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Abstract

In the first part of the thesis, we show that the payment flow of a linear tax
on trading gains from a security with a semimartingale price process can be
constructed for all caglad and adapted trading strategies. It is characterized
as the unique continuous extension of the tax payments for elementary strate-
gies w.r.t. the convergence "uniformly in probability”. In this framework, we
prove that under quite mild assumptions dividend payoffs have almost surely
a negative effect on investor’s after-tax wealth if the riskless interest rate is
always positive. In addition, we give an example for tax-efficient strategies for
which the tax payment flow can be computed explicitly.

In the second part of the thesis, we investigate the impact of capital gains taxes
on optimal investment decisions in a quite simple model. Namely, we consider
a risk neutral investor who owns one risky stock from which she assumes that
it has a lower expected return than the riskless bank account and determine
the optimal stopping time at which she sells the stock to invest the proceeds
in the bank account up to the maturity date. In the case of linear taxes and a
positive riskless interest rate, the problem is nontrivial because at the selling
time the investor has to realize book profits which triggers tax payments. We
derive a boundary that is continuous and increasing in time, and decreasing
in the volatility of the stock such that the investor sells the stock at the first
time its price is smaller or equal to this boundary.
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Chapter 1

Introduction

The main object of this thesis is to model capital gains taxes for continuous
time trading strategies and to examine the impact of taxes on investment
decisions.

In real markets, capital gains taxes have a major impact on the investor’s
wealth after taxes. In Germany, e.g., interest earnings, dividends, and realized
stock gains are taxed at 25%. In the USA, capital gains taxes are sometimes
even higher and reach from 0% up to 39.6%, depending on several factors like
the differentiation of short-term (up to 39.6 %) and long-term capital (up to
20%)*.

In most countries, an important feature of the tax code is the fact that trading
gains are not taxed before the asset is liquidated, i.e., the gain is realized.
Thus, the investor can influence the timing of the tax payments, namely she
holds a deferral option.

Most of the articles dealing with capital gains taxes face the question how to
model the so-called tax basis. The tax basis is the relevant reference value for
calculating capital gains. Capital gains taxes of a sold stock are calculated by

“tax rate* X (“sale price’ — “tax basis”).

One can see the difficulty of modeling the tax basis even in a simple example.
If the investor buys, e.g., 100 General Motors stocks at time ¢;, another 100 at
time to, and sells 100 at time t3, it matters which of the stocks she sells, as in
general « - 100(Sy, — St,) # a- 100(Sy, — S, ). When the portfolio is liquidated
at some time t4, the difference of the accumulated tax payments disappears
because a-100(St, — S, ) +a-100(Sy, — S, ) = a-100(St, — Sy, ) +a-100(Sy, — St ).
But, the order of sales still matters for discounted payments if the riskless
interest rate does not vanish.

The regulation described above that leaves it up to the taxpayer to choose
which trading gain to realize first when a stock position is reduced is called
the exact tax basis. An example is the U.S. tax law that allows investors to

Ithe numbers are based on the datas of the Tax Foundation for 2013



2 CHAPTER 1. INTRODUCTION

use a separate tax basis for each security.

Capital gains taxes also have a major impact on investment decisions. In
consideration of the feature that capital profits/losses are not taxed before
the asset liquidated, the investor has some incentive to realize profits as late
as possible to avoid tax-payments, but this can be at odds with portfolio
regroupings in order to earn higher returns before taxes.

Although, in practice, capital gains taxes may be the most relevant market
friction, there is only little literature on capital gains taxes in advanced
continuous time models. Ben Tahar et al. [BST10; BST07| solve the
Merton problem with proportional transaction costs and a tax based on the
average of past purchasing prices. This approach has the advantage that
the optimization problem is Markov with the one-dimensional tax basis as
additional state variable.

Cadenillas and Pliska [CP99| and Buescu et al. [BCP07| maximize the long-
run growth rate of investor’s wealth in a model with taxes and transaction
costs. Here, after each portfolio regrouping, the investor has to pay capital
gains taxes for her total portfolio.

Jouini et al. [JKT99; JKTO00| consider the first-in-first-out priority rule with
one nondecreasing asset price, but with a quite general tax code, and
derive first-order conditions for the optimal consumption problem. The
problem consists of injecting cash from the income stream into the single asset
and withdrawing it for consumption. Consequently, all admissible strategies
are of finite variation. Dybvig and Koo [DK96] and DeMiguel and Uppal
[DUO5| use the exact tax basis in a discrete time model and relate the portfo-
lio optimization problem to nonlinear programming.

Modeling Capital Gains Taxes for Trading Strategies of Infinite
Variation

In Chapter 2, we want to answer the following question: Can tax payments on
capital gains be modeled for continuous time trading strategies of the kind they
generally appear in mathematical finance? Most of these strategies possess
infinite variation, as e.g., the optimal stock position in the Merton problem or
the replicating portfolio of an option in the Black Scholes model. A straight
forward construction of the tax payment flow, analogous to time-discrete
models, would be based both on accumulated purchases and accumulated sales
of assets, but of course, these quantities explode if strategies are of infinite
variation.

For simplicity, we consider a linear taxing rule with tax rate a € (0,1), i.e.,
if an asset with stochastic price process S is purchased at time ¢; and sold at
time t5, the trading gains S;, — Sy, are taxed at (S, — S, ). Negative tax
payments for losses, so-called tax credits, can be interpreted as a refund of
former tax payments or a deduction against future tax payments.



In some countries, the tax basis is the average purchase price of all stocks of
the same firm (e.g., in Canada) or the price of the stock which was bought first
(“first-in-first-out”, a procedure followed, e.g., in Germany). For a comparison
of modeling these different tax bases, see Section 2.11.

Of course, the exact tax basis offers the investor the maximal possible
flexibility to make use of her tax-timing option. Economically, the exact tax
basis seems to be the most reasonable one because highly correlated stocks of
different firms are anyhow considered separately.

In the case of a positive riskless interest rate, it is more favorable to realize
smaller trading gains first. Moreover, if the stock falls below its purchasing
price, it is worthwhile to sell it in order to realize the trading loss and rebuy it
immediately, which is called a wash sale. These facts were already observed in
Dybvig and Koo [DK96|, see Properties 1 and 2 on page 6. For a rigorous proof
of these seemingly obvious statements considering arbitrary dynamic trading
strategies and a motivation for the continuous time modeling, see Section 2.10.

For investors, wash sales are a method to claim a capital loss without actually
changing their position. But, e.g., the U.S. tax law disallows loss deductions
if the same stock is repurchased within thirty days. However, this regulation
can easily be bypassed by purchasing a similar stock.

The exact tax basis is hard to manage when not considering a discrete time
model (as in Dybvig and Koo [DK96] and DeMiguel and Uppal [DU05|) where
the purchase price of each single stock in the portfolio can be identified. In
the transition to continuous-time models, one faces the problem that the exact
tax-basis becomes an infinite dimensional state variable. But, there are also
other tax codes, specifying the basis to which the price of a security has to be
compared in order to evaluate the capital gains (or losses).

A continuous-time model circumventing the problems of an exact tax basis
is proposed by Ben Tahar et al. [BST07; BST10|. To calculate the book
profits, only one additional state variable is necessary. This state variable,
which is used as tax basis, models the average purchase price of the stocks in the
portfolio. Their modeling yields the restriction of only considering right-
continuous, finite variation strategies. Despite all this, the optimal investment
problem is not analytically solvable.

An alternative to the LIFO taxation priority rule is proposed by Jouni et
al. [JKT99; JKT00]. In their approach, the so-called first-in-first-out (FIFO)
taxation priority rule is used, i.e., the stocks which spent the longest time in
the portfolio are sold first. In both articles, they consider only one riskless
asset and finite variation strategies with continuous paths.

Another (but not very common) way to handle taxes is proposed by Cadenillas
and Pliska [CP99] and Buescu et al. [BCPO7| where all capital gains have to
be taxed when rearranging the portfolio. This kind of taxation equals a wash
sale for all stocks in the portfolio at the rearranging dates.

Whereas in models with proportional transaction costs, it is quite obvious
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that strategies of exploding variation lead to exploding costs and thus to an
immediate ruin for sure, capital gains taxes do not explode. Namely, taxes
are not triggered by portfolio regroupings alone if there are no price changes.
In addition, even if the investment strategy forces that gains from upward
movements of the stock are realized, there is to some extent an offset by losses
due to tax credits.

On the other hand, a straightforward generalization of the model by [DK96;
DUO05| to continuous time is only available for finite variation strategies — as
not only the number of shares held in the portfolio enters in the self-financing
condition, but it is based on both purchases and sells. In Chapter 2, we show
how tax payments can nevertheless be constructed under the condition that
stocks are semimartingales.

One application is to compare different dividend policies. As dividend
payoffs, in contrast to (unrealized) book profits, have to be taxed immediately,
capital gains taxes are also relevant for dividend policies. Among economists,
there have been extensive discussions about optimal dividend policies. In the
famous article by Modigliani and Miller [MM61]|, their effect on the current
stock price is considered, and their irrelevance for the firm valuation is shown
in perfect markets (i.e., without taxes). A question arising from |[MMG61|
is: “Why do firms pay dividends?”. The so-called dividend puzzle, at first
appearing in Black [Bla76], states that there are no rational reasons for a firm
to pay dividends. Bernheim [Ber91] solves this puzzle considering a model
(with taxes) in which firms attempt to signal profitability by distributing
cash to shareholders. For a survey on these general, but mainly less formal,
discussions on dividend policies, we refer to the book of Lease et al. [Lea+00].

Anyway, it seems to be quite obvious that dividends have, in principle, a
negative impact on investors’ after-tax wealths. Indeed, let r, > 0 be the
floating rate. By strict convexity of the exponential function, one has

14+ (1—a) (exp (/Otrsds) —1) > exp ((1—04)/0t7“sd3). (1.1)

The LHS of (1.1) can be interpreted as the value of a bank account with initial
capital 1 when capital gains are taxed at time ¢ with factor . The RHS
corresponds to the same situation, but capital gains are already taxed at the
time they occur. This tax regulation takes effect if interest is paid out as a
continuous, positive dividend (the after-tax dividend is then reinvested in the
bank account).

However, considering dynamic trading strategies and asset price processes that
are not increasing with probability 1, a proof of the conjecture that the effect
of dividends is always negative, is, even in discrete time, much trickier than
(1.1). In Section 2.6, we give a proof of this assertion in the continuous time
framework.

Finally, to demonstrate the tractability of the model, we give an example for



tax-efficient dynamic trading strategies for which the tax payment flow can be
computed explicitly and is easy to interpret.

Optimal Selling Time of a Stock under Capital Gains Taxes

If profits are only taxed when the asset is liquidated, even in the simplest
case of a linear taxing rule (which we consider in Chapter 3), there is a
nontrivial interrelation between creating trading gains and tax liabilities by
dynamic investment strategies. The investor can influence the timing of the
tax payments, i.e., she holds a deferral option. In the case of a positive riskless
interest rate, there is some incentive to realize profits as late as possible, but
this can be at odds with portfolio regroupings in order to earn higher returns
before taxes.

Solving a portfolio optimization problem with taxes allowing for arbitrary
continuous time trading strategies is a rather daunting task, especially for
the so-called exact tax basis and the first-in-first-out priority rule. Namely,
shares having the same price but being purchased at different times possess,
in general, different book profits, and hence, their liquidation triggers different
tax payments. Thus, the book profits of the shares in the portfolio become
an infinite-dimensional state variable (cf. Jouini, Koehl, and Touzi [JKTOO;
JKT99] for the first-in-first-out priority rule and Chapter 2 of this thesis for
the exact tax basis).

In practise, an investor is usually interested in much simpler optimization
problems. Therefore, we want to analyze a typical and analytically quite
tractable investment decision problem to determine exemplarily the impact
of capital gains taxes and to see how model parameters, as the volatility of
the stock, enter into the solution. Often, the investor wants to maximize
her trading profits within a certain finite period of time by exchanging one
asset for another one only once. This means that she has to solve an optimal
stopping problem. In this simple setting, different tax bases, as, e.g., the exact
tax basis, the average tax basis, or the first-in-first-out priority rule, coincide.
To investigate the impact of taxes on investment decisions, we look at an
investor owning an asset which she would sell immediately to buy another
one if she was not subject to taxation. Under risk neutrality, this just means
that the asset the investor holds at the beginning has a lower expected return
than the alternative asset. Then, we investigate to what extent she is pre-
vented from this transaction by the obligation to pay taxes at the time she
liquidates the first asset. The price of the first asset is modeled as stochastic
process in the Black-Scholes market to see the impact of the volatility on the
deferral option the tax payer holds. We prove the plausible supposition that
the possibility to time the tax payments is more worthwhile for holders of more
volatile assets and, consequently, the risky asset is sold later (see Proposition
2.4). We assume that the second asset is then kept in the portfolio up to
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maturity. Thus, it is no essential restriction to model it as a riskless bank
account.

In contrast to the model of Constantinides [Con83|, we do not assume that
the investor can both defer the tax payments and divest the stock from her
portfolio at the same time by trading in a market for short sell contracts (see
Subsection 4.1 of [Con83]). To our mind, it is mainly an interesting gedanken-
experiment to shorten the stock, instead of selling it, in order to defer tax
payments, but under real-world tax legislation, it is no option for private
investors. By assuming the existence of such a market for short sell contracts,
Constantinides can price the timing option in the Black-Scholes model by no-
arbitrage arguments and without solving a free-boundary problem.
Another essential difference to [Con83| is that we have a deterministic finite
time horizon, whereas in [Con83|, liquidation is forced at independent Poisson
times. Thus, as in problems with infinite time horizon, as in the latter article,
one gets rid of “time™ as a state variable.

In Chapter 3, standard techniques from the theory of optimal stopping are
used, especially an approach that turns the problem with a terminal payoff
to one with a running payoff, see Peskir and Shiryaev [PS06|. The objective
function is much simpler than in other recent papers on the optimal selling
time of a stock without taxes, as Shiryaev et al. [SXZ08|, where the stock is
sold at the stopping time which maximizes the expected ratio between the
stock price and its maximum over the entire horizon. Du Toit and Peskir
[DTPO09| complement this by determining a stopping time that minimizes the
expected ratio of the ultimate maximum and the current stock price. Dai and
Zhong [DZ12]| consider a similar problem in which the average stock price is
used as reference. In addition to the above selling problems, in their recent
work, Baurdoux et al. [Bau+14] discuss a “buy low and sell high” problem as
a sequential optimal stopping of a Brownian bridge modeling stock pinning.
This is a phenomenon where a stock price tends to end up in the vicinity of
the strike of its option near its expiry, see [AL03| for a detailed explanation.

1.1 Structure of this Thesis

Chapter 2 is based on the article [KU14|. In Section 2.2, we present the model
and the first main result, Theorem 2.2.12, which shows how to construct
tax payment processes for adapted, left-continuous trading strategies. The
construction is based on automatic wash sales and the rule to sell shares
with shorter residence time first. The optimality of this procedure is proven
in Chapter 2.10 for the discrete time model of Dybvig and Koo [DK96|. In
Section 2.3, basic properties of the book profits of a portfolio are discussed.
They are used in the proof of Theorem 2.2.12 in Section 2.4. In Section 2.5,
the self-financing condition of the model is introduced. In Section 2.6, the
second main result, Theorem 2.6.3, showing that the investor is always better
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off in a model with a stock which does not pay dividends is stated and proven.
Section 2.8 is about tax-efficient strategies, and Section 2.7 gives examples
that show the necessity of some assumptions. In Section 2.11, we compare the
modeling of different tax bases in financial mathematics.

Chapter 3 is based on the article [KSU14|. In Section 3.1, we formulate the
optimal stopping problem and present its solution (Theorem 3.1.2), which is,
accompanied by Proposition 3.1.4, the main result of the chapter. Afterwards,
the results are related to other contributions in the literature. Section 3.2
introduces the applied method to solve the problem and prepares the proofs
which are given in Section 3.3. Section 3.4 examines the same stopping prob-
lem as in Section 3.1 but with a bond where earnings are taxed at maturity
and compares the resulting stopping boundaries in both problems.

Published Contents

The articles “Modeling Capital Gains Taxes for Trading Strategies of Infinite
Variation” [KU14] and "Optimal Selling Time of a Stock under Capital Gains
Taxes* [KSU14| are submitted for publication.
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Chapter 2

Modeling Capital Gains Taxes for
Trading Strategies of Infinite
Variation

In this chapter, we model capital gains taxes for trading strategies of infinite
variation. To be able to define an accumulated tax-payment process, we have
to consider the rule that stocks with the longest residence time in the portfolio
are sold first and stocks with negative book profits are sold and immediately
repurchased (wash sale). These rules are motivated by proving their optimality
in the time-discrete model of Dybvig and Koo [DK96|. We show that in our
model, dividend payments negatively influence the investor’s after-tax wealth if
the dividend policy has no effect on the stochastic return process. As a further
application, we find out tax-efficient strategies which try to defer tax-payments
as long as possible.

2.1 Notation

Throughout the chapter, we fix a terminal time 7" € R, and a filtered prob-
ability space (€, F, (Ft)icp,1), P) satisfying the usual conditions. Denote by
O (resp. by P) the optional g-algebra (resp. the predictable o-algebra) on
Q x [0,T]. For optional processes X, X", n € N, we write X" 5 X iff X
converges uniformly in probability to X, i.e., sup,cjo 1) [ Xi' — Xi| converges to
0 in probability. Equality of processes is understood up to evanescence.

A process X is called laglad iff all paths possess finite left and right limits (but
they may have double jumps). We set ATX := X, — X and AX := A~ X :=
X — X_, where Xy = limg; X and X;_ := limg X. For a random variable
Y, we define Y* := max(Y,0) and Y~ := max(-Y,0).

9
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2.2 Construction of the Tax Payment Process

For an investor trading in finitely many different stocks, the total tax payment
is just the sum of the tax payments considering only gains from one type of
stock. Thus, it is sufficient to consider only one risky asset (sometimes called
stock). Its price process is given by the semimartingale (S;)icor] (thus the
paths are cadlag). The stock pays out nonnegative dividends. Accumulated
dividends per share are modeled by the nondecreasing adapted cadlag process
(Dt)icor)- All capital gains (positive or negative) are taxed with the rate
a € (0,1). But, whereas dividends are taxed immediately, trading gains arising
from stock price movements are not taxed before they are realized. Denote by
L the set of all left-continuous adapted processes with finite right limits. The
investor’s strategy is the number of identical stocks she holds, and it is modeled
by some ¢ € L with ¢y = 0 and ¢ > 0. Short-selling is forbidden as otherwise
the investor can hold one long and one short position of the same stock at the
same time, and this can lead to an arbitrage opportunity under a linear tax
rule and a positive riskless interest rate (losses are immediately realized, and
the corresponding gains are deferred, cf. Constantinides [Con83]).

Example 2.2.1 (Arbitrage with a long and a short position). Let a = 10%.
Consider a linear taxation rule and a riskless investment opportunity, called
bond, with interest rate r = 5%. Capital gains in the stock position are taxed
when realized, whereas (w.l.0.g.) earnings in the bond are continuously tazed.
The initial wealth is vy = $0. An investor buys 100 Amazon stocks financed by
short selling 100 Amazon stocks at the same time t = 0 at a price of $100. Let
us now distinguish two cases. At time ty, the stock price either (a) increases
by $10, or (b) decreases by $10. In both cases, the portfolio is liquidated at
time tq.

In case (a), the investor makes losses with the short position. Realizing these
losses by wash sales means a tax credit of 100 - ($110 — $100) = $100. These
tax credits are then invested in the riskless bond. Liquidating the portfolio at
time ty implies a terminal wealth of

Vi, =100 (S,, — a(Ss, — 100) — S, + a(S,, — 110))
+ 100 exp(0.05(1 — «) - (t2 — t1))
= — 100 + 100 exp(0.05(1 — ) - (t2 — t1))
>0. (2.1)

In case (b), the investor makes losses with the long position and the calculations
yield the same results as in (2.1), namely

Viy = —100 + 100 exp(0.05 - (£ — t1)) > 0.

As positivity of the wealth does not depend on the size of increase or decrease
of the stock, respectively, allowing simultaneous short and long positions in
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a market with linear capital gains taxes implies arbitrage when the investor
realizes losses by wash sales.

The assumption ¢y = 0 is solely for notational convenience (cf. (2.5)). It
does not rule out that the investor starts with a bulk trade g, > 0.

Remark 2.2.2. In general, the tax payment flow cannot be derived from the
process ¢ alone as payments depend on which shares the investor sells when
15 reduced and on the occurrence of wash sales that do not enter in ¢. Given
some @, we work with a special procedure that dictates which of the shares
to sell. In Section 2.10, for a nonnegative interest rate, the optimality of this
procedure is proven in the discrete time model of Dybvig and Koo [DK96] where
arbitrary shares can be sold. We use that a payment obligation in the future
1s preferred to a payment obligation today. With this intuition in mind, the
constructions in the current section are well-founded, but there are also good
reasons to read Section 2.10 first.

To construct the tax payment process, several mathematical objects have
to be introduced. For every ¢, we sort the ¢; stocks by the time spending in
the portfolio and label them by z: the larger x the longer the residence time
in the portfolio. We follow the above-mentioned procedure:

“latest purchased stocks are sold first”. (2.2)

With this procedure, the purchasing time of the 2t stock is defined by

R sup Mt,x lf Mt,x ?’é @
Ttx { . otherwise * '€ 0,T],xz € Ry, (2.3)

where M, , :=={u € Ry | (u < tand x—pi+p, <0)or (u < tand z—p+@,4 <
0)}. By po =0 and ¢ > 0, one has

My, =0 x> ¢ (2.4)
and thus
Trae = Lw<p) SUP Mig + Lias gt (2.5)
The construction is illustrated in Figure 2.1.

In the next step, an automatic loss realization is modeled. The trading gain
of piece x is decomposed into
St — Sr., = inf S, — 55, + Sy — inf S, . (2.6)

Tt,o U<t Tt,2 Su<t

J/

~~ —
realized losses by wash sales unrealized book profits

This is motivated as follows: if a stock falls below its purchasing price, it is
sold and repurchased in order to declare a loss. Then, in the continuous time
limit, the realized loss is the first summand on the RHS of (2.6). The residual
second summand equals the unrealized book profits.
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45¢
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On the ordinate, the stocks that are in the portfolio at time ¢ are sorted
by descending label x (see the green axis). 7,, the purchasing time
of stock x, is the last time u before t with ¢, = ¢ — 2 (see the case
x = 1). The pieces that are marked in red symbolize the stocks (and their
purchasing times) which are still in the portfolio at time ¢. If the position
is reduced, stocks with lower residence time in the portfolio are sold first.

Figure 2.1: Determination of 7; ,

Definition 2.2.3 (Book profits). Let ¢ € L with pg = 0 and ¢ > 0. The
mapping F: Q x [0,T] x Ry — R, with
F,(t,x):= Si(w) — inf S,(w), (2.7)

Tt,o (W) <u<t
where T, s defined in (2.3), is called the book profit function.

A book profit is a gain that is demonstrated on paper, but not actually real
yet. By the wash sales and the fact that a newly bought share starts with
book profit zero, a share with a longer stay in the portfolio possesses a higher
(or equal) book profit, i.e., x — F,(t,z) is nondecreasing.

Note that wash sales neither enter into the strategy ¢ (implying that these
transactions have no impact on the trading gains) nor in the purchasing times
T; - The latter means that 7,, is the time at which the share possessing at
time t with label x is bought and kept in the portfolio afterwards at least up
to time t, apart from later rebuys caused by wash sales.

Example 2.2.4 (Automatic loss realization). Consider a 3—period model with
stock price S = (100,102,98,101) and a constant strategy p = (1,1,1,1). So,
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the book profit function at tg,t1,ts,t3 is given by F(to,x) = 0, F(ty,z) = 2,
F(t,1) =0 and F(t3,1) =3 for x € (0,1].

The constant strategy yields that 7y, , = to fori =0,1,2,3, x € (0,1]. Although,
the purchasing time 1,, does not change, the stocks in the portfolio are sold
and immediately repurchased (wash sale) at ty because they have negative book
profits. So, for calculating the unrealized book profits at ts, the new purchase
price at ty, which is given by inthO,zgugtg Sy, 18 relevant.

Remark 2.2.5. The book profit function (2.7) that depends on the paths of
the stock price and the total number of shares turns out to be the key object
to construct tax payments for strategies of infinite variation and to find out
tax-efficient strategies.

Proposition 2.2.6. F(t,z) and 1, fulfill the following properties:
(i) The mapping x +— Ty, is nonincreasing on [0, ).
(i) F(t,x) =0 for x > ;.
(111) x — F(t,x) is nondecreasing on [0, ;).
(iv) x> F(t,z) is left-continuous.
(v) If ¢ is an elementary strategy, then limgy, F'(s,x) exists for all t,x.

The proof can be found at the beginning of Section 2.3. Of course, F(t,z)
is only used for = < ;. Possible states and developments of F' over time can
be seen in Figure 2.2.

Remark 2.2.7. To ensure that the function x — F(t,z) is left-continuous,
besides @y, also @, has to be considered in the definition of My . It is con-
venient that x — F(t,x) does not possess double jumps, but for the following
construction of the tax payment process the values of F' at the (countably many)
points of discontinuity do not matter. F,(t,-) |04, w) can also be seen as the
left-continuous inverse of the distribution function of the book profits over all
shares that are in the portfolio at time t (here, “distribution function” means
the number of shares with book profits lower than or equal to a given bound).

Whereas the book profit function in (2.7) is directly defined for all ¢ € L,
it turns out that a straight forward construction of the tax payment process,
analogous to time-discrete models, would be based on both the accumulated
purchases and the accumulated sales (this is as both effects are quite differ-
ent). Thus, in a first step, the tax payments are only defined for elementary
strategies. Then, in Theorem 2.2.12 we show that it can be extended to all
left-continuous adapted processes. However, this extension is not obvious and
relies, among other things, on the assumption that S is a semimartingale (see
Remark 2.7.2). With the help of (2.7), a process II can be defined which
reflects the accumulated tax payments up to time ¢.
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An example how x — F(t,z) can evolve in a 4—period model, i.e., t € {0,1,2,3,4}. In this
example, the stock price is given by S = (Sp,...,Ss) = (100,103,104, 105,102), and the
investor chooses the strategy ¢ = (¢1,...,95) = (9,10, 14,10, 10), following the standard
notation in discrete time, i.e., ¢; shares are purchased at price Sy etc. On the abscissa there
are the shares ordered by their book profits and on the ordinate the book profits F'(t+, x),
i.e., after the portfolio regrouping at time ¢. Observe that at time ¢t = 4, i.e., in the fourth
picture, one share (at the very left) is sold and immediately bought back to realize a loss of
one monetary unit (wash sale).

Figure 2.2: Evolvement of x — F(t, )

Definition 2.2.8 (Accumulated tax payments for elementary strategies). Let
. k

¢ be a nonnegative elementary strategy s.t. ¢ = > Hi 11y, | ., where

0=~ro <k <...< K =T are stopping times and H;_ 1s F,, ,—measurable.

Let T and F be as in Definition 2.2.3. Then,

k (Hi—1—H;—2)~
= Z Likir<t) /0 F(ki_1,x)dx
i=1

k o
+a Z Lk <ty / (F(/%NL, r) +
i=1 0

¢
+a/ VudD,y,
0

IT; ()

inf
Ki—1Su<tAR;

(Sy — S,{H)) A 0dx

(2.8)

where H_1 := 0, is the tax payment process of the elementary strategy ¢ (The
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limit F(ki—1+,x) == lim,,,, , F(s,x) exists by Proposition 2.2.6(v)).

IT is obviously well-defined, i.e., it does not depend on the representation of
Q.

Remark 2.2.9. Let us explain the three components of T1;(i).

aX T < O(H"_I_H"_Qr F(ki_1,2)dx are the tax payments that are trig-
gered by selling stocks in order to follow the strategy ¢. A downward jump of p
forces the investor to realize book profits. She takes the shares with the smallest
label x, which is in line with (2.2) and (2.3). As x — F(s,x) is nondecreasing,
the sold shares possess the lowest book profits of all shares in the portfolio. By

F >0, this term is nonnegative.

a Zle L, 1<) fow (F(Hi_ri-, x) 4+ inf, | <u<inn; (Su — Sm._l)) A 0dz is always
less or equal to zero. The ith summand models the tax credits due to realized
losses by wash sales between the trading times k;_1 and k;. This equals minus
the local time of S at different levels (in the sense of Asmussen [Asm03], page
251). Namely, the book profit of piece x is the solution of a Skorokhod problem
started at F(k;_1+,x) in which the stock price movements are reflected at 0
(however, this interpretation is only valid in between portfolio regroupings).
The local time we consider has jumps iff downward price jumps dominate pre-
vious book profits. It is different from the semimartingale local time, see (5.47)
in Jacod [Jac79] for a definition. But, for S being a continuous local martin-

gale, the semimartingale local time of the reflected stock price is twice the local
time in [Asm03], see the appendiz of Yor [Yor79].

« f(f wudD,, are taxes on dividends, which have to be paid immediately.

Remark 2.2.10. Given an elementary process ¢ modeling the total number
of shares in the portfolio, 11,(v) are the minimal accumulated taz payments up
to time t. This statement results from Theorem 2.10.1 together with Subsec-
tion 2.10.1.

(2.8) can generally not be formulated for strategies of infinite variation.

Remark 2.2.11. [t is quite natural that the tax payment process has double
gumps. Namely, the stock price is right-continuous whereas the strategy is left-
continuous, and the tax payments are triggered both by downward jumps of the
stock (through wash sales) and by sales of stocks following the strategy ¢.

Theorem 2.2.12. Let ¢ € L and (¢")nen be a sequence of elementary strate-
gies with ¢f = 0, ¢" > 0, and ¢" X p. Then, the accumulated taz pay-
ments TI" for ™ (as defined in Definition 2.2.8) are optional processes with
laglad paths. In addition, there exists an optional process 11 possessing almost
surely laglad paths such that 11" 8 1. Different choices of up-approzimating
sequences of ¢ lead to the same 11 up to evanescence.
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Consequently, the mapping ¢ — Il(p) from Definition 2.2.8 possesses an up
to evanescence unique extension

{pel|p=0, p>0} - {X:Qx[0,7] = R | X is optional and laglad},

which is continuous w.r.t. the convergence uniformly in probability. The ex-
tension, also denoted by 11, possesses the jumps

®t
All, = a/ <lim sup F'(s,z) + ASt) AO0dx + ap;AD;  and (2.9)
0

s<t,s—1

(Atepr)™
AT = a/ F(t, z)dz. (2.10)
0

Note that any ¢ € L with ¢ > 0 can be approximated uniformly in probabil-
ity by a sequence of nonnegative elementary strategies (see, e.g., Theorem I1.10
in [Pro04]).

Definition 2.2.13. For ¢ € L with ¢ > 0, the tax payment process 11(p) is
defined as the limit process in Theorem 2.2.12.

2.3 Properties of the Book Profit Function

In this section, we state some properties of F'(¢,x). These are needed in the
next section for showing convergence of I1".

Proof of Proposition 2.2.6. (i): Let y < = < ¢;,. By (2.4), we have
M, . # (. By the left-continuity of ¢, sup M, , is attained, i.e., r—pit+on, <0
or £ — @i+ @7 .+ < 0. We conclude that y—y;+¢r,, <0ory—pi+¢., .+ <0.
Thus 7, < 7.

(ii): Follows immediately from (2.5).

(iii): Dueto 7y > 7y, fory < @ < ¢y, one has F/(t,x)—F(t,y) = inf;,  <u<t Su—
inth,xSUSt Su Z 0.

(iv): By (ii), it is enough to show left-continuity at x € (0,¢;]. One has
T — ¢+, > 0forall u € (r,,t] and © — ¢ + @uq > 0 for all u € (74, 1).
Because the infimum of a caglad process on a compact interval is attained in
a right or a left limit, one has that

inf{z —@r+pu | ve€n,+et]} >0 Ve>D0.
Therefore, there exists dp > 0 s.t. for all § € (0, o]

T—0— i+ @y >0Vuen, +etland x — 6 — o+ @ur > 0 Vu € [1 5 + &, 1).
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An example of x — F(1,z) for a continuous time strategy. The paths are simulated
for the Merton problem [Mer71], i.e., the stock price and the exact optimal strategy are
continuous and of infinite variation. Observe that, nevertheless, - — F'(1, ) has jumps.
Let us explain the jump of z — F(1,z) in figure (a) at zo = 25.75 (looking at figures (b)
and (c)). As 1 = 46.25, the piece xg = 25.75 is purchased at 71,2575 = sup{u | ¢, =
46.25 — 25.75 = 20.5} = 0.85. ¢ possesses a local minimum at 71 ¢.g5. In addition, there
are no wash sales of piece xy = 25.75 after 7 9.g5. Define 7% := sup{u < 7 9.85 | pu =
46.25 —25.75} = 0.51. 7" = limy|25.75 71 is the time at which x marginally bigger than
xo = 25.75 is purchased. Then, the jump size limg o575 F'(1,2) — F'(1,25.75) results
from Sp.g5 — info s1<u<0.85 Su = 9.5, the book profits of piece 25.754 at time 0.85 (cf.
the black arrows in figure (b) and (c)).

0.85

0.51
time [t]

(b) Path of the Merton strategy (v:)¢co,1]

Figure 2.3: x +— F(1,z) for a continuous time strategy

17

Thus, either M, s = 0 or 0 < sup M, 5 < 7y, +&. If the first holds for
some 0 € (0,dp], it also holds for all smaller positive numbers and zero. In
this case, left-continuity is obvious because 7, = 7;, = t for all y in a left
neighborhood of z. In the second case, one has 7,5 — 7, < € and, by (i),

Tiz—s € [Ttw Tt + €| for all 6 € (0, dp]. By right-continuity of S we are done.
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(v): Let ¢ be an elementary strategy with representation as in Definition 2.2.8.
Let t € [ri_1, k) and $1,59 € (t, K], 1.e., g5, = s, For x = 0, one has
F(s1,0) = F(s2,0) = 0. For z € (0, ps,], one has My, ,, M, , C [0, x;—1] which
leads, again by ¢, = @s,, to My, , = M, .. By x < ¢, and (2.4), one has
My, » # 0 and arrives at 7q, » = Ts,» < ki1 and thus F(sy,2) = F(sy,x). For
T > s, = s, one has that My, , = My, , = 0 and thus F(s;,x) = F(s2,2) =
0. Consequently, the limit limg, 75, =: 74, exists for all x € R.. [ |

In the next lemma, we examine the behavior of the book profit function for
two strategies whose paths are close together.

Lemma 2.3.1. Let p,p € L with o9 = ¢9 = 0 and p,p > 0. Ty, ﬁ, and

M, , denote the quantities from Definition 2.2.3 for ¢ instead of p. Fiz some
weNandtel0,T). If

Sup pu(w) — u(w)| < e, (2.11)

then
Fu(t,x) < Fy(t,x +2¢) for all z < §y(w) — 2¢ (2.12)

and

wt(w) Ge(w) _
/ F,(t,z)dx — / F,(t,z)dx| < 3e ( sup Sy(w) — inf Su(w)) .
0 0

0<u<t O0<u<t

(2.13)

Proof. We fix some w € () satisfying (2.11) and omit it in the rest of the
proof. Let x < ¢ — 2¢. By (2.11), one has M; 9. C M;,. This gives
sup My ;9. < sup M, ,. Furthermore, by (2.4), one has M, ;2. # 0 and thus

Ttat+2e = SUP My 4y0. < sup My, < 73, which implies

F(t,z) — F(t,x +2¢)=_inf S, — inf S, <0.

Tt x+2e Sult Ttz Su<t

As obviously F(t,z) = S —inf;,  <u<; Su < SUpg<,<; Su — infocu<y S, for all
r € Ry, (2.12) implies

®t
/ F(t,x)dx
0

((Et—QE)\/O .
§/ F(t,x +2¢e)dx + (pr — o + 2¢) (sup Sy — inf Su)
0 0<u<t

0<u<t

ot _
S/ F(t,x)dx—i—S&(sup S, — inf Su>.
0

0<u<t 0<u<t

By symmetry, we obtain (2.13). [ |
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In the next section, we prove that Il is an optional process. For this purpose,
some measurability of F' has to be checked.

Proposition 2.3.2. F is O ® B(R,) — B(R,)—measurable.

Proof. Because x +— F,(t, ) is left-continuous and on [0, ¢;| also nondecreas-
ing, one gets
Fu(t, ) = Laspue)) Sup {Fult, @) = La<goo}
q€Q+

As {(w,t,x) | = < p(w)} € P ® B(Ry), it remains to show that
(w,t) — F,(t,q) is O — B(R;)—measurable for every fixed g¢.

Step 1: Let us show that (w,t) — 7 4(w) is P — B(R;)—measurable. Define
the (random) sets

M, ={uel0t]|¢g—pit+p.<1/n, ueQ}, neN

t,q
By
sup Mi = sup uly, ) | gop(w)teu(@)<1/n and u<i)
u€Q4
and the predictability of ¢, the mapping sup M", : Q x [0,7] — Ry,
(w,t) = sup M (w) is written as a pointwise supremum over countably many
predictable functions, and thus it is also predictable. Now, we show that

sup M Ly<p) = Trqlg<p) Pointwise for n — oo. (2.14)

Let n € N, u € M;,. There exists v € Q arbitrary close to u with v € M,
and thus

sup M, , < sup M;"

n. VneN. (2.15)
Assume that ¢ < ¢y, i.e., 7, = sup M, , by (2.5). First note that ¢—¢;+¢, > 0
for all u € (1;4,t] and ¢ — ¢ + @y for all u € (7;4,t). As the infimum of a
cadlag process is attained in the right or the left limit on a compact interval,

one has
inf{g —pr +u | u€[ny+e,t]} >0, Ve>0.

Therefore, there exists N € N s.t.
1
q—g—¢t+<pu>0 Yu € [1p4+¢€,t], n> N.
This implies sup My, < 7,4 + € = sup M;, + € for all n > N. Together with
(2.15) one obtains (2.14). (2.14), the predictability of sup M, and (2.5) imply
the predictability of (w,t) — 7 4(w).

Step 2: One has
F(t,q) =S, — inf S, =0Vsup(Sy —Sy)l(r <y<t)

T, qSu<t yeQ

and by Step 1, {(w,?) | 4(w) <y} € P. Because S is optional, F'(-,q) is also
optional, which completes the proof. [ |
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2.4 Proof of Theorem 2.2.12

Proposition 2.4.1. For any elementary strateqy o, it holds that

t t o8]
a/ ©udS, + a/ 0udD,, = a/ F(t,z)dx +11,, Vte[0,T]. (2.16)
0 0 0

This proposition is the key step to prove Theorem 2.2.12. Namely, by the
semimartingale property of S and D the integrals converge if " — ¢, and
with Lemma 2.3.1 it can be shown that also the corresponding book profits
fooo F(t,x)dx converge. For the latter one needs that ¢" converges uniformly
in probability and not only pointwise. To prove the proposition one needs the
following lemma.

Lemma 2.4.2. Let ¢ be an elementary strategy, s.t. ¢ = Zle Hi 11y 1k
where 0 = kg < Ky < ... < K =T are stopping times and H;_y 1is F,, ,—
measurable. For allt € (k;_1, k], © € (0, ¢4, we have

St — Sk, , = (F(m_ﬁ—,ac) + in<f <t(Su — Sni1)> ANO+ F(t,z) — F(ki—1+, ).
Ri—13XU>

Proof. Let t1,ty € (Ki—1, Ki], 1.e., @1, = 1. As x > 0, one has My, ,, M, , C

0, k;—1], which leads, again by ¢y, = @4, to My, » = My, .. By © < ¢y, we

have 0 € M, . # () and arrive at

T = Thop < Ki—1. (2.17)
By (2.17), the limit limg,, | T2 =:! Ty, ,+. exists and coincides with 7,
t € (Ki—1, ki]. This yields
(— inf S, + inf Su> A0
Tr;_q1+,2 SUSK—1 ri—1<u<t

= (— inf S, + inf Su> A0

Tt,e SUSKi—1 Ki—1<u<t

=— inf S,+ inf S,

Ttz SUSKi—1 Ttz Su<t
=— inf Sy + inf S, (2.18)
Tni_l-ﬁ—,:cgugnifl Tt,o SU<L

where for the second equality we use that, by (2.17), [T, t] = [Ttw, Kio1] U
[ki—1,t], and we distinguish the cases inf;,  <y<x, , Sy > inf.,  <u<; S, and
inf,, | <u<w, , Su < inf,,  <u<; Sy. Using (2.18), the right-continuity of S, and
the definition of F', it can immediately be seen that the LHS of (2.18) equals

(F(/@iﬁ—, r) + mfllrggt(Su — SmJ) A0,
and the RHS of (2.18) equals
F(/{i—la ZL‘) — F(t, ZZ') + St — Sﬁifl'

So, we are done. [ |
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Proof of Proposition 2.4.1. Let ¢ be as in Lemma 2.4.2. First, consider
increments of (2.16) on (k;_1, k4|, 7 € {1,...,k}. Let t1,t2 € (k;_1, K;]. Because
01, = @1, on (k;_1, K|, one has, by definition of II,

Pty
I, — I1,, :a/ (F(Hil—l-,l’) + inf (S, — Sﬁ¢1)> A0 dx
0

ki—1<u<taAk;
Pty
- a/ (F(Fa,»_l—l—, x) + inf (S, — Sm_l)> A0 dz
0 Ki—1Su<tiAK;
+ O‘SOH(DM - Dt1)'

By Lemma 2.4.2, one arrives at
Pty
th — Ht1 :O{/ (Stg — Sﬁi71 — F(tQ, x) + F(/‘Qi_l‘{‘, x)) dx
0

LPtl
— a/ (St1 — Sﬁi_l — F(tl, l’) -+ F(Iii_l—f-, l’)) dx
0
+ Oé(,Dtl(Dt2 - Dtl)

=ay, (St, + Dy, — Sy, — Dyy) — a/ (F(ty,x) — F(ty,x))dx
t2 131 ’ 00
—a [Cpas+D)—a [ pad(s+ D) —a [ Pl
0 0 0
+a/ F(ty,z)dx,
0

where in the last equality we use that ¢, = ¢, for all s € (t1,15]. This
means that (2.16) holds true for all increments on (k;_;, k;]. As it obviously
holds for ¢ = 0, it remains to show that the right jumps of the processes
t = [5° F(t,x)dz and IT at ;1 sum up to 0 as the LHS of (2.16) is right-
continuous. By similar arguments as in the proof of Proposition 2.2.6(v), one
obtains

Thi1@ = Thi 12— (pn, 4 —pn;_,) 72 € Ry with the convention 7, , 5 1=t Vy <0.
(2.19)

With the convention F(k;_1,y) = 0 for y < 0, one obtains

Pt Pri;_1+
lim / F(t,z)de = / (S,{H — inf Su) dx
ki1 Jo 0 Tij_ 14,2 SUSKi—1
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Pri—1 (A+50*€i—1)_
= / F(ki_1,x)dx — / F(kri_1,x)dx,
0 0
(2.20)

where the first equality follows from the definition of F' using that S is right-
continuous and 7, = Ty, ,+. for all t € (k;_1,k;] and x > 0. (2.20) means
that

Pri—1 <A+¢“i71)7
—A*,, = A" / F(ki1,x)dz | = —/ F(ki_1,x)dz,
0 0
(2.21)

and we are done. [ |

Proof of Theorem 2.2.12. The proof is divided into 3 steps.

Step 1: Let (¢"),en be a sequence of nonnegative elementary strategies with
et = 0 and ¢ 5 . From Proposition 2.3.2, one knows that (w,t,z) —
En(t,x) is O ® B(Ry) — B(R;)—measurable. So, (w,t) — [;° F(t, x)dx is
O — B(R,)—measurable. Together with Proposition 2.4.1 and the fact that
@™+ S and ¢" * D are optional, this implies that II" is also optional.

In the next step, it is shown that (II"),ecn is an up-Cauchy sequence. Again
by Proposition 2.4.1, it is enough to show that (¢™ ¢ S)nen, (¢ ¢ D)pen,
and ( fooo F "(-,x)dx)neN are up-Cauchy sequences. Because ¢" =® @ and S,
D are semimartingales, it is known, e.g., from Theorem I1.11 in [Pro04], that

(™ ¢ S)pen, (¢ * D)pen are up-Cauchy sequences. So, it remains to consider
I F(t,x)d.

Let € > 0. As S possesses cadlag paths, there exists K € R, s.t.

P(sup Sy — inf St2K>§

0<t<T 0<t<T

DO | ™

As " g ©, there exists N. € N s.t.

P ( g | n m’ > £ ) <
u _ —
S T

By Lemma 2.3.1, we have

/00 F*(t,x) — F™(t,x)dx

€ .
> ?( sup Sy — meSt)}

sup
{O<t<T 0<t<T 0<t<

e
C 4 su Y=ot > — 7,
{MQTI% o7 3K}
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and one gets

P ( Sup > 5)
0<t<T
sup Sy — inf S>i>€ + P | sup | m‘>i
0<t£T Foci<r TV K O<t£ oy — @i > 5K

g 5—5 Vn,m > N..

/ TP 2) — P )

So, (II"),en is an up-Cauchy sequence. Because the space of laglad functions
(also called “regulated functions”) mapping from [0, 7] to R is complete w.r.t.

the supremum norm, there exists an optional laglad process II s.t. 11" o
(optionality follows from pointwise convergence up to evanescence of a suitable
subsequence and the usual conditions).

Step 2: Let us now show (2.9). Let ¢t € (0,77, zo € (0,¢;) and assume that

z F(t,z):=5_— inf S,

Tt,e <u<t

is continuous at xg. F (t,-) is the time-t book profit function under the modified
stock price process Sy, = 1(u<t)Su + Lu>1)Si— (this modification removes the
impact of AS; on the book profits).

Let € € (0, ¢ — xp). By the left-continuity of ¢ and by 7 ;4. < Ta, < t, One
has for s smaller but close enough to ¢ that

los — @il <& and 5> Ty goqe. (2.22)

For s satisfying (2.22), one has M; ., # 0, M o+ N1]0,s] # 0, and the two
implications

w€ Mgyy = u € My, U € M zoie N[0, 5] = u e My,

hold; see (2.3) for the definition of M. This implies

Tt,xofe Z 7—s,xo > Tt,x0+€'
It follows that

inf . S5,< inf 5, < inf S,.

Tt,10+sgu<t Ts,zq <u<t Tt,m0—5§U<t

By the continuity of F (t,-) in zg, the left and the right bound are close together
for e small. We conclude that limg; s+ F'(s, ) =: F/(t—, x¢) exists and

F(t—,z0) =S, — inf S, (2.23)

Ttz SU<t
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(For elementary strategies, one has 7,, = 7, for s smaller but close to ¢,
and therefore the limit F(t—,z) exists for all x € R;). By (2.23) and a
distinction of the cases S; < inth’zOSKt S, and S; > inffmo <u<t Su, one obtains
F(t,xo) =0V (F(t—,z9) + AS;) and thus

AF(t,zg) = (—F(t—,z0)) VAS; = AS; + (= F(t—, o) — AS;) V0.

By monotonicity, the mapping = +— F (t,x) has at most countably many dis-
continuities, so that limg; s fooo F(s,x)dz exists and

A/ F(t,z)dx
0

Pt Pt
:A/ F(t,z)dx = ¢ AS; + / (— limsup F'(s,z) — ASt) VOdr (2.24)
0 0

s<t,s—t

(interchanging integral and limit is possible as F' and S are bounded for w
fixed). By construction of II, Proposition 2.4.1 holds for all ¢ € L. Together
with (2.24) and A(p * (S + D)) = ¢A(S + D), this implies (2.9).

Step 3: It remains to prove (2.10). For the approximating elementary trading
strategies ¢", (2.10) follows immediately from Definition 2.2.8. As (Aty")~
converges to (A1)~ uniformly in probability,

(A*ep)™ up (Ater)™
/ F*(t,x)dx — / F(t,z)dz (2.25)
0 0

follows by the same arguments as in the proof of Lemma 2.3.1. Putting every-
thing together, the assertion follows. [

Example 2.4.3 (Counterexample for the existence of F'(t—,z)). Consider a
book profit function F at time t = 1 such that x — F(1,z) has a jump at
rg = 2 (ie., F(1,24) > F(1,2)) and F(1,z) > 0 for all x € [1,3] with
o1 = 3L, Suppose that fort > 1, the stock price S is constant, and the strategy
is giwen by v, = 3 + (2 — u) sin (ﬁ) foru e [1,2) and ¢, = 3 foru > 2. As
the strateqy @, 1s oscillating infinitely often around y; for s smaller but close
tot =2, this yields

limsup F(s,2) = F(2,2+4) > F(2,2) = liminf F(s,2).

§<2,5—2 5<2,6—2

(the walues of F(s,2) are toggling infinitely often between the sets
A:={y :y € [F(2,24),00)} and B = {y : y € (0,F(2,2)]}, where,
according to the assumption, d(A, B) = F(2,2+) — F(2,2) > 0.)

'Note that by a proper choice of the stock price S and corresponding strategy ¢ in the
time interval [0, 1], one can easily construct an example which fulfills these conditions on F'
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2.5 Self-financing Condition

To prepare Section 2.6, we introduce the self-financing condition of the model
which is a natural generalization of the standard continuous time self-financing
condition without taxes.

Besides the risky stock with price process S and dividend process D, the market
consists of a so-called bank account. Formally, the bank account can be seen
as a security with price process 1 and dividend process

t
B, :/ reds, tel0,7T], (2.26)
0

where the locally riskless interest rate r is a predictable, nonnegative, and
integrable process. This simplifies the analysis as increments of B are taxed
immediately, and one needs not consider unrealized book profits of the bank
account (as for the risky stock).

Definition 2.5.1 (Wealth process and self-financing condition). Let X be an
optional process modeling the number of monetary units in the bank account,
and ¢ € I models the number of stocks the investor holds in her portfolio. The
wealth process V' of the strategy (X, ) is defined as

V=V(X,p) =X+ ¢S. (2.27)
A strategy (X, @) is called self-financing with initial wealth vy iff
V=uvp+(1l-—a)X*B+p*D+p+S—1II (2.28)
with I1 from Definition 2.2.185.

Remark 2.5.2. As B is continuous, it is sufficient to assume that X 1is
optional instead of predictable. Thus, the after-tax dividend (1 — o) AD;
of the stock can be included in the number of monetary units X;. Note that an
immediate reinvestment of the payoff in the stock would only affect piy, but
not ©s.

Remark 2.5.3. For any ¢ € L, vy € R, there exists a unique optional pro-
cess X s.t. (X, ) is self-financing. Indeed, plugging (2.27) into (2.28) yields

X=v+(1l-a)X*B+p*D+p+S—1—pS. (2.29)

Now, an optional process X solves (2.29) iff X is laglad, the cadlag process X,
solves the SDE

Z:'U()‘i‘(l—()é)Z,'B+S0'D+QD'S—H+—§0+S
(which has a unique solution Z, cf., e.g., Theorem V.7 in [Pro04]), and
X=7Z-A"X=7+ATI1+ SATp.
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(2.28) means that increments of the wealth process solely result from trading
gains and tax payments. An alternative condition is to assume that portfolio
regroupings do not involve costs. The latter condition may be more intuitive,
but it has the drawback that it can only be stated for strategies that can be
used as integrators (thus, trading strategies that are no semimartingales would
be excluded even though they could economically make sense). Let ¢ and II
be as in Definition 2.2.8. The alternative self-financing condition reads

k t
Xe = o — Z 1(’%‘—1<t)5’%—1 ((pfii—H- - Sofﬂ—l) + /0 (1 - a)XSrSdS — 1L + ¢ Dy
i=1
(2.30)

It is an easy exercise to prove equivalence of (2.30) and (2.28) for elementary
strategies.

Set n := sup{i : k;_1 < t} and note that ¢., = p.._,+ and ¢, = ¢;. Plugging
in the definition of X, into V; and rearranging the terms gives, together with
Yo = 07

n ¢
Vi =10 — Z S 1 (Pr; — 1) + / (1 — ) Xsreds — 11 + @St + ¢ * Dy
i=1 0

n
=00 = Y Ski 1 (s — @i ) + (1= )X * By =TI + ¢4S; — P, Sk,
i—1

n
+ Z (SOMSM - Soﬂi—lsl@i—l) +pe Dt

=1
=00 = Pr, (Sky = S+ > P, (Swy = Swisy) + (L= )Xo * By~ Ty + @ » Dy
=1

:’U(]—I—QD’St—F(l—Oé)XS'Bt—Ht—i-(,O’Dt.

2.6 Comparison of Different Dividend Policies

In this section, we investigate the effect of different dividend policies on the
investor’s after-tax wealth. In particular, we show that under the mild con-
dition that the dividend policy has no effect on the stochastic return process,
the effect of dividends is always negative. This assumption is formalized by
the following definition.

Definition 2.6.1. Let R be a semimartingale with AR > —1 and sp € R,.
Then, for any nondecreasing cadlag process D, define SP as the unique solution

of

SP =59+ S« R—D. (2.31)
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We call D admissible iff SP > 0, i.e., we only consider dividend payoffs that
do not exceed the stock price. R is the return process modeling the stochastic
profit per invested capital.

Observe that for any admissible D, the stock price S stays at zero once
the process or its left limit hits it. Note that by AR > —1, D = 0, which
corresponds to the model without dividends, is admissible. Alternatively, one
can start with an arbitrary nondecreasing process D with

AD<1+AR (2.32)

modeling accumulated dividends as multiples of the current stock price and
consider the SDE

S=sy+S5_+(R—D). (2.33)

Then, SP = Sfor D :=5_ l~), and, by (2.32), the stock price is nonnegative.
But, as for an arbitrary admissible dividend process D the integral S%l (sP>0} *

D may explode, Definition 2.6.1 is slightly more general.

Remark 2.6.2. (2.31) says that one has the same R for all processes D, i.e.,
there holds a scaling invariance of the stochastic investment opportunities. The
negative effect of dividends on the after-tax wealth is essentially based on this
property. It is, e.g., not satisfied in the Bachelier model with dividends.

Note that we do not assume that dividend payoffs are accompanied by downward
Jumps of the same size of the stock price. Such a behavior can be explained by
no-arbitrage arguments if dividends are predictable. However, the framework
also allows for a spontaneous dividend payment ADy, e.q., if ARy is large.

Recall that we consider a market model with two investment opportunities:
a risky stock with price process S” and dividend process D (interrelated by
Condition (2.31)) and a locally riskless bank account. The latter is an asset
with price process 1 and the nondecreasing dividend process B defined in
(2.26). We denote the model by ((SP, D), (1,B)). Now, we compare the
situation of an arbitrary admissible dividend process D with the situation of
no dividends. In the latter model, we use the subscript 0, i.e., S°, 1%, V9, etc.
The following theorem is the main result of this section.

Theorem 2.6.3. Let (XD, pP) be a self-financing strategy with initial wealth
vy in the model with dividends ((SP, D), (1, B)), and let VP be the correspond-
ing wealth process. Then, there exists a self-financing strategy (X°,©°) with
initial wealth vy in the model without dividends ((S°,0), (1, B)), where V° is
the corresponding wealth process, s.t. VP < V0.

To prove the theorem, we use the following two lemmata.
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Lemma 2.6.4. The process

SD
@1{5%0}

1S NONINCTEASING.

Proof. The case sy = 0 is obvious. Let sg > 0 and define
r:=inf{t > 0| AR, = —1}.

By the formula of Yoeurp-Yor [YY77] (see also [Jas03|), one has

1 1 AD,AR
D _ g0 . i il
ST =8 (1—50 D + E 017 R) (2.34)

- 0<s< 57

on the stochastic interval [0, 7[. The second factor of the RHS of (2.34) is
obviously a nonincreasing process. As S? = S% = 0 on [r, 0o[, we are done. M

The key step to prove Theorem 2.6.3 is the following lemma.

Lemma 2.6.5. Let ” € L and ¢° := ¢D§—§1{53>0}. Then, ¢° € L,

eSO =pPe(SP+ D), and T°<TIP. (2.35)

The lemma indicates that for an arbitrary strategy in the model with div-
idends, there exists a strategy in the model without dividends leading to the
same trading gains in the risky stock but not exceeding accumulated tax pay-
ments. The money invested in the stock is the same for both strategies. If
price processes do not vanish, one can recover ¢ from ¢° by investing the
dividend payoffs in new stocks. This is illustrated in Figure 2.4.

Proof of Lemma 2.6.5. The proof is divided into 3 steps. We first show that
the difference of the accumulated tax payments I1” and II can be expressed in
terms of the difference of integrals over the corresponding book profit functions.
Then, we show how to compare the purchase times in both models. In the last
step, we conclude, together with the first two steps, that II” dominates I1°.

Step 1: As ¢° < ©P, one obviously has ¢° € L. Because S = S? « R — D
and S° = S° « R, one obtains

SD
'+ S° :SDDS—§1{SO_>0} * (82 + R)
:QODSPl{Sg>O} ‘R
=" 15050y * (SP * R)
=p” « (S” + D), (2.36)
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Book profit functions = + FP(t;— ) and x + FP(t;,2) modeling book profits im-
mediately before and after the predictable dividend payoft AD;, = 1000, respectively,
associated with AS;, = —1000. One has FP(t;—,z) + AS;, < 0 iff # < 55. This means
that 55 stocks are sold and immediately repurchased (wash sale).
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0

Book profit function z + FP(t;+,z) after portfolio regrouping. According to ¢?, the
dividend payoff is invested in 20 new stocks which start with zero book profits, and the
function is shifted about 20 units to the right.

Figure 2.4: Reinvestment of dividends

where for the last equality we use that {S® =0} C {S” = 0} and the process
SP lygp_gy = R vanishes.

By construction of II, Proposition 2.4.1 holds for all strategies in L, i.e.,
a/ FP(t,z)dr +TIP = ap” « (SP + D)
0
(and the same without dividends). Together with (2.36), one obtains

P -1 = a/ FO(t, x)dx — a/ FP(t,z)dx. (2.37)
0 0

Step 2: Let us show that for ¢? > 0 (implying that ¢ > 0 and SP > 0)

Ttgc 2 'Ttox ‘p(t) s Vl’ € R+. (238)
T
Pt
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First note that
M o, =0 ME =0 (2.39)
(cf. Definition 2.2.3). It is sufficient to consider = s.t. both sets are not empty.
One has
z—@ + ¢l >0 Yue (1] and z—¢] + oL, >0 Yue (r,1).

We conclude

0 0 0
2 ¥t 05t 0 ‘Pt
oo w—wltel) =75 ( ~#igp tPugn ) < opr Tt
for all u € (7/),t], where for the last inequality we use that *;—Jj = o5 Is

nondecreasing by Lemma 2.6.4.

By <P+ = gD, one obtains analogously for ¢!, that

0 0 0 0 0

P D D Pt 051 0 Su Pt 0 0
0< — (z— == |z—-yvi55 5 | < —FpTr— 9, +

‘PtD (m Pt +§0u+) %{) (x Pt S£ 90u+SuD) > QOD:E Pr T Pus
for all u € (TtD 1),

As M 0 # (), it can be concluded that 7° Lo =sup M 0

22 b Pt ol

ot ot el
Step 3: For ) > 0 (implying S?. > 0 and P > 0), we have
FP(t, x) = SP— inf 8P

T4, x<u<t

Lemma 2.6.4 SP 0 Su 0
= (S?_St o S0

Lemma 2.6.4 SP
< = <S? inf SO>

- S?_ Tth<u<t
(2.38) §D
< =[S~ inf  S°)vo
Sto_ 7, gD()/ApthE§u<t
- o1 P po (t ﬁx) (2.40)
SOt t

Observe that for the second inequality, we use SP /S < SP /S for u strictly

smaller than ¢ (all considered prices are nonzero). For ¢? > 0, it follows from
(2.40) that

a/ Fo(t,:v)d:v—a/ FP(t,r)dx
0 0

Za/ FO(t,z)dx — a/ ot LY (t m—) dxr = 0. (2.41)
0 o ¢ wr
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If ©? = 0, then either P = 0 or SP = 0. Both equalities imply FP(¢,-) = 0,
and, consequently, the first difference in (2.41) is nonnegative. Putting (2.3
and (2.41) together yields the assertion. |

Proof of Theorem 2.6.3. Let o” € L. ¢° is defined as in Lemma 2.6.5 and
XP, X are the unique positions in the bank account to meet the self-financing
condition (cf. Remark 2.5.3). Let us first examine the right limits V) and V".
By the self-financing condition, one has

V2 =vg+ (1—a)X? s B+¢"+ 5" —11%
VP =g+ (1 —a)XP e B4+ P+« 5P+ P+« D -T1%.

On the other hand,
VP =XP 4+ PSP = XP + 08 =v)+ XP — X9
Together with ¥« S = P « (SP + D), one arrives at

XP-x)=vP-v?
—(1—a)(XP = X)+ B— 1Y + 119
<(1—-a)(XP-X"B (2.42)

By Gronwall’s lemma in the form of Lemma 2.1 in [Kat91] applied to the
nonnegative cadlag process (X — X9) v 0 and the nondecreasing process B
(here, one needs r > 0), one obtains X < X?  and thus

VP <vy. (2.43)

Note that the lemma cannot be applied directly to X” and X° as these pro-
cesses are not cadlag. Thus, the right jumps of V¥ — V9 have to be analyzed.
For ¢P = 0, one also has ¢? = 0, and the jump at time ¢ vanishes. Otherwise,
one argues

Il
Q

0 0
o Si St—

= a/(AW?) FO(t, z)dx — a/(sto_((pwstp_wgsﬁ))_ FO(t,x)dx
0
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v

_ D S0 S0 -
(a%¢?) E NG
a/ FO(t, x)dx — a/(st_( " St_)) FO(t,2) dx
0 0
— 0. (2.44)

The last inequality uses that S?/SP > SY /SP by Lemma 2.6.4. Putting
(2.43) and (2.44) together, one obtains

VP =VE - ATV <V - ATVP < VE - ATV =1

2.7 (Counter-) Examples

In this section, we give some examples that illustrate problems with the con-
struction of the tax payment process and show the necessity of some assump-
tions.

We start with an example showing that for an adapted, caglad strategy the tax
payment process 11 defined in (2.2.8) can be of infinite variation. This means
that the tax credits from wash sales, which are the downward movements of
I1, are infinite and it indicates that II can in general not be constructed in a
direct way as in (2.2.8) for elementary strategies. The example is based on
frequent updates of the position invested in the stock s.t. upward movements
have to be taxed before they are to some extent compensated by downward
movements.

Example 2.7.1 (A tax payment process of infinite variation). Let T =1 and
S be a standard Brownian motion. In the interval [0,1/2] we buy and resell
ki times ay stocks whereas each holding period takes 1/(4ky) time units. We
proceed analogously on [1/2,3/4],[3/4,7/8],.... The sequences (ky)neny C N
and (an)nen C Ry specifying the number of purchasing times and the number
of stocks, respectively, in the interval [1 — 2= 1 — 27" should satisfy

[ 1 VEk,
a, — 0,n — oo and mknan = ez >1, VneN. (2.45)

Of course, such a choice is possible. This strateqy is plotted in Figure 2.5.
Denote by d,, := 1/(2""k,) the holding period of purchases in the interval
[1—2-(=Y 1 —27"]. Then, the strategy is formally given by

00 kn
Z Z (1— 2—<”—1>+2(k71)dn,172—(”—1>+(2(k71)+1)dn](t>‘
n=1 k=1
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As a, — 0 we have that lim;_,; o, = 0 and thus ¢ € L. The accumulated tax
credits are given by the nondecreasing process

= —aZanzl(l 2= (n=1)42(k—1)d, <t)
n=1

X inf Su— S1_9--142(k-1)d
1-2- (=1 42(k—1)d,, <u<tA(1—-2~ (=D +(2(k—1)+1)dy,) ( “ +2(k-1) ”)

(cf. the second item in Remark 2.2.9). For different n,k the summands are
stochastically independent and by the scaling property of the Brownian motion
they coincide in law with

Qn

V2rtik, “ 0<s<1
where B 1s again a Brownian motion. By the law of large numbers, we have

kn
. a
P (Z(—Oé) k§i2£+1(35 — By) > k. E (— mf B )) — 1, k, = o0.

2 0<s<
k=1

Together with (2.45), this implies the existence of a K € N s.t.

o
P <Yl—2—n —Y 9ty >FE <T og;; Bs>)
. «
(Z o) (B B > B (7022213 ))

(2.45) kn ' o
> P (Z(—&) kS;gﬂ(BS — By) > k. FE (7 inf BS)> >1/2,

0<s<1
k=1

for alln € N s.t. k, > K. By k, — oo for n — oo and the second Borel-
Cantelli lemma this shows that P(Y) = o0) = 1.

Remark 2.7.2. If the stock price process is not a semimartingale, different
sequences of up-approzimating elementary strategies of a left-continuous stra-
tegy @ can lead to different limits of the actual tax payments I1". Namely, if
S is not a semimartingale, there exists a sequence of nonnegative elementary
strategies (" )nen S.t.

" lo = 0, E(1A sup (¢"*S;)") =0, n— o0,
t€[0,T]

but

E(LA sup (¢"+S)") A0, n— oo,
te[0,7
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+— =
1/(4k,) 1/21/(8k,) 3/4 78 1

Figure 2.5: Trading strategy from Example 2.7.1

see Theorem 1.7 of [BSV11] (shifting the strategies by the constants ||¢"||co
shows that they can be chosen nonnegative). By ||¢"||oc — 0, the book profits
vanish, i.e., fooo F™(-,x)dz — 0 uniformly in probability, but the trading gains
do not tend to zero. Thus, by Proposition 2.4.1, (II"),en does not tend to
zero. On the other hand, the elementary strategy ¢ = 0, the uniform limit of
(¢")nen, leads to zero tax payments.

Remark 2.7.3. Tax payments are not continuous w.r.t. pointwise conver-
gence of elementary strategies. Indeed, let " = 1(1/2001/241/n,1)- Then, @"
converges pointwise to ¢ = 11 and " * S — ¢ * S uniformly in probability.
But, in contrast to p, the strateqy ©" realizes current book profits at time 1/2.
Thus, it is not possible to define the tax payment process as unique continuous
extension w.r.t. pointwise convergence to the space of all predictable locally
bounded strategies as it vs done for the stochastic integral, cf. Theorem I.4.51
in [JS03]. It seems that the convergence “uniformly in probability” for trading
strategies is tailor-made for modeling capital gains taxes. The strategy set 1L is
still rich enough to cover almost all relevant strategies in applications.

2.8 Tax-efficient Strategies

Let S > 0 be a continuous semimartingale and ¢; = ¢g(S;) for all £ > 0, where
g: R, — R, is a nondecreasing and twice continuously differentiable function.
This means that the “initial” position is ¢o. = ¢(Sp), and the investor increases
(reduces) her position after an increase (decrease) of the stock price. Denote
by ¢! the right-continuous inverse of g, i.e.,

g '(y) == sup{s | g(s) < y}.
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Let us show that the book profit function reads

. S — g o —x), 1< —infocuc
F =5, — f = j T . U=t (2.4
(t7 x) St Tt,a:rSlUSt Su { St - 1nf0§u§t Sua T > — 1nf0<u§t Pu ( 6>
for all £ > 0.
This means that the infinite-dimensional stochastic process F' is a direct func-
tion of the two-dimensional stochastic process (S, info<,<t Sy )i>0. Note that

inf()<u§t Pu = g(infOSUSt Su)

To prove (2.46), first consider the case that @ < ¢; — infoo,<; p,. By defini-
tion of 7, one has that g(S,) = ¢, > ¢ — x for all u € (7;,,t]. Together
with the monotonicity and the continuity of ¢, this implies S, > g~ (p; — ).
On the other hand, we have ¢, . = ¢, — x and thus, by ¢(S;,,) = ©r.+,
Sr. <sup{s | g(s) < ¢r,+} =g (e — ) (the right limit is only needed for
the case that 7, = 0, which is possible if = ¢; — infoc,<; .,). By continuity
of the paths of S, we conclude inf,, ,<,<; Sy = 97 (¢ — ).

This means, the purchasing price of the stock with label z is S, , = g7 (1 —2),
and up to time ¢, the price does not fall below it. Now, let x > ¢, —info.,<; @u.
One has 7;, = 0 which yields the assertion.

If ¢ < 0, one still has that S;,, = ¢ (¢ — x) (of course, with ¢~' defined
appropriately). But now, inf,,  <,<; Sy = ¢~ (sup,,  .,<; ¢u). As the infimum
can be attained anywhere between 7,, and t, this ’impTies that F'(¢,-) cannot
be a direct function of (S, info<,<¢ Sy).

From (2.46), it follows that

Pt pr—infocu<t Pu
| Fajar o - int w5~ [ 6 — 7) da
0 O<u<t 0

+ inf @, (S; — inf S,)

O<u<t 0<u<t
®t
o . . o 1
=Sy ogifgt P ogifgt Su /f g (x)dz.  (247)
mlp<cu<t Pu

Using that ¢’ = 0 on (S,, g7 (p.)), integration by parts yields

©t ) gil(tpt) ,
/ g~ (x)dr = / yg'(y) dy
i g

nfgcu<t Pu “Hinfocu<t Pu)

St
= / yg'(y) dy

nfp<y<t Su

St S
| . / g(y) dy. (2.48)
info<yu<s Su info<y<¢ Su

Let G be an antiderivative of g, i.e., G’ = g. Putting (2.47) and (2.48) together,
we arrive at

=y9(y)

/0% Ft,2)de = G(S) — G ( inf su) |

0<u<t
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For the trading gains, one has by It6’s formula
1, 1
9(S) S, = G(5) = G(So) ~ 5(8) + S, 5] = G(S) ~ G(So) — 3[9(S). S
(2.49)

which yields

t Pt
Ht:a/ godS—a/ F(t,z)dx
0 0

—a G( in su) —G(So)—% .5l

0<u<t
- — nondecreasing in ¢
nonincreasing in t

Remark 2.8.1. First note that all tax payments are nonpositive (of course,
only up to the liquidation of the portfolio). This is because trading gains are
never realized if ¢ > 0. There are two components: payments triggered by wash
sales when the stock price reaches its running infimum info<,<; Sy, and all the
time, the tazes —0.5a)p, S] = —0.5a4'(S) * [S, S] triggered by loss realizations
from “recently” purchased stocks.

To explain this phenomenon, consider an approrimating sequence of Cox-Ross-
Rubinstein type models with finite price grids {0,0//n,20/\/n,...}, n € N,
and (., 1), — Sy, = 0 /\/n each with probability 1/2. First, we look at the
case that at time k/n the stock price lies strictly above its minimum up to this
time. Then, the investor holds exactly g(Sy,,) — 9(Sy;, — o/y/n) shares with
book profit zero. Namely, these shares were purchased after the last time < k/n
at which S™ jumps from "n —o/y/n to S,Z/n. All other shares which are in the
portfolio at time k/n were purchased earlier and have a higher book profit that
cannot fall strictly below zero in the next period. Therefore, the tax payment
at time (k +1)/n is given by

o _
-« (g(sl?/n) -9 <S}§/n - %)> (Stkt+1)/m — Sk/n)

/ n 2
g ( k/n)a
@ {S@k41)/n—Sk/n<0}>

1.e., if the price goes up, there are no taxr payments, and if it goes down the
shares that have zero book profit before are sold. For n — oo, by the law of
large numbers, half of the price movements go down, and one arrives at the
accumulated tax payments —0.5« [ ¢'(S¢)o? dt (note that in the limit the frac-
tion of periods at which the stock price attains its running minimum vanishes).
Then, the general case with nonconstant d[S, S];/dt follows by stochastic time
changes applied to the approximating price processes. If S,’:/n = min;<y, S{}n,
all shares have book profit zero and after a further decrease they are wash-sold,
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which leads to the tax payment cg(min;<y S{}n)(minlgkﬂ S{;n — min;<y, Sz%)
In the limit, the accumulated tax payments when the stock price coincides with
its running minimum become o (G(info<u<. S,) — G(Sp)), where G' = g.

In general, when building up a portfolio, an investor can generate nega-
tive tax payments, or at least off-set positive tax payments on dividends, by
purchasing many new stocks and sell those stocks which go down. This is
accompanied with higher book profits of the shares that go up. Thus, as time
goes by, it gets increasingly more difficult to avoid tax payments.

time [t]

An exemplary development of the accumulated tax-payments for the
tax-efficient strategy described in (2.46) for a path of a stock (S¢).e0,1]
generated by a Geometric Brownian motion and the strategy given by

oy = S;.

Figure 2.6: Accumulated tax-payments for tax-efficient strategy

2.9 Conclusion

The first purpose of this chapter is to find a suitable set of continuous time
trading strategies (specifying the number of identical shares that an investor
holds in her portfolio) for which the payment flow of a linear tax on realized
trading gains can be constructed. It turns out that this is the set of all adapted
processes with left-continuous paths possessing finite right limits, i.e., the clo-
sure of elementary predictable processes w.r.t. the convergence “uniformly in
probability”. Then, the extension to trading strategies in different stocks is



38 CHAPTER 2. MODELING CAPITAL GAINS TAXES

straightforward. From a theoretical point of view, it is appealing that tax
payments can also be defined for strategies of infinite variation. This is not
obvious at all because a reduction of the stock position leads to tax payments
whereas an increase has no immediate effect. This property may suggest that
a construction of the tax payment flow must be based on a decomposition into
an increasing and a decreasing part of the investment strategy.

In the discrete time model of Dybvig and Koo [DK96|, we prove that it is
optimal to realize trading losses immediately and, when the total number of
stocks has to be reduced, to sell shares with lower book profits / later purchas-
ing times first. Based on this result, for elementary strategies in a continuous
time model, we introduce an automatic loss realization when shares fall below
their (individual) purchasing prices as well as a rule that dictates to sell shares
with later purchasing time first when the stock position has to be reduced.
Following this procedure, the tax payment flow is already determined by the
stochastic process modeling the total number of shares in the portfolio. For the
extension to nonelementary strategies, the representation of the book profits
of the shares in the portfolio plays a key role (although all shares have the
same price, their book profits differ because of different purchasing times).

Secondly, we prove that under the condition that the dividend policy has a
neutral effect on the stochastic return process, for every investment strategy
in a firm with dividends, there exists a strategy investing in an “identical”
firm without dividends that leads to an almost surely higher or equal after-tax
wealth.

Finally, we find out tax-efficient dynamic strategies. These try to defer tax
payments as long as possible. Because profit-taking leads to early tax pay-
ments, a tax-efficient strategy reduces the position only after losses, i.e., there
should be a positive dependence between the number of stocks in the portfolio
and the stock price. If the position is a direct nondecreasing function of the
stock price, the tax payment flow can be determined explicitly and is given,
besides a local time component, by the tax rate times half the quadratic co-
variation of the strategy and the price process.

In the chapter, we consider the so-called exact tax basis which is economically
the most reasonable one. For other tax bases, as the FIFO (“first-in-first-
out”) or the average of the purchasing prices, the main phenomena are similar,
as, e.g., the suboptimality of dividends. But, the modeling is quite different.
Especially, it is an open problem how to construct tax payment flows beyond
strategies of finite variation.
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2.10 A Motivation: The Discrete Time Model
of Dybvig/Koo

In this section, we motivate the automatic loss realization as well as the rule
to sell shares with lower book profits / shorter residence times first (based
on this procedure, the tax payment flow was introduced for continuous time
portfolio rebalancings in Section 2.2). For this, we prove that in the discrete
time model of Dybvig and Koo [DK96|, for all paths, this procedure leads to a
higher or equal after-tax wealth than any other strategy (with the same total
number of shares in the portfolio) if the riskless interest rate is nonnegative.
Namely, the procedure minimizes the accumulated tax payments up to any
time ¢ (see Theorem 2.10.1). A similar assertion is already stated in [DK96]
(see Properties 1 and 2 on page 6), but in less formal terms and, so far, a
proof is only available for Property 1 in special cases (see Subsection 3.1 of
Constantinides [Con83|). The idea is that investors always prefer tax payment
obligations in the future to tax payments today.

Following the notation in [DK96|, N, denotes the number of stocks that are
bought at time s € {0,...,7}, T € N, and kept in the portfolio at least
after trading at time t € {s,...,T}. Especially, N;; is the number of shares
purchased at time ¢, i.e., a position cannot be purchased and resold at the
same time (on the other hand, a position can be sold and repurchased at the
same time). One has the constraint

Nt,t 2 Nt,t+1 2 ce Z Nt,T 2 0, for all t € {0, ce ,T}, (250)

which contains a short-selling restriction. Following the standard notation in
discrete time, we denote by

t
pra1=3 Ny, t=0,....T (2.51)
s=0

the number of stocks in the portfolio after trading at time ¢. Accumulated tax
payments up to time w are given by

I, = a Z tf: (Nyso1 — Nyo) (Si — S, (2.52)

t=1 s=0

where > )" ;... = 0 throughout the section. With II from (2.52), the self-
financing condition is defined as in (2.28).

Of course, there are different strategies N = (Ng)s—01,...7, t=s.s+1,.. 7 that lead
to the same number ¢ of risky assets. Given some nonnegative process ¢, the
rule of selling shares on which our model in Section 2.2 is based corresponds to
the following strategy N, constructed by (forward) induction in t: Ny = ¢y
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and, given N&t_l, s=0,1,...,t—1, NSJ is defined as

t—1 +
Noy =1(s,>5.3 | Nsji-1 — ((A%H)_ — Z Nj7t1> , s€{0,...,t—1},
j=s+1
(2.53)
Nip =Apiq + Z(Ns,t—l — Ns4), (2.54)
s=0

where @11 = Ay — ;. Following (2.53), the investor first reduces her total
position by (Agyy1)~, thereby selling the shares with the smallest residence
time t — s. Then, remaining shares with negative book profits are sold. By
(2.54), condition (2.51) is satisfied, and, by omitting the indicator functions
in (2.53), one sees that Nt,t > 0. Now, we can already formulate the main
assertion of this section. In Subsection 2.10.1, the precise relation to the model
introduced in Section 2.2 is established.

.....

asset. Let N be the strategy defined in (2.53)/(2.54) and N be an arbitrary
strategy satisfying (2.50)/(2.51). Then, for the corresponding accumulated tax
payments, one has

I, <Il, forallte{0,... T} (2.55)

__ From Theorem 2.10.1, it follows, as in Section 2.6, that the wealth process of
N dominates the wealth process of N if the riskless interest rate is nonnegative.
Namely, for both strategies, trading gains before taxes are given by ¢ * Sy :=
25:1 ©u(Sy — Su-1), but N defers tax payments to a larger extent.

Throughout the section, for ¢ and w fixed, (ko, k1, ..., k) is a permutation of
(0,1,...,t) s.t.

Sko > Sky > ... > 8, and S, > S, Vi<j, wherek; =t (2.56)

Then, for an arbitrary strategy N, the book profit function is defined as

t

F(t,x) =Y (S — S,)1 (S0 Moy S Nap] (1) (2.57)

=0

On (0, p41], F(t,-) is obviously nondecreasing. Note that F(¢,-) from (2.57)
already contains the portfolio regroupings that take place at price Sy, i.e., it
consists of ;1 shares (see Subsection 2.10.1 for the relation to the book profit
function from Section 2.2). To prove Theorem 2.10.1, we need the following
lemmata.
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Lemma 2.10.2. For every strategy N with corresponding number of stocks ¢
and book profit function F', one has

Pt4+1
Ht:aapugt—a/ F(t,x)dx, t=0,...,T
0

(cf. Proposition 2.4.1).
Proof. We have

Pt+1 Pt
api(Sy — Si-1) — « (/ F(t,z)dx — / F(t—1, x)da:)
0 0

t—1 t—1
= (ZNi,t—l(St_St 1 Z zt St - zt 1(St 1—5'))>

=0 =0

—OZZ it—1 — (St_si)
:Ht - Htfl.
[ |

Lemma 2.10.3. Let F be the book profit function of the strategy N from
(2.53). Then, one has

ﬁ(t, l‘) = 1((A<Pt+1)+7<,0t+1](x) (ﬁ(t -1,z — A(pt+1) + Sy — St,1> Vv 0. (258)

Proof. If the stock price falls below the purchasing price of a particular share,
then, following (2.53), this share is definitely sold. Consequently, one has

Sy, <8, forall s; < sy <t—1with N, ;3 >0, (2.59)

i.e., book profits are nondecreasing in the residence time ¢ —s. Put differently,
if one only considers points s € {0,...,t — 1} with N;;_; > 0, the stock price
is nondecreasing. Thus, in (2.53), the investor sells the shares with the lowest
book profits (because they have the shortest residence times), and the strategy
N given by (2.53)/(2.54) reads: Noo = @1 and

Ny,. =0, forie{0,...,j—1},
Nki,t = Nki,t—l — | (Apr1)” ZNklt 1 , red{j+1,...,t},

l#J
t—1

Nkj,t :Nm = Apii1 + Z(Nkl,t—l - Nkm),
1]



42 CHAPTER 2. MODELING CAPITAL GAINS TAXES

fort € {1,...,T}, where j and the permutation (ko, ..., k;) are given by (2.56).
Case 1: (Api1)” < Z{:—g Nkl,tq
(note that this includes the case Ay;11 > 0).
One has Nkl,t = Nkht_l for [ > j 4+ 1 and arrives at

0, i€ {-1,0,...,j—1}
ZN"”_ Zl ONklt 1+ Apyr, 1€ {J, .t ’ (2.60)

€ (0, ¢¢41], one obtains
F(t,x)
t

= ZO(St - Ski)l(zf;é Nkl,t»Zf:O ﬁkl’t] (x)
t

For z

7

(2.60)
- E (St—l - Skl + St - St_l)l . .
>0 Niy =1+ 801,50~ ) Nigp -1+ Api41
1#5 1#j

= 1((A4Pt+l)+790t+1]('r) <ﬁ(t - lLx-— A‘Pt—i—l) + (St - St—l)) V0,

where the last equality holds by (AgptH) < Z Nklt 1+ A1, Se— Sk, <0
for i < j,and Sy — Si, > 0forv>j5+1.

i=j+1

] (x)

Case 2.' (A@t_i_l)i > Z{;Ol Nk‘l,t—l
(i.e., after the reduction of the position by (Ay;. 1), there are no shares with
negative book profits).

Define
m:=min i | (Apsq) < ZNkzt 1
1]
We have m > j + 1 and arrive at
i 0, ie{-1,0,....m—1}
Z Net = Y ico Nijio1 + Agyyr, i€ {m,... t} ’ (2:61)
=0 I#j
For = € (0, ¢¢41], one obtains
F(t,x)
t
— Z(St — S’“)l(Zi;é Ny Sy Nkl,t]<x)
i=0
(2.61) !
=N (S = Su S = Se)l, o (z)
= (Z;_é Nkl,t—l‘f‘A‘PH-l,Z;;O N t—1+Ape41
1#j5 I#j
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= F(t — 1, r — AQOH_l) - (St - St—1)7

where the last equality holds by x — Apir1 = o+ (A1) > Ziﬁl Nkl,t_l
I#j
for x > 0.

Proof of Theorem 2.10.1. Let N and N be as in the theorem with cor-
responding book profit functions F' and F, respectively, as defined in (2.57).
Let us first show that for x € (0, v;11],

F(t, SL‘) < 1((A%+1)+7%+1]<£L‘> (F(t -1,z — AgptH) + Sy — Stfl) Vv 0. (2.62)

For z € (0,¢4], let i € {0,...,1} st. = € (zj;g Nyt Yoo Nkht]. Ifi <j
(cf. (2.56)), one has F'(t,z) = S; — Sk, <0, and (2.62) holds. Thus, it remains
to consider the case © > 7 + 1. For this, we have

i—1 i—1 i—1 i—1
T > Z Nyt = Ney + Z Ni,+ = Z Nip—1 + Ney + Z(Nk:z,t — Ny, 1-1)
=0

1=0 1=0 1=0
2] 1£] 1]
(2.50) =L i
> Z Nigjp—1+ N + Z(Nkz,t — Nigt-1)
12 1]
(2.51) i_l
= Z Niyp—1 + Appyr
2]

By monotonicity of F, this implies F/(t —1,2—Ap;i1) > Sio1— Sk, = F(t,x)—
(St — Si—1) and together with = > Ny, > (Apiy1) ™, we arrive at (2.62).

With Lemma 2.10.3 and inequality (2.62), it follows by induction w.r.t. ¢ that
F(t,z) < F(t,z) for all t = 1,...,T and = € (0, ;1] (note that F(0,z) =

F(0,z2) =0). By Lemma 2.10.2, the assertion follows. [

2.10.1 Relation to the Model from Section 2.2

It remains to prove that the discrete time version of our model introduced in
Section 2.2 does indeed coincide with the model of Dybvig/Koo with N = N.
Let (¢4)i=1...7+1 be a discrete time predictable process, i.e., ¢; is F;_;— mea-
surable. By F , we denote the corresponding discrete time book profit func-
tion in the sense of (2.57) for N = N. By F, we denote the continuous
time book profit function in the sense of (2.7) for the piecewise constant stra-
tegy 25:1 ¢Ynln-1m € L and the stock price process S = ZLO Snlpnt1)-
This is the standard embedding of a discrete time market model into a con-
tinuous time framework. Let us show that

F(t,z) = F(t+,x), t=0,1,...,7—1.
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This means that F (t,-) already contains the portfolio regroupings that take
place at price S; (note that in a discrete time model, there can only be one
change at time ¢, whereas in continuous time, there can be a change between
t— and ¢, and between ¢ and t+).

For the piecewise constant process Z:Zl ©nlm—1,), the right limit of the pur-
chasing time (2.3) reads

Tt+,x = >£inl_>t Tsx = max{u € {07 17 cee 7t} ’ Pu < Pt+1 — I}, YRS [07 SOtJrl]v
with the convention from Section 2.2 that ¢y = 0 (note that the increment
©Qut+1 — @y is purchased at price S,). One has the implications 7y, <t =
Tt a—Aprsr = Ttrw A Tz =t & & < (Apqq)t. This implies

Sy — min S,
Ttz <u<t

= <St — St,1 -+ St,1 — min Su) (VAU

Tt+’$§u§t71

:1((A<,0t+1)+750t+1]<x> (St - St,1 + St,1 - min Su) V0

T(t—1)+,2—Apyq g SuSt—1

(with min() := o0), i.e., F(t+,2) = S, — min,,, <, S, satisfies the recur-
sion (2.58), and thus, it coincides with F'(¢,z). By Lemma 2.10.2 and Propo-
sition 2.4.1, this implies that the tax payment process defined in (2.52), with

N = N, coincides with the right limit of the tax payment process from Defi-
nition 2.2.8. [

2.11 Modeling of Tax Bases in Mathematical
Literature

In this section, we want to compare the modeling of different tax bases in
mathematical literature and lighten the differences between our model from
Section 2.2. Hereby, we focus on the first-in-first-out taxation priority rule,
appearing in [JKT99; JKTO00|, and the average purchase price as tax basis,
appearing in [BST07; BST10].

In each of the following sections, we consider a complete probability space

(Q,F,P).

2.11.1 “First-in-First-out* Priority Rule

In the following paragraph, we follow Jouini et al. [JKT99; JKT00| who con-
sider a first-in-first-out priority rule, according to which any stock sold at some
time ¢ should be the oldest one in the portfolio. We consider a market consist-
ing of only one semimartingale price process (S;)icpp,r) (in the following called
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stock).

Let A :={(t,u) e RxR:0<u<t<T}. Fixsome (t,u) € A. For each
monetary unit invested at time u and sold out at time ¢, denote by ®(¢,u) the
after-tax amount received at time t, i.e.,

St

2(tu) = (1-a)g" +a, (2.63)

and the amount of tax paid by the investor is given by

g—i — O(t,u).

By L%, denote the set of all nonnegative Lebesgue-integrable functions in the
interval [0, 7). Let (z,y) be a pair of L functions. By z; and y;, we denote
the investment rate and the disinvestment rate, respectively, in units of the
stock at time ¢. Then, fot rsds and fg ysds is the cumulated number of assets
purchased and sold out, respectively, up to time ¢. The pair (x,y) is called

trading strategy if
t t
/ ysdsﬁ/ reds, 0<t<T
0 0

holds (no short selling constraint).

Remark 2.11.1. Alternatively, for defining this trading strategy, consider
a continuous process ¢ of finite variation such that ¢ = pt — o=, where
ot (: fo wsds) 15 the increasing and @~ (: fo ysds) 1s the decreasing part of
©.

Define

s t
0, := sup {S € [0,¢] : / z,du < / yudu} (2.64)
0 0

which is the purchasing date of the last asset sold out from the portfolio if
fg Yudu > 0.

Set ¢; 1= fg reds— fot ysds, which is the total number of stocks in the portfolio.
In the same way as in Section 2.2, we want to sort ¢; stocks by the time
spending in the portfolio and label them by z: the larger = the longer the
residence time in the portfolio.

Define

Bz = | S0P Mz, if Mz 70 (2.65)
t, otherwise

where

- t
M,z = {s <t: / Tudu = 5} ) (2.66)
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5,575 is the purchase time of the stock in the portfolio which has label x at time
t. One can check that

_ t ¢
Oz =10, for = = / Tydu — / Yudu. (2.67)
0 0

With the definition of gt,g, we are now able (analogously to our model in Section
2.2) to define
F<t7 5) = (St - Sgt,i)l[oﬁpt](f)

as the book profit function.

Similar to our model, we can define an accumulated tax-payment process II:

2.63)

’ t
I, .= / o (S, — Sp, ) yudu (28 / (Su — ®(u, 0,)50, ) yudu,
0 0

where by a € (0,1), we denote the tax-rate. The accumulated tax-payment
process can alternatively be expressed using the book profit function F":

2.67)

t t t
II, = / a (Sy — Sa,) yudu 28 / « (Su -5, ) Yudu = a/ F(u, o)y, du.
0 0 o 0

Remark 2.11.2. The book profit function F' is defined in such a way that
newly purchased stocks are added up from the left at x = 0. The purchasing of
new stocks shifts the stocks in the portfolio to the right. Sold stocks are removed
from the right boundary of F, which are the oldest stocks in the portfolio, cf.
Figure 2.7.

2.11.2 Average Purchase Price

In the following paragraph, we follow Ben Tahar et al. [BST07; BST10] who
consider the average purchase price as tax basis. We consider a market consist-
ing of a continuous price process (S} )ep,r] with inf,ep 71.SL > 0 and a riskless
asset (S})ieo,r] with SP = exp(rt).

With this kind of taxation, the purchase price of single stocks in the portfolio
is not important to calculate the tax payments. The tax basis is the weighted
average price of the shares purchased by the investor. Selling stocks does not
change the tax basis, but sales are relevant from the date of the next purchase,
i.e., the tax basis is only affected by the number of sold shares but not by
the sale price. The tax payments are then calculated by comparison of the
current stock price to the tax-basis. We will show off in a short example how
the tax-basis average purchase price is calculated.

Example 2.11.3. At ty, an investor buys 100 stocks at a price of $10. The
tax basis is $10.



2.11. MODELING OF DIFFERENT TAX BASES 47

= NWPOON®
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Book profit function x +— F(t1,x) at time ¢;. The red colored pieces
are sold up to time t5 and the blue colored pieces are still in the
portfolio up to time to.
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0 1 2 5 4 5 6 7 & o 10 11 12 13 14 15
Book profit function x +— F(ta,x) at time to. The red colored pieces
from the first picture have been sold. The pieces have
been bought between ¢ and to.

Figure 2.7: Exemplary Development of x +— F(t,z) between times ¢; and to
for FIFO-priority rule

At ty, additional 50 stocks are bought at a price of $13. The tax basis is
($10 - 100 + $13 - 50) /150 = $11

At tz, 100 stocks are sold. The tax basis does not change.

At ty, 50 stocks are bought at a price of $15. The tax basis is ($11 - 50 4+ $15 -
50)/100 = $13.

The example illustrates that the tax basis cannot be modeled without
memorizing the number of stocks in the portfolio.

We denote by (X;)¢cjo,r] the money invested in the riskless asset (bank account
position) and (Y}):co,7) the money invested in the stock (stock account posi-
tion). Trading strategies are described by money transfers between the two
investment opportunities. We define a trading strategy as a pair (L, M), where
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(Lt)tepo,r, (My)ieo,r are adapted, right-continuous, increasing processes with
Lo = M,_=0.

The amount of money transferred from the bond account to the stock account
at time t is given by dL;. The amount of money transferred from the stock
account to the bank account at time ¢ is given by Y, dM,, i.e., dM; is the
relative reduction of the stock position at time ¢t. To define the tax basis,
[BST07; BST10] express the reduction of the stock position by its relative re-
duction. This guarantees the existence of SDE (2.68) for every pair (L, M) of
nondecreasing processes.

By (K)iepo,r), with the dynamics given by
th = st - Kt,th, (268)

we denote the money invested in the stock evaluated at its tax basis price.
The tax-basis is then defined by
S
By = Kt71{Yt>0}7 t >0,

t

where the dynamics of the stock position (Y;)icp,r is given by

Y,

dS} —Y,_dM,; + dL,. (2.69)

Note that there exists a solution to SDE (2.69) because S* is continuous and
infue[07T] Sllb > (.

Remark 2.11.4. Instead of using a strategy pair (L, M), one could start with
a right-continuous, finite variation process (¢y)iejor) such that py = o — ¢y
and define K as solution of the SDE

K, _
dK, = Stdp — —Sot iy, s0ydo; (2.70)
tf

of course, provided that the term %1{%7>0}dg0t_ exists.

Intuitively, this should be the right dynamics for defining the average purchase
price as tazx basis. The increment AK is determined by the purchases of Ay
stocks at the price S}, reduced by the sale of Ay, stocks calculated at the
average purchase price B,_ with B, := %1{%>0}.

Defining the tax basis this way yields the problem that it is not possible to say
something about the existence of a solution to (2.70). Introducing wash sales
in this model, i.e., selling all stocks if S} < By and repurchasing them at price
S}, guarantees the existence of a solution to (2.70). To show this, one needs
to go into the theory of stochastic differential equations with reflection at the
boundary. Since a more detailed view would break the mold, we will not carry
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this out here any further.

On the other hand, if a solution to (2.70) is quaranteed, one can start with ¢
and derive the dynamics of L, M by setting

1 _
dM,; = 90—1{%_>0}d¢t , dLy := S}dyr.
tf
This, again, leads to (2.68). But, a reverse procedure, i.e., deriving ¢ from a
given strateqy pair (L, M), seems not to be possible.

The accumulated tax-payment process for stock sales is given by

t . )/;7
Ht :/0 O{(SS - BS_)S—SldMS.

The bank account is given by

Yi_dM,
S

dX; =r(1 — a)X,dt — dL; + Y, dM; — o(S} — B;_)
:T(l - OZ)Xtdt — st + }/t—th — dHt7

which includes the convention that gains in the bank account are continuously
taxed.
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Chapter 3

Optimal Selling Time of a Stock
under Capital Gains Taxes

In this chapter, we analyze a typical and analytically quite tractable investment
decision problem under capital gains taxes. In our model, an investor tries to
maximize her trading profits within a finite period of time by exchanging one
asset for another one only once. This yields an optimal stopping problem,
where different tax bases coincide. We look at an investor owning a stock
where the price is modeled as stochastic process in the Black-Scholes market
with lower expected return than the other asset, given by a riskless bank
account. Capital gains in the stock are only taxed when realized. In the
case that bond earnings are continuously taxed, we show the existence of a
lower, time-depending and continuous stopping boundary which is decreasing
in stock’s volatility. In the case of a deterministic stock price process, we
derive an explicit formula of the stopping boundary. In this chapter, standard
techniques from the theory of optimal stopping are used, especially an approach
that turns the problem with a terminal payoff to one with a running payoff,
see Peskir and Shiryaev [PS06].

Furthermore, we investigate the case, where bond earnings are taxed at the end
of maturity. In this case, the stopping boundary needs not to be monotone
anymore. So, we are not able to show the boundary’s continuity and the
smooth-fit condition (with the help of standard methods). Finally, we show
that under some restrictions to the drift rate p, the boundary in the case of
a maturity taxed bond dominates the boundary in the case of a continuously
taxed bond.

3.1 Formulation of the Stopping Problem and
Main Results

Consider a filtered probability space (2, F, (F)wcio,r),P), T € R, generated
by a one-dimensional standard Brownian motion (Bj)co,77. The investment

ol
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opportunities consist of a bank account with continuously compounded fixed
interest rate r > 0 and a stock whose price process (X¢);cjo,r solves the SDE

dXt = /I/Xtdt + O'XtdBt, t Z 0, (31)

with Xo =2 >0, p € R and ¢ > 0. At time 0, the investor holds one risky
stock. It was purchased sometime in the past at price Fy > 0. This means
that already at time 0, the stock possesses the book profit Xy — F,. The
economically interesting case is Xy — Fy > 0, but this need not be assumed.
The investor can sell the stock at any time up to the end of the time horizon T
At the selling time ¢, the investor has to pay the capital gains taxes a(X; — Fp),
where o € [0, 1) is the given tax rate, i.e., if X; < Fy, the investor gets a tax
credit. Then, the remaining wealth X; — o(X; — Py) = (1 — @)X + aFy is
invested in the riskless bank account. At maturity 7', the portfolio is liquidated
anyway. As the bank account pays a continuous compounded interest rate, we
assume that taxes also charge the account continuously. This corresponds to
the taxation of a continuous dividend flow and leads to the after-tax interest
rate (1 — «)r. Thus, the investor’s wealth at maturity, when selling the stock
at time t € [0, 7] at price 7, is

G(t,7) = [(1— oz)f—kaPo]eT(l_a)(T_t), (t,7) € [0,T] x R,. (3.2)

Maximizing investor’s expected wealth at maturity leads to the optimal stop-
ping problem

V(z):= sup E[G(r, X,)], (3.3)

T€T0,1

where Xy = z, and by Tjo 71, we denote the class of (F)sc(o,71—stopping times
taking values in [0, T']. The assumption that the second investment opportunity
is a riskless bank account rather than another risky asset makes the payoff
function a bit more tractable and is, given that the investor is risk neutral and
cannot change her position again before T, not very restrictive.

Because of the strong Markov property of (X;):co,r), we can define the value
function associated with problem (3.3) by

Vit,z):= sup E[G(t+7X[)], (3.4)

TET 0,71

where (X5%) (.1 is the unique solution of (3.1) with initial condition X" = z

and 7o, r—yq denotes the set of (]—'Hs)se[oj_t]—stopping times taking values in
(0,7 — t]. Note that V(z) = V(0,2z) as X% = X with X, = z. By setting
7 =01n (3.4), it is clear that

V(t,x) > G(t,x) for (t,z) € [0,T] x R,. (3.5)
In addition, we have

V(T,z) =G(T,x) forxzeR,. (3.6)
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The continuation region is defined by

C:={(t,x) € [0,T) xR, : V(t,x) > G(t,z)}
and the stopping region by

S:={(t,z) €[0,T) xR, : V(t,x) = G(t,z)}.

Proposition 3.1.1. (t,z) — V(t,x) is continuous on [0, T] xR . In addition,
for any (t,x) € [0,T] x Ry, the stopping time

Tie=inf {s € (0,7 —t): (t+s X;5) €SFA(T —1) (3.7)
mazimizes (3.4).

Of course, the proof follows more or less directly from the standard theory.
Thus, it is only briefly sketched in Section 3.3. The following theorem states
the main results of this chapter and is also proven in Section 3.3.

Theorem 3.1.2. Consider problem (3.4) with stopping region S. Let r > 0
and o € [0,1). Then,

(a) there exists a continuous, increasing boundary b : [0,T) — Ry such that the
stopping region is given by

] {(t,2) € [0,T) xRy :x <b(t)} if u>(1—a)r, '
where for all t € [0,T), the equivalence o > 0 < b(t) > 0 holds.
The boundary satisfies the terminal condition

P
limb(t) = — 0
T w—r(l—a)

=: f.
(b) ifa>0andpu > (1—a)r, the value function satisfies the smooth fit condition
at the boundary, i.e.,

0. V(t,z) = 0,G(t,z) = (1 — a)erI=T=D gt o = b(t). (3.9)

Remark 3.1.3. We are primarily interested in the case p < r, i.e., an in-
vestor who is not subject to taxation would immediately sell the stock. Then,
Theorem 3.1.2 tells us that the solution is nontrivial if 1 € ((1—a)r,r). Choos-
ing the midpoint of the interval for u and reasonable values for o, T, and «,
numerical calculations show that the boundary is far above the purchasing price
Py, see Figure 3.1. This means that the investor always sells the stock with
positive book profits. Then, it is evident that there is no incentive to buy the
stock back at any later time and to repeat the game (namely, a renewed invest-
ment starts with zero book profit). This justifies the modeling of the decision
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problem as a simple optimal stopping problem.

On the other hand, if the stock is sold with negative book profits, the modeling
15 justified when wash-sales are forbidden, as, e.g., in the U.S. This means that
the investor may sell the stock to realize the trading loss, but then she is not
allowed to buy back the stock and has to take the other investment opportunity.
Under the ban on wash sales, the investor may switch to the bank account even
in the case p > r, just in order to realize losses prematurely, which leads to a
nontrivial solution of the stopping problem (see Theorem 3.1.2).

Proposition 3.1.4.

(i) The wvalue function is increasing in the wvolatility of the stock, i.e.,
Vor(t,z) < Vo(t,x) for all 0 < o1 < 09, t € [0,T], and z € R,.
Consequently, b7 (t) < b7 (t) for all p > (1 — a)r.

(i) For o =0, the exercise boundary reads

P r(l—a)(T—t) _ 1
bt) = 0 (c ) (3.10)
(1 — a) (eM(T_t) — @T(l_a)(T_t))

and the optimal stopping time (3.7) is given by

0 ,x < b(t)
{ T—t ,x>bt)

Tt =

)

Proposition 3.1.4 (for a proof, see Section 3.3) makes sense from an
economic point of view. For a more volatile asset, the option to time the
tax payments has a higher value for investors. This means that capital gains
taxes can even motivate investors to take more risk. Of course, the extent of
this effect depends on the riskless interest rate r» and vanishes for r = 0.

Seifried [Seil0] solves the utility maximization problem for terminal wealth
with » = 0 (i.e., it can be assumed that taxes are paid at maturity), but there
are no tax credits. In the model of [Seil0], there can appear two opposite
effects. Roughly speaking, if the drift of the stock is low, the tax may prevent
the investor to buy the risky stock at all because, without negative taxes on
losses, the expected after-tax gain becomes negative (literally, this only holds
for buy-and-hold strategies in the stock). On the other hand, if the expected
return is high enough, the investor may buy even more risky stocks than in the
same situation without taxes. To make the latter plausible, consider a one-
period binary model for the stock and a utility function that is linear around
the initial wealth and satiable at some higher level of wealth. For the optimal
stock position, the investor’s terminal wealth coincides with the saturation
point if the stock price goes up. This means that, in the case with taxes, the
investor buys even more risky stocks to offset the part of the gains that she
has to pay to the government. [Seil0] derives that for the Black-Scholes model
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with CRRA investors and realistic tax rates, the overall strategy effect of taxes
is negligible (see Figure 8 therein).

Remark 3.1.5 (Value of the tax-timing option). Assume that in our model,
the book profit x — Py is tazed at time 0, and later gains on the stock are
taxed immediately when they occur. Thereby, we assume that tax payments
are financed by reducing the stock position, and tax rebates are reinvested in
stocks. Then, the wealth in stocks satisfies the SDE

dX;=(1—a)X;(pdt+0dB;), t>0 with Xo=(1—a)x+ aF

and thus E[X7] = [(1 — )z + aPy] =T The optimal stopping problem
degenerates: for u < r, it is optimal to sell the stock at time 0, and for p > r,
it is optimal to sell at time T.

Thus, one may interpret
e Tm)T (V(O, z)—[(1—a)r + aF) el1=) max(“”")T)

as the time—0 value of the timing option of the stock holder, i.e., the value of
the right of the investor to influence the timing of the tax payments. By Propo-
sition 3.1.4, this value is increasing in the volatility of the stock. This is in line
with the results in Constantinides [Con83/, where in a complete market model,
icluding a market for short sell contracts, the price of the timing option, of
course differently defined (see Equation (21) therein), is also increasing in the
volatility of the stock (see Table III).

3.2 Method of Solution

To solve problem (3.4), we make use of a standard method in the optimal
stopping theory, see, e.g., Peskir and Shiryaev [PS06|, where the terminal
payoff is turned into a running payoff. Namely, thanks to the smoothness
property of the payoff function G, we can apply Itd’s formula to obtain the
following decomposition of the payoff process (G(t + s, X{2%))s>0:

G(t+ s, X17) = G(t,x) + / F(t+u, X0, du + M, (3.11)
0

where M, = o fos Xffu@gG(tJru, Xffu)dBu is a square integrable (Fiis)sco,r—¢—
martingale with zero expectation, and F'(¢,z) is given by

F(t,x) =e"T-00=2) (1 _ ) (—raPy+a[p—r(l—a)]). (3.12)
By (3.11), V defined in (3.4) can be written as

V(t,z) =G(t,z)+ sup E [/ F(t+u, Xp5)du| . (3.13)
0

7€T0,1-1]
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TU.IBU (m) time [t]

Plot of the optimal stopping boundary in problem (3.4) with time horizon

T = 3 years, when the stock’s rate of return p is smaller, but close to the

bond’s interest rate r. The other parameters are o = 0.3, ¢ = 0.25,

w=0.255, r = 0.03, Py = 100 and x = 180. The boundary lies far above
the purchasing price Py, i.e., the stock is sold with positive book profits.

Figure 3.1: Plot of the stopping boundary in the optimization problem (3.4)

We have
F > (<) 0on the set {(t,2) € [0,T] x R} : z > (<) f}, (3.14)
with P
L raty
e et (3.15)

This means that the sign of F'(¢,x) does not depend on ¢.
Remark 3.2.1. For (t,x) with x > f, the stopping time T := inf {s €0,7T -
t] s Xy < f} A (T —t) is strictly positive, and we conclude from (3.13) that
V(t,z) > G(t,x) +E{ fOT F(t+ u,Xffu)du} > G(t,x), and thus (t,z) € C.
We have f > 0 and
p>1—a)r = 0,F(t,z) =T D091 _q) (n—r(1—a)) >0 (3.16)
for all (t,z) € [0,T] x R,;. Furthermore,
OF(t,x)=—r(1—a)?e T D0 (—paPy+z[p—r(l—a)]) >0 (3.17)

for x < f, and
O F(t,z) <0 for x > f. (3.18)
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3.3 Proofs

3.3.1 Proof of Proposition 3.1.1

For all x <y, one has

0<V(t,y) — V(t,x)
< sup {E G(t+T, Xttff)} —E[G(t+, Xtth)} }

TE€T0,17—1)
1
<(1-— Oz)e(”+T)TE |: sup exp (O‘BS — —0'28)} (y — x)
0<s<T—t 2

<C(y—x) (3.19)

for some constant C' € R, that does not depend on ¢, z,y. Thus, to establish
joint continuity in (¢,x), it remains to show that ¢t — V'(¢,z) is continuous.
Let s <t. One has

Vt,z) = Vi(s,z) < sup E[Gt+7,X1) —Gls+1,X,)] <0,

T€T0,1—1]

where for the first inequality, we use that the processes (Xffu)ue[o’T_t} and
(X35 Jueio,r—y coincide in distribution.

To obtain an estimation in the other direction, one also has to find an upper
bound for the increments of the payoff process u — G(u, X$*) between s+1T —t
and T because the remaining time to maturity is smaller for the problem
started in ¢. By the monotonicity of z — F'(u,x), one has

V(s,2) = V(Lo) < sup E[Gs+7X7) — Gt +7 X7

TET0,7—1)
T
/ Flu, sup X;* | VOdu|.
T—(t—s) vEls,T]

The first term can be estimated by

+E

(e—r(l—a)s _ e—T(l—a)t) r(1=a)TR (1- a)ewT SUp T exp (UBU _ ;O‘QU> +aPb,

vel0,T)

and the second term by

(t —s) (C’l + CLE [ sup T exp (an — 10211)})
0<v<T 2

for some constants C7,Cy € Ry. Altogether, it follows that t — V(t,x) is
continuous for any fixed x € R,.

Then, by Theorem 2.4 of [PS06], it follows that (3.7) maximizes (3.4). |
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3.3.2 Proof of Theorem 3.1.2

We distinguish three cases. The first two cases are trivial, whereas the third
case is the interesting one, where we show the existence of a continuous, in-
creasing, positive boundary such that the stock is sold at the first time its price
is smaller or equal to this boundary.

Case 1: pn < (1—a)r

From (3.12), we see that F' < 0. Then, from (3.13), it follows that 7, = 0 for
all (t,x) € [0, T] x Ry, i.e., the investor sells the stock immediately and invests
the proceeds in the bank account.

Case 2: n> (1—a)rand a =0

One has F(t,z) > 0 for all (¢,x) € [0,T] x Ry \ {0}. Then, again from (3.13),
it follows that 7, , = T —t for all (¢,x) € [0,7] x Ry \ {0}, i.e., the investor
never sells the stock prematurely and thus S = [0,7") x {0}.

Case 3: p> (1 —a)rand a >0

Step 1: Let us show that for every ¢t € [0,T],z,y € Ry with x < y, the
implication

Vit,y) =G(t,y) = V(t,z)=G(t ) (3.20)

holds. Together with the closedness of the stopping region, (3.20) implies that
S is of the form given in (3.8) with boundary b(t) = inf{z € R, : V(t,z) >
G(t,z)}.

By (3.13), for any ¢t € [0,7) and x < y, we have
(V(t,y) — G(ty) — (V(t,z) — G(t,x))

SE U U R (4w X du} —E U U (e X du} (3.21)
0 0

=FE U R (t + u, yXffu> — F(t+u,X/7) du}
0 X
>0

)

where the last inequality holds by (3.16). As V' > @, this implies (3.20).

Step 2: Let us now show that ¢ — b(t) in increasing. For z € R, and s < t,
one has

V(t,2) — G(t,2) =e "= gyp E{ / F(s+uaX§fu)du]
0

TET0,7—1]

—e (1= gup {/ F(s+ u,Xjfu)du] (3.22)
T 0
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<e—r(1fa)(t78) sup E l F(S + u, X;fu)du

B TGIT[O,T—S]

S—

—e " (1=)9) (V (5, 1) — G(s, 7)) ,

where the second supremum is taken over all (‘Fs'f‘u)ue[O,T—t] —stopping times
taking values in [0,7" — t]. Since V' — G > 0, (3.22) yields the implication

V(s,z) — G(s,x) =0= V(t,z) — G(t,x) = 0, (3.23)
which induces that ¢ — b(t) is increasing.

Step 3: Let us show that b(t) > 0 for all ¢ € [0,T). At first, suppose there
exists t* € (0,7) such that b(t*) = 0 (i.e., t* # 0). As t — b(t) is increasing,
one has b(u) = 0 for all u € [0,¢*]. As X% cannot reach 0, we have 19, > t*,
which yields

70,z
E { / F(u, ngx)du}
0

+* T
<E [/ F (u, X37) 1{x8’z<f/2}du} o [/ OV F (. X7) 1{X2’z>f/2}du}
0 - 0

<P (sup X0 < £/2) F(T,1/2)+ T = r(1 = a)[E | sup x07].

0<u<T 0<u<T

For the first inequality, we use F'(u,z) < 0 for # < f/2. For the second one,
we use that F' is increasing in z and for x < f, increasing in ¢.

We have that F(T, f/2) < 0. In addition, P (supy<,<7 X0% < f/2) — 1 and
E (SUpogugT XS’I) — 0 for x — 0. This yields

70,z
E {/ F(u, X(u)’w)du] <0 for z small enough,
0

which is a contradiction to the optimality of 7,. Thus b(¢t*) > 0 for all
t* € (0, 7). b(0) > 0 follows analogously by extending problem (3.4) to the
interval [—1,7]. |

Thus, the theorem is now proven, besides the smooth-fit condition, the con-
tinuity of the exercise boundary and its terminal condition. These assertions
need some more preparation provided by the following lemmata.

Continuity of the Optimal Stopping Times

The following two lemmata show that the optimal stopping times are close
together for stock price processes started in a neighborhood of state and time.
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Lemma 3.3.1. Let 7y, be defined as in (3.7). Fiz a > 0. Then, for all ¢ > 0,
there exists 0 > 0 such that

sup P({mpis — Tt >€}) <e

z€la,00)

for all 6 € (0,9).

Proof. For all £,6 > 0, one has
P ({Tt,w+5 — Ttz > 8}) =P ({Tt,x+§ — Tta > 5} N {Tt,ac S T—1t— 8}) .

To compare the optimal stopping times for different state variables, we use
Xt = yX®! for all y € R,. Let (By)u>0 be a standard P—Brownian motion.
One gets

P ({Tt,x+6 — Tty > 5} N {Tt,ac <T—-t- 5})

<P ({ min Xff;;iJru > b(t + Tt@)} N{r, <T —1— 5}>

u€(0,e]

<p ({ i o+ XL 0> it b <702}

u€(0,e]

@ ({am o (- 3) em) > 255))
o <_ In (%) - \/(gu - a?/2>s)

> o ooz (In(Z%5) 4+ (1 —0?/2)e
_ 2(p—o /2)111(“—)0 a+é 24
e +5)7 "D ( e Vo € [a,00), (3.24)

where the first inequality holds because t — b(t) is increasing, the second one
holds by x X! < b(t+7;.), and the third one follows by the strong Markov
property of XL For ¢ > 0 fixed, the right-hand side of (3.24) converges to 0
as 6 J 0. [ |

Lemma 3.3.2. Let 7, be defined as in (3.7). Fiz a,b € Ry with 0 < a < b.
Then, for all e > 0, there exists 6 > 0 such that

sup ]P)({‘th,:v - Ttl,x| > 8}) <é
z€la,b]

fOT all t1, 19 with 0 <t; <ty <T andty —t; < 0.

Proof. Similar to the proof of Lemma 3.3.1, for all t, € (0,7], ¢ > 0, and
u € (0,¢), one has

P ({Ttgfu,x — Tipx > 6}) =P ({Ttgfu,x — Tipx > 5} N {Ttg,x § T — tg 4+ u — 5}) .
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To compare the optimal stopping times, we write X% in terms of the process
X% Namely, by construction, one has

t1,x
X 1,
to,x tatu
Xt2+u - th,x ) U Z 07
to

where t, > t;. In addition, the following argument uses the fact that Xf;x AT
for t5 — t; small. Consequently, at the first time X% hits the boundary, the
process X" i not far away, and one can argue as in Lemma 3.3.1. Let (B, )u>0
be a standard P—Brownian motion. Then, for t, —¢; € (0,£/2) and § > 0, one
gets

P{m,0— Ttge >} N {1y <T —t; —€})

<P ({ min Xf;fﬁ%ﬁu > b(ty + Ttw)} N{Ttye <T —t1 — 5})

ue [0,6—(t2 —t1 )]

th’x T
<P (] omn St S An(n, ST
wel,e—(ta—tr)] X F Xy

to+Tty,x

XflfT +u €T
<P i =RAL LR N {1, <T —t; —¢
B ({ugfé}g}g] X0 vy eesT—thimeh

to+Tiy,
)

+P({X2° > x+6})
5}) YV € [a,b),

2
<P ({ min {exp (<,u — g—) U+ aBu>}
uel0,e/2] 2
(3.25)

_I_
_|_

e (fow (D) o)

where the first inequality holds because ¢ +— b(t) is increasing, the second one
holds by ijthQ . < b(ty + 74, 2), and for the fourth one, we use the strong
Markov property of X%,

As in Lemma 3.3.1, one can choose ¢ > 0 small enough such that

P mi “Nuton Vs 0 )C (3.26)
min X —— |u " —. )
u€l0,/2] P T 7 a+ 6 2

Because By, 4, converges stochastically to 0 for to —¢; | 0, there exists 6 > 0
such that

P ({exp ((u - %2) (to — t1) + aBt2_t1) > ?}) < g (3.27)

for all t1,ty with t5 — t; < d. So, it remains to show

P (7o — Toyn >€) <e, forty >t and ty — t; small enough. (3.28)
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To estimate this probability, we renew X at ¢, + 73, ,, where it is sufficient to
consider the set {t; + 7, » > t2}. Then, we estimate X,f;x from below and not
from above as in (3.25). But, the calculations are completely analog to the
estimation of P (7, » — 74, > €), and we are done. |

Smooth-fit Condition

Next, we show (3.9), i.e., the value function V joints the payoff function G
smoothly at the boundary. For ¢t € [0,7") and x = b(t), one has

V(t, T+ 8) - V(t, ZC) > G(t, T+ 5) - G(t,&l) :aIG(t 95) (329)

:(1 . a)er(lfa)(Tft)
for all € > 0. On the other hand, one has

V(t,z+e)—V(t,z)
SE [G (t + Tt,x+es Xt7x+€ )] — L [G (t + Tta+e; Xfth,Z-&-s)]

t+Tt o te

D) [Xtt::Tt,x_'_gamG (t + Tt,x+es l’)}
<ed,G(t,x)E [ XL, ], (3.30)

t+7't,ac+s
where the equality holds by the affine linearity of G in x, and the second
inequality holds as t — 0,G(t, x) is decreasing. By Lemma 3.3.1 and uniformly
integrability, E [Xt’l | converges to 1 for & | 0. Thus, (3.29) and (3.30)

t+Tt,z+€

establish the smooth-fit condition (3.9). [

Continuity of the Boundary
Proposition 3.3.3. The boundary t — b(t) is right-continuous on [0,T).

Proof. Fix t € [0,T") and consider a sequence t,, | t for n — co. As t > b(t) is
increasing, b(t+) := limg, b(s) exists. Since (t,,b(t,)) € S foralln > 1, and V
and G are continuous (Proposition 3.1.1), one gets V (¢, b(t+)) = G(t,b(t+)),
ie., (t,b(t+)) € S. This results b(t+) < b(t). As t +— b(t) is increasing on
[0,7"), the claim is proven. [ |

Proposition 3.3.4. The boundary t — b(t) is left-continuous on (0,T).

First, note that by monotonicity, the limit b(t—) := limy, b(s) exists and
b(t—) < b(t). The proof of the proposition is divided into three steps. Under
the assumption that a jump of the boundary occurs at some time ¢, in the first
two steps, we find an upper bound for the t-derivative and the z-derivative
of V' for points in time in a left neighborhood of ¢ and prices between b(t—)
and b(t). Then, we use these upper bounds to argue with the PDE which is
satisfied by V in C to see that V., > 0 is bounded away from 0. Roughly
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x— V(t,x)-G (t,x)
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This figure shows the proven smooth fit-condition (3.9)

Figure 3.2: Evolution of z — V(¢,2) — G(t, z) near the boundary.

speaking, the contribution of V,, to the PDE is bounded away from zero by
minus the drift rate F' of the payoff function (cf. Step 3 of the proof). In a
neighborhood of the stopping region, this drift rate is strictly negative. Since
{t} x [b(t—),b(t)] is part of the stopping region, where V' = G, this turns out
to be a contradiction to the linearity of G in x if b(t) > b(t—).

This line of argument has already been applied to quite diverse payoff func-
tions, see [PS06].

Proof. Suppose that the stopping boundary b has a jump at ¢, i.e., b(t) > b(t—).
Step 1 (upper bound for the t— derivative)

Let § € (0,t), e € (0,t —9), and = € (b(t — §),b(t)]. Define the stopping time

o :=inf {u >0 : Xf:g:;fu <b(t—0+ u)} AT = (t—=9)) € To,r—t—a);
(3.31)

which applies the optimal stopping rule for the problem started in ¢t — ¢ to
the problem started in ¢t —d —e. By construction, (a, Xf:g:jfg> possesses the

. . . t—(S,III . . .
same distribution as (Tt_(g@, X, 5 +Tt75,m>' Because o is in general sub-optimal
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for the problem started in ¢t — § — &, one gets

V(it—d,x)—V(t—05—¢e,x)
g
1 1
<E [G(t S T, X )] ~-E [G(t - Xt;?:jfaﬂ

t—6+7't_5’x
(1 _ er(l—a)s)

=F ((1 . &)Xt—d,a: 1 aP(]) er(lfa)(Tft+5th,5yx):|
€

t_6+7t76,z

(3.32)

By the classic theory for parabolic equations, see, e.g., Friedman |Fri64|, Chap-
ter 3 of Shiryaev [Shi07] (Theorem 15 in Chapter 3), one knows that V € C'?
in the continuation region. Therefore, 0,V (t — ¢, x) exists for all x > b(t — 0)
and

(V(t—=10,2)=V(t—0—¢e,x))/e > V(t—0b,x), €]0.

Together with (3.32), this implies

atV(t _ (57 "13) S _7,_(1 o O[)]E |:((1 _ O[)Xtt:ngt_éx +OéP0) eT(lfa)(T*(tfé)thf&z)}

On the other hand, (¢,x) lies in the stopping region for all < b(t) and
thus 7, = 0. Since b(t—) > 0, one can apply Lemma 3.3.2, and therefore,
Ti—s» — 0 in probability for 6 | 0, where the convergence holds uniformly in
x € [b(t—)/2,0b(t)]. By uniformly integrability, one gets
limsup  sup [,V (t —9,z) — 0,G(t,x)]
510 e(b(t—5),b(t)]

< sup [ ((1—a)z+abR) =T =Dp(1 — o) — 9,G(t, z)]
z€(b(t=),b(1)]

0 (3.33)
Step 2 (upper bound for the x— derivative)

Let 6 € (0,t), x € (b(t —9),b(t)], and € € (0,2 — b(t — J)). The arguments are
similar to Step 1, but more convenient to write down because 7,_s, is already
an admissible stopping time for the problem started in (t — d,z — ¢) and need
not be transformed as in (3.31). One gets

Vit—96,z)=V(t—9,x—c¢)

£
1 t—o,x t—od,x—e
<= [IE [G (t Y Xt_(;;thia,z)] _E [G (t Y Xt_(;;rmm)ﬂ
—(1-a)E [ijgﬁwIe“l*a)(T*(tfé)fnfa,m)] , (3.34)

Again, by V € C*? in the continuation region, one gets that 9,V (t—§, r) exists
for all z > b(t — ) and (V(t —d,2) = V(t —d —¢e,2))/e = 0,V (t — ¢, x) for
e } 0. Together with (3.34), one gets

0,V (t—6,2) < (1—a)E [Xt—‘“ ef<1—a><T—<t—5>—ﬁ—m>] .

t76+7-t75,z
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Again by 7, = 0 and b(t—) > 0, an application of Lemma 3.3.2 yields

limsup  sup 9,V (t —6,x) < (1 — a)e"t=T=0), (3.35)
510 2e(b(t—5),b(t)]

The RHS is 0,G(t, x) which does not depend on .

Step 3 (Conclusion of the left-continuity)
Now, we want to lead the assumption b(t) > b(t—) to a contradiction.

Let «* := (b(t—) + b(t))/2. By Remark 3.2.1, one has b(t) < f and thus, by
(3.14), it follows that F(t,z*) < 0. By Step 1 and Step 2, there exists § > 0
such that for all s € [t — 0, ] and = € [b(s), 2*], one has

F(t,z")

pxd,V(s,x) + 0,V (s,x) <puzrd,G(s,z) + 0,G(s,x) —

F(t,z*)

3

2 F(t,z*)

<_F t * . )
F(t,z*)

3 )
where the second inequality holds by the continuity of F' and its monotonicity
in z. Again, by Theorem 15 in Chapter 3 of [Shi07|, we know that the value
function V solves the PDE

=F(s,z) —

2
OV + uwd,V + %ﬁamv — 0

in the continuation region C. Thus, we have
2F (t, x*) < 2F(t, x*)
30222 T 302p*?
for all s € [t —6,t), x € (b(s),x].

By V(s,b(s)) = G(s,b(s)), 0:V(s,b(s)) = 0.G(s,b(s)) (smooth-fit condition),
0..G = 0, and the Newton-Leibniz formula, it follows that

0wV (8,) > =C>0

C(z* = b(s))?
2
(3.36)

Vs, %) — G(s,z") = / / OpV (8,0) — 0pG(s,v)dv du >
b(s) Jb(s)

As this holds for all s € [t —§,t) and V' — G is continuous, one concludes that

Clar = b(t-))?
2
which is a contradiction to the fact that (¢, z*) lies in the stopping region. So,

it can be concluded that b(t—) = b(t), and the continuity of the boundary is
established. [

V(t,z") — G(t,z") >

> 0,
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Terminal Condition of the Boundary

By Remark 3.2.1, b(T'—) = limyr b(t) cannot exceed the boundary f, above
which the drift rate of the payoff process is positive. It remains to exclude
that b(T'—) < f. But, this is done with the same arguments as in the proof of
the left-continuity of the boundary, using the fact that V(7',2) = G(T, z) for
all x € [b(T—), f].

3.3.3 Proof of Proposition 3.1.4
Proof of (i)

Let 0 < 0y < 0y and w.l.o.g. ¢ = 0. For two independent standard Brownian
motions B and B, the process

2 _ 2 9
X, = zexp (us—l—alBs—%s—l—\/ag—a%Bs—az 2015>, 5>0

possesses the same law as the stock price from (3.1) with 0 = o5. In addition,

X is Markov w.r.t. the filtration (F25).c7 which is generated by B and B.
This implies that V' from (3.3) with standard deviation oy coincides with the

value of the problem

SEpE G(7, X;)], (3.37)

where the supremum is taken over all (F5B )sefo,rj—stopping times 7. Now
consider the artificial optimal stopping problem where the second Brownian
motion B that enters into the stock price is not observable to the maximizer.
This corresponds to the restriction to (F2)eo7)—stopping times. Of course,
the latter supremum is at least as high as the previous one. On the other hand,

for an (F7)sep,r)—stopping time 7, we have

ElG(r, X7)]

2 _ 2 2
=F [((1 — @)z exp (MT—}—O’lBT — %7+ \/03 — 2B, — @2(71)7—) —|—aP0>

% er(lfa) (T—7) :|

2
=1-a)E [e”(l_a)(T_T):n exp <,uT +o01B; — 0217>

_ 2 9
xFE [exp (\/O’%—O’%BT— 92 5 017_> |f;§”

+aPyE [ef(l—aXT—T)}

2
=K [(1 — )" T g exp <,uT +01B; — J21T> + aPoeT(l_a)(T_T)] ,
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where the conditional expectation is 1 because 7 is FE —measurable whereas
B is independent of F£. Tt follows that the value of problem (3.37) restricted
to all (FF)sepo,rj—stopping times coincides with V' from (3.3) with smaller

standard deviation o;. Thus, one has V7 < V72, Note that the only property
of the payoff function G we use is its affine linearity in X..

Proof of (ii)
For o = 0,the optimal stopping problem (3.4) reads

V(t,z) = sup G(t+u,ze™) = sup ((1—a)ze" + aPy)et-o)T—tmw),
u€el[0,T u€el0,T

By simple algebra, one calculates that d?/du®G(t + u,xe*) > 0. So, we
conclude that for fixed z € Ry, the maximum of u — G(t + u, ze"") is either
attained at u =0or at u =T —t.

For b(t) given by (3.10), one has G(t,b(t)) = G(T, b(t)eT=1), i.e., the investor
is indifferent between stopping at ¢ and 7'. It implies that (¢,b(t)) lies in the
stopping region. On the other hand, by 0,G(t,z) = (1 — a)ell=rT=1 <
e T=D9,G(T.x) for all z € R, one has that (¢,7) lies in the continuation
region for all > b(¢). This implies that b(¢) is indeed the optimal exercise
boundary given in (3.8).

It remains to show that 7, , = T'—t for all 2 > b(t). Assup,ejr_yg G(t+u, ze!)
is not attained at any u € (0,7 — t), X** cannot hit the boundary if it starts
above it. |

3.4 Optimal Stopping when Bond Earnings are
Taxed at Maturity

Instead of taxing the gains in the bond continuously, one can consider a bond
where the earnings are taxed at the end of maturity when the portfolio is
liquidated.

Under the same assumptions and similar notations as in Section 3.1, the payoff
function reads

G(t,z) = [(1 —a)z +aP][1+ (1 —a)(e ™™ —1)], (3.38)

for (t,z) € [0,T] x R;.
Then, the optimal stopping problem becomes

W@Zsm)Ep@ng (3.39)

7€ Tj0,1]

where X = x.
The value function associated with problem (3.39) is given by

V(t,z):= sup E[G(t+7, X)) (3.40)

TET0,1—1]
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35
— continuation region
e
25| g
stopping region
20 1 L L L
0 2 4 6 8 10

X

The optimal stopping boundary in problem (3.4), when the stock price
process is deterministic. The parameters in this figure are 0 = 0, u =
0.05,7 = 0.06, Py = 10,7 = 10, a = 25%.

Figure 3.3: Deterministic stock price process in problem (3.4)

Equally to problem (3.4), one sees that V (¢, 2) > G(t, z) for (t,2) € [0, T] xR,
and V (T, z) = G(T, z) for any = € R,.. We denote by C and S the continuation
and the stopping region, respectively. With the standard methods, one can
show (likely to Section 3.1) the existence of an optimal stopping time 7 €
To,r—¢g which solves (3.40) and is given by

Fro = inf{s € [0,T — 1] : (t+ s, X/7") € S}. (3.41)

Similar as in problem (3.4), one can now show the existence of an optimal
stopping boundary. But, trying to proof continuity of the optimal stopping
boundary for (3.40), one faces the problem that the boundary needs not to
be monotone, c.f. Figure 3.5. An explanation for this fact is given in the
subsequent part. As we can see in Section 3.3.2, the monotonicity of the
boundary is essential for proving continuity.

To explain the lacking monotonicity of the stopping boundary, again, we first
turn the terminal payoff into a running payoff with the help of Itd’s formula.
Then, the value function reads

V(t,z) =G(t,x)+ sup E [/ F(t+ u, Xp5)du| (3.42)
0

7€T0,1—1]
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The figure shows off the evolution of the optimal stopping boundary,
when o converges to 0. The boundary then converges to the optimal
stopping boundary in the deterministic case. The parameters in this
figure are p = 0.044,7 = 0.05, Py = 30,7 = 10, a = 25%.

Figure 3.4: Evolution of stopping boundary with varying o

with

F(t,z) = —raPy(1— o)™ + (1 — a)z[pa + (n—r)(1 — a)e’ ™).

(3.43)

Note that F(t,z) > (<) 0 on the set {(t,z) € [0,T] xR, : 2 > (<) f(¢)}, with

o rafy
ft) = pae T 4+ (n—7r)(1 — )’

It is also clear to see that f(t) > 0 for all t € [0,7],

0, F(t,x) = (1 — ) (pa + (p—r)(1 — a)e' ™) > 0,
and
8,513(25, z) = —r(1—a)?(p—r)ze" T £ r2aPy(1 — a)e" ™D > 0
for all (¢,2) € [0, 7] x Ry under the following condition:

(1—a)r
ae” T+ (1 —a)

< U.

(3.44)

(3.45)

(3.46)

(3.47)
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continuation region

stopping region

Figure 3.5: Exemplary plot of a nonmonotone stopping boundary in the opti-
mization problem (3.40)

So, the drift rate ¢ — F(t,x) of G is positive for F(t,-) > f(t) and negative
otherwise. In Figure 3.6, one can see that ¢ — f(t) (red function) is mono-
tonically decreasing in time. Furthermore, the set of stopping times becomes
smaller with elapsing time. These two effects work against each other, so that
the stopping boundary needs not to be monotonically increasing or decreas-
ing. The time dependence of f is the main difference to the optimal stopping
problem (3.4), where f is constant over time, and so ensures the monotonicity
of the stopping boundary ¢ +— b(t).

The existence of an optimal stopping boundary in (3.40) under condition (3.47)
can be shown in the same way as in (3.4). In the following, we show that the
stopping boundary b of problem (3.40) dominates the stopping boundary b of
problem (3.4) if
(1 —a)r
a7+ (1—a)

< pu<r.

To prove this, we first need the following lemmata to characterize the shape
of the stopping region S.

Lemma 3.4.1. Consider problem (5.40) with stopping region S. Letr >0
and o € [0,1). Then, there exists a boundary b : [0,T) — Ry such that the
stopping region is given by

S={(t,z)€0,T) xRy :z <b(t)}. (3.48)
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The blue function is an example of an nonmonotone stopping boundary
of the optimal stopping problem (3.40). In this example, the red function
shows t — f(t), where above the drift rate ¢t — F(t,x) of G is positive,

and negative below. In this figure, one can also observe the presumption
limb(t) — f(T) for t 1 T.

~

Figure 3.6: Plot of the optimal stopping boundary together with ¢ — f(t)

under condition (3.47), and

~

S=100,T) xR, (3.49)

if u<r(l—a).

(1—a)r

Proof. Case 1: p > e TH(1—a)

Let us show that for every ¢t € [0,T], z,y € R, with z <y, the implication

Vity)=Gty) = V(t,z)=G(ta) (3.50)

holds. Together with the closedness of the stopping region, (3.50) implies that
S is of the form given in (3.48) with boundary b(t) = inf{z € R, : V(¢t,z) >

G(t,z)}.
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By (3.13), for any ¢t € [0,7) and x < y, we have

(‘7(757 y) - G(ta y)) - (V(t7 ,CE) - G(t? Z’))

/ P (t+u, X1 du} ~E U F (t+u, X58) du] (3.51)
0 0

/ F (t + u, ngf;) —F (t + u, X/, du]
0 T

where the last inequality holds by (3.45). By V > G, this implies (3.50).

Case 2: pn<r(l—a«)

From (3.43), we see that F' < 0. Then, from (3.42), it follows that 7, = 0
for all (t,z) € [0,T] x R, , i.e., the investor sells the stock immediately and
invests the proceeds in the bank account. [ |

Remark 3.4.2. Lemma 3.4.1 only treats the cases p < r(l — «) and
> WQT_—% In the case (1—04)7"<u§a€,(r1{—f()f_a),
that t — f(t) has a pole at some point t*. So, we cannot say anything about
the stopping region for t = t* with the methods used in this chapter so far.
But, one can easily check with the methods used in the proof of Lemma 3.4.1

that the stopping region can be characterized on the set [0,T)\ {t*}. With this,

we face the problem

one can check that there exists a stopping boundarygz (t*,T) — Ry such that

0,t*) x {0}, N fort <t*
{(t,2) € ", T) xRy : 2 < b(t)}, fort>tr

S/{[0,T)\ {t'}} = {

Proposition 3.4.3. Let b be the stopping boundary in optimization problem
(3.4) and b be the stopping boundary in optimization problem (3.40). Then,
b(t) < b(t) for allt €[0,T) if

(1—a)r
ae” T+ (1—a)

< pu<r.

Proof. We first show that F(¢,z) dominates F/(t,z) for all (¢,z) € [0,T] x R,.
Therefore, note that

F(T,z)=F(T,x) (3.52)
for all x € R,. One calculates

BF(t,x) = (PaPy(1 — a) —(1 — a)%er(u —r) )

~
>0 as pu<r




3.4. OPTIMAL STOPPING WITH MATURITY TAXED BOND 73

and

@F@xﬁz@%ﬁﬁl—af—@—afm@k_dl_a»kwﬂmkw_

~
<0 as p>r(l—a)

Due to (1 —a) < 1 and the positivity of O,F(t,z) (see (3.46)), one has
O(F(t,x) — F(t,z)) > 0 for all € R. Together with (3.52), we arrive at

F(t,z) > F(t,x) (3.53)
for all (¢,z) € [0,T] x R;.
(3.53) implies

F(t+u, J:Hu)du)

F(t+wu,zH,)du

v
>E ( / e u,xHu)du) (3.54)
0
v )
=V(t,x) — G(t,x).
Because of (3.54) and V (¢,z) > G(t,z), we have the following implication:
V(t,z) —Gt,x) =0= V(t,z) — G(t,x) =0 Y(t,x)€[0,T) x R,

which yields b(t) < b(t) for all t € [0,T). |

Similar to the case of a continuously taxed bond, we can determine the
optimal stopping boundary in the case o = 0 explicitly.

Proposition 3.4.4. Consider problem (3.40) where the stock price process X
is given by equation (3.1) with o = 0. If

In [1—1—(1—@) (e’"T—l)] o
T Y

=

the optimal stopping boundary b is given by

~ aPy(1—a) ("D —1)

b(t) = =) (@00 —1-(1—a) (@@ -1 vt e [0,T).  (3.55)

and the optimal stopping time (3.41) is given by

~ 0 Lz < b(t)
Ttox = ~ .
’ T—t ,x>bt)
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Proof. In the case o = 0, problem (3.40) reads

V(t,z) = sup G(t + u,ze™)
w€e[0,T

= sup ((1—a)ze" +abk)(1+(1-a) (er(T’t’“) -1)).
u€[0,T]

By simple algebra, one can calculate d2/du?G(t+u, ze") > 0. So, we conclude
that for fixed z € R, the maximum of u — G (¢ + u, ze™) is cither attained
at u = 0 or at u = T —t. For b(t) given by (3.55), one gets G(t,b(t)) =
CNJ(T, g(t)e“(T_t)), i.e., the investor is indifferent between stopping at ¢ and T
It implies that (¢,b(¢)) lies in the stopping region. On the other hand, by
Gtx)=1-a)1+(1—a) (™M -1) < (1-a)eT" =0,G(T.z) for
all x € R, and p > A, one observes that (¢,z) lies in the continuation region
for all z > b(t). This implies that b(¢) is indeed the optimal exercise boundary
given in (3.48).

It remains to show 7, = T — ¢ for all z > b(t). As SUDye(0,7—4] G(t + u, zer™)
is not attained at any u € (0,7 —t), X" cannot hit the boundary if it starts
above it. [

Remark 3.4.5. Observing the formula for the stopping boundary, we see the
effect of different choices of . p > r implies a monotonically increasing
stopping boundary (see Figure 3.7), whereas pn < r implies a monotonically
decreasing stopping boundary (Figure 3.8). The case p > r is less interesting
from an economical point of view. In this case, g(t) < Py for allt € [0,T)
and o > 0 which induces that an investor is better off with wash sales, and
therefore, a single sale of the stock seems to be no reasonable strategy in the
case of a positive interest rate.

3.5 Conclusion

In this chapter, we consider a very simple optimal stopping problem, where
a risk neutral investor owning one stock has to decide when to sell this stock
and invest the proceeds into a bond up to maturity under capital gains taxes.
In the case of no taxes, the solution to the problem is trivial; either she con-
verts the stock immediately if the stock’s rate of return is lower or equal to
the bond’s rate of return, and she holds the stock up to maturity otherwise.
Considering capital gains taxes, there exists a trivial solution if and only if the
stock’s rate of return is lower than or equal to the bond’s rate of return after
taxes. In this case, the stock is immediately sold. Reversely, if the stock’s
rate of return higher than the bond’s rate of return after taxes, we show the
existence of an optimal stopping boundary. The investor, who is subject to
paying capital gains taxes, sells her stocks and invests the proceeds into a bond
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continuation region

40r

35

stopping region
30

25

The optimal stopping boundary in problem (3.40), when the stock
price process is deterministic and pu < r. The parameters in this figure
are 0 = 0, = 0.05,7 = 0.06, Py = 10,7 = 10, o« = 25%.

Figure 3.7: Deterministic stock price process in problem (3.40), u < r

when the stock price is lower or equal to this boundary. The used methods in
this chapter rely on techniques presented, e.g., in [PS06]|, where the terminal
payoff is turned into a running payoff with the help of Itd’s formula. Fur-
thermore, we show that the boundary is decreasing in stock’s volatility which
is interesting from an economic point of view. For a more volatile asset, the
option to time the tax payments has a higher value for investors. This means
that capital gains taxes can even motivate investors to take more risk. In the
case of a deterministic stock price process, we could even analytically calculate
the stopping boundary.

In the case that the capital gains in the bond are continuously taxed, we could
show that the stopping boundary is a continuous, increasing, time-dependent
function, and at the stopping boundary, the state derivative of the value func-
tion equals the state derivative of the payoff function. In the case that the
capital gains in the bond are taxed at the end of the period, we focus on the
case that p > WQT_—% Thereby, we could numerically see that the stop-
ping boundary is in general not monotone. This mainly relies on the two facts
that

» ¢ — infyer, {(t,2) : F(t,2) > 0} is monotonically decreasing,

» the set of stopping times becomes smaller with elapsing time.
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continuation region

stopping region

t

The optimal stopping boundary in problem (3.40), when the stock
price process is deterministic and p > r. The parameters in this figure
are 0 =0, = 0.10,7 = 0.06, Py = 10, T = 10, o = 25%.

Figure 3.8: Deterministic stock price process in problem (3.40), u > r

These two effects work against each other so that the stopping boundary is in
general not monotonically increasing or decreasing.

At least, we were able to show that under some restrictions to the drift rate
1, the stopping boundary in this problem dominates the stopping boundary
in the problem where capital gains are taxed continuously.

3.6 Outlook and Further Research

In this section, we give possible extensions of our model.

The V Problem

We have seen that we cannot say much about the optimal stopping boundary
when capital gains in the bond are taxed at the end of the period. The resulting
lack of monotonicity of the boundary yields that we cannot use the standard
methods for showing properties like continuity or smooth-fit.

From numerical calculations, one can make two crucial observations for p < r:

» If 0 > 0 is large enough, the boundary is monotonically increasing.
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» If the boundary is not monotone, there exists a turning point where the
derivative of the boundary changes its sign.

Therefore, two questions arise:

» Can we find K € R, such that the boundary is monotonically increasing for
all o0 > K7

» Is it possible to determine the changing point of the derivative, supposedly
depending on pu, r, o and 1?7

Finding answers to these questions would make it possible to solve the problem
with the standard methods, used in this chapter.

Furthermore, we observe that
» the stopping boundary seems to be monotonically increasing if p > r.

Standard methods are again applicable if this monotonicity can be proven.
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Appendix A

Appendix for Chapter 2

In this part of the appendix, we list results which are important or essential
for statements in the second chapter. The results are listed by their order of
appearance.

As we use the properties of regulated functions in Theorem 2.2.12, we will
state the completeness property with respect to the supremum norm here.

Definition A.0.1 (regulated function). Let X be a Banach space with norm
|| -||x. A function f:[a,b] = X is called requlated if f(t+) = lim,, f(7) and
f(s—) == lim s f(7) exist in X for every t € [a,b] and s €]a,b).

Theorem A.0.2 (see [Hon75|, Theorem 1.3.6). The space of all requlated func-
tions mapping from [a,b] to X is a Banach space when endowed with the supre-
mum norm.

Theorem A.0.3 (Yoeurp-Yor Formula (see [Jas03|)). Given a filtered proba-
bility space (0, F,F, P) satisfying the usual conditions, a cadlag process C' and
a semimartingale Z satisfying Zy = 0 and AZ; # —1 Vs € [0,00)P—a.s., the
linear SDE

X:C+/ X_dZ
0+

has a unique solution
X-—cC- 5(2)/ Cd(E(Z) ), (A1)
0+

where

E(Z), = exp {Zt Ly Z]g} [T (1 +AZ) exp(-A7,)

2
0<s<t

18 the stochastic exponential which is the solution to the homogeneous linear

SDE
X=1 +/ X_dZ.
0+
79
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If C is a semimartingal, (A.1) is indistinguishable from

X =£&(2) {co + /0+5(Z)_1d5}

with
ACNAZ,

C=C-lC2r- 3 T8z

0<s<:

A version of the Gronwall inequality, used in (2.42), is given in [Pro04]| as
an exercise. As this exercise is not proven in the book, we will give a short
proof here. The proof mainly relies on standard iterating techniques to prove
Gronwall inequalities.

Lemma A.0.4 (Gronwall inequality). Let (At)i>0 and (Ci)i>o be cadlag pro-
cesses, where (Ct)>q is increasing with Cy > 0. Suppose

t
0<A <« —|—/ A,_dCy fort > 0. (A.2)
0

Then,
A; < aexp(Cy) for each t > 0. (A.3)

Proof. Tterating inequality (A.2), we get
t
Ay <o+ a/ Ag,—dCy,
0
t S1—
<a+ a(Cy— Cy) + / / As,—dCs,dCy,
0 Jo
t t S1— So—
<a+a(C, — Co) + a/ Oy — CodCsy, +/ / / Ayy—dCy,dCy, dC,,
0 0 Jo 0

t t 51— So—
<a+ aCy + a/ Cs,—dCs, + / / / Agy—dCs,dCs,dCy,
0 0o Jo 0

where we use that Cy > 0.
Since C' is increasing, it is thus of finite variation. Therefore, repeated appli-
cation of Itd’s formula yields

t
eCt =t + / e dC, + Z (eCS — el — eCS*ACS)
0

s<t

t
214—/ Y= dC,
0

t S1—
>1+ O, + / / e%2-dC,,dC,,
0 0

t t S1— So—
>1+C, +/ C,,_dCy, +/ / / e%s=dC,,dC,,dCy, .
0 0 0 0
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Set K; := sup,¢(gy Au- Then, we have

t s1 Sn—1 t S1 Sn—1
// / A, _dC,, ---dC,, < K, (// / dCsn---dC’sl).
0 JO 0 0 JO 0

By induction, one can then show

t S1 Sn—1 CTL
// / dcy, -+ dC,, < —*. (A.4)
0o Jo 0 n!

As the RHS of (A.4) converges to 0 for fixed ¢, continuing the above iteration
yields the result. [

Remark A.0.5. As C is a cadlag increasing process, the integral in inequality
(A.2) is well-defined as Riemann-Stieltjes integral.
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Appendix B

Appendix for Chapter 3

In this part of the appendix, we list results which are important or essential
for statements in the third chapter. The results are again listed by their order
of appearance.

The approach to determine the boundary numerically relies on the so called
Markovian approach, which can be found in [PS06|. We will revisit some im-
portant aspects of this approach in relation to our problem. We start with
approximating the Geometric Brownian Motion on the time interval [0, 7] by
a binomial tree considering the grid points 0, %, 2%, ooy (N = 1)%,T. The
approximating time-discrete process (Xflv )Jnefo,...n} is modeled as a Cox-Ross-
Rubinstein binomial tree, where the probability of an upward and a downward

jump, respectively, is given by
u — eHT/N

u—d

Xflv eHTIN _ g
IP’( 1 :u) =— PX)N,/X)=d) =

X — (B.1)

withu=8+ /B -1,d=f—+/BZ—1and =05 (e’“T/N n e<ﬂ+02>T/N>.

It is known (cf. [CRR79]) that the given process converges to a geometric P—
Brownian motion with percentage drift © and percentage volatility o.

Set GN(n,z) := G (£T,z). The discretized problem (3.3) then reads

-----

.....

.....

the probability of an upward or a downward jump, respectively, is given as in

83
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(B.1).

We introduce the continuation region C¥ = {(n,z) € {0,...,N} x R, :
VN(n,z) > GN(n,z)} and the stopping set SN = {(n,z) € {0,..., N} xR, :
V¥(n,x) = GN(n,z)}. To determine the value function, we use the Wald-
Bellman equation, which is the simplest form of a dynamic programming equa-
tion.

Theorem B.0.6 (see [PS06], p. 17, Theorem 1.9). Consider the optimal
stopping problem (B.2). Then, the value function V¥ satisfies the Wald-
Bellman equations

V¥(n,z) = max {G" (n,z), TV"(n,z)}

forn=N—1,...,1,0 where TVN(N — 1,2) = E[GN(N,zH})], TVY(n,x) =
E[VN(n+1,2H])] forn € {0,...,N — 2} and x € R;.

With the help of Theorem B.0.6, we can recursively determine the value
function (B.2) for every discretized time point. In our calculations, the state
space is discretized by the states calculated from the CRR-model.



Deutsche Zusammenfassung

Die vorliegende Arbeit beschéftigt sich mit der Modellierung von Kapitaler-
tragsteuern in stetiger Zeit und dem FEinfluss von Kapitalertragsteuern auf
optimale Investitionsentscheidungen.

Fiir die Berechnung der zu zahlenden Kapitalertragsteuer sind drei Grofen rel-
evant: der Verkaufspreis, der Steuersatz und die Steuerbasis. Die zu zahlenden
Steuern ergeben sich mithilfe der Formel

Steuersatz x (Verkaufspreis — Steuerbasis).

Da Kapitalertragsteuern nur gezahlt werden miissen, wenn Gewinne/Verluste
realisiert werden, hat die Investorin die Mdoglichkeit, Steuerzahlungen auf spé-
tere Zeitpunkte zu verschieben. Hier tritt ein Optimierungsproblem mit der
Frage auf, wann eine Realisierung von Kapitalgewinnen, beziehungsweise Ka-
pitalverlusten, optimal ist.

Diverse wissenschaftliche Arbeiten haben sich mit diesem Optimierungsprob-
lem beschéftigt. Eine wesentliche Frage in diesem Kontext ist die Modellierung
der sogenannten Steuerbasis. Im einfachsten Fall entspricht die Steuerba-
sis dem Kaufpreis der verkauften Aktie. Hat eine Investorin in diesem Fall
beispielsweise zwei BMW Aktien im Portfolio, welche zu unterschiedlichen
Zeitpunkten zu unterschiedlichen Preisen gekauft wurden, so tritt beim Verkauf
einer BMW-Aktie die Frage auf, welche der beiden Einkaufspreise fiir die
Berechnung der zu zahlenden Kapitalertragsteuer relevant ist. Hat eine In-
vestorin die Wahl zu entscheiden, welche der Aktien relevant fiir die Vers-
teuerung ist, so nennt man dies die exakte Steuerbasis. Diese wird im zeit-
diskreten Modell von Dybvig und Koo [DK96| verwendet und bildet im Fol-
genden die Grundlage fiir die Modellierung der Steuerbasis in stetiger Zeit.
Andere verwendete Steuerbasen sind unter anderem:

e die FIFO-Prioritétsregel, bei der die Aktien mit der lingsten Verweildauer
im Portfolio zuerst verkauft werden,

e die LIFO-Prioritétsregel, bei der die Aktien mit der kiirzesten Verweildauer
im Portfolio zuerst verkauft werden,

e der durchschnittliche Einkaufspreis aller Aktien des gleichen Typs.

Obwohl Kapitalertragsteuern einen grofen Einfluss auf das Gesamtvermogen
einer Investorin haben (in Deutschland betragen diese 25%), gibt es doch nur
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sehr wenig Literatur, die sich damit beschéftigt. Die meisten Arbeiten behan-
deln andere Marktfriktionen, wie beispielsweise Transaktionskosten. Finanz-
mathematische Arbeiten zum Thema Kapitalertragsteuern sind unter anderem
[DK96]|, [DUO05]| (diskrete Zeit), [BST07; BST10|, [JKT99; JKT00], [CP99| und
[BCPOT7| (stetige Zeit).

Einen grofen Einfluss haben Kapitalertragsteuern auch bei Investitionsentschei-
dungen. Das Erwartungsnutzenoptimierungsproblem mit Steuern ist aber in
voller Allgemeinheit sehr unhandlich und analytisch nicht 16sbar. Beson-
ders fiir die exakte Steuerbasis und die FIFO-Prioritdtsregel ist ein Opti-
mierungsproblem schwer handhabbar, da die Buchgewinne hierbei eine un-
endlich dimensionale Zustandsvariable sein konnen. Deshalb schauen wir uns
spezielle Optimierungsprobleme mit weniger Handelsmoglichkeiten fiir den In-
vestor an.

Modellierung von Kapitalertragsteuern fiir Strategien mit unendli-
cher Variation

In Kapitel 2 der Arbeit beschéftigen wir uns mit der Modellierung von Kap-
italertragsteuern fiir Strategien wie sie im Allgemeinen in der Finanzmathe-
matik auftreten. Dabei wird unter schwachen Bedingungen gezeigt, dass Di-
videndenzahlungen einen negativen Einfluss auf das Vermogen einer Investorin
nach Steuerzahlungen haben, wenn der risikolose Zinssatz positiv ist.

Wir betrachten einen endlichen Zeithorizont mit Laufzeitende 7" € R, und
einen filtrierten Wahrscheinlichkeitsraum (€2, F, (F¢):cpo,17, P), der die iiblichen
Voraussetzungen erfiillt.

Da fiir eine Investorin, die mit endlich vielen Aktien handelt, die gesamten
Steuerzahlungen nur die Summe der Steuerzahlungen fiir die einzelnen Aktien-
typen sind, reicht es aus, nur ein einziges risikobehaftetes Wertpapier (Aktie)
zu betrachten. Der Preisprozess des Wertpapiers mit nichtnegativer Dividende,
sei durch das Semimartingal (S¢):c(0,77 gegeben. Die Dividende wird durch den
nichtfallenden adaptierten cadlag Prozess (Dy)ico,r) modelliert. Positive wie
auch negative Kapitalertrage werden mit o € (0, 1) versteuert. Dividenden
werden dabei immer sofort versteuert, wihrend Handelsgewinne nur versteuert
werden, wenn sie realisiert werden.

Ziel von Kapitel 2 ist die Modellierung der exakten Steuerbasis in stetiger Zeit.
Diese Modellierung ist motiviert durch das zeitdiskrete Modell von Dybvig und
Koo [DK96].

Definition 1 (Dybvig/Koo-Strategie). Mit (Nst)s—o01.. Ti=ss+1..17 bezeichne
man die Anzahl der Aktien, die man zum Zeitpunkt s gekauft hat und die
mindestens bis zum Zeitpunkt t im Portfolio sind, d.h. Ny > Nypyr > ... >
Nyr >0 fiir alle t € {0,...,T}. Wir nennen N dann eine Strategie.
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Durch die Bedingung N;7 > 0 in Definition 1 werden Leerverkaufe aus-
geschlossen.
Die akkumulierten Steuerzahlungen bis zum Zeitpunkt u sind nun gegeben
durch

u t—1

M,o=a Y (Ner— Nog) (S — S,).- (1)

t=1 s=0

Verkauft man die Aktien mit der kiirzesten Verweildauer im Portfolio zuerst
und realisiert man Verluste automatisch durch Washsales, so fiihrt dies fiir
die Investorin im Modell von Dybvig/Koo zu einem gleichen oder héheren
Vermogen nach Steuern, wenn der risikolose Zinssatz nichtnegativ ist.

Theorem 1. Sei (¢¢)g=01,..7+13 = 0 eine gegebene Position an Aktien. Die

Strategie N sei induktiv gegeben durch: B
Noo = ¢1 und, gegeben Ngy—1, s =0,1,...,t =1, ist Ny, definiert durch

t—1 +\ *
Ngy =1lig,>5,3 | Nop—1 — <(A90t+1)_ — Z Nj,tl) , s€40,...,t—1},
Jj=s+1
Ny =A@ + Z(Ns,t—l — Ngy).
s=0

Sei nun N eine beliebige Strategie, sodass pyi1 = Zizo N ;.

Dann sind die akkumulierten Steuerzahlungen 11 fiir Strategie N stets kleiner
oder gleich den akkumulierten Steuerzahlungen 11 fiir Strategie N, d.h.

I, <II, firallete{0,1,...,T}.

Damit hat (im Falle eines positiven Zinssatzes) eine Investorin, die Strate-
gie N verfolgt, ein mindestens so grofes Vermogen wie eine Investorin mit
Strategie N. Somit lasst sich die doppelt-indizierte Strategie N auf eine eindi-
mensionale Strategie ¢ reduzieren.

Sei p € L mit ¢y = 0 und ¢ > 0. Die Einschrinkung von Leerverkiufen soll
ausschlieffen, dass eine Investorin gleichzeitig eine Long- und eine Shortposi-
tion der gleichen Aktie hélt, da dies im Falle einer linearen Versteuerung der
Kapitalertrage eine Arbitragemoglichkeit bietet. Die Annahme pq = 0 hat
notationelle Griinde; sie schliefit nicht aus, dass die Investorin kurz nach dem
Zeitpunkt 0 Aktien kauft, d.h. ¢y, > 0.

Motiviert durch das Modell von Dybvig/Koo, verwenden wir fiir die Model-
lierung der exakten Steuerbasis in stetiger Zeit die folgenden Konventionen:

(i) automatische Verlustrealisierung durch Washsales

(ii) Aktien mit der kiirzesten Verweildauer im Portfolio werden zuerst verkauft.
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Bedingung (ii) ist dabei unter (i) dquivalent zu der Bedingung, dass Aktien
mit den kleinsten Buchgewinnen im Portfolio zuerst verkauft werden.

Wir beginnen nun damit, die unrealisierten Buchgewinne pro Aktie zu be-
schreiben, wenn die Investorin die Strategie ¢ verfolgt.

Definition 2 (Buchgewinne). Sei ¢ € L mit o9 = 0 und ¢ > 0. Firt €
[0,T],x € Ry, definiere

[ sup M, falls M, # 0
Tt *= t sonst

mit My, :={u e Ry | (u<tundx—p+ ¢, <0) oder (u<tundx— p +
Outr < 0)}. Wir nennen F : Q x [0,T] x Ry — Ry mit

F,(t,x) =S (w)— inf S, (w) (2)

Tt,o (W) <u<t
die Buchgewinnfunktion.

F lasst sich wie folgt interpretieren. Alle Aktien mit Preisprozess .S im Port-
folio werden nach der Hohe ihrer Buchgewinne in aufsteigender Reihenfolge
sortiert und mit der Variable z etikettiert. x +— F, (¢, x) bildet dann jedes in-
finitesimale Aktienstiick des Portfolios auf seinen Buchgewinn zum Zeitpunkt
t ab. Dies ist ein auf dem Papier vorhandener Buchgewinn, der noch nicht
realisiert wurde. 7, ist der Kaufzeitpunkt der Aktie, die zum Zeitpunkt ¢
das Etikett x hat. Diese Aktie ist seit dem Zeitpunkt 7,, im Portfolio und
wurde bis zum Zeitpunkt ¢, abgesehen von durchgefiihrten Washsales, nicht
verkauft. Die Definition von F' beriicksichtigt bereits, dass Verluste direkt
durch Washsales realisiert werden, d.h. eine Aktie mit negativem Buchgewinn
wird verkauft und sofort zuriickgekauft, ohne dass sich die Strategie &ndert.
Die Aktien mit den niedrigsten Buchgewinnen werden dabei zuerst verkauft.
Aufgrund der durchgefithrten Washsales und der Tatsache, dass Aktien beim
Kauf keinen Buchgewinn haben, hat eine Aktie mit langerer Portfolioverweil-
dauer einen héheren Buchgewinn. Die Handelsgewinne lassen sich schreiben
als:

Sy — 8., = F(t,x) + inf S,—-S,, .
’ —— Tt Su<t ’
unrealisierte Buchgewinne ™

s

—
realisierte Verluste

Waihrend die Buchgewinnfunktion in (2) direkt fiir alle ¢ € L definiert ist,
kann der akkumulierte Steuerzahlungsprozess nicht direkt fiir ¢ € L definiert
werden, da Aktienzukdufe und -verkdufe die Steuerzahlungen unterschiedlich
beeinflussen. Wir definieren daher die Steuerzahlungsfunktion zunéchst fiir
Elementarstrategien.

Definition 3 (Akkumulierte Steuerzahlungsfunktion fiir Elementarstrategien).
Sei ¢ eine nichtnegative Elementarstrategie, sodass ¢ = Zle Hi 111k
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wobei 0 = kg < k1 < ... < K =T Stoppzeiten sind und H,_y F,, ,—messbar
ist. Sei 7 bzw. F wie in Definition 2. Wir definieren

k (Hi—1—H;_2)~
Ht(@) = Z 1(Hi_1<t) /0 F("ii—ly ,I‘)dx
=1

k o
+ E 1(m1<t)/ (F(I{i_1+,$) + linfq/\ (S — S,.;H)) A0 dx
=1 0 Ki—1SUus Kj

t
—i—a/ YudDy,
0

als den Steuerzahlungsprozess der Elementarstrategie o, wober H_1 := 0.

Der erste Term auf der rechten Seite entspricht der Steuerzahlung durch
“reale” Verkdufe. Aktienverkdufe haben, wie man an der Definition sieht, im
Gegensatz zu Aktienzukdufen einen direkten Einfluss auf die Steuerzahlung.
Dieser nichtlineare Effekt hat zur Folge, dass Definition 3 nicht fiir Strate-
gien unendlicher Variation benutzt werden kann. Der zweite Term modelliert
die akkumulierten Steuergutschriften durch Washsales. Der letzte Term sind
Steuerzahlungen infolge von Dividendenausschiittungen.

Das folgende Theorem zeigt nun, dass diese Definition auf alle linksstetigen
adaptierten Prozesse fortgesetzt werden kann. Diese Fortsetzung beruht unter
anderem darauf, dass S ein Semimartingal ist.

Theorem 2. Die Abbildung ¢ — 11(p) aus Definition 3 ist im folgenden Sinne
stetig:

Sei S ein Semimartingal und sei (p™)nen eine up-Cauchyfolge von nichtnega-
tiven Elementarstrategien. Dann ist die Folge von Steuerzahlungsprozessen
(II(¢™) Jnen eine up-Cauchyfolge.

Da die Menge von Elementarstrategien dicht in L ist (beziiglich der gleich-
mékigen Konvergenz in Wahrscheinlichkeit), konnen wir den Steuerzahlungs-
prozess fiir Strategien aus IL mithilfe von Theorem 2 als up-Grenzwert einer
Folge von Steuerzahlungsprozessen fiir Elementarstrategien definieren.

Definition 4. Sei ¢ € L und (¢"), oy eine Folge von Elementarstrategien.
Der akkumulierte Steuerzahlungsprozess ist definiert als

(@) == up — lim (") fiir " 25 .
n—oo

Wiirde man Elementarstrategien betrachten, die nur punktweise gegen eine
linksstetige Strategie konvergieren, lieke sich leicht ein Gegenbeispiel finden,
sodass die Folge der Steuerzahlungsprozesse nicht konvergiert.

In diesem Modell wird nun der Einfluss verschiedener Dividendenstrategien auf
das Gesamtvermogen einer Investorin miteinander verglichen. Dazu trifft man
zunachst einige Annahmen. Dividendenzahlungen miissen direkt versteuert
werden. Mit (Dy).ejo.r) wird der akkumulierte Dividendenzahlungsprozess mo-
delliert. Dieser sei ein nichtfallender stochastischer Prozess mit cadlag Pfaden.
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Definition 5 (Aktienpreisprozess). Sei so € Ry. Gegeben ein Semimartingal
R mit AR > —1, wdhlt eine Firma einen Dividendenprozess D. Der Ak-
tienpreisprozess ist dann definiert als die eindeutige Losung der stochastischen
Differentialgleichung (SDE)

SP =5y +SP+«R—-D. (3)

Die Losung der SDE ist ein verallgemeinertes stochastisches Exponential.
Wir nennen D dabei zuléissig, wenn S? > 0, d.h. wir betrachten nur Dividen-
denzahlungen, fiir die der Aktienpreis nicht negativ wird.

R ist nach dieser Definition der Ertragsprozess, welcher unabhéngig von der
Wahl von D ist.

Theorem 3 (Einfluss von Dividenden auf Steuerzahlungen). Fiir jede Strate-
gie P im Modell mit Dividenden existiert eine Strategie ©° im Modell ohne
Dividenden, sodass

t t t
/<p2dsg:/ ¢£d5£+/ ©PdD,, Vte[0,T], P— fs.
0 0 0
und
I <T1IP, vtelo,T].

Wiéhlt man also die Strategie im Modell ohne Dividenden derart, dass die

gleiche Geldmenge in beiden Modellen in die Aktie investiert ist, dann stim-
men die Handelsgewinne in beiden Modellen iiberein, und zu jedem Zeitpunkt
sind die akkumulierten Steuerzahlungen im Modell ohne Dividenden geringer
als im Modell mit Dividenden.
Verkauft man in beiden Modellen alle Aktien zum Laufzeitende, so stimmen
die akkumulierten Steuerzahlungen iiberein. Nach Theorem 3 treten die an-
fallenden Steuern im Modell mit Dividenden frither auf. Im Falle eines posi-
tiven Zinssatzes kann so das tiberschiissige Vermogen (aufgrund von geringer
Steuerzahlungen) in einen risikolosen Bond investiert werden, sodass somit das
Verméogen einer Investorin im Modell ohne Dividenden stets grofer ist.

Optimale Handelsstrategie in einem Markt bestehend aus einer Ak-
tie und einem risikolosen Bond unter Beriicksichtigung einer Kapi-
talertragsteuer

In Kapitel 3 wird der Effekt von Steuerzahlungen auf optimale Investitions-
entscheidungen in einem einfachen Modell untersucht.

Im Fall ohne Steuern ist das Problem trivial: es ist optimal die Aktie bis
zum Laufzeitende zu halten, wenn ihre Driftrate p grofer ist als der stetige
Zinssatz r des Bonds; es ist optimal die Aktie sofort zu verkaufen, wenn p <
r. Im Fall mit Steuern gibt es die gleiche triviale Losung fiir den Fall, dass
p <r(l—a)ist. Im Fall (1 —«a)r > u ist die Losung des Problems allerdings
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nicht mehr trivial. Hier ldsst sich zeigen, dass es optimal ist, die Aktie zu
verkaufen und das Kapital in den Bond zu investieren, wenn der Preisprozess
eine bestimmte untere, zeitabhéngige Schranke trifft bzw. unterschreitet. Im
Folgenden betrachten wir daher im Wesentlichen den Fall, dass die Rendite
des risikolosen Bonds grofser ist als die erwartete Rendite der Aktie. Unsere
Resultate sind inspiriert von den optimalen Stoppproblemen aus [SXZ08] und
[DTPO09].

Wir betrachten einen filtrierten Wahrscheinlichkeitsraum (2, F, (F)eejo,r1, P).
Auf diesem Wahrscheinlichkeitsraum sei mit (B;);>0, P(By = 0) eine P—Brown-
sche Bewegung definiert. Die Investitionsmoglichkeiten bestehen aus einem
risikolosen Bond mit stetigem Zinssatz r > 0 und einer Aktie, deren Dynamik
gegeben sei durch

dXt = Xt (/.Ldt + UdBt) y t Z O, (4)

mit Xy > 0, wobei u, o > 0 die Wachstumsrate und die Volatilitat der Aktie
modelliert.

Da das Vermogen im Bond stetig verzinst wird, nehmen wir zunéchst an, dass
die Ertrage im Bond ebenfalls stetig versteuert werden.

Wenn die Aktie zur Zeit t € [0, 7] zum Preis x € R, verkauft und dieser Ertrag
in den risikolosen Bond investiert wird, ist das Vermdégen der Investorin zum
Laufzeitende gegeben durch

G(t,z) = [(1 — a)z + aby] eri—a)T—t), (5)

fir (t,z) € [0,7] x Ry, wobei Py > 0 der Kaufpreis der Aktie ist.
Ziel der Investorin ist es, das erwartete Vermogen in 7' zu maximieren. Daraus
ergibt sich ein optimales Stoppproblem:

V(z):= sup E(G(1,X;)), (6)

T€7~[07T]

wobei T die Menge der (F;)scpo,rj— messbaren Stoppzeiten ist, die Werte
aus dem Zeitintervall [0, 7] annehmen.

Wegen der starken Markoveigenschaft von (Xt>te[0,T} definieren wir die Werte-
funktion zu Problem (6) als

V(t,z):= sup E{G{t+7 X )}, (7)

€T (0,71

wobei (X?%)sep ) die eindeutige Losung der Gleichung (4) mit Anfangsbe-
dingung X} = z ist und Tior—q die Menge der (Fiys)sejo,r—q—messbaren
Stoppzeiten bezeichnet, die Werte aus dem Zeitintervall [0,7 — ¢] annehmen.
Man beachte, dass V(z) = V(0, z) gilt, da X°* = X mit X, = z.

Setzt man 7 = 0 in (7), so erhélt man

V(t,z) > G(t,x), fir (t,z)€[0,T] xRy, (8)
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und zusétzlich fiir die Randbedingung, dass
V(T,z)=G(T,z) firzeRy (9)
Die Fortsetzungsregion ist durch
C:={(t,x) €[0,T) xRy : V(t,x) > G(t, )}
und die Stoppregion durch
S:={(t,x) € [0,T) xR, : V(t,x) = G(t,x)}

definiert. Man zeigt zunéchst die Stetigkeit von V. Mithilfe der Stetigkeit,
lésst sich mittels der Standardtheorie (vgl. [PS06|) zeigen, dass eine optimale
Stoppzeit T € Tjo.r—q existiert, welche (7) maximiert.

Proposition 1. (¢,z) — V(t,x) ist stetig auf [0,T] x R. Zusdtzlich wird (7)
durch die Stoppzeit

Tiw i=1inf{s € [0,T —t] : (t + s, X)) € S}. (10)
fir jedes Paar (t,z) € [0,T] x Ry mazimiert.

Die Idee zur Losung des optimalen Stoppproblems (7) beruht darauf, die
Auszahlung zum Endzeitpunkt als Akkumulation einer laufenden Auszahlung
zu schreiben. Man stelle hierbei fest, dass diese Idee eine Standardmethode
der optimalen Stopptheorie ist, vgl. hierzu [PS06].

Aufgrund der Glattheitseigenschaft der Auszahlungsfunktion G konnen wir die
Itoformel anwenden, um die folgende Zerlegung fiir (G(s, X;))s>: zu erhalten:

G(t+ s X/ :G(t,x)—l—/ F(t+u, X728, du+ M,
0

wobei M, = fos 0,G(t+u, Xffu)dBu ein quadratintegrierbares (Fiis)scjo,r—¢—
messbares P—Martingal ist. F'(¢, z) ist die Driftrate von G(t, ) und ist gegeben
durch

F(t,x) =e"@=00=(1 _ ) (—raPy+z[p—r(l—a)]).

Mithilfe dieses Ansatzes lésst sich die Wertefunktion folgendermafen umschrei-
ben:

V(t,z) = G(t,x) + sup E{ / F(t+ u, ,Xffu)du}.
0

TET0,7—1]
Auf der Menge {(t,z) € [0,T] x Ry : & > (<) f} mit

rafy

f::,u—r(l—oz)’
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haben wir F(t,z) > (<) 0. Somit gilt S C {(¢t,z) € [0,T] xR, : = < [},
beziehungsweise {(¢t,z) € [0,T] xRy : x> f} CC.

Mithilfe dieser Umformulierung des optimalen Stoppproblems lasst sich nun die
Existenz einer unteren, stetigen, nichtfallenden, zeitabhangigen Stoppgrenze
zeigen. Aufserdem zeigen wir, dass die x—Ableitung der Wertefunktion V' mit
der x—Ableitung der Auszahlungsfunktion G' an dieser Stoppgrenze iiberein-
stimmt (Smooth-Fit).

Theorem 4. Man betrachte das Problem (7) mit Stoppregion S. Sei r > 0
und o € [0,1). Dann

(a) existiert eine stetige, nichtfallende Stoppgrenze b : [0,T) — R, , sodass die
optimale Stoppregion gegeben ist durch

L0 T) xRy ifp<(1-ar
S_{ (o) e 0.7 xRy o <bn) f (1 —ap<p MY

wobei fiir alle t € [0,T), die folgende Aquivalenz gilt: o > 0 < b(t) > 0.
Die Stoppgrenze erfillt die Endbedingung

. 'I"O[PO
limb(t) = —— = f.
tlT%l() pw—r(l—a) /

(b) erfillt die Wertefunktion die “Smooth-F'it“Bedingung an der Stoppgrenze fiir
a>0und p>(1—a)r, dh.

O,V (t,x) = 0,G(t,x) = (1 — a)e"=9T=D  fiir o = p(t). (12)

Um die Aussage zu beweisen, unterscheidet man die 3 Félle p < (1 — «),
p>r(l—a)und a =0, p > (1 —«a) und @ > 0. In den ersten beiden
Fillen sind die Losungen jeweils trivial. So stoppt man im ersten Fall sofort
und im zweiten Fall im Endzeitpunkt. Im nicht-trivialen dritten Fall lasst
sich leicht die Existenz der echt positiven, nichtfallenden Stoppgrenze b zeigen.
Um die Stetigkeit der Stoppgrenze zu zeigen, nutzt man die Stetigkeit der
Wertefunktion V' und der Auszahlungsfunktion G aus. Die Rechtsstetigkeit
folgt dabei sofort aus der Monotonie der Stoppgrenze. Um die Linksstetigkeit
zu zeigen, nehme man an, dass die Stoppgrenze zu einem Zeitpunkt ¢* einen
Sprung hat. Wir beginnen damit eine obere Schranke fiir die t—Ableitung
und die x—Ableitung von V in einer linken Umgebung von ¢* und Preisen
zwischen b(t*—) und b(t*) zu finden. Mithilfe der Newton-Leibniz Formel lasst
sich V' — G als Integral iiber die zweite Ableitung von V' — G darstellen. Wir
nutzen aus, dass V in C die partielle Differentialgleichung

2
oV + puxd,V + %ﬁamv =0 (13)



94 DEUTSCHE ZUSAMMENFASSUNG

beziiglich der Randwertbedingung (9) erfiillt. Da 0,,G = 0 ist und sich 0,V/
und 0,V in der Nédhe des Sprungs so gegeneinander abschétzen lassen, dass
Vie — Gez > C,C > 0 (und damit auch V' — G > C) fiihrt dies, wegen der
Stetigkeit von V' und G, zu einem Widerspruch, da V' = G in der Stoppregion
S gelten muss.

Statt einer stetigen Versteuerung im Bond, kann man alternativ annehmen,
dass die Kapitalertriage wie bei der Aktie erst versteuert werden, sobald diese
realisiert sind. In diesem Fall erhélt man die folgende Auszahlungsfunktion

G(t,x) = [(1 —a)z +aP] 14+ (1 —a) (T —1)] (14)

fir (¢,x) € [0,7] x Ry. Der Unterschied zwischen den Auszahlungsfunktionen
G und G beruht also darauf, dass die Ertrédge des Bonds fiir (5) stetig und
fiir (14) am Laufzeitende versteuert werden. Das modifizierte optimale Stopp-
problem fiir die Investorin ist nun

V(t,x) = sup ]E{é(t—l—T,XffT)}, (15)

TE€T0,1—1]

wobei (X?")sep,r) Losung der Gleichung (4) mit Anfangsbedingung Xt =x
ist.

Die Eigenschaften (8), (9) und (13) gelten fiir (15) in der gleichen Weise wie fiir
(7). Die Stopp- und die Fortsetzungsregion sind ebenfalls gleich definiert und
werden mit S und C bezeichnet. Ebenso lasst sich zeigen, dass die optimale
Stoppzeit gegeben ist durch

Too = inf{s € [0,7 — 1] : (t+ s, X/7) € S}.

Die Existenz der Stoppgrenze b fiir Problem (15) lasst sich wie fiir Problem
(7) zeigen. Man stellt jedoch leider fest, dass die Stoppgrenze in (15) nicht
monoton sein muss. Somit ist es mit den im Problem (7) verwendeten Stan-
dardmethoden nicht moglich, bestimmte Eigenschaften wie Stetigkeit von b
nachzuweisen.

Ein Vergleich der beiden Stoppgrenzen fiir (15) und (7) zeigt dann, dass die
Stoppgrenze fiir (15) die Stoppgrenze fiir (7) unter gewissen Voraussetzungen
an p dominiert.

Proposition 2. Sei b die Stoppgrenze im Optimierungsproblem (7) und b die
Stoppgrenze im Optimierungsproblem (15). Dann wird b durch b dominiert,

d.h. b < falls
(1—a)r

ae” T+ (1 —a)

< p<r.

Aufserdem lésst sich die Monotonie der Wertefunktion in o fiir beide Stopp-
probleme nachweisen, was eine umgekehrte Monotonie der Stoppgrenze in o
nach sich zieht. Im Fall o = 0 lasst sich die Stoppgrenze sogar explizit angeben.
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Proposition 3. Die Wertefunktion ist wachsend in der Volatilitdt der Aktie,
d.h. Vo (t,x) < Vo2(t,x) fir alle 0 < oy < 09, t € [0,T] und x € R,. Damit
folgt b™2(t) < b7'(t). Im Fall 0 = 0 ist die Stoppgrenze fir (7) gegeben durch

OZPO (er(lfa)(Tft) _ 1)
(]_ _ Oé) (eM(T—t) _ 67"(1—&)(T—t))

b(t) =

und fiir (15) gegeben durch

o aPy(1=a) (70 — 1)
) = Ty @@ 1 (1 —a) (@@ D))

Proposition 3 macht auch aus 6konomischer Sicht Sinn. Die Option der
Investorin selbst zu bestimmen, wann die Steuern gezahlt werden, hat fiir
die Investorin einen hoheren Wert je volatiler das Wertpapier ist. Dies kann
die Investorin motivieren, mehr Risiko auf sich zu nehmen. Das Ausmals des
Effekts héngt dabei vom risikolosen Zinssatz r ab und verschwindet fiir = 0.

Bereits veroffentlichte Inhalte

Die Inhalte dieser Dissertation sind in den Arbeiten [KU14; KSU14| verof-
fentlicht bzw. zur Veroffentlichung eingereicht.
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