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Abstract

We propose a multivariate dynamic intensity peaks-over-threshold modaptare ex-
treme events in a multivariate time series of returns. The random occuroémgreme
events exceeding a threshold is modeled by means of a multivariate dynamgitinbeadel
allowing for feedback effects between the individual processes.réf@pe alternative spec-
ifications of the multivariate intensity process using autoregressive camalifittensity and
Hawkes-type specifications. Likewise, temporal clustering of the sizeosfeelances is cap-
tured by an autoregressive multiplicative error model based on a digrdrRareto distribu-
tion. We allow for spillovers between both the intensity processes and tbegzrof marks.
The model is applied to jointly model extreme returns in the daily returns of thrge stack
indexes. We find strong empirical support for a temporal clusteringthfthe occurrence of
extremes and the size of exceedances. Moreover, significant fdedfiacts between both
types of processes are observed. Backtesting Value-at-Risk (VaREx@pected Shortfall
(ES) forecasts show that the proposed model does not only prodyamdan-sample fit but
also reliable out-of-sample predictions. We show that the inclusion of teingostering of
the size of exceedances and feedback with the intensity thereof resultiiénforecasts of
VaR and ES.

Keywords:Extreme value theory, Value-at-Risk, Expected shortfadlf-Bxciting point process,
Conditional intensity.
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1 Introduction

Financial risk management has become a ubiquitous taskaitks) companies, and financial
institutions, especially during the last subprime morwgagsis. The recent global crisis has
demonstrated the importance of modeling and forecastirextoéme events and their dynamic
behavior during crisis periods. Classical extreme valuerthéEVT) constitutes the mathemati-
cal and statistical foundation for the description of th&riution of extreme events. Traditional
methods to describe the tail of a loss distribution are tHeé/at-Risk (VaR) and the Expected
Shortfall (ES) (McNeil & Frey 2000, Cotter & Dowd 2006, Chav@emoulin et al. 2014). On the
other hand, point process methods allow the dynamic behaf{extreme) events to be captured
and are typically applied in the context of portfolio cred#k, market microstructure analysis,
international contagion analysis, or jump-diffusion miedg&ngle & Russell 1998, Bauwens &
Hautsch 2006, Errais et al. 2010, Bacry & Muzy 2014, Ait-Sihetl al. 2015). Moreover, point
process theory provides an elegant formulation for theattarization of the limiting distribu-
tion of extreme value distributioLnd therefore, builds a natural complementary framework to
extreme value analysis.

In this paper, we aim to bring together both branches of teedliure and propose a dynamic
multivariate model capturing the occurrence and size akex¢s in a multivariate time series.
Important features of the proposed framework are to allow(ijlotemporal clustering of both
the occurrence of extremes and the size thereof, (ii) csestional feedback between individual
exceedance intensities, and (iii) feedback between theniualgp of exceedances and their inten-
sity. On the one hand, we introduce an autoregressive ¢onditintensity peaks-over-threshold
(ACI-POT) model, which, in its most basic form, corresporaghie combination of two known
models: the ACI model introduced by Russell (1999) and the P©dlainby Davison & Smith
(1990). Moreover, we propose a multivariate extension oawkés-POT model, introduced for
the univariate case by Chavez-Demoulin et al. (2005) andahtlaeviewed in different financial
contexts (Chavez-Demoulin & McGill 2012, Herrera & Schipd2)

The major advantage of these new approaches is that theyapaure the clustering of ex-
treme events — both over time and within a cross-sectionh Patterns typically occur in crisis

periods and substantially challenge risk management. diitiad, this class of processes gen-

1The original development of this characterization is httiéd to Pickands (1971) and Smith (1989).



erates a flexible and computationally tractable multivaerdgependence structure, properties that
are empirically well-documented (Bowsher 2007, Hall & Hatt2007, Hautsch 2011, Bacry
etal. 2012, Bacry et al. 2013).

A further contribution, from an empirical perspective,ogliscuss some stylized facts related
to the cluster behavior of extreme events within financialkess. To this end, we consider three
well-investigated international stock market indexes:@AX, the S&P 500, and the FTSE 100.
We show that, by means of the multivariate ACI-POT and Hawk@3- approaches, we can
capture these stylized facts and produce reliable forecdafaR and ES.

The remainder of the paper is organized as follows. In Se&jove discuss some stylized
facts that are associated with the cluster behavior of edrevents in financial time series.
Section 3 summarizes the concepts in EVT from the viewpdipomt process theory. Section
4 introduces the ACI-POT and Hawkes-POT models. In Sectiomesillustrate how to apply
the proposed models to produce conditional risk measurds &sl the VaR and ES. Section 6
discusses estimation results and diagnostics which ardbas applications of the proposed
models to the daily returns of international stock index8sction 7 provides VaR and ES in-

sample and out-of-sample backtesting results. Conclusiangendered in Section 8.

2 Clustering of Extreme Events

The clustering of extreme events is recognized as previdahire in most financial time series.
The tendency for very large movements of prices (exceedame® a sufficiently high threshold)
to be clustered through time is one of the major challengearid obtaining reliable risk mea-
sures. A major difficulty is to reliably predict both the semed likelihood of extreme events (e.g.,
large losses; BCBS 2012). In this section, we highlight somiestyfacts and demonstrate the

need for approaches capturing both the dynamic and distiial features of extreme events.

2.1 Clustering of Extreme Gains vs. Extreme Losses

A well-known observation is that co-movements in interoiadil stock market returns are asym-
metric. In particular, correlations are higher in marketvdturns than in upturns, and there is

a higher level of clustering for losses than for gains. Nuwusrstudies have examined these



stylized facts. For instance, for the Dow Jones Stoxx 60&in8aur et al. (2012) find that the
lower quantiles exhibit positive dependence upon pastnstuvhile the upper quantiles display
negative dependence. Tseng & Li (2011) use different aasetshow that larger extreme events
tend to cluster more than smaller ones. Similarly, largededend to congregate together more
severely than large gains. Hamidieh et al. (2009) analyzedturns of the S&P 500 index during
the period from 1960 to 2007 and show that losses exhibihg&oclustering than gains. Olmo
(2005) analyzes the DAX index for the period from 1994 to 2@@1 finds a higher level of
clustering for large losses than for gains. Jondeau & Ro&kiGg003) report evidence of the
clustering of extremes for a large number of countries, wlifferences in the cluster size for
positive and negative returns.

In order to illustrate this "stylized” fact, we consider ajual-weighted portfolio based on the
DAX, S&P 500, and FTSE 100 indexes from 1992 to 2012. A flexim@-parametric tool for
capturing different types of extremal dependence is theeexdgram introduced by Davis et al.
(2009), which can be considered as an analog of the auttatiorefunction for extreme events.

Let X, be a strictly stationarR¢-valued time series, the extremogram at kaig defined by

pap (h) = lim P (z7'X, € A2~ X, € B),

T—r00

for h = 0,1,2,..., provided that the limit exists for two sets and B bounded away from B

Similarly, we can define the cross-extremogram as

¢ap(h)= lim P(y 'Y, € Ala""'X, € B),

,y—00

which can be straightforwardly extended to higher dimemsidn practice, the limits om or y
in the above equations are replaced by high quantiles ofrtheepses.

For all (cross-) extremograms displayed in this paper, vileeita stationary bootstrap to
construct confidence intervals with block sizes given byratependent geometric distribution
with mean250, which closely corresponds to the number of yearly tradiagsd The sampling
distributions of the (cross)-extremogram and confidente&als are obtained based ot 000

bootstrap replications. For a complete discussion andlsle@na the estimation and construc-

2Normally, in univariate time series, the choice of the setsléfined byA = B = (1,00), and thus, the
extremogram corresponds to the upper tail dependenceaiesffbetweenX, and X;,.
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Figure 1: 8.5% of the most extreme losses (top left) and dawisom left) for an equal-weighted
portfolio based on the DAX, S&P 500, and FTSE 100 indexes fi®@®2 to 2012. The sample
extremograms are shown in the middle figures with losse<itajmand gains in the bottom. The
right figures show the cross-extremograms for losses donditon gains (top right) and gains
conditional on losses (bottom right) at different lags. @ashed line corresponds to the value of
the extremogram under the null hypothesis of independena®a% confidence level obtained
by 100 permutations. The sampling distribution of the (syeextremogram and confidence in-
tervals are obtained based o 000 bootstrap replications.

tion of confidence intervals for extremograms, we refer teiBat al. (2012). Figurell displays
extremograms and their corresponding cross-extremogwvaths: andy being the91.5% em-
pirical quantiles of the portfolio in both taHs Observe that the (cross-)extremograms decay
hyperbolically at the 95% confidence level of independerscags increase, with losses con-
ditional on gains decaying at the slowest rate. In additibe,extremogram of losses and the
cross-extremograms for losses conditional on gains shewrtbst significant dependence on
many lags. These results are similar to the findings proviediseng & Li (2011), Hamidieh

et al. (2009), and Olmo (2005).

2.2 Clustering of Extreme Events Across Time

Besides clustering within a time series, we also observe deteay for clusters of extremes to

simultaneously occur across different markets. An obvimason for this observation is an

3The justification of the tail threshold selection for all éngal approaches is given in subsection 6.1.
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Figure 2: From top to bottom: Time series of 9% of the mosteartr losses (th&l % empirical
guantiles of the negative log returns), the conditionatmsity for the occurrence of losses, the
trivariate sample cross-extremograms correspondingltth) and ¢2 (h), respectively. From
left to right for DAX, S&P 500, and FTSE 100 indexes.

increasing market integration, which is most distinctivehe U.S. and Europe.

In Figurel2, we display the time series of 9% of the most negatig returns of the three in-
dexef. We observe a considerable amount of clustering of extrermress the different markets.
In our sample, the first important cluster can be identifiednduthe late 1990s and early 2000s,
which is associated with the Asian financial crisis in 199d@ #re end of the dot-com crash in
October 2002, respectively. The most recent cluster isscedtaround the 2008 global financial
crisis, starting in 2007 with the subprime crisis in the IM®reover, we display trivariate cross-
extremograms for the analyzed returns. For instanceX |&t, andZ be the negative log returns
of the DAX, S&P 500, and FTSE 100 indexes, respectively. Tliea third panel displays the

4See subsection 6.1. for threshold selection.



cross-extremogram

oY (h) = lim P (y'VaeAUu:'Z,e Ala'Xo € 4),
,Y,2—00

with z, y, andz being the91% empirical quantiles of the negative log returns ahe- (1, ).

Likewise, in the bottom panel of Figulé 2, we depict the cressemogram

¢h(h)= lim P(a'Xg€A|y Vo€ AU 2712, € A)

T,Y,2—00

There is evidence for both types of cross-extremal depardamong losses, at least for one
time lag. Studying the co-clustering of extreme events igit@ly important for the stability
of financial systems and implied systemic risk. For instafmethe period from 1954 to 2003,
Longin & Solnik (2001) show that the top largest daily exteeraturns (positive and negative) of
the S&P 500 index tend to appear around the same date, eestidbk market crash of October
1987. For a set of European stock markets, Poon et al. (20@d)Hat extreme dependence
among these countries is much stronger in bear markets mhiamlimarkets, and that some of
this dependence is related to volatility co-clustering. tBy® (2004) shows that the 50 most
extreme losses for the Swedish index AFF (Affarvarlden’'s\éalindex) and the Dow Jones
Industrial Average index during the period from 1980 to 1@@8ur within the same month for
half of the extremes, while two-thirds occur within the saoo@rter.

The dynamics of such co-clustering of extreme events isilgedéescribed by a multivariate
intensity process. This is what we try to capture by means@fapproaches proposed in this
paper. For illustration, the second panel of Figure 2 digpthe conditional intensities for the
occurrence of extreme events based on a univariate ACI-PQIEincorresponding to a special
case of the model discussed in Sectfion 4.1.

2.3 Autocorrelations in Inter-Exceedance Times

The inter-exceedance time is commonly defined as the tireeviatbetween consecutive extreme
price events. In this vein, times between price events haes lused as a proxy for volatility
estimation on the basis of price intensities in high frequestata analysis (Engle 2000, Gerhard
& Hautsch 2002).



Classical EVT assumes independent and identically dis&th(iID) observations. Accord-
ing to this assumption, the exceedances over a high thigesholuld behave as a Poisson point
process, implying that inter-exceedance times should perentially distributed. Empirical
evidence, however, clearly contradicts this assumpticaking the direct use of this approach
guestionable. For this reason, a number of new approaclses! lwm the dynamic behavior of
inter-exceedance times or the occurrence times of extreer@shave been proposed (Chavez-
Demoulin & McGill 2012, Herrera & Schipp 2014).

Figure[3 shows a quantile-quantile plot (top panel) cotittgghe empirical distribution of
inter-exceedances times to an exponential distributioalch case, the exponential distribution
is clearly at odds with empirical observations. Moreoveg, neport the autocorrelations among
inter-exceedance times, providing evidence for a highekegf autocorrelation in all of the time
series. Finally, the bottom panel shows univariate emgdiegtremograms measuring the impact
of a large loss on future realizations within the same stoekket. All estimates are highly
significant, and thus, consistent with earlier findings rdo the presence of serial extremal
dependence on stock markets (Chavez-Demoulin & McGill 20Ejs et al. 2012, Chang et al.
2013).

3 A Point Process Approach to EVT

Consider the negative returns of a given st¢2k}, . , and suppose, for the moment, that all of the
observations are 11D and have a common distribution funckio To characterize the behavior of
the maximal/,, = max {Z1, ..., Z,}, classical EVT yields that, for given normalizing sequence

a, > 0,b, € Randn — oo, the limiting distribution ofM,,,

P <ML—_bn < z) = F" (anz + by), (1)

Qn,

converges in distribution to the Generalized Extreme V&&IEV) distribution function

Xp § — z=p\~L/¢
R R R A

exp {—exp (=3H) ), £=0,
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Figure 3: QQ-plots for inter-exceedance times, autocatiai of inter-exceedance times, and
sample extremograms for the 9% most extreme losses of the B&R 500, and FTSE 100 log
returns.

wherey, £ € R, ando > 0, corresponding to location, shape, and scale parameﬂzeprectivelH

The convergence ofl(1) holds if and only if

lim n{l — F(a,z+0b,)} = —InHe,,(2).

n— o0

The timet; and magnitude of an extreme eveént = 7, (the mark) exceeding a given
thresholdu > 0 is recorded by the pait;,Y;) € Q = (0,1] x (u, c0), where, for convenience,
time is measured on a rescaled interiall |.

Under the assumption that the losses are IID and statioRarkands (1971) shows that the
two-dimensional point process defined in a sub-regioa (0,¢] x (y, o0) can be characterized

by the counting process (A) = > .., 1{t; <t,Y; = y} corresponding to a non-homogeneous

SWe definea, = max (a,0).



Poisson process with intensity function

At,y) = o 2)

wherep, ¢ € R, ando > 0 are the same parameters as those determining the GEV digtnb
function. Consequently, for a sBt= (t1,t2) x (y,o0), with B C (, the intensity measure, or

alternatively, the mean of the point proces®irs given by

E{N(B)}:A(B):/tg/oo/\(r,l) drdl = —(to —t1)In He 5 (y) .

The intensity of the two-dimensional point procelsk (2) carrdawritten in terms of a so-
called marked point process (MPP). In the given framewdré&,drrival times corresponding to
the time when a return exceeds a threshold 0 are driven by the so-called ground (intensity)
process, while the marks correspond to the magnitude ob#dset. Formally, an MPP is defined
through the right-continuous counting function(t) := N (0,¢] = >, 1{t; <t, Y; =y} of
the time-ordered sequence of marked pofiits, ;) } .., in a defined nonempty countable #et
The internal history (natural filtration) of this processlenoted by, = {(¢;,Y;) Vj : t; < t}.
Following Daley & Vere-Jones (ZOOH))Lhe intensity of a MPP can be described as

/\(t,y|7'lt)Z)\g(t|7-[t)g(y|7-lt,t), (3

where), (¢ | H,) corresponds to the intensity of the ground proc®8st) = >, 1{t; < t},
andg (y | H., t) corresponds to the density function of the marks, condifiam the history of
the process and the tinieof the last event. Rewriting the intensify (2) in terms of anMEhe

ground process corresponds to
Ag (E| He) = —=InHe o (u)

which is the rate of a Poisson point process of exceedances dhe threshoIdH

6Definition 7.3.11 in Daley & Vere-Jones (2003).
"Note that the intensity does not depend on time. Therefbestywto-dimensional point process corresponds to a
non-homogeneous Poisson process.
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On the other hand, according to the Pickands-Balkema-de iHesrem, the density of

IID marks is well-approximated by a generalized Pareto idgfhsnction
0
+ (4)

wheref = o + £ (u — p) is a reparametrized scale parameter. This representatiaiid in the
case of IID observations, which, however, is not empincalipported. In the next section, we

introduce a dynamic generalization of this framework.

4 Multivariate Dynamic Intensity Peaks-Over-Threshold Mod-
els (MDI-PQOT)

We consider aii/ —variate MPPN (t) := (N,,(t))™_,), where each dimension € {1,..., M}
is characterized by a double sequelﬁtﬁéjﬁ, ij) }jzl of random variables in a s& defined on
a probability spacé(2, H,P). In this framework denotes the (pooled) calendar time, afd
corresponds to the inter-exceedance time of progeswith N9 (¢) being its marginal ground
process. Moreover, each-th component of the MPP is linked to an exceedariteconstitut-
ing the mark. The MDI-PQOT is then generally specified vialdn-variate vector of conditional
intensities \ (t,y | H,) == (\™ (t,y | He))o_,, whereH, = {(#7,Y/") V¥ (m,j) : 7 <t} de-

notes the complete internal history.

4.1 The Multivariate ACI-POT Model

In the case of the ACI-POT model, the conditional intensityhaf ground process is driven by
three main components depending on the hisféyy (i) a left-continuous dynamic proceds

that is updated instantaneously after the occurren¢e pfand does not change untjl, (ii) the
"standardized" excesg;" , = yj*,/u™, capturing the influence of the size of extreme events
on the conditional intensity by means of the parameéjgrand (i) \j*(¢) = A\ (z(¢)), corre-
sponding to a baseline intensity that changes continuonglrms of its own inter-exceedance

timesa™(t) = ™ — ¢}y, . Using the standardized excegs, € (1,oc] instead of the "raw”

11



excess”', = yi*, — u™ in the ground process is advantageous to avoid numeridahiites
of estimates in the case of very high exceedances. Suchesthnations are commonly used in
EVT (see, e.g., Resnick 2006). Accordinghy; (t | H,) is given by

)\;n (t | Ht) = €Xp <q)N,’}L(t) =+ W&(t)716m> )\gz (t) ) (5)

whered,, captures the effect of the size of the loss exceedance omtiesity. As proposed
by Russell (1999), we specify the x 1 vector®; := (®},..., q)j”) as a VARMA(1,1)-type

specification of the form

Doy = (A"eng -1 + BOngw)-1) 2N )1 (6)

wherez}" denotes an indicator variable that takes on the value ohe jith event of the pooled
process is of type:, and zero otherwised™ = {a,, } is anM x 1 coefficient vector denoting the
impact of the innovatior; on the ground intensity of th& -variate processes when the previous
extreme event was of type, andB = {b,,,} corresponds to an/ x M coefficient matrix of
persistence parameters. In addition, the innovation tgris an [ID exponential random vector

based on the integrated intensity, which is computed byeprese integration
M
e =) {1-A" ()} 4 (7)
m=1

whereA™ (t;."_l,t;") = ftijl Ay (s | H)ds is them-type integrated intensity. This allows the

conditional intensity function to vary between extremerg\arivals. Finally, the baseline inten-
sity function A" (¢) is specified in the form of an appropriate hazard functiorthis paper, we

utilize the generalized gamma distribution with hazarcdcfion given by

(1) = |G| (4,%)"
0 oma™(t) [ sim’—le=sds

edm@m —21Ingm

exp (¢ (Gm@m — exXP (Gn@m))) ,

12



with ¢,,, # 0, ando,,, v,, > 0. If ,,, ~ Gamma(q,?, 1), andw,, = In (¢%nm) /G, thenz™(t) =
exp (v, + ow,,) follows a generalized gamma distribution (Prentice 191#)This type of
hazard function is commonly used in the empirical literatsince it exhibits both monotonic and
non-monotic behavior.

To capture the dynamics in the magnitudes of exceedancgs,opese a conditional autore-
gressive specification for the mark density. h,é%%(t) =k (T?Vl%(t) ] ’Ht> be the log of the
conditional expectation of the raw exce$s, ;) = yy., — v Then, the size of exceedances in

them-th component follows a logarithmic multiplicative errooael (MEM) (Engle 2002) given

by

e = o (9Rnw) R
k m m m
Ungy = Wit Pm TN oy 0 BN )1+ YmTNg -1

wherexz'y, ., is the lagged inter-exceedance tinge, ,, = ¥y, ) — In(1 — &), with &, €

R, being the shape parameter of the GPD, and 3,., 7., are parameters. The logarithmic
specification ensures the non-negativity of the procedsourttexplicitly imposing corresponding
parameter restrictions. The error terejs o are IID generalized Pareto random variables with

a probability density function given by

m
"'Ng, (1)

el | — 7
exp <9053,9,L<t>>

The parametet,, captures the effect of the most recently elapsed intereslargce waiting time

m _1/§m_1
| %t,t - (1 + fmTNgl(t)> .

on the size of the extreme event. The covariance statignafitn 'y,
|pm + Bm| < 1 (Bauwens & Giot 2000).
Under the proposed MEM specification, the conditional dgredithe raw exceedano%g(t)

(-1 is guaranteed by

is therefore given by

_l/gm_l

, (8)

m
r
N (t)

exp (90713%(16)) exp <g0’137gn(t)>

8This generalized gamma specification is preferred to thgirai parametrization by Stacy (1962) since it is
more numerically stable near zero.

) (i | Hast) = 1+ &

9 m
Em,€xp ‘PNgq(ﬂ

13



which corresponds to a generalized Pareto density withtianging scale parametexp <gp§3% ( t)> .
Finally, imposing specification§l(5) arid (8) infd (3) yietdle multivariate ACI-POT model with
them-th component given by

_1/£7n_1
€xp (q)Nﬁn(t) + mzl(w—ﬁm) >\6n (t)

€xp (SOT]\’};?,I (t) )

N
xp (g0

The stationarity of the ACI-POT model is ensured if the eigdmes of the persistence matrix

A (ty | He) = L+ &m 9)

B in (@) lie inside the unit circle, which is equivalent to thegestral radius of the persistence
matrix being less than one (i.e., §@#) = max {|¢| : det (B — ¢I) =0} < 1), wherey; are
the eigenvalues oB (see Proposition 2 in Russell 1999). Observing the processtbe time

interval (0, T, the resulting log-likelihood function is given by

M Nj.(T)

Lty | Hibie) = D> ge opom) (17| Heti61) (10)

m=1 j=1

M N(T) ;
+) { ST (t | Hs 02) — /tm Agm(s|7-[s;02)ds},
m=1 j=1 j

Jj—1

¢m

with 6; and6d, denoting the corresponding parameter vectors.

4.2 The Multivariate Hawkes-POT Model

A Hawkes process is a self-exciting point process as ofiigim@roduced by Hawkes (1971).
This class of point processes has wide applications in mdfgyeht fields, primarily in seismol-
ogy (Hawkes & Oakes 1974, Ogata 1988), and more recentlyamdie (Bowsher 2007, Dassios
et al. 2011, Embrechts et al. 2011, Bacry et al. 2012, Bacry. @0413). In the context of EVT,
a univariate Hawkes-POT process was introduced by ChavemDien et al. (2005), and more
recently reviewed in Chavez-Demoulin & McGill (2012). Ingshpaper we closely follow the

representation of a Hawkes process given by Embrechts(@Cdll).
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According to a Hawkes process, the ground process fortile component is given by

M N;(t)
g (8| He) = po + Y b B (E = 15) (11)
k=1 j=1

wherey,,, > 0 corresponds to the immigrant rate, or baseline intensityR — R* is a decay
kernel describing the instantaneous influence ofttlle component, and how this deviates from
the baselineu,, through time. Finally, the parametebs, > 0 are coefficients defining the
M x M branching matrixB = {b,,+}. Similar to the ACI-POT model, the stationarity of the
process is ensured if the spectral radiuga$ strictly less than one. We assume the decay kernel
function corresponding to the product of two exponentiactions: one puts exponential weights
on the time elapsed since the last event. The other scal&sithel by the size of the standardized

excessy), =y, /u™. Accordingly,hi* (¢ — t) is given by
hy' (t — tf) = a exp ((5;@? — ag (t - tf)) ,

with a;, > 0 andd, € R. Observe that the impact of spillovers between the ind&iquocesses
are captured by the parametéys..

As in the ACI-POT model, we specify the size of the exceedafaresachm-th component
based on an MEM model according ko (8). This yields the madfiate Hawkes-POT model given

by

S 0, SR g e (5075 —an (1)) e e
Aty ) = e e 1 g e |
exp

P (“’%%(t)) (“"%(t)
(12)

The log-likelihood is then given by

M N(T)

WL (ty | Hib,0) = 3 Y gl oy (7| Hiti01)

m=1 j=1

M [ N&(T) T
+Y 0> 1nAy(tj|%t;92)—/A;”(s\Hs;92)ds ,
m=1 j=1 0

wheref, and#, denote the corresponding parameter vectors. Note thattiaengters associated
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with the Hawkes and ACI specifications for the intensities auaaks are disjointed, which allows

us to estimate them separately.

5 Improving Conditional Risk Measures

The Basel Committee on Banking Supervision has proposed usSingdtead of VaR as an in-
ternal model-based approach for regulatory market riskt@amainly because of the inability
of VaR to capture tail risk (BCBS 2012, BCBS 2013). Gneiting (20hbyyever, demonstrates
that, although ES is a coherent risk measure (Artzner eBa@b)land is able to capture tail risk,
it does not satisfy the requirement of elicitability (i.&cannot be straightforwardly backtested).
The virtues and limitations of both risk measures have fbnegulators and practitioners to
adopt only one of them, and therefore, the features eitheoloérence or elicitability. Here, we
illustrate how to derive both risk measures based on thegsepMDI-POT specifications.

Consider all losse$Y; },., defined as the negative log returns of a particular assetwwith
derlying cumulative distribution functiof’. For ease of exposition, we omit the superschipt
ES is estimated by first obtaining the VaR at confidence leyalhich is equivalent to estimating
the predictive distributionfy, ., %, (v5")) for the returns over the next period,

yitt = FXZLIHt (o) == VaR:.

By computing the conditional survival functidfy, ., ,, (v) = 1 — Fy,,, 1, (v) as

FYt-H\Ht (y) = P(}/t-‘r1>y|,Ht)
= PYi1>ul|H)P(Yier >y+u| Y >u,Hy),

the probabilityP (Y;;.1 > u | H;) can be derived as

PN, (t+1)= N,(t) > 0| H,) = 1—exp (—/t+1)\g(s|7{s)ds),
Ag (E | He),

Q

where the last result is obtained by using the asymptotictigeln () ~ = — 1 asz — 1. The
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conditional probability of exceedances is then computed as

S A (s, H,) dsdl
L[N (s, 1] M) dsd

t

-1/
y—u ]
() et 190

P(Yiyi >y+u|Y >uHy) =

exp (QONg

where denotes the conditional generalized Pareto survival fonctFinally, the

fveXP<SON9(t)>
VaR is defined in terms of the quantijé™, with P (Y, > "' | H;) = 1 — «, implying

«

g 11—« =
VCLRI;-FI =+ exXp (QDN (t)) < ) 1.
3 Ag (] He)

From this result, the associated conditional ES, corredipgrto the conditional distribution

of extreme events above the VaR, givip is computed as

I VaRi! a(r) —
ESIT = P / VaR™Mds = f_ag eXp (901N _<t>§) Su (13)
Note that
E t+1 1
lim 00 (14)

a1 VaREFT  1-¢
with the limit not depending on time. Recently, the Basel Cortewi{BCBS 2013) proposed
using the VaR at the 0.99 confidence level in internal modeskld approaches with ES evaluated
at the 0.975 confidence level. According to the Basel CommiE&ds less sensitive to extreme
events than VaR, and therefore, should account for the skilinia more comprehensive form.

We analyze this proposition in the next section.

6 Applications

6.1 Empirical Setting

We employ the log returns of the DAX, S&P 500, and FTSE 100»xedethrough the sample
period from January 2, 1992 to December 31, 2012, coveriB§44trading days. Our first

application is based on a bivariate model for the analysithefclustering of extreme losses
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Figure 4: Threshold selection in the bivariate applicatitine left (right) panel shows the results
of (I8) for losses (gains). The gray rectangle displays tiset that seems to be the most stable
for a given shape parameter (x-axis) and different tuningipaterss (y-axis).

and gains of an equally-weighted portfolio based on theetimdexes. The second application
considers a trivariate model to jointly model negative leturns of the three indexes.
In order to determine the tail threshalgdwe follow the statistic proposed by Reiss & Thomas

(2007) to determine the number of exceedaricby

& — median(él, . ,§k> : (15)

k
1
. _ 1 .3
arg min f(k) = ’ El i

whereé; is the estimate of the shape parameter for the sample fracfiextremes above the
upper order statisti¢, and5 € [0,0.5] is a tuning parameter. The idea is to find the sample
proportion for which the distribution of the shape parametie stable. According to Figuié 4, a
proportion between 395 and 445 observations for gains asg¢toseems to be a satisfactory size.
We thus choose to work with 420 observations, corresportdiBd% of the most extreme events
for losses and gains. For the trivariate case, we determiheeahold of 9% to be a reasonable

choice.
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6.2 Empirical Results

Modeling Extreme Gains and Losses

Table[1 in the Appendix displays the estimation results fithtihe ACI-POT and Hawkes-POT

specifications. We choose a lag order of one for all model amapts, which keeps the model
preferably parsimonious while still sufficiently captugithe dynamics in the data. Preliminary
analysis shows that higher lag orders would consideraluisease the complexity of the model
without strongly improving its fit. This is in line with othestudies in the literature employing

dynamic intensity processes, (Kehrle & Peter 2013, Bacry &WR014, Ait-Sahalia et al. 2015).

In Figure[%, we plot the resulting estimates of the condd#lantensity of the ground processes
of positive and negative log returns, respectively, basedaih the Hawkes-POT and ACI-POT
models. The bottom panel shows a barcode plot with the dadters depicting the magnitude

of extreme (absolute) return observations.

The overall best fit is achieved for an ACI-POT model. We finddewice for spillover ef-
fects between positive and negative extreme observa@snsaptured by the persistence matrix
B. Note that the persistent coefficient associated with megaktreme eventdf, = 0.652)
is larger than that for positive extreme everits (= 0.521), indicating that the extent of clus-
tering of extremes tends to be larger for extreme lossesftiraextreme gains. Moreover, the
off-diagonal persistence coefficients reveal that negagxtreme events more frequently cause
positive extreme events than vice versa (> by;). Finally, we find evidence for spillovers in the
innovations, as reflected by the largge coefficients.

Similarly, the estimates of the Hawkes-POT model revealewe for spill-over effects be-
tween negative and positive returns and clustering of mrevents. The estimated persistence
matrix B indicates that negative extreme events are more likely tolbmved by another nega-
tive event §;, = 0.274) than by a positive extreme evemnt{ = 0.205).

Overall, our estimates strongly support an obvious asymynimdtween positive and nega-
tive extreme returns, as discussed in Section 2. This iscpéatly true for the coefficiend,,,
which captures the influence of the marks on the intensitdserve that this coefficient is neg-
ative for gains and positive for losses, indicating thatatisg extreme events tend to increase

the probability of observing further extreme negative ¢sewhile positive extreme events tend
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Figure 5: Bivariate conditional intensity of the ground pres for the analyzed index portfolio.
The two top panels show the estimated conditional intexssdf the ground processes for positive
log returns based on the Hawkes-POT (top panel) and ACI-P@3Jo(sl panel) specifications.
Correspondingly, the third and fourth panel exhibit the ¢ooal intensity of the ground pro-
cesses for negative log returns based on the Hawkes-PQd fthnel) and ACI-POT (fourth
panel) specifications. The bottom panel displays a barctudevberein the black or gray colors
indicate the log returns causing the extreme observation.

to decrease the probability of seeing further positive kRo@s a result of this self-enforcing
behavior, negative returns are much more clustered thativeosnes. This is in line with the
predictive asymmetry hypothesis by Campbell & Hentsche®®)Owhich suggests that volatil-
ity is higher after stock markets exhibit losses, makinglstoarket returns negatively correlated
with future volatility.

According to the parameter estimates, the baseline hamaddidéns of the inter-exceedance
times of both return processes reveal an inverted U-shathetiae@ underlying densities being
positively skewed asg,, < 0. As shown by Figur€l6, we observe that for negative retutres, t
baseline function\, decreases more slowly than for positive returns. Conselyu¢iné tem-
poral clustering of negative extremes is clearly highentfa positive ones. Recall that the
dynamic proces$,;, and correspondingly, the size of the last extreme obdgervatcelerate the

conditional intensity function and its implied risk meassirbut does not affect the shape of the
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Figure 6: Baseline hazard functions for the bivariate ACI-R@ddel. The left plot exhibits the
baseline hazard function for positive returns, (= —1.114, ando,, = 2.261,v,, = 3.418),
while the right plot shows the baseline hazard function fegative returns«,, = —0.919, and
om = 5.662, v, = 13.391).

baseline hazard function. On the other hand, the estimétee MEM specification for the mag-
nitude of marks provide clear evidence for a clustering efdize of exceedances. Hence, small
(large) exceedances are likely to be followed by small @aexceedances. The coefficients,
moreover, are both negative and strongly significant, etthg that long lagged inter-exceedance
times imply a reduction of the expected size of the markss Thin agreement with Santos &
Alves (2012), Hammoudeh et al. (2013) and Herrera & Schipd42.

Residual diagnostic tests for the MDI-POT approach are basdbe de-meaned integrated
intensities of the ground process (= 1 — ﬁtgl Ay (s | Hs)ds), which, according to the ran-
dom time change theorem (Meyer 1971), should be IID stanebgpgdnentially distributed with a
mean of zero. Accordingly, Engle & Russell’s (1998) test fxcess dispersion uses the statistic
\/n./852, wheren. corresponds to the number of residuals &nis the empirical standard devi-
ation of the residuals series. Under correct model spetidits, the test statistic is asymptotically
normally distributed.

We observe that the residuals are, on average, close towincstandard deviations not far
from unity. Moreover, according to Ljung-Box statisticse issumption of independence cannot
be rejected, indicating that the model is able to capturediimamics of the data fairly well.
The test of excess dispersion, however, reveals sligheael for over-dispersion, indicating
that both approaches are still not sufficiently flexible tptoae the distributional properties of

inter-exceedance times.
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Modeling Cross-Sectional Spillovers in Extremes

Table[2 gives the estimation results based on trivariate4OT models for extremes in DAX,
S&P 500, and FTSE 100 returns. In order to benchmark thisogir;, Tablé13 reports restricted
versions of the proposed ACI-POT and Hawkes-POT models, riticpkar, MDI-POT models
without incorporating cross-sectional feedback between indalidixceedance intensities and
withoutfeedback between the magnitude of exceedances and thditioaal ground intensities.
Subsequently, we associate these specifications withittestt models.

The main result is that the unrestricted MDI-POT approa@xdsbit a better fit in terms of
the AIC and residual diagnostics. In particular, the muéxaitation mechanism of these models
is what determines the rate of occurrence of future extreraets, matching the stylized fact that
clusters of extreme events in financial markets are produrcpdrt by contagion effects. Hence,
it turns out that allowing for both clustering in extremesldar feedback between the size and
the intensity of extremes is statistically supported.

The best-fitting specification is the unrestricted ACI-POTdelo It turns out that the flexible
parametrization of the ground process in the ACI-POT spetifin compared to the Hawkes-
POT specification significantly improves its explanatorwpg capturing auto-correlation struc-
tures among the inter-exceedance times in a more efficiemt fimdeed, residuals of the ground
process for the ACI-POT model have mean and standard devielitser to zero and one, re-
spectively, than the residuals of the Hawkes-POT model.LJineg Box statistics report that the
residuals resulting from both approaches do not exhibitieimg serial dependence.

In the unrestricted ACI-POT approach, the ground processny persistent, with relatively
low innovation coefficients and relatively high persisteparameters. All persistence parameters
are significant and support the stationarity of the undegyrocess. Similarly to the bivariate
case, the baseline functions in the trivariate case reveahamonotonic and inverted U-shaped
pattern. As illustrated in Figufg 7, the baseline hazardtions show an increasing hazard rate
until three to four days after the last extreme event ocauinile it declines thereafter. This non-
monotonic pattern seems to be an important feature chaimgtgethe time evolution of extreme
events on financial markets and requires flexibility of thdentying parameterization. Observing
peaks of the baseline functions around the three- to foumtrk, moreover, reflects underlying

temporal clustering, making it more likely to observe aliert extreme price movement just
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Figure 7: Baseline hazard functions for both trivariate ACHPmodels. The left (right) plot

exhibits the baseline hazard function of the unrestrictest(icted) ACI-POT model. The solid,
dashed and dotted lines correspond to the baseline hazasticius of negative returns for the
DAX, S&P 500, and FTSE 100 indexes, respectively.

after a previous one than after a long period without exceesla In addition, we find that the
influence of the exceedance size on the conditional intenéithe ground process, as captured
by the coefficient,,, is significant in both specifications for the FTSE 100 and Oégreturns.
Hence, extreme events in one series increase the condiiinbeasity for the next extreme event
in the same series, but also in the other series. This resuitline with the estimates of the
trivariate sample extremograms in Figlie 2 and with previstudies of extreme dependence
in international stock markets, where extreme losses teradf¢éct several stock markets at the
same time, creating co-movements and a stronger depenaacey their conditional intensities
(Poon et al. 2003, Baltzer et al. 2008).

In the dynamic specification for the marks, we find a strongsigtgnce with coefficients
Gn < 1. Hence, exceedance sizes are clearly autocorrelated amdover, negatively depend
on the length of past inter-exceedance waiting times, asctefil by the coefficient,,. As in the
bivariate model above, residual diagnostics reveal thet BIDI-POT specifications capture the

distributional and dynamic features in the underlyingesesufficiently well.

7 MDI-POT- Based VaR and ES Forecasting

An important advantage of VaR-based risk assessments iodsthity of backtesting. Con-

versely, there is no consensus on how to backtest ES. Emmakr(2013) propose a framework
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to backtest ES based on a representation in terms of theabtegvaR,

1 1
ESH = / VaR!™ds (16)

1l —«

Q

1
4 [VaRy™ + VaRg 7504005 + VaRiharos T VaRghsa o) -

This allows making use of backtesting techniques develdpe¥aR. In particular, if each of
these confidence levels are successfully backtested,ttharcertain degree, the same is true for
ESI1. In order to test the accuracy of the VaR estimates, we etdibattery of tests proposed
in the literature, which are described in detail in Apperi@lixThe first three tests are based on
a binomial type test introduced by Christoffersen (1998)uaconditional coverage test2,..),
evaluating the expected fraction of exceptions (i.e., edaaces of the VaR), a test for the inde-
pendence of exception& R;,4), and a conditional coverage teétR..), which is a combination
of the latter two. Moreover, we implement the dynamic quartests proposed by Engle &
Manganelli (2004) which rely on linear regressions. The fsghe dynamic quantile hit test
(DQit), where de-meaned exceptions are regressed on their lags,the second one, the dy-
namic quantile VaRIDQy ,r) test, uses in addition the contemporaneous VaR estinfaiteslly,

we implement a loss measuvé” which evaluates the potential loss between the forecassed E

(EfS’l) and the observed retur®() at timet, given that this return has exceeded the actual VaR

_ Zf:o (Rt - <_ET9;)> 1{R,g<—\7a\Ri}.

VES —
> i=0 1{Rt<_mg}

An accurate estimate of ES should result in a low absoluteevaf this quantity. However, its
weakness is that it depends on the accuracy of the prelignVeR estimation, since only returns
below the VaR are taken into account (Embrechts et al. 2@a%)instance, if the VaR estimates

of a MDI-POT model do not generate any exceedances, thisureeaannot be evaluated.

Accuracy of MDI-POT- Based Risk Forecasts

In order to assess the accuracy of the proposed approachibe festimation and prediction of
VaR and ES at different confidence levels, we estimate alletsagsing the sample from January

2, 1992 to December 31, 2012. The estimated parametersaraiied to compute one-day-
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Figure 8: From top to bottom: estimat®@%-VaR (gray line) and7.5%-ES (black line) for
the trivariate ACI-POT model with generalized gamma hazarattion applied to negative log
returns of the FTSE 100, DAX, and S&P 500 indexes. In-sameted: January 2, 1992 to De-
cember 31, 2012. Out-of-sample period: January 2, 2013 ¢teber 31, 2013 (marked by dark
background). The bottom panel shows a barcode plot with tiglors indicating extreme events
in the FTSE 100, DAX, or S&P 500, and the mid-range dark coiedécating a simultaneous
extreme event in any pair of negative log returns. The daakkotolor marks a simultaneous
extreme event in all three negative log return series.

Pooled Process Time

ahead forecasts of tH#®%-VaR and97.5%- ES in the forecast period from January 2, 2013
to December 31, 2018.The model parameters are not re-estimated each tradingrzey the
additional information obtained from the forecast samplaegligible compared to the sample
period data and results would only change very mildly.

Tablel4 in the Appendix gives the test outcomes for the inpa@and out-of-sample VaR and
ES estimates of the trivariate MDI-POT models jointly maniglextremes in all three index se-
ries. Recall that we need to estimate the VaR confidence 16¥6I&5, 0.98125, 0.9875, 0.99375)

9The Basel Committee (BCBS 2013) recommends changing tkdaised capital framework building &9%-
VaR t097.5%-ES. These confidence levels are used in our empirical a@salys
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in order to make use of the integral representafioh (16)lerpbs to backtest ES at thg.5%
level. For comparison purposes, we also report the VaR dt #9econfidence level.

According to the VaR accuracy, as reflected by p-values grehain 0.05 in Tablgl4, the
specifications providing the most accurate in-sample fittla@eproposed models which explic-
itly include mutual interactions between the point proessand the processes of exceedances.
Indeed, the unrestricted MDI-POT models pass the tessmore often than the others. Com-
paring the predictive performance of the individual speaiibns in the estimation sample, the
Hawkes-POT model reveals a slightly better performance itisaACI-POT counterpart in terms
of theVV£9 statistic. On the other hand, the ACI-POT model outperfotmadtawkes-POT model
in terms of thel. R;,,; and DQ tests of independence.

Likewise, for the backtesting period, the unrestrictectcgmmations yield correct estimates for
most of the confidence levels, wifl9% of p-values greater than 0.05 for the accuracy tests. In
contrast, this percentage is reduce®®; for the restricted approaches. It is remarkable that
the unrestricted ACI-POT model is the only specification iy that all p-values are greater
than 0.05 for the entire set of tests. The unrestricted HaviA@T approach slightly overesti-
mates one of the VaR confidence levels for DAX returns. Thesalts suggest that Hawkes-
POT models might have tendency to overfit in-sample but 8liginderperform out-of-sample.
Therefore, working with ACI-POT models is slightly prefelain a backtesting context. In fact,
the Hawkes-POT model tends to produce estimates for the WARES slightly higher than the
ACI-POT models, which is also reflected in thé"> measure. Hence, overall we can conclude
that unrestricted MDI-POT models (i.e., allowing for cressitements among markets) results
in significant improvements in VaR and ES forecasting. Imteof VaR accuracy tests, both the
ACI-POT and Hawkes-POT approach perform similarly well &tcahfidence levels, with the
ACI-POT model being slightly superior.

Figures[8 and19 display the estimated VaR and ES times sesi@dlon the unrestricted
ACI-POT and Hawkes-POT models, respectively. The figures stteow barcodes visualizing
the extent to which extremes occur individually or jointlty the three series. We observe the
highest estimates of VaR and ES in all series during 20002.20Qring this period, the three
stock market indexes experienced large losses that werdyntiie to the dot-com crash and the

aftermath of the 9/11 terrorist attacks. After this perithd level of extreme risks declined until
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Figure 9: From top to bottom: estimatefl’%-VaR (gray line) and7.5%-ES (black line) for the
trivariate Hawkes-POT model applied to negative log retwhthe FTSE 100, DAX and S&P
500 indexes. In-sample period: January 2, 1992 to Decenthe2(®.2. Out-of-sample period:
January 2, 2013 to December 31, 2013 (marked by dark backdyothe bottom panel shows
a barcode plot with light colors indicating extreme eventthe FTSE 100, DAX, or S&P 500,
and the mid-range dark colors indicating a simultaneougm event in any pair of negative log
returns. The dark black color marks a simultaneous extremetén all three negative log return
series.

Pooled Process Time

the subprime crisis in 2007, followed by the global crisi2308—-2009.

We note that most of the extreme eventsrdi occur exactly on the same o@y.ln fact,
only the S&P 500 losses exhibit simultaneities with extreawents in other return series on the
same day. Specifically, 169 out of 441 losses occur simubtasig with the DAX and 14 out of
441 losses with the FTSE 100. Only one extreme event happanofaneously in the DAX and
FTSE 100 returns, and just one extreme event occurs sineaitesty in all three stock markets.

Finally, as an additional evaluation metric, we analyzedifierence between the predicted
99%-VaR and97.5%-ES based on both approaches. According to the Basel Comr(i&RS

OFor the DAX, S&P 500 and FTSE 100, we observe 269, 257, and ¥2&nge events, respectively.
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2013),97.5%-ES is less sensitive to extreme events thand¥ié-VaR and should, therefore,
account for tail risk in a more comprehensive way. From artgzal point of view, the ratio
between both measures should be closB$9.o75/V aRo.g9 ~ 0.45/(1 — &), wheret is the shape
parameter of the GP.Since for all return series analyzed, we hgve- 0, the ratio should
be greater than one. Taljle 5 reports the time series avatagadh estimation and backtesting
periods) of this ratio for the unrestricted models. The Itesndicate that the ratios are greater
than one and nearly identical for both approaches, but abtisi higher in case of the ACI-
POT model. In addition, for both approachésS, o75 is approximately3% higher than/a R g9

on average and therefofeS, 75 is less sensitive to extreme events. Finalyy, 475 provides a
more complete view of tail risk, due to the fact we need taeste the VaR at different confidence

levels.

8 Conclusions

We propose a multivariate dynamic intensity framework iotjg model the occurrence of ex-
treme observations (exceeding a certain threshold) in évaudate time series of log returns.
The event arrival is modeled as a MPP where the marks areiassbaevith the magnitude of
(loss) exceedances. The major feature of these modelsliswofar the clustering of the arrival
of extremes over both time and the cross-section and théeding of the size of exceedances.
This is achieved by combining a multivariate dynamic intgngrocess (ACI process or Hawkes
process) with a multiplicative error model based on a gdizePareto distribution for the mag-
nitude of exceedances. Both components are linked to alloiealback effects between the
arrival intensity of extremes and the size of exceedancegeathe threshold.

Empirical evidence based on the return series of the DAX, S&®, and FTSE 100 indexes
provides strong support for the models. We find significaideawce for (co-)cluster structures in
extreme stock market losses, which are well-captured bpitygosed approach period. Further-
more, we demonstrate that the new models yield a good osémiple backtesting performance
when they are applied to the prediction of VaR and ES.

We see it as a major advantage of the proposed frameworkttbahibe easily extended

11 VaRo 975 ~ 13 250075 ~, 1
Note thatT2fe2zs ~ 0.4¢ and from [1#) we know th% ~ e
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in various directions and — depending on the chosen spduiica is also tractable in higher
dimensions. Consequently, it might be used as a valuablectrank to analyze, for instance,

systemic risk or tail dependencies.
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A Backtesting Tests

The first three tests utilized in this paper are introducehyistoffersen (1998). The first cor-
responds to a test of unconditional coveragéi(.), which evaluates the expected fraction of
exceptionsl; = I(r, < —VaR!), with I denoting the indicator function. We test the null hy-
pothesis thaf, | H; ~ Bernoulli («), against the alternative that| H; ~ Bernoulli (&) (i.e.,

Hy : o = @). This can be tested by means of a likelihood-ratio test
LR, =2[L(&;1h,.... 1) — L(a; L1, ..., I,)] ~ X3,

where/ is the binomial log likelihood. The maximum likelihood ewatora is the ratio of the
number of violations to the total number of observationsisTest implicitly assumes that the
exceptions are independent, an assumption which is tastedacond test. Here, we assume that

the exceptiong, follow a binary first order Markov chain with transition prlity matrix

1 —7o1 7o . .
H: R Wij:P(It:j’Itflzl).
Il —my 7
We test the null hypothesis thak, : 7o = 71 (i.e., past VaR violations do not contain informa-
tion about current and future violations). By denoting= my; = 71, a likelihood ratio test is

given by

LRmd =2In ((

noo __Nno1 nio __nii
1 — 7o1) To1 (1 - 7Tll) 1 ) 2
v

(1— ﬂ_)noo-&-nw no1+na b

with n;; being the number of observations of an evieoh dayt — 1 following an eventj on day

t. The maximume-likelihood estimators under the alternatiypothesis are

No1 ni

and 7 =

o1 = —
Moo + No1 N1o + N1t

Christoffersen (1998) suggests to simultaneously testicorrect unconditional coverage and

independence yielding a test for correct conditional cager

LRcc - LRuc + LR'md ~ X%
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In a more general framework, Engle & Manganelli (2004) idtroe a dynamic quantile test
(DQ) to evaluate different types of dependence. Defifi¢, («) = I, — « as the de-meaned
exceptions. Jointly testing the hypothesis thdtiit, (a)] = 0 and thatHit, («) is uncorrelated

with variables included in some information $€f can be done using the artificial regression,
Hltt = XB + u,

whereu is an 1ID mean zeo random variable aXdcontains, for example, lags dfit;, VaR
estimates, etc. Under the null hypotheAis: S = 0, the regressors should have no explanatory
power,i.e., the regressors are not correlated with therakype variables. The test statistic is
given by A A

/ /

DQ = % ~ X;12>+27

wherep is the number of explanatory variablés In the empirical application, we use the
dynamic quantile hit DQy;;) test, where the regressors contain a constant and theddgge
variable, and the dynamic quantile VaR@y ,r) test, utilizing in addition the contemporaneous
VaR estimates.

Finally, we employ the measuié”® which evaluates the difference between the predicted
ES (ESZ) and the observed returk() at timet, given that this return has exceeded the actual
VaR, i.e.,

o (Rt - (—E5;)> Ypevari™)

VES
T
=0 1{Rt<—v&Rfjl}

This statistic is close to zero if the model is appropriatefEechts et al. 2005). However, its
weakness is that it depends on the accuracy of the VaR es8irsihce only returns below the

VaR are taken into account.
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B Figures and Tables

Model ACI-POT Hawkes-POT
Log returnm gains losses gains losses
par (s.e) par (s.e) par (s.e) par (s.e)
Ground process

A 0.994 (0.217) 2.404 (0.350) o, 0.006 (0.006) 0.020 (0.006)
b1 0.521 (0.102) 0.153 (0.084) b,; 0.562 (0.695) 0.274 (0.336)
b2 0.268  (0.046) 0.652  (0.050) b, 0.205 (0.089) 0.570 (0.082)

U 3.418 (0.355) 13.391 (2.624) a, 0.008 (0.003) 0.048 (0.008)

Om 2261 (0.230) 5.662 (2.738) 4, -0.408 (0.084) 0.303 (0.085)

Um -1.114  (0.286) -0.919 (0.843)

Om -0.033 (0.066) 0.258 (0.074)

L1, -2824.509 -2890.241

Spr 0.799 0.803

Ground process residuals

Mean €,,) -0.037 0.005 0.057 0.226

o 0.875 1.076 0.705 0.821
Exc.disp. -1.788 1.184 -3.847 -2.417
LB.(5) 0.000 0.964 0.646 0.1934

Mark process

W, -0.391  (0.208) -0.647 (0.206)

Pm 0.090 (0.024) 0.084 (0.020)

B 0.820 (0.059) 0.761  (0.053)

Vm -0.003 (0.002) -0.005 (0.002)

Em 0.088 (0.046) 0.005 (0.050)

Diagnostics
LL, 1829.263 1704.919

Table 1: Estimates of bivariate MDI-POT models for extrenmeesses and gains of a portfolio
based on log returns of the FTSE 100, DAX and S&P 500 indexas ffanuary 2, 1992 to
December 31, 2012. Standard errors are in parenthdsegorresponds to the log-likelihood
of the ACI or Hawkes part, whilé L, is associated with the POT part. The Akaike Information
Criterion for the AIC-POT model is- 1371 and for the Hawkes-PO¥F1248. Spr : Spectral radius
of the persistence matrix. Mean,(): mean of residualsj.: standard deviation of the residuals,
LB.(5): Ljung-Box statistic based on 5 lagexc. disp.: excess dispersion test according to
Engle & Russell (1998).
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Model ACI-POT Hawkes-POT
Log-returnm FTSE 100 DAX S&P 500 FTSE 100 DAX S&P 500
par (s.e) par (s.e) par (s.e) par (s.e) par (s.e) par (s.e)
Ground process

a, 0.695 (0.061) 0.569 (0.066) 0.422  (0.064) u, 0.036 (0.006) 0.028 (0.006) 0.015 (0.005)

b1 -0.600 (0.062) -0.359 (0.306) -0.387 (0.272) b,; 0.053 (0.051) 0.005 (0.032) 0.025 (0.035)

b 0.861  (0.071) 0.998 (0.232) 0.095 (0.244) b,», 0.060 (0.056) 0.135 (0.085) 0.002 (0.036)

[ 0.221  (0.416) -0.038 (0.073) 0.994 (0.019) b,3 0.282 (0.097) 0.303 (0.108) 0.690 (0.153)

U 3.854 (0.224) 3982 (0.270) 3.374 (0.355) @, 0.070 (0.034) 0.054 (0.018) 0.031 (0.007)

Om 1586 (0.131) 1.773 (0.171) 2.087 (0.198) ¢, 0.570 (0.238) 0.555 (0.281) 0.063 (0.118)

Gm -0.093 (0.183) -0.200 (0.219) -1.027 (0.253)

Om 0.239  (0.077) 0.236 (0.079) 0.080 (0.053)

LL, -4316.352 -4488.769

Spr 0.993 0.703

Ground process residuals

Mean €,,) -0.017 -0.006 -0.001 0.091 0.030 0.162

A 1.001 0.968 0.965 0.921 0.983 0.906
Excess.dis  0.093 -0.484 -0.533 -1.161 -0.257 -1.370
LB.(5) 0.158 0.112 0.125 0.132 0.178 0.432

Mark process

Wy -0.392  (0.195) -0.761 (0.204) -0.324 (0.191)

Pm 0.047  (0.013) 0.018 (0.021) 0.096 (0.023)

Bm 0.855 (0.047) 0.792 (0.049) 0.819 (0.058)

Ym -0.004 (0.002) -0.008 (0.001) -0.001 (0.001)

Em 0.009 (0.048) 0.009 (0.041) 0.049 (0.044)

Diagnostics
LLy 1783.334 1663.95 1747.058

Table 2: Estimates of unrestricted trivariate MDI-POT mleder negative log returns of the
FTSE 100, DAX and S&P 500 indexes from January 2, 1992 to Dbeerd1, 2012. Standard
errors are in parenthesesLcorresponds to the log-likelihood of the ACI or Hawkes pattile/
LL, is associated with the POT part. The Akaike Information @otefor the AIC-POT model

is —1371 and for the Hawkes-POF 1248. Spr : Spectral radius of the persistence matrix. Mean
(em): mean of residualsy.: standard deviation of the residualsB.(5): Ljung-Box statistic
based on 5 lagExc. disp.:excess dispersion test according to Engle & Russell (1998).
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Model ACI-POT (Restricted) Hawkes-POTRestricted)

Log-returnm FTSE 100 DAX S&P 500 FTSE 100 DAX S&P 500
par (s.e) par (s.e) par (s.e) par (s.e) par (s.e) par (s.e)
Ground process

m 1.076  (0.099) 1.090 (0.111) 1.119 (0.138) p, 0.031 (0.220) 0.028 (0.196) 0.014 (0.295)

bun 0.653 (0.044) 0.698 (0.037) 0.675 (0.057) b, 0.664 (0.119) 0.699 (0.095) 0.855 (0.070)

U 2.870 (0.057) 3.109 (0.054) 2.777  (0.076) a, 0.031 (0.228) 0.035 (0.195) 0.024 (0.201)

Om 1.305 (0.056) 1.371 (0.066) 1.490 (0.062)

Gm 0.045 (0.163) 0.061 (0.173) -0.423 (0.184)

LL, -4336.305 -4517.941

Spr 0.698 0.855

Residuals

Mean €,,) 0.014 0.024 0.043 0.335 0.303 0.145

O 1.056 1.007 1.030 0.915 0.902 0.957
Excess.dis  0.878 0.108 0.467 -1.247 -1.421 -0.635
LB.(5) 0.011 0.343 0.224 0.449 0.575 0.576

Mark process

Wy, 0.553 (0.011) 0.546 (0.009) 0.095 (0.101)

Pm 0.911 (0.019) 0.891 (0.033) 0.854 (0.024)

B 0.004 (0.049) 0.027 (0.011) 0.049 (0.019)

&m 0.012 (0.062) 0.011 (0.056) 0.084  (0.057)

Diagnostics
LL, 1780.377 1651.475 1746.103

Table 3: Estimates of restricted trivariate MDI-POT modelsnegative log returns of the FTSE
100, DAX and S&P 500 indexes from January 2, 1992 to Decembge@12. Standard errors
are in parenthesed.L,corresponds to the log-likelihood of the ACI or Hawkes pattjle/L L,

is associated with the POT part. The Akaike Information @ote for the AIC-POT model is
—1371 and for the Hawkes-POTF1248. Spr : Spectral radius of the persistence matrix. Mean
(em): mean of residualsy.: standard deviation of the residualsB.(5): Ljung-Box statistic
based on 5 lagExc. disp.:excess dispersion test according to Engle & Russell (1998).
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VaR in-sample for the trivariate intensity model

ACI-POT Hawkes-POT ACI-POTRestricted) Hawkes-POT(Restricted)

Stock Indexy excep. LRuc LRind LRecDQpir DQvar VES x 10% excep. LRuc LRind LRecDQpir DQuar VS x 10° excep. LRuc LRind LRCADQyir DQvar VES x 10% excep. LRuc LRind LRecDQpiy DQvar VES x 10°
FTSE 100 0.975 132 0.80 0.40 0.67 0.40 0.60 1.36 122 0.52 0.03 0.09 0.04 0.02 1.02 2809 0.02 0.01 0.02 1.77 127 0.85 0.00 0.00 0.00 0.00 0.96
0.98125 100 0.74 0.47 0.73 0.47 0.77 1.60 850.22 0.23 0.23 0.24 0.46 0.29 3BDO3 0.05 0.05 0.10 0.82 95 0.87 0.01 0.03 0.01 0.01 1.11

0.9875 53 0.14 0.02 0.02 0.02 0.06 0.64 62 0.75 0.04 0.13 0.05 0.12 1.16 53684028 0.58 0.64 1.02 59 0.48 0.71 0.73 0.71 0.58 0.74

0.99 40 0.09 0.32 0.15 0.32 0.61 0.36 44 0.27 0.39 0.38 0.40 0.69 0.43 42 0.160.25360.36 0.40 0.79 42 0.16 0.36 0.25 0.36 0.42 0.18
0.99375 21 0.03 0.68 0.10 0.68 0.89 -0.85 230.08 0.65 0.20 0.65 0.90 -0.70 .0210®%8 0.10 0.68 0.91 -0.32 23 0.09 0.09 0.06 0.09 0.15 -0.40
DAX 0.975 129 0.99 0.02 0.07 0.02 0.06 2.27 123 0.59 0.04 0.10 0.04 0.11 1.85 2P06 0.00 0.00 0.00 2.23 125 0.72 0.00 0.00 0.00 0.00 2.64
0.98125 890.42 0.29 0.41 0.29 0.42 2.06 850.22 0.00 0.01 0.00 0.01 1.65 890230.00 0.00 0.00 1.96 78 0.05 0.00 0.00 0.00 0.00 1.41

0.9875 54 0.17 0.13 0.13 0.13 0.17 1.95 550.22 0.14 0.16 0.14 0.30 1.84 54 027003 0.02 0.03 2.32 46 0.01 0.07 0.01 0.07 0.13 1.12

0.99 390.06 0.30 0.11 0.31 0.28 1.51 390.06 0.04 0.02 0.04 0.08 1.03 43 0.210.0050.05 0.08 2.71 35 0.01 0.02 0.00 0.02 0.06 0.68
0.99375 200.02 0.07 0.01 0.07 0.10 0.18 22 0.05 0.08 0.04 0.08 0.08 -0.74 119@6 0.01 0.06 0.08 -0.07 23 0.09 0.09 0.06 0.09 0.23 1.22
S&P 500 0.975 117 0.27 0.43 0.40 0.44 0.56 0.82 122 0.52 0.25 0.42 0.25 0.51 0.90 813D 0.13 0.32 0.44 0.68 117 0.27 0.19 0.23 0.19 0.42 0.41
0.98125 89 0.42 0.71 0.67 0.72 0.34 0.31 890.42 0.64 0.64 0.64 0.89 0.59 8®®270.49 0.65 0.20 0.43 93 0.71 0.57 0.79 0.57 0.84 0.87
0.9875 56 0.27 0.27 0.30 0.27 0.32 -0.26 49 0.04 0.33 0.08 0.34 0.63 -1.00 ®BOH®B2 0.65 0.69 0.05 -0.46 50 0.06 0.32 0.10 0.33 0.61 -1.21
0.99 40 0.09 0.43 0.17 0.43 0.59 -1.34 38 0.05 0.45 0.10 0.46 0.75 -1.45 46 M320%B3 0.43 0.04 -0.94 38 0.05 0.45 0.10 0.46 0.75 -1.85
0.99375 250.18 0.62 0.36 0.62 0.81 -2.24 23 0.08 0.65 0.20 0.65 0.46 175  4R8%B8 0.66 0.58 0.71 -1.04 23 0.09 0.65 0.22 0.65 0.57 -2.37

VaR out-sample for the trivariate intensity model
ACI-POT Hawkes-POT ACI-POTRestricted) Hawkes-POT(Restricted)

Stock Indexy excep. LRuc LRind LReaDQpir DQvar VE x 10% excep. LRuc LRind LRecDQprir DQuar VS x 10° excep. LRuc LRind LRCADQyir DQvar VES x 10% excep. LRuc LRind LRecDQpiy DQvar VES x 10°
FTSE 100 0.975 6 0.98 0.13 0.31 0.13 0.06 2.74 60.98 0.13 0.31 0.13 0.12 3.82 6 0.98 0D00OD 0.00 2.21 8 0.42 0.25 0.38 0.26 0.29 3.97
0.98125 50.80 0.08 0.21 0.08 0.05 3.86 30.46 0.78 0.73 0.78 0.77 3.70 6 0.480.0000.01 0.00 4.08 4 0.83 0.05 0.13 0.05 0.07 3.45

0.9875 20.55 0.85 0.82 0.85 0.56 3.74 10.18 0.93 0.41 0.93 0.92 4.35 30.99 048008 0.04 4.25 2 055 0.85 082 0.85 0.39 4.82

0.99 10.31 0.93 0.59 0.93 0.89 4.59 10.31 0.93 0.59 0.93 0.92 5.99 2 0.80 0.850@%5 0.20 4.49 1 0.31 0.93 0.59 0.93 0.96 5.20

0.99375 00.07 1.00 0.20 1.00 1.00 - 00.08 1.00 0.22 1.00 1.00 - 00.09 1.00 ™23 1.00 - 0 0.09 1.00 0.23 1.00 1.00 -

DAX 0.975 50.69 0.64 0.83 0.65 0.05 4.17 50.69 0.64 0.83 0.65 0.05 4.83 6 0.98 068068 0.05 2.89 7 0.67 051 0.74 052 0.18 2.76
0.98125 40.82 0.71 0.91 0.71 0.08 6.00 40.82 0.71 0.91 0.71 0.10 6.96 30.4600380.78 0.03 1.04 6 0.48 0.03 0.04 0.04 0.02 4.21

0.9875 10.18 0.93 041 0.93 0.66 6.84 10.18 0.93 041 0.93 0.68 7.50 30.99 068008 0.04 4.08 3 0.99 0.78 0.96 0.78 0.28 5.37

0.99 10.31 0.93 0.59 0.93 0.37 4.57 00.03 1.00 0.09 1.00 1.00 - 30.70 0.78 0.89 004 5.77 2 0.80 0.85 0.95 0.85 0.59 6.50

0.99375 00.07 1.00 0.20 1.00 1.00 - 00.08 1.00 0.22 1.00 1.00 - 00.09 1.00 ®MA3 1.00 - 0 0.09 1.00 0.23 1.00 1.00 -

S&P 500 0.975 7 0.67 0.51 0.74 052 0.48 3.02 50.69 0.64 0.83 0.65 0.15 1.07 6 0.98 0680B8 0.05 2.26 5 0.69 0.64 0.83 0.65 0.10 0.23
0.98125 6 0.48 0.58 0.67 0.58 0.52 4.49 50.80 0.64 0.87 0.65 0.17 2.59 40.8300r10.71 0.18 2.77 5 0.80 0.64 0.87 0.65 0.12 1.72

0.9875 20.55 0.85 0.82 0.85 0.77 4.22 40,57 0.71 0.79 0.71 0.32 4.19 2 0.55 8385085 0.16 3.47 4 057 0.71 0.79 0.71 0.29 2.85

0.99 20.80 0.85 0.95 0.85 0.82 5.66 30.70 0.78 0.89 0.78 0.36 4.71 2 0.80 0.850@%5 0.15 4.97 3 0.70 0.78 0.89 0.78 0.30 3.12

0.99375 00.07 1.00 0.20 1.00 1.00 - 00.08 1.00 0.22 1.00 1.00 - 00.09 1.00 ™23 1.00 - 2 0.68 0.85 0.90 0.85 0.89 4.92

Table 4: VaR accuracy test for both MDI-POT approaches, Herib-sample period (from January 2, 1992 to December 312)201

and the backtesting period (January 2, 2013 to December@@B)2 Entries in the rows are the significance levels (peglwf the
respective accuracy tests, with exception of the confidewved o for the VaR, the measuié”®, and the number of exceptions of the
VaR (excep.). The entries with values (-) indicate that #s tannot be estimated due to missing observations.



ACI-POT Hawkes-POT Theoretical
in-sample backtesting in-sample backtesting

FTSE 100 1.020 1.022 1.018 1.022 1.001
DAX 1.024 1.026 1.021 1.026 1.001
S&P 500 1.044 1.039 1.034 1.048 1.005

Table 5: Time series average of the rali6 75 /V a Ry 9.
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