not much improved compared to the initial time, see Figure
6.8a, expect for temperature, where a slight impact is visible. A basic analysis of the initial en-
semble, as shown in Table 6.3, reveals the problem. The deviations from the true initial state, as
measured by the RMSE, are of similar magnitude for both climatologies. However, in compari-
son, the spread in temperature of the 10-years-climatology is very small, only about one third of
the RMSE. Hence, the initial ensemble is distributed in a way that it does not properly cover the



Chapter 6. Application to a high-dimensional general circulation system 125

0 50 100 150 200 250 300 350

0
20

40
60

80
10

0
12

0
14

0

Time [days]

R
el

at
iv

e 
R

M
S

E
 [%

]

T
U
V
SSH

(a) Using the 10-years climatology
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(b) Using the 24-years climatology

FIGURE 6.8: Experiments on filter initialization for the NETF. Shown are always the relative RMSEs,
as in Fig. 6.6 for all variables. (a) If the 10-years climatology is used to create the initial ensemble, the
filter diverges. (b) Initialization with the 24-years climatology. Here, the solid lines refer to an initial

inflation of 1.25, and the dotted to 1.0.

truth, which is confirmed by the bias. For the other variables, the situation is less problematic,
but the weights are computed in observation space, which is mainly populated by temperature.
Therefore, at the first analysis step, most particles receive insignificant relative weights, which
explains the failure of the filter in this case. In contrast, the 24-years-climatology exhibits more
consistent statistics. Even though the spread is still too small, its difference to the RMSE is less
pronounced, and the bias is removed. Using this climatology, the NETF works properly as shown
in section 6.5. This confirms the importance of the choice of the initial ensemble, as already
discussed from a theoretical point of view.

2. Based on the insight that the initial ensemble might be too narrow, the initial inflation is a simple,
yet practical way to increase the initial spread which allows more members to be in the range
of the observations. This can help to obtain more significant weights in the first steps. Without
initial inflation, the NETF still works, but the spin-up time is slightly increased, see Figure 6.8b.
Inflation cannot be used to overcome the long spin-up phase in principal. However, in other cases,
the initial inflation might more important to avoid divergency, see also section 6.6.4.

The EnKFs do not suffer from this issue as much due to their distinct update structure. The increments
are determined by the Kalman gain, which itself is computed from ensemble perturbations alone. The
actual positions of the members are not relevant. The adjustment of the ensemble members is pro-
portional to the innovation, see equation (3.12). Thus, members that exhibit a large distance from the
observation are pulled towards it more strongly. This is contrary to PF-based methods, where these
members receive insignificant relative weights and are not able to contribute to the analysis.
It becomes clear that, in our experiment, the climatological initial ensemble represents a major chal-
lenge for the NETF. Nevertheless, it still is able to reconstruct the truth. In realistic situations, usually
more initial information is available. For instance, often the analysis ensemble of the previous assim-
ilation cycle can be utilized. It is usually fairly close to the truth and may include information about



Chapter 6. Application to a high-dimensional general circulation system 126

0 50 100 150 200 250 300 350

10
9

8
7

6
5

4
3

2
1

Time [days]

V
er

tic
al

 la
ye

r

(a) temperature, T

0 50 100 150 200 250 300 350

10
9

8
7

6
5

4
3

2
1

Time [days]
V

er
tic

al
 la

ye
r

(b) zonal velocity, U
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FIGURE 6.9: Temporal evolution of the relative RMSEs for each vertical layer for (a) T , (b) U and (c)
V . At each time, the relative RMSE equals the RMSE divided by the corresponding RMSE at initial

time. The legend bar in (c) is valid for all panels.

the mesoscale flow, which strongly reduces the spin-up phase (Kalnay and Yang 2010). This issue is
expected to be of similar relevance for the EWPF. In the large-scale EWPF experiments published so
far (Ades and van Leeuwen 2014; van Leeuwen and Ades 2013), the initial ensembles were generated
by perturbing the true initial state. This strongly ensures reasonable weights in the first analysis steps.
Thus, the initialization might represent a challenge for the EWPF not yet revealed. Furthermore, the
true initial state is not available in realistic DA applications.

6.6.2 Layer-wise evaluation

As this chapter deals with the principal applicability of the NETF, the evaluation measures are usually
averaged over the whole field for each variable. A multi-faced evaluation would be beyond the scope
of this experiment, but it might be of interest to highlight one aspect. A major challenge in ocean DA
concerns the estimation of deeper layers which exhibit a slow variability, particularly for temperature,
and are usually unobserved, even if Argo floaters are present (Zhang and Rosati 2010). Therefore, a
layer-wise evaluation is performed for T , U and V . Figure 6.9 shows the temporal evolution of the
relative RMSEs for each layer. Here, the normalization of each RMSE time series has been performed
by the corresponding value at the initial time. Thus, the relative RMSEs quantify the error reduction in
each layer.
The results confirm the expectation that in principle (1) the spin-up time for the state estimation in-
creases with depth, and (2) in the upper layers, the error can be reduced more strongly. Furthermore,
the spin-up time depends on the variable. The upper layers of T show the quickest convergency rate.
The analysis results for U are, at least in the upper layers, slightly better than for V , concerning both
spin-up time and minimal relative error. This was already noted in section 6.5.3, and could be related to
the surface forcing, which constrains the zonal velocity more than V . The mentioned difficulty in esti-
mating the deep ocean temperature can be seen for the ninth T layer in Figure 6.9a. In general, deeper
layers are expected to exhibit larger relative RMSEs. However, our NEMO configuration applies a
closed boundary at the bottom which fixes the temperature in layer 11 (see section 6.2.2). This strongly
constrains the energy flux into the tenth layer from below and explains the surprising observation that
the tenth layer shows smaller RMSEs for T . More advanced configurations usually rely on a no-flux
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FIGURE 6.10: Forecast skill in year 76, i.e., after the assimilation year, as given by (a) relative RMSE
and (b) relative ensemble spread. The solid lines refer to the evolution of the final NETF analysis en-
semble, while the dotted lines refer to the free ensemble. For each case and variable, the normalization

is performed using the corresponding statistics of the free run at the initial time of the year.

boundary condition that allows varying bottom temperatures, which is more appropriate for real ocean
DA applications.

In summary, the layered evaluation shows that the NETF is able to improve the estimates in the deeper
layers, and the characteristics are as expected. It also corresponds to the ETKF results which only differ
in the lengths of the spin-up times (not shown), as already discussed.

6.6.3 Impact on predictions

The results shown so far indicate that the assimilation of observations into the ocean model can lead
to significant error reductions for all prognostic variables. Thus, past states can be estimated reliably,
which is useful for example for re-analyses. As motivated in Chapter 1, the outcome of DA is often
utilized to initialize forecasts, and it is expected that an optimized analysis also allows better predictions.
Here, we briefly evaluate the usefulness of the NETF analysis from a forecasting point of view by
looking at the predictability properties of the model. As the characteristics of the large-scale circulation
are nearly stationary in our setup, the predictability limit does not vary much in time as well. Thus,
an ensemble integration within the year 76 is performed. It is initialized by the final NETF analysis
ensemble of year 75 (day 360). As reference, the free run is also extended to the year 76.

The results in terms of relative RMSEs are shown in Figure 6.10a. As expected, the RMSEs increase in
time as the forecast is not constrained by observations anymore. This loss of forecast skill is particularly
evident for the dynamical variables, i.e., U , V and SSH . After about 125 days, their relative errors
exceed 80%, and after about 200 days, the skill is similar as for the free, climatological ensemble. In
contrast, the thermodynamic variable, T , behaves differently. Its forecast skill degrades slower and does
not reach the climatological no-skill level within this year. This can be related to the relatively slow
variability of T , which we already noticed for the estimation of deeper layers in section 6.6.2, even
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in comparison with U and V . In consequence, the medium-range climatology for T may significantly
differ from a long-term climatology. This well-known property of ocean circulation (e.g., Palter et al.
2014; Schleussner et al. 2014) is also reflected in our simplified ocean configuration, as revealed by the
differences in the 24-years- and 10-years-climatology, which were already discussed in section 6.6.1.
Therefore, some predictive skill is preserved for T within the year 76. The temporal error evolution can
further be used to obtain a quantitative estimate of predictability. For the first hundred days, the error
e is modeled by an exponential growth, i.e., e(t) ∝ exp

(
t

td/ ln(2)

)
. Then, the error doubling time td

can be derived empirically from the slope of a linear fit of its logarithm. This procedure yields values
between 50 and 60 days for all variables.

The relative ensemble spreads, shown in Figure 6.10b, indicate the increasing uncertainty of the fore-
cast, as they are principally consistent with the RMSEs. However, after the ensembles are equilibrated,
their spreads appear to decrease very slightly. This is already visible for the free ensemble in year 75, see
Figure 6.5. This marginal loss of spread might be reasoned in our NEMO configuration with a closed
domain and fixed forcing. However, a proper identification and explanation of this issue would require
to investigate an extended multi-year ensemble forecast, which is beyond the scope of this chapter.

In summary, even this simplified ocean system allows to conclude that an analysis transfers into pre-
dictive skill for slightly more than hundred days, concerning the dynamics. After that, the mesoscale
patterns cannot be resolved anymore and the chaotic behavior is dominant. However, the improvement
of the ocean’s stratification, as given by temperature, positively affects the forecasts for much longer
time scales, at least in comparison with the long-term climatology. In a wider context, this can be
beneficial for climate predictions (Brandt et al. 2011; Schleussner et al. 2014), as ocean temperature de-
termines the lower boundary condition for atmospheric models. These results underline the usefulness
of the temperature observations in order to improve the ocean’s energy budget (Kröger et al. 2012).

6.6.4 Other issues

Finally, we shortly state some additional findings that are not presented in detail as they are of minor
relevance here. Nevertheless, they might be interesting to know with regard to future applications.

6.6.4.1 Ensemble size

In all experiments, an ensemble size of N = 120 yields good results. With 140 members, the filter
behavior is quite similar and exhibits minor differences only, such as a slightly shortened spin-up phase.
With hundred members, the filter still performs well, but it requires to increase the initial inflation to 1.5
to avoid divergency in the beginning. These findings confirm that the applicability in high dimensions
is not restricted by an unrealistic ensemble size. Only about hundred members give good results in very
different systems where the dimensions vary over many orders of magnitudes. At the current stage,
it appears that the NETF’s applicability is primarily determined by a consistent representation of the
initial ensemble rather than by ensemble size.
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6.6.4.2 Sparse observations

In another side experiment, only the SSH observations are assimilated. This intends to examine
whether the NETF is capable of dealing with sparse observations that constrain the system only weakly,
see Table 6.1. The NETF remains stable (with an increased inflation factor of 1.1) and exhibits relative
RMSEs of roughly 30% (SSH) to 50 % (U , V ), while for T (> 80%) only very weak improvements
are achieved. These results suggest that the observations are assimilated successfully, but their density
is too low to sufficiently resolve the mesoscale patterns. Hence, this experimental setup probably does
not allow the true flow to be tracked as well as with the additional profiler information. This interpreta-
tion is supported by the ETKF results, which are similar. These findings emphasize the importance of
the vertical profiles to constrain the model, particularly concerning the ocean’s stratification and heat
budget, as also reflected in state-of-the-art ocean DA applications (Balmaseda et al. 2013).

6.6.4.3 Application of inflation

As mentioned in section 6.4.2, either the forecast or analysis ensemble can be inflated, and we have
always restricted to prior inflation. An experiment with analysis inflation has been performed as well,
and the resulting performance shows no significant differences to the main experiment. We conclude
that the filter is not sensitive to the way inflation is implemented, probably because the increased spread
of an inflated analysis ensemble yields a similarly inflated prior ensemble at the next analysis step.
However, this conclusion might change in systems with different dynamics. For the ETKF, it is not yet
clarified which inflation type is preferable in general (Rainwater and Hunt 2013). Anyway, inflation in
the NETF should be applied to the global ensemble. In cases with sparse observations, the unobserved
local domains should be inflated as well. Otherwise the local ensembles might exhibit too little spread
when an observation is available at a future analysis step, and might fail to assimilate it correctly.

6.7 Final discussion and conclusions

In this chapter, the NETF was applied to a large-scale general circulation model. The empirical results
clearly show that the NETF behaves stable in this scenario. Additionally, all results indicate a preferable
filter behavior. Even if initialized with climatological information only, the NETF analysis converges
to the truth and keeps track of it, including the mesoscale circulation patterns.

Therefore, the suggested filter is actually applicable in high-dimensional DA problems with a typical
ensemble size of around hundred. This represents an important result in the context of nonlinear, high-
dimensional filtering, which is a field of rapid progress at the current stage. Ades and van Leeuwen
(2014) demonstrated that the EWPF can be applied in high-dimensional cases as well, using a nudged
forecast step in a stochastic model. The results shown here demonstrate that even in a deterministic
model a generic filter algorithm solely based on the Bayesian weights can still be successful. The
implementation of the NETF is extremely simple and corresponds to changing a few lines of code in
case an ETKF system is already available. In particular, no model-specific adjustments to the generic
algorithm are required, and, as the ETKF, the filter is only tuned by inflation and localization.
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The detailed evaluation of the NETF has further revealed that it performs reasonably well in the high-
dimensional scenario. The deviation from the truth can be reduced strongly as compared to a free run,
and once the filter has converged, RMSE and ensemble spread are in good agreement. These findings
hold for all prognostic fields, also the unobserved ones. In comparison with the ETKF, the filter achieves
a very similar performance beyond the spin-up phase, which is a remarkable result considering the
simple formulation of the NETF. Probably, a major improvement over the ETKF is not possible in this
scenario. We also found that the NETF is sensitive to the initial ensemble. If it is not properly specified,
many members may obtain insignificant weights. This insight is important for further applications of
PF-based methods, including the EWPF. Nevertheless, we demonstrated that even with very limited
initial information the NETF is successful, even though it requires an extended spin-up time.

As the ensemble size has not been increased compared to the low- and medium-range applications in
Chapter 5, it is safe to conclude that the NETF is able to overcome the curse of dimensionality. This is
reasoned in (1) localization, which decreases the effective dimension and (2) the ensemble transform,
which puts an increment to each ensemble member such that the ensemble is equally-weighted after the
analysis. In contrast to the EWPF, the NETF does not attempt to consider the full analysis pdf, but only
its second-order statistics. Of course, some limitations remain. The sensitivity to the initial ensemble
shows that the applicability is not as unconditional as for the ETKF, which is a very robust method by
construction. Furthermore, the localization radius should be chosen in dependence on the density of
the observation network such that the local observation dimension is not too large. However, in our
experiment the NETF is able to deal with a more than hundred-dimensional local observation space
dimension, which already corresponds to a quite large number of local observations.

A side benefit of the experiments conducted here is that the results emphasize the usefulness of ocean
DA, particularly if vertical profiles are available. It was illustrated that the analysis is able to improve
subsequent predictions compared to the long-term climatology. This is of great relevance for seasonal
or medium-range climate prediction, where the energy fluxes exchanged between ocean and atmosphere
are an important model component (Schleussner et al. 2014). Particularly temperature exhibits a long-
term memory, and its estimation shows the quickest convergency. For instance, temperature determines
the ocean heat content, a crucial component for decadal predictions (e.g., Kröger et al. 2012; Müller
et al. 2012), but also for climate diagnostics. Hence, the Argo profiles are expected to be highly benefi-
cial for any ocean DA system.

The successful demonstration of large-scale applicability induces a variety of aspects that are worth to
be investigated in the future. First, it would be interesting to compare the performance of the NETF and
the EWPF, necessarily with a stochastic model. Then, the NETF could also make use of the nudging
forecast step, as explained in section 4.9. This would allow to assess the impact of the more complex
EWPF analysis step in contrast to the simple NETF analysis, as both output an equally-weighted en-
semble. Second, it would be important to apply the NETF to another large-scale situation, perhaps a
system where nonlinear developments have a stronger impact. In our scenario, the mesoscale distur-
bances do not alter the large-scale flow in principal, as it is constrained by the analytical forcing. In
fully-realistic GCM applications, the large-scale flow is not stationary in time either. Then, the NETF
might offer a stronger potential benefit over the ETKF. For instance, the results in this chapter motivate
the application to an atmospheric system, which exhibits some additional challenges, such as higher
spatial and temporal variability and a dense, heterogeneous observation network.



Chapter 7

Conclusions

The final chapter summarizes this thesis and the main conclusions drawn from the theoretical and empir-
ical results. Even though conclusions were already discussed in the separate chapters, they are merged
here and linked to the scientific aims stated in Chapter 1. Finally, an outlook is given to offer possible
extensions of the research conducted within this work.

7.1 Summary and key conclusions

In principle, the thesis consists of three major parts, as outlined in Chapter 1. In the following, the main
findings and conclusions are summarized.
The first part contains a review of data assimilation (DA) techniques, focussing on ensemble-based
filters.

• A general DA framework has been formulated in probabilistic terms. It is emphasized that this
point of view is able to capture all aspects inherent in DA, in particular, the uncertainties con-
nected with models and data. All objective, explicit DA algorithms can be described within this
framework, including the new filter. Sequential filters partition DA into an iteration of forecast
and analysis steps, where the latter are determined by Bayes’ theorem.

• The ensemble Kalman filter (EnKF, Evensen 1994) is based on the KF and proposes a nonlinear
Monte Carlo solution to the forecast step in sequential algorithms. This idea renders the EnKF
applicable even to large-scale problems with a limited ensemble size. Nowadays, the ensemble
transform KF (ETKF, Hunt et al. 2007) is a standard tool in DA. It yields robust and reasonable
results, if enhanced by localization and inflation. However, its analysis step relies on the KF
equations which imply a Gaussian forecast pdf. Therefore, in nonlinear systems, its analysis
remains suboptimal even though the forecast ensemble contains nonlinear features.

• The ultimate goal in DA is a nonlinear, non-Gaussian filter that makes no assumptions about
the form of the prior pdf. The particle filter (PF, Gordon et al. 1993) in principle satisfies this
request, but the required ensemble size increases exponentially with the dimension of the prob-
lem. Therefore, active research is performed to render nonlinear filters applicable to large-scale
systems.
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– The equivalent weights PF (EWPF, van Leeuwen 2010) utilizes the great freedom that is
offered by the introduction of proposal densities. They allow to draw particles closer to the
observations during the forecast step and to generate an equally-weighted ensemble at the
analysis step. In initial experiments, the filter proved to be applicable also in large-scale
systems (Ades and van Leeuwen 2014). However, it requires a stochastic model and the
algorithm is rather complex. For instance, the nudging step has to be adapted to the model
at hand, which leads to additional computational expenses and currently relies on linear
observation operators with Gaussian error statistics.

– The nonlinear ensemble adjustment filter (NLEAF, Lei and Bickel 2011) adds a stochastic
increment to each ensemble member at analysis time such that its mean and covariance
approximately meet the Bayesian expectations. This approach is more generic and does not
require model error terms. However, as for the original EnKF, the perturbed observations
introduce additional stochastic errors, particularly if the ensemble size is relatively small
as typical in large-scale situations. Additionally, the algorithm is computationally very
expensive.

The second part builds on the insights gained from the review in the first part, and derives the new
nonlinear ensemble transform filter (NETF). The NETF follows a similar concept as the NLEAF, but
avoids its drawbacks. It generates a new analysis ensemble, focussing on the first two moments of the
analysis pdf. The primary advantages with respect to other ensemble-based filters are as following:

• The generation of a new, equally-weighted ensemble increases filter stability compared to PFs,
particularly, if augmented random rotations are used.

• The update mechanism is deterministic, i.e., the first-and second-order statistics of the analysis
ensemble exactly match the nonlinear Bayesian expectations. Thus, the analysis step does not
introduce biases or sampling errors. This also holds if an additional, moment-preserving random
rotation is used. Resampling, as required in PFs, is avoided entirely.

• The algorithm updates the ensemble perturbations by X′a =
√
N X′fT, which is formally identi-

cal to the ETKF. The only difference lies in the transform matrix T (see equation 4.21), which is
derived from the fully-nonlinear Bayesian weights, avoiding a Gaussian assumption. Therefore,
the NETF also works in ensemble subspace and is computationally efficient. As the Bayesian
weights are only used intermediately, in contrast to PFs the analysis can be localized by domain
localization, as in the ETKF.

• The NETF only acts on the analysis step and is of generic nature. It also works with deterministic
models, and there are no restrictions on the observation operator or the form of the likelihood pdf.
It can be implemented directly into an existing ETKF system with little effort.

Therefore, the NETF has appealing properties from a theoretical point of view and can be considered
as a promising alternative method for nonlinear filtering problems.

Consequently, the third part of this thesis deals with applications of the NETF in order to confirm its
usefulness. First, the NETF is applied to typical DA test beds to assess its performance properties. The
main conclusions from these experiments are as following:
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• The NETF works successfully in deterministic systems of different dimensions and degrees of
nonlinearity, even with small ensemble sizes. This confirms that the deterministic generation of
a new ensemble, together with localization, strongly improves filter stability.

• In nonlinear scenarios, the NETF clearly outperforms the EnKFs. Therefore, as expected by its
construction, the NETF is potentially more suitable to deal with highly nonlinear situations. This
becomes even more evident in the presence of nonlinear observation operators or non-Gaussian
likelihood pdfs that may quickly appear for real observations (Anderson 2010).

• The NETF also outperforms the NLEAF in all systems of larger dimensionality. Hence, the NETF
is not only computationally more efficient, but its deterministic design is also more beneficial in
terms of analysis quality.

Finally, motivated by these results, the NETF is applied to a more realistic assimilation problem in an
ocean general circulation model (NEMO) with a state dimension of about 3.3 · 105. The assimilation
of temperature profiles and sea surface heights mimics realistic observation networks. The system is
characterized by its wind-driven large-scale dynamics, a double-gyre circulation as occurs in the North
Atlantic, and mesoscale eddies that express its chaotic nature. This complex application leads to further
valuable conclusions:

• The NETF does not only remain stable in this setting, but also shows a desirable performance and
is able to converge to the truth and keep track of it, including the small-scale features. Thus, it can
be applied to realistic circulation systems in its generic form with little implementation effort, and
the model does not need to be adjusted. Therefore, the NETF is applicable to high-dimensional
problems even though it only relies on the Bayesian weights, and it is able to overcome to curse
of dimensionality. This represents an important contribution to the progress in nonlinear DA. To
the knowledge of the author, so far, a similar successful large-scale application could only be
achieved with the much more complex EWPF, which is restricted to stochastic models.

• The experiment further reveals that the NETF strongly reduces the analysis error and that the
ensembles are statistically consistent. Therefore, it offers potential benefits over established
methods such as the ETKF. Based on the results of this thesis, this probably concerns situations
characterized by strong nonlinearity, but it has to be elaborated in further large-scale applications.

• The results indicate that the NETF is sensitive to its initialization. An inconsistent initial ensem-
ble, e.g., with too little spread, results in many members with insignificant weights in the first
analysis step and might cause the filter to collapse. Furthermore, this issue increases the spin-up
phase in case the initial ensemble only contains little information about the true flow, a problem
that is likely to concern the EWPF as well. In future applications, it should be ensured to specify
consistent initial ensembles that include the truth and contain as much knowledge about the state
as possible. Alternatively, a practical solution to accelerate the spin-up might consist in using the
ETKF for the initial phase only and thereafter switching to the nonlinear filter.

• In this experiment, the observation dimension is of order O(103). It is mainly achieved by the
profilers and is already relatively large for ocean DA, where most observation types concern the
surface only. For the localized NETF, a decisive quantity for stability is the local observation
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space dimension, where the local weights are evaluated. In this setup, the NETF works fine with
a realistic localization radius of 2.5◦, leading to a hundred-dimensional local observation space
(on average). Even though this is already a huge dimension for a PF-based algorithm with only
about hundred members considering the curse of dimensionality (Snyder et al. 2008), it probably
also represents the main practical limitation of the filter as the localization radius has to be chosen
depending on the observation network. For instance, in current atmospheric DA, the variety of
observation types can lead to a relatively large observation vector, particularly if many satellite
retrievals are included as characteristic of an operational context. In turn, the local observation
vector may be significantly larger as well. This issue could be counteracted by reducing the
localization radius, but it also renders the filter suboptimal if too many observations are excluded
by too tight localization (Nerger et al. 2014). Thus, the application with very dense observation
networks may still represent a future challenge and needs to be assessed empirically.

In summary, the results shown in this work form a consistent picture. A simple and generic algorithm for
nonlinear DA with appealing theoretical properties is proposed. The empirical experiments demonstrate
that the NETF is able to outperform other ensemble-based filters and that it is applicable in high-
dimensional systems in its general formulation.

7.2 Outlook

The NETF derived in this work is a fundamental algorithm of generic nature. Its potential usefulness
could be demonstrated in various situations. Based on these results, numerous possibilities for future
research arise. Here, some suggestions are outlined, but they are probably not exhaustive. In principle,
follow-up research could be performed in two directions. The first direction concerns theoretical issues:

1. In Chapter 4, a thorough investigation of mathematical filter properties was conducted. However,
some questions still remain open. First, at the current stage, the effect of the purely deterministic
transform with matrix T, see equation (4.21), on the prior ensemble is unclear. Even though is
creates an ensemble with correct mean and covariance, it appears that higher-order moments are
affected in an undesirable way. This renders the random rotation mandatory, which increases
filter stability but also destroys potential higher-order moments of the analysis ensemble. It was
shown that T is ill-conditioned, which is not problematic as it is not inverted, however, it may
be a hint to answering the question. Perhaps it might be possible to derive another deterministic
transform matrix with better condition.

Second, like the other ensemble filters tested in these experiments, the NETF concentrates on
the first two moments of the analysis pdf. In principle, third or higher-order moments could
also be derived using equation (4.1). This raises the question whether ensembles of higher-order
exactness may be generated in a similar way, which could be a direction for further research. In
the work of Miller et al. (1994), the consideration of third and fourth moments with an extended
KF resulted in major improvements in L63 experiments. Hence, a first step could concern the
development of a higher-order EnKF or ETKF before using the Bayesian estimates. However,
such a filter may be limited by the fact that the Monte Carlo estimates of higher-order moments
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require a rather large ensemble size to be reliable, and by the computational expenses needed to
evaluate higher-order moments in larger-dimensional spaces.

2. This work concentrates on the filtering problem. As shown in Chapter 2, it is also possible to
describe a smoother solution to DA. In fact, all EnKFs can be turned into smoothers by using the
sequential smoother formulation. In principle, they work by applying the analysis weights of a
certain time to past filter estimates in order to update them by the future observations (Evensen
and van Leeuwen 2000; Posselt and Bishop 2012). The KF-based smoothers implicitly rely on
the temporal correlations between model states and make Gaussian assumptions for the joint-in-
time pdfs. Nonlinear or particle smoothers exist as well (Andrieu et al. 2010; Kitagawa 1996), but
are subject to the same problems as PFs. Therefore, it would be interesting to develop a nonlinear
smoother based on the NETF that could be used for reanalysis purposes or similar objectives.
As the update equation of the NETF is formally identical to the ETKF, this should be rather
straightforward. It can be expected that only the smoother time lag appears as additional tuning
factor (Nerger et al. 2014).

The second direction of future research concerns further applications of the NETF in order to gain more
knowledge about performance properties other than those discussed in this thesis.

1. In this work, the NETF was applied in OSSEs, using synthetic observations, in order to con-
centrate on the filter behavior. With real observation data, the impact of the filter algorithm can
be concealed by sub-optimal issues such as model or observation biases or the specification of
the observation error covariances. Therefore, the NETF should be applied with empirical data.
In particular, the sensitivity of the NETF towards these issues could be investigated, which is
another important question regarding its practical applicability. However, these problems are
probably similar for other PF-based techniques such as the EWPF.

2. The applications shown in this work confirmed a reasonable behavior of the NETF in scenarios
of different complexity, also in the presence of nonlinear observation operators and non-Gaussian
likelihood densities. Though the results in Chapter 5 indicate benefits in these situations as com-
pared to the ETKF, there is still room for further explorations.
In particular, a further large-scale application with different circulation characteristics and a time-
dependent forcing could continue the work presented in Chapter 6. This might reveal potential
benefits over linear methods such as the ETKF. For instance, an atmospheric circulation system
would be appropriate, as it could demonstrate how the NETF deals with a circulation of increased
variability and a potentially denser observation network, compared to the ocean experiment pre-
sented in this work. As discussed above, it is an open question whether the NETF is able to work
with an even larger local observation dimension than in the NEMO experiment. In this context,
a reasonable first step might employ an atmospheric system with rather sparse observations. For
example, the Twentieth Century Reanalysis (20CR, Compo et al. 2011) applied an EnKF to obtain
a global reanalysis including uncertainty information from 1871-2008, assimilating only surface
pressure observations. Nevertheless, the results are of good quality, even compared to other re-
analyses that use upper air and satellite data in the second half of the twentieth century. This
also holds for upper air circulations and the representation of low-frequent variability beyond the
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synoptic scale (Compo et al. 2011). These insights prove that the comparably sparse observa-
tions are able to constrain the atmospheric circulation well, because surface pressure determines
the barotropic flow through geostrophy and its tendency is related to the vertically integrated
mass flux divergence (Whitaker et al. 2009). Thus, a similarly successful application could be
anticipated with the NETF. Later on, this application could be extended by gradually increasing
the observation dimension, e.g., by including other observation networks or even satellite re-
trievals. This would represent a useful practical application that simultaneously allows to explore
the NETF’s limitations in atmospheric DA.

3. As discussed in this work, the NETF is a nonlinear filter that, in contrast to the EWPF, concen-
trates on the first two moments of the analysis pdf only, which allows to use deterministic models
and renders the algorithm much simpler. Thus, a comparison of both methods should be per-
formed to understand the impact of the complex proposal densities in the EWPF. As the EWPF
requires a stochastic model to perform the nudged forecast step, within such an experiment one
should also run the NETF with nudging, which is possible without changing the algorithm (see
Chapter 4). The results might give valuable hints on the importance of considering higher-order
moments in nonlinear, high-dimensional DA. For low-dimensional systems, this question could
be answered in a simplified way by comparing the NETF to the PF directly.

4. Another aspect could concern the re-utilization of the final analysis ensemble for ensemble pre-
dictions, as already briefly initiated in Chapter 6. Wang and Bishop (2003) showed that an ETKF-
based initialization scheme creates better ensemble forecasts than classical alternatives such as
singular vectors or breeding, particularly if enhanced by rotations (Wang et al. 2004). In this
context, it would be interesting to further investigate the impact of a nonlinear analysis scheme
on successive ensemble forecasts (see also Ades 2013, Ch. 7.3), potentially enhanced by random
rotations as discussed in this work.



Appendix A

Mathematical background

This appendix contains some background to the various mathematical methods used throughout this
work. It may serve as a quick reference for the techniques applied in the main text. It does not rep-
resent a detailed, self-contained treatment of the different topics, for which standard text books can be
consulted (e.g., Doucet et al. 2001; Horn and Johnson 1985; Lütkepohl 1996; Robert and Casella 2004;
Wilks 2011).

A.1 Matrix Algebra

A.1.1 Transpose and adjoint

X and Y are two vector spaces, and A is a linear operator that maps fromX→ Y. Its adjoint A† is an
operator mapping from Y → X and is defined by the following identify:

(Ax) ◦ y = x ◦ (A†y) ∀ x ∈ X ∧ y ∈ Y (A.1)

Here, ◦ denotes an inner product defined in the vector spaces. If the linear operator is represented as
matrix and the inner product is the standard scalar product of vectors, its adjoint is equal to its complex
conjugate transpose, i.e., A†ij = A∗ji. In the DA context, the relevant operators are typically real, which
will be assumed from now on. Then, the adjoint reduces to the transpose, A† = AT . However, the
operators are usually not represented by an explicit matrix rather than complex computer code. Thus,
the adjoint is a new piece of code, called the adjoint model. The following identities are useful:

(AT )T = A (A.2)

(λA)T = λAT ∀ λ ∈ R (A.3)

(A + B)T = AT + BT (A.4)

(AB)T = BTAT (A.5)

(A−1)T = (AT )−1 , if A is invertible (see below) (A.6)

If a square matrix equals its transpose, A = AT , it is called symmetric (or, in general, hermitian).
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A.1.2 Inverse matrix

The inverse matrix of a square matrix A, denoted A−1, is defined by A−1A = AA−1 = I. In general,
an inverse matrix does not necessarily exist. If it exists, A is called nonsingular or invertible, and A−1

is unique. A matrix is singular if and only if its determinant vanishes, which again is equivalent to its
columns being linearly independent. The inverse can be computed by numerous techniques, e.g., by an
eigendecomposition (see below).
If the inverse of A equals its transpose AT , it follows that AAT = ATA = I. Then, the columns of A

are mutually orthonormal and A is called orthogonal (or unitary, in the complex case). The determinant
of an orthogonal matrix is always 1 or −1.

A.1.3 Trace

The trace of a square matrix is a scalar function that yields the sum of its diagonal elements, tr(A) =∑
iAii. The trace is additive, i.e., tr(A + B) = tr(A) + tr(B).

If the matrix A has evolved from manipulations (matrix sums, multiplications) of the matrix K, the
trace of A in general depends on all entries of K. The partial derivatives of the trace with respect to all
entries Kij can be collected into a matrix by defining:(

∂ tr(A)

∂K

)
ij

≡ ∂ tr(A)

∂Kij

This allows to derive some identities that are needed in the statistical derivation of the KF analysis
equation in section B.2:

1. tr(KA) =
∑

i(KA)ii =
∑

ikKikAki ⇒ ∂tr(KA)
∂K = AT

2. tr(AKT ) =
∑

i(AKT )ii =
∑

ik AikKik ⇒ ∂tr(AKT )
∂K = A

3. tr(KAKT ) =
∑

i(KAKT )ii =
∑

ijkKikAkjKij ⇒ ∂tr(KAKT )
∂K = K(A + AT )

A.1.4 Matrix Decompositions

For many applications, it is useful to decompose a matrix by representing it in a different basis. Here,
only the two variants that are relevant for this thesis are shown. Other methods, such as the Cholesky
or LU decomposition, are omitted.

A.1.4.1 Eigenvalue Decomposition

If an N ×N square matrix A (or, in general, a linear operator) does not change the direction of a vector
e, this vector is an eigenvector of A:

Ae = λe
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The unique multiple value λ is the eigenvalue. It can be calculated from the roots of the characteristic
polynom, p(λ) = det(A − λIN ), showing that each N × N square matrix has N (in general com-
plex) eigenvalues λn, which may be of algebraic multiplicity. The corresponding eigenvectors are only
defined up to a multiple. Usually, the eigenvectors are normalized such that ||en|| = 1.

The eigendecomposition theorem states that any square matrix can be factorized as following, named
the eigenvalue decomposition (EVD):

A = UEU−1 (A.7)

Here, E is a diagonal matrix containing the eigenvalues λn, and U =
(
e1, . . . , eN

)
is the matrix

composed from the N linearly independent eigenvectors, which form the basis of the eigenspace of A.
The EVD is, among other applications, useful in finding any matrix power of A. It is simply given by
Ap = UEpU−1, where Ep is easily computed. Of particular interest are the inverse matrix (p = −1)
and the matrix square root (p = 1/2).

An important special case occurs if A is symmetric (hermitian in the complex case). Then, its eigenval-
ues and eigenvectors are real and the latter can be chosen to form an orthonormal basis in RN . Thus,
the matrix of eigenvectors U becomes orthogonal and the EVD simplifies to A = UEUT .

A.1.4.2 Singular value decomposition

The singular value decomposition (SVD) generalizes the EVD to a rectangular, real M ×N matrix A,

A = USVT (A.8)

If a square matrix A is real, symmetric and positive definite, its SVD and EVD are identical. Its
components are further described:

• S is a nonnegative M × N diagonal matrix, and its diagonal entries are the r singular values in
descending order,

diag(S) =
(
σ1, . . . , σr, 0 . . . 0

)
where σn ≥ σn−1 > 0 and r ≤ min(M,N).

• U is a real M ×M orthogonal matrix. Its column vectors un are the left-singular vectors of A.

• V is a real N ×N orthogonal matrix. Its column vectors vn are the left-singular vectors of A.

These names originate in the following connection of the singular vectors and values:

Avn = σnun , ATun = σnvn for n = 1, . . . ,min(M,N)

The SVD can be used to calculate the pseudo-inverse of a rectangular matrix, given by

Ã−1 = VS−1UT
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where the diagonal matrix S−1 exhibits the entries 1
σn

for n ≤ r, and zero everywhere else.

A.2 Vector analysis

A.2.1 Nonlinear operators: Jacobian and adjoint

Consider a nonlinear operator F(x) which maps from vector spaceX to Y, with dimensions K and L.
In the DA context, this may be either the observation operator, projecting into observation space, or the
model operator, propagating the state one time step ahead (in this case, Y is equal to X). Mathemati-
cally, the operator can be represented as a vectorial function

F : X→ Y , F(x) = y where F(x) ≡
(
F1(x), . . . , FL(x)

)T
(A.9)

In DA, such a function is usually not available explicitly, and the operator is rather represented by
complex computer code which takes the vector x as input and outputs y. Each subroutine, or even each
line of the code, can be regarded as an individual operator. Hence, F can be written as a sequence of
M nonlinear functions fm which are consecutively applied to the input vector:

F(x) = fM (fM−1(· · · (f1(x)))) (A.10)

Another example for such a factorization is the application of the model operator for several time steps,
as used in Chapter 2, see equation (2.2). Next, is is applied to obtain the theoretical basis for the
construction of the tangent linear and adjoint model.

The Jacobian F can be considered as the derivative of the operator F . In principal, it is a L×K matrix
that contains all possible partial derivatives:

F =
∂F
∂x

with Flk =
∂Fl
∂xk

(k = 1 . . .K, l = 1 . . . L) (A.11)

In most practical applications, F cannot be obtained in this form due to F being a complex operator.
Exploiting equation (A.10), each function fm can be linearized to get the tangent linear model (TLM)

F x =

1∏
m=M

Fm x (A.12)

Thus, it can be applied successively as the full model, using the linearized basic functions. In praxis,
the TLM is obtained by linearizing each line of code.

For real operators, the adjoint model is FT , i.e., the transpose of the TLM:

FTx =

M∏
m=1

FT
mx (A.13)
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Thus, applying the adjoint model to a vector x reverses the order the sub-functions are applied. If F is
the model operator, this can be interpreted as an integration backward in time. As the TLM, the adjoint
code can obtained line-by-line.

A.2.2 Scalar functions: Gradient and Hessian

Assume a nonlinear scalar function in a vector space X, like the cost function J(x) (X → R). Its
gradient is a vector containing the partial derivatives in the corresponding directions and hence, it points
in the direction of the steepest ascent:

∇J =

(
∂J

∂x1
, . . . ,

∂J

∂xk
, . . . ,

∂J

∂xK

)T
(A.14)

The Hessian J′′ is a symmetric K ×K matrix storing all second derivatives,

J ′′kl =
∂2J

∂xk∂xl
(k, l = 1 . . .K) (A.15)

Thus, it contains information about the curvature of J(x).

A.2.3 Delta distribution

The delta distribution δ(x − x0) can be regarded as a function which vanishes everywhere expect at a
single point x = x0, where it is infinitely large, with the additional condition of a finite integrability:∫

δ(x− x0) dx = 1 (A.16)

Formally, the delta function can be obtained as limiting case of a regular function, for example, using a
Gaussian pdf with vanishing standard deviation (see also section A.3.5):

δ(x− x0) = lim
σ→0
N (x; x0,P) (A.17)

where the covariance matrix P is given as diagonal matrix with all entries being equal to σ2. Therefore,
the delta function can be interpreted as the formal representation of the pdf in a deterministic case. As
it vanishes almost everywhere, it filters the specific value from any function. This leads to an important
convolution property:

f(x)δ(x− x0) = f(x0)δ(x− x0) ⇒
∫
f(x)δ(x− x0)dx = f(x0) (A.18)

which is of high relevance when dealing with particle filters, see Chapters 3 and 4.
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A.3 Stochastics in vector spaces

A key aspect for the description and derivation of DA methods is their probabilistic interpretation. This
section summarizes the basic concepts of stochastics required for this thesis.

A.3.1 Random variables

A random variable can take different values under identical conditions. If the set of possible values is
finite, it is classified as a discrete random variable, otherwise, it is a continuous random variable. In
the DA context, usually continuous random variables are dealt with, e.g., the temperature at a certain
location. Furthermore, a random variable does not have to be scalar but can also represent a collection
of individual random variables, expressed by a vector.

More specifically, let the vector space X be of finite dimensionality K, and x =
(
x1, . . . , xK

)T ∈ X
is a multivariate random variable. A common example in DA is the state space, containing all possible
realizations of the dynamical system at a specific time. In most cases, the true state of the system is
unknown and only estimates are available, for example, a first guess or an analysis. Consequently,
this inherent uncertainty must be dealt with by describing the system’s state in stochastic terms. The
knowledge about the state is contained in a probability density function (pdf) p(x), which is a real,
nonnegative and normalized scalar function:

p : X→ R , p(x) ≥ 0 ∀ x ∈ X ,

∫
X

p(x) dx = 1 (A.19)

The interpretation is that the integral of the pdf over a finite state space volume A ⊂ X,∫
A
p(x) dx = P (x ∈ A) (A.20)

equals the probability of finding the system in this region. If the state is known perfectly, the delta
function still allows it to be described by a pdf, see section A.2.3.

A.3.2 Combination of random variables

Let x and y be two random variables, for example, the state and observation vector. Another common
example are the state vectors at different times. A full description of both variables and their relations is
given by the joint pdf, p(x,y). It contains the probability density values for all possible combinations.
Again, the integral

∫ ∫
p(x,y)dxdy over finite regions equals the probability of finding both random

variables simultaneously in the corresponding regions. The marginal pdf describes the overall behavior
of one single random variable without considering the second one. Mathematically, it is obtained by
integrating out the other variable,

p(x) =

∫
p(x,y) dy (A.21)
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The conditional pdf p(x|y) describes the distribution of x for a given realization of y. The joint pdf
can be factorized into marginal and conditional pdfs in two distinct ways,

p(x,y) = p(x)p(y|x) = p(y)p(x|y) (A.22)

If the random variables are stochastically independent, the joint pdf reduces to the product of the
marginal ones, p(x,y) = p(x)p(y). A consequence from the equality of both factorizations in equation
(A.22) is Bayes’ theorem, which reveals the way to compute a conditional pdf:

p(x|y) =
p(x,y)

p(y)
=

p(x)p(y|x)∫
p(x)p(y|x) dx

(A.23)

Despite its formal simplicity, Bayes’ theorem has a major relevance in almost any field of theory or
application due to its generality. Usually, p(x) is interpreted as the prior information since it is an
unconditional pdf. Furthermore, a realization of the random variable y, given x has occurred, may be
available. This dependency is formally described by the likelihood pdf p(y|x). Then, the conditional
pdf p(x|y) represents the posteriori pdf that incorporates this additional information. Thus, Bayes
theorem tells how to update the knowledge about an uncertain variable, as represented by its pdf, with
a new piece of information.

The rules shown here can easily be extended to more than two random variables by combining a subset
of them into a single random variable. For example,

p(x1,x2,x3) = p(x1)p(x2,x3|x1) = p(x1)p(x2|x1)p(x3|x1,x2) (A.24)

A.3.3 Expected values

The expected value of any function of a random variable x, f(x), is given by an integration over its pdf,
which can be interpreted as weighting the function with the corresponding density:

〈f(x)〉 =

∫
f(x)p(x) dx (A.25)

The expected value of the random variable itself can be computed by simply setting f(x) = x, which
is also the first moment of the pdf. The second moment is usually expressed by the covariance matrix
P. It contains the covariances between all components of x,

µ = 〈x〉 =

∫
f(x)x dx (A.26)

Pkl = 〈(xk − 〈xk〉)(xl − 〈xl〉)〉 = 〈xkxl〉 − 〈xk〉〈xl〉 (A.27)

Compactly, the covariance matrix can be written as an outer vector product

P = cov(x) =
〈

(x− 〈x〉)(x− 〈x〉)T
〉

(A.28)

The diagonal of the covariance matrix contains the variances of all components, i.e., Pkk = σ2k where σk
is the standard deviation of xk. By definition, the covariance matrix is real and symmetric. Furthermore,
it is always positive definite. The correlation between two components is their covariance normalized
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by their standard deviations:

cor(xk, xl) =
Pkl√
PkkPll

=
σ2kl
σkσl

(A.29)

It always falls in the range [−1, 1], where the extreme values correspond to maximal negative and pos-
itive correlation. A value of zero indicates no correlation, which must not be confused with stochastic
independency.
Higher-order moments could be derived by the same mechanism, using equation (A.25). However, in
higher-dimensional spaces they are often not feasible.

Finally, an important property of the second-order statistics of any distribution is shown. Let z =

Lx + a be a linear transform of the random variable x. Then, the expected mean and covariance of the
transformed variable z are given by

〈z〉 = L〈x〉+ a ; cov(z) = L cov(x) LT = LPLT (A.30)

These results directly follow from the definition (A.25).

A.3.4 Monte Carlo estimators

In many applications, it is not possible to evaluate the integral (A.25) because the dimensionality is too
high, or the pdf p(x) might even not be known. The Monte Carlo method approximates integrals using a
finite number of random samples. A number of N independent samples {xn}, distributed according to
q(x), called the proposal density, can be used to approximately compute the integral. Mathematically,
this means that the density is replaced by a mixture delta distribution,

xn ∼ q(x) ⇒ q(x) ≈ 1

N

N∑
n=1

δ(x− xn) (A.31)

Using this representation in equation (A.25), the expected value of any function can be approximated
by an empirical mean:

〈f(x)〉 =

∫
f(x)p(x)

q(x)
q(x) dx ≈ f(x) =

1

N

∑
n

p(xn)

q(xn)
f(xn) (A.32)

The weight factor p(xn)/q(xn) accounts for the fact that the proposal density is different from p(x).
An important special case occurs if the samples xn already follow the target density, i.e., q(x) ≡
p(x). Then, the expected value of f(x) = x is simply represented by their mean, x = 1

N

∑
n xn.

Furthermore, the empirical covariance gets

P =
1

N − 1

∑
n

(xn − x)(xn − x)T (A.33)

Here, typically the coefficient N−1 is used instead of N to obtain an unbiased estimate (Wilks 2011).
It is convenient to collect the deviations into the columns of a perturbation matrix. Then, the empirical
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covariance can be calculated with one matrix multiplication:

X′ =
(
x1 − x, . . . ,xN − x

)
⇒ P =

1

N − 1
X′X′T (A.34)

Alternatively, the perturbation matrix itself can also be obtained by a matrix multiplication, X′ = XT,
where T = IN − 1

N aaT and a = (1, . . . , 1)T .

A.3.5 Analytical distributions

So far, the pdf p(x) appeared in a generic form. Depending on the situation, a parameterization of the
pdf, i.e., a representation in functional form, can be useful. For a scalar random variable, a large variety
of analytical distributions with different properties exists. Some of them can be generalized to vector
variables. Here, only the densities used within this thesis are shown.

A.3.5.1 Gaussian distribution

The most important analytical distribution is the multivariate normal (MVN). It generalizes the univari-
ate normal density, p(x) = 1√

2πσ
exp{−(x− µ)2/(2σ2)}, with mean µ and standard deviation σ. The

practical relevance of the Gaussian density is based on the central limit theorem (see below) and the fact
that it is uniquely characterized by its first two moments, which are (in a K-dimensional vector space)
the mean vector µ and the K ×K covariance matrix P. The functional form of the MVN is given by

p(x) =
1√

(2π)K det(P)
exp

{
−1

2
(x− µ)TP−1(x− µ)

}
≡ N (x;µ,P) (A.35)

The notation N (x;µ,P) refers to the pdf’s functional form p(x), and the first entry specifies the de-
pendent variable, here x. In contrast, the notation x ∼ N (µ,P) states that x is distributed according
to a MVN with mean µ and covariance P.

The MVN exhibits some important properties:

• A normal distribution is conserved under a linear transformation of the random variable. If x ∼
N (µ,P) and a linear transform is given by z = Lx + a, then z ∼ N (Lµ + a,LPLT ), see
equation (A.30).

• In particular, the transformation z = P−1/2(x−µ) standardizes this random variable, since then
z ∼ N (0, IK).

• Central limit theorem: The distribution of the sum
∑N

n=1 xn of N independent random variables
xn, which itself may follow arbitrary distributions, approximates a Gaussian density forN →∞.

• The sum of N independent Gaussian random variables yields another Gaussian random variable,
even for finite N . If xn ∼ N (µn,Pn), then

∑N
n=1 xn ∼ N

(∑N
n=1µn,

∑N
n=1 Pn

)
. In other

words, the means and covariances are simply added.
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• All marginal distributions of the MVN are also Gaussian distributions. This can be seen by
choosing a linear transformation L that selects a subset of the components of x.

A sample of the MVN can be obtained by first transforming K uniformly distributed random numbers
into K normally distributed numbers, using, for example, the Box-Muller transform, and collecting
them into a vector x̃ ∼ N (0, IK). Finally, the transformation x = µ + P1/2x̃ is executed, such that
x ∼ N (µ,P). This procedue requires to compute the matrix square root of the covariance P.

A.3.5.2 Laplace distribution

The scalar Laplace distribution is the generalization of the exponential distribution (p(x) = λe−λx),
which is only defined for x ∈ [0,∞), to the full real domain. Therefore, it is also referred to as the
double exponential distribution. Its functional form is given by p(x) = 1

2λ exp{−|x − µ|/λ}, where
λ is called the scale parameter. The mean of this Laplace density is µ and its variance is σ2 = 2λ2.
In principal, the Laplace density has (for the same mean and variance) similar characteristics as the
Gaussian density, as it is also symmetric around µ and shows a monotonic, exponential decrease with
distance from the mean, with p(x) → 0 for x → ±∞. The Laplace density initially decreases more
strongly, but exhibits fatter tails than the Gaussian density.

An easy extension to the multidimensional case is possible if the components are supposed to be inde-
pendent. Then, the joint pdf is simply given by the product of the corresponding scalar pdfs:

p(x) =
1

2K
∏K
k=1 λk

exp

{
−

K∑
k=1

|xk − µk|
λk

}
(A.36)

Consequently, this density exhibits a mean of µ = (µ1, . . . ,µK)T and a diagonal covariance matrix
with variances 2λ21, . . . , 2λ

2
K . More general multivariate extensions that allow mutually dependent

components exist (e.g., Eltoft et al. 2006), but are not used within this thesis.

In order to sample from the scalar Laplace density, its inverse cumulative distribution is utilized (Kotz
et al. 2001). Given random samples u drawn from the uniform distribution U(−1/2,+1/2), the follow-
ing transformation yields Laplacian samples with mean µ and scale parameter λ:

x = µ− λ · sgn(u) ln (1− 2|u|) (A.37)

Hence, a sample of the multivariate variant (A.36) is easily generated by producing K independent
scalar Laplacian samples.
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Kalman filter: Derivations and identities

This appendix contains mathematical details concerning the KF, which is an integral component of the
EnKF and ETKF. In section 2.6, the KF is motivated within the probabilistic framework established
in Chapter 2. First, the rather technical computation of the analysis pdf is presented. Second, an
alternative to the probabilistic derivation of the KF is shown by taking a statistical point of view. This
entirely different approach offers additional insight into the mechanism of the Kalman filter. Then, the
connection of the KF with 3DVAR is established in a formal way. Finally, some identities are proven
that allow different representation of the KF analysis equations.

B.1 Derivation of the analysis pdf

In section 2.6.3, the KF analysis step is derived within the probabilistic framework. Specifically, the
task consists in performing the multiplication of the prior Gaussian pdf and the Gaussian likelihood pdf
according to Bayes’ theorem. The corresponding equation (2.41) is, using a shortened notation,

p(x|y) ∝ p(x|y)p(y|x) = N (x; xf ,Pf ) · N (y;H(x),R) (B.1)

After plugging in the respective Gaussian parameterizations, it is convenient to work with the negative
logarithm of the analysis pdf. It can be considered as the cost function, as in 3DVAR:

J(x) = − ln (p(x|y)) =
1

2
(x− xf )TP−1f (x− xf ) +

1

2
(y −H(x))TR−1 (y −H(x)) + c

c is a constant, which can be safely neglected as it only corresponds to the normalization factor of the
pdf. The aim is to transform this equation into a single quadratic form. First, the observation operator
is linearized around the prior estimate, using its Jacobian matrix H,

H(x) ≈ H(xf ) + H(x− xf ) (B.2)

Furthermore, the abbreviations a ≡ x − xf and b = y −H(xf ) are used. Note that while a depends
on the variable x, b represents a constant with respect to the function J(x). Using equation (B.2), the

147
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cost function is now written as

2J(x) = aTP−1f a + (b−Ha)TR−1(b−Ha)

Next, the quadratic forms are expanded and sorted

2J(x) = aT
(
P−1f + HTR−1H

)
a− aTHTR−1b− bTR−1Ha + bTR−1b︸ ︷︷ ︸

=const

Again, the constant term is neglected. The matrices Pa and K are defined as following, and some of
their combinations are computed, given that Pa is symmetric.

Pa =
(
P−1f + HTR−1H

)−1
, K = PaH

TR−1 ⇒ KT = R−1HPa

⇒ P−1a K = HTR−1 and KTP−1a = R−1H

These terms allow a convenient reformulation of the cost function. A properly-chosen constant term is
further added to complete the quadratic form:

2J(x) = aTP−1a a− aTP−1a Kb− bTKTP−1a a + bTKTP−1a Kb

⇒ J(x) =
1

2
(a−Kb)T P−1a (a−Kb)

Resetting a and b, it follows that the posteriori pdf can we written as

p(x|y) ∝ exp

{
1

2
(x− xa)

T P−1a (x− xa)

}
∝ N (x; xa,Pa) (B.3)

where xa = xf + K(y −H(xf )) and Pa =
(
P−1f + HTR−1H

)−1
(B.4)

K = PaH
TR−1 (B.5)

Hence, the analysis pdf is again a Gaussian distribution defined by the analysis moments xa and Pa.

B.2 Statistical derivation of the KF

This section shows an alternative derivation of the KF forecast and analysis step.

B.2.1 Prerequisites

In this section, xi refers to the true state at time ti. Of course, the true states or observations are not
known. Only estimates about the true states are available, which are indicated by a hat, and specific
realizations of the measurement. In the statistical approach, the inherent uncertainty is accounted for
by allowing a random deviation from the true value, the error. Even though the error itself is unknown
as well, assumptions about the error statistics can be made, that is, properties of the underlying error
distribution which could only be verified by a large set of realizations. In specific terms, any estimate
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is partitioned as following,

x̂ = x + e (B.6)

e represents the error. Both terms on the right hand side of the equation are not accessible. However, it
is assumed that the expected mean of the error distribution, 〈e〉, and its covariance, 〈e eT 〉, are known
(see also appendix A). Usually, the mean error is assumed to be zero. In other words, it is expected that,
on average, the state estimates and the observations are unbiased, i.e., there is no systematic difference
from the truth.
In general, the KF aims at finding an optimal estimate of the system’s state such that the total error
variance, which is represented by the trace of the error covariance matrix, is minimized.

B.2.2 Forecast step

The forward transition by one time step, from ti−1 to ti, is considered. The time ti−1 may represent a
previous observation time, in which case x̂i−1 represents the analysis estimate. However, it may also
represent the outcome of a previous forecast step, since usually, several model time steps are performed
between two subsequent observations. Here, the time indices of the model operator and tangent linear
model are dropped as they are obvious from the context, i.e.,Mi−1→i(·)→M(·) and Mi−1→i →M.
The following assumptions are posed to constrain the basic problem:

• The previous, unbiased state estimate is known, together with its error covariance.

x̂i−1 = xi−1 + ei−1 with 〈ei−1〉 = 0 and 〈ei−1eTi−1〉 = P̂i−1 (B.7)

• The model propagates the state, and the model error captures the deviation from the truth:

xi =M(xi−1) + ηi−1 with 〈ηi−1〉 = 0 and 〈ηi−1ηTi−1〉 = Qi−1 (B.8)

• State and model error are uncorrelated, i.e., 〈ei−1ηTi−1〉 = 〈ηi−1eTi−1〉 = 0.

• The aim is to find an estimators for the state and covariance at time ti,

x̂i = xi + ei with 〈ei〉 = 0 and 〈eieTi 〉 = P̂i (B.9)

Taking the expectation of xi in equation (B.8) already reveals that the unbiasedness of the model oper-
ator leads to x̂i =M(x̂i−1). Consequently, the direct integration of the deterministic model yields the
best state estimate. It remains to find its error covariance. Hence, an expression for the new error ei is
required, based on model error and previous error,

ei = x̂i − xi =M(x̂i−1)− xi (B.10)

Additionally, the model operator is linearized around the (unknown) true state xi−1,

M(x̂i−1) ≈M(xi−1) + M (x̂i−1 − xi−1) = xi − ηi−1 + M ei−1 (B.11)
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where M is the tangent linear model (see appendix A). Plugging this back into equation (B.10) yields
an approximate expression of the error without an explicit reference to the true state:

ei = M ei−1 − ηi−1 ⇒ eTi = eTi−1M
T − ηTi−1 (B.12)

The calculation of its covariance is now straightforward:

P̂i =
〈
eie

T
i

〉
=
〈 (

M ei−1 − ηi−1
) (

eTi−1M
T − ηTi−1

) 〉
(B.13)

= M
〈
ei−1e

T
i−1

〉
MT +

〈
ηi−1η

T
i−1

〉
= MP̂i−1M

T + Qi−1 (B.14)

The vanishing correlation between analysis and model error allows to remove all corresponding cross-
covariances. The final equation shows how the error covariance matrix is approximately propagated
during the forecast step. The direct application of this equation requires both the storage and the inte-
gration of all elements of the covariance matrix, which is prohibitive for large-scale DA. In Chapter 2,
the issues arising from the covariance update equation are discussed in more detail.

B.2.3 Analysis step

The analysis step is derived at an arbitrary observation time ti(j), j ∈ {1, . . . , J}. The time index
is dropped here for clarity, as all quantities are valid at the same time. The input to the KF analysis
step are a prior state estimate, xf := ˜̂xi(j), and a prior estimate of the error covariance, Pf :=

˜̂
Pi(j).

Usually, they result from a preceding forecast step. The aim is to find the posteriori estimate, the
analysis xa := x̂i(j), together with its error covariance Pa := P̂i(j). The following list summarizes all
quantities and the underlying assumptions that are needed.

• The prior xf is assumed to be an unbiased estimate of the true state x:

xf = x + ef with 〈ef 〉 = 0 and 〈efeTf 〉 = Pf (B.15)

• The observation error eo contains both measurement and representativeness error. The mea-
surement y is an unbiased realization of the true observation and is characterized by an error
covariance R. Additionally, the observation operator is supposed to be unbiased.

y = H(x) + eo with 〈eo〉 = 0 and 〈eoeTo 〉 = R (B.16)

• Observation and state errors are uncorrelated, i.e., 〈eoeTf 〉 = 〈efeTo 〉 = 0.

• The aim is to find an unbiased analysis and its error covariance.

xa = x + ea with 〈ea〉 = 0 and 〈eaeTa 〉 = Pa (B.17)

First, the analysis is expressed as a linear combination of all available information,

xa = A1xf + A2H(xf ) + A3y + A4 (B.18)
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Here, A1, . . . ,A4 are yet unknown matrices of appropriate dimensions. Taking the expectation of this
equation leads to the condition

x = A1x + A2H(x) + A3H(x) + A4 (B.19)

This equation has to hold for an arbitrary x. Therefore, a comparison of both sides shows that A4 has
to vanish (A4 = 0), A1 = I and A2 = −A3. Renaming A3 ≡ K allows a convenient reformulation
of the linear update equation (B.18):

xa = xf −KH(xf ) + Ky = xf + K (y −H(xf )) (B.20)

The second term is the increment which is added to the first guess. It remains to find the matrix K,
the Kalman gain, which is applied to the difference between the actual and the predicted observation,
called the innovation. The regularization imposed to determine the Kalman gain is that the analysis
should have a minimal total variance. Hence, first an equation for the analysis error ea is needed. The
nonlinear observation operator can be dealt with by a linearization around the true state,

H(xf ) ≈ H(x) + H(xf − x) = H(x) + Hef (B.21)

with the tangent linear operator H. This approximation is used in the update equation (B.20), and the
true state x is subtracted on both sides to obtain the analysis error ea and its transpose:

xa − x = xf − x + K (H(x) + eo −H(x)−Hef ) (B.22)

ea = ef + K (eo −Hef ) = (I−KH)ef + Keo (B.23)

⇒ eTa = eTf (I−HTKT ) + eTo KT (B.24)

This allows to evaluate the analysis error covariance. In the following, the cross-terms vanish since
observation error and prior error are uncorrelated by assumption:

Pa =
〈
eae

T
a

〉
=
〈

[(I−KH)ef + Keo]
[
eTf (I−HTKT ) + eTo KT

] 〉
(B.25)

= (I−KH)
〈
efe

T
f

〉
(I−HTKT ) + K

〈
eoe

T
o

〉
KT (B.26)

= (I−KH)Pf (I−HTKT ) + KRKT (B.27)

Expanding the terms leads to

Pa = Pf −KHPf −PfH
TKT + K(HPfH

T + R)KT (B.28)

The aim is to find K such that it minimizes the total analysis variance, i.e., the trace of Pa. Hence, the
derivative of the trace with respect to K, which can be derived using the identities shown in appendix
A.1.3, has to be the null matrix. Additionally, covariance matrices are symmetric, i.e., they are equal to
their transposes.

∂tr(Pa)

∂K
= −(HPf )T −PfH

T + K
[
HPfH

T + R + (HPfH
T )T + RT

]
(B.29)

0 = 2K(HPfH
T + R)− 2PfH

T (B.30)
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This linear equation can be easily reversed to solve for the Kalman gain:

K = PfH
T
(
HPfH

T + R
)−1

(B.31)

When this optimal Kalman gain is used in equation (B.28), the last two terms cancel out,

Pa = Pf −KHPf −PfH
TKT + K(HPfH

T + R)︸ ︷︷ ︸
=PfHT

KT (B.32)

⇒ Pa = (I−KH) Pf (B.33)

In summary, equations (B.20), (B.31) and (B.33) constitute the final update equations, as they indicate
how to adjust the prior mean and covariance. They are identical to the equations derived in Chapter
2 within the probabilistic framework if Gaussian densities are assumed. In the derivation shown here,
no parametric assumption about the error distribution has been made, however, it is required to know
their second-order statistics. Hence, the Gaussian density represents the natural parameterization of this
information.

B.2.4 Summary and discussion

The KF equations, that are also the fundament of the EnKF or ETKF, have been derived from a statisti-
cal point of view by making some basic assumptions about the error distributions. The KF determines
the analysis that minimizes the total error variance. Thus, given the Gaussian assumption, the minimum
variance estimator equals both the maximum likelihood and least squares estimators. The latter follows
from the equality of the 3DVAR and KF analysis (see below). However, the KF also explicitly estimates
the covariances, which is useful for diagnostic reasons. Nevertheless, it has some drawbacks, particu-
larly concerning its practical computation in larger-dimensional systems, as discussed more elaborately
in Chapter 2.
This non-probabilistic derivation has revealed some further properties inherently built into the KF that
are not directly revealed in the probabilistic approach:

• The KF requires the prior estimates, the model, the observation operator and the observation itself
to be unbiased. In other words, no systematic deviations from the truth are assumed, which in
reality is hard to ensure.

• Particularly the unbiasedness of the model is important, as only one single state is integrated
in time. However, in a nonlinear system, a forward integration of the best estimate does not
necessarily deliver the best estimate at the next time step.

• A linearized model integration is used to advance the covariance matrix in time. The validity
of the linear approximation decreases with the nonlinearity of the model and the length of the
forecast step. This may lead to a poor estimate of the prior covariance matrix, and the analysis is
quite sensitive to the specification of Pf when forming the Kalman gain.
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B.3 KF analysis step and 3DVAR

In section 2.6.3, it is noticed that the 3DVAR cost function equals the negative logarithm of Bayes’
theorem, which also appears in the derivation of the KF analysis step. It therefore remains to establish
formally the connection between the variational and the sequential approach.
For this purpose, the 3DVAR cost function as given by equation (2.30), which is usually minimized
numerically, is now minimized analytically by setting its gradient, equation (2.31), equal to zero. The
3DVAR background state and its error covariance can be identified with the corresponding prior es-
timates that are the input to the KF analysis step. That is, here xb and B are the analog to xf and
Pf , respectively, which should be kept in mind when interpreting the results below. The minimization
problem is

minx

{
1

2
(x− xb)

TB−1(x− xb) +
1

2
(y −H(x))TR−1(y −H(x))

}
(B.34)

⇒ B−1(x− xb) + HTR−1 (H(x)− y) = 0 (B.35)

The observation operator is linearized around the background state,

H(x) ≈ H(xb) + H(x− xb) (B.36)

This allows to proceed with equation (B.35), and the solution is denoted xa:

B−1(xa − xb) + HTR−1 (H(xb) + H(xa − xb)− y) = 0

⇔
(
B−1 + HTR−1H

)
(xa − xb) = HTR−1 (y −H(xb))

⇔ xa = xb +
(
B−1 + HTR−1H

)−1
HTR−1︸ ︷︷ ︸

≡K̃

(y −H(xb))

The resulting update equation has a structure that resembles the KF solution as in equation (B.4), as the
increment is determined by a weight matrix K̃ acting on the innovation vector. Even though this matrix
looks different at first glance, the identity to K can be shown, see section B.4.1. Thus, if the 3DVAR
background estimates are associated with the prior moments of the KF analysis step, both methods
provide, despite their entirely different mechanisms, exactly the same analysis mean and covariance.
Given the Gaussian assumption, the Bayesian solution therefore equals the least-squares estimator.

B.4 Identities

Here, it is shown that the different representations for the Kalman gain and the analysis covariance
derived above actually are identical.
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B.4.1 Kalman gain matrix

The two alternative formulations are given by equations (B.31) and (B.5). In order to distinguish the
different expressions here, the latter is denoted as K̃.

K = PfH
T
(
HPfH

T + R
)−1

(B.37)

K̃ =
(
P−1f + HTR−1H

)−1
HTR−1 (B.38)

In order to show their equality, some matrix manipulations are applied to K̃:(
P−1f + HTR−1H

)
K̃ = HTR−1 = HTR−1

(
HPfH

T + R
) (

HPfH
T + R

)−1
=

(
HTR−1HPfH

T + P−1f PfH
T
) (

HPfH
T + R

)−1
=

(
HTR−1H + P−1f

)
PfH

T
(
HPfH

T + R
)−1

Now, the matrix
(
HTR−1H + P−1f

)
is removed on both sides and the identity is confirmed:

K̃ =
(
P−1f + HTR−1H

)−1
HTR−1 = PfH

T
(
HPfH

T + R
)−1

= K (B.39)

While an inverse matrix is computed for K in observation space, the inversion needed for K̃ is per-
formed in state space. Hence, for large-scale applications, the form K as in equation (B.37) is compu-
tationally more efficient. The identity (B.39) derived here is actually a variant of the Sherman-Morrison-
Woodbury formula (Kalnay 2003, p. 195).

B.4.2 Analysis covariance matrix

The two alternative formulations are given by equations (B.33) and (B.4), denoting the latter as P̃a:

Pa = (I−KH)Pf (B.40)

P̃a =
(
P−1f + HTR−1H

)−1
(B.41)

These equations can be reformulated as follows,

KH = I−PaP
−1
f (B.42)

HTR−1H = P̃−1a −P−1f (B.43)

Next, equation (B.5) is multiplied by H (to the left) and then, equations (B.42) and (B.43) are applied:

KH = P̃aH
TR−1H (B.44)

⇔ I−PaP
−1
f = P̃a(P̃

−1
a −P−1f ) (B.45)

⇔ Pa = P̃a (B.46)

This confirms that both representations of the KF analysis covariance matrix are identical.
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Second-order exact sampling with
random rotations

Second-order exact sampling provides a simple, yet efficient framework to generate rotation matrices or
perturbations exhibiting a specified covariance. In the context of ensemble square root filters, rotations
in ensemble space, particularly that of random nature, appear because the transform matrix to generate
the analysis perturbations is not unique. Furthermore, the framework allows for a practical method to
generate an ensemble at time t0, which is required to initialize any ensemble-based DA scheme.
This appendix first reviews the usage of rotation matrices in DA and then presents explicit algorithms
for the generation of random and deterministic rotation matrices. These algorithms are used for the
experiments in chapters 5 and 6. Then, the equations used to generate the initial ensembles in these
experiments are shown. The presentation here has the purpose to facilitate other numerical implemen-
tations of the NETF since the random rotation has been proven to be an essential component of the
filter.

C.1 Background

In ensemble square root filters, such as the ETKF and NETF, the key equation transforms the forecast
perturbations into analysis perturbations,

X′a = X′fT (C.1)

The transform matrix T (of size N × N ) is designed such that the empirical analysis covariance,
Pa = X′a(X

′
a)
T /(N − 1) = X′fTTT (X′f )T , exactly yields a specified term. The transformation can

be enhanced by an additional N ×N matrix Λ, the so-called rotation matrix. The ensemble covariance
gets

Pa =
1

N − 1
X′a(X

′
a)
T =

1

N − 1
X′fTΛΛTTT (X′f )T (C.2)
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Thus, Pa is unchanged if the rotation matrix exhibits ΛΛT = IN , i.e., it has to be orthogonal (see
Appendix A). Additionally, the ensemble perturbations should still be centered around zero, which can
be expressed as condition

X′a1 = X′fTΛ1 = 0 (C.3)

As X′f1 = 1 is given by construction, and T1 = 1 (Sakov and Oke 2008b) or T1 = 0 (see section
4.3.1), the vector 1 has to be an eigenvector of Λ in order to conserve the ensemble mean, i.e., Λ1 =

α1. As Λ is orthogonal, the eigenvalue is necessarily one, since an orthogonal matrix conserves as
vector’s norm: |α1| = ΛT1TΛ1 = 1T1 = |1| implies α = 1. In summary, the additional matrix
Λ can be chosen arbitrarily as long as it is orthogonal and 1 is included in its eigenspace. Hence, it is
possible to use a random matrix that meets these two requirements, but there are also some deterministic
matrices that can be applied. It is emphasized that the application of such a rotation changes the analysis
ensemble, but its mean and covariance are conserved. Several studies pointed out that the ensemble
exhibits a Gaussian characteristics after rotation (Evensen 2009), if the rotation matrices shown next
are used.

C.2 Generation of random rotation matrices

This section shows an explicit method to generate a suitable random matrix, based on the algorithm
summarized by Nerger et al. (2012b). Additionally, it is proven that the resulting matrix actually is
orthogonal and mean-preserving. In mathematical terms, the aim is to generate a matrix that exhibits
ΛTΛ = ΛΛT = I and Λ1 = 1. It is shown how to generate both random and deterministic matrices
with these properties. These algorithms are also implemented similarly in the parallel DA framework
(PDAF, see Chapter 6).

C.2.1 Householder matrix

In this appendix, the matrix H does not refer to the tangent linear observation operator but to a
Householder matrix. A Householder matrix associated with a vector a of length n and unit norm
(aTa =

∑n
m=1 a

2
m = 1) is a square matrix of size n× n given by

H(a) = In −
1

|an|+ 1
as(as)T (C.4)

Here, as is equal to a, except for the last element asn, which is replaced according to

asn = an + sgn(an) = sgn(an)(|an|+ 1) =

|an|+ 1 for an > 0

−(|an|+ 1) for an < 0

The sgn(·) function outputs +1 or −1, depending on the sign of its argument. The norm of as can be
simplified to (as)Tas =

∑n−1
m=1 a

2
m+(an+sgn(an))2 =

∑n
m=1 a

2
m+2ansgn(an)+1 = 2(1+ |an|).1

1ansgn(an) = |an| can be verified by looking at all three possible cases (an > 0, an < 0, an = 0).
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It is directly visible that the Householder matrix is symmetric. Thus,

HHT = H2 = In −
2

|an|+ 1
as(as)T +

1

(|an|+ 1)2
as (as)Tas︸ ︷︷ ︸

=2(1+|an|)

(as)T = In

which proves that it is also orthogonal. Another important property is revealed by a closer investigation
of the matrix’ last column:

last col. of H =


0
...
0

1

− 1

|an|+ 1


a1
...

an−1

an + sgn(an)

 · (an + sgn(an)) = −sgn(an) · a

Hence, the last column is either ±a. As the orthogonality of H implies that all of its columns are
orthogonal to each other, it follows that the first n − 1 columns of the Householder matrix defined by
equation (C.4) are orthogonal to a.

C.2.2 N × (N − 1) rotation matrix

The first algorithm generates a random, mean-preserving N × (N − 1) matrix Ω. Under the name
”second-order exact sampling”, Pham (2001) introduced this technique in more detail.

1. Set Ω1 as a 1× 1 matrix whose entry is given by either +1 or −1 with equal probability.

2. Compose the n× n matrix Ωn recursively for n = 2 . . . (N − 1) as following:

Ωn =
(
H̃(an)Ωn−1 an

)
(C.5)

Here, an is a random vector on the unit sphere in n dimensions, which is obtained by drawing
n samples from the univariate standard normal density, collecting them into a vector an and
normalizing it such that ||an|| = 1. H̃ represents the first n − 1 columns of the Householder
matrix H.

3. Construct the final matrix via

Ω = H̃(aN )ΩN−1 (C.6)

where aN = 1/
√
N .

If in contrast a deterministic N × (N − 1) rotation matrix is needed, a simple choice (Nerger et al.
2012b) is given by the first N − 1 columns of H(aN ), i.e, H̃(aN ). Other choices of deterministic
rotation matrices can be found in the literature (e.g., Hoteit et al. 2002; Wang et al. 2004).
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C.2.3 N ×N rotation matrix

The following steps transform the random N × (N − 1) matrix Ω into a proper N ×N rotation matrix
Λ. For this purpose, the suggestion of Sakov and Oke (2008b) can be utilized. It is summarized by the
following algorithm:

1. Use the algorithm presented above, but omit the last step, resulting in an orthogonal (N − 1) ×
(N − 1) matrix Ω ≡ ΩN−1. Note that one further application of this algorithm would indeed
generate an orthogonal randomN×N matrix, but it would not have the mean-preserving property
required here.

2. Create an arbitrary orthogonalN×N matrix B = (b1, . . . ,bN ) having b1 = 1/
√
N(1, . . . , 1)T

as first basis vector. An easy method to generate such a matrix is to calculate the full Householder
matrix associated with this vector, H(b1), which has −b1 as its last column. Then, one simply
constructs B by combining the column vector b1 and the first (N − 1) columns of H(b1),

B =
(
b1 H̃(b1)

)
(C.7)

Note that the interchange of columns and reversal of sign of the first column does not affect the
orthogonality of the matrix.

3. Compose the random rotation matrix in the basis B as

ΛB =

(
1 0

0 Ω

)
(C.8)

4. Perform the inverse basis transformation to obtain the final random rotation matrix:

Λ = BΛBBT (C.9)

An alternative for the first step is to use the orthogonal matrix VT from the singular value decomposition
of a random (N − 1)× (N − 1) matrix Ω, i.e., Ω = UΣVT (Evensen 2004).

If in contrast a deterministic N ×N rotation matrix is needed, step 1 is replaced by simply specifying
the Householder matrix associated with the vector aN−1 = 1/

√
N − 1 (of length N − 1), i.e., Ω ≡

H(aN−1). Then, steps 2 to 4 are carried out as described above.

C.2.4 Proofs

For the following proofs, we assume that theN×(N−1) matrix Ω is orthogonal and mean-preserving,
i.e., ΩTΩ = I and Ω1 = 1 hold, as shown in detail by Pham (2001).

First, we deal with the orthogonality of Λ. Equation (C.9) directly yields ΛT = BΛT
BBT . Since B is

orthogonal, ΛΛT = BΛBΛT
BBT follows. Equation (C.8) reveals that the orthogonality of Ω implies

that ΛB is orthogonal, and consequently, ΛΛT = I.
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Second, we show the mean preservation property. Λ1 = BΛT
BBT1 = 1 can be shown by successive

evaluation of the matrix-vector products. First, BT1 = (
√
N ,0)T because the first column vector of B

is 1/
√
N , and due to its orthogonality, all other column vectors are orthogonal to 1. Second, the matrix

ΛB leaves (
√
N ,0)T unchanged due to its special form (C.8). Finally, B · (

√
N ,0)T = 1 because all

entries in its first column are equal to 1/
√
N .

C.3 Ensemble generation via EOF decomposition

In the previous section, a class of random matrix transformations was shown that does not alter the
first two moments if applied to an ensemble matrix. In combination with principal component analysis
(PCA, Wilks 2011), the same technique can be used to construct an ensemble that exhibits a given mean
and covariance, for example, to initialize the DA cycle. This section provides the details to generate
suitable ensemble perturbations X′0 that have zero row sums. Then, the correct ensemble mean is easily
achieved by adding the desired mean state to the perturbations.

C.3.1 Decomposition of the covariance matrix

First, assume that the ensemble to be generated is supposed to have a specified covariance P0. An
eigenvalue decomposition, P0 = UEUT , supplies its eigenvectors (in U) and eigenvalues (in E). An
ensemble of size N may now be constructed via

X′0 =
√
N − 1 UE1/2ΩT

Usually, whenN ≤ K, Ω is aN×(N−1) random rotation matrix, and only the firstN−1 eigenvectors
and eigenvalues are taken to from U and E. In this case, the empirical ensemble covariance is a low-
rank (N − 1) approximation of the input covariance P0, which can be easily verified by computing

1
N−1X′0(X

′
0)
T . Otherwise, if N ≥ K + 1, only the first K columns of Ω are required, using all

eigenvectors and values, which yields an ensemble of full rank.

C.3.2 Principal component analysis

However, in large-scale applications it is unlikely that a covariance matrix P0 can be specified explicitly.
Here, a more practical approach is offered based on PCA. Suppose there are M model states available,
stored in Xc, for example from past model simulations. They may represent a climatological sample
of the system and carry information about its error covariance structure. As an advantage, such states
are not only easily available also in real-world problems, but they also represent balanced states of
the system. Therefore, it is desirable to utilize them for the generation of a new ensemble of size
N ≤ M + 1. Simply choosing N states from the M -sized sample would be a valid approach, but in
this case the ensemble would only approach the desired covariance and mean for N →M . Instead, the
second order exact sampling framework is applied as follows.
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The empirical covariance of the M states is P0 = 1
M−1X′cX

′
c
T , but it is never calculated explicitly.

Instead, a singular value decomposition (SVD) is applied to the perturbation matrix, yielding X′c =

USVT . For convenience, S̃ = 1√
M−1S is defined as the diagonal matrix that contains the scaled

singular values. Then, due the orthogonality of V, the covariance can be written as P0 = US̃2UT .
The singular vectors contained in U are also called the empirical orthogonal functions (EOFs). They
define the main error directions, and the squared singular values in S̃2 are the corresponding variances,
stored in descending order. Accordingly, the EOFs in U are stored in order of decreasing relevance.
Finally, the ensemble perturbations are computed from the leading EOFs by

X′0 =
√
N − 1 US̃ΩT (C.10)

In equation (C.10), the N − 1 leading singular values and vectors have to be chosen. Again, Ω is a
N × (N − 1) random rotation matrix. It can easily be verified that the empirical covariance of the
ensemble X′0 approximates P0, even though it is a low-rank approximation. However, the ensemble
is optimal in the sense that its empirical covariance exhibits the smallest deviation from the original
matrix P0, as measured by the Frobenius norm (Lermusiaux and Robinson 1999).

The procedure outlined here guarantees that the most significant error directions are considered in the
new ensemble. However, in some applications it may be important to include as well error directions
which exhibit less strength, but whose variability is desired to be contained in the ensemble. For exam-
ple, if the state vector contains variables of different scales (e.g., temperature inKelvin and sea surface
height in meter), the leading error directions are determined by the temperature variances. This issue
can be treated by a form of multivariate normalization (Lermusiaux and Robinson 1999). First, the
corresponding rows of X′c are devided by the standard deviation of the whole field. Hence, the state
values are now normalized to a common scale. After the SVD, the singular vectors are rescaled by
multiplying the same rows by these standard deviations again. Then, the ensemble is generated as in
equation (C.10).
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Polkova, I., A. Köhl, and D. Stammer, 2014: Impact of initialization procedures on the predictive skill
of a coupled ocean–atmosphere model. Clim. Dyn., 42, 3151–3169.

Posselt, D. J. and C. H. Bishop, 2012: Nonlinear parameter estimation: Comparison of an ensemble
Kalman smoother with a Markov chain Monte Carlo algorithm. Mon. Wea. Rev., 140, 1957–1974.

Provost, C. L. and J. Verron, 1987: Wind-driven mid-latitude circulation – transition to barotropic
instability. Dyn. Atm. Ocean., 11, 175–201.

Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational
implementation of four-dimensional variational assimilation. I: Experimental results with simplified
physics. Quart. J. Roy. Meteor. Soc., 126, 1143–1170.

Rabier, F., et al., 1998: The ECMWF implementation of three-dimensional variational assimilation
(3D-Var). II: Structure functions. Quart. J. Roy. Meteor. Soc., 124, 1809–1829.

Rainwater, S. and B. R. Hunt, 2013: Ensemble data assimilation with an adjusted forecast spread. Tellus
A, 65, 19 929, doi:10.3402/tellusa.v65i0.19929.

Reich, H., A. Rhodin, and C. Schraff, 2011: LETKF for the nonhydrostatic regional model COSMO-
DE. COSMO Newsletter, 11, 27–31.

Reich, S., 2013: A nonparametric ensemble transform method for Bayesian inference. SIAM J. Sci.
Comput., 34, A2013–A2024.

Reichle, R. H., D. B. McLaughlin, and D. Entekhabi, 2002: Hydrologic data assimilation with the
ensemble Kalman filter. Mon. Wea. Rev., 130, 103–114.

Richardson, D., J. Bidlot, L. Ferranti, T. Haiden, T. Hewson, M. Janousek, F. Prates, and F. Vitart,
2013: Evaluation of ECMWF forecasts, including 2012–2013 upgrades. Tech. Rep. 710, ECMWF,
Reading, Berkshire, UK.

Robert, C. and R. Casella, 2004: Monte Carlo Statistical Methods. Springer, 649 pp.

Roullet, G. and G. Madec, 2000: Salt conservation, free surface and varying levels: A new formulation
of for ocean general circulation models. J. Geoph. Res., 105, 23 972–23 942.

Sakov, P. and L. Bertino, 2011: Relation between two common localisation methods for the EnKF.
Comput. Geosci., 15, 225–237.



Bibliography 172

Sakov, P. and P. R. Oke, 2008a: A deterministic formulation of the ensemble Kalman filter: An alterna-
tive to ensemble square root filters. Tellus, 60A, 361–371.

Sakov, P. and P. R. Oke, 2008b: Implications of the form of the ensemble transformation in the ensemble
square root filters. Mon. Wea. Rev., 136, 1042–1053.

Sakov, P., D. S. Oliver, and L. Bertino, 2012: An iterative EnKF for strongly nonlinear systems. Mon.
Wea. Rev., 140, 1988–2004.

Schlax, M. G. and D. B. Chelton, 2008: The influence of mesoscale eddies on the detection of quasi-
zonal jets in the ocean. Geophys. Res. Lett., 35 (L24602).

Schleussner, C. F., J. Runge, J. Lehmann, and A. Levermann, 2014: The role of the north atlantic over-
turning and deep ocean for multi-decadal global-mean-temperature variability. Earth Syst. Dynam.,
5, 103–115.

Schmidt, S. F., 1981: The Kalman filter - Its recognition and development for aerospace applications.
J. Guidance and Control, 4 (1), doi:10.2514/3.19713.

Shen, J., T. T. Medjo, and S. Wang, 1999: On a wind-driven, double-gyre, quasi-geostrophic ocean
model: Numerical simulations and structural analysis. J. Comp. Phys., 155, 387–409.

Smith, G. L., S. F. Schmidt, and L. A. McGee, 1962: Application of statistical filter theory to the optimal
estimation of position and velocity on board a circumlunar vehicle. Tech. rep., National Aeronautics
and Space Administration.

Snyder, C., T. Bengtsson, P. Bickel, and J. L. Anderson, 2008: Obstacles to high-dimensional particle
filtering. Mon. Wea. Rev., 136, 4629–4640.

Sorenson, H. W., 1970: Least-squares estimation: from Gauss to Kalman. IEEE Spectrum, 7, 63–68.

Stordal, A. S., H. A. Karlsen, G. Nævdal, H. J. Skaug, and B. Vallès, 2011: Bridging the ensemble
Kalman filter and particle filters: the adaptive Gaussian mixture filter. Comput. Geosci., 15, 293–
305.

Stratonovich, R. L., 1960: Application of the Markov processes theory to optimal filtering. Radio En-
gineering and Electronic Physics, 5, 1–19.

Sun, A. Y., A. Morris, and S. Mohanty, 2009: Comparison of deterministic ensemble Kalman filters for
assimilating hydrogeological data. Adv. Water Resour., 32, 280–292.

Szunyogh, I., E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, E. Satterfield, and J. A. Yorke,
2008: A local ensemble transform Kalman filter data assimilation system for the NCEP global model.
Tellus A, 60, 113–130.

Talagrand, O. and P. Courtier, 1987: Variational assimilation of meteorological observations with the
adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 1311–1328.

Tarantola, A., 2005: Inverse Problem Theory and Methods for Model Parameter Estimation. Siam, 342
pp.

Thompson, J. D. and W. J. Schmitz, 1989: A limited-area model of the Gulf Stream: Design, initial
experiments, and model data intercomparison. J. Phys. Ocean., 19, 791–814.



Bibliography 173

Tierney, L., 1994: Markov chains for exploring posterior distributions. Annals of Statistics, 22, 1701–
1762.

Tikhonov, A. N. and V. Arsenin, 1977: Solution of ill-posed problems. Winston and Sons, Washington,
DC, USA.

Tippett, M. K., J. L. Anderson, C. H. Bishop, T. Hamill, and J. S. Whitaker, 2003: Ensemble square
root filters. Mon. Wea. Rev., 131, 1485–1490.

Tödter, J., 2011: New aspects of information theory in probabilistic forecast verification. M.Sc. Thesis,
Institute for Theoretical Physics, Goethe University, 128 pp., Frankfurt/Main.

Tödter, J. and B. Ahrens, 2012: Generalization of the ignorance score: Continuous ranked version and
its decomposition. Mon. Wea. Rev., 140, 2005–2017.

Tödter, J. and B. Ahrens, 2015: A second-order exact ensemble square root filter for nonlinear data
assimilation. Mon. Wea. Rev., 143, doi:10.1175/MWR-D-14-00108.1.

Toth, Z. and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev.,
125, 3297–3319.

Tremolet, Y., 2004: Diagnostics of linear and incremental approximations in 4D-var. Quart. J. Roy.
Meteor. Soc., 130, 2233–2251.

Tremolet, Y., 2006: Accounting for an imperfect model in 4D-var. Quart. J. Roy. Meteor. Soc., 132,
2483–2504.

Tremolet, Y., 2007: Model-error estimation in 4D-var. Quart. J. Roy. Meteor. Soc., 133, 1267–1280.

van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 4089–4114.

van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle
filter. Quart. J. Roy. Meteor. Soc., 136, 1991–1999.

van Leeuwen, P. J. and M. Ades, 2013: Efficient fully nonlinear data assimilation for geophysical fluid
dynamics. Computers and Geosci., 55, 16–27.

van Leeuwen, P. J. and G. Evensen, 1996: Data assimilation and inverse methods in terms of a proba-
bilistic formulation. Mon. Wea. Rev., 124, 2898–2913.

Wang, X., 2010: Incorporating ensemble covariance in the gridpoint statistical interpolation variational
minimization: A mathematical framework. Mon. Wea. Rev., 138, 2990–2995.

Wang, X. and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman filter
ensemble forecast schemes. J. Atmos. Sci., 60, 1140–1158.

Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive–negative pairs
or a centered spherical simplex ensemble? Mon. Wea. Rev., 132, 1590–1605.

Wang, X., D. Parrish, D. Kleist, and J. S. Whitaker, 2013: GSI 3Dvar-based ensemble–variational
hybrid data assimilation for NCEP global forecast system: Single-resolution experiments. Mon. Wea.
Rev., 141, 4098–4117.



Bibliography 174

Whitaker, J. S., G. P. Compo, and J.-N. Thépaut, 2009: A comparison of variational and ensemble-based
data assimilation systems for reanalysis of sparse observations. Mon. Wea. Rev., 137, 1991–1999.

Whitaker, J. S. and T. Hamill, 2012: Evaluating methods to account for system errors in ensemble data
assimilation. Mon. Wea. Rev., 140, 3078–3089.

Whitaker, J. S. and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations.
Mon. Wea. Rev., 130, 1913–1924.

Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the
NCEP global forecast system. Mon. Wea. Rev., 136, 463–482.

Wikle, C. K. and L. M. Berliner, 2007: A Bayesian tutorial for data assimilation. Physica D, 230, 1–16.

Wilks, D. S., 2011: Statistical methods in the atmospheric sciences. Academic Press, 704 pp.

Willebrand, J., et al., 2001: Circulation characteristics in three eddy-permitting models of the North
Atlantic. Progr. Oceanography, 48, 123–161.

Williams, P. D., 2009: A proposed modification to the Robert–Asselin time filter. Mon. Wea. Rev., 137,
2538–2546.

Wu, X., W. Li, G. Han, S. Zhang, and X. Wang, 2014: A compensatory approach of the fixed localiza-
tion in EnKF. Mon. Wea. Rev., 142, 3713–3733.

Xiong, X., I. M. Navon, and B. Uzunoglu, 2006: A note on the particle filter with posterior Gaussian
resampling. Tellus, 58A, 456–460.

Yaman, F., V. G. Yakhno, and R. Potthast, 2013: Recent theory and applications on inverse problems.
Mathematical Problems in Engineering, 2013 (Article ID 303154), doi:10.1155/2013/303154.

Yan, Y., 2013: Medium case benchmark report. Stochastic Assimilation for the Next Generation Ocean
Model Applications, EU FP7 SPACE-2011-1 project 283580, University of Liège, Belgium.
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Supplement: Zusammenfassung

Dieser Abschnitt enthält eine Zusammenfassung der vorliegenden Arbeit. Hierzu werden die wesentlichen
Ergebnisse und Aussagen der Kapitel 1 bis 7 wiedergegeben.

1. Hintergrund, Motivation und Ziele

Verlässliche Prognosen werden benötigt, um bessere Entscheidungen für zukünftiges Handeln tref-
fen zu können. Ein wichtiges Beispiel sind Wetter- und Klimaprognosen. Diese werden nicht nur
im persönlichen Alltag genutzt, sondern bilden auch die Grundlage für wirtschaftliche oder politis-
che Maßnahmen, etwa in Bezug auf Extremwetterereignisse oder Klimaerwärmung. Hierfür werden
komplexe, hochdimensionale Modelle verwendet, um die physikalischen Prozesse in der Atmosphäre,
den Meeren und der Landoberfläche der Erde quantitativ nachzubilden. Jede Prognoserechnung startet
mit dem sogenannten Anfangszustand. Da die Atmosphäre ein stark nichtlineares, chaotisches System
ist, können anfänglich kleine Fehler sehr schnell wachsen. Diese weithin als ”Schmetterlingseffekt”
bekannte Eigenschaft ist der Hauptgrund für die begrenzte Vorhersagbarkeit des Wetters. Die gute
Spezifizierung des Anfangszustands stellt somit eine große Herausforderung dar, die den Aufwand
der eigentlichen Prognose oft sogar übertrifft. Hierfür wird auf die inverse Modellierung, auch als
Datenassimilation (DA) bekannt, zurückgegriffen, wobei das Modell mit empirischen Beobachtungen
kombiniert wird. Die resultierende Zustandsschätzung ist zudem für Reanalysen wichtig, etwa um kon-
sistente Klimatologien abzuleiten oder um systematische Fehler von Modellen und Beobachtungen zu
identifizieren.

Die große Herausforderung der DA in geophysikalischen Systemen besteht in der hohen Dimensiona-
lität des Zustandsraums und der nur geringen Kenntnisse über die involvierten Wahrscheinlichkeits-
verteilungen, was viele analytische und numerische Verfahren bereits ausschließt. In operativen An-
wendungen wird zumeist auf Variationsverfahren (4DVAR) zurückgegriffen. Eine Alternative stellen
sequentielle Filter dar, die Vorhersage- und Analyseschritte iterieren, um Beobachtungen der Reihe nach
zu assimilieren. Der Vorteil liegt in der einfacheren Implementierung, da der eigentliche Analysealgo-
rithmus in der Regel modellunabhängig ist. Einen Meilenstein in dieser Richtung stellt der Ensemble
Kalman Filter (EnKF) dar. Er wendet im Vorhersageschritt ein Monte-Carlo-Verfahren an, die Ensem-
bleprognose. Deterministische Varianten, insbesondere der Ensemble Transform Kalman Filter (ETKF)
werden mittlerweile auch für großskalige Probleme wie die globale Wettervorhersage eingesetzt.

Jedoch beruhen sowohl 4DVAR als auch der EnKF auf einer Normalverteilungs- oder Gauß’schen An-
nahme, was in nichtlinearen Systemen im Allgemeinen zu systematischen Fehlern führt. Partikelfilter
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(PF) bieten zwar eine vollständig nichtlineare und nicht-Gauß’sche Lösung, sind jedoch in determi-
nistischen Systemen oder höherdimensionalen Räumen nicht anwendbar. Die direkte Anwendung von
Bayes’ Theorem im Beobachtungsraum führt in der Regel zu einer großen Varianz der resultierenden
Partikelgewichte, wodurch eine exponentiell mit der Dimension wachsende Ensemblegröße nötig ist,
um Filterdivergenz zu verhindern. Eine aussichtsreiche neuere Entwicklung ist der EWPF, der die Par-
tikel so kontrolliert, dass sie nahezu gleiche Gewichte (equivalent weights, EW) erhalten. Er erfordert
jedoch stochastische Modelle und eine entsprechende Manipulation des Vorhersageschrittes, und ist
damit nicht mehr modellunabhängig. Ein anderer approximativer Vorschlag, der Nonlinear Ensemble
Adjustment Filter (NLEAF), ist zwar von allgemeiner Natur, verliert jedoch durch Zufallsfehler und
rechenintensive Algorithmen seine Anwendbarkeit auf hochdimensionalen Probleme.

Das Ziel dieser Arbeit besteht daher darin, einen neuen, nichtlinearen Filter zu entwickeln, der auch in
hohen Dimensionen anwendbar ist, zugleich aber ähnlich einfach wie der ETKF anwendbar ist. Daher
werden drei Arbeitsschritte definiert. Zunächst soll ein konsistenter Rückblick auf DA-Verfahren den
aktuellen Stand der Forschung aufzeigen und somit identifizieren, wo Weiterentwicklungen möglich
sind. Dies soll in der Folge zur Herleitung und Untersuchung eines neuen nichtlinearen, ensemble-
basierten Filters (NETF) verwendet werden. Danach soll dessen potentieller praktischer Nutzen em-
pirisch demonstriert werden. Hierzu werden zunächst einfache Systeme verwendet, um die Filtereigen-
schaften zu untersuchen und Vergleiche mit anderen ensemble-basierten Filtern durchzuführen. Zum
Abschluss erfolgt die Kopplung des NETF mit einem großskaligen Ozeanmodell mit einem realisti-
schen Beobachtungsszenario, um die Anwendbarkeit in hochdimensionalen Problemen zu untersuchen.

2. Datenassimilation: Grundlagen und klassische Methoden

DA besteht aus zwei Komponenten. Das Modell löst die dem System zugrunde liegenden Gleichun-
gen und liefert somit zu jedem Zeitschritt einen vollständigen Zustand. Beobachtungen hingegen
entsprechen zwar Messungen der realen Welt, sind aber räumlich und zeitlich irregulär und hängen
oft nur indirekt mit den Zustandsvariablen zusammen. Die Verknüpfung von Modell und Beobach-
tungen erfolgt durch einen Beobachtungsoperator, der vom Zustands- in den Beobachtungsraum trans-
formiert. Da sowohl Modellzustände als auch Beobachtungen mit Unsicherheiten behaftet sind, erfolgt
die Beschreibung von DA mithilfe von Wahrscheinlichkeitsverteilungen. In Kapitel 2 wird eine kon-
sistente probabilistische Rahmenbeschreibung vorgestellt, dessen Grundlage Bayes’ Theorem darstellt.
Aufgrund der großen Dimensionen der Wahrscheinlichkeitsräume ist eine direkte Berechnung der Ana-
lyseverteilung jedoch nicht möglich. Da Modellzustände gewöhnlich eine Markov-Kette erster Ord-
nung bilden, lässt sich das Problem sequentiell lösen, indem Beobachtungen der Reihe nach assimiliert
werden. Während Glätter stets alle Beobachtungen in einem Zeitfenster berücksichtigen, hängen die
Schätzungen eines Filters nur von vergangenen Beobachtungen ab.

Die klassische Lösung des DA-Problems besteht in der Annahme von Normalverteilungen für Zustände
und Beobachtungen. Wird dies auf den allgemeinen Glätter angewendet, ergibt sich die Variations-
methode (4DVAR), bei der eine komplexe quadratische Kostenfunktion minimiert werden muss. Die
Lösung ist die Trajektorie, welche die kleinsten quadratischen Abweichungen zu einer ersten Schätzung
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sowie den Beobachtungen aufweist. Die Minimierung erfolgt mit einem geeigneten numerischen Ver-
fahren, wobei das tangential lineare und das adjungierte Modell erforderlich sind.
Wird die Gauß’sche Annahme hingegen im sequentiellen Filter gemacht, ergibt sich der KF als Lösung.
Sein Analyseschritt besteht in einer linearen Modifikation des Schätzwertes und einer Reduktion der
Varianz als Maß der Schätzunsicherheit. Während der KF für lineare Systeme die optimale Lösung
darstellt und äquivalent zu 4DVAR ist, muss im allgemeinen Fall auf das linearisierte Modell zurückge-
griffen werden, um die Kovarianz in der Zeit zu integrieren. Dies ist nicht nur äußerst rechenintensiv,
sondern kann in nichtlinearen Systemen auch zu signifikanten Fehlern führen. Daher wird in operativen
Anwendungen oft 4DVAR vorgezogen, dessen Implementierung und Umsetzung jedoch sehr aufwendig
ist. Zudem liefert 4DVAR in nichtlinearen Situationen ebenfalls nicht die optimale Lösung.

3. Ensemble-basierte Methoden in der Datenassimilation

In Kapitel 3 werden neuere Entwicklungen hinsichtlich des nichtlinearen Filterns betrachtet, die durch
die Ensembletechnik möglich wurden. Eine Integration der Wahrscheinlichkeitsverteilung in der Zeit ist
nicht möglich, da diese weder hinreichend bekannt ist, noch die zugrunde Fokker-Planck-Gleichung in
der Praxis lösbar ist. Ensembleprognosen bieten jedoch eine praktikable Monte-Carlo-Lösung. Hierzu
wird eine endliche Zahl von unabhängig und identisch verteilten Zuständen mit dem vollständigen,
nichtlinearen Modell integriert. Die Ensembleverteilung lässt sich zu jedem Zeitpunkt als Stichprobe
aus der unbekannten Wahrscheinlichkeitsverteilung interpretieren.

Die Anwendung der Ensembletechnik auf den Vorhersageschritt des KF führt zum EnKF. Der Mit-
telwert und die Kovarianz der Vorhersageverteilung, die in den Analyseschritt eingehen, werden dann
direkt aus dem Ensemble geschätzt. Damit wird die explizite, linearisierte Integration der Kovarianz-
matrix des KF umgangen. Da im klassischen EnKF die Beobachtung stochastisch gestört werden muss,
ergeben sich Zufallsfehler, die insbesondere bei den typischerweise kleinen Ensembles geophysikali-
scher Anwendungen nicht vernachlässigbar sind. Daher wurden deterministische EnKF entwickelt, die
das Vorhersageensemble so transformieren, dass Mittelwert und Kovarianz des Analyseensembles exakt
den KF-Gleichungen entsprechen. Da der EnKF die Kovarianz durch eine Matrix von niedrigem Rang
approximiert, müssen in der Praxis einige Ergänzungen vorgenommen werden. Durch Inflation wird
der Tendenz zur Unterschätzung der Unsicherheit begegnet, und die räumliche Lokalisierung der Ana-
lyse sorgt dafür, dass zufällige, fälschliche Korrelationen unterdrückt werden. Zusammen mit diesen
Erweiterungen ist der EnKF mit 4DVAR wettbewerbsfähig, und lässt sich auch für großskalige Sys-
teme, wie etwa in der numerischen Wetterprognose, einsetzen. Hierzu wird oft der lokalisierte ETKF
als Referenz verwendet. Sein größter Vorteil liegt in der relativ einfachen Anwendbarkeit, da der Ana-
lysealgorithmus prinzipiell unabhängig vom Modell ist. Im operativen Bereich werden zudem 4DVAR
und Ensemblemethoden zu sogenannten Hybridsystemen verbunden.

Gleichwohl ist die EnKF-Analyse meist suboptimal, da die von den linearen KF-Gleichungen im-
plizierte Normalverteilung in nichtlinearen Systemen nicht erfüllt ist. Dies führt zu systematischen
Fehlern in der Analyse. Der PF bietet eine vollständig nichtlineare, nicht-Gauß’sche Monte-Carlo-
Lösung des DA-Problems. Insbesondere ist keine parametrische Annahme über die Vorhersagever-
teilung erforderlich. Im Analyseschritt wird jedes Ensemblemitglied (Partikel) entsprechend seiner
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Relevanz, gemessen durch die Beobachtungsverteilung, gewichtet. Aus theoretischer Sicht ist der PF
zwar sehr ansprechend, seine Anwendung wird jedoch durch den ”Fluch der Dimensionalität” sehr
erschwert. Ist die Ensemblegröße relativ klein, wird die effektive Ensemblegröße bei jedem Analy-
seschritt verringert, da viele Partikel zu kleine Gewichte erhalten. Beispielsweise sind bereits min-
destens 106 Partikel nötig, damit der PF bei 100 Beobachtungen nicht divergiert. Damit ist der PF, und
viele seiner Varianten, für typische hochdimensionale Probleme nicht anwendbar.
Um diese Divergenz zu vermeiden, müssen die Partikel nicht nur hinreichend nahe an der Beobachtung
liegen, sondern zudem möglichst gleiche Gewichte aufweisen. Der EWPF versucht, diese Forderungen
mithilfe von sogenannten Vorschlagsverteilungen umzusetzen. Dabei wird im Vorhersageschritt ein
zusätzlicher Term zu den Modellgleichungen gefügt, der die Partikel näher zur nächsten Beobachtung
zieht (Nudging). Zudem wird der letzte Vorhersageschritt vor der Beobachtung so modifiziert, dass im
Analyseschritt fast alle Partikel das nahezu gleiche Gewicht erhalten. Der EWPF benötigt somit eine ad-
äquate Formulierung des Modellfehlers, um die Freiheit der Vorschlagsverteilungen nutzen zu können,
und erfordert zudem eine dem Modell angepasste Implementierung des Vorhersageschritts. Eine Al-
ternative stellt der NLEAF dar, der nur Mittelwert und Kovarianz der Bayes’schen Analyseverteilung
berücksichtigt. Er benötigt zwar kein stochastisches Modell, jedoch ist der stochastische Analysealgo-
rithmus sehr rechenintensiv und führt zu ungewollten Zufallsfehlern. Beide Aspekte erschweren eine
Anwendung mit kleinen Ensembles in hohen Dimensionen.

4. Herleitung und Eigenschaften des neuen Filters

Basierend auf den zuvor gewonnen Erkenntnissen wird in Kapitel 4 der neue Nonlinear Ensemble
Transform Filter (NETF) hergeleitet und untersucht. Er baut auf der grundsätzlichen Idee des NLEAF
auf, ist jedoch auch für hohe Dimensionen geeignet. Zur Vorbereitung werden zunächst die Monte-
Carlo-Schätzer für Mittelwert und Kovarianz der Analyse in eine effiziente Matrixschreibweise umfor-
muliert. Daraus lässt sich eine positiv semidefinite Transformationsmatrix ableiten, die aus den Partikel-
gewichten gebildet wird. Diese Matrix transformiert das Vorhersageensemble in ein Analyseensemble
aus gleich verteilten Zuständen, so dass die ersten beiden Momente exakt den nicht-parametrischen
Monte-Carlo-Schätzern entsprechen. Dadurch werden die systematischen Analysefehler des EnKF re-
duziert. Die Transformation wird zudem noch um eine geeignete Zufallsrotation im Ensembleunter-
raum ergänzt. Diese erhält den exakten Mittelwert und die Kovarianz des Ensembles.

Der neue Algorithmus ist von allgemeiner Natur und modellunabhängig, da nur der Analyseschritt
modifiziert wird. Formal ähnelt er zudem dem ETKF und ist genauso einfach zu implementieren.
Insbesondere lässt sich die Analyse analog zum ETKF lokalisieren. Dies erhöht die Stabilität des Fil-
ters, da die effektive Dimensionalität des Beobachtungsraums reduziert wird, und ermöglicht somit
die Anwendbarkeit in großskaligen Systemen. Eine Analyse der Komplexität des Filters ergibt, dass
sein Rechenaufwand dem des ETKF entspricht, und er somit effizient ist. Abschließend wird gezeigt,
dass sich der NETF auf triviale Weise mit einem Nudging-Vorhersageschritt verknüpfen lässt, was in
stochastischen Systemen von zusätzlichem Vorteil sein kann.
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5. Empirische Untersuchung der Filtereigenschaften

Der nächste Schritt, beschrieben in Kapitel 5, besteht in der empirischen Charakterisierung des Filters
durch sein Verhalten in DA-Experimenten mit einfachen Modellen unterschiedlicher Dimensionalität
und Nichtlinearität. In allen Fällen wird zunächst eine ”wahre” Modelltrajektorie erzeugt. Aus dieser
werden gestörte Beobachtungen simuliert, die wiederum dem Filter zur Assimilation zur Verfügung
gestellt werden. Die Leistung des Filters kann nun u.a. durch die Abweichungen des Ensemblemittels
von der ”Wahrheit” (Analysefehler) sowie der Standardabweichung des Ensembles (Spread) beurteilt
werden. Zunächst wird anhand eines skalaren Beispiels demonstriert, dass die zusätzliche Zufallsrota-
tion erforderlich ist, um ein statistisch konsistentes Ensemble zu erzeugen.

Die Anwendung im chaotischen Lorenz-63-Modell zeigt, dass der NETF aufgrund seiner nichtlinearen
Formulierung bereits für moderate Ensemblegrößen deutlich bessere Ergebnisse als die EnKF liefert.
Eine Ausnahme stellen sehr kleine Ensemblegrößen wie 5 oder 10 dar, bei denen der ETKF bereits
sehr effizient sein kann. Der NETF kann in diesen Experimenten jedoch nicht den NLEAF übertreffen,
da sich der Zufallsfehler durch die gestörten Beobachtungen in diesem niedrigdimensionalen Fall noch
nicht nachteilig auswirkt. Zudem wird demonstriert, dass der NETF grundsätzlich auch in Situationen
mit Parameterschätzung und nichtlinearem Beobachtungsoperator überlegene Ergebnisse liefert.
Anschließend werden die Filter in lokalisierter Form in den 80-dimensionalen Lorenz-96- und Lorenz-
2005-Modellen getestet. Hier liefert der NETF ebenfalls vielversprechende Ergebnisse, was zeigt,
dass die Lokalisierung auch für einen nichtlinearen Filter funktioniert und ihn für höhere Dimensio-
nen anwendbar macht. In diesen Fällen kann die Leistung des NETF nicht nur die KF-basierten Fil-
ter übertreffen, sondern auch den NLEAF. Das zeigt, dass der deterministische Analysealgorithmus in
höherdimensionalen Situationen von Vorteil ist, da er nicht nur effizienter ist, sondern auch Zufallsfehler
vermeidet, die bei den typischerweise kleinen Ensemblegrößen nicht vernachlässigbar sind. Außer-
dem ergeben die Experimente, dass der NETF auch bei nicht-Gauß’schen Beobachtungsverteilungen
Vorteile bringt, da diese von den EnKF nicht direkt berücksichtigt werden können.
In einem abschließenden Experiment wird mit einem einfachen Modell der linearen Advektion eine
Situation betrachtet, in der die Zustandsdimension (1000) deutlich größer ist als die Dimensionen
von Beobachtung (200) bzw. Ensemble (5. . . 50), was einem realen, großskaligen DA-Problem näher
kommt. Hierbei stellt der ETKF per Konstruktion zwar den bestmöglichen Ensemblefilter dar, der
NETF kann aber auch hier die Leistung des ETKF annähernd erreichen. Das bestätigt, dass der NETF
Probleme hoher Dimensionalität auch mit relativ kleinen Ensembles lösen kann.

Die konsistenten empirischen Ergebnisse lassen somit den Schluss zu, dass der NETF ein gutes Poten-
tial für die nichtlineare Datenassimilation aufweist. Die effiziente, deterministische Formulierung des
Analyseschritts ist insbesondere in höheren Dimensionen von Vorteil, und durch Lokalisierung bleibt
der Filter stabil, obwohl er ausschließlich auf den Bayes’schen Gewichten basiert.

6. Anwendung auf ein hochdimensionales Zirkulationssystem

Im letzten Kapitel 6 wird die tatsächliche Anwendbarkeit des neuen Filters in Problemen geophy-
sikalischer Dimension demonstriert. Hierzu wird das Ozeanmodell NEMO verwendet. Es löst die
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primitiven Gleichungen, welche die Dynamik und Thermodynamik der Meereszirkulation beschreiben.
Subgitterskalige Prozesse werden durch physikalische Parametrisierungen approximiert, etwa für kon-
vektive und turbulente Flüsse. Die atmosphärische Zirkulation wird in NWP-Systemen grundsätzlich
durch einen sehr ähnlichen Satz an Gleichungen und Parametrisierungen modelliert. Zudem spielt die
Ozeanassimilation eine wichtige Rolle zur Initialisierung von saisonalen und mittelfristigen Klimaprog-
nosen sowie zur Klimadiagnostik. So bestimmt etwa die Meeresoberflächentemperatur auf längere
Sicht maßgeblich die Energieflüsse zwischen Ozean und Atmosphäre. Somit wird ein modernes, sehr
komplexes Zirkulationsmodell verwendet, um den NETF in einem realistischen Szenario zu testen.
Um die Filterleistung weitgehend zeitunabhängig betrachten zu können, wird eine vereinfachte NEMO-
Konfiguration verwendet. Das Modellgebiet besteht aus 121 × 81 = 9801 horizontalen Gitterpunkten
sowie 11 vertikalen Schichten. Ein zeitlich konstanter zonaler Windantrieb sorgt für eine großskalige
Doppelwirbelzirkulation mit einem zentralen Jet. Charakteristisch sind mesoskalige Stromwirbel (Ed-
dies), welche die chaotische Natur des Systems belegen. Die von dieser Konfiguration erzeugte Zirku-
lation ist grundsätzlich auch im Nordatlantik beobachten ist.

Die prognostischen Zustandsvariablen in NEMO sind Temperatur (T ), Meereshöhe (SSH) sowie zonale
(U ) und meridionale Fluidgeschwindigkeit (V ). Der daraus gebildete Zustandsraum hat eine Dimen-
sion von 333234, was belegt, dass es sich um ein hochdimensionales Assimilationsproblem handelt.
Zudem wird ein realistisches Beobachtungsszenario nachgebildet, indem sowohl Envisat-Satelliten-
beobachtungen der Meereshöhe sowie Temperaturprofile des Argo-Netzwerks simuliert werden. Das
Assimilationsexperiment wird im Jahr 75 einer transienten Modellsimulation durchgeführt, wobei alle
zwei Tage etwa 3270 Beobachtungen assimiliert werden. Zur technischen Realisierung wurde der
NETF zunächst in das Parallel DA Framework (PDAF) implementiert und anschließend NEMO mit
PDAF gekoppelt. Hierbei bestätigte sich, dass die Implementierung des ETKF direkt übernommen
werden kann. Einzig die Analyseroutine, die das (lokale) Vorhersageensemble in ein (lokales) Ana-
lyseensemble transformiert, wurde gemäß dem in Kapitel 4 erläuterten Algorithmus modifiziert. Um
die lokale Dimensionalität zu reduzieren, werden die 9801 Ozeansäulen in jedem Analyseschritt un-
abhängig voneinander aktualisiert, wobei der horizontale Lokalisierungsradius auf 2.5◦ gesetzt ist. Im
Mittel werden dadurch pro Säule etwa 100 Beobachtungen, maximal jedoch sogar 200, verwendet. Ein
Anfangsensemble von 120 Zuständen wird aus einer 24-jährigen Modellklimatologie gebildet. Diese
gibt nur die großskalige Zirkulation wieder, enthält jedoch keine Informationen über die mesoskaligen
Eddies zu Beginn des Assimilationsfensters, und stellt damit eine große Herausforderung an den Filter
dar. In realen Situationen liegen meist mehr Informationen vor, etwa durch vorangegangene Analysen.

Ein Vergleich der Analysefelder mit den ”wahren” Feldern zeigt qualitativ, dass der NETF die tatsäch-
liche Zirkulation, inklusive der mesoskaligen Muster, grundsätzlich sehr gut wiedergibt. Die Leistung
des NETF wird weiterhin quantitativ beurteilt. Der Analysefehler wird kontinuierlich reduziert, bis ein
Gleichgewicht erreicht ist, in dem der Fehler nur noch zwischen 7-17 % (je nach Variable) gegenüber
dem einer freien Ensembleintegration beträgt. Erwartungsgemäß können für die Temperatur und SSH
die besten Ergebnisse erzielt werden, aber auch die unbeobachteten Geschwindigkeitsfehler werden
deutlich verbessert. Die NETF-Ensembles sind zudem statistisch konsistent, was sich an der analogen
Reduzierung des Spread zeigt. Der NETF erweist somit auch in dieser anspruchsvollen Anwendung als
praktikable Methode.
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Im Vergleich mit dem ETKF zeigt sich, dass die Analyse des NETF nach Erreichen der Konvergenz
etwas besser ist, was an der nichtlinearen Formulierung liegen könnte. Jedoch benötigt der NETF
deutlich länger, um die Konvergenz zu erreichen. Das kann auf eine Sensitivität des Filters gegenüber
dem Anfangsensemble zurückgeführt werden. Im Gegensatz zum ETKF können Ensemblezustände, die
einen großen Abstand zu der Beobachtung aufweisen, nicht zur Analyse beitragen. Der EWPF wurde
in bisherigen Publikationen nur um den wahren Anfangszustand initialisiert, hier wird eine ähnliche
Problematik erwartet. Die konsistente Spezifizierung des Anfangsensembles stellt somit eine wichtige
Voraussetzung für nichtlineare Filter dar.

Abschließend werden noch einige ausgewählte Aspekte untersucht, um die Nützlichkeit des NETF zu
belegen. Beispielhaft sei hier die weiterführende Simulation im Jahr 76 genannt, die mit dem finalen
Analyseensemble aus dem Jahr 75 initialisiert wird. Erwartungsgemäß steigt der Vorhersagefehler in
dem chaotischen System mit der Zeit an, bis die Modellklimatologie erreicht ist. Die typische Zeit-
skala der Fehlerverdopplung kann empirisch auf etwa 50-60 Tage geschätzt werden. Für die Tem-
peratur hingegen bleibt der Fehler bei einem niedrigeren Wert, was auf die langsame Variabilität in
tiefen Schichten zurückzuführen ist. Auch wenn das Experiment eine simplifizierte Ozeankonfigura-
tion verwendet, ist es dennoch in der Lage, die Bedeutung der vertikalen Temperaturbeobachtungen für
die Ozeananalyse zu unterstreichen. So bildet die Assimilation der Argo-Profile beim ECMWF einen
wichtigen Stützpfeiler für die Initialisierung von saisonalen Vorhersagen.

Der erfolgreiche Test des NETF in einem großskaligen Zirkulationssystem zeigt somit, dass der Filter
für die hochdimensionale DA anwendbar ist, selbst wenn anfänglich keine Informationen über den
wahren Zustand vorliegen. In sämtlichen betrachteten Punkten entspricht das Verhalten des NETF den
Anforderungen an eine nützliche Assimilationsmethode.

7. Schlussfolgerungen und Ausblick

Kapitel 7 fasst die wesentlichen in dieser Arbeit erzielten Ergebnisse zusammen und erlaubt daraus
resultierende Schlussfolgerungen.

Im Rahmen eines Rückblicks auf klassische Analysemethoden sowie neuere Entwicklungen im Bereich
von ensemble-basierten Filtern wurde zunächst der aktuelle Stand der Forschung identifiziert. Ensemble-
basierte Filter wie der EnKF werden mittlerweile zwar erfolgreich eingesetzt, liefern aber aufgrund der
Gauß’schen Annahme im Analyseschritt nicht die optimale Lösung. Nichtlineare Methoden, basierend
auf dem PF, können hingegen in größeren Dimensionen nicht verwendet werden. Der EWPF bietet
zwar ein großes Potential, ist jedoch in deterministischen Systemen nicht anwendbar und erfordert eine
adäquate Manipulation des Vorhersageschritts.

Der hier entwickelte NETF stellt eine alternative nichtlineare Technik dar, die nur auf den Bayes’schen
Partikelgewichten beruht. Im Gegensatz zum EWPF wird jedoch nicht die gesamte Analyseverteilung
berücksichtigt. Der einfach zu implementierende Algorithmus betrifft ausschließlich den Analyseschritt,
bei dem mithilfe einer Matrixtransformation ein neues Ensemble erzeugt wird, dessen Mittelwert und
Kovarianz exakt den nichtlinearen Schätzern entsprechen. Die Analyse kann wie im ETKF lokalisiert
werden, was eine Anwendung in großskaligen Systemen erlaubt, und auch der Rechenwand ist sehr
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ähnlich. Der NETF ist ein generischer Algorithmus, da der Vorhersageschritt nicht modifiziert wird,
und ist daher trotz seiner nichtlinearen Formulierung einfach zu implementieren.

Die Anwendungen in einem Spektrum unterschiedlicher Assimilationsexperimente zeigen, dass der
NETF auch mit relativ kleinen Ensembles stabil und erfolgreich arbeitet. In nichtlinearen, chaotischen
Systemen liefert er nicht nur bessere Ergebnisse als die EnKF, sondern bietet in höherdimensionalen
Problemen auch deutliche Vorteile gegenüber dem NLEAF. Dieser stellt eine stochastische Implemen-
tierung dar, die jedoch sehr rechenintensiv ist und bei den typischen, kleinen Ensemblegrößen sig-
nifikanten Zufallsfehlern unterliegt. Die Anwendbarkeit des NETF in hochdimensionalen System kann
abschließend in einem komplexen Ozeanzirkulationsmodell mit einem realistischen Beobachtungssze-
nario demonstriert werden. Auch hier liefert der Filter stabile Resultate, konsistente Ensembles und
Analysefelder, welche die wahre Zirkulation sehr gut wiedergeben. Dabei wird festgestellt, dass die
Spezifizierung des Anfangsensembles die größte Herausforderung für nichtlineare Filter darstellt. In
der Praxis kann es daher sinnvoll sein, bis zum Erreichen der Konvergenz einen ETKF zu verwenden,
und dann erst zu einem nichtlinearen Filter zu wechseln.

Sämtliche Experimente bestätigen somit konsistent, dass der NETF einen praktikablen Filter für die
nichtlineare DA darstellt. Die Transformation des Vorhersageensembles sorgt gemeinsam mit der
Lokalisierung der Analyse dafür, dass der Filter auch in hochdimensionalen Problemen mit realistischen
Ensemblegrößen stabil bleibt und korrekte Analysen produziert. Somit kann insbesondere der ”Fluch
der Dimensionalität”, die größte Herausforderung für nichtlineare DA-Methoden, prinzipiell und auf
einfache Weise umgegangen werden.

Da der NETF einen allgemeinen Algorithmus darstellt und die in dieser Arbeit gezeigten Ergebnisse
vielversprechend sind, bietet sich eine Vielzahl möglicher weiterführender Arbeiten an. Auf theore-
tischer Seite könnten beispielsweise weitere Eigenschaften der Transformationsmatrix untersucht wer-
den, insbesondere der Effekt auf höhere Momente ist derzeit noch ungeklärt. Außerdem könnte der
NETF zu einem sequentiellen Glätter weiterentwickelt werden, in Analogie zum ETKS.
Auf praktischer Seite wären, nachdem die prinzipielle Anwendbarkeit auch in hohen Dimension gezeigt
worden ist, weitere Anwendungen aufschlussreich. Zum einen könnten weitere Experimente in nicht-
linearen Zirkulationsmodellen etwaige Vorteile gegenüber den EnKF besser aufdecken, zum anderen
ließen sich die Grenzen des NETF feststellen. Beispielsweise würde sich eine Anwendung in einem
atmosphärischen Zirkulationsmodell anbieten. Diese könnte aufzeigen, wie sich der Filter bei einer po-
tentiell großen Dimension des Beobachtungsraums durch die Vielzahl an verfügbaren Beobachtungen,
im Vergleich zum Ozean, verhält und ob Lokalisierung in diesem Fall ausreichend ist, um Stabilität zu
gewährleisten. Ein Vorteil des NETF gegenüber dem EWPF ist seine leichtere Anwendbarkeit, die auch
deterministische Systeme zulässt. In einer Anwendung mit einem großskaligen, stochastischen Modell
hingegen könnten NETF und EWPF verglichen werden, was Erkenntnisse über die Relevanz höherer
Momente in der nichtlinearen, hochdimensionalen DA erlauben würde. Eine Anwendung in einem
Assimilationsproblem mit echten Daten wäre zudem interessant. Hierbei könnte untersucht werden,
wie empfindlich der NETF gegenüber systematischen Fehler in Modellen oder Beobachtungen ist.
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