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Kurzfassung

Der Gitterführungseffekt ist der Prozess der Ausbreitung von geladenen Teilchen ent-

lang der Ebenen oder Achsen von kristallinen Materialien. Seit den 1960er Jahren ist

dieser Effekt weitgehend theoretisch und experimentell untersucht worden. Dieser

Effekt wurde für die Manipulation von Hochenergiestrahlen, die Hochpräzisions-

struktur- und -fehleranalyse von kristallinen Medien und die Herstellung von hoch-

energetischer Strahlung angewendet. Zur Abstimmung der Parameter der Git-

terführung und Gitterführungsstrahlung wurde dieser Prozess für den Fall von künst-

lich nanostrukturierten Materialien, wie gebogenen Kristallen, Nanoröhren und Ful-

lerit, angenommen. In den letzten Jahren wurde das Konzept des kristallinen Undu-

lators formuliert und getestet, das besondere Eigenschaften der Strahlung aufgrund

der Gitterführung von Projektilen in regelmäßig gebogenen Kristallen vorhersagt.

In dieser Arbeit werden die Prozesse der Gitterführung von Sub- und Multi-GeV-

Elektronen und -Positronen durch den atomistischen Molekulardynamik-Ansatz un-

tersucht. Die Ergebnisse dieser Studien wurden in einer Reihe von Artikeln während

meiner Promotion in Frankfurt vorgestellt. Dieser Ansatz ermöglicht die Simulation

komplexer Fälle von Gitterführung in geraden, gebogenen und periodisch geboge-

nen Kristallen aus reinen kristallinen Materialien und von gemischten Materialien

wie Si-Ge-Kristallen, in mehrschichtigen und nanostrukturierten kristallinen Sys-

temen. Die Arbeit beschreibt die Methode der Simulationen, stellt Ergebnisse von

Simulationen für verschiedene Fälle vor und vergleicht die Ergebnisse von Simulatio-

nen mit aktuellen experimentellen Daten. Die Ergebnisse werden mit Schätzungen

der dechanneling-Länge verglichen, dem Anteil der gittergeführten Projektile, der

Winkelverteilung der ausgehenden Projektile und des Strahlungsspektrums.



Zusammenfassung

Der Gitterführungseffekt ist der Prozess der Ausbreitung von geladenen Teilchen

entlang der Ebenen oder die Achsen von kristallinen Materialien [1]. Seit den 1960er

Jahren ist dieser Effekt weitgehend theoretisch [1, 2] und experimentell [3, 4] unter-

sucht worden. Dieser Effekt wurde für verschiedene Energien von Projektilen vom

MeV- bis TeV-Bereich für verschiedene Arten von leichten Projektilen wie Elektro-

nen [5] und Positronen, und für schwere Projektile wie Pionen [4], Protonen [6],

Atome [7] und Ionen [3] untersucht. Dieser Effekt wurde sowohl für planare [8]

und axiale [5, 9] Fälle für verschiedene Materialien, wie Silizium, Germanium, Wol-

fram [7], Kohlenstoff, Gold [10] und anderen untersucht.

Die Gitterführung wurde für die Manipulation von Hochenergiestrahlen [11], die

Hochpräzisionsstruktur- und -fehleranalyse von kristallinen Medien [12, 13] und die

Herstellung von hochenergetischer Strahlung [9] angewendet.

Aufgrund der Wechselwirkung mit den Atomkernen des Mediums wird der Git-

terführungspartikel beschleunigt und erzeugt Strahlung. Dieser Vorgang wird Brems-

strahlung genannt [14]. Der Prozess der Gitterführungsstrahlung wurde in Arbeiten

von E. Uggerhøj [9] und U. Uggerhøj [15], J. Watson [10], M. Kumakhov [14] und

andere untersucht. Diese Strahlung ist durch eine sehr hohe Energie der Photonen

und hohe monochromatisch gekennzeichnet.

Zur Abstimmung der Parameter der Gitterführung und Gitterführungsstrahlung

wurde dieser Prozess für den Fall von künstlich nanostrukturierten Materialien, wie

gebogenen Kristallen, Nanoröhren [16, 17] und Fullerit [18], angenommen.

In den letzten Jahren wurde das Konzept der kristallinen Undulators formuliert [19,

20, 21], das besondere Eigenschaften der Strahlung aufgrund der Gitterführung von

Projektilen in regelmäßig gebogenen Kristallen vorhersagt. Die Wechselwirkung von

hochenergetischen Elektron- und Positronstrahlen mit solchen kristallinen Struk-

turen ist der Gegenstand von aktuellen experimentellen [22, 23, 24, 25, 26, 27] und

theoretischen [28, 29, 30, 31] Studien. Eine gute Übersicht dieser Arbeiten wird im
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Buch [32] von Korol, Solov’yov und Greiner gegeben. Es ist möglich zwei Arten von

kristallinen Undulatoren zu unterscheiden: Undulatoren mit großer Amplitude und

langer Periode [19, 20, 32], in denen die Periode der Biegung größer ist als die Peri-

ode der Gitterführungsschwingungen und kurzperiodischen Undulatoren mit kleiner

Amplitude [33, 34, 27, 35, 15] im entgegengesetzten Fall. Im Fall von kurzperiodis-

chen Undulatoren wird die Photonenenergie der Undulatorstrahlung vorhergesagt,

höher zu sein als die Energie der Strahlung durch die Gitterführung.

Die Simulation von Gitterführung kann mit verschiedenen Ansätzen durchgeführt

werden: analytischer Ansatz im der quantenmechanischen Formalismus [36], Ko-

ntinuum-Potential-Näherung [37, 38], Monte-Carlo-Ansatz [39, 40] und direkte Mod-

ellierung der Wechselwirkung von Atomen mit Partikeln [41, 42, 43]. Die Verwen-

dung der geeigneten Methode hängt von der Energie und dem Typ der Projektile,

der Länge des Kristalls und der Menge der Strahlungsenergie ab. Der quantenmech-

anische Formalismus ist für Energien unterhalb von 100 MeV nötig. Bei höheren En-

ergien stehen die klassischen relativistischen Bewegungsgleichungen zur Verfügung.

In dieser Arbeit werden die Prozesse der Gitterführung von Sub- und Multi-GeV-

Elektronen und -Positronen durch den atomistischen Molekulardynamik-Ansatz un-

tersucht. Die Ergebnisse dieser Studien wurden in einer Reihe von Artikeln während

meiner Promotion in Frankfurt vorgestellt [44, 45, 46, 47, 48].

Innerhalb des atomistischen Molekulardynamik-Ansatzes, wird die Wechselwirkung

eines Projektils mit einem Medium durch ein klassisches Wechselwirkungspotential

in der Form von Molière [49] oder Pacios [50] Wechselwirkungspotential simuliert.

Für den ausgewählten Energiebereich können die Quanteneffekte der des Gitter-

führungsprozesses vernachlässigt werden, und das System der klassischen relativis-

tischen Bewegungsgleichungen verwendet werden.

Dieser Ansatz ermöglicht die Simulation komplexer Fälle von Gitterführung in

geraden, gebogenen und periodisch gebogenen Kristallen aus reinen kristallinen

Materialien und von gemischten Materialien wie Si-Ge-Kristallen. Dieser Ansatz

ermöglicht es Naturbeschreibung dechanneling- (das Ende des Regimes des Git-

terführung) und rechanneling-Effekte (Neustart des Regimes des Gitterführung) Ef-

fekte, die Bewegung in jeder Gitterrichtung und in amorphen Medien innerhalb

eines Modells zu beschreiben. Es ermöglicht das Studium der Gitterführung in

mehrschichtigen und nanostrukturierten kristallinen Systemen.

Die Arbeit beschreibt die Methode der Simulationen, stellt Ergebnisse von Sim-

ulationen für verschiedene Fälle und vergleicht die Ergebnisse von Simulationen
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mit aktuellen experimentellen Daten. Die Ergebnisse werden mit Schätzungen

dechanneling-Länge verglichen, dem Anteil der gittergeführten Projektile, der Winkel-

verteilung der ausgehenden Projektile und des Strahlungsspektrums. Der Vergleich

der Simulationsergebnisse zeigt eine gute Übereinstimmung mit den experimentellen

Daten.

Die Strahlungsspektrumverteilung wird im Rahmen der quasi-klassischen Meth-

ode, die die Quantenkorrekturen aufgrund des Strahlungsrückstoß-Effekts berück-

sichtigt, untersucht. Es konnte gezeigt werden [34], dass die Korrekturen zu starken

Veränderungen der Strahlungsspektren von Multi-GeV-Projektilen führen.

Der atomistische Ansatz zur Simulation der Gitterführung, der in dieser Ar-

beit beschrieben wird, wurde umgesetzt in der Form eines Moduls [44] des MBN

Explorer-Software-Pakets [51, 52]. MesoBioNano Explorer (MBN Explorer) ist ein

Softwarepaket für die Multiskalensimulation komplexer molekularer Strukturen und

deren Dynamik. Es hat viele einzigartige Features, eine breite Palette von An-

wendungen in Physik, Chemie, Biologie, Materialwissenschaften und in verwandten

Branchen. Es ist geeignet für klassische Molekulardynamik (MD), Monte Carlo

(MC) und relativistische Simulationen einer großen Palette von molekularen Syste-

men unterschiedlicher Art, wie Nano- und biologische Systeme, nanostrukturierte

Materialien, Komposit- / Hybridmaterialien, Gase, Flüssigkeiten, Feststoffe und

Grenzflächen, atomarer Größe bis zu mesoskopischen Abmessungen.

Eine der Anwendungen von Elektronen- und Positronen-Gitterführung ist die

Schaffung einer Lichtquellen. Eine Reihe von Arbeiten [29, 22, 32, 53, 33] beschreiben

den kristallinen Undulator (CU) als ein Werkzeug zur Erzeugung von Strahlung

mit sehr hoher Photonenenergie [56]. Eine Menge Arbeit in diesem Bereich wird

auch experimentell durchgeführt [28, 54, 27]. Die weitere anspruchsvolle Aufgabe

in diesem Forschungsbereich wird die Schaffung eines kristallinen Undulator-Laser

(CUL) [55] sein. Der CUL sollte der Glanz der Strahlung zu verbessern. Der Glanz

wird als die Anzahl der Photonen pro Zeiteinheit und Einheitsfläche und Einheit-

sraumwinkel und Bandbreite definiert und wird in der Regel in den Einheiten [pho-

tons/s/mm2/mrad/0.1%BW] angegebenen [56].

Die Struktur dieser Arbeit ist folgende:

Im Kapitel 2 wird eine allgemeine Beschreibung der Theorie der Gitterführung

gegeben. Es enthält auch die Beschreibung der Verfahren zur Berechnung des

Strahlungsemissionsspektrums, die Beschreibung der analytischen Methode zur Berech-

nung der Strahlungsspektrums in amorphen Medien, den Überblick über die Her-
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stellungsverfahren gebogener Kristalle und einen Überblick über die Computersim-

ulationssoftware für das Studium des Gitterführungsprozesses.

Das Kapitel 3 beinhaltet die Beschreibung des vorgeschlagenen Simulationsal-

gorithmus, der in einem Artikel veröffentlicht [44] ist. Innerhalb dieses Verfahrens

wird die Ausbreitung des Geschosses in dem Medium durch Lösung der relativis-

tischen Bewegungsgleichungen des Geschosses modelliert, die die Interaktion mit

Feststoffatomen des Mediums berücksichtigen. Dieses Kapitel enthält die Beschrei-

bung der numerischen Verfahren zur Integration der Bewegungsgleichungen und

die Methodik zur dynamischen Generierung der Umgebung des Geschosses Basis

von eines Satzes vordefinierter Regeln. Das Kapitel enthält die Beschreibung der

Molire- und Pacios-Wechselwirkungspotentiale für die Interaktion des Geschosses

mit Atomen des Mediums, die Beschreibung des Stillinger-Weber-Vielteilchenpotent-

ials [57] für die klassischen Moleküldynamiksimulationen der Struktur von Si-, Ge-

und SixGe1−x-Kristallen. Das Kapitel enthält auch die numerischen Eigenschaften

des Gitterführungprozesses dieser Arbeit und den Mechanismus der Mittelwertbil-

dung und der Schätzung von statistischen Fehlern.

Das Kapitel 4 enthält die Ergebnisse der Simulation der Ausbreitung Sub-GeV

und Multi-GeV-Projektilen in amorphem Medium und bei planarer und axialer Git-

terführung. Für den Fall des amorphen Mediums werden die Ergebnisse der Berech-

nung des Strahlungsspektrums mit der analytischen Bethe-Heitier-Näherung [58, 59,

60] verglichen. Die Ergebnisse für planare Gitterführung wurden in Publikationen

veröffentlicht [46, 44] und mit experimentellen Ergebnissen [8] sowohl in Bezug auf

Länge und dechanneling Strahlungsspektrum verglichen.

Das Kapitel 5 enthält Ergebnisse der Simulation der Gitterführung von Elektro-

nen und Positronen in gebogenen und periodisch gebogenen Kristallen. Für den Fall

der gleichförmig gebogen Kristalle wurden die Ergebnisse der Simulationen als Ar-

tikel [47] veröffentlicht, und werden mit den letzten experimentellen Arbeiten [61, 27]

über die Ablenkung der Strahlen von 3.35 GeV- und 6.3 GeV-Elektronen bei der Ver-

wendung eines gleichmäßig gebogen Si-Kristalls verglichen. Dieser Versuch wurde

als Fallstudie zur Abstimmung der Parameter des Modells und Auswahl geeigneter

Wechselwirkungspotentiale gemacht. Für diesen Fall wird der Einfluß der Modellpa-

rameter auf die Ergebnisse der Simulation untersucht sowohl für den Fall des peri-

odisch gebogenen Kristalls sowohl großer Amplitude mit langer Periode (LALP) als

auch für Undulatoren kleiner Amplitude mit kurzer Periode (SASP). Für den LALP-

Undulator wurden die Ergebnisse als Artikel [46] veröffentlicht. Für den SASP-
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Undulator wurden die Simulationen für die Parameter des Lichtstrahls und Kristalls

ähnlich zu laufenden Experimenten an der SLAC Versuchsanlage durchgeführt.

Das Kapitel 6 beschreibt die Verwendung des atomistischen Molekulardynamik-

ansatzes zur Simulation von Gitterführung bei SixGe1−x-Übergittern. Im ersten Ab-

schnitt dieses Kapitels wird Simulation der Struktur der SixGe1−x-Kristalle mit dem

klassischen Molekulardynamik Ansatz und Stillinger-Weber-Vielteilchenpotential [57]

durchgeführt. Diese Simulationen erlauben es die Abhängigkeit der Parameter

der Struktur SixGe1−x-Gitters von der Konzentration der Ge-Atome zu studieren.

Die Ergebnisse dieser Simulationen sind in folgenden Abschnitten verwendet wor-

den, um den Prozess der Gitterführung von Elektronen und Positronen in geraden

SixGe1−x-Übergittern zu simulieren. Es wird gezeigt, dass innerhalb des angewende-

ten Ansatzes die numerischen Parameter der Gitterführung in zusammengesetzten

Kristallen sich allmählich mit Zunahme der Konzentration. Diese Abhängigkeit

wurde für dechanneling-Länge, Akzeptanz und Strahlungsspektrum untersucht.

Das Kapitel 7 enthält die Zusammenfassung der Arbeit, zieht Schlussfolgerun-

gen aus den Ergebnissen dieser Arbeit und gibt einen Ausblick auf Richtungen der

Weiterentwicklung der angewendeten Methoden.
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Chapter 1

Introduction

The channeling is the process of propagation of charged particles along the planes

or axis of the crystalline materials [1]. Starting from 1960-s this effect was studied

extensively both theoretically [1, 2] and experimentally [3, 4]. This effect was studied

for different energies of projectiles starting from MeV up to TeV range, for different

types of light projectiles such as electrons [5] and positrons, and for heavy projectiles

such as pions [4], protons [6], atoms [7] and ions [3]. This effect was studied for both

planar [8] and axial [5, 9] cases for various materials such as silicon, germanium,

tungsten [7], carbon, gold [10] and others.

The channeling effect was applied to manipulation of high energy beams [11],

the high-precision structural and defect analysis of crystalline medium [12, 13] and

to the production of high-energy radiation [9].

Due to the interaction with nuclei of the atoms of the medium the channeling

particle experiences accelerated motion and produces radiation. This process is

called braking radiation or bremsstrahlung [14]. The process of channeling radiation

was studied in works by E. Uggerhøj [9] and U. Uggerhøj [15], J. Watson [10], M.

Kumakhov [14] and others. This radiation is characterized by very high energy of

photons and high level of monochromaticity.

In order to tune the parameters of channeling and channeling radiation this

process was adopted for the case of artificial nanostructured materials such as bent

crystals, nanotubes [16, 17] and fullerites [18].

In recent years the concept of crystalline undulator was formulated [19, 20, 21],

which predicts special properties of radiation due to channeling of projectiles in

periodically bent crystals. The interaction of high energy beams of electrons and
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positrons with such crystalline structures is the subject of active experimental [22,

23, 24, 25, 26, 27] and theoretical [28, 29, 30, 31] study. A good review of these

works is given in book [32] by Korol, Solov’yov and Greiner. Two types of crystalline

undulators can be distinguished: large-amplitude long-period undulators [19, 20, 32],

in which the period of bending is larger, then period of channeling oscillations, and

the small-amplitude short-period undulators [33, 34, 27, 35, 15] in the opposite case.

In the case of short-period undulators the photon energy of undulator radiation is

predicted to be higher, then the energy of channeling radiation.

Channeling simulation can be done using a few different approaches: analytic

approach using quantum mechanical formalism [36], continuous potential approxi-

mation [37, 38], Monte-Carlo approach [39, 40] and direct modeling of interaction

of atoms with particle [41, 42, 43]. The use of appropriate method depends on the

energy and type of the projectiles, the length of the crystal and amount of radiated

energy. The quantum mechanical formalism is necessary for energies below 100 MeV.

For higher energies the classical relativistic equations of motion are applicable.

In this work the processes of channeling of sub- and multi-GeV electrons and

positrons are studied by means of atomistic molecular dynamics approach. The

results of these studies have been published in a series of articles written during my

PhD work in Frankfurt [44, 45, 46, 47, 48], another two papers were submitted and

are in the process of publication [62, 63].

Within the atomistic molecular dynamics approach the interaction of a projectile

with a medium is simulated as an interaction with a set of neighboring atoms with

a classical force field in form of Molière [49] or Pacios [50] interaction potential. For

the selected energy range the quantum effects of channeling process can be neglected,

and the system of classical relativistic equations of motion can be used.

This approach allows simulation of complex cases of channeling in straight, bent

and periodically bent crystals consisting of pure crystalline materials and of mixed

materials like Si-Ge crystals. This approach allows natural description of dechan-

neling and rechanneling effects, the motion in any crystalline direction and in amor-

phous medium within one model. It allows study of channeling in multi-layer and

nanostructured crystalline systems.

The work describes the method of simulations, provides results of simulations

for different cases and comparison of results of simulations with recent experimental

data. The results are compared in terms of dechanneling length estimates, fractions

of channeling projectiles, the angular distribution of outgoing projectiles and the



5

radiation spectrum. The comparison of simulation results shows a good agreement

with experimental data.

The radiation spectrum distributions are studied within the framework of the

quasi-classical method which accounts for the quantum corrections due to the ra-

diative recoil effect. It was demonstrated [34] that the corrections lead to strong

modifications of the radiation spectra of multi-GeV projectiles.

The atomistic approach to simulation of channeling described in this work was

implemented in the form of a module [44] of the MBN Explorer software pack-

age [51, 52]. MesoBioNano Explorer (MBN Explorer) is a software package for the

advanced multiscale simulations of complex molecular structure and dynamics. It

has many unique features, a wide range of applications in Physics, Chemistry, Biol-

ogy, Material Science, and in related Industries. It is suitable for classical molecular

dynamics (MD), Monte Carlo (MC) and relativistic dynamics simulations of a large

range of molecular systems of different kind, such as nano- and biological systems,

nanostructured materials, composite/hybrid materials, gases, liquids, solids and var-

ious interfaces, with sizes ranging from atomic to mesoscopic dimensions.

One of the applications of electrons and positrons channeling is a creation of

light sources. A series of works [29, 22, 32, 53, 33] describe the crystalline undula-

tor (CU) as a tool for creation of radiation with very high photon energy [65], the

latest and the most complete overview of field is published in the recent book [53].

A lot of work in this field is also done experimentally [28, 54, 27]. The further

challenging task in this research area will be the creation of a crystalline undulator

laser (CUL) [55]. In Figure 1.1 an overview of existing and proposed light sources is

given. In this figure the results of experimental work [64] are referred and compared

to the theoretical predictions of CUL radiation parameters. In Figure 1.1 different

light sources are compared in terms of characteristic photon energy and peak bril-

liance. The brilliance is defined as the number of photons per unit of time, per unit

of surface, per unit of solid angle, per unit of bandwidth and is usually given in the

units of [photons/s/mm2/mrad/0.1%BW] [56].

The structure of this thesis is following:

In Chapter 2 the general description of theory of channeling is given. It contains

also the description of the methods of calculation of radiation emission spectrum, the

description of the analytic method of calculation of radiation spectrum in amorphous

medium the overview of the bent crystal production techniques and an overview of

the computer simulation software for study of the channeling process.
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Figure 1.1: The comparison of existing light sources [64] with the proposed crys-
talline undulator [29] and crystalline undulator laser [55]. The CUR curves were
calculated [65] for the KEKB positron beam and for SLAC beam [66]. The CUL
area marks the estimation of the CUL parameters done with the parameters of the
electron beam from the FLASH FEL [64]. The figure adapted from paper [32].

Chapter 3 contains the description of the proposed simulation algorithm and is

based on published paper [44]. Within this method the propagation of the projectile

in the medium is modeled by solution of the relativistic equations of motion of the
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projectile, interacting with fixed atoms of the medium. This chapter contains the

description of the numerical method for integration of equations of motion and the

methodology of dynamic generation of the projectile environment based on set of

predefined rules. The chapter contains the description of the Molière and Pacios

interaction potentials of interaction of the projectile with atoms of the medium, it

contains the description of the Stillinger-Weber [57] manybody potential for classical

molecular dynamics simulations of structure of Si, Ge and SixGe1−x crystals. The

chapter also contains the numerical characteristics of channeling process used in this

work and the mechanism of averaging and estimation of statistical errors.

Chapter 4 contains the results of the simulation propagation of sub-GeV and

multi-GeV projectiles in case of amorphous medium, and planar and axial chan-

neling. For the case of amorphous medium the results of calculation of radiation

spectrum are compared with analytic Bethe-Heitler approximation [58, 59, 60]. The

results for planar channeling case were published in papers [46, 44] and are compared

with experimental results [8] in terms of both dechanneling length and radiation

spectrum. The results for axial case were previously described in the paper [62]

which is in the process of publication.

Chapter 5 contains results of the simulation of channeling of electrons and

positrons in bent and periodically bent crystal. For the case of uniformly bent

crystals the results of simulations were published in paper [47] and are compared

with recent experimental works [61, 27] on deflection of beams of 3.35 GeV and

6.3 GeV electrons with the use of uniformly bent Si crystal. This experiment was

taken as a case study for tuning the parameters of the model, and selection of appro-

priate interaction potential. For this case the influence of the model parameters on

the results of simulation was studied. For the case of periodically bent crystal both

large-amplitude long-period (LALP) and small-amplitude short-period (SASP) un-

dulators are studied. For LALP undulator the results were published in paper [46].

For SASP undulator the simulations were performed for the parameters of beam and

crystal similar to ongoing experiments at SLAC experimental facility. These results

were previously described in the paper [63] which is in the process of publication.

Chapter 6 describes the use of the atomistic molecular dynamics approach for

simulation of channeling in case of SixGe1−x superlattices. In the first section of this

chapter the simulation of the structure of SixGe1−x crystals is performed using clas-

sical molecular dynamics approach and Stillinger-Weber [57] manybody potential.

These simulations allowed to study the dependence of the parameters of structure
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of SixGe1−x superlattices on concentration of Ge atoms. The results of these simula-

tions are used in next sections to simulate the process of channeling of electrons and

positrons in straight SixGe1−x superlattice. It is shown that within applied approach

the numerical parameters of channeling in composite crystals change gradually with

increase of concentration. Such dependence was studied for dechanneling length,

acceptance and radiation spectrum.

Chapter 7 contains the summary of the thesis, concludes the results of this work

and gives an outlook of directions of further development of applied methods.



Chapter 2

Relativistic mechanics and

channeling processes

In this chapter the description of theoretical methods of this work is given. The

description of the process of propagation of relativistic projectiles requires appro-

priate selection of equations of motion depending on energy of the projectile. This

question is addressed in the Section 2.1. The second major question is the radiation

emission due to the motion of projectiles, its calculation and characterization for

different cases. These problems are the subject of Sections 2.2-2.3. The descrip-

tion of crystalline structures in the context of the problems of channeling is given

in the Sections 2.4 and 2.5. In the Sections 2.6 and 2.7 an overview of problems

of channeling in bent crystals and production of bent crystals is given. The Sec-

tion 2.8 contains an overview of existing simulation methods and codes for modeling

of channeling and related processes.

2.1 Relativistic equations of motion

The study of the motion of relativistic projectile in crystal requires proper selection

of the formalism. The most detailed and precise description of the channeling,

channeling radiation and related processes is based on the quantum mechanical

approach.

Within this methodology the channeling process of fermions should be described

by the Dirac equation, which for the particle interacting with the field of the crystal

U can be written in the following form [67]:
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(ε− U −mβc+ i~cα∇)ϕ(r) = 0 (2.1)

where ε is the energy of the projectile, m is the rest mass of the projectile, c is

the speed of light, ~ is the reduced Planck constant, α is the Dirac matrix and ϕ(r)

is the bispinor.

This equation can be transformed to the second order equation by applying

operator (ε− U +mβc− i~cα∇):

(
−~2∆r − p2 +

2εU

c2
− U2

c2
− i~

c
α∇U

)
ϕ(r) = 0 (2.2)

where p2 = (ε2−m2c4)/c2 is the square of the momentum of the projectile. Due

to the screening of charges of nuclei the potential energy U is much smaller than

the electron or positron rest energy mc2, therefore the term U2/c2 can be neglected.

It was shown in the paper [68] that the effect of spin is negligible in the case of

channeling at energies of several GeV therefore term i~
c
α∇U can be also neglected.

Dividing this equation by 2mγ the equation can be written in the following form:

(
− ~2

2mγ
∆r + U

)
ϕ(r) = ε′ϕ(r) (2.3)

where ε′ = ε/γ. This equation corresponds to the Schrödinger equation for the

particle with mass mγ. For energies above 100 MeV the factor γ exceeds 200 and

the relativistic mass of the projectile becomes comparable with the mass of atoms.

In this case the motion of the projectile can be described purely classically using

relativistic equations of motion.

In order to determine the lower limit of energy for which the quantum effects are

significant consider the channeling of positrons in Si(110) plane. Within continuous

potential approximation (see section 2.5) this motion can be considered as a motion

in one-dimensional periodic potential. For positrons staying in one channel this

potential can be written in a simplified parabolic form U(ρ) = 4U0ρ
2/d2, where U0

is the depth of the potential (for Si(110) this value can be estimated as 22.9 eV),

ρ is the displacement from the midplane of the channel and d is the interplanar

distance (for Si(110) 1.92 Å). The energy levels for this case can be written in the

following form:
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ε⊥n = ∆ε⊥n(n+ 0.5) = ~

√
8U0

d2mγ
(n+ 0.5), n = 0, 1, 2... (2.4)

This approximation is applicable for the transverse motion with the energy below

the depth of the potential well ε⊥n < U0. Therefore, the number of energy levels is

limited Nε = U0/∆ε⊥n. For electrons the shape of the potential energy surface can

be described using Pöschl-Teller potential and the ∆ε⊥n in this case can be written

as ~
√

2U0

b2mγ
where b = 4U0/3

√
3U ′

max is the parameter of the potential.
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Figure 2.1: Dependence of number of energy levels of electrons and positrons in
Si(110) on energy of the projectile in the continuous potential approximation [32].
The Pöschl-Teller potential was used for electrons, the parabolic potential was used
for positrons.

In Figure 2.1 the dependence of number of energy levels of electrons and positrons

in Si(110) on energy of the projectile is given. In the energy range ε > 0.2 GeV the

number of energy levels Nε > 10 ≫ 1, which indicates that the classical description

of the transverse motion of projectile can be applied.

Due to the difference in the profile of the interplanar potentials for electrons
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and positrons, the range of applicability of the classical description of the transverse

motion in the case of electrons is narrower than for the positron channeling [32, 69].

2.1.1 Classical relativistic equations of motion

Let us consider propagation of charged relativistic projectiles in the medium within

the framework of classical relativistic mechanics [70] and describe the motion of the

projectile in the laboratory reference frame. In this reference frame atoms of the

medium are fixed, and the projectile is moving with the speed v close to the speed

of light c.

The motion of an ultra-relativistic projectile of the charge q and mass m in an

external electrostatic field E(r) is subject to the relativistic equations of motion

which can be written in the canonical formṗ = qE

ṙ = v
. (2.5)

Dots over p and r in Eq. (2.5) denote differentiation with respect to time. The

momentum p written in terms of velocity reads p = mγv where γ stands for the

Lorentz factor γ = (1− v2/c2)−1/2 = ε/mc2 with ε being the projectile energy.

The differential equations (2.5) are to be integrated for t ≥ 0 using the initial

values of the coordinates (x0, y0, z0) and the velocity components (vx0, vy0, vz0) of

the particle.

2.1.2 Radiation damping force

The simulation of propagation of relativistic projectiles with very high energies re-

quires accounting for the radiation damping effect [70]. In order to do this one

should consider additional force acting on a projectile due to the radiation, which

was created by the projectile itself:

ṗ = qE+ f (2.6)

The form of this force was studied by Larmor [71], Heaviside [72], Abraham [73]

and Dirac and was summarized in the paper by Rohrlich [74] in the following form:
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f =
2

3
q2γ2

(
v̈ + 3γ2v · v̇v̇ + γ2

(
v · v̈ + 3γ2(v · v̇)

)
v
)

(2.7)

In this form the equation is called Lorentz-Abraham-Dirac (LAD) equation.

Another form of these equations is given in the classical book of Landau and

Lifshitz [70]. In this case equations of motion should be extended with additional

term:


ṗ = qE+ f

ε̇ = qEv+ fv

ṙ = v

. (2.8)

where

f =
2q3

3mc3

[
γ(v∇)E+

q

mc2
(vE)E− q

mc2
γ2
(
E2 − (vE)2

c2

)
v

]
(2.9)

is the radiative damping force due to the presence of the electric field E. The ∇
sign denotes the gradient operator. It can be seen, that this force is proportional

to the square of the projectile energy, and is acting in the opposite direction to its

velocity. Such force results to deceleration of a projectile.

In order to determine characteristic energy limits consider the case, where the

force due to radiation damping is much higher than the force due to external field

described in section 76 of book [70]. In this case following differential equation for

energy can be written:

−dε/dt = k(t)ε2 (2.10)

where k(t) is the time-dependent coefficient. The solution of this differential

equation gives:

1

ε(τ)
=

1

ε0
+

∫ τ

−∞
k(t)dt (2.11)

where ε0 is the initial energy of the projectile. For the case of infinitely large

initial energy ε0 → ∞, the value of the energy of the projectile saturates to a

constant finite value, defined by the equation [75]:



14 Relativistic mechanics and channeling processes

1

εcrit
=

∫ ∞

−∞
k(t)dt (2.12)

or, substituting the expression for k(x):

1

εcrit
=

2

3m2c4

(
q2

mc2

)2 ∫ ∞

−∞

(
E2
x + E2

y

)
dx (2.13)

As a case study consider an electron channeling in Si(110) plane, in the 1 mm

crystal. In this case mc2 = 0.5 MeV, qEx ≈ 6.37 GeV/cm, Ey = 0, which give an

estimation of critical energy of εcrit = 17.4 TeV.

The total loss of energy due to radiation damping force can be written in the

following form:

δε =
ε20

ε0 + εcrit
(2.14)

Using this estimate, we find that for the considered direction and crystal thick-

ness the energy loss becomes significant in the energy range above 100 GeV, and

is negligible for the selected energy range of 1..10 GeV. The value of the εcrit is

inversely proportional to the length of the trajectory. For channeling projectiles the

limiting factor in this case is the dechanneling length of the projectile. For positrons

of the same energy the dechanneling length is more than one order of magnitude

larger, which results in lower critical energy and higher effect of radiation damping

for large crystals.

In the paper [76] it is shown, that already for 10 GeV electrons in very thick

diamond crystals (1mm and above) in axial case the effect of radiation damping

might lead to important correction of projectile energy and its proper description

is required for correct simulations. It is also noted in papers [76, 77], that the

introduction of radiation damping force in form of Eq. 2.7 may lead to non-physical

solutions of differential equations and requires proper selection of integration scheme.

In this work the radiation damping force is omitted as the simulated projectiles

are in the energy range below or equal to 10 GeV. The introduction of the damping

force is the direction of further development of this work.
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2.2 Calculation of radiation spectrum

Accelerated motion of charged projectiles in crystal channels produces radiation

which can be characterized by radiation spectrum [69, 70, 78]. This spectrum de-

scribes distribution of energy between photons with different wave length.

θv(t)r(t)

n

Figure 2.2: Due to the accelerated motion of a projectile the photons are emitted
within the small cone around the direction of motion.

Using the relativistic equation of motion described in Section 2.1 one can cal-

culate the trajectories of ultrarelativistic projectiles propagating through crystals.

These trajectories can be used for the calculation of of spectral distribution of emit-

ted radiation. The detailed description of this process is given in the paper [44].

For N0 simulated trajectories the spectral distribution of photons emitted within

the cone θ < θmax with respect to the incident beam can be calculated as follows:

dE(θ < θmax)

~dω
=

1

N0

N0∑
j=1

∫ 2π

0

dϕ

∫ θmax

0

θdθ
d3Ej
~dωdΩ

(2.15)

Here, d3Ej/~dωdΩ stands for the spectral-angular distribution photons emitted

by a particle which moves along the jth trajectory. The sum is carries out over all

simulated trajectories in both channeling and non-channeling regimes.

To calculated d3Ej/~dωdΩ one can use a general quasi-classical method devel-

oped by Baier and Katkov [79]. The quasi-classical approach explicitly takes into

account the quantum corrections due to the radiative recoil. The method is ap-

plicable in the whole range of the emitted photon energies, except for the extreme

high-energy tail of the spectrum (1− ~ω/ε) ≪ 1.

Within the framework of quasi-classical approach the spectral distribution of

energy radiated in given direction n by an ultra-relativistic particle is given by the

following expression (see Ref. [78] for the details):
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d3Ej
~dωdΩ

=
αq2ω2

4π2
S (2.16)

where

S =

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2e

iω′(ψ(t1)−ψ(t2))1

2

(
(1 + (1 + u)2)

(
v(t1)v(t2)

c2
− 1

)
+
u2

γ2

)
(2.17)

where u =
~ω

ε− ~ω
, ψ(t) = t − n · r(t)

c
, ω′ = ω(1 + u). The values of ω′ and u

describe the effect of radiation recoil. In the classical limit u→ 0, ω′ = ω.

Figure 2.3: A trajectory of ultra-relativistic particle (v ≈ c) which experiences the
action of an external field within scattering medium of thickness L. Before entering
the medium, i.e. within time interval t < 0, and after leaving it at t = τ ≈
L/c the particle moves with constant velocities along the straight lines. Inside the
medium the motion is affected by forces acting on the particle. Figure adapted from
paper [44].

In Figure 2.3 a trajectory of the ultra-relativistic particle passing the crystal is

illustrated. The radiation of a projectile should be calculated by taking into account

motion of a projectile with constant velocity for both positive and negative infinity

limits. The particle moves along a straight line v(t) = v(0) for t < 0, and along

another straight line v(t) = v(τ) for t > τ , where τ corresponds to the time, when

projectile leaves crystal.

In order to simplify equations the z-axis can be aligned with the initial velocity

of the projectile. Due to the small values of emission angle θ ≪ 1 the components

of vector n can be written in the following form:
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n =

sin(θ) cos(ϕ)sin(θ) sin(ϕ)

cos(θ)

 ≈

θ cos(ϕ)θ sin(ϕ)

1− θ2/2


Assuming vx ≪ vz ≈ c, vy ≪ vz ≈ c, and v2x + v2y + v2z = const one obtains the

following relations:

v2z
c2

= 1− 1

γ2
− v2x
c2

−
v2y
c2

=⇒ vz
c

= 1− 1

2γ2
− v2x

2c2
−

v2y
2c2

(2.18)

which gives the following transformation:

v1v2

c2
− 1 ≈ − 1

γ2
+
vx(t1)vx(t2)

c2
+
vy(t1)vy(t2)

c2
−

v2x(t1) + v2x(t2)

2c2
−
v2y(t1) + v2y(t2)

2c2

= − 1

γ2
− (vx(t1)− vx(t2))

2 + (vy(t1)− vy(t2))
2

2c2
(2.19)

Substituting this relation in equation (2.17) the following transformation can be

written:

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2e

iω′(ψ(t1)−ψ(t2))
(
v(t1) · v(t2)

c2
− 1

)
≈

− 1

γ2
|S0|2 + |S1x|2 + |S1y|2 − ReS0(S

∗
2x + S∗

2y) (2.20)

where

S0 =

∫ ∞

−∞
dteiω

′ψ(t), S1x,y =

∫ ∞

−∞
dt
vx,y
c
eiω

′ψ(t), S2x,y =

∫ ∞

−∞
dt
v2x,y
c
eiω

′ψ(t) (2.21)

and

S =
1 + u

γ2
(
γ2(1 + δ)

(
|S1x|2 + |S1y|2 − ReS0(S

∗
2x + S∗

2y

)
− |S0|2

)
(2.22)
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where

δ =
u2

2(1 + u)
(2.23)

Consider relation for ψ(t):

dψ(t)

dt
= 1− n · v

c
= 1− nzvz

c
− nxvx + nyvy

c
(2.24)

Using equation (2.18) and relation for n:

dψ(t)

dt
≈ 1−

(
1− θ2

2

)(
1− 1

2γ2
−
v2x + v2y
2c2

)
− θ

cosϕvx + sinϕvy
c

≈

≈ 1

2

(
1

γ2
+ θ2

)
+
v2x(t)

2c2
+
v2y(t)

2c2
− θ cosϕ

vx(t)

c
− θ sinϕ

vy(t)

c

Therefore

S2x + S2y = 2θ (cosϕS1x + sinϕS1y)−
(

1

γ2
+ θ2

)
S0 (2.25)

Using this relation the equation (2.22) can be rewritten in the following form:

S = (1 + u)(1 + δ)

(
δ

γ2(1 + δ)
|S0|2 + sin2 ϕ|S1x|2 + cos2 ϕ|S1y|2−

−2 cosϕ sinϕS1xS1y + |θS0 − cosϕS1x − sinϕS1y|2
)
=

= (1 + u)(1 + δ) ·
(

δ

γ2(1 + δ)
|S0|2 + | sinϕS1x − cosϕS1y|2+

+|θS0 − cosϕS1x − sinϕS1y|2
)

(2.26)

Using this relation in the equation (2.16) one obtains following equation for

spectra-angular distribution of emitted radiation:

d3Ej
~dωdΩ

=
αq2ω2

4π2
(1 + u)(1 + δ) ·

(
δ|S0|2

γ2(1 + δ)
+ | sinϕS1x − cosϕS1y|2+

+|θS0 − cosϕS1x − sinϕS1y|2
)

(2.27)

where α is the fine-structure constant, q is the charge of the projectile in a.u., θ
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and ϕ are the spherical angles of the normalized direction n of photon emission, γ

is the relativistic Lorentz factor of the projectile, ~ω is the photon energy.

In order to take into account uniform motion of a projectile for t < 0 and t > τ

one should use following equations for ψ(t):

ψ(t) =


t
(
1− n·v(0)

c

)
− n·r(0)

c
, t < 0

t− n·r(t)
c
, 0 ≤ t ≤ τ

t
(
1− n·v(τ)

c

)
− n·(r(τ)−v(τ)τ)

c
, t > τ

(2.28)

Substituting this relation to equation (2.21) the following modified equations for

S0 and S1x,y can be obtained:

S0 =

∫ 0

−∞
dteiω

′ψ(t) +

∫ τ

0

dteiω
′ψ(t) +

∫ ∞

τ

dteiω
′ψ(t) =

=

∫ τ

0

dteiω
′(t−n·r(t)

c ) − i

ω′

(
eiω

′ψ(0)

D0

− eiω
′ψ(τ)

Dτ

)
and

S1x,y =

∫ τ

0

dt
vx,y(t)

c
eiω

′(t−n·r(t)
c ) − i

ω′

(
vx,y(0)

c

eiω
′ψ(0)

D0

− vx,y(τ)

c

eiω
′ψ(τ)

Dτ

)
(2.29)

where

D(0) = 1− n · v(0)
c

, D(τ) = 1− n · v(τ)
c

(2.30)

2.3 Bethe-Heitler approximation

During the process of scattering of a charged projectile on a static field of a heavier

target atom the accelerated motion of charge produces photon emission. This pro-

cess is called bremsstrahlung. For ultra-relativistic projectiles, the analytic Bethe-

Heitler (BH) approximation [58] (with various corrections due to Bethe et al. [59, 60]

and Tsai et al. [80]) is the simplest and the most widely used description of this

process. A good overview of this approximation was given in the appendix B of the

paper [44].
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In this section the relevant formulae for the case of ultra-relativistic electrons and

positrons scattering from a neutral atom treated within the Molière approximation

[49] are presented.

Following Eq. (3.80) in Ref. [80], one can write the following formula for the

cross section differential with respect to the photon energy ~ω and to the emission

angle Ω = (θ, ϕ) (but integrated over the angles of the scattered electron):

d2σ

d(~ω)dΩ
=

2α3

π~ω
E2

m4

((
2x− 2

(1 + l)2
+

12l(1− x)

(1 + l)4

)
(Z2 + Z)+

+

(
2− 2x+ x2

(1 + l)2
− 4l(1− x)

(1 + l)4

)
(X − 2Z2f((αZ)2)))

)
(2.31)

f
(
(αZ)2

)
= (αZ)2

∞∑
n=1

[
n2
(
n2 + (αZ)2

)]−1
(2.32)

X =

∫ m2(1+l)2

tmin

(Z2 + Z)
t− tmin
t2

dt (2.33)

tmin =

(
m2(1 + l)

2~ωx(1− x)

)2

(2.34)

Here α ≈ 1/137 is the fine structure constant, Z is the atom number, l =

θ2kE
2/m2, x = ~ω/ε. The function f is the correction worked out by Bethe and

Maximon [59, 60]. After simplification it can be written in the following form:

d2σ

d(~ω)dΩ
=

4αr20
π

γ2

~ω{(
2− 2x+ x2 − 4(1− x)

1 + ξ
+

4(1− x)

(1 + ξ)2

)
F − 1 + ln(1 + ξ)

(1 + ξ)2

−Z(Z + 1)

(
1− 6

1 + ξ
+

6

(1 + ξ)2

)
1− x

(1 + ξ)2

}
. (2.35)

Where r0 = e2/mc2 ≈ 2.818 × 10−13 cm is the classical electron radius and

ξ = (γθ)2. The factor F is defined by Eqs. (3.5), (3.44) and (3.45) from Ref. [80].

In the ultra-relativistic limit (more exactly, for γ & 103) it can be written as follows:

F = Z2

(
ln

184

Z1/3
− 1− f

(
αZ)2

))
+ Z

(
ln

1194

Z2/3
− 1

)
, (2.36)
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In the limit (αZ)2 ≪ 1 the term f
(
(αZ)2

)
can be ignored. For example, for a

Si atom (Z = 14) f ((αZ)2) ≈ 0.0126 ≪ 1. For other widely used crystals materials

this is also correct for C(Z = 6, f ≈ 0.002 ≪ 1), that is a less precise approximation

for Ge(Z = 32, f ≈ 0.056 ≪ 1) and is not true for W(Z = 74, f ≈ 0.25).

The term proportional to Z2 on the right-hand sides of (2.35) and (2.36) stands

for the contribution of the elastic bremsstrahlung process in which the target atom

does not change its state during the collision. The terms ∝ Z are due to the inelastic

bremsstrahlung channels, when the atom becomes excited or ionized.

To calculate the cross section of bremsstrahlung radiated into the cone with the

opening angle θ0 one integrates Eq. (2.35) over the emission angles θ = [0, θ0] and

ϕ = [0, 2π]. The result can be written as:

dσ

d(~ω)

∣∣∣∣
θ≤θ0

=
dσ

d(~ω)
+

4αr20
~ω{

Z(Z + 1)

(
1− 4

D0

+
26

9D2
0

)
1− x

D0

−
(
2− 2x+ x2 − 2(1− x)

D0

+
4(1− x)

3D2
0

)
F + lnD0

D0

}
, (2.37)

with D0 = 1 + (γθ0)
2. In the limit of large emission angles when θ0 ≫ 1/γ the

second term on the right-hand side goes to zero. Therefore, the first term stands

for the cross section differential in the photon energy but integrated over the whole

range of the emission angles. Its explicit expression is as follows (cf. Eq. (3.83) in

Ref. [80]):

dσ

d~ω
=

∫ 2π

0

dϕ

∫ ∞

0

θ dθd2σ

d~ωdΩ
≈ 4αr20

3~ω

(
(4− 4x+ 3x2)F + Z(Z + 1)

1− x

3

)
(2.38)

To calculate the cross section of the elastic bremsstrahlung one substitutes Z(Z+

1) → Z2 on the right-hand sides of Eqs. (2.35), (2.37) and (2.38) as well as ignores

the last term in Eq. (2.36). The latter approximation leads to the following reduc-

tion:

F → Fel = Z2

[
ln

184

Z1/3
− 1− f

(
(αZ)2

)]
. (2.39)

Then, the single differential cross section of elastic bremsstrahlung emitted within
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the cone 0 ≤ θ ≤ θ0 is given by:

dσel
d(~ω)

∣∣∣∣
θ≤θ0

=
dσel
d(~ω)

+ 4αr20
Z2

~ω

{
1− x

D0

(
1− 4

D0

+
26

9D2
0

)
−
(
2− 2x+ x2 − 2(1− x)

D0

+
4(1− x)

3D2
0

)
Fel + lnD0

Z2D0

}
(2.40)

where

dσel
d(~ω)

=
4αr20
3

Z2

~ω

[
(4− 4x+ 3x2)

Fel

Z2
+

1− x

3

]
(2.41)

is the Bethe-Heitler spectrum of elastic bremsstrahlung.

Within the framework of less accurate approximation, used frequently for quan-

titative estimates (see, e.g., [81, 8]), one ignores the non-logarithmic terms in (2.39):

Fel ≈ ln
184

Z1/3
. (2.42)

To calculate spectral-angular distribution of the radiated energy d2E/d(~ω)dΩ
in an amorphous target of the thickness L much less than the radiation length [82]

one multiplies Eq. (2.35) by the photon energy ~ω, by the volume density n of the

target atoms and by L:

d2E

d(~ω)dΩ
= nL ~ω

d2σ

d(~ω)dΩ
. (2.43)

Spectral distribution dE/d(~ω)
∣∣∣
θ≤θ0

of the energy radiated within the cone θ ≤ θ0 is

obtained from (2.43) by substituting the double differential cross section either with

dσ/d(~ω)
∣∣∣
θ≤θ0

(for the total emitted energy) or with dσel/d(~ω)
∣∣∣
θ≤θ0

(if accounting

for elastic bremsstrahlung only).

For illustrative purposes the spectral distributions dEel/d(~ω)
∣∣∣
θ≤θ0

of elastic

bremsstrahlung formed during the passage of a ε = 855 MeV electron through a

50 µm thick amorphous silicon (n = 5 × 1022 cm−3) is presented in Figure 2.4.

The curves were calculated for different values of the emission cone angle as indi-

cated. The value θ0 = 0.21 mrad corresponds to the limit of small emission angles

(γθ0)
2 ≪ 1 where γ−1 ≈ 6×10−3 for the indicated incident energy. For each photon

energy the magnitude of dEel/d(~ω)
∣∣∣
θ≤θ0

steadily increases with θ0 reaching its up-

per limit at θ0 = π which corresponds to the cross section integrated over the whole



2.4 Crystal structure and crystallographic directions 23

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 
dE

/d
(

) (
x1

00
0)

Photon energy (MeV)

 0.21 mrad
 0.6 mrad
 1.2 mrad
 4.0 mrad
 total spec.

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

dE
/d

(
) (

x1
00

0)

Photon energy (MeV)

 0.21 mrad
 0.6 mrad
 1.2 mrad
 4.0 mrad
 total spec.

Figure 2.4: Bethe-Heitler spectra of the energy dEel/d(~ω) radiated via the elastic
channel by a ε = 855 MeV electron in amorphous silicon of the thickness 50 µm.
Left panel corresponds Fel given by Eq. (2.39), right panel corresponds to Eq. (2.42).
Different curves correspond to different values of the emission cone angle θ0 as indi-
cated. The curve ”total spec.” stands for the spectral distribution integrated over
the whole range of emission angles.

range of emission angle, see Eq. (2.41).

The comparison of the radiation spectrum for ultrarelativistic electrons and

positrons given by Bethe-Heitler approximation with the results of numerical cal-

culation is given in Section 4.1. It is shown that the results of direct calculation

of radiation spectrum for projectile in simulated amorphous medium are in a good

agreement with both forms of this approximation.

2.4 Crystal structure and crystallographic direc-

tions

In mineralogy and crystallography, a crystal structure is a unique arrangement of

atoms, ions or molecules in a crystalline medium. It describes a highly ordered
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structure, occurring due to the intrinsic nature of its constituents to form symmetric

patterns. These patterns depend on a type of atoms and their interactions.

The structure of a crystal can be described by a unit cell and three translation

vectors, which define the pattern formation. The unit cell is represented in terms

of its lattice parameters, which are the lengths of the cell edges (a, b and c) and

the angles between them (alpha, beta and gamma), while the positions of the atoms

inside the unit cell are described by the set of atomic positions (xi , yi , zi) mea-

sured in terms of fractional coordinates, relative to the unit cell lengths [83]. In

Figure 2.5 unit cells for simple cubic, body-centered cubic (BCC) and Face-centered

cubic (FCC) crystalline structures are illustrated. These crystalline structures are

of a main interest of this work as corresponding materials are usually applied for

channeling experiments.

a

a

a
a

a

a

Face-centered cubic (F)

a

a

a

Simple cubic (P) Body-centered cubic (I)

Figure 2.5: Unit cells for simple cubic, body-centered cubic (BCC) and Face-centered
cubic (FCC) crystalline structures.

To characterize directions in a crystalline medium the Miller indices are used.

These indices consist of three values l,m, n. The direction ⟨l,m, n⟩ corresponds to
a vector r = la + mb + nc, the set of planes (l,m, n) is defined as orthogonal to

this direction. The notation l̄ corresponds to a negative value of l. In Figure 2.6

examples of planes with different indices are shown.

2.5 Continuous potential model

One of the widely used theoretical methods of description of channeling is the con-

tinuous potential method. Within this approach the interaction of a projectile with

crystalline planes are described as an interaction with a periodic one-dimensional

potential. The form of this potential is different for positive and negative projec-
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Figure 2.6: Planes with different Miller indices in cubic crystals

tiles. In Figure 2.7 the form of this potential within Molière approximation and

its approximation are presented. For positive projectiles the parabolic form of the

potential can be applied. For negative projectiles the Pöschl-Teller potential [84]

can be used. This potential can be written in the following form:

UPT (ρ) = aPT tanh
2(ρ/bPT ) (2.44)

The parameters aPT and bPT are determined by the depth of the potential energy

well (U0) and the maximal gradient of the potential energy (U ′
max). These parameters

are either known from experiment or calculated using other methods. Following
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Figure 2.7: The interplanar potential in Si(110) for positrons (left) and electrons
(right). In both panel solid line stands for the potential calculated within the Molière
approximation at crystal temperature 150 K. The dashed red curve on the left
panel represents the harmonic approximation, on the right panel - the Pöschl-Teller
approximation. Adapted from book [32]

equations can be written for the parameters of the potential:


aPT = 33/2bPTU

′
max/4

d

2bPT
= k tanh2

(
d

2bPT

)
k = 33/2dU ′

max/8U0

(2.45)

Parameters of the Pöschl-Teller potential for carbon, silicon, germanium and

tungsten in (110) and (111) planes are provided in Table 2.1.

Channel d U ′
max U0 aPT bPT/d

(Å) (GeV/cm) (eV) (eV)
C (100) 0.89 4.57 9.9 10.1 0.190

(110) 1.26 7.17 19.7 19.9 0.170
Si (100) 1.36 4.25 12.6 12.7 0.170

(110) 1.92 6.37 22.9 23.0 0.145
Ge (100) 1.41 8.04 23.6 23.8 0.161

(110) 2.00 14.2 41.2 41.2 0.112
W (100) 1.58 34.7 86.8 86.9 0.122

(110) 2.24 49.5 138.6 138.6 0.096

Table 2.1: Parameters of Pöschl-Teller potential for C, Si, Ge and W. Table adapted
from book [32].
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2.6 Channeling in bent crystals

The channeling process can occur in bent crystals provided several conditions are

met. In order for a projectile to be captured into a channeling mode the local

direction of a bent plane or axis should be within a Lindhard angle parallel to a

direction of a beam. Another important factor of channeling in bent crystals is the

presence of a centrifugal force. The motion of a projectile on a trajectory with finite

curvature radius R leads to the centrifugal force Fc = ε/R.

For the projectile to stay in a channeling mode the following condition should

be met [32]:

C =
ε

RU ′
max

≪ 1 (2.46)

where U ′
max is the maximum module of gradient of the potential energy surface.

In the case of periodically bent crystals the bending profile can be described in the

following form:

y = a cos

(
2πz

λ

)
(2.47)

where a is the amplitude of bending, λ is the period of bending and y and z refer

to coordinates. In this case the curvature radius of bending is changing from the

minimum value λ2/(4π2a) up to infinity (straight segments). The segments with

lowest curvature radius lead to the maximum of dechanneling and therefore this

minimal radius should be used for calculation of C in this case.

The channeling in bent crystals was studied both experimentally and theoret-

ically. For uniformly bent crystals experimentally this effect was studied for pro-

tons [85], pions [86] and electrons [27, 87]. Theoretical studies were performed also

for protons [88, 89], electrons and positrons [90, 47, 45, 46].

The results of the simulation of the channeling in bent crystals are presented in

this thesis in the Chapter 5, the results for periodically bent crystals are given in

the Section 5.2. The influence of the periodic bending on rechanneling is studied in

the Section 5.4.
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2.7 Bent crystals production methods

The experimental study of interaction of beams with bent and periodically bent

crystalline medium require efficient, precise and affordable methodology of producing

specific bending of initial crystals. Three main approaches are practiced nowadays:

mechanical bending, epitaxial formation of constantly bent crystals with variable

concentration of doped atoms and acoustic dynamical bending of the medium.

High energy beams require micro radian level of bending of crystals. Such high

precision of mechanical bending can be achieved using advanced technologies like

quasi-mosaic crystals, relying on mechanical anisotropy of crystalline silicon [91, 92,

87]. In Figure 2.9 the use of quasi-mosaic crystals for accurate bending of a crystal is

illustrated. In the paper [93] the detailed description of the process of manufacturing

of bent oriented Si crystals for channeling experiments is given.

Figure 2.8: Schematic representation of a crystal with periodic surface deformations
(the sets of regularly spaced grooves parallel to the x direction): λ stands for the
period of deformations and δ denote the width of a groove. The set on the lower
surface is shifted by λ/2 (along the z-axis) with respect to that on the upper surface.
The surface stress gives rise to the periodic bending of crystallographic planes in the
bulk of crystal. Figure adapted from paper [94].

The second variant of mechanical bending of crystals is to use periodic surface

deformations described in papers [94, 95]. The deformation of the surface of the

medium leads to slight bending of the internal volume of crystalline medium due

to surface tension effect. This approach was applied in several experimental stud-

ies [96, 97, 98] and can be implemented by use of superficial grooves [23, 21], laser

ablation [95] or film deposition [99]. In Figure 2.8 the schematic representation of a
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Figure 2.9: High precision method of mechanical bending of crystal described in
paper by V. Guidi, A. Mazzolari, D. De Salvador and A. Carnera [92]. (a) Sketch
of the unbent silicon plate with height L and thickness t with the < 111 > crys-
tallographic axis along the y axis. As a couple of forces with momentum M1 is
exerted at its edges crystal bends as in b. (b) External forces generate a primary
curvature with radius R, which results in a secondary curvature with radius Rqm due
to anisotropy-induced deformation. Unwanted anticlastic deformation with radius
Ranti also appears as a result of primary bending. Figure adapted from paper [92].

crystal with periodic surface deformations is presented.

Another approach to creation of bending of a crystalline medium was described

in the paper by U. Mikkelsen and E. Uggerhøj [100]. In this method individual

sections of the superlattice are deformed by growing GexSi1−x superlattices on a Si

substrate, where x is varied along the crystal length to generate the desired shape

of the crystal.

Si and Ge crystals share same diamond crystalline lattice type, and have similar

but different lattice parameter. The technology of construction of such superlattices

is based on precise growth control of concentration of atoms on each layer of atoms.

Using well-known methods of crystal growing (like molecular beam epitaxy or chem-

ical vapor deposition, see the references in paper [101]), it is possible to add single

crystal layers onto a substrate. The gradient of the concentration of Ge leads to

the variable lattice parameter of resulting superlattice. In the papers [100, 25] the

examples of application of such crystals to the experiments on crystalline undulator
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Figure 2.10: Scheme of GexSi1−x crystalline superlattice bending due to variation of
concentration of Ge atoms. Figure adapted from paper [102].

are provided.

In the paper [102] the dependence of concentration of Ge atoms in a GexSi1−x

superlattice for sine bending profile of bending is given. The schematic view of this

function is provided in Figure 2.10. A set of constraints on a concentration profile is

described in the paper [102]. The influence of concentration on dechanneling length

and radiation spectrum is studied in this work further in the Section 6.2.

The third approach to bending of crystalline medium is to create acoustic waves

in the material [103] e.g. using piezo crystals and electromagnetic fields. This

approach allows dynamical change of parameters of the crystal to tune parameters

of the particles propagation.
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2.8 Overview of existing simulation methods

The simulation of channeling and related phenomena was implemented using dif-

ferent theoretical approaches in several software packages. Depending on a type of

a projectile, its energy and the complexity of crystalline medium different methods

can be applied. The simplest model is to use an average potential of interaction of a

projectile with crystalline planes. This approach allows calculating amplitudes and

frequencies of channeling oscillations depending on projectile energy and the depth

of the potential well.

Figure 2.11: Motion model of planar channeled relativistic charged particle in a
crystal, picture adapted from paper [104].

Basic Channeling with Mathematica The computer code ”Basic Channeling

with Mathematica” described in the paper [104] uses the method of continuous

potential for analytic solution of channeling related problems. It provides following

functions:

1. calculation of planar periodic potential function for chosen set of crystallo-

graphic planes of desired crystal (only Si, LiF and Ge are available);

2. computation of classical trajectories of channeled charged particles in defined

periodic potential function;

3. computation of eigenvectors (i.e. wave functions) and eigenvalues (i.e. energy

levels) of channeled electrons (positrons) transverse motion in defined periodic

potential function;
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4. calculation of transverse energy levels initial populations;

5. calculation of transitions matrix elements of channeled electrons (positrons)

In Figure 2.11 the model of motion of relativistic projectile in the average po-

tential of the crystal is illustrated. Within this model the parallel component of

velocity is considered constant. The perpendicular motion of a projectile is studied

as a one-dimensional quantum mechanics problem with periodic potential energy.

CRYSTAL A CRYSTAL simulation code for particle tracking in crystals was

introduced in the paper [88]. Its essence consists in both adequate and fast sampling

of proton trajectories in crystals which is crucial for both correct description of

experiments and quantitative prediction of new effects.

The main concept of the CRYSTAL software is simulation of particle trajectories

by solving of equations of motion. The CRYSTAL code includes both one and two

dimensional models. A 2D model is used for calculation of particle motion in an

axial potential U(x, y) depending on transverse coordinates x and y and averaged

along the longitudinal coordinate z. The planar potential U(x) is obtained by aver-

aging along the coordinate y. In both cases the potential is averaged over thermal

vibrations. The relativistic Lorentz equation is solved numerically by the 4th order

Runge-Kutta method 3/8 rule.

DYNECHARM++ A toolkit for the simulation of coherent interactions be-

tween high-energy charged projectiles with complex crystalline structures, called

DYNECHARM++ has been developed and is described in the paper [40]. The code

has been written in C++ language taking advantage of this object-oriented pro-

gramming method. The code is capable to evaluating the electrical characteristics

of complex atomic structures and to simulate and track the particle trajectory within

them. Calculation method of electrical characteristics based on their expansion in

Fourier series has been adopted. Two different approaches to simulate the interac-

tion have been adopted, relying on the full integration of particle trajectories under

the continuum potential approximation and on the definition of cross-sections of

coherent processes. Finally, the code has proved to reproduce experimental results

and to simulate interaction of charged particles with complex structures.

The DYNECHARM++ code is based on the full solution of the equation of mo-

tion in the continuum potential and allows the computation of electric characteristics
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of the crystal through the ECHARM (Electrical CHARacteristics of Monocrystals)

calculation method described in the paper [105]. Therefore, the density as a function

of transverse energy for complex atomic structures and for many planes and axes

can be computed.

The study of radiation spectra was implemented in this software package re-

cently [106] and this module is called RADCHARM++. In the RADCHARM++

routine, the model for the computation of electromagnetic radiation generation is

based on the direct integration of the quasiclassical formula of Baier and Katkov [78].

GEANT4 Based on a continuum potential approximation model, an extension of

the Geant4 toolkit [107, 108] has been developed and was described in the paper [90].

GEANT4 (for GEometry ANd Tracking) is a platform for ”the simulation of the

passage of particles through matter,” using Monte Carlo methods. It is the successor

of the GEANT series of software toolkits developed by CERN, and the first to use

object oriented programming (in C++). Its development, maintenance and user

support are taken care by the international Geant4 Collaboration. Application areas

include high energy physics and nuclear experiments, medical, accelerator and space

physics studies. The software is used by a number of research projects around the

world.

The model allows the manipulation of particle trajectories by means of straight

and bent crystals and the scaling of the cross sections of hadronic and electromag-

netic processes for channeled particles.

Binary collisions model Another approach to channeling description was imple-

mented in the Monte-Carlo code described in the paper by Kostyuk, Korol, Solovyov

and Greiner [109]. Due to the high speed of the projectile, its interaction time with

a crystal atom is very short. The atomic electrons have no time to move during the

interaction. As a result, the projectile ’sees’ a ’snapshot’ of the atom: the atomic

electrons are seen as point-like charges at fixed positions around the nucleus.

The propagation of a projectile in this case is described as a sequence of binary

collision with these charges. The use of binary collision model of interaction of a

projectile with fixed charges allows very fast calculation of a trajectory but leads

to an overestimation of a dechanneling rate. While the nucleus of an atom can be

considered as a fixed in space due to a high mass, the use of fixed electron positions

leads to an unrealistic description of a binary collision. The collisions in this case
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lead to higher deflection angle of a projectile and therefore faster dechanneling. In

more details this problem was described in the appendix to the paper [44].

Atomistic molecular dynamics approach The atomistic molecular dynamics

approach for simulation of propagation of relativistic projectiles was implemented

using MBN Explorer software. It implements the simulation of the motion of the

projectile by solution of three-dimensional classical relativistic equations of motion.

The interaction of the projectile with the medium is simulated as an interaction with

several neighbor atoms of crystalline lattice using screened Coulomb’s potential (in

Molière [49] or Pacios [50] variants). The details of this approach are discussed in

Chapter 3.

The use of atomistic approach allows to study propagation of projectiles in amor-

phous medium, planar and axial channels by changing medium orientation and

application of addition modifiers (for amorphous case, see Sectrion 3.2). Such uni-

versality can’t be achieved using average potential models due to use of different

energy potential surfaces.

The better description as compared with [109] is achieved due to accounting for

the interaction with several neighbor atoms instead of one, and also due to exploiting

the atomic potential concept instead of accounting for the binary collisions with the

randomly distributed point-like frozen single electrons.



Chapter 3

Theoretical and computational

methods

In this chapter a description of the theoretical methods used in this work is provided.

In order to simulate propagation of the relativistic projectiles the relativistic equa-

tions of motion (2.5) are to be integrated using high precision integration algorithm.

In this work the fourth-order Runge-Kutta integration algorithm is used which is

described in the Section 3.1. In order to describe the medium the dynamic gener-

ation algorithm is used, which uses a set of rules to determine positions of atoms

around any given point in space. This algorithm is described in the Section 3.2.

The interaction of the projectile with atoms of the medium can be described using

an interaction potential. Two forms of this interaction description are given in Sec-

tion 3.3.1 and Section 3.3.2 which correspond to Molière and Pacios potentials. The

detailed comparison of the results of the simulations with these two potentials is

given further in the Section 5.1.3. The interaction between atoms of the medium is

the subject of the Section 3.4. In this section the Stillinger-Weber manybody poten-

tial is described, which is applied in the Section 6.1 to modeling of Si-Ge crystalline

structure formation. In the Section 3.5 the description of statistical properties of

channeling process is provided.

3.1 Runge-Kutta integrator for relativistic equa-

tions of motion

The relativistic equations of motion (2.5) can be written in the following form of:
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Ẏ = f(t,Y). (3.1)

Here dot indicates the time derivative of y which is defined as

Y =

[
v

r

]
, f(t,Y) =

[
1
mγ

(
F(r)− v(F(r)·v)

c2

)
v

]
. (3.2)

Differential equation (3.1) can be solved numerically. Since the equation is non-

linear, to permit higher precision, MBN Explorer utilizes the well-known Runge-

Kutta scheme for numerical integration [110]. The following protocol is used in

MBN Explorer:

1. The Runge-Kutta method requires specification of initial conditions for each

simulation step, i.e., as a time instant t, for each particle experiencing rel-

ativistic motion Y(t) = Y0. The initial conditions are used to progress the

system in time.

2. For each particle experiencing relativistic motion calculate a set of intermediate

variables

k1 = f(t,Y)∆t k2 = f(t+∆t/2,Y + k1/2)∆t (3.3)

k3 = f(t+
1

2
∆t,Y +

1

2
k2)∆t k4 = f(t+∆t,Y + k3)∆t.

3. Expressions defined in equations (3.3) are then used to calculate velocities v

and positions r of relativistic particles at a time instant t+∆t. This is achieved

by evaluating Y(t+∆t) as follows

Y(t+∆t) = Y(t) +
1

6
(k1 + 2k2 + 2k3 + k4). (3.4)

The calculated Y(t+∆t) are used to compute velocities v(t+∆t) and positions

r(t + ∆t), which then in turn are used to define the initial condition y0 above for

the subsequent simulation step.

To maintain the computational accuracy the energy conservation is checked at

every integration step. If the relative difference of the total system’s energy exceeds a
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pre-defined threshold value, the simulation step is repeated with a two times smaller

time step. The procedure is continued until either the desired precision is reached

or the step size reaches its minimal allowed value.

3.2 Dynamic generation of crystal structure

To simulate propagation of particles through medium one has to specify its structure.

It can be done using the crystal generation technique, which is available in theMBN

Explorer.

A structure of the crystal is defined by a unit cell, three translational vectors and

the numbers of translations along each vector. If any of the latter numbers is not

implicitly given, the crystal spreads in the corresponding direction along the entire

computational box, which has to be specified.

Figure 3.1: Description of a crystalline medium is done through the definition of
unit cell of the crystal and a set of reversible transformations. This approach allows
efficient mapping of coordinates into crystalline reference frame i.e. cutting the
periodic crystalline structure by a simulation box.
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The crystalline structure generated withMBN Explorer permits several build-

in modifiers which can be used to tune the generated structure in a desired fashion:

• Translation of each atom of the original unit cell to a set of displaced atoms

with a constant displacement vector d.

r 7→ {r, r + d, r + 2d, ..., r + (n − 1)d}, where Cartesian components of

d = (dx, dy, dz) are parameters of the modifier.

• Rotation of atoms and of the coordinate frame.

r 7→ (r · t1, r · t2, r · t3), where t1 =
t3×t2
|t3×t2| , t2 =

y′

|y′| , t3 =
z′

|z′| , z
′ = (z′x, z

′
y, z

′
z),

y′ = (y′x, y
′
y, y

′
z) with y

′ and z′ are parameters of the modifier.

• Exclusion of atoms located outside of two parallel planes.

p1 < r · n < p2, where n = (nx, ny, nz) is the unit normal vector of a plane, p1

and p2 are parameters of the modifier.

• Periodic displacement of atoms using a sine-function.

r 7→ r+a sin(k ·r+φ), where a = (ax, ay, az) is the amplitude, the wave-vector

k = (kx, ky, kz) defines the spatial period, and φ defines the phase shift; a, k

and φ are parameters of the modifier.

• Random displacement of atoms using normal distribution.

r 7→ r+ (N (0, σ),N (0, σ),N (0, σ)), where σ is the parameter of the modifier

defining standard deviation of distribution.

• Random substitution of atoms in initial structure with new atoms of the spe-

cific type with specified probability e.g. Si 7→ Ge

These transformations are reversible and therefore allow efficient construction of

consistent crystal structure at any position in space. In Figure 3.1 schematic illus-

tration of these transformations is presented. For any region in space these reverse

transformations give a set of coordinates in a reference frame of the crystal (oriented
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along translational vectors), then for these coordinates a new set of atoms is created

and all these transformations are applied to the coordinates of atoms.

Once the nodes are defined, the position vectors of the atomic nuclei are gen-

erated with account for random displacement ∆j from the nodal positions due to

thermal vibrations. The Cartesian components ∆jα, α = x, y, z, are normally dis-

tributed:

w(∆jα) =
1√
2πu2T

exp

(
−
∆2
jα

2u2T

)
. (3.5)

Here uT is the root-mean-square amplitude of thermal vibrations. Its values for

various crystals at room temperature can be found in [2].

To simulate the propagation of a particle through a crystal of finite thickness L a

new type of boundary conditions, the so-called ”dynamic simulation box”, has been

implemented in MBN Explorer. This algorithm, illustrated in Figure 3.2, implies

the following. The use of such approach instead of periodic boundary conditions

allows to avoid parasitic periodicity of the grid vibrations and also allows to specify

more complex crystalline structures e.g. with multiple layers.

3.3 Interaction of the projectile with the medium

The interaction of atoms of the medium with a projectile within atomistic approach

is described using interaction potentials. The force acting on a projectile is a sum of

forces of interaction with single atoms of the medium. These forces are calculated

as a gradient of interaction potential energy. Atoms of Si in crystalline medium

interact with projectiles as screened charges. In order to describe this interaction two

interaction potentials were tested: Molière potential [49] and Pacios potential [50].

Detailed description of these potentials is provided below.

3.3.1 Molière potential

The Molière potential [49] is a parametrization which describes interaction between

a projectile and a neutral atom. It can be written in the following form:

U(r) =
qZe

r

3∑
k=1

αke
− βkr

aTF (3.6)
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Figure 3.2: Illustration of the dynamic simulation box algorithm. When a projectile
X-marked approaches the face of the initial simulation box (left panel) by a distance
l ≈ ρmax a new simulation box of the same size is generated (right panel) with the
particle placed approximately in its geometrical center. The atoms (small shadowed
circles) located in the intersection of the old and the new boxes are not changed. In
the rest part of the new box the atomic positions are generated anew as described
in the text. Figure adapted from paper [44].

where αk = (0.35, 0.55, 0.1), βk = (0.3, 1.2, 6.0), aTF is the Thomas-Fermi radius

of an atom, Ze is the charge of the atom nucleus and q is the charge of the

projectile. The Thomas-Fermi radius aTF is related to the Bohr radius a0 via

aTF = 0.8853Z1/3a0.

The force acting on the projectile due to the electrostatic interaction with atom

in this case is calculated according to the definition in Eq. (3.7) as

F = −qZe
r3

r
3∑

k=1

αke
− βkr

aTF (βkr + 1). (3.7)

In left panel of Figure 3.3 the comparison of the potential energy of interaction of

C, Si and Ge atoms with positron described by Molière potential is illustrated. For

all these types of atoms the potential energy decreases exponentially and is negligible

on the distance of 5-6 Å. In this work the typical value of the cutoff distance was

taken as 5 Å.
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Figure 3.3: Comparison of the potential energy of interaction of C, Si and Ge atoms
with positron described by Molière potential (left) and Pacios potential (right).

3.3.2 Pacios potential

The Pacios potential [50] is another type of the potential implemented in MBN

Explorer to describe the pairwise interaction between a charge projectile and a

neutral atom. It has the following form:

U(r) =
4∑

k=1

αk

βk
3 (2 + βkr)e

−βkr 4π

r
(3.8)

where Ze is the charge of the atom nucleus and q is the charge of the projectile.

In Table 3.1 the values of αk and βk of the Pacios interaction potential from the

original paper are presented for C, Si and Ge atoms.

The force acting on the projectile due to the electrostatic interaction with atom

in this case is calculated according to the definition in Eq. (3.9) as

F = −
4∑

k=1

αk

βk
3 (2 + 2βkr + β2

kr
2)e−βkr

4π

r3
r. (3.9)

In right panel of Figure 3.3 the comparison of the potential energy of interaction
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Type Param. i = 1 i = 2 i = 3 i = 4
C αi 128.0489 -2.535155 2.041774 -

βi 11.84981 3.508196 2.099930 -
Si αi 1713.363 158.9419 -107.9461 1.348130

βi 29.95277 4.305803 3.906608 1.627379
Ge αi 20901.16 1399.193 169.1339 0.991756

βi 68.65812 22.95161 5.903443 1.541315

Table 3.1: Parameters αi, βi in the analytic expansion, for C, Si and Ge atoms from
original paper [50].

of C, Si and Ge atoms with positron described by Pacios potential is illustrated. For

all these types of atoms the potential energy decreases exponentially and is negligible

on the distance of 3-4 Å. In this work the typical value of the cutoff distance was

taken as 4 Å.

The Moliere and Pacios potentials are both applicable for the simulation of the

channeling process. In this work both potentials were used in order to check if the

choice of the potential affects the results of simulations. The direct comparison of

results is done for the case of bent Si crystal in Section 5.1.3, and it shows no major

difference neither in dechanneling length estimation nor in radiation spectrum.

3.4 Stillinger-Weber potential for classical MD

The simulation of the structure of Si and Ge as well as of binary Si-Ge crystals

by means of molecular dynamics can be done using different potentials. The most

precise classical approach for these carbon-like materials is to use bond-ordered po-

tentials: Tersof [111, 112], Brenner [113] and Stillinger-Weber [57]. Bond-ordered

potentials take into account not only pairwise interaction forces between particles,

but also angles between bonds between neighboring particles. The overview of pa-

rameters of these potentials is provided in Refs. [114, 115]. The Stillinger-Weber

potential can be written in the following form:

U =
∑

i,j(i<j)

U2(i, j) +
∑

i,j,k(i<j<k)

U3(i, j, k) (3.10)

where
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U2(i, j) = ϵijA

(
B

(
rij
σij

)−p

−
(
rij
σij

)−q
)
exp

[(
rij
σij

− a

)−1
]
,
rij
σij

< a

U3(i, j, k) = ϵijkh

(
rij
σij
,
rik
σik

, θi

)
+ ϵjikh

(
rji
σji
,
rjk
σjk

, θj

)
+ ϵkijh

(
rki
σki

,
rkj
σkj

, θk

)
h

(
rij
σij
,
rik
σik

, θi

)
= λijk exp

(
γ

[(
rij
σij

− a

)−1

+

(
rik
σik

− a

)−1
])(

cos θi +
1

3

)2

Parameters A, B, p, q, and a are positive constants, parameter ϵ determines the

energy scale, σ determines length scale. For binary systems like Si-Ge: ϵij =
√
ϵiϵj,

ϵijk =
√
ϵijϵjk, σij = (σi + σj)/2, λij =

√
λiλj, λijk =

√
λijλjk.

3.5 Analysis of channeling fractions and calcula-

tion of dechanneling length

The direct result of the simulation of propagation of the projectile is its trajectory.

The following values and fractions will be used in order to characterize the channeling

effect: N0 - total number of simulated trajectories, Nc(z) - number of projectiles in

a channeling mode at the depth z, Nc1(z) - number of projectiles in a primary

channeling mode, n(z) = Nc(z)/N0 - fraction of particles in a channeling mode

in any channel, n1(z) = Nc1(z)/N0 - fraction of particles in a channeling mode in

primary channel, this characteristic excludes rechanneling effect.

In order to quantitatively describe channeling the following characteristics are

used: acceptance A - fraction of particles that start channeling right from the begin-

ning of the crystal (Nc(0)/N0), Lp1 - mean value of the primary channeling segments,

Lp2 - mean value of all channeling segments, Ld - characteristic dechanneling length

in exponential approximation: n1(z) = A exp(−z/Ld), where n1(z) is the fraction

of projectiles in a primary channel.

3.5.1 Calculation of statistical error for channeling fraction

The dependence of channeling fraction on penetration distance n(z) can be analyzed

based on calculated trajectories of projectiles. These trajectories are in channeling

mode at different positions in the crystal, therefore statistical averaging is needed in
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order to determine the channeling fraction of a whole beam. Consider the following

expression for channeling fraction as a random value: n(z) =
∑

part.M(z)/N , where

M(z) = 1 if particle is in the channeling mode and M(z) = 0 if particle is not

captured.

The variance of this value σ(z) can be calculated using following expression:

σ(z) =

√
1

N

∑
part.

(M(z)− n(z))2. (3.11)

The number of particles N1 for which M(z) = 1 is equal to n(z)N , number of

particles N0 for which M(z) = 0 is equal to (1− n(z))N .

σ(z) =

√
1

N
(n(z)N(1− n(z))2 + (1− n(z))N(0− n(z))2) (3.12)

This equation can be simplified to the following form:

σ(z) =
√
n(z)(1− n(z)) (3.13)

In order to calculate statistical error for the channeling fraction n(z) one should

multiply σ(z) by the Student’s coefficient [116], corresponding to the confidence

probability. In this work the confidence probability α = 0.999 was used and the

coefficient value of 3.3 was taken:

Err(z) = 3.3
√
n(z)(1− n(z))/N (3.14)

The value of the statistical error is relatively small for n(z) → 0 and n(z) → 1

and has the maximum value for n(z) ≈ 0.5. The decrease of the statistical error

with N is rather slow and therefore the number of trajectories should be rather

big for precise simulations. One can estimate that for the error below 5 % one

should calculate approximately 1000 trajectories, the error below 1 % the number

of trajectories should be increased to 30000. In this work the typical number of

trajectories used for analysis of dechanneling length was on the order of 3000-10000

which corresponds to relative error on the level of 2-3 %.



Chapter 4

Computational studies of

channeling processes within the

atomistic approach

In this chapter results of a series of numerical calculations are presented. In the

Section 4.1 the results of the simulation of propagation of electrons and positron

through the amorphous medium are provided. The results are compared with cal-

culations using Bethe-Heitler approximation in terms of radiation spectrum. The

Section 4.2 describes results of simulation of planar channeling of 855 MeV and

6.7 GeV electrons and positrons in the Si (110) plane. The Section 4.3 describes

results of simulations of channeling in axial case. These results were previously

described in the paper [62] which is in the process of publication.

4.1 Amorphous medium case study

In order to verify the model described in Chapter 3 consider propagation of the

relativistic projectiles through amorphous medium. As the case study the propa-

gation of 6.7 GeV electrons and positrons through 105 µm amorphous samples was

considered. The amorphous medium was generated by random placement of atoms

with average density corresponding to the crystalline materials. Results of the sim-

ulations were compared to the results obtained within the analytical Bethe-Heitler

approximation theory described in Section 2.3. The results are given in Figure 4.1.

In this figure the results for both electrons and positrons are provided. In the
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Figure 4.1: The comparison of the radiation spectrum simulations in silicon (left)
and carbon (right) using the direct simulation of projectiles and analytic Bethe-
Heitler theory. The spectrum was calculated for the beams of electrons and positrons
propagating through 105 µm thick amorphous medium sample. The results for quasi-
classical and approximate classical variants of spectrum calculation are provided.

case of amorphous medium the projectile experiences a series of random scattering

events on atoms of the medium. The frequency of these processes and the change of

the momentum do not depend on the sign of the charge of the projectile, therefore

the emitted radiation spectrum is also the same for positive and negative projectiles.

The results of the calculation for quasi-classical and approximate classical vari-

ants of spectrum calculation are provided. The classical case corresponds to u → 0

case in the Eq. (2.16). The significant difference between these cases can be seen for

energies above 0.5 GeV.

For Bethe-Heitler calculations two types of approximations are provided. Exact

corresponds to factor F given by Eq. (2.39). Approximate corresponds to factor F
given by Eq. (2.42). In both cases Bethe-Heitler approximation gives an estimation

based on crossection of a single scattering process, which also gives an approximate

result. The comparison of results of simulations with Bethe-Heitler approximation
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shows, that in this case the ”approximate” variant is in a better agreement with

result of the simulations. The average difference between these approximations and

results of the simulation is 20% for the ”exact” variant and 10% for ”approximate”.

Further in this work the calculation of Bethe-Heitler radiation spectrum are given

in ”approximate” variant.

4.2 Planar channeling

In this section the results of simulation of planar channeling of electrons and positrons

within the atomistic approach are described. In the first subsection the results of

simulations [46, 44] of 855 MeV electrons and positrons are given. In the second

subsection the results of simulations [44] of 6.7 GeV projectiles are described and

compared with the experimental measurements in terms of radiation spectrum.

4.2.1 Results for 855 MeV electrons and positrons

Consider a charged projectile propagating inside a crystalline plane. As a case

study channeling of 855 MeV electrons and positrons in Si(110) and Si(111) planar

channels was simulated. Si(110) planes form a set of equal channels with interplanar

distance of 1.92 Å. Si(111) planar channel contains two (111) planes separated by

the distance d = 0.784 Å. Total width of the channel is d = 3.136 Å. The presence

of two planes of crystal atoms in a single channel leads to specific features of the

channeling oscillations for both negatively and positively charged projectiles. These

features are absent in the case of channeling along (100) or/and (110) planes. To

discuss qualitatively the channeling oscillations of an electron and a positron we

refer to Figure 4.2, which presents the Si(111) interplanar potential U calculated in

the continuous approximation [1] with the use of the Molière atomic potential.

In the case of electron channeling (left panel in Figure 4.2) the interplanar po-

tential has two wells symmetrically separated with respect to the midplane, where

the potential has a local maximum U0. At the boarders of the channel, i.e. at the

distances ±d/2, the potential has maxima U max which exceed U0. As a result,

if the transverse energy ε⊥ of an electron satisfies the condition ε⊥ < U0 then the

channeling oscillations are restricted to one of the wells. In the case ε⊥ > U0 the

particle oscillates with larger amplitude within [−d/2, d/2]. The electron interpla-

nar potential is strongly anharmonic, therefore, the period of oscillations depends
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on the amplitude. On average, the large-amplitude oscillations are slower than the

small-amplitude ones in the vicinity of the local minima.

The positron interplanar potential is presented on the right panel of Figure 4.2.

In this case, the potential also has two wells although strongly asymmetric. Both

of the wells can be approximated by parabolic dependencies. The frequency of

channeling oscillations in the narrow (and shallow) well is approximately 2 times

larger than that in the wide well.

Figure 4.2: Electron (left panel) and positron (right panel) continuous Molière inter-
planar potential for Si(111). Vertical dashed lines mark the positions of the atomic
planes. The curves correspond to the crystal temperature 300 K. Figure adapted
from paper [46].

In Figure 4.3 a set of trajectories of 855 MeV positrons channeling along Si(111)

direction is presented. Horizontal lines indicate the (111) planar channels (planes of

atoms). The data refer to the straight crystal of the length L = 100 µm.

For positrons, noticeable are nearly harmonic oscillations. Two types of oscilla-

tions, occurring in the wide part of the channel and in the narrow as well, are clearly

seen in the presented trajectories. Another feature of positron channeling through

a L = 100 µm thick crystal is a comparatively small number of the dechanneling

events. This is also not surprising if one compares the crystal size with the dechan-

neling length Ld ≈ 700 µm for a 855 MeV positron in Si(111). The latter value can

be obtained using Eq. (1.50) from [117] with the correction for a light projectile

introduced in [118]. Therefore, it is not surprising that most of the incident particles

traverse the crystal in the channeling mode.

Much less regular are the channeling oscillations of electrons, see Figure 4.4. The

electron trajectories exhibit a broader variety of features: channeling motion, over-
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Figure 4.3: Channeling of 855 MeV positrons in a 100 µm thick silicon crystal. The
plots show randomly chosen trajectories of the particles initially collimated along
Si(111) crystallographic planes. Horizontal dashed lines indicate the (111) planar
channels separated by the distance d = 3.136 Å. Figure adapted from paper [46].

barrier motion, rechanneling process, rare events of hard collisions etc. First, let us

note that the dechanneling length of a 855 MeV electron in Si(111), estimated with

the help of Eq. (10.1) from [78], is Ld ≈ 23 µm. Therefore, it is not surprising that

the events of channeling through the whole crystal are quite rare. On the other hand,

the events of rechanneling, i.e., capture to the channeling mode of an over-barrier

particle, are quite common for electrons. Even the multiple rechanneling events are

not rare. This phenomenon has been already noted in the simulations of the electron

channeling [44, 119] with a qualitative explanation provided [119] of the difference

in the rechanneling rate for positively and negatively charged projectiles. Also it is

worth noting a visible anharmonicity in the channeling oscillations of electrons which

is a direct consequence of a strong deviation of the electron interplanar potential

from a harmonic shape. As a result, the period of the oscillations varies with the

amplitude. Similar to the positron channeling, two types of oscillations, related to
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the two wells structure of the interplanar potential (see Figure 4.4), are clearly seen

in the presented trajectories.

Figure 4.4: Channeling of 855 MeV electrons in a 100 µm thick silicon crystal. The
plots show randomly chosen trajectories of the particles initially collimated along
Si(111) crystallographic planes. Horizontal dashed lines indicate the (111) planar
channels separated by the distance d = 3.136 Å. Figure adapted from paper [46].

The simulated trajectories were used to estimate the dechanneling length (in the

case of the electron channeling) and to calculate spectral distribution of the emitted

radiation.

To quantify the electron dechanneling process we calculated two penetration

lengths introduced in Ref. [44]. The first one, notated below as Lp1 was found as a

mean value of the primary channeling segments, which started at the entrance and

lasted till the dechanneling point somewhere inside the crystal. Generally speaking,

this quantity is dependent on the angular distribution of the particles at the entrance.

The Lp1 values quoted below were obtained for a zero-emittance beam collimated

initially along the (111) planar direction. The second penetration depth, Lp2, is

defined as a mean value of all channeling segments, including those which appear
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Plane A (%) Lp1 (µm) Lp2 (µm)
(111) 74 18.4 ± 0.8 15.5 ± 0.5
(110) 65 11.7 ± 0.6 10.9 ± 0.3

Table 4.1: The penetration lengths Lp1, Lp2 and acceptance A for ε = 855 MeV
electrons in straight Si(111) and Si(110) crystals. The crystal thickness is L =
50 µm.

due to the rechanneling. In the rechanneling process an electron is captured into

the channeling mode having, statistically, an arbitrary value of the incident angle

ψ not greater than Lindhards critical angle. Therefore, Lp2 mimics the penetration

depth of the beam with a non-zero emittance ≈ ψL.

The results for Lp1 and Lp2, together with the calculated values of the channel

acceptance A = Nacc/N0 (where N0 and Nacc are numbers of the incident and the

accepted particles, respectively), are summarized in Table 4.1.

For a straight crystal, it is instructive to compare the obtained values Lp1 =

18.70± 0.69 and Lp2 = 15.92±0.40 µm with the dechanneling lengths for the initial

beam, Ld0 = 13.57±0.12 µm, and for the rechanneled particles, Ld = 13.69±0.07 µm

obtained in Ref. [119]. The calculations performed in the cite paper were based on

the peculiar model of the elastic scattering of an ultra-relativistic projectile from the

crystal constituents. The model substitutes the atom with its snapshot image: the

atomic electrons are treated as point-like charges placed at fixed positions around

the nucleus. The interaction of an ultra-relativistic projectile (e.g., an electron) with

each atomic constituent is treated in terms of the classical Rutherford scattering. In

Ref. [44] it was demonstrated, that such a snapshot model noticeably overestimates

the mean scattering angle in the process of elastic scattering in a single electron-atom

collision. The mean square angle for a single scattering is a very important quantity

in the multiple-scattering region, where there is a large succession of small-angle

deflections symmetrically distributed about the incident direction. It was noted in

Ref. [44] that the snapshot approximation underestimates the dechanneling length

of 855 MeV electrons in straight Si (110) by approximately 30 per cent. Similar to

this, the Si(111) data from [119], undervalues the dechanneling length presented in

Table 1: Ld0 is less than Lp1 by 37± 5% whereas Ld is 17± 3% smaller than Lp2.

Let us note that the obtained length Lp1 = 18.70 ± 0.69 µm is in agreement

with the value 18.8 µm evaluated recently in Ref. [36] from the solution of the

Fokker-Plank equation.
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The simulated trajectories were used to compute spectral distribution of the

emitted radiation following the formalism and algorithm described in detail in

Ref. [44]. The results are presented in Figure 4.6. The calculated spectral intensities

are normalized to the Bethe-Heitler values (see, for example, Ref. [80]) and, thus, are

plotted as the enhancement factors over the bremsstrahlung spectrum in amorphous

silicon. Statistical uncertainties due to the finite number (≈ 3000...4000) of the an-

alyzed trajectories are indicated by the error bars. The calculations were performed

for two detector apertures: θmax = 0.21 and 2 mrad. The first value, which is close

to the aperture used in the experiments with the 855 MeV electron beam [120, 54],

is much smaller than the natural emission angle γ−1 ≈ 0.6 mrad. Therefore, the

corresponding spectra refer to nearly forward emission. On the contrary, the second

angle greatly exceeds γ−1, so that the cone θmax collects nearly all emitted radiation.

Figures 4.5 and 4.6 present the enhancement of radiation in straight silicon crys-

tals.

First, we note that for both electrons and positrons the intensity of radiation

in the oriented crystal greatly exceeds (by more than an order of magnitude) the

bremsstrahlung background. The enhancement comes from the particles moving

along quasi-periodic channeling trajectories, which bear close resemblance with the

undulating motion. As a result, constructive interference of the waves emitted from

different but similar parts of the trajectory are added coherently. For each value

of the emission angle θ the coherence is most pronounced for the radiation into

harmonics, which frequencies can be estimated as (see, e.g., [78]):

ωn =
2γ2 Ωch

1 + γ2θ2 +K2
ch/2

n, n = 1, 2, 3, . . . , (4.1)

where Ωch is the frequency of channeling oscillations and K2
ch = 2γ2 ⟨v2⊥⟩ /c2 is

the mean square of the undulator parameter related to them. Within the frame-

work of continuous potential approximation, these quantities are dependent on the

magnitude of the transverse energy which, in turn, determines the amplitude of

oscillations.

Different character of channeling by positrons and electrons results in differences

in the spectra of the channeling radiation.

The nearly perfect sine-like channeling trajectories of positrons lead to the emis-

sion spectrum close to that of the undulator radiation with K2 ≪ 1. Two peaks in
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Figure 4.5: Enhancement factor for 855 MeV positrons channeled in L = 50 µm
crystalline target along Si(111) planes calculated for two values of the maximum
emission angle as indicated. Figure adapted from paper [46].

the positron spectrum, see Figure 4.5, is due to two types of channeling oscillations

mentioned above. The peak at ≈ 2 MeV is due to the emission in the fundamental

harmonic (n = 1) from the trajectories corresponding to the channeling motion in

the wide well of the positron Si(111) channel (see Figure 4.2 right). It is more pro-

nounced for the smaller aperture, since in this case a strong inequality (γθ)2 ≪ 1,

valid for all angles θ < θmax, ensures the independence of ω1 on the emission angle.

The second less accented peak corresponds to the emission in the first harmonic due

to the channeling motion in the narrow part of the channel. In this case, the am-

plitudes are smaller (this result in the decrease of the intensity) but the channeling

frequencies are higher leading to the higher value of ω1. For the larger aperture, a

big part of the energy is radiated into the cone γ−1 < θ < θmax. For these relatively

large emission angles the first harmonic energy decreases with θ. As a result, the

peaks become broader and less intensive.

Due to strong anharmonicity of the electron channeling oscillations, the peaks



54 Computational studies of channeling processes within the atomistic approach

in the spectrum of channeling radiation are less pronounced even for the small

aperture, see Fig. 4.6 left. For the large aperture θmax = 2 mrad the second peak is

completely smeared out. The right panel in the figure illustrates the differences in

the emission spectra (for the small aperture) for electron channeling in Si(111) and

Si(110) channel (the calculations of the latter were performed in [44]). The Si(110)

channel can be modeled as a single-well interplanar potential which leads to a single

peak in the emission spectrum.

Figure 4.6: Left panel. Enhancement factors, calculated for two indicated apertures
θmax, for 855 MeV electron channeling in L = 50 µm straight Si crystal along
(111) planes Right panel. Enhancement factor for 855 MeV electrons channeled in
L = 50 µm straight silicon crystal along (110) and (111) planes. The data refer to
θmax = 0.21 mrad. Figure adapted from paper [46].

4.2.2 Results for 6.7 GeV electrons and positrons

For the Si(110) planar orientation, both positrons and electrons exhibit channeling

motion as it is illustrated in Figure 4.7 by sets of typical simulated trajectories.

For positrons, noticeable are nearly harmonic oscillations between the neigh-

boring planes. This is in accordance with a well-known result established within

the framework of the continuum model of channeling (see, e.g., [2]). Indeed, for

a positively charged projectile the interplanar potential can be approximated by

parabola in most part of the Si(110) channel. Therefore, the channeling oscillations

are very close to the harmonic type. Another feature of positron channeling through

a L = 105 µm thick crystal is a small number of the dechanneling events (the two

examples presented in the figure were found in forty randomly chosen trajectories).

This is also not surprising if one compares the crystal size with the dechanneling
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Figure 4.7: Channeling of 6.7 GeV positrons (left) and electrons (right) in a 105 µm
thick silicon crystal. The plots show typical trajectories of the particles initially
collimated along Si(110) crystallographic planes. Horizontal dashed lines indicate
the planes separated by the distance d = 1.92 Å. Adapted from paper [44]

length Ld ≈ 0.4 mm for a 6.7 GeV positron in Si(110). The latter value can be

obtained using Eq. (1.50) from [117] with the correction for a light projectile intro-

duced in [118].

Much less regular are the channeling oscillations of electrons, see Figure 4.7(right).

In contrast to positrons, the electron trajectories exhibit a broader variety of fea-

tures: channeling motion, over-barrier motion, rechanneling process, rare events of

hard collisions etc. First, let us note that the dechanneling length of a 6.7 GeV

electron in Si(110), estimated with the help of Eq. (10.1) from [78], is Ld ≈ 130 µm.

Therefore, it is not surprising that a noticeable fraction of electrons, although chan-

neling in close vicinity to the plane, stays in the channeling mode from the entrance

point up to the end of the crystal. The events of rechanneling, i.e., capture to the

channeling mode of an over-barrier particle, are quite common for electrons. Even

the multiple rechanneling events are not rare. This phenomenon has been already

noted in the Monte Carlo simulations of the electron channeling [119] with a quali-

tative explanation provided of the difference in the rechanneling rate for positively

and negatively charged projectiles. The conclusion drawn on the much lower rechan-

neling probability for a positron than that for an electron is clearly illustrated by

comparing the trajectories on the left and right panels of the figure. Also it is worth

noting a visible anharmonicity in the channeling oscillations of electrons which is a

direct consequence of a strong deviation of the electron interplanar potential from a

harmonic shape (see, e.g., [8]). As a result, the period of the oscillations varies with
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Figure 4.8: Radiation spectra from 6.7 GeV positrons and electrons (as indicated)
channeling through a 105 µm thick Si(110). Dashed black line shows the Bethe-
Heitler spectrum in amorphous silicon. The inset presents the spectra calculated for
the simulated trajectories in amorphous Si. Adapted from paper [44]

the amplitude.

The simulated trajectories were used to calculate spectral distribution of the

emitted radiation using procedure described in Section 2.2. The solid curves in

Figure 4.8 represent the spectral dependencies dE/d(~ω) calculated for 6.7 GeV

electrons and positrons aligned along Si(110) crystallographic plane at the crystal

entrance. Statistical uncertainties due to the finite number (≈ 500 in each case)

of the analyzed trajectories are indicated by the error bars (the confidence inter-

val) which correspond to the probability α = 0.999. The spectra were computed

for a detector aperture of θa = 0.35 mrad hinted by the description of the experi-

ments [8, 121]. This value exceeds the “natural” emission cone γ−1 by a factor of

≈ 5. Therefore, the calculated curves account for nearly all emitted radiation.

First, it can be noted that for both electrons and positrons the intensity of

radiation in the oriented crystal greatly exceeds (by more than an order of magni-

tude) that by the same projectile in an amorphous medium. The latter is indicated
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by the dashed line and was calculated within the framework of Bethe-Heitler ap-

proach using Eqs. (2.42) and (2.43). The enhancement is due to the contribution

to dE/d(~ω) coming from the particles moving along quasi-periodic channeling tra-

jectories, which bear close resemblance with the undulating motion. As a result,

constructive interference of the waves emitted from different but similar parts of the

trajectory increases the intensity. For each value of the emission angle θ the coher-

ence effect is most pronounced for the radiation into harmonics, which frequencies

can be estimated using Eq. 4.1.

Different character of channeling by positrons and electrons results in differences

in the spectra of the channeling radiation.

The nearly perfect sine-like channeling trajectories of positrons lead to the emis-

sion spectrum close to that of the undulator radiation with K2 < 1. 1 A pronounced

peak in the photon energy range 20 . . . 45 MeV is due to the emission in the fun-

damental harmonic (n = 1). The maximum corresponds to the forward emission

(θ = 0) and can be estimated from (4.1) as ~ω ≈ 40 MeV. The second, less accented

peak corresponds to the emission in the second harmonic.

In contrast, in the electron spectrum the undulator effect is smeared completely

due to strong anharmonicity of the channeling trajectories.

In addition to the channeling spectra the spectra for amorphous Si medium was

computed. For doing this, the trajectories of electrons and positrons were simulated

for a random orientation of the crystal with the care taken to avoid major crystal-

lographic directions along the beam axis. The spectral-angular distributions of the

simulated radiation were integrated over θa = 0.4 mrad aperture. The calculated

spectra are compared in the inset of Figure 4.8. Remarkably, the spectra produced

by positrons and electrons in amorphous Si appeared to practically coincide with

each other and to agree quite well with the Bethe-Heitler result. This agreement

can be considered as indicating the reliability of the numerical simulations.

By normalizing the channeling spectral intensities to the Bethe-Heitler values,

the enhancement spectral factors can be obtained for the channeling radiation by

the positrons and electrons. These factors were computed using two sets of the

simulated trajectories for each of the projectiles. The first set, discussed above,

corresponds to the case when the velocity of a projectile at the crystal entrance is

parallel to Si(110) plane, i.e., the incident angle ψ is zero. The second set of the

1Using Eq. (B.5) from [32], one estimates K2
ch ≈ 0.4.
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Figure 4.9: Enhancement factor of the channeling radiation over the radiation in
amorphous medium spectrum. The left and right plots are for the positrons and
electrons, respectively. Open circles stand for the experimental data from Ref. [8].
Solid curves correspond to the calculations shown in Figure 4.8 and correspond to
the zero incident angle, ψ = 0. Dashed curves correspond to the calculations with
the incident angle lying within ψ = [−ψL, ψL] with ψL = 62 µrad. Green dashed
line corresponds to results of simulations from the paper [35]. See also explanation
in the text.

trajectories was simulated allowing the incident angle to be uniformly distributed

within the interval [−ψL, ψL] with ψL = 62 µrad being Lindhard’s planar critical

value calculated in accordance with Eq. (1) from Ref. [8].

The calculated enhancement factors are compared in Figure 4.9 with the ex-

perimental results for 6.7 GeV presented in [8] 2 and results of the simulations for

positrons from the paper [35]. The open circles stand for the experimental data

obtained by digitizing Figure 12 from the cited paper. The solid and dashed curves

represent the calculated dependencies for the two sets of trajectories as indicated

in the caption. Figure 4.9 demonstrates that the results reproduce rather well the

2In the main text of the cited paper these data refer to 7 GeV projectiles. However, in the Note
added in proof it is indicated that the actual beam momentum is 4 % lower. This is also stressed
in [121] where the beam energy of 6.7 GeV, used at the experiments, is indicated.
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shape of the spectra and, in the case of the positron channeling, the positions of

the main and the secondary peaks. With respect to the absolute values both cal-

culated spectra, ψ = 0 and |ψ| ≤ ψL, exhibit some deviations from the measured

dependencies.

For positrons, the curve with ψ = 0 perfectly matches the experimental data

in vicinity of the main peak but underestimates the measured yield of the higher

harmonics. Increasing the incident angle results in some overestimation of the main

maximum but improves the agreement above ~ω = 40 MeV. For electrons, the

ψ = 0 curve exceeds the measured values, however, the increase in ψ leads to a

very good agreement if one takes into account the statistical errors of the calculated

dependence.

The aforementioned deviations can be due to several reasons. Modeling a crys-

talline field as a superposition of the atomic fields described by the Molière potentials

can lead to intrinsic errors. Though the Molière approximation is a well-established

and efficient approach, more realistic schemes for the crystalline fields, based, for

example, on X-ray scattering factors [122, 123], can also be employed for the chan-

neling simulations. In the Section 5.1.3 the use of the Pacios potential for these

calculations is tested.

Another source of the discrepancies can be attributed to some uncertainties in

the experimental set-up described in [8, 121]. In particular, it was indicated that

the incident angles were in the interval [−ψL, ψL] with the value ψL = 62 µrad for a

6.7 GeV projectile. However, no clear details were provided on the beam emittance

which becomes an important factor for comparing theory vs experiment. In the

calculations a uniform distribution of the particles within the indicated interval of

ψ was used, and this is also a source of the uncertainties. The spectra was also

simulated for larger cutoff angle equal to 2ψL (these curves are not presented in the

figure). It resulted in a considerable (≈ 30 %) decrease of the positron spectrum in

the vicinity of the first harmonic peak.

On the basis of the comparison with the experimental data it can be concluded

that the code produces reliable results and can be further used to simulate the

propagation of ultra-relativistic projectiles along with the emitted radiation.



60 Computational studies of channeling processes within the atomistic approach

4.3 Axial channeling

In this section the results of the simulation of axial channeling are presented. In this

case both positive and negative projectiles follow crystalline axes instead of planes.

In the planar case the motion of a projectile is finite only in the direction, orthogonal

to crystalline planes. The system of channels in this case is one-dimensional. In axial

channeling case the motion of a projectile is finite in two dimensions and the system

of channels is also two-dimensional. The structure of axial channels is illustrated

in Figure 4.10. Each channel corresponds to a 2D geometrical shape in the plane

perpendicular to the direction of the beam. Dots in this figure mark the centers of

channels of corresponding sign. The borders of channels are shown with light blue

lines, these borders are defined by planes on equal distances from center lines of

channels.

Figure 4.10: Examples of trajectories of an electron (left) and positron (right) in
⟨110⟩ axial channel in Si crystal with FCC crystal structure. These trajectories
illustrate channeling regime of both particles and motion outside of the channel
and rechanneling for electron. Red dots mark centers of the channels for negative
projectiles, blue dots mark centers for positive projectiles.

The implemented algorithm described in Chapter 3 allows natural study of prop-

agation of projectile in both axial and planar channels. The general algorithm of

calculation of trajectories of projectiles or radiation spectrum needs no specific mod-

ification for the case of axial channeling. The only difference in algorithm is the

procedure of the analysis of channeling fractions which requires taking into account

the specific shape of channels in axial case.

The direct result of the simulation of the channeling is the trajectory of the

projectile. Examples of such trajectories for electrons and positrons are shown in

Figure 4.10 where several regimes of motion can be seen. First, the channeling
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Projectile, axis A (%) Lp1 (µm) Lp2 (µm) Ld (µm)
e−, ⟨100⟩ 49 ± 2 21 ± 1 23 ± 1 15 ± 1
e−, ⟨110⟩ 36 ± 2 19 ± 1 21 ± 1 13 ± 1
e−, ⟨111⟩ 48 ± 2 21 ± 1 23 ± 1 14 ± 1
e+, ⟨100⟩ 65 ± 2 246 ± 5 111 ± 3 2760+
e+, ⟨110⟩ 77 ± 2 252 ± 5 121 ± 3 3670+
e+, ⟨111⟩ 40 ± 2 212 ± 8 63 ± 2 2660+

Table 4.2: Acceptance and mean dechanneling lengths for straight crystals in differ-
ent axis for 10 GeV electron and positrons in a 320 µm thick crystal.

regime, i.e. motion near the center of the channel. Second, the over-barrier motion

above the potential barrier through the crystal without capturing of the particle by

channels. Third, rechanneling, i.e recapture of the projectile by the channel. The

general definitions of characteristics of axial channeling are same as described in

Section 3.5

Consider axial channeling of 10 GeV electrons and positrons in Si crystal in three

axial directions ⟨100⟩, ⟨110⟩, ⟨111⟩. The values of acceptance and mean dechanneling

lengths are presented in Table 4.2. Three cases show very different acceptance value,

and less different dechanneling lengths. These values also depend strongly on the

sign of the charge of the projectile. The ⟨110⟩ axis is most favorable for positrons

but least favorable for electrons. The dechanneling length for electrons is at least

order of magnitude lower than for positrons due to closer passage of projectiles near

the axis during channeling. The exponential approximation works well for electrons,

but is not describing channeling fraction for positrons see Figures 4.11, 4.12.

For positrons the values of Lp1 and Lp2 are limited more by total crystal thickness

of 320 µm, then by real dechanneling length. In Figure 4.12 one can see, that the

channeling fractions show very little decrease even at the end of the crystal. The

difference between Lp1 and Lp2, and low values of Lp2 indicate high number of

rechanneling events and short channeling segments.

In order to describe difference between channeling in various channels consider

the plot of average potential energy of interaction of positrons with different axes,

see Figure 4.13. For electrons value of interaction energy have an opposite sign.

Most important characteristic for each channel for positrons is the difference of

the potential energy between the position of equilibrium in the minimum of the

potential (center of the channel) and the point on the border of two channels. This

value is the depth of the potential well and its growth lowers the chance of projectile
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Figure 4.11: Channeling fraction for 10 GeV electrons in a 320 µm thick silicon
crystal depending on penetration distance for different orientations of crystal. For
each direction two fractions are calculated: with and without rechanneling.
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Figure 4.12: Channeling fraction for 10 GeV positrons in a 320 µm thick silicon
crystal depending on penetration distance for different orientations of crystal. For
each direction two fractions are calculated: with and without rechanneling.

to dechannel.

The following values were calculated for channeling of positron in different direc-
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Figure 4.13: Average potential energy in eV of interaction of positrons with lines of
atoms in different axes: ⟨100⟩ (top left), ⟨110⟩ (top right), ⟨111⟩ (bottom left), and
(110) plane (bottom right). Dashed lines show approximate borders of channels for
positrons. Arrows start from centers of channels and show characteristic directions
of dechanneling.

tions: ⟨100⟩ - 2.89 eV, ⟨110⟩ - 5.04 eV and 23.28 eV in Y direction, ⟨111⟩ - 0.43 eV.

For axes ⟨100⟩ and ⟨111⟩ barriers in any direction are the same, for ⟨110⟩ barriers

are very different for different directions and much bigger than for other axes. This

leads to better channeling in ⟨110⟩ axis and better channeling in the case of bent

crystals for bending in Y direction.
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Chapter 5

Channeling in bent and

periodically bent crystals

In this chapter the channeling in bent crystalline systems is studied. In the Sec-

tion 5.1 a simulation of channeling in a uniformly bent crystal is described for the

wide range of energies of electrons and positrons. These results were previously pub-

lished paper [47]. The results of these simulations were compared with the results of

recent experiment, which was performed at the SLAC (Stanford Linear Accelerator

Center) research facility. In the Section 5.1.3 the simulation model is validated by

the comparison of simulation results for two interaction potentials. The comparison

shows the stability of the simulation results with respect to the interaction potential

selection. The Section 5.1.4 describes the influence of the parameters of the beam

and medium on the simulation results. The Section 5.2 describes the channeling in

periodically bent crystals. These results were previously published paper [46]. In

the Section 5.3 the numerical comparison of channeling in bent axial and planar

channels is performed. The Section 5.5 describes the special case of channeling in

periodically bent crystals with small amplitude and small period of bending. It is

shown that this type of bending can be used to emit photons of very high energy.

These results were previously described in the paper [63] which is in the process of

publication.
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5.1 Channeling in bent crystals

Using the algorithm outlined in Chapter 3, classical trajectories were simulated for

ε = 3 . . . 20 GeV electrons and positrons incident along the (111) crystallographic

plane in a bent silicon crystal. The crystal thickness L = 60 µm and bending

radius R = 15 cm were chosen in accordance with the values quoted in [11]. These

correspond to the bending angle L/R = 400 µrad.

For each set of energy and projectile type the number N0 ≈ 10000 of trajectories

was simulated with random sampling of initial parameters of a projectile.

In the course of propagation through a crystal, the projectile can experience

the re-channeling process which is opposite to the dechanneling one. In this case,

the transverse energy of an over-barrier particle is decreased in due to collisions, so

that it becomes captured into the channeling mode somewhere inside the crystal.

It can be noted that rechanneling efficiency is much higher for negatively charged

projectiles than for positively charged ones of the same energy [119]. With rechan-

neling taken into account, the number of particles staying in the channeling mode

Nch(z) exceeds Nch0(z) The excess is more pronounced (up to several times and even

more in some cases) for straight crystals at penetration distances z & Lp1 due to

a non-exponential decay rate of Nch(z) [119]. For the crystals with bending radius

R ∼ (10 . . . 100)Rc (where Rc is Tsyganov’s critical radius [124]) it gradually reduces

to the tens per cent level and virtually vanishes for smaller values of R [45, 53]. This

is illustrated in Figure 5.1 where the fractions Nch0/Nacc and Nch/Nacc are plotted

versus z for ε = 3.35 (left) and 6.3 (right) GeV electron channeling in straight and

bent (R = 15 cm) Si(111). Note the non-monotonous dependence of Nch/Nacc at

small penetration length which is due to the rechanneling effect occurring in the

vicinity of the entrance. For the straight crystal the excess is quite large for both

energies, whereas the bent crystal it becomes less pronounced and decreases with

increase of ε in accordance with the statement made above. Indeed, estimating the

critical radius as ε/U ′
max and using the value U ′

max = 5.7 GeV/cm for the maxi-

mal gradient of the continuous interplanar potential for Si(111) [117], one derives

R/Rc ≈ 25 for ε = 3.35 GeV and ≈ 14 for 6.3 GeV electrons.

The calculated values of acceptance and penetration distance Lp1, as well as the

estimates for Ld (for electron channeling, only) are summarized in Table 5.1. The

indicated statistical uncertainties are due to the finite number N0 of the analyzed

trajectories and correspond to the confidence probability α = 0.999.
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Figure 5.1: Channeling fractions vs penetration distances calculated for 3.35 GeV
(left) and 6.3 GeV (right) electrons channeling in straight and bent Si(111) channel.
Figure adapted from [47].

On total, the A and Lp1 values for positrons are higher than for electrons of the

same energy. This is not at all surprising and is due to the well-known difference

in the channeling motion of negatively and positively charged particles. The latter

tend to channel in between two planes, i.e. in the domain with low content of crystal

electrons and nuclei, whereas the former channel in the vicinity of a plane where the

content of the constituents is order of magnitude higher. As a result, the electrons

dechannel faster than positrons. It is seen for positrons Lp1 ≈ L = 60 µm, i.e.

nearly all captured positrons channel through the whole crystal. Thus, the thickness

is too small to provide an estimate for the dechanneling length. For electrons, the

presented values of Ld correspond to the lower boundary for the dechanneling length

since the exponential decay law can be expected to be valid at the distances z & Ld.

Also, to be noted, the decrease of acceptance with the energy growth which is due

to the increase of the centrifugal force ε/R in a bent crystal.

Direct measurement of the dependencies Nch0(z) and Nch(z) is hardly possible.

However, they can be deduced as well as the quantities A and Ld can be estimated

if one measures (or calculate) the angular distribution of the particles leaving the

crystal. Figure 5.2 presents the calculated distributions of electrons (top graph) and

positron (bottom graph) of different energies with respect to the deflection angle,
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electron positron
ε A Lp1 Ld A Lp1

3 62 39.5± 0.7 37.8± 2.3 0.89 56.7± 0.5
4 60 43.1± 0.9 45.9± 3.8 0.87 56.8± 0.5
5 58 45.4± 0.8 51.7± 4.6 0.87 57.1± 0.5
6 55 47.5± 0.8 57.3± 5.3 0.86 57.6± 0.4
7 55 48.3± 0.8 58.6± 5.5 0.84 57.8± 0.4
8 54 49.2± 0.8 63.3± 6.2 0.84 58.0± 0.4
9 52 54.4± 0.8 69.7± 7.5 0.82 58.1± 0.3
10 50 50.9± 0.8 73.4± 8.3 0.80 58.2± 0.4
20 39 51.4± 0.9 62.8± 7.3 0.58 59.7± 0.2

Table 5.1: Acceptance A (in %), penetration Lp1 and dechannneling Ld lengths
(in µm) for electrons and positrons of different energies ε (in GeV). Statistical errors
for A are 0.02 in all cases.

i.e. the angle between the projectile velocities at the crystal entrance and exit. The

vertical dashed lines mark the initial beam direction (zero angle) and the crystal

bending angle. The maxima of the distributions are located in the vicinity of this

direction. The first maximum is due to the particles which, being not captured

at the entrance passed through the whole crystal in the non-channeling mode. Its

position is displaced from the initial direction by the interval equal to the Lindhard

critical angle ΘL [1]. The width of the maximum is determined by the larger of the

two angles: ΘL and beam emittance. The distributions presented correspond to the

zero beam emittance. The second maximum is formed by projectiles which leave

the crystal moving in the channeling mode. It is positioned at exactly 400 µrad

and has the width equal to ΘL. The distribution between the maxima corresponds

to the particles which stayed in the channeling mode (including the segments due

to the rechanneling events) throughout part of the crystal. Comparing two graphs

in Figure 5.2 one notices that the second maximum is much more powerful for

positrons since most of them, being captured at the entrance channel through the

whole crystal. The first maximum is also more pronounced for positrons reflecting

the higher values of the acceptance.

Each curve in Figure 5.2 is normalized to the unit area. Approximating the

maxima with the Gaussian distributions and the curve in between them by the ex-

ponent ∝ exp(−ax), one can calculate the acceptance (subtracting the area under

the first maximum from one), the channeling efficiency (the area under the second

maximum), and estimate the dechanneling length as = 1/a. This methodology of
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Figure 5.2: Angular distribution of electrons (top) and positrons (bottom) of several
energies (as indicated in the top graph) at the exit from bent oriented Si(111)
crystal. The crystal thickness is L = 60µm, the bending radius R = 15 cm. Vertical
lines correspond to the incident beam direction (0 µrad) and the bending angle
L/R = 400 µrad. Figure adapted from [47].

estimating Ld has been widely exploited recently for various ultra-relativistic pro-

jectiles in straight and bent crystals [87, 125, 11]. It can be noted that, intrinsically,

this scheme has two drawbacks which influence the estimated value of Ld. First, the

rechanneling effect is neglected, and, second, the exponential decay law is assumed

to be valid for all penetration distances, whereas at z . Ld it must be supplemented

with additional terms [117, 126].

5.1.1 Comparison with experimental results

Comparison of the calculated results with the experimental data [11, 127] is shown

in Table 5.2 and Figs. 5.3, 5.4.
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ε (GeV) Method A (%) Ld (µm) Efficiency (%)
3.35 this work 62± 2 39± 2 22± 1

exp. [11] 64± 2 43± 6 22± 1
calc. [11, 40] – 37 23
calc. [127, 40] 67 42 21

6.3 this work 55± 2 54± 6 26 ± 2
exp. [11] 57 ± 2 33 + 5 - 2 22 ± 1
calc. [11, 40] – 42 23
calc. [127, 40] 51 31 20

Table 5.2: Comparison of acceptance A, dechanneling length and channeling effi-
ciency for electrons with the results of experimental measurements [11, 127] and
simulations with DYNECHARM++ [40]. The term acceptance corresponds to the
term ”surface transmission” used in [11].

In Table 5.2 the acceptance, channeling efficiency and the dechanneling lengths

for 3.35 and 6.3 GeV electrons are compared. The experimental data as well as the

data calculated by means of the DYNECHARM++ code [40] are taken from Table

I in Ref. [11], and Table I in Ref. [127]. The overall agreement for the lower electron

energy can be stated. For 6.3 GeV electrons the results do agree with experiment

on the acceptance but slightly (on the level of 10. . . 15 per cent) overestimate the

channeling efficiency. A larger discrepancy is seen in the Ld values. The simulated

lower value of the dechanneling, 48 µm is 1.25 times larger than the experimentally

measured upper boundary of 38 µm. It can be noted, though, that simulations per-

formed with the code [11, 40] result in the Ld value also exceeding the experimental

one.

In Figure 5.3 the simulated and experimentally detected angular distributions

for 6.3 GeV and 3.35 GeV electrons are compared. The solid curve represents the

dependence obtained by means of the simulation procedure for the bending radius

R = 15 cm in accordance with the value quoted in [11]. However, it is clearly

seen that the second maximum in the experimental distribution (red broken curve)

is shifted from the expected position of 400 µrad towards larger values. This may

indicate that the bending radius of the crystalline sample used in the experiment was

slightly less than as quoted.1 To check this, the distribution for a smaller radius, R =

14 cm was calculated. This distribution is drawn in the figure with blue chained line.

The positions of both of its maxima coincide with those of the experimental curve.

1In fact, the value of 60±1 µm for the crystal thickness, and 402±9 µrad for the bending angle
indicated in [11] correspond to the bending radius 14.9± 0.4 cm.
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Comparing other features it can be stated that the simulation overestimates slightly

the channeling efficiency (the area under the second maximum) and underestimates

the number of non-accepted particles (the area under the first maximum).
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Figure 5.3: Angular distribution of 6.3 GeV (top) and 3.35 GeV (bottom) electrons
in bent Si(111) planar channel. Broken (red) curve represents the experimental
data [11], dot (olive) line represent simulation results with DYNECHARM++ [127,
40], solid (black) and chained (blue) curves correspond to the simulations carried
out for two indicated values of the bending radius R. Vertical lines correspond to
the incident beam direction (0 µrad) and the bending angle 400 µrad for R = 15 cm.
Figure adapted from [47].
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Dechanneling length as a function of electron energy is presented by Figure 5.4.

The experimental data (squares) [11, 127] and the results of current simulations

(filled circles) correspond to the bent Si(111) crystal. As mentioned, the correspon-

dence is seen for the lower energy. The simulated data show steady increase of

Ld with ε which is, although, slower that in the straight crystal. The latter case,

represented by diamonds, shows virtually a linear dependence (illustrated by the

straight line) and, thus, is in accordance with prediction of the diffusion theory of

electron dechanneling [78] which is expected to be valid in the multi-GeV energy

range. Open circles correspond to the model estimation of the dechanneling length

in the straight crystal. These data are obtained by the division of the simulated Ld

values for bent Si(111) by the factor (1−R/Rc)
2. The validity of this model, utilized

in [11], can be proven for positively particles channeling in the harmonic interplanar

potential [117] but is less obvious for negatively charged projectiles. However, in the

latter case its applicability was demonstrated for electrons within the framework of

the continuous potential model [30, 128]. Comparing the data marked in Figure 5.4

by the open circles with the diamonds one concludes that the model can be used for

quantitative estimations.

Nearly linear form of the dependence of dechanneling length on beam energy is

also in agreement with theoretical estimation, and indicates self-consistency of the

results.

5.1.2 Radiation spectrum

The simulated trajectories were used to compute spectral distribution of the radi-

ation emitted within the cone θ < θmax with respect to the incident beam using

quasi-classical method [78] described in Section 2.2. This approach explicitly takes

into account the quantum corrections due to the radiative recoil, i.e. the change

in the projectile energy due to the photon emission, which can be quantified by

the ratio ~ω/ε. The limit ~ω/ε ≪ 1 corresponds to the classical description of the

radiative process. As a rule, the classical framework is adequate to describe the

emission spectra by electrons and positrons of the sub-GeV energy range (see, for

example, [53] and references therein). The quantum corrections must be accounted

for if ~ω/ε . 1. In recent paper [34] it was demonstrated, that the corrections lead

to strong modifications of the radiation spectra of multi-GeV electrons and positrons

channeling in small-amplitude short-period crystalline undulators.
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Figure 5.4: Dechanneling length in 60 µm Si(111) crystals with bending radius
R = 15 cm versus the energy of electron beam. The experimental data (squares) [11]
are compared with the results of current simulation (filled circles and diamonds).
Open circles and straight line stand for the model calculations, see explanations in
the text. Figure adapted from [47].

The emission spectra calculated for several energies of projectiles and in a broad

range of the photon energies are presented in Figs. 5.5 (positrons) and 5.6 (electrons).

The spectra correspond to the emission cone θmax = 1.2 mrad. For all specified

energies, this cone is order of magnitude larger than the natural emission angle

∼ 1/γ and three times larger the bending angle of the crystal. Therefore, the

dependencies presented correspond to virtually all emitted radiation.

Several features in the spectra can be noted. First, the planar direction (111) con-

tains two types of channels, which results in a broad radiation spectrum with several

maximal values [46]. In case of positrons oscillations in these types of channels lead

to distinguishable features in radiation spectrum. For electrons channeling oscilla-

tions are anharmonic and, therefore, the channeling radiation peaks are broadened

and merged in a single distribution. Second, crystal bending leads to the increase of

the yield of low-energy photons due to the synchrotron radiation. This effect, seen
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Figure 5.5: Radiation spectra of 4. . . 10GeV positrons in bent Si(111) crystal. Figure
adapted from [47].

explicitly in Figure 5.5, becomes more pronounced with increase of the beam energy,

as it follows from the general theory of synchrotron radiation. The third feature,

illustrated by Figure 5.6, is in lowering the peak of channeling radiation in a bent

crystal (compare the solid and broken lines). This is mainly due to the decrease in

the channeling length due to the crystal bending. For the sake of comparison, the

spectrum of incoherent bremsstrahlung in amorphous silicon is also presented in the

figure.

5.1.3 Comparison of results for Molière and Pacios potential

In order to verify the use of the Molière potential for the simulations another type

of the potential was taken for comparison: the Pacios potential of interaction of

electrons with atoms of the medium. The form of this potential and its parameters

are described in Section 3.3.2. In Figure 5.7 the comparison of interaction potential
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Figure 5.6: Radiation spectra by 3.35 and 6.3 GeV electrons in bent and straight
Si(111). Brocken line stands for the emission spectrum in amorphous silicon by
the 3.35 GeV projectile calculated within the Bethe-Heitler approximation. Figure
adapted from [47].

of a positron with Si atom is shown for Molière, Pacios and Coulomb potentials.

Molière and Pacios approximations give similar values of the potential for the dis-

tances below 1 Å, but are different for higher distances. Therefore the difference

between the results is more likely to be observed for positrons then for electrons as

they move far from planes of atoms.

In Table 5.3 the comparison of channeling characteristics of 3.35, 6.3 and 10 GeV

electrons in straight and bent (R=15cm) Si(111) channels simulated using same

method but with Molière and Pacios potentials is provided. The results of the

simulations are same within the statistical errors.

For positrons the situation is similar. In Table 5.4 the comparison of channeling

characteristics of 10 GeV positrons in straight and bent (R=15 cm) Si(111) channels

is shown. The difference in this case is also on the level of statistical error for both
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Figure 5.7: Comparison of Pacios and Molière potential with Coulomb potential
for the description of interaction of a positron with Si atom. The behavior of both
potentials is same for distances below 1 Å, for larger distances the Pacios potential
decreases faster.

straight and bent crystals.

In order to check the influence of the interaction potential on a photon emission

spectrum consider results of simulation of 6.7 GeV electrons and positrons in straight

Si(110) crystal. In Figure 5.8 the comparison of simulated photon emission spectrum

of 6.7 GeV electrons is straight Si(110) crystal with experimental results [8] for the

cases of Molière and Pacios interaction potentials is given. It is shown, that the

results of simulations with Pacios potential show slightly different result (up to

5-10% lower intensity). Within the statistical errors both results are in a good

agreement with the experimental measurements.

The similar comparison for positrons is provided in Figure 5.9. The results of the

comparison show, that the difference between simulation with Molière and Pacios

interaction potentials influences less on positrons, then on electrons. The reason

for this is that electrons are propagating closer to atomic planes and experience
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ε (GeV) Pot. A (%) Lp1 (µm) Lp2 (µm) Ld (µm)
3.35 Pacios 66.0 ± 2.9 43.3 ± 1.3 40.6 ± 1.1 42.5 ± 1.5

Molière 61.4 ± 1.4 41.4 ± 0.7 38.9 ± 0.6 41.9 ± 0.8
3.35 Pacios 60.1 ± 3.0 40.0 ± 1.4 39.3 ± 1.3 37.2 ± 1.4
bent Molière 61.8 ± 1.4 41.3 ± 0.7 40.6 ± 0.6 39.2 ± 0.7
6.3 Pacios 68.4 ± 1.9 52.3 ± 0.7 50.3 ± 0.7 73.4 ± 6.7

Molière 70.4 ± 1.6 52.4 ± 0.6 50.2 ± 0.6 76.9 ± 6.1
6.3 Pacios 55.0 ± 2.1 48.2 ± 0.9 48.0 ± 0.9 55.2 ± 5.3
bent Molière 56.2 ± 2.7 48.8 ± 1.1 48.6 ± 1.2 53.7 ± 6.4
10.0 Pacios 72.8 ± 2.7 56.6 ± 0.8 55.5 ± 0.8 108.9 ± 16.8

Molière 70.8 ± 1.0 56.8 ± 0.3 55.5 ± 0.3 111.9 ± 6.9
10.0 Pacios 49.1 ± 3.0 51.4 ± 1.3 51.3 ± 1.3 62.8 ± 9.7
bent Molière 50.4 ± 1.9 50.9 ± 0.8 50.8 ± 0.8 73.4 ± 8.3

Table 5.3: Comparison of channeling characteristics of 3.35, 6.3 and 10 GeV electrons
in straight and bent (R=15 cm) Si(111) channels simulated using same method but
with Molière and Pacios potentials.

ε (GeV) Pot. A (%) Lp1 (µm) Lp2 (µm)
10.0 Pacios 70.8 ± 1.7 60.9 ± 0.3 58.0 ± 0.6

Molière 70.8 ± 1.8 61.0 ± 0.3 58.6 ± 0.6
10.0 Pacios 66.9 ± 3.6 60.8 ± 0.7 59.9 ± 0.9
bent Molière 65.7 ± 3.5 60.8 ± 0.7 60.2 ± 0.8

Table 5.4: Comparison of channeling characteristics of 10 GeV positrons in straight
and bent (R=15 cm) Si(111) channels simulated using same method but with Molière
and Pacios potentials.

higher interaction forces. Within the statistical error the difference in the simulated

radiation spectrum is negligible, and is much lower, then the influence of the incident

beam parameters.

5.1.4 Influence of incident angle and temperature on chan-

neling

The process of channeling depends on parameters of the beam and properties of

the crystalline medium. In order to take into account angular beam emittance the

random rotation of initial velocity was added to the model. This rotation of the

velocity vector is done in both X and Y direction. The distribution of rotation

angles in these two directions is uniform in the range of [−ψ, ψ], where ψ is the



78 Channeling in bent and periodically bent crystals

0 50 100 150
0

10

20

30

 

 

E
nh

an
ce

m
en

t

Photon energy (MeV)

 Moliere zero emittance
 Pacios zero emittance
 Moliere normal emittance
 Pacios normal emittance
 Experiment

Figure 5.8: Comparison of simulated photon emission spectrum of 6.7 GeV electrons
is straight Si(110) crystal with experimental results [8] for the cases of Molière and
Pacios interaction potentials. The results for zero emittance of the beam are shown
with solid lines, the results for beam emittance of ψL = 62 µrad are shown with
dashed lines.

emittance angle. In Figure 5.10 the angular beam emittance is illustrated.

In experiments the value of the angular beam emittance is known and is one of

the important characteristics of the beam. In the paper [127] the characteristic value

of beam emittance is 10µrad, the estimation of a critical angle for a 6.3 GeV elec-

trons is given θcrit = 80µrad. In Table 5.5 the comparison of simulated channeling

characteristics of 6.3 GeV electrons in bent (R=15cm) Si(111) channels simulated

with different values of angular emittance is shown.

The results of the simulations show, that within statistical errors the value of

dechanneling length does not depend on angular emittance of beam. The value

of acceptance A on the other hand does depend on angular emittance. For the

values of angle closer the critical angle the ratio of initially accepted particles drops
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Figure 5.9: Comparison of simulated photon emission spectrum of 6.7 GeV positrons
is straight Si(110) crystal with experimental results [8] for the cases of Molière and
Pacios interaction potentials. The results for zero emittance of the beam are shown
with solid lines, the results for beam emittance of ψL = 62 µrad are shown with
dashed lines.

significantly.

Another important characteristic of a channeling process is the temperature of

thermal vibrations of atoms of a medium [129]. In the book [2] the reference values

of thermal vibrations of atoms in different crystalline media are given. For Si the

amplitude of thermal vibration at room temperature is 0.075 Å. In Table 5.6 the

comparison of channeling characteristics of 6.3 GeV electrons in bent (R=15cm)

Si(111) channels simulated with different amplitudes of thermal vibrations is shown.
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Figure 5.10: Angular beam emittance is simulated using random rotation of initial
velocity in two directions. The distribution of rotation angles in these two directions
is uniform.

Angle (µrad) A (%) Lp1 (µm) Lp2 (µm) Ld (µm)
0 56.2 ± 2.8 48.8 ± 1.2 48.6 ± 1.2 56.4 ± 2.2
5 57.4 ± 1.7 48.1 ± 0.8 47.9 ± 0.8 57.9 ± 1.5
10 57.0 ± 1.6 47.8 ± 0.7 47.6 ± 0.7 59.1 ± 1.4
20 55.7 ± 2.4 47.8 ± 1.1 47.7 ± 1.1 56.8 ± 2.0
30 54.3 ± 2.9 48.4 ± 1.3 48.2 ± 1.3 60.5 ± 2.7
50 50.6 ± 1.8 47.6 ± 0.9 47.5 ± 0.8 57.7 ± 1.7
100 30.0 ± 2.4 48.1 ± 1.5 47.7 ± 1.4 53.0 ± 2.9

Table 5.5: Comparison of channeling characteristics of 6.3 GeV electrons in
bent (R=15 cm) Si(111) channels simulated with different values of angular emit-
tance.

5.2 Channeling in periodically bent crystals

In this section the results of simulation of the channeling in periodically bent crystals

with different parameters are given and compared with the case of straight crystal.

In the first subsection the results of simulations of sub-GeV energies projectiles are

given. In the second subsection the results for multi-GeV beams are described.

5.2.1 Results for sub-GeV electrons and positrons

In this section the results obtained recently [46] with the use of the MBN Explorer

code [44] for the channeling phenomenon and radiation emitted in a crystalline
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Amplitude (Å) A (%) Lp1 (µm) Lp2 (µm) Ld (µm)
0 67.2 ± 2.8 51.3 ± 1.2 50.8 ± 1.2 94.2 ± 5.2
0.0375 61.3 ± 3.8 46.5 ± 1.7 46.4 ± 1.7 50.0 ± 2.5
0.075 56.2 ± 2.8 48.8 ± 1.2 48.6 ± 1.2 56.4 ± 2.2
0.105 54.5 ± 3.2 49.2 ± 1.4 49.0 ± 1.4 60.5 ± 3.0
0.15 55.6 ± 2.8 50.1 ± 1.2 49.9 ± 1.1 61.1 ± 2.6

Table 5.6: Comparison of channeling characteristics of 6.3 GeV electrons in
bent (R=15 cm) Si(111) channels simulated with different amplitudes of thermal
vibrations.

undulator (CU) are presented. In CU, in addition to the channeling radiation,

the undulator-type radiation appears due to the undulating motion of channeling

particles which follow the periodic bending of crystallographic planes [19, 20, 32].

Two types of harmonic periodic bending of the channel centerline, which correspond

to the sine and to the cosine profiles, can be considered:

y(z) = a sin(2πz/λu) y(z) = a cos(2πz/λu) (5.1)

Here, the z-coordinate is measured along the straight channel and the y-axis

is perpendicular to the straight plane. The quantities a and λu are the bending

amplitude and period and they satisfy the relation d < a ≪ λu where d is the

interplanar distance (see the cited papers for more details on the description of the

CU concept).

We have performed simulation of the trajectories, the quantitative analysis of

the channeling motion and computation of the spectral intensities of the radia-

tion formed by ultra-relativistic electrons and positrons within the energy range

195...855 MeV in the CU with the parameters used in the experiments at the Mainz

Microtron (Germany) facility [54, 130]. The 4-periods CUs were manufactured in

Aarhus University (Denmark) using the molecular beam epitaxy technology to pro-

duce strained-layer Si1−xGex superlattices with varying germanium content as de-

scribed in [28, 29].

The following values of the CU parameters were used in the calculations:

* Channeling plane: Si(110) (the interplanar distance d = 1.92 Å)

* Crystal thickness: L = 39.6 µm

* Bending period: λu = 9.9 µm



82 Channeling in bent and periodically bent crystals

Figure 5.11: Enhancement of radiation emission in straight Si (110) (dashed lines)
and in CU (solid lines) over the Bethe-Heitler spectrum. The data refer to ϵ =
355 MeV electrons. Two solid lines present the dependencies for the sine-like CUs
of the indicated amplitudes. The maximum emission angle is θmax = 0.21mrad.
Figure adapted from paper [46].

* Bending amplitude: a = 3...5 Å

The Figure 5.11 compares the spectral enhancement of radiation emitted by

355 MeV electrons channeled in straight Si(110) and in the sine-shaped CU with two

bending amplitudes as indicated. All three dependencies exhibit powerful maximum

at about 1.7 MeV which corresponds to the channeling radiation. In the case of the

undulating crystals the maxima are lower is due to the decrease in the allowed

amplitude of the channeling oscillations in periodically bent channel in comparison

with the straight one [118]. However, the CU undulator radiation manifests itself

as a hump in the photon energy range 40...100 keV (the vertical dashed line marks

the first harmonic of the radiation in the forward direction). Hence, the results

of simulations indicate that it is possible to observe the CU radiation even for

comparatively low energies of the electron beam.
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Figure 5.12: Enhancement of radiation emission in straight Si (110) (dashed lines)
and in CU (solid lines) over the Bethe-Heitler spectrum. The data refer to ϵ =
855 MeV electrons. Two solid lines stand for the spectra emitted from the sine-
and cosine-like CUs of the same amplitude. The maximum emission angle is θmax =
0.21mrad. Figure adapted from paper [46].

With the increase of the electron beam energy the CU radiation peak becomes

more accented, as it is illustrated by Figure 5.12. Here, the maximum at about

600 keV is seen for both sine- and cosine-shaped CUs.

5.2.2 Results for 10 GeV electrons and positrons

In this section the results of simulations of channeling of 10 GeV electrons and

positrons in large-amplitude crystalline undulator are provided.

The following values of the CU parameters were used in the calculations:

* Channeling plane: Si(110) (the interplanar distance d = 1.92 Å)

* Crystal thickness: L = 320.0 µm

* Bending period: λu = 39.6 µm
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* Bending amplitude: a = 2...6 Å

In Table 5.7 the characteristic values of acceptance and channeling segments

length estimates are provided. These results show, that most of positrons in this

CU stay in the channeling mode from the entrance to the crystal until its end. For

electrons both acceptance and channeling segments length is much lower.

Projectile a (Å) C A (%) Lp1 (µm) Lp2 (µm)
e+ 0 0 97.1 ± 0.9 301.9 ± 3.7 271.5 ± 5.5

2 0.08 89.8 ± 2.1 300.5 ± 4.9 256.2 ± 7.8
4 0.16 81.6 ± 2.6 287.1 ± 6.5 209.3 ± 8.9
6 0.24 71.9 ± 5.8 272.9 ± 15.1 169.0 ± 16.76

e− 0 0.0 65.8 ± 2.3 81.6 ± 4.1 72.6 ± 2.1
4 0.16 42.9 ± 3.3 52.1 ± 4.3 45.1 ± 2.0

Table 5.7: Acceptance and mean channeling length for 10 GeV electrons and
positrons in periodically bent planar channels Si(110). The bending parameter C is
defined in (2.46).

In Figure 5.13 the comparison of radiation spectrum of 10 GeV electrons and

positrons channeling in large-amplitude crystalline undulator is given. The channel-

ing radiation can be observed in both cases in the area of 50-100 MeV. In case of

positrons the dechanneling length is much higher and therefore the projectile stays

in a channeling mode for several periods of crystal bending. This leads to the cre-

ation of a second peak corresponding to undulator radiation. In this figure it can

be observed at 10 MeV photons energy.

The growth of undulator amplitude first leads to a decrease of the length of

channeling segments results in the decrease of the channeling peak. The channeling

peak is observable at the bending amplitude of 2 Å and is 25% lower than in a

straight crystal, but it vanishes completely for higher amplitudes.

In the case of electrons the effect of decrease of dechanneling length and corre-

sponding peak is the same. The effect of undulator radiation in much lower than in

the case of positrons due to much lower length of channeling segments.

5.3 Comparison of axial and planar channeling

In order to compare axial channeling with planar channeling a set of simulations were

performed. In these simulations channeling in straight and periodically bent crystals
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Figure 5.13: Comparison of enhancement of radiation spectrum of 10 GeV positrons
channeling in large-amplitude Si(110) CU calculated for different bending ampli-
tudes, as indicated. The spectra correspond to the emission cone θmax = 0.35 mrad.

was compared for (110) planar and ⟨110⟩ axial channels of silicon crystal. In the

planar case the channels are formed by equidistant planes with inter-planar distance

1.92 Å, in axial case the shape of channels is two-dimensional and is illustrated in

Figure 4.10. The comparison of parameters of channeling for axis ⟨110⟩ and plane

(110) is presented in Table 5.8. Both acceptance and length characteristics are

higher in planar case. Lower relative values of Lp2 in case of axial channeling also

indicate high number of short channeling segments.

The results of the simulations show that the channeling of positrons in plane

(110) is characterized by much longer channeling length and higher acceptance.

The only drawback of the channeling in this case is angular distribution of outgoing

particles in the direction perpendicular to both normal of plane and direction of the

beam. This distribution is limited for axial channeling in is much broader for the

planar case.
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Figure 5.14: Comparison of enhancement of radiation spectrum of 10 GeV electrons
channeling in large-amplitude Si(110) CU. The amplitude of bending is and 4 Å.
The spectra correspond to the emission cone θmax = 0.35 mrad.

For electrons the difference between axial and planar channeling is more pro-

nounced. In Table 5.9 the comparison of acceptance and channeling lengths for

axial and planar channeling of electrons with different energies is presented. The

difference in the acceptance between axial and planar cases is 2-3 times, the differ-

ence in channeling length is 2-5 times depending on the calculation procedure. In

this case the dechanneling length is lower, then the period of bending of the crystal

and therefore the case of periodically bent crystal is omitted.

The effect of lower dechanneling length in axial case is caused by higher prob-

ability of collision with atoms of the medium. Trajectories of channeling electrons

are located in close vicinity of atom strings, marked by red and green in Figure 4.13.

The local density of atoms in this region is few times higher than in case of planar

channeling which results in higher dechanneling rate.

To estimate quantitatively this effect, consider the cylinder directed along row
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Projectile, direction a (Å) A (%) Lp1 (µm) Lp2 (µm)
e+, ⟨110⟩ 0 76.5 ± 1.5 251.6 ± 4.7 121.4 ± 3.3

2 57.0 ± 1.0 171.3 ± 3.5 71.93 ± 1.4
e+, (110) 0 97.1 ± 0.9 301.9 ± 3.7 271.5 ± 5.5

2 89.8 ± 2.1 300.5 ± 4.9 256.2 ± 7.8
4 81.6 ± 2.6 287.1 ± 6.5 209.3 ± 8.9

Table 5.8: Acceptance and mean channeling lengths for 10 GeV positrons in 320 µm
thick periodically bent Si crystals in axial ⟨110⟩ and planar (110) channels.

Projectile, direction ε (GeV) A (%) Lp1 (µm) Lp2 (µm) Ld (µm)
e−, ⟨110⟩ 0.855 32 ± 4 5 ± 1 5 ± 1 3 ± 1

1.6 34 ± 3 6 ± 1 7 ± 1 4 ± 1
6.7 36 ± 3 15 ± 1 17 ± 1 10 ± 3
10 36 ± 2 19 ± 1 21 ± 1 13 ± 1
20 37 ± 4 31 ± 3 31 ± 2 21 ± 3

e−, (110) 0.855 59 ± 4 13 ± 1 14 ± 1 9 ± 3
1.6 61 ± 4 19 ± 1 21 ± 1 14 ± 1
6.7 64 ± 4 62 ± 5 56 ± 3 49 ± 4
10 65 ± 4 81 ± 7 73 ± 4 68 ± 10
20 68 ± 3 129 ± 10 112 ± 6 110 ± 10

Table 5.9: Comparison of acceptance and channeling lengths for axial and planar
channeling of electrons with different energies in straight 320 µm thick Si crystal.

of atoms along ⟨110⟩ axis. The local density of atoms in such cylinder depends on

its radius and for high values of radius goes to the average density of the crystal.

Dependence of local density of the medium on the radius of cylinder is shown in

Figure 5.15. The value of density is same for two cases at large radius limit (average

density of the crystal is the same for both cases), but is few times bigger in axial

case for radius lower than 0.5 Å. For small values of radius e.g. 0.3 Å such cylinder

contains 3.5 times more atoms then same cylinder directed in (110) plane. This

leads to proportionally higher probability of hard collision of projectiles with very

low impact parameter and dechanneling.

5.4 Rechanneling in periodically bent crystals

The finite curvature radius of the crystal in simulations in Section 5.3 leads to

increase of role of both dechanneling and rechanneling effects due to two reasons.
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Figure 5.15: Schematic illustration of local density calculation method for planar and
axial channels (left). The dependence of local density of atoms on inverse cylinder
radius (right).

First, curvature of the crystal plane creates a centrifugal force and leads to the

dechanneling. Second, change of the center line of the channel may lead to decrease

of angle between axis and projectiles out of the channel, which results in volume

capture and rechanneling. The role of these effects depends periodically on the

coordinate of the projectile.

In Figure 5.16 the dependence of channeling fractions on penetration distance

with and without rechanneling are presented for the periodically bent crystal. The

bending is done along the ⟨110⟩ axis with amplitude of 2 Å. The curve of channel-

ing fraction with rechanneling consists of the normal decreasing part and includes

oscillatory part with the period of bending of the crystal.

To analyze this effect quantitatively consider Figure 5.17 where the derivative of

the channeling fraction (with rechanneling) is compared with the following approxi-

mate following fitting formula: dn/dz = n(z) sin(2πz/λu)+ const, where n(z) is the

channeling fraction and λu is the period of crystal bending. This fitting indicates

both exponential decay of number of particles in channel and dependence on the

value of first derivative of the channel bending profile. It indicates that the prob-

ability of dechanneling is proportional to the angle between direction of the beam

and current direction of the channel.
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Figure 5.16: Channeling fraction versus penetration distance for 10 GeV positions
in a 320 µm thick silicon crystal periodically bent along the ⟨110⟩ axis. The bending
amplitude and period are 2 Å and 39.6 µm, respectively. The solid curve corresponds
to the channeling fraction including rechanneling. The dashed curve corresponds to
the fraction excluding rechanneling.

5.5 Small-amplitude short-period undulator case

study

Another important application of channeling phenomena is the small-amplitude un-

dulator [33, 35, 34]. In this case the projectile propagates in the bent crystalline

medium but in contrast with the medium in simulations in Section 5.2 the bending

amplitude and period of the crystal are lower than the interplanar distance and

the period of channeling oscillations, respectively. The difference in the period of

oscillations results in the higher energy of photon emission. The shape of the chan-

nel defines the amplitude and period of channeling oscillations and corresponding

radiation. Channeling in bent crystals leads to the special type of radiation, which

depends on the parameters of crystal bending.
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Figure 5.17: The derivative of the channeling fraction of positrons in periodically
bent Si⟨110⟩ axial channel: simulated versus fitting results.

In recent years two main types of crystalline undulators were discussed: small-

amplitude short-period (SASP) undulators [27, 34], and large-amplitude large-period

(LALP) undulators [87, 33]. The bending amplitude is considered high if its value

is large then inter-planar distance of the crystal. The bending period is considered

high if its value is larger than the period of channeling oscillations in this channel.

Short-period undulators can be used to create radiation of higher photon energy

then channeling radiation.

The cases of LALP and SASP crystalline undulators can be distinguished by

the value of the parameter C defined in eq. (2.46). In the case of LALP undulator

the value of this parameter is considered small C ≪ 1 because the projectile has

to follow bends of crystalline planes or axes to produce appropriate radiation. In

this case the increase of amplitude of bending leads to the increase of radiation

intensity, but also leads to the increase of C which is the limiting factor. In SASP

undulators the parameter C can be also formally calculated and its value is higher

than 1. In this case projectiles are unable to follow bends of the crystalline medium.

What produces the undulator radiation in this case is the periodic force acting on
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the projectile due to the rapid change of the interplanar potential. In this case

the increase of amplitude of bending also increases the intensity of radiation, but

decreases the number of channeling projectiles. The amplitude in this case is limited

to the half of interplanar distance.

In recent series of experiments at Mainzer Microtron [27] with 600 and 855 MeV

electrons the effect of small-amplitude short-period undulator was observed. An-

other set of experiments with diamond crystalline undulators is planned within

the E-212 collaboration at the SLAC facility (USA) with 10...20 GeV electron

beams [15]. Current experimental implementations of small-amplitude short-period

undulators are based on thin Si or C crystals doped with small amount of Ge atoms.

These crystals are produced using Molecular Beam Epitaxy technology.

As a case study consider planar channeling in straight and periodically bent

crystals of silicon and diamond. The thickness of the crystal is 4 µm, the period of

bending λu is 0.4 µm and the bending amplitude is 0.4 Å which is lower than half of

interplanar distance in both cases. The motion of charged projectiles in the straight

crystal corresponds to a classical channeling regime. The second case corresponds

to a SASP crystalline undulator regime. The beam is oriented in a (110) plane,

avoiding axial channeling directions.

In Figure 5.18 the results of the simulation of radiation of 20 GeV electrons and

positrons are compared for the cases of straight and periodically bent diamond (top)

and silicon (bottom) crystals. At this energy, the natural emission angle is 1/γ =

25.6 µrad. The value of beam emittance was taken ψ = 5 µrad. The angular

aperture of the detector was taken θmax = 150 µrad, which is 5.8 times higher than

natural emission angle, and covers most of the radiation of projectiles.

In both figures the first peak of each curve (below 1 GeV) corresponds to chan-

neling radiation, second (6 GeV) and other peaks are present only in radiation in

bent crystals and correspond to undulator radiation. Bending of a crystal leads to

significant suppression of channeling peak. This effect can be described in an average

potential model of channeling. With increase of bending amplitude the depth of the

potential well decreases and the width of the potential well grows. This results in a

decrease of number of channeling projectiles and in lower frequencies of channeling

oscillations.

Another factor of suppression of channeling radiation is that for the energy of

the projectiles of 20 GeV the characteristic period of channeling oscillations in sim-

ulated trajectories for positrons in C(110) channels is 9 µm and 11.5 µm in Si(110)
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Figure 5.18: Radiation spectra for 20 GeV electrons and positrons in straight and
periodically bent diamond (top) and silicon (bottom) crystals. Bending amplitude
and period are 0.4 Å and 0.4 µm, respectively.

channels. This period is higher than crystal thickness and it further decreases the

effect of channeling in comparison with case of pure channeling in thick crystals.

The comparison of radiation spectrum for long (24 µm) and short (4 µm) crystals is

shown in Figure 5.19. The values for smaller thickness are multiplied by the factor

of 6 for comparison. As can be seen from the plot the undulator peaks of both curves

nearly coincide, while the shape of the curves in the region of lower photon energies

is significantly different. In case of a thick crystal channeling produces a sharp peak

of radiation around the photon energy of 150 MeV. In case of a smaller thickness

the channeling peak is not present and the radiation is produced by a synchrotron
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Figure 5.19: Comparison of radiation spectrum for 20 GeV electrons in bent diamond
crystal for two different values of thickness, as indicated. The value L = 24 µm
exceeds characteristic channeling oscillations period while L = 4 µm is lower than
this period. Note the absence of channeling radiation peak around 150 MeV in the
latter case. For the sake of comparison, the curve for L = 4 µm is multiplied by the
factor of 6.

The radiation emission of projectiles in this simulation is directed strongly along

the beam. Within small aperture undulator creates radiation with very narrow dis-

tribution of photon energies. In Figure 5.20 the dependence of radiation of projectiles

on aperture of detector θmax is shown. In the case of narrow aperture θmax = 10 µrad

the structure of peaks is very sharp. With increase of the aperture absolute values of

number of photons with high energy increases, but the width of the peak increases

also. At the value of θmax = 150 µrad the radiation spectrum saturates and is the

same for higher apertures.

5.5.1 Crystalline undulator stack

The effect of suppression of channeling radiation in short periodically bent crystals

can be used in order to produce undulator radiation with higher efficiency. In

order to increase the energy of undulator radiation without increasing channeling

radiation it is possible to use stack of short crystalline undulators instead of one
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Figure 5.20: Comparison of radiation spectrum for 20 GeV electrons in CU for
different apertures θmax = 10, 30, 150 µrad which correspond to 0.4/γ, 1.2/γ and
5.8/γ where 1/γ is the natural emission angle.

long undulator. The scheme of such crystalline system is given in Figure 5.21.

In the system the projectile passes several layers of periodically bent crystalline

medium, the radiation produced at all layers adds to the total radiation produced

by projectile. For SASP undulator the thickness of layers can be taken in the interval

between the bending period λu and the characteristic channeling period of projectile.

Such choice of the parameters leads to absence of full channeling oscillation periods

in each channeling segment of trajectory of projectile which results in suppression of

channeling radiation. The effect of undulator radiation in the system remains and

grows with increase of number of layers.

To simulate the effect of channeling in CU stack the following system was mod-

eled. A set of l = 4 µm layers of periodically bent crystals was put in the simulation

box with l′ = 4 µm gaps between layers, the period of crystal bending was set to

λu = 0.4 µm. Such system corresponds to a case of the crystalline undulator stack.

In this case the projectiles are captured in the first crystal, leave the crystal at

some point, and have to be captured again in the next crystal layer. The process

of recapturing of the projectiles in the channeling mode leads to increase of angular

dispersion of velocity of projectiles and the decrease of the number of channeling

particles with the growth of the number of layers.

The thickness of layers in this simulation is set below the channeling oscillations
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Figure 5.21: The scheme of the CU stack made of n periodically bent crystal layers
each of the thickness l. The quantity l′ stands for the gap between the layers. Blue
lines illustrate the trajectories of projectiles.
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Figure 5.22: Radiation spectra for the small (left) and large (right) apertures calcu-
lated for different number of layers in a stack (as indicated in the common legend).
The data refer to 20 GeV positrons, the bending amplitude and period are 0.4 Å
and 400 nm, respectively.
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Figure 5.23: Comparison of radiation spectra formed by positrons in a crystal of
24 µm and in a stack of 6 crystals of l = 4 µm. The spectra calculated for two
different apertures 15.6 µrad (dashed lines) and 250 µrad (solid lines). The beam
energy is 20 GeV, crystal bending aperture and period are 0.4 Å and 400 nm,
respectively.

period (11.5 µm) but above the period of crystal bending (0.4 µm). Such choice of

the crystal thickness leads to the suppression of channeling radiation due to the lack

of full oscillation periods, but the undulator radiation remains.

In Figure 5.22 the comparison of radiation spectrum for different number of

layers in stack is given. The energy of both synchrotron and undulator radiation

grows linearly with the number of stack layers until 4 for small aperture. For higher

number of stack layers the angular distribution of projectile velocities gets wider

and the radiation in a narrow cone saturates. For higher aperture the growth of the

intensity peak continues.

In Figure 5.23 the radiation of single crystal crystalline undulator (24 µm) is

compared to a stack of undulators (6×4 µm). It can be seen, that for the stack case

the channeling peak in the radiation spectrum is suppressed, while the undulator

peak is nearly the same, as for the case of a single crystal.



Chapter 6

Channeling in binary crystalline

structures

In this chapter the channeling of electrons and positrons in Si-Ge superlettices is

studied. These superlattices with variable concentration of Ge atoms can be applied

for bending and periodic bending of crystals [100, 102] see Section 2.7. The use of

atomistic molecular dynamics approach to channeling described in Chapter 3 allows

natural description of channeling in crystals with composite structures.

In the first section the classical molecular dynamics approach is applied to study

structure deformation of ideal Si crystal due to doping with Ge atoms. In Figure 6.1

the example of a Si-Ge crystalline sample with 5% Ge concentration is shown. Both

Si and Ge crystals have the same FCC crystalline structure and close values of the

lattice parameters. The presence of Ge atoms results in gradual change of the lattice

parameter of the resulting superlattice. The functional form of the dependence of

lattice parameter on the concentration of Ge is discussed in Section 6.1.

In the Section 6.2 the influence of Ge doping on channeling process and character-

istic dechanneling length. It is shown that the dependence of dechanneling length

on Ge concentration is monotonous and can be approximated by simple analytic

function. The Section 6.3 is devoted to the study the influence of Ge concentration

on the channeling radiation process of both electrons and positrons. It is shown that

the dependence of the intensity of the channeling radiation on Ge concentration is

monotonous and can be also described by the analytic expression. It is shown that

the influence of Ge atoms on channeling radiation is less pronounce than its influence

on radiation in amorphous medium case, which leads to both change of radiation
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Figure 6.1: Illustrative Si1−xGex binary crystal sample with Ge concentration x =
0.05. The silicon and germanium atoms are shown in yellow and red, respectively.
The Ge atoms occupy position in the same grid structure as Si but the difference in
the lattice parameter leads to a deformation of the whole sample.

spectrum and the enhancement of radiation spectrum.

6.1 Modeling a Si-Ge crystal structure

Si and Ge crystals have diamond cubic crystalline structure (FCC) with different

lattice constant. Unit cell size for Silicon is 5.4309 Å, for Germanium it is 5.6575 Å.

Replacing some fraction of Si atoms in crystal with Ge atoms leads to increase of

linear dimensions of a crystalline structure, this expansion can be considered linear

for small concentration of Ge atoms.

In order to determine parameters of the linear expansion model for small angles

and to obtain the dependence of expansion coefficient on concentration consider

interactions of Si and Ge atoms in Si-Ge superlattice. These interactions can be

modeled using Stillinger-Weber [57] potential. This many-body potential describes

interaction of Si-Si, Ge-Ge and Si-Ge atom pairs and all cases of triple interaction.

The general form of this potential is described in the Section 3.4 a Eq. (3.10).

The parameters for this interaction potential for Si-Ge crystals are summarized in
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Table 6.1 [115].

A B p q α γ σSi-Si (nm) σSi-Ge (nm) σGe-Ge (nm)
7.050 0.6022 4 0 1.8 1.2 0.2095 0.2138 0.2181

Si-Si-Si Si-Si-Ge Si-Ge-Ge Ge-Si-Si Ge-Si-Ge Ge-Ge-Ge
λijk 21.0 23.1 25.5 25.5 28.1 31.0
ϵijk, 10

−19J 3.472 3.371 3.273 3.273 3.178 3.085

Table 6.1: Parameters for the Stillinger-Weber potential for Si-Ge atomic inter-
actions. The potential energy is given by Eq. (3.10). The data are taken from
paper [115].

As a case study we consider a cubical sample of Si crystal with the cube side

10.7 nm and the total number of atoms 64000. To model the formation of the Si-Ge

superlattice in this cube we substitute randomly some fraction of Si atoms. For

several values of Ge concentration atoms of the sample were randomly replaced by

atoms of Ge and the structure of the sample was optimized using Velocity Quenching

energy minimization algorithm. In Figure 6.1 the sample with 5% Ge concentration

is illustrated.

The basic idea behind this algorithm is to simulate molecular dynamics of the

system while absorbing all kinetic energy in the most efficient way. At each step of

the calculation the motion of all atoms in the system by means of the classical equa-

tions of motion is considered. The kinetic energy of all particles is monitored. At the

point at which the kinetic energy of an arbitrary particle is maximal, the algorithm

sets the speed of atom equal to zero. The points in the configurational space, at

which the kinetic energy are maximal corresponds to the minimum of the potential

well in which a particle moves. This algorithm transforms the atomic structure of

the simulated sample and finds the structure corresponding to the minimal potential

energy.

After optimization of energy of the system the crystalline structure type is the

same, but the distances between atoms change which leads to the increase of the

linear size of the sample. The dependence of the change of linear sizes on germanium

concentration is presented in Figure 6.2.

The results of the simulations show, that this dependence is linear for the whole

range of concentration values. The simulated value of lattice expansion for 100%

concentration of Germanium atoms is 4.3%, which is in a good agreement with

experimental value of 4.17% (unit cell size for Si - 5.4309 Å, for Ge - 5.6575 Å).
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Figure 6.2: Dependence of the simulated linear grid expansion coefficient of a
Si1−xGex on the Ge atoms concentration x (in per cent). The dependence can
be approximated by linear function (red dashed curve) with high precision.

Another important characteristic of crystalline medium which depend on the

presence of doped atoms is the amplitude of thermal vibrations. From the litera-

ture [2] the following amplitudes for Si and Ge monocrystals are known: 0.075 Å

and 0.085 Å.

In order to simulate thermal vibrations of atoms in these crystals optimized ge-

ometrical samples from previous simulations were used as initial state for molecular

dynamics simulations. These simulations were carried out with a constant temper-

ature of 300 K with Langevin thermostat algorithm. The simulation of the atomic

motion was carried out using Velocity-Verlet [131, 132] algorithm. The simulation

time was set to 72 psec., the time step of integration was set to 0.02 fsec., the ther-

mostat damping time was set to 20 fsec. The computed trajectories of atoms of the

sample were analyzed in term of RMSD (root-mean-square deviation).

The simulated value of thermal vibrations for Si is 0.048 Å, for Ge is 0.039 Å

and for Si0.5Ge0.5 is 0.049 Å. The simulation results show systematically lower am-
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plitude of thermal vibrations, but indicate that for the Si-Ge crystals in general the

amplitude of thermal vibrations might be higher than for pure Si or Ge crystals due

to impurity of the material.

6.2 Channeling in Si-Ge composite crystals

The variation of the Ge concentration in Si1−xGex leads to a variation of distances

between crystal planes, which lead to bending of the crystal. In order to estimate the

influence of doped atoms on channeling process the series of numerical simulation

were carried out. In each of these simulations the channeling was studied in a

straight crystal with the constant concentration of Ge. Dependence of numerical

parameters of channeling effect on the concentration of Ge was obtained.

For the simulations two energies of 5 GeV and 10 GeV were considered for the

cases of both electrons and positrons. The value of the crystal thickness was taken

100 µm in order to exceed maximal dechanneling length in both pure Si and pure

Ge crystals. The channeling plane is (110).

Model 1 For the small level of concentration consider a simple model of a crystal:

in a first approximation some atoms of initial Si lattice were randomly substituted

by Ge atoms with given probability. Interaction of a projectile with such atoms has

different parameters of Molière potential. In Figure 6.3 the dependence of dechan-

neling length on Ge concentration for small values of concentration is shown.

Model 2 In order to simulate crystals with higher concentration of Ge atoms

consider an improved model, in which the distance between crystal planes depends

linearly on concentration. This dependence of crystalline grid expansion on Ge

concentration is described in the Section 6.1.

Model 3 Another approach to the simulation of channeling processes in composite

crystals is to use an optimized crystal geometries as a unit cell for construction of

the medium. This approach was tested for the case of 5% Ge concentration. This

approach showed similar results to both Model 1 and Model 2, but required much

higher computational resources due to much larger number of atoms in the unit cell.

In Figure 6.4 the dependence of dechanneling length on Ge concentration is

shown for all three models. Model 1 and Model 2 show very good agreement of
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Figure 6.3: The dependence of dechanneling length of 10 GeV electrons in straight
Si1−xGex crystal on Ge concentration for small values of x.

results within error bars, the result for Model 3 gives higher value of the dechanneling

length, but the statistical error is also higher. Using second model the dependence

of dechanneling length on concentration of Germanium atoms in the whole range of

concentration values was calculated.

In experiments the value of concentration of Ge atoms is usually set below 5%

due to other restrictions. Therefore the decrease of dechanneling length with respect

to pure Si crystal should be limited by 10%.

The dependence of the dechanneling length on the concentration of Ge can be

fitted by following functional dependence:

Ld(x) = Ld(0)
(1−x)αLd(1)

xα (6.1)

where Ld(0) is the dechanneling length of electrons in Si, Ld(1) is the dechan-
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Figure 6.4: The dependence of dechanneling length of 10 GeV electrons in straight
Si1−xGex crystal on Ge concentration. Model 1 refers to simple random replacement
of Si atoms with Ge, Model 2 adds linear scaling of crystalline lattice, Model 3 uses
optimized geometry of the crystal.

neling length of electrons in Ge, α is the fitting parameter. As a result of fitting of

simulated curve in Figure 6.4 with such function the value of α was set to 1.06 for

10 GeV and 1.03 for 5 GeV.

6.3 Channeling radiation in composite crystals

The variation of Ge concentration in Si1−xGex crystals leads to the change of pa-

rameters of channeling radiation of projectiles in medium. The following factors

affect this process: increase of Ge concentration leads to increase of the depth of the

interplanar potential energy well, increase of crystalline lattice scales leads to the

higher interplanar distance and the higher channeling oscillations amplitude, lower
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dechanneling length leads to decrease of intensity of radiation.

Using the trajectories calculated with model 2 from the previous section the

spectrum of radiation of electrons in a composite crystal was studied. The results

of calculations for electrons are given in Figure 6.5 and for positrons in Figure 6.6.
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Figure 6.5: The radiation spectrum (left) and the radiation spectrum enhance-
ment (right) of 10 GeV electrons channeling through Si1−xGex crystals with differ-
ent concentration of Ge (x · 100%) in (110) direction. Crystal thickness is 100 µm;
radiation aperture is 0.25 mrad (4.9/γ).

For both electrons and positrons the radiation spectrum (left panels) varies grad-

ually with the change of Ge concentration and increases with higher concentration

of Ge. The ratio of intensity in the maximum is 1.77 for electrons and 1.35 for

positrons. The position of the maximum varies for electrons: 0.141 GeV for Si and

0.181 GeV for Ge, for positrons it is 0.061 GeV in both cases.

In the case of positrons the dechanneling length is much higher than the total

thickness of the crystal sample for both Si and Ge. It means that the difference

in intensity is caused only by increase of interplanar distance and change of the

potential energy gradient. In case of electrons in addition to these factors the inten-

sity is changing due to the change of dechanneling length, which is 30-50% lower in
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Figure 6.6: The radiation spectrum (left) and the radiation spectrum enhance-
ment (right) of 10 GeV positrons channeling through Si1−xGex crystals with differ-
ent concentration of Ge (x · 100%) in (110) direction. Crystal thickness is 100 µm,
radiation aperture is 0.25 mrad (4.9/γ).

case of Ge, then in Si crystals, depending on the calculation method. The second

additional factor to the change of intensity is the change of the photon energy at

the maximum of intensity by 28%. This factor gives a major contribution because

intensity is proportional to the fourth power of frequency:

I ∝ ω4Lcd
2 (6.2)

where I is the intensity of the radiation, ω is the frequency, d is the interplanar

distance, and Lc is the characteristic channeling length, which can be determined as

the minimum of the dechanneling length Ld and the total thickness L of the crystal

sample.

The change of the content of Ge leads also to the change of the radiation spec-

trum in amorphous medium. As a result the situation for the calculated radiation

spectrum enhancement (right panels) looks rather different from the radiation spec-

trum itself. The highest enhancement can be observed for pure Si crystals, the lowest
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is for pure Ge crystals, for intermediate concentrations the spectrum enhancement

is between these two cases. The dependence of the enhancement of the concentra-

tion of doped atoms is nonlinear and even small percentage of Ge atoms leads to

substantial drop of enhancement.



Chapter 7

Summary and conclusions

This work is devoted to the theoretical study of process of channeling and channeling

radiation emission in oriented crystals. It is focused on the case of light projectiles

(electrons and positrons) in the energy range between 0.3 and 20 GeV and uses an

atomistic molecular dynamics approach for studying this process. The results of

this study were published in several papers [45, 46, 44, 48, 47]. The validity of this

approach was tested on several case studies and compared to the results of recent

experimental measurements [11, 127] and theoretical methods [35, 40].

In the Chapter 2 it is shown that for this energy range the classical relativistic

equations of motion can be used, and the radiation damping force can be omitted.

In that chapter the overview of the quasi-classical formalism for calculation of radi-

ation spectrum of emitted photons is outlined. The overview of existing theoretical

methods of description of channeling and propagation in amorphous media is given.

The Chapter 3 introduces an atomistic molecular dynamics approach for study-

ing channeling of charged particles in complex oriented crystals. This approach

involves an integration mechanism, the algorithm of generation of the local crys-

talline medium representation, and the proper choice of the interaction potential of

the projectile and the atoms of the medium. In this chapter the molecular dynamics

many-body potential is described for simulation of the structure of Si-Ge crystals.

The Chapter 4 contains the results of the simulations of the propagation of elec-

trons and positrons in amorphous medium and the process of planar and axial chan-

neling in straight crystals. The results for amorphous medium case are compared

with the analytic calculations using Bethe-Heitler approximation in Section 4.1. The

results for planar channeling are compared with the results of experiments in terms
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of dechanneling length and radiation spectrum in Section 4.2. The good agreement

of the results of calculations obtained using the developed method with the results

of experimental measurements shows, that it can be used for theoretical predictions.

The Chapter 5 contains results of the simulation of channeling in bent and pe-

riodically bent crystals. The results of these simulations are compared with recent

experimental results for the case of uniformly bent crystals in Section 5.1 and for

the periodically bent crystals with high period of bending in Section 5.2. The case

of short-period periodic bending is studied numerically in Section 5.5. This chap-

ter also contains the detailed study of the parameters of simulation on its results.

The choice of the interaction potential is verified by the comparison of results for

Moliere and Pacios potentials. It is shown that the results of simulations do not

depend much on the selection between these interaction potentials.

The use of this approach allowed to study channeling in a complex case of bi-

nary Si-Ge crystals, and to obtain numerical characterization of influence of small

concentrations of Ge on dechanneling length and radiation spectra of multi-GeV

electrons. The Chapter 6 contains results of channeling simulations for this case

and the study of the dependence of parameters of channeling and radiation emission

of the concentration of Ge atoms.

The simulation of the propagation of projectiles with higher energy requires

taking into account the effect of radiation damping. This is one of the directions

of the further development of the model. As it was described in Section 2.1.2 this

extension of the model is required for projectile with energy above 50 GeV.

Another topic of future work is the study of channeling in non-ideal crystals.

The presence of defects in the crystalline structure leads to the decrease of effect

of channeling. The use of atomistic approach allows direct modeling of defects in

crystalline lattice and simulation of propagation of projectiles in such medium. This

approach allows direct simulation of propagation of projectiles in Si-Ge superlattices

with both constant and variable concentration of Ge atoms, and therefore can be

used for simulation of channeling in periodically bent crystals takin into account

their variable composition.

Another topic of future work is the study of channeling in nanostructured mate-

rials such as nanotubes and graphene. The use of these materials allows fine tuning

of crystal properties such as potential energy well depth and interplanar distance.

These materials can be applied for construction of radiation sources with specific

properties of channeling and undulator radiation.



Chapter 8

Acknowledgments

The research on which this dissertation reports has been conducted during the years

2012 to 2015 while employed at the Frankfurt Institute for Advanced Studies (FIAS),

Johann Wolfgang Goethe University. First I would like to thank my scientific ad-

visers Prof. Dr. Andrey V. Solov’yov and Prof. Dr. Stefan Schramm who has

guided my scientific work at FIAS and who have set interesting scientific goals for

my study. I would also like to thank my colleague Prof. Dr. Andrei Korol for

his help in the scientific work and proofreading of this manuscript. I would also

like Christian Kexel and Alexey Verkhovtsev for proofreading the Kurzfassung and

Zusammenfassung.

I would like to thank my colleagues Dr. Viktor Beschastnov, Dr. Alexander

Yakubovich, Alexey Verkhovtsev, Prof. Dr. Vadim Ivanov and Dr. Roman Polozkov

with whom I have published several works on channeling and also on studies of

properties of titanium and nickel-titanium alloys.

I am very grateful to professors and lecturers of the Moscow Institute of Physics

and Technology who were teaching me physics, maths and programming during my

undergraduate study. I would like to thank professors Vasily Kondourov, Andrey

Aksenov and Sergey Kharchenko who were my scientific advisers in that period

and who have introduced me to the application of numerical methods and high

performance computing to the problems of physics of rigid bodies and fluids.

My work in Frankfurt was supported by the European Commission CUTE (the

CUTE-IRSES project, grant GA-2010-269131), FP7 European Program ”Theoreti-

cal analysis, design and virtual testing of biocompatibility and mechanical properties

of titanium-based nanomaterials (ViNaT)” and COST Action MP1002 ”Nano-scale



110 Acknowledgments

Insights into Ion Beam Cancer Therapy”. The possibility to perform complex com-

puter simulations at the Frankfurt Center for Scientific Computing is gratefully

acknowledged.

Most importantly, I would like to thank my family for supporting me in this

work. Especially I want to mention my parents Elena and Boris, my wife Anastasia,

my son Ivan and my brother Vladimir.



Bibliography

[1] J. Lindhard, “Influence of crystal lattice on motion of energetic charged par-

ticles,” K. Dan. Vidensk. Selsk. Mat. Fys. Medd., vol. 34, pp. 1–64, 1965.

[2] D. S. Gemmel, “Channeling and related effects in the motion of charged par-

ticles through crystals,” Reviews of Modern Physics, vol. 46, pp. 129–227,

1974.

[3] G. Piercy, F. Brown, J. Davies, and M. McCargo, “Experimental evidence

for the increase of heavy ion ranges by channeling in crystalline structure,”

Physical Review Letters, vol. 10, 1963.

[4] S. Andersen, O. Fich, H. Nielsen, H. E. Schiøtt, E. Uggerhøj, C. V. Thomsen,

G. Charpak, G. Petersen, F. Sauli, J. Ponpon, et al., “Influence of channeling

on scattering of 2–15 gev/c protons, π+, and π- incident on si and ge crystals,”

Nuclear Physics B, vol. 167, no. 1, pp. 1–40, 1980.

[5] J. Bak, J. A. Ellison, B. Marsh, F. E. Meyer, O. Pedersen, J. B. B. Petersen,

E. Uggerhøj, S. P. Møller, H. Sørensen, and M. Suffert, “Channeling radiation

from 2 to 20 gev/c electrons and positrons: (II) axial case,” Nucl. Phys. B.,

vol. 302, pp. 525–558, 1988.

[6] B. Appleton, C. Erginsoy, and W. Gibson, “Channeling effects in the energy

loss of 3-11-mev protons in silicon and germanium single crystals,” Physical

Review, vol. 161, no. 2, p. 330, 1967.

[7] J. Davies, J. Denhartog, and J. Whitton, “Channeling of mev projectiles in

tungsten and silicon,” Physical Review, vol. 165, no. 2, p. 345, 1968.

[8] J. Bak, J. A. Ellison, B. Marsh, F. E. Meyer, O. Pedersen, J. B. B. Petersen,

E. Uggerhøj, and K. Østergaard, “Channeling radiation from 2-55 gev/c elec-



112 BIBLIOGRAPHY

trons and positrons: (I) planar case,” Nucl. Phys. B., vol. 254, pp. 491–527,

1985.

[9] R. Medenwaldt, S. Møller, S. Tang-Petersen, E. Uggerhøj, K. Elsener,

M. Hage-Ali, P. Siffert, J. Stoquert, P. Sona, and K. Maier, “Hard photon

yields from (70–240) gev electrons incident near axial directions on si, ge and

w single crystals with a large thickness variation,” Physics Letters B, vol. 242,

no. 3, pp. 517–522, 1990.

[10] J. Watson and J. Koehler, “Coherent bremsstrahlung and channeling radiation

from mev electrons in silicon and gold,” Physical Review A, vol. 24, no. 2,

p. 861, 1981.

[11] U. Wienands, T. Markiewicz, J. Nelson, R. Noble, J. Turner, U. Uggerhøj,

T. Wistisen, E. Bagli, L. Bandiera, G. Germogli, et al., “Observation of a

remarkable deflection of multi-gev electron beams by a thin crystal,” tech.

rep., SLAC National Accelerator Laboratory (SLAC), 2014.

[12] E. Bøgh, “Defect studies in crystals by means of channeling,” Canadian Jour-

nal of Physics, vol. 46, no. 6, pp. 653–662, 1968.

[13] L. C. Feldman, J. W. Mayer, and S. T. Picraux, Materials analysis by ion

channeling: submicron crystallography. Academic Press, 2012.

[14] M. Kumakhov, “Theory of radiation of charged particles channeled in a crys-

tal,” physica status solidi (b), vol. 84, no. 1, pp. 41–54, 1977.

[15] U. Uggerhøj and T. Wistisen, “Intense and energetic radiation from crystalline

undulators,” Nucl. Instrum. Methods B, 2015.

[16] L. Gevorgian, K. Ispirian, and R. Ispirian, “High energy particle channeling

in nanotubes,” Nucl. Instrum. Methods B, vol. 145, no. 1, pp. 155–159, 1998.

[17] S. Bellucci, V. Biryukov, Y. A. Chesnokov, V. Guidi, and W. Scandale, “Chan-

neling of high energy beams in nanotubes,” Nucl. Instrum. Methods B, vol. 202,

pp. 236–241, 2003.

[18] X. Artru, S. Fomin, N. Shulga, K. Ispirian, and N. Zhevago, “Carbon nan-

otubes and fullerites in high-energy and x-ray physics,” Physics reports,

vol. 412, no. 2, pp. 89–189, 2005.



BIBLIOGRAPHY 113

[19] A. V. Korol, A. V. Solov’yov, and W. Greiner, “Coherent radiation of an

ultrarelativistic charged particle channeled in a periodically bent crystal,” J.

Phys. B, vol. 24, pp. L45–L53, 1998.

[20] A. V. Korol, A. V. Solov’yov, and W. Greiner, “Photon emission by an ultra-

relativistic particle channeling in a periodically bent crystal,” Int. J. Mod.

Phys., vol. 8, pp. 49–100, 1999.

[21] S. Bellucci, V. Biryukov, G. Britvich, Y. A. Chesnokov, C. Balasubramanian,

G. Giannini, V. Guidi, Y. M. Ivanov, V. Kotov, V. Maisheev, et al., “Crystal

undulator as a new compact source of radiation,” Physical Review Special

Topics-Accelerators and Beams, vol. 7, no. 2, p. 023501, 2004.

[22] V. T. Baranov, S. Bellucci, V. M. Biryukov, G. I. Britvich, C. Balasubrama-

nian, V. Guidi, G. Giannini, V. N. Zapolsky, V. I. Kotov, A. E. Kushnirenko,

V. A. Maisheev, G. Martinelli, E. Milan, V. A. Pikalov, V. I. Terekhov, U. Ug-

gerhøj, V. N. Chepegin, and Y. A. Chesnokov, “First results of investigation

of radiation from positrons in a crystalline undulator,” JETP Letters, vol. 82,

pp. 562–564, 2005.

[23] A. Afonin, V. Baranov, S. Bellucci, V. Biryukov, G. Britvich, V. Chepegin,

Y. A. Chesnokov, C. Balasubramanian, G. Giannini, V. Guidi, et al., “Crystal

undulator experiment at ihep,” Nuclear Instruments and Methods in Physics

Research Section B: Beam Interactions with Materials and Atoms, vol. 234,

no. 1, pp. 122–127, 2005.

[24] V. T. Baranov, S. Bellucci, V. M. Biryukov, G. I. Britvich, V. N. Chep-

egin, Y. A. Chesnokov, C. Balasubramanian, G. Giannini, V. Guidi, V. I.

Kotov, A. E. Kushnirenko, V. A. Maisheev, G. Martinelli, V. A. Pikalov, V. I.

Terekhov, U. Uggerhøj, and V. N. Zapolsky, “Preliminary results on the study

of radiation from positrons in a periodically deformed crystal,” Nucl. Instrum.

Methods B, vol. 252, pp. 32–35, 2006.

[25] H. Backe, D. Krambrich, W. Lauth, K. Andersen, J. L. Hansen, and U. I.

Uggerhøj, “Channeling and radiation of electrons in silicon single crystals and

si1- xgex crystalline undulators,” in Journal of Physics: Conference Series,

vol. 438, p. 012017, IOP Publishing, 2013.



114 BIBLIOGRAPHY

[26] E. Bagli, L. Bandiera, V. Bellucci, A. Berra, R. Camattari, D. De Salvador,

G. Germogli, V. Guidi, L. Lanzoni, D. Lietti, et al., “Experimental evidence

of planar channeling in a periodically bent crystal,” The European Physical

Journal C, vol. 74, no. 10, pp. 1–7, 2014.

[27] T. N. Wistisen, K. K. Andersen, S. Yilmaz, R. Mikkelsen, J. L. Hansen, U. I.

Uggerhøj, W. Lauth, and H. Backe, “Experimental realization of a new type

of crystalline undulator,” Physical review letters, vol. 112, no. 25, p. 254801,

2014.

[28] U. Mikkelsen and E. Uggerhøj, “A crystalline undulator based on graded com-

position strained layers in a superlattice,” Nucl. Instrum. Methods B, vol. 160,

pp. 435–439, 2000.

[29] W. Krause, A. V. Korol, A. Solov’yov, and W. Greiner, “Photon emission by

relativistic positrons in crystalline undulators: the high-energy regime,” Nucl.

Instrum. Methods A, vol. 483, pp. 455–460, 2002.

[30] M. Tabrizi, A. V. Korol, A. V. Solov’yov, and W. Greiner, “Feasibility of

an electron-based crystalline undulator,” Physical Review Letters, vol. 98,

p. 164801, 2007.

[31] V. Baryshevsky and V. Tikhomirov, “Crystal undulators: from the prediction

to the mature simulations,” Nucl. Instrum. Methods B, vol. 309, pp. 30–36,

2013.

[32] A. V. Korol, A. V. Solov’yov, and W. Greiner, Channeling and Radiation in

Periodically Bent Crystals. Springer-Verlag Berlin Heidelberg, 2013.

[33] A. Kostyuk, “Crystalline undulator with a small amplitude and a short pe-

riod,” Physical Review Letters, vol. 110, no. 11, p. 115503, 2013.

[34] V. G. Bezchastnov, A. V. Korol, and A. V. Solovyov, “Radiation from multi-

gev electrons and positrons in periodically bent silicon crystal,” Journal of

Physics B: Atomic, Molecular and Optical Physics, vol. 47, no. 19, p. 195401,

2014.

[35] V. V. Tikhomirov, “A benchmark construction of positron crystal undulator,”

arXiv preprint arXiv:1502.06588, 2015.



BIBLIOGRAPHY 115

[36] O. Bogdanov, E. Fiks, K. Korotchenko, Y. Pivovarov, and T. Tukhfatullin,

“Basic channeling with mathematica c⃝: A new computer code,” J. Phys.:

Conf. Ser., vol. 236, p. 012029, 2010.

[37] V. M. Biryukov, “Computer simulation of beam steering by crystal channel-

ing,” Physical Review E, vol. 51, pp. 3522–3528, 1995.

[38] V. A. Maisheev, “Model-independent description of planar channeling at high

energies,” Nucl. Instrum. Methods B, vol. 119, pp. 42–47, 1996.

[39] J. H. Barrett, “Monte carlo channeling calculations,” Physical Review B, vol. 3,

no. 5, p. 1527, 1971.

[40] E. Bagli and V. Guidi, “Dynecharm++: a toolkit to simulate coherent interac-

tions of high-energy charged particles in complex structures,” Nucl. Instrum.

Methods B, vol. 309, pp. 124–129, 2013.

[41] P. S. D. Boerma, “Computer simulation of channeling in single crystals,” Nucl.

Instrum. Methods B, vol. 29, pp. 471–489, 1987.

[42] S. Fomin, A. Jejcic, V. Kasilov, N. Lapin, J. Maillard, V. Noga, S. Shcherbak,

N. Shul’ga, and J. Silva, “Investigation of the electron channeling by means of

induced electronuclear reactions,” Nucl. Instrum. Methods B, vol. 129, pp. 29–

34, 1997.

[43] N. Shul’ga and V. Syshchenko, “Investigation of the electron channeling

by means of induced electronuclear reactions,” Nucl. Instrum. Methods B,

vol. 227, p. 125131, 2005.

[44] G. B. Sushko, V. G. Bezchastnov, I. A. Solovyov, A. V. Korol, W. Greiner,

and A. V. Solovyov, “Simulation of ultra-relativistic electrons and positrons

channeling in crystals with mbn explorer,” Journal of Computational Physics,

vol. 252, pp. 404–418, 2013.

[45] G. Sushko, V. Bezchastnov, A. Korol, W. Greiner, A. Solov’yov, R. Polozkov,

and V. Ivanov, “Simulations of electron channeling in bent silicon crystal,”

Journal of Physics: Conference Series, vol. 438, no. 1, p. 012019, 2013.



116 BIBLIOGRAPHY

[46] G. Sushko, A. Korol, W. Greiner, and A. Solov’yov, “Sub-gev electron and

positron channeling in straight, bent and periodically bent silicon crystals,”

Journal of Physics: Conference Series, vol. 438, no. 1, p. 012018, 2013.

[47] G. B. Sushko, A. V. Korol, and A. V. Solovyov, “Multi-gev electron and

positron channeling in bent silicon crystals,” Nucl. Instrum. Methods B,

vol. 355, no. 0, pp. 39 – 43, 2015.

[48] R. Polozkov, V. Ivanov, G. Sushko, A. V. Korol, and A. V. Solov’yov, “Ra-

diation emission by electrons channeling in bent silicon crystals,” European

Physical Journal D, vol. 68, no. 9, p. 268, 2014.

[49] G. Molière, “Theorie der streuung schneller geladener teilchen I: Einzelstreu-

ung am abgeschirmten coulomb-feld,” Z. f. Naturforsch. A, vol. 2, pp. 133–145,

1947.

[50] L. F. Pacios, “Analytical density-dependent representation of hartree-fock

atomic potentials,” J. Comp. Chem., vol. 14, pp. 410–421, 1993.

[51] I. A. Solov’yov, A. V. Yakubovich, P. V. Nikolaev, I. Volkovets, and A. V.

Solov’yov, “Mesobionano explorer – a universal program for multiscale com-

puter simulations of complex molecular structure and dynamics,” J. Comp.

Chem., vol. 33, pp. 2412–2439, 2012.

[52] http://www.mbnexplorer.com/, 2012.

[53] W. G. A.V. Korol, A.V. Solov’yov, Channeling and Radiation in Periodically

Bent Crystals. 2nd Edition. Springer Berlin/Heidelberg, 2014.

[54] H. Backe, D. Krambrich, W. Lauth, J. L. Hansen, and U. K. I. Uggerhøj,

“X-ray emission from a crystal undulator: Experimental results at channeling

of electrons,” Nuovo Cimento C, vol. 34, pp. 157–165, 2011.

[55] A. Korol, A. Solov’yov, and W. Greiner, “Estimation of peak brilliance for a

cryslalline undulator laser,” tech. rep., 2012.

[56] G. C. Andonian, Experimental and Analytical Study of a High Gain Self Am-

plified Spontaneous Emission Free Electron Laser Operating in a Large Spectral

Bandwidth Regime. PhD thesis, University of California Los Angeles, 2006.



BIBLIOGRAPHY 117

[57] F. Stillinger and T. Weber, “New interatomic potential for silicon,” Physical

Review B, vol. 31, pp. 5262–5267, 1984.

[58] H. Bethe and W. Heitler, “On the stopping of fast particles and on the creation

of positive electrons,” Proc. Roy. Soc. London. Series A, vol. 146, pp. 83–112,

1934.

[59] H. A. Bethe and L. C. Maximon, “Theory of bremsstrahlung and pair pro-

duction. I. Differential cross section,” Physical Review, vol. 93, pp. 768–784,

1954.

[60] H. Davis, H. A. Bethe, and L. C. Maximon, “Theory of bremsstrahlung and

pair production. II. Integral cross section for pair production,” Physical Re-

view, vol. 93, pp. 788–795, 1954.

[61] U. Wienands, T. Markiewicz, J. Nelson, R. Noble, J. Turner, U. Uggerhøj,

T. Wistisen, E. Bagli, L. Bandiera, G. Germogli, et al., “Observation of a

remarkable deflection of multi-gev electron beams by a thin crystal,” SLAC

Scientific Publications, 2014.

[62] G. B. Sushko, A. V. Korol, and A. V. Solovyov, “Electron and positron prop-

agation in straight and periodically bent axial and planar si channels,” St.

Petersburg State Polytechnical University Journal, 2015.

[63] G. B. Sushko, A. V. Korol, and A. V. Solovyov, “Simulation of 20 gev electron

and positron -based small-amplitude short-period crystalline undulator,” St.

Petersburg State Polytechnical University Journal, 2015.

[64] R. Brinkmann, G. Mateerlik, J. Rossbach, J. Schneider, and B. Wiik, “An

x-ray fel laboratory as part of a linear collider design,” tech. rep., Deutsches

Electronen-Synchrotron DESY, 1996.

[65] A. Korol, A. Solov’yov, and W. Greiner, “Number of photons and brilliance

of the radiation from a crystalline undulator,” in International Conference on

Charged and Neutral Particles Channeling Phenomena, pp. 597405–597405,

International Society for Optics and Photonics, 2005.

[66] M. Dohlus, J. Rossbach, and P. Schmüser, “Ultraviolet and soft x-ray free-
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