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Abstract

We propose a multivariate dynamic intensity peaks-over-threshold model to capture ex-
treme events in a multivariate time series of returns. The random occurrenceof extreme
events exceeding a threshold is modeled by means of a multivariate dynamic intensity model
allowing for feedback effects between the individual processes. We propose alternative spec-
ifications of the multivariate intensity process using autoregressive conditional intensity and
Hawkes-type specifications. Likewise, temporal clustering of the size of exceedances is cap-
tured by an autoregressive multiplicative error model based on a generalized Pareto distribu-
tion. We allow for spillovers between both the intensity processes and the process of marks.
The model is applied to jointly model extreme returns in the daily returns of three major stock
indexes. We find strong empirical support for a temporal clustering of both the occurrence of
extremes and the size of exceedances. Moreover, significant feedback effects between both
types of processes are observed. Backtesting Value-at-Risk (VaR) and Expected Shortfall
(ES) forecasts show that the proposed model does not only produce agood in-sample fit but
also reliable out-of-sample predictions. We show that the inclusion of temporal clustering of
the size of exceedances and feedback with the intensity thereof results in better forecasts of
VaR and ES.
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Conditional intensity.
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1 Introduction

Financial risk management has become a ubiquitous task for banks, companies, and financial

institutions, especially during the last subprime mortgage crisis. The recent global crisis has

demonstrated the importance of modeling and forecasting ofextreme events and their dynamic

behavior during crisis periods. Classical extreme value theory (EVT) constitutes the mathemati-

cal and statistical foundation for the description of the distribution of extreme events. Traditional

methods to describe the tail of a loss distribution are the Value-at-Risk (VaR) and the Expected

Shortfall (ES) (McNeil & Frey 2000, Cotter & Dowd 2006, Chavez-Demoulin et al. 2014). On the

other hand, point process methods allow the dynamic behavior of (extreme) events to be captured

and are typically applied in the context of portfolio creditrisk, market microstructure analysis,

international contagion analysis, or jump-diffusion models (Engle & Russell 1998, Bauwens &

Hautsch 2006, Errais et al. 2010, Bacry & Muzy 2014, Aït-Sahalia et al. 2015). Moreover, point

process theory provides an elegant formulation for the characterization of the limiting distribu-

tion of extreme value distributions,1 and therefore, builds a natural complementary framework to

extreme value analysis.

In this paper, we aim to bring together both branches of the literature and propose a dynamic

multivariate model capturing the occurrence and size of extremes in a multivariate time series.

Important features of the proposed framework are to allow for (i) temporal clustering of both

the occurrence of extremes and the size thereof, (ii) cross-sectional feedback between individual

exceedance intensities, and (iii) feedback between the magnitude of exceedances and their inten-

sity. On the one hand, we introduce an autoregressive conditional intensity peaks-over-threshold

(ACI-POT) model, which, in its most basic form, corresponds to the combination of two known

models: the ACI model introduced by Russell (1999) and the POT model by Davison & Smith

(1990). Moreover, we propose a multivariate extension of a Hawkes-POT model, introduced for

the univariate case by Chavez-Demoulin et al. (2005) and recently reviewed in different financial

contexts (Chavez-Demoulin & McGill 2012, Herrera & Schipp 2014).

The major advantage of these new approaches is that they can capture the clustering of ex-

treme events – both over time and within a cross-section. Such patterns typically occur in crisis

periods and substantially challenge risk management. In addition, this class of processes gen-

1The original development of this characterization is attributed to Pickands (1971) and Smith (1989).
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erates a flexible and computationally tractable multivariate dependence structure, properties that

are empirically well-documented (Bowsher 2007, Hall & Hautsch 2007, Hautsch 2011, Bacry

et al. 2012, Bacry et al. 2013).

A further contribution, from an empirical perspective, is to discuss some stylized facts related

to the cluster behavior of extreme events within financial markets. To this end, we consider three

well–investigated international stock market indexes: the DAX, the S&P 500, and the FTSE 100.

We show that, by means of the multivariate ACI-POT and Hawkes-POT approaches, we can

capture these stylized facts and produce reliable forecasts of VaR and ES.

The remainder of the paper is organized as follows. In Section 2, we discuss some stylized

facts that are associated with the cluster behavior of extreme events in financial time series.

Section 3 summarizes the concepts in EVT from the viewpoint of point process theory. Section

4 introduces the ACI-POT and Hawkes-POT models. In Section 5,we illustrate how to apply

the proposed models to produce conditional risk measures such as the VaR and ES. Section 6

discusses estimation results and diagnostics which are based on applications of the proposed

models to the daily returns of international stock indexes.Section 7 provides VaR and ES in-

sample and out-of-sample backtesting results. Conclusionsare rendered in Section 8.

2 Clustering of Extreme Events

The clustering of extreme events is recognized as prevalentfeature in most financial time series.

The tendency for very large movements of prices (exceedances over a sufficiently high threshold)

to be clustered through time is one of the major challenges toward obtaining reliable risk mea-

sures. A major difficulty is to reliably predict both the sizeand likelihood of extreme events (e.g.,

large losses; BCBS 2012). In this section, we highlight some stylized facts and demonstrate the

need for approaches capturing both the dynamic and distributional features of extreme events.

2.1 Clustering of Extreme Gains vs. Extreme Losses

A well-known observation is that co-movements in international stock market returns are asym-

metric. In particular, correlations are higher in market downturns than in upturns, and there is

a higher level of clustering for losses than for gains. Numerous studies have examined these
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stylized facts. For instance, for the Dow Jones Stoxx 600 index, Baur et al. (2012) find that the

lower quantiles exhibit positive dependence upon past returns, while the upper quantiles display

negative dependence. Tseng & Li (2011) use different assetsand show that larger extreme events

tend to cluster more than smaller ones. Similarly, large losses tend to congregate together more

severely than large gains. Hamidieh et al. (2009) analyze the returns of the S&P 500 index during

the period from 1960 to 2007 and show that losses exhibit stronger clustering than gains. Olmo

(2005) analyzes the DAX index for the period from 1994 to 2001and finds a higher level of

clustering for large losses than for gains. Jondeau & Rockinger (2003) report evidence of the

clustering of extremes for a large number of countries, withdifferences in the cluster size for

positive and negative returns.

In order to illustrate this ”stylized” fact, we consider an equal-weighted portfolio based on the

DAX, S&P 500, and FTSE 100 indexes from 1992 to 2012. A flexiblenon-parametric tool for

capturing different types of extremal dependence is the extremogram introduced by Davis et al.

(2009), which can be considered as an analog of the autocorrelation function for extreme events.

LetXt be a strictly stationaryRd-valued time series, the extremogram at lagh is defined by

ρAB (h) = lim
x→∞

P
(
x−1Xh ∈ A | x−1X0 ∈ B

)
,

for h = 0, 1, 2, . . ., provided that the limit exists for two setsA andB bounded away from 0.2

Similarly, we can define the cross-extremogram as

φAB (h) = lim
x,y→∞

P
(
y−1Yh ∈ A | x−1X0 ∈ B

)
,

which can be straightforwardly extended to higher dimensions. In practice, the limits onx or y

in the above equations are replaced by high quantiles of the processes.

For all (cross-) extremograms displayed in this paper, we utilize a stationary bootstrap to

construct confidence intervals with block sizes given by an independent geometric distribution

with mean250, which closely corresponds to the number of yearly trading days. The sampling

distributions of the (cross)-extremogram and confidence intervals are obtained based on10, 000

bootstrap replications. For a complete discussion and details on the estimation and construc-

2Normally, in univariate time series, the choice of the sets is defined byA = B = (1,∞), and thus, the
extremogram corresponds to the upper tail dependence coefficient betweenX0 andXh.
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Figure 1: 8.5% of the most extreme losses (top left) and gains(bottom left) for an equal-weighted
portfolio based on the DAX, S&P 500, and FTSE 100 indexes from1992 to 2012. The sample
extremograms are shown in the middle figures with losses in the top and gains in the bottom. The
right figures show the cross-extremograms for losses conditional on gains (top right) and gains
conditional on losses (bottom right) at different lags. Thedashed line corresponds to the value of
the extremogram under the null hypothesis of independence at a 95% confidence level obtained
by 100 permutations. The sampling distribution of the (cross)-extremogram and confidence in-
tervals are obtained based on10, 000 bootstrap replications.

tion of confidence intervals for extremograms, we refer to Davis et al. (2012). Figure 1 displays

extremograms and their corresponding cross-extremogramswith x andy being the91.5% em-

pirical quantiles of the portfolio in both tails3. Observe that the (cross-)extremograms decay

hyperbolically at the 95% confidence level of independence as lags increase, with losses con-

ditional on gains decaying at the slowest rate. In addition,the extremogram of losses and the

cross-extremograms for losses conditional on gains show the most significant dependence on

many lags. These results are similar to the findings providedby Tseng & Li (2011), Hamidieh

et al. (2009), and Olmo (2005).

2.2 Clustering of Extreme Events Across Time

Besides clustering within a time series, we also observe a tendency for clusters of extremes to

simultaneously occur across different markets. An obviousreason for this observation is an

3The justification of the tail threshold selection for all empirical approaches is given in subsection 6.1.
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Figure 2: From top to bottom: Time series of 9% of the most extreme losses (the91% empirical
quantiles of the negative log returns), the conditional intensity for the occurrence of losses, the
trivariate sample cross-extremograms corresponding toφ̂1

A (h) and φ̂2
A (h), respectively. From

left to right for DAX, S&P 500, and FTSE 100 indexes.

increasing market integration, which is most distinctive in the U.S. and Europe.

In Figure 2, we display the time series of 9% of the most negative log returns of the three in-

dexes4. We observe a considerable amount of clustering of extremesacross the different markets.

In our sample, the first important cluster can be identified during the late 1990s and early 2000s,

which is associated with the Asian financial crisis in 1997 and the end of the dot-com crash in

October 2002, respectively. The most recent cluster is centered around the 2008 global financial

crisis, starting in 2007 with the subprime crisis in the U.S.Moreover, we display trivariate cross-

extremograms for the analyzed returns. For instance, letX, Y , andZ be the negative log returns

of the DAX, S&P 500, and FTSE 100 indexes, respectively. Then, the third panel displays the

4See subsection 6.1. for threshold selection.
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cross-extremogram

φ̂1
A (h) = lim

x,y,z→∞
P
(
y−1Yh ∈ A ∪ z−1Zh ∈ A | x−1X0 ∈ A

)
,

with x, y, andz being the91% empirical quantiles of the negative log returns andA = (1,∞).

Likewise, in the bottom panel of Figure 2, we depict the cross-extremogram

φ̂2
A (h) = lim

x,y,z→∞
P
(
x−1X0 ∈ A | y−1Yh ∈ A ∪ z−1Zh ∈ A

)

There is evidence for both types of cross-extremal dependence among losses, at least for one

time lag. Studying the co-clustering of extreme events is ofvitally important for the stability

of financial systems and implied systemic risk. For instance, for the period from 1954 to 2003,

Longin & Solnik (2001) show that the top largest daily extreme returns (positive and negative) of

the S&P 500 index tend to appear around the same date, i.e., the stock market crash of October

1987. For a set of European stock markets, Poon et al. (2004) find that extreme dependence

among these countries is much stronger in bear markets than in bull markets, and that some of

this dependence is related to volatility co-clustering. Byström (2004) shows that the 50 most

extreme losses for the Swedish index AFF (Affärvärlden’s Generalindex) and the Dow Jones

Industrial Average index during the period from 1980 to 1999occur within the same month for

half of the extremes, while two-thirds occur within the samequarter.

The dynamics of such co-clustering of extreme events is readily described by a multivariate

intensity process. This is what we try to capture by means of the approaches proposed in this

paper. For illustration, the second panel of Figure 2 displays the conditional intensities for the

occurrence of extreme events based on a univariate ACI-POT model, corresponding to a special

case of the model discussed in Section 4.1.

2.3 Autocorrelations in Inter-Exceedance Times

The inter-exceedance time is commonly defined as the time interval between consecutive extreme

price events. In this vein, times between price events have been used as a proxy for volatility

estimation on the basis of price intensities in high frequency data analysis (Engle 2000, Gerhard

& Hautsch 2002).
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Classical EVT assumes independent and identically distributed (IID) observations. Accord-

ing to this assumption, the exceedances over a high threshold should behave as a Poisson point

process, implying that inter-exceedance times should be exponentially distributed. Empirical

evidence, however, clearly contradicts this assumption, making the direct use of this approach

questionable. For this reason, a number of new approaches based on the dynamic behavior of

inter-exceedance times or the occurrence times of extreme events have been proposed (Chavez-

Demoulin & McGill 2012, Herrera & Schipp 2014).

Figure 3 shows a quantile-quantile plot (top panel) contrasting the empirical distribution of

inter-exceedances times to an exponential distribution. In each case, the exponential distribution

is clearly at odds with empirical observations. Moreover, we report the autocorrelations among

inter-exceedance times, providing evidence for a high degree of autocorrelation in all of the time

series. Finally, the bottom panel shows univariate empirical extremograms measuring the impact

of a large loss on future realizations within the same stock market. All estimates are highly

significant, and thus, consistent with earlier findings regarding the presence of serial extremal

dependence on stock markets (Chavez-Demoulin & McGill 2012,Davis et al. 2012, Chang et al.

2013).

3 A Point Process Approach to EVT

Consider the negative returns of a given stock{Zt}t≥1 and suppose, for the moment, that all of the

observations are IID and have a common distribution functionF . To characterize the behavior of

the maximaMn = max {Z1, . . . , Zn}, classical EVT yields that, for given normalizing sequences

an > 0, bn ∈ R andn→ ∞, the limiting distribution ofMn,

P

(
Mn − bn
an

≤ z

)
= F n (anz + bn) , (1)

converges in distribution to the Generalized Extreme Value(GEV) distribution function

Hξ,µ,σ (z) =





exp
{
−
(
1 + ξ z−µ

σ

)−1/ξ

+

}
, ξ 6= 0,

exp
{
− exp

(
− z−µ

σ

)}
, ξ = 0,
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Figure 3: QQ-plots for inter-exceedance times, autocorrelation of inter-exceedance times, and
sample extremograms for the 9% most extreme losses of the DAX, S&P 500, and FTSE 100 log
returns.

whereµ, ξ ∈ R, andσ > 0, corresponding to location, shape, and scale parameters, respectively.5

The convergence of (1) holds if and only if

lim
n→∞

n {1− F (anz + bn)} → − lnHξ,µ,σ (z) .

The time tj and magnitude of an extreme eventYj = Ztj (the mark) exceeding a given

thresholdu > 0 is recorded by the pair(tj, Yj) ∈ Ω = (0, 1] × (u,∞), where, for convenience,

time is measured on a rescaled interval(0, 1].

Under the assumption that the losses are IID and stationary,Pickands (1971) shows that the

two-dimensional point process defined in a sub-regionA = (0, t]× (y,∞) can be characterized

by the counting processN (A) =
∑

j≥1 1 {tj ≤ t, Yj = y} corresponding to a non-homogeneous

5We definea+ = max (a, 0).
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Poisson process with intensity function

λ (t, y) =





1
σ

(
1 + ξ y−µ

σ

)−1/ξ−1

+
, ξ 6= 0,

1
σ
exp

(
−y−µ

σ

)
, ξ = 0,

(2)

whereµ, ξ ∈ R, andσ > 0 are the same parameters as those determining the GEV distribution

function. Consequently, for a setB = (t1, t2) × (y,∞), with B ⊆ Ω, the intensity measure, or

alternatively, the mean of the point process inB is given by

E {N (B)} = Λ (B) =

∫ t2

t1

∫ ∞

y

λ (r, l) dr dl = − (t2 − t1) lnHξ,µ,σ (y) .

The intensity of the two-dimensional point process (2) can be rewritten in terms of a so-

called marked point process (MPP). In the given framework, the arrival times corresponding to

the time when a return exceeds a thresholdu > 0 are driven by the so-called ground (intensity)

process, while the marks correspond to the magnitude of the losses. Formally, an MPP is defined

through the right-continuous counting functionN (t) := N (0, t] =
∑

j≥1 1 {tj ≤ t, Yj = y} of

the time-ordered sequence of marked points{(tj, Yj)}j≥1 in a defined nonempty countable setB.

The internal history (natural filtration) of this process isdenoted byHt = {(tj, Yj) ∀j : tj < t}.

Following Daley & Vere-Jones (2003),6 the intensity of a MPP can be described as

λ (t, y | Ht) = λg (t | Ht) g (y | Ht, t) , (3)

whereλg (t | Ht) corresponds to the intensity of the ground processN g (t) =
∑

j≥1 1 {tj ≤ t},

andg (y | Ht, t) corresponds to the density function of the marks, conditional on the history of

the process and the timet of the last event. Rewriting the intensity (2) in terms of an MPP, the

ground process corresponds to

λg (t | Ht) = − lnHξ,µ,σ (u) ,

which is the rate of a Poisson point process of exceedances above the thresholdu.7

6Definition 7.3.II in Daley & Vere-Jones (2003).
7Note that the intensity does not depend on time. Therefore, the two-dimensional point process corresponds to a

non-homogeneous Poisson process.
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On the other hand, according to the Pickands-Balkema-de Haantheorem, the density of

IID marks is well-approximated by a generalized Pareto density function

gξ,β (y | Ht, t) =





1
β

(
1 + ξ y−u

β

)−1/ξ−1

+
, ξ 6= 0,

1
β
exp

(
−y−u

β

)
, ξ = 0,

(4)

whereβ = σ + ξ (u− µ) is a reparametrized scale parameter. This representation is valid in the

case of IID observations, which, however, is not empirically supported. In the next section, we

introduce a dynamic generalization of this framework.

4 Multivariate Dynamic Intensity Peaks-Over-Threshold Mod-

els (MDI-POT)

We consider anM−variate MPP,N(t) := (Nm(t))
M
m=1), where each dimensionm ∈ {1, . . . ,M}

is characterized by a double sequence
{(
tmj , Y

m
j

)}
j≥1

of random variables in a setB defined on

a probability space(Ω,H,P). In this framework,t denotes the (pooled) calendar time, andtmj

corresponds to the inter-exceedance time of processm, with N g
m (t) being its marginal ground

process. Moreover, eachm-th component of the MPP is linked to an exceedanceY m
j constitut-

ing the mark. The MDI-POT is then generally specified via anM−variate vector of conditional

intensities,λ (t, y | Ht) := (λm (t, y | Ht))
M
m=1, whereHt =

{(
tmj , Y

m
j

)
∀ (m, j) : tmj < t

}
de-

notes the complete internal history.

4.1 The Multivariate ACI-POT Model

In the case of the ACI-POT model, the conditional intensity ofthe ground process is driven by

three main components depending on the historyHt: (i) a left-continuous dynamic processΦj

that is updated instantaneously after the occurrence oftj−1 and does not change untiltj; (ii) the

"standardized" excess,ymj−1 = ymj−1/u
m, capturing the influence of the size of extreme events

on the conditional intensity by means of the parameterδm; and (iii) λm0 (t) = λm0 (x(t)), corre-

sponding to a baseline intensity that changes continuouslyin terms of its own inter-exceedance

timesxm(t) = tm − tm
Ng

m(t)
. Using the standardized excessymj−1 ∈ (1,∞] instead of the "raw"

11



excessrmj−1 = ymj−1 − um in the ground process is advantageous to avoid numerical instabilities

of estimates in the case of very high exceedances. Such standardizations are commonly used in

EVT (see, e.g., Resnick 2006). Accordingly,λmg (t | Ht) is given by

λmg (t | Ht) = exp
(
ΦNg

m(t) + ymNg
m(t)−1δm

)
λm0 (t) , (5)

whereδm captures the effect of the size of the loss exceedance on the intensity. As proposed

by Russell (1999), we specify theM × 1 vectorΦj :=
(
Φ1

j , . . . ,Φ
M
j

)′
as a VARMA(1,1)–type

specification of the form

ΦNg
m(t) =

(
AmεNg

m(t)−1 + BΦNg
m(t)−1

)
zmNg

m(t)−1, (6)

wherezmj denotes an indicator variable that takes on the value one if thej-th event of the pooled

process is of typem, and zero otherwise.Am = {am} is anM×1 coefficient vector denoting the

impact of the innovationεj on the ground intensity of theM -variate processes when the previous

extreme event was of typem, andB = {bmk} corresponds to anM ×M coefficient matrix of

persistence parameters. In addition, the innovation termεj is an IID exponential random vector

based on the integrated intensity, which is computed by piecewise integration

εj :=
M∑

m=1

{
1− Λm

(
tmj−1, t

m
j

)}
zmj , (7)

whereΛm
(
tmj−1, t

m
j

)
:=
∫ tmj
tmj−1

λmg (s | Hs) ds is them-type integrated intensity. This allows the

conditional intensity function to vary between extreme event arrivals. Finally, the baseline inten-

sity functionλm0 (t) is specified in the form of an appropriate hazard function. Inthis paper, we

utilize the generalized gamma distribution with hazard function given by

λm0 (t) =
|qm| (q

−2
m )

q−2
m

σmxm(t)
∫∞

eqm̟m−2 ln qm
sq

−2
m −1e−sds

exp
(
q−2
m (qm̟m − exp (qm̟m))

)
,
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with qm 6= 0, andσm, υm > 0. If ηm ∼ Gamma(q−2
m , 1), and̟m = ln (q2mηm) /qm, thenxm(t) =

exp (υm + σm̟m) follows a generalized gamma distribution (Prentice 1974).8 This type of

hazard function is commonly used in the empirical literature since it exhibits both monotonic and

non-monotic behavior.

To capture the dynamics in the magnitudes of exceedances, wepropose a conditional autore-

gressive specification for the mark density. Letψm
Ng

m(t)
= lnE

(
rm
Ng

m(t)
| Ht

)
be the log of the

conditional expectation of the raw excessrmNg(t) = ymNg(t) − um. Then, the size of exceedances in

them-th component follows a logarithmic multiplicative error model (MEM) (Engle 2002) given

by

rmNg
m(t) = exp

(
ϕm
Ng

m(t)

)
ǫmNg

m(t),

ψk
Ng

m(t) = wm + ρm ln rmNg
m(t)−1 + βmψ

m
Ng

m(t)−1 + γmx
m
Ng

m(t)−1,

wherexm
Ng

m(t)−1
is the lagged inter-exceedance time,ϕm

Ng
m(t)

= ψm
Ng

m(t)
− ln(1 − ξm), with ξm ∈

R+ being the shape parameter of the GPD, andρm, βm, γm are parameters. The logarithmic

specification ensures the non-negativity of the process without explicitly imposing corresponding

parameter restrictions. The error termsǫm
Ng

m(t)
are IID generalized Pareto random variables with

a probability density function given by

gξm,1


 rm

Ng
m(t)

exp
(
ϕm
Ng

m(t)

) | Ht, t


 =

(
1 + ξmr

m
Ng

m(t)

)−1/ξm−1

.

The parameterγm captures the effect of the most recently elapsed inter-exceedance waiting time

on the size of the extreme event. The covariance stationarity of ln rm
Ng

m(t)−1
is guaranteed by

|ρm + βm| < 1 (Bauwens & Giot 2000).

Under the proposed MEM specification, the conditional density of the raw exceedancermNg(t)

is therefore given by

g
ξm,exp

(

ϕm

N
g
m(t)

)

(
rmNg

m(t) | Ht, t
)
=

1

exp
(
ϕm
Ng

m(t)

)


1 + ξm

rm
Ng

m(t)

exp
(
ϕm
Ng

m(t)

)




−1/ξm−1

, (8)

8This generalized gamma specification is preferred to the original parametrization by Stacy (1962) since it is
more numerically stable near zero.
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which corresponds to a generalized Pareto density with time-varying scale parameterexp
(
ϕm
Ng

m(t)

)
.

Finally, imposing specifications (5) and (8) into (3) yieldsthe multivariate ACI-POT model with

them-th component given by

λm (t, y | Ht) =
exp

(
ΦNg

m(t) + ym
Ng

m(t)−1
δm

)
λm0 (t)

exp(ϕm
Ng

m(t)
)


1 + ξm

rm
Ng

m(t)

exp
(
ϕm
Ng

m(t)

)




−1/ξm−1

. (9)

The stationarity of the ACI-POT model is ensured if the eigenvalues of the persistence matrix

B in (6) lie inside the unit circle, which is equivalent to the spectral radius of the persistence

matrix being less than one (i.e., Spr(B) = max {|ϕ| : det (B − ϕI) = 0} < 1), whereϕi are

the eigenvalues ofB (see Proposition 2 in Russell 1999). Observing the process over the time

interval(0, T ], the resulting log-likelihood function is given by

lnL (t, y | Ht; θ1, θ2) =
M∑

m=1

Ng
m(T )∑

j=1

ln gξm,exp(ϕm
j )
(
rmj | Ht, t; θ1

)
(10)

+
M∑

m=1

Ng
m(T )∑

j=1

{
zmj lnλmg (tj | Ht; θ2)−

∫ tmj

tmj−1

λmg (s | Hs; θ2) ds

}
,

with θ1 andθ2 denoting the corresponding parameter vectors.

4.2 The Multivariate Hawkes-POT Model

A Hawkes process is a self-exciting point process as originally introduced by Hawkes (1971).

This class of point processes has wide applications in many different fields, primarily in seismol-

ogy (Hawkes & Oakes 1974, Ogata 1988), and more recently in finance (Bowsher 2007, Dassios

et al. 2011, Embrechts et al. 2011, Bacry et al. 2012, Bacry et al. 2013). In the context of EVT,

a univariate Hawkes-POT process was introduced by Chavez-Demoulin et al. (2005), and more

recently reviewed in Chavez-Demoulin & McGill (2012). In this paper we closely follow the

representation of a Hawkes process given by Embrechts et al.(2011).
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According to a Hawkes process, the ground process for them-th component is given by

λmg (t | Ht) = µm +
M∑

k=1

bmk

Ng

k
(t)∑

j=1

hmk
(
t− tkj

)
, (11)

whereµm > 0 corresponds to the immigrant rate, or baseline intensity,h : R → R+ is a decay

kernel describing the instantaneous influence of thek-th component, and how this deviates from

the baselineµm through time. Finally, the parametersbmk > 0 are coefficients defining the

M ×M branching matrixB = {bmk}. Similar to the ACI-POT model, the stationarity of the

process is ensured if the spectral radius ofB is strictly less than one. We assume the decay kernel

function corresponding to the product of two exponential functions: one puts exponential weights

on the time elapsed since the last event. The other scales thekernel by the size of the standardized

excess,ymj−1 = ymj−1/u
m. Accordingly,hmk

(
t− tkj

)
is given by

hmk
(
t− tkj

)
= ak exp

(
δky

k
j − ak

(
t− tkj

))
,

with ak > 0 andδk ∈ R. Observe that the impact of spillovers between the individual processes

are captured by the parametersbmk.

As in the ACI-POT model, we specify the size of the exceedancesfor eachm-th component

based on an MEM model according to (8). This yields the multivariate Hawkes-POT model given

by

λm (t, y | Ht) =
µm+

∑M
k=1 bmk

∑N
g
k
(t)

j=1 ak exp(δkykj−ak(t−tkj ))

exp

(

ϕm

N
g
m(t)

)

(
1 + ξm

rm
N

g
m(t)

exp

(

ϕm

N
g
m(t)

)

)−1/ξm−1

.

(12)

The log-likelihood is then given by

lnL (t, y | Ht; θ1, θ2) =
M∑

m=1

Ng
m(T )∑

j=1

ln gm
ξm,exp(ϕm

j )

(
rmj | Ht, t; θ1

)

+
M∑

m=1





Ng
m(T )∑

j=1

lnλmg (tj | Ht; θ2)−

T∫

0

λmg (s | Hs; θ2) ds



 ,

whereθ1 andθ1 denote the corresponding parameter vectors. Note that the parameters associated
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with the Hawkes and ACI specifications for the intensities andmarks are disjointed, which allows

us to estimate them separately.

5 Improving Conditional Risk Measures

The Basel Committee on Banking Supervision has proposed using ES instead of VaR as an in-

ternal model-based approach for regulatory market risk capital mainly because of the inability

of VaR to capture tail risk (BCBS 2012, BCBS 2013). Gneiting (2011),however, demonstrates

that, although ES is a coherent risk measure (Artzner et al. 1999) and is able to capture tail risk,

it does not satisfy the requirement of elicitability (i.e.,it cannot be straightforwardly backtested).

The virtues and limitations of both risk measures have forced regulators and practitioners to

adopt only one of them, and therefore, the features either ofcoherence or elicitability. Here, we

illustrate how to derive both risk measures based on the proposed MDI-POT specifications.

Consider all losses{Yt}t≥1 defined as the negative log returns of a particular asset withun-

derlying cumulative distribution functionF . For ease of exposition, we omit the superscriptm.

ES is estimated by first obtaining the VaR at confidence levelα, which is equivalent to estimating

the predictive distribution (FYt+1|Ht
(yt+1

α )) for the returns over the next period,

yt+1
α = F−1

Yt+1|Ht
(α) := V aRt+1

α .

By computing the conditional survival functionF Yt+1|Ht
(y) = 1− FYt+1|Ht

(y) as

F Yt+1|Ht
(y) = P (Yt+1 > y | Ht)

= P (Yt+1 > u | Ht)P (Yt+1 > y + u | Yt+1 > u,Ht) ,

the probabilityP (Yit+1 > u | Ht) can be derived as

P (Ng (t+ 1)−Ng(t) > 0 | Ht) = 1− exp

(
−

∫ t+1

t

λg (s | Hs) ds

)
,

≈ λg (t | Ht) ,

where the last result is obtained by using the asymptotic identity ln (x) ≈ x − 1 asx → 1. The
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conditional probability of exceedances is then computed as

P (Yt+1 > y + u | Yt+1 > u,Ht) =

∫ t+1

t

∫∞

y+u
λ (s, l | Hs) dsdl

∫ t+1

t

∫∞

u
λ (s, l | Hs) dsdl

= 1−

(
1 + ξ

y − u

exp
(
ϕNg(t)

)
)−1/ξ

:= Gξ,exp(ϕNg(t)) (y | Ht, t) ,

whereGξ,exp(ϕNg(t)) denotes the conditional generalized Pareto survival function. Finally, the

VaR is defined in terms of the quantileyt+1
α , with P (Yt+1 > yt+1

α | Ht) = 1− α, implying

V aRt+1
α = u+

exp
(
ϕNg(t)

)

ξ

{(
1− α

λg (t | Ht)

)−ξ

− 1

}
.

From this result, the associated conditional ES, corresponding to the conditional distribution

of extreme events above the VaR, givenHt, is computed as

ESt+1
α =

1

1− α

∫ 1

α

V aRt+1
s ds =

V aRt+1
α

1− ξ
+

exp
(
ϕNg(t)

)
− ξu

1− ξ
. (13)

Note that

lim
α→1

ESt+1
α

V aRt+1
α

=
1

1− ξ
, (14)

with the limit not depending on time. Recently, the Basel Committee (BCBS 2013) proposed

using the VaR at the 0.99 confidence level in internal model-based approaches with ES evaluated

at the 0.975 confidence level. According to the Basel Committee, ES is less sensitive to extreme

events than VaR, and therefore, should account for the tail risk in a more comprehensive form.

We analyze this proposition in the next section.

6 Applications

6.1 Empirical Setting

We employ the log returns of the DAX, S&P 500, and FTSE 100 indexes through the sample

period from January 2, 1992 to December 31, 2012, covering 4,884 trading days. Our first

application is based on a bivariate model for the analysis ofthe clustering of extreme losses
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Figure 4: Threshold selection in the bivariate application. The left (right) panel shows the results
of (15) for losses (gains). The gray rectangle displays the subset that seems to be the most stable
for a given shape parameter (x-axis) and different tuning parametersβ (y-axis).

and gains of an equally-weighted portfolio based on the three indexes. The second application

considers a trivariate model to jointly model negative log returns of the three indexes.

In order to determine the tail thresholdu, we follow the statistic proposed by Reiss & Thomas

(2007) to determine the number of exceedancesk by

argmin
k
f(k) =

1

k

k∑

i=1

iβ
∣∣∣ξ̂i − median

(
ξ̂1, . . . , ξ̂k

)∣∣∣ , (15)

whereξ̂i is the estimate of the shape parameter for the sample fraction of extremes above the

upper order statistici, andβ ∈ [0, 0.5] is a tuning parameter. The idea is to find the sample

proportion for which the distribution of the shape parameters is stable. According to Figure 4, a

proportion between 395 and 445 observations for gains and losses seems to be a satisfactory size.

We thus choose to work with 420 observations, correspondingto 8.5% of the most extreme events

for losses and gains. For the trivariate case, we determine athreshold of 9% to be a reasonable

choice.
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6.2 Empirical Results

Modeling Extreme Gains and Losses

Table 1 in the Appendix displays the estimation results for both the ACI-POT and Hawkes-POT

specifications. We choose a lag order of one for all model components, which keeps the model

preferably parsimonious while still sufficiently capturing the dynamics in the data. Preliminary

analysis shows that higher lag orders would considerably increase the complexity of the model

without strongly improving its fit. This is in line with otherstudies in the literature employing

dynamic intensity processes, (Kehrle & Peter 2013, Bacry & Muzy 2014, Aït-Sahalia et al. 2015).

In Figure 5, we plot the resulting estimates of the conditional intensity of the ground processes

of positive and negative log returns, respectively, based on both the Hawkes-POT and ACI-POT

models. The bottom panel shows a barcode plot with the darkercolors depicting the magnitude

of extreme (absolute) return observations.

The overall best fit is achieved for an ACI-POT model. We find evidence for spillover ef-

fects between positive and negative extreme observations,as captured by the persistence matrix

B. Note that the persistent coefficient associated with negative extreme events (b22 = 0.652)

is larger than that for positive extreme events (b11 = 0.521), indicating that the extent of clus-

tering of extremes tends to be larger for extreme losses thanfor extreme gains. Moreover, the

off-diagonal persistence coefficients reveal that negative extreme events more frequently cause

positive extreme events than vice versa (b12 > b21). Finally, we find evidence for spillovers in the

innovations, as reflected by the largeam coefficients.

Similarly, the estimates of the Hawkes-POT model reveal evidence for spill-over effects be-

tween negative and positive returns and clustering of extreme events. The estimated persistence

matrixB indicates that negative extreme events are more likely to befollowed by another nega-

tive event (b12 = 0.274) than by a positive extreme event (b12 = 0.205).

Overall, our estimates strongly support an obvious asymmetry between positive and nega-

tive extreme returns, as discussed in Section 2. This is particularly true for the coefficientδm,

which captures the influence of the marks on the intensities.Observe that this coefficient is neg-

ative for gains and positive for losses, indicating that negative extreme events tend to increase

the probability of observing further extreme negative events, while positive extreme events tend
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Figure 5: Bivariate conditional intensity of the ground process for the analyzed index portfolio.
The two top panels show the estimated conditional intensities of the ground processes for positive
log returns based on the Hawkes-POT (top panel) and ACI-POT (second panel) specifications.
Correspondingly, the third and fourth panel exhibit the conditional intensity of the ground pro-
cesses for negative log returns based on the Hawkes-POT (third panel) and ACI-POT (fourth
panel) specifications. The bottom panel displays a barcode plot wherein the black or gray colors
indicate the log returns causing the extreme observation.

to decrease the probability of seeing further positive shocks. As a result of this self-enforcing

behavior, negative returns are much more clustered than positive ones. This is in line with the

predictive asymmetry hypothesis by Campbell & Hentschel (1992), which suggests that volatil-

ity is higher after stock markets exhibit losses, making stock market returns negatively correlated

with future volatility.

According to the parameter estimates, the baseline hazard functions of the inter-exceedance

times of both return processes reveal an inverted U-shape with the underlying densities being

positively skewed asqm < 0. As shown by Figure 6, we observe that for negative returns, the

baseline functionλ0 decreases more slowly than for positive returns. Consequently, the tem-

poral clustering of negative extremes is clearly higher than for positive ones. Recall that the

dynamic processΦj, and correspondingly, the size of the last extreme observation accelerate the

conditional intensity function and its implied risk measures, but does not affect the shape of the
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Figure 6: Baseline hazard functions for the bivariate ACI-POTmodel. The left plot exhibits the
baseline hazard function for positive returns (qm = −1.114, andσm = 2.261, υm = 3.418),
while the right plot shows the baseline hazard function for negative returns (qm = −0.919, and
σm = 5.662, υm = 13.391).

baseline hazard function. On the other hand, the estimates of the MEM specification for the mag-

nitude of marks provide clear evidence for a clustering of the size of exceedances. Hence, small

(large) exceedances are likely to be followed by small (large) exceedances. The coefficientsγm,

moreover, are both negative and strongly significant, indicating that long lagged inter-exceedance

times imply a reduction of the expected size of the marks. This is in agreement with Santos &

Alves (2012), Hammoudeh et al. (2013) and Herrera & Schipp (2014).

Residual diagnostic tests for the MDI-POT approach are basedon the de-meaned integrated

intensities of the ground process (εj = 1 −
∫ tmj
tmj−1

λmg (s | Hs) ds), which, according to the ran-

dom time change theorem (Meyer 1971), should be IID standardexponentially distributed with a

mean of zero. Accordingly, Engle & Russell’s (1998) test for excess dispersion uses the statistic
√
nε/8σ̃

2
ε , wherenε corresponds to the number of residuals andσ̃ε is the empirical standard devi-

ation of the residuals series. Under correct model specifications, the test statistic is asymptotically

normally distributed.

We observe that the residuals are, on average, close to zero,with standard deviations not far

from unity. Moreover, according to Ljung-Box statistics, the assumption of independence cannot

be rejected, indicating that the model is able to capture thedynamics of the data fairly well.

The test of excess dispersion, however, reveals slight evidence for over-dispersion, indicating

that both approaches are still not sufficiently flexible to capture the distributional properties of

inter-exceedance times.
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Modeling Cross-Sectional Spillovers in Extremes

Table 2 gives the estimation results based on trivariate MDI-POT models for extremes in DAX,

S&P 500, and FTSE 100 returns. In order to benchmark this approach, Table 3 reports restricted

versions of the proposed ACI-POT and Hawkes-POT models, in particular, MDI-POT models

without incorporating cross-sectional feedback between individual exceedance intensities and

withoutfeedback between the magnitude of exceedances and their conditional ground intensities.

Subsequently, we associate these specifications with "restricted" models.

The main result is that the unrestricted MDI-POT approachesexhibit a better fit in terms of

the AIC and residual diagnostics. In particular, the mutualexcitation mechanism of these models

is what determines the rate of occurrence of future extreme events, matching the stylized fact that

clusters of extreme events in financial markets are producedin part by contagion effects. Hence,

it turns out that allowing for both clustering in extremes and for feedback between the size and

the intensity of extremes is statistically supported.

The best-fitting specification is the unrestricted ACI-POT model. It turns out that the flexible

parametrization of the ground process in the ACI-POT specification compared to the Hawkes-

POT specification significantly improves its explanatory power, capturing auto-correlation struc-

tures among the inter-exceedance times in a more efficient form. Indeed, residuals of the ground

process for the ACI-POT model have mean and standard deviation closer to zero and one, re-

spectively, than the residuals of the Hawkes-POT model. TheLjung Box statistics report that the

residuals resulting from both approaches do not exhibit remaining serial dependence.

In the unrestricted ACI-POT approach, the ground process is fairly persistent, with relatively

low innovation coefficients and relatively high persistence parameters. All persistence parameters

are significant and support the stationarity of the underlying process. Similarly to the bivariate

case, the baseline functions in the trivariate case reveal anon-monotonic and inverted U-shaped

pattern. As illustrated in Figure 7, the baseline hazard functions show an increasing hazard rate

until three to four days after the last extreme event occurs,while it declines thereafter. This non-

monotonic pattern seems to be an important feature characterizing the time evolution of extreme

events on financial markets and requires flexibility of the underlying parameterization. Observing

peaks of the baseline functions around the three- to four-day mark, moreover, reflects underlying

temporal clustering, making it more likely to observe a further extreme price movement just
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Figure 7: Baseline hazard functions for both trivariate ACI-POT models. The left (right) plot
exhibits the baseline hazard function of the unrestricted (restricted) ACI-POT model. The solid,
dashed and dotted lines correspond to the baseline hazard functions of negative returns for the
DAX, S&P 500, and FTSE 100 indexes, respectively.

after a previous one than after a long period without exceedances. In addition, we find that the

influence of the exceedance size on the conditional intensity of the ground process, as captured

by the coefficientδm, is significant in both specifications for the FTSE 100 and DAXlog returns.

Hence, extreme events in one series increase the conditional intensity for the next extreme event

in the same series, but also in the other series. This result is in line with the estimates of the

trivariate sample extremograms in Figure 2 and with previous studies of extreme dependence

in international stock markets, where extreme losses tend to affect several stock markets at the

same time, creating co-movements and a stronger dependenceamong their conditional intensities

(Poon et al. 2003, Baltzer et al. 2008).

In the dynamic specification for the marks, we find a strong persistence with coefficients

βm < 1. Hence, exceedance sizes are clearly autocorrelated and, moreover, negatively depend

on the length of past inter-exceedance waiting times, as reflected by the coefficientγm. As in the

bivariate model above, residual diagnostics reveal that both MDI-POT specifications capture the

distributional and dynamic features in the underlying series sufficiently well.

7 MDI-POT– Based VaR and ES Forecasting

An important advantage of VaR-based risk assessments is the possibility of backtesting. Con-

versely, there is no consensus on how to backtest ES. Emmer etal. (2013) propose a framework

23



to backtest ES based on a representation in terms of the integrated VaR,

ESt+1
α =

1

1− α

∫ 1

α

V aRt+1
s ds (16)

≈
1

4

[
V aRt+1

α + V aRt+1
0.75α+0.25 + V aRt+1

0.5α+0.5 + V aRt+1
0.25α+0.75

]
.

This allows making use of backtesting techniques developedfor VaR. In particular, if each of

these confidence levels are successfully backtested, then,to a certain degree, the same is true for

ESt+1
α . In order to test the accuracy of the VaR estimates, we utilize a battery of tests proposed

in the literature, which are described in detail in AppendixA. The first three tests are based on

a binomial type test introduced by Christoffersen (1998): anunconditional coverage test (LRuc),

evaluating the expected fraction of exceptions (i.e., exceedances of the VaR), a test for the inde-

pendence of exceptions (LRind), and a conditional coverage test (LRcc), which is a combination

of the latter two. Moreover, we implement the dynamic quantile tests proposed by Engle &

Manganelli (2004) which rely on linear regressions. The first is the dynamic quantile hit test

(DQhit), where de-meaned exceptions are regressed on their lags, while the second one, the dy-

namic quantile VaR (DQV aR) test, uses in addition the contemporaneous VaR estimates.Finally,

we implement a loss measureV ES which evaluates the potential loss between the forecasted ES

(ÊS
t

α) and the observed return (Rt) at timet, given that this return has exceeded the actual VaR

V ES =

∑T
t=0

(
Rt − (−ÊS

t

α)
)
1{

Rt<−V̂ aR
t

α

}

∑T
t=0 1

{

Rt<−V̂ aR
t

α

}

.

An accurate estimate of ES should result in a low absolute value of this quantity. However, its

weakness is that it depends on the accuracy of the preliminary VaR estimation, since only returns

below the VaR are taken into account (Embrechts et al. 2005).For instance, if the VaR estimates

of a MDI-POT model do not generate any exceedances, this measure cannot be evaluated.

Accuracy of MDI-POT– Based Risk Forecasts

In order to assess the accuracy of the proposed approaches for the estimation and prediction of

VaR and ES at different confidence levels, we estimate all models using the sample from January

2, 1992 to December 31, 2012. The estimated parameters are then used to compute one-day-
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Figure 8: From top to bottom: estimated99%-VaR (gray line) and97.5%-ES (black line) for
the trivariate ACI-POT model with generalized gamma hazard function applied to negative log
returns of the FTSE 100, DAX, and S&P 500 indexes. In-sample period: January 2, 1992 to De-
cember 31, 2012. Out-of-sample period: January 2, 2013 to December 31, 2013 (marked by dark
background). The bottom panel shows a barcode plot with light colors indicating extreme events
in the FTSE 100, DAX, or S&P 500, and the mid-range dark colorsindicating a simultaneous
extreme event in any pair of negative log returns. The dark black color marks a simultaneous
extreme event in all three negative log return series.

ahead forecasts of the99%-VaR and97.5%- ES in the forecast period from January 2, 2013

to December 31, 2013.9 The model parameters are not re-estimated each trading day since the

additional information obtained from the forecast sample is negligible compared to the sample

period data and results would only change very mildly.

Table 4 in the Appendix gives the test outcomes for the in-sample and out-of-sample VaR and

ES estimates of the trivariate MDI-POT models jointly modeling extremes in all three index se-

ries. Recall that we need to estimate the VaR confidence levels(0.975, 0.98125, 0.9875, 0.99375)

9The Basel Committee (BCBS 2013) recommends changing the risk-based capital framework building on99%-
VaR to97.5%-ES. These confidence levels are used in our empirical analysis.
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in order to make use of the integral representation (16) enabling us to backtest ES at the97.5%

level. For comparison purposes, we also report the VaR at the0.99 confidence level.

According to the VaR accuracy, as reflected by p-values greater than 0.05 in Table 4, the

specifications providing the most accurate in-sample fit arethe proposed models which explic-

itly include mutual interactions between the point processes and the processes of exceedances.

Indeed, the unrestricted MDI-POT models pass the tests18% more often than the others. Com-

paring the predictive performance of the individual specifications in the estimation sample, the

Hawkes-POT model reveals a slightly better performance than its ACI-POT counterpart in terms

of theV ES statistic. On the other hand, the ACI-POT model outperforms the Hawkes-POT model

in terms of theLRind and DQ tests of independence.

Likewise, for the backtesting period, the unrestricted specifications yield correct estimates for

most of the confidence levels, with99% of p-values greater than 0.05 for the accuracy tests. In

contrast, this percentage is reduced to89% for the restricted approaches. It is remarkable that

the unrestricted ACI-POT model is the only specification implying that all p-values are greater

than 0.05 for the entire set of tests. The unrestricted Hawkes-POT approach slightly overesti-

mates one of the VaR confidence levels for DAX returns. These results suggest that Hawkes-

POT models might have tendency to overfit in-sample but slightly underperform out-of-sample.

Therefore, working with ACI-POT models is slightly preferable in a backtesting context. In fact,

the Hawkes-POT model tends to produce estimates for the VaR and ES slightly higher than the

ACI-POT models, which is also reflected in theV ES measure. Hence, overall we can conclude

that unrestricted MDI-POT models (i.e., allowing for cross-excitements among markets) results

in significant improvements in VaR and ES forecasting. In terms of VaR accuracy tests, both the

ACI-POT and Hawkes-POT approach perform similarly well at all confidence levels, with the

ACI-POT model being slightly superior.

Figures 8 and 9 display the estimated VaR and ES times series based on the unrestricted

ACI-POT and Hawkes-POT models, respectively. The figures also show barcodes visualizing

the extent to which extremes occur individually or jointly in the three series. We observe the

highest estimates of VaR and ES in all series during 2000–2002. During this period, the three

stock market indexes experienced large losses that were mainly due to the dot-com crash and the

aftermath of the 9/11 terrorist attacks. After this period,the level of extreme risks declined until
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Figure 9: From top to bottom: estimated99%-VaR (gray line) and97.5%-ES (black line) for the
trivariate Hawkes-POT model applied to negative log returns of the FTSE 100, DAX and S&P
500 indexes. In-sample period: January 2, 1992 to December 31, 2012. Out-of-sample period:
January 2, 2013 to December 31, 2013 (marked by dark background). The bottom panel shows
a barcode plot with light colors indicating extreme events in the FTSE 100, DAX, or S&P 500,
and the mid-range dark colors indicating a simultaneous extreme event in any pair of negative log
returns. The dark black color marks a simultaneous extreme event in all three negative log return
series.

the subprime crisis in 2007, followed by the global crisis in2008–2009.

We note that most of the extreme events donot occur exactly on the same day.10 In fact,

only the S&P 500 losses exhibit simultaneities with extremeevents in other return series on the

same day. Specifically, 169 out of 441 losses occur simultaneously with the DAX and 14 out of

441 losses with the FTSE 100. Only one extreme event happens simultaneously in the DAX and

FTSE 100 returns, and just one extreme event occurs simultaneously in all three stock markets.

Finally, as an additional evaluation metric, we analyze thedifference between the predicted

99%-VaR and97.5%-ES based on both approaches. According to the Basel Committee(BCBS

10For the DAX, S&P 500 and FTSE 100, we observe 269, 257, and 425 extreme events, respectively.
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2013),97.5%-ES is less sensitive to extreme events than the99%-VaR and should, therefore,

account for tail risk in a more comprehensive way. From a theoretical point of view, the ratio

between both measures should be close toES0.975/V aR0.99 ≈ 0.4ξ/(1− ξ), whereξ is the shape

parameter of the GPD.11 Since for all return series analyzed, we haveξ > 0, the ratio should

be greater than one. Table 5 reports the time series average (through estimation and backtesting

periods) of this ratio for the unrestricted models. The results indicate that the ratios are greater

than one and nearly identical for both approaches, but are slightly higher in case of the ACI-

POT model. In addition, for both approaches,ES0.975 is approximately3% higher thanV aR0.99

on average and thereforeES0.975 is less sensitive to extreme events. Finally,ES0.975 provides a

more complete view of tail risk, due to the fact we need to estimate the VaR at different confidence

levels.

8 Conclusions

We propose a multivariate dynamic intensity framework to jointly model the occurrence of ex-

treme observations (exceeding a certain threshold) in a multivariate time series of log returns.

The event arrival is modeled as a MPP where the marks are associated with the magnitude of

(loss) exceedances. The major feature of these models is to allow for the clustering of the arrival

of extremes over both time and the cross-section and the clustering of the size of exceedances.

This is achieved by combining a multivariate dynamic intensity process (ACI process or Hawkes

process) with a multiplicative error model based on a generalized Pareto distribution for the mag-

nitude of exceedances. Both components are linked to allow for feedback effects between the

arrival intensity of extremes and the size of exceedances above the threshold.

Empirical evidence based on the return series of the DAX, S&P500, and FTSE 100 indexes

provides strong support for the models. We find significant evidence for (co-)cluster structures in

extreme stock market losses, which are well-captured by theproposed approach period. Further-

more, we demonstrate that the new models yield a good out-of-sample backtesting performance

when they are applied to the prediction of VaR and ES.

We see it as a major advantage of the proposed framework that it can be easily extended

11Note thatV aR0.975

V aR0.99

≈ 0.4ξ and from (14) we know thatES0.975

V aR0.975

≈ 1

1−ξ
.
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in various directions and – depending on the chosen specification – is also tractable in higher

dimensions. Consequently, it might be used as a valuable framework to analyze, for instance,

systemic risk or tail dependencies.
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A Backtesting Tests

The first three tests utilized in this paper are introduced byChristoffersen (1998). The first cor-

responds to a test of unconditional coverage (LRuc), which evaluates the expected fraction of

exceptionsIt = I (rt < −V aRt
α), with I denoting the indicator function. We test the null hy-

pothesis thatIt | Ht ∼ Bernoulli (α), against the alternative thatIt | Ht ∼ Bernoulli (α̂) (i.e.,

H0 : α = α̂). This can be tested by means of a likelihood-ratio test

LRuc = 2 [L (α̂; I1, . . . , It)− L (α; I1, . . . , It)] ∼ χ2
1,

whereL is the binomial log likelihood. The maximum likelihood estimatorα̂ is the ratio of the

number of violations to the total number of observations. This test implicitly assumes that the

exceptions are independent, an assumption which is tested in a second test. Here, we assume that

the exceptionsIt follow a binary first order Markov chain with transition probability matrix

Π =


 1− π01 π01

1− π11 π11


 , πij = P (It = j | It−1 = i) .

We test the null hypothesis thatH0 : π01 = π11 (i.e., past VaR violations do not contain informa-

tion about current and future violations). By denotingπ = π01 = π11, a likelihood ratio test is

given by

LRind = 2 ln

(
(1− π01)

n00 πn01
01 (1− π11)

n10 πn11
11

(1− π)n00+n10 πn01+n11

)
∼ χ2

1,

with nij being the number of observations of an eventi on dayt− 1 following an eventj on day

t. The maximum-likelihood estimators under the alternativehypothesis are

π̂01 =
n01

n00 + n01

and π̂11 =
n11

n10 + n11

.

Christoffersen (1998) suggests to simultaneously test for the correct unconditional coverage and

independence yielding a test for correct conditional coverage

LRcc = LRuc + LRind ∼ χ2
2.
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In a more general framework, Engle & Manganelli (2004) introduce a dynamic quantile test

(DQ) to evaluate different types of dependence. DefineHitt (α) = It − α as the de-meaned

exceptions. Jointly testing the hypothesis thatE [Hitt (α)] = 0 and thatHitt (α) is uncorrelated

with variables included in some information setX, can be done using the artificial regression,

Hitt = Xβ + u,

whereu is an IID mean zeo random variable andX contains, for example, lags ofHitt, VaR

estimates, etc. Under the null hypothesisH0 : β = 0, the regressors should have no explanatory

power,i.e., the regressors are not correlated with the dependent variables. The test statistic is

given by

DQ =
β̂X′

Xβ̂′

α (1− α)
∼ χ2

p+2,

wherep is the number of explanatory variablesX. In the empirical application, we use the

dynamic quantile hit (DQhit) test, where the regressors contain a constant and the lagged Hit

variable, and the dynamic quantile VaR (DQV aR) test, utilizing in addition the contemporaneous

VaR estimates.

Finally, we employ the measureV ES which evaluates the difference between the predicted

ES (ÊS
t

α) and the observed return (Rt) at timet, given that this return has exceeded the actual

VaR, i.e.,

V ES =

∑T
t=0

(
Rt − (−ÊS

t

α)
)
1{

Rt<− ˆV aR
t+1
α

}

∑T
t=0 1

{

Rt<− ˆV aR
t+1
α

}

.

This statistic is close to zero if the model is appropriate (Embrechts et al. 2005). However, its

weakness is that it depends on the accuracy of the VaR estimates, since only returns below the

VaR are taken into account.
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B Figures and Tables

Model ACI-POT Hawkes-POT
Log returnm gains losses gains losses

par (s.e) par (s.e) par (s.e) par (s.e)
Ground process

am 0.994 (0.217) 2.404 (0.350) µm 0.006 (0.006) 0.020 (0.006)
bm1 0.521 (0.102) 0.153 (0.084) bm1 0.562 (0.695) 0.274 (0.336)
bm2 0.268 (0.046) 0.652 (0.050) bm2 0.205 (0.089) 0.570 (0.082)
υm 3.418 (0.355) 13.391 (2.624) am 0.008 (0.003) 0.048 (0.008)
σm 2.261 (0.230) 5.662 (2.738) δm -0.408 (0.084) 0.303 (0.085)
qm -1.114 (0.286) -0.919 (0.843)
δm -0.033 (0.066) 0.258 (0.074)

LL1 -2824.509 -2890.241
Spr 0.799 0.803

Ground process residuals
Mean (εm) -0.037 0.005 0.057 0.226

σ̃ε 0.875 1.076 0.705 0.821
Exc.disp. -1.788 1.184 -3.847 -2.417
LBε(5) 0.000 0.964 0.646 0.1934

Mark process
wm -0.391 (0.208) -0.647 (0.206)
ρm 0.090 (0.024) 0.084 (0.020)
βm 0.820 (0.059) 0.761 (0.053)
γm -0.003 (0.002) -0.005 (0.002)
ξm 0.088 (0.046) 0.005 (0.050)

Diagnostics
LL2 1829.263 1704.919

Table 1: Estimates of bivariate MDI-POT models for extremesin losses and gains of a portfolio
based on log returns of the FTSE 100, DAX and S&P 500 indexes from January 2, 1992 to
December 31, 2012. Standard errors are in parentheses.LL1corresponds to the log-likelihood
of the ACI or Hawkes part, whileLL2 is associated with the POT part. The Akaike Information
Criterion for the AIC-POT model is−1371 and for the Hawkes-POT−1248. Spr : Spectral radius
of the persistence matrix. Mean (εm): mean of residuals,̃σε: standard deviation of the residuals,
LBε(5): Ljung-Box statistic based on 5 lags,Exc. disp.: excess dispersion test according to
Engle & Russell (1998).
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Model ACI-POT Hawkes-POT
Log-returnm FTSE 100 DAX S&P 500 FTSE 100 DAX S&P 500

par (s.e) par (s.e) par (s.e) par (s.e) par (s.e) par (s.e)
Ground process

am 0.695 (0.061) 0.569 (0.066) 0.422 (0.064) µm 0.036 (0.006) 0.028 (0.006) 0.015 (0.005)
bm1 -0.600 (0.062) -0.359 (0.306) -0.387 (0.272) bm1 0.053 (0.051) 0.005 (0.032) 0.025 (0.035)
bm2 0.861 (0.071) 0.998 (0.232) 0.095 (0.244) bm2 0.060 (0.056) 0.135 (0.085) 0.002 (0.036)
bm3 0.221 (0.416) -0.038 (0.073) 0.994 (0.019) bm3 0.282 (0.097) 0.303 (0.108) 0.690 (0.153)
υm 3.854 (0.224) 3.982 (0.270) 3.374 (0.355) am 0.070 (0.034) 0.054 (0.018) 0.031 (0.007)
σm 1.586 (0.131) 1.773 (0.171) 2.087 (0.198) δm 0.570 (0.238) 0.555 (0.281) 0.063 (0.118)
qm -0.093 (0.183) -0.200 (0.219) -1.027 (0.253)
δm 0.239 (0.077) 0.236 (0.079) 0.080 (0.053)

LL1 -4316.352 -4488.769
Spr 0.993 0.703

Ground process residuals
Mean (εm) -0.017 -0.006 -0.001 0.091 0.030 0.162

σ̃ε 1.001 0.968 0.965 0.921 0.983 0.906
Excess.dis 0.093 -0.484 -0.533 –1.161 -0.257 -1.370
LBε(5) 0.158 0.112 0.125 0.132 0.178 0.432

Mark process
wm -0.392 (0.195) -0.761 (0.204) -0.324 (0.191)
ρm 0.047 (0.013) 0.018 (0.021) 0.096 (0.023)
βm 0.855 (0.047) 0.792 (0.049) 0.819 (0.058)
γm -0.004 (0.002) -0.008 (0.001) -0.001 (0.001)
ξm 0.009 (0.048) 0.009 (0.041) 0.049 (0.044)

Diagnostics
LL2 1783.334 1663.95 1747.058

Table 2: Estimates of unrestricted trivariate MDI-POT models for negative log returns of the
FTSE 100, DAX and S&P 500 indexes from January 2, 1992 to December 31, 2012. Standard
errors are in parentheses.LL1corresponds to the log-likelihood of the ACI or Hawkes part, while
LL2 is associated with the POT part. The Akaike Information Criterion for the AIC-POT model
is−1371 and for the Hawkes-POT−1248. Spr : Spectral radius of the persistence matrix. Mean
(εm): mean of residuals,̃σε: standard deviation of the residuals,LBε(5): Ljung-Box statistic
based on 5 lags,Exc. disp.:excess dispersion test according to Engle & Russell (1998).
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Model ACI-POT(Restricted) Hawkes-POT(Restricted)
Log-returnm FTSE 100 DAX S&P 500 FTSE 100 DAX S&P 500

par (s.e) par (s.e) par (s.e) par (s.e) par (s.e) par (s.e)
Ground process

am 1.076 (0.099) 1.090 (0.111) 1.119 (0.138) µm 0.031 (0.220) 0.028 (0.196) 0.014 (0.295)
bm 0.653 (0.044) 0.698 (0.037) 0.675 (0.057) bm 0.664 (0.119) 0.699 (0.095) 0.855 (0.070)
υm 2.870 (0.057) 3.109 (0.054) 2.777 (0.076) am 0.031 (0.228) 0.035 (0.195) 0.024 (0.201)
σm 1.305 (0.056) 1.371 (0.066) 1.490 (0.062)
qm 0.045 (0.163) 0.061 (0.173) -0.423 (0.184)

LL1 -4336.305 -4517.941
Spr 0.698 0.855

Residuals
Mean (εm) 0.014 0.024 0.043 0.335 0.303 0.145

σ̃ε 1.056 1.007 1.030 0.915 0.902 0.957
Excess.dis 0.878 0.108 0.467 -1.247 -1.421 -0.635
LBε(5) 0.011 0.343 0.224 0.449 0.575 0.576

Mark process
wm 0.553 (0.011) 0.546 (0.009) 0.095 (0.101)
ρm 0.911 (0.019) 0.891 (0.033) 0.854 (0.024)
βm 0.004 (0.049) 0.027 (0.011) 0.049 (0.019)
ξm 0.012 (0.062) 0.011 (0.056) 0.084 (0.057)

Diagnostics
LL2 1780.377 1651.475 1746.103

Table 3: Estimates of restricted trivariate MDI-POT modelsfor negative log returns of the FTSE
100, DAX and S&P 500 indexes from January 2, 1992 to December 31, 2012. Standard errors
are in parentheses.LL1corresponds to the log-likelihood of the ACI or Hawkes part, while LL2

is associated with the POT part. The Akaike Information Criterion for the AIC-POT model is
−1371 and for the Hawkes-POT−1248. Spr : Spectral radius of the persistence matrix. Mean
(εm): mean of residuals,̃σε: standard deviation of the residuals,LBε(5): Ljung-Box statistic
based on 5 lags,Exc. disp.:excess dispersion test according to Engle & Russell (1998).
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VaR in-sample for the trivariate intensity model
ACI-POT Hawkes-POT ACI-POT(Restricted) Hawkes-POT(Restricted)

Stock Indexα excep. LRuc LRind LRccDQhit DQV aR V ES × 103 excep. LRuc LRind LRccDQhit DQV aR V ES × 103 excep. LRuc LRind LRccDQhit DQV aR V ES × 103 excep. LRuc LRind LRccDQhit DQV aR V ES × 103

FTSE 100 0.975 132 0.80 0.40 0.67 0.40 0.60 1.36 122 0.52 0.03 0.09 0.04 0.02 1.02 128 0.92 0.01 0.02 0.01 0.02 1.77 127 0.85 0.00 0.00 0.00 0.00 0.96
0.98125 100 0.74 0.47 0.73 0.47 0.77 1.60 85 0.22 0.23 0.23 0.24 0.46 0.29 82 0.13 0.05 0.05 0.05 0.10 0.82 95 0.87 0.01 0.03 0.01 0.01 1.11
0.9875 53 0.14 0.02 0.02 0.02 0.06 0.64 62 0.75 0.04 0.13 0.05 0.12 1.16 53 0.14 0.58 0.28 0.58 0.64 1.02 59 0.48 0.71 0.73 0.71 0.58 0.74
0.99 40 0.09 0.32 0.15 0.32 0.61 0.36 44 0.27 0.39 0.38 0.40 0.69 0.43 42 0.16 0.360.25 0.36 0.40 0.79 42 0.16 0.36 0.25 0.36 0.42 0.18
0.99375 21 0.03 0.68 0.10 0.68 0.89 -0.85 23 0.08 0.65 0.20 0.65 0.90 -0.70 21 0.04 0.68 0.10 0.68 0.91 -0.32 23 0.09 0.09 0.06 0.09 0.15 -0.40

DAX 0.975 129 0.99 0.02 0.07 0.02 0.06 2.27 123 0.59 0.04 0.10 0.04 0.11 1.85 122 0.52 0.00 0.00 0.00 0.00 2.23 125 0.72 0.00 0.00 0.00 0.00 2.64
0.98125 89 0.42 0.29 0.41 0.29 0.42 2.06 85 0.22 0.00 0.01 0.00 0.01 1.65 85 0.230.00 0.00 0.00 0.00 1.96 78 0.05 0.00 0.00 0.00 0.00 1.41
0.9875 54 0.17 0.13 0.13 0.13 0.17 1.95 55 0.22 0.14 0.16 0.14 0.30 1.84 54 0.17 0.02 0.03 0.02 0.03 2.32 46 0.01 0.07 0.01 0.07 0.13 1.12
0.99 39 0.06 0.30 0.11 0.31 0.28 1.51 39 0.06 0.04 0.02 0.04 0.08 1.03 43 0.21 0.050.07 0.05 0.08 2.71 35 0.01 0.02 0.00 0.02 0.06 0.68
0.99375 20 0.02 0.07 0.01 0.07 0.10 0.18 22 0.05 0.08 0.04 0.08 0.08 -0.74 19 0.01 0.06 0.01 0.06 0.08 -0.07 23 0.09 0.09 0.06 0.09 0.23 1.22

S&P 500 0.975 117 0.27 0.43 0.40 0.44 0.56 0.82 122 0.52 0.25 0.42 0.25 0.51 0.90 110 0.08 0.31 0.13 0.32 0.44 0.68 117 0.27 0.19 0.23 0.19 0.42 0.41
0.98125 89 0.42 0.71 0.67 0.72 0.34 0.31 89 0.42 0.64 0.64 0.64 0.89 0.59 86 0.270.65 0.49 0.65 0.20 0.43 93 0.71 0.57 0.79 0.57 0.84 0.87
0.9875 56 0.27 0.27 0.30 0.27 0.32 -0.26 49 0.04 0.33 0.08 0.34 0.63 -1.00 58 0.40 0.69 0.65 0.69 0.05 -0.46 50 0.06 0.32 0.10 0.33 0.61 -1.21
0.99 40 0.09 0.43 0.17 0.43 0.59 -1.34 38 0.05 0.45 0.10 0.46 0.75 -1.45 46 0.42 0.43 0.53 0.43 0.04 -0.94 38 0.05 0.45 0.10 0.46 0.75 -1.85
0.99375 25 0.18 0.62 0.36 0.62 0.81 -2.24 23 0.08 0.65 0.20 0.65 0.46 -1.75 28 0.47 0.58 0.66 0.58 0.71 -1.04 23 0.09 0.65 0.22 0.65 0.57 -2.37

VaR out-sample for the trivariate intensity model
ACI-POT Hawkes-POT ACI-POT(Restricted) Hawkes-POT(Restricted)

Stock Indexα excep. LRuc LRind LRccDQhit DQV aR V ES × 103 excep. LRuc LRind LRccDQhit DQV aR V ES × 103 excep. LRuc LRind LRccDQhit DQV aR V ES × 103 excep. LRuc LRind LRccDQhit DQV aR V ES × 103

FTSE 100 0.975 6 0.98 0.13 0.31 0.13 0.06 2.74 6 0.98 0.13 0.31 0.13 0.12 3.82 6 0.98 0.00 0.02 0.01 0.00 2.21 8 0.42 0.25 0.38 0.26 0.29 3.97
0.98125 5 0.80 0.08 0.21 0.08 0.05 3.86 3 0.46 0.78 0.73 0.78 0.77 3.70 6 0.48 0.000.01 0.01 0.00 4.08 4 0.83 0.05 0.13 0.05 0.07 3.45
0.9875 2 0.55 0.85 0.82 0.85 0.56 3.74 1 0.18 0.93 0.41 0.93 0.92 4.35 3 0.99 0.78 0.96 0.78 0.04 4.25 2 0.55 0.85 0.82 0.85 0.39 4.82
0.99 1 0.31 0.93 0.59 0.93 0.89 4.59 1 0.31 0.93 0.59 0.93 0.92 5.99 2 0.80 0.85 0.950.85 0.20 4.49 1 0.31 0.93 0.59 0.93 0.96 5.20
0.99375 0 0.07 1.00 0.20 1.00 1.00 - 0 0.08 1.00 0.22 1.00 1.00 - 0 0.09 1.00 0.23 1.00 1.00 - 0 0.09 1.00 0.23 1.00 1.00 -

DAX 0.975 5 0.69 0.64 0.83 0.65 0.05 4.17 5 0.69 0.64 0.83 0.65 0.05 4.83 6 0.98 0.58 0.86 0.58 0.05 2.89 7 0.67 0.51 0.74 0.52 0.18 2.76
0.98125 4 0.82 0.71 0.91 0.71 0.08 6.00 4 0.82 0.71 0.91 0.71 0.10 6.96 3 0.46 0.780.73 0.78 0.03 1.04 6 0.48 0.03 0.04 0.04 0.02 4.21
0.9875 1 0.18 0.93 0.41 0.93 0.66 6.84 1 0.18 0.93 0.41 0.93 0.68 7.50 3 0.99 0.78 0.96 0.78 0.04 4.08 3 0.99 0.78 0.96 0.78 0.28 5.37
0.99 1 0.31 0.93 0.59 0.93 0.37 4.57 0 0.03 1.00 0.09 1.00 1.00 - 3 0.70 0.78 0.89 0.78 0.04 5.77 2 0.80 0.85 0.95 0.85 0.59 6.50
0.99375 0 0.07 1.00 0.20 1.00 1.00 - 0 0.08 1.00 0.22 1.00 1.00 - 0 0.09 1.00 0.23 1.00 1.00 - 0 0.09 1.00 0.23 1.00 1.00 -

S&P 500 0.975 7 0.67 0.51 0.74 0.52 0.48 3.02 5 0.69 0.64 0.83 0.65 0.15 1.07 6 0.98 0.58 0.86 0.58 0.05 2.26 5 0.69 0.64 0.83 0.65 0.10 0.23
0.98125 6 0.48 0.58 0.67 0.58 0.52 4.49 5 0.80 0.64 0.87 0.65 0.17 2.59 4 0.83 0.710.91 0.71 0.18 2.77 5 0.80 0.64 0.87 0.65 0.12 1.72
0.9875 2 0.55 0.85 0.82 0.85 0.77 4.22 4 0.57 0.71 0.79 0.71 0.32 4.19 2 0.55 0.85 0.82 0.85 0.16 3.47 4 0.57 0.71 0.79 0.71 0.29 2.85
0.99 2 0.80 0.85 0.95 0.85 0.82 5.66 3 0.70 0.78 0.89 0.78 0.36 4.71 2 0.80 0.85 0.950.85 0.15 4.97 3 0.70 0.78 0.89 0.78 0.30 3.12
0.99375 0 0.07 1.00 0.20 1.00 1.00 - 0 0.08 1.00 0.22 1.00 1.00 - 0 0.09 1.00 0.23 1.00 1.00 - 2 0.68 0.85 0.90 0.85 0.89 4.92

Table 4: VaR accuracy test for both MDI-POT approaches, for the in-sample period (from January 2, 1992 to December 31, 2012)
and the backtesting period (January 2, 2013 to December 31, 2013). Entries in the rows are the significance levels (p-values) of the
respective accuracy tests, with exception of the confidencelevelα for the VaR, the measureV ES, and the number of exceptions of the
VaR (excep.). The entries with values (-) indicate that the test cannot be estimated due to missing observations.
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ACI-POT Hawkes-POT
Theoretical

in-sample backtesting in-sample backtesting
FTSE 100 1.020 1.022 1.018 1.022 1.001

DAX 1.024 1.026 1.021 1.026 1.001
S&P 500 1.044 1.039 1.034 1.048 1.005

Table 5: Time series average of the ratioES0.975/V aR0.99.
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